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I. INTRODUCTION

This article brings up to date the earlier review by
Inokuti (1971), “Inelastic Collisions of Fast Charged
Particles with Atoms and Molecules— The Bethe Theory
Revisited.” Since its publication, further developments
have occurred in a number of the areas covered, and,
in addition, several new topics have emerged to join the
body of literature on the Bethe theory. We summarize
such material here and update the earlier list of refer-
ences. We also offer several comments on other mat-
ters discussed by Inokuti (1971) and by Fano (1963). A
list of errata to these two papers is included.

The more substantial additions to specific sections of
Inokuti’s review (1971) include the discussions below of
electron impact with very large momentum transfer
(Sec. II.D); sum rules pertaining to transfer of momen-
tum, rather than energy (Sec. II.E); minima in the gen-
eralized oscillator strength (Sec. II.F); the doubly dif-
ferential cross sections for electron ejection (Sec. II.K);
and distorted-wave analyses (Sec. II.M). The new top-
ics, not covered in the earlier review (Inokuti, 1971),
are plasma stopping power (Sec. II.N); ultrarelativistic
stopping power (Sec. II.0); neutron stopping power (Sec.
I.P); and the dependence of stopping power on charge—
the z® effect (Sec. I1.Q).

Our discussions chiefly concern theoretical matters;
documentation of numerical data, experimental or
theoretical, is beyond the scope of this article.

1. MAJOR POINTS
A. Alternative definitions of the variable Q

In both Fano’s (1963) article [Footnote 5, p. 5, and
Eq. (18), p. 9] and Inokuti’s (1971) review (p. 303), a
stronger emphasis would have been appropriate on the
difference between Fano’s variable @ [which is called
@, by Inokuti (1971)] and Bethe’s (1933) variable @.
That difference persists even for zero scattering angle,
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24 Inokuti, Itikawa, and Turner: Addenda: The Bethe theory revisited

at which the variables become smallest for given v and

E,. More specifically, note that
Qumin (Fano) = [(mc?)? + E2/B2 2 —mc?
=E2famv?, if E,<<mc?8,
while

Qmin (Bethe) :E721 (1 - B 2)/27}’1 U2 .

The two definitions become indistinguishable for non-
relativistic speeds v=Bc<<c¢. Each of them has advan-
tages and disadvantages. Bethe’s @ certainly makes
the differential cross-section formula [Eq. (2.27) of
Inokuti (1971)] simple, but includes explicit dependence
on E,, as seen in Eq. (2.26) of Inokuti (1971). There-
fore, in the stopping-power evaluation, the summation
over E, (including integration over continuous spectra)
and the integration over @ become mutually dependent.
Fano’s @ is conceptually clear; it represents the kinetic
energy of an ejected electron when its initial binding en-
ergy is ignored and has no explicit dependence on E,,.
But the differential cross section becomes more com-
plicated [Eq. (16) of Fano (1963)] when expressed in
terms of Fano’s Q.

B. The influence of a finite angular resolution on the
forward energy-loss spectrum

To the discussion on p. 306 of Inokuti (1971) we may
add that the precise shape of an energy-loss spectrum
depends, in general, upon the geometry of the appara-
tus used in the measurement. Specifically, Eq. (3.5)
applies to an apparatus in which the scattered electrons
pass through a circular aperture. For an apparatus
with a slit, the energy-loss spectrum has a different
functional dependence on the variable ¢ (Skerbele
et al., 1969).

The second term in the square brackets of Eq. (3.5)
should read (E2/4RT)fY. The unnumbered equation
below Eq. (3.5) should read ¢ =4(8T /E, ).

C. Expression for the sum rule S(-1,0)

Equation (3.18) of Inokuti (1971) is correct for atomic
and molecular states that have no permanent dipole
moment. More generally, that equation should read

S(-1,00= 353 teym) /a2 = (32 ) /a3

For a polar molecule, the second term is not, in gen-
eral, vanishing, even after averaging over molecular
orientations. The discussion by Hirschfelder, Brown,
and Epstein (1964) in this respect correctly keeps the
second term, and also takes into account the nuclear
masses (which, for brevity, we do not treat here). No
quantitative assessment of the role of the second term
appears to have been made. A similar comment applies
to Eq. (3.29).

Note added in proof. Chipman et al. (1977) have re-
cently studied this matter for H,O.
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D. Collisions with large momentum transfer

Inelastic collisions of any charged particle resulting
in extremely large momentum transfer are basically
similar to collisions with a free electron. Then, the
momentum transfer and the energy transfer are cor-
related with each other owing to kinematics. This fact
is a key element of the Bethe theory, and manifests it-
self in the Bethe ridge, as discussed in Sec. III.2 of
Inokuti’s review (1971). Recent years have seen some
progress in the understanding of electron impact with
extremely large momentum transfer.

When the momentum transfer ZK is so large that
(ZK)?/2m greatly exceeds the binding energy of one of
the electrons in an atom or molecule, most frequently
that electron will be knocked out with very high speed.
In the simplest treatment the wave function of the
ejected electron may be approximated by a plane wave
representing the eigenstate of momentum p. Then the
matrix element en(K) in the cross-section expression
[Eq. (2.6) of Inokuti (1971)] is written mainly in terms of

@s(pr)zvfdrzexp(iﬁ“p,-rz) Jdrl---drz_l

u*;on,s(rl’ e rz—x)'uo(ru cee rZ-l’ rZ) ’

where p,=7K —p is the recoil momentum received by
the ion. Further, u,, , represents the sth eigenstate
of the ion left behind and u, is the ground state of the
target. If we assume further that »,,, ; and «, are pro-
ducts of one-electron orbitals, then <I>s(pr) reduces to a
product of two factors, i.e., the overlap integral of
spectator electrons 1,...,Z — 1, on the one hand, and,
on the other hand, the Fourier transform (i.e., the
momentum representation) of the orbital from which
the electron is ejected. Clearly, only the second factor
depends upon p,. Similar results are derived from less
restrictive treatment, using various versions of im-
pulse approximations. For electron collisions, one
must account for electron-exchange effects, and the
differential cross section at high incident energy and
at high momentum transfer takes the form of the Mott
cross section multipliedby a square of ®,(p,) (or its
linear combination). Consequently, measurements of
energy and angular distributions of two electrons, i.e.,
a scattered electron and an ejected electron, in coin-
cidence may be interpreted largely in terms of the mo-
mentum distribution in an atom or molecule,; although
departures from the simple picture appear with de-
creasing incident energy and with decreasing momen-
tum transfer. Recent years have seen a considerable
growth of the literature on the topic exemplified by a
number of studies (Glassgold and Ialongo, 1968;
Neudatchin et al., 1968; Amaldi and degli Atti, 1970;
Camilloni et al., 1972; Weigold et al., 1975; Ugbabe
et al., 1975; Levin et al., 1975; Guidoni et al., 1976;
and McCarthy and Weigold, 1976).

Collisions with large momentum transfer #K seldom
lead to lower excitations, which imply modest energy
transfer. This observation is seen in the Bethe theory
as the rapid drop of the generalized oscillator strength
for any low excitation with ZK (cf. Sec. III.2 of Inokuti,
1971). Kelsey (1976) points out, however, that the
scattering amplitude for this class of collisions evalu-
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ated in the second Bovn approximatlion contains a
component behaving as (ZK)™2 due to the Rutherford
scattering by nuclei. This component declines with ZK
much less rapidly than the first Born component and
may often govern the behavior of measured differential
cross sections at large scattering angles.

E. Various integrals of the generalized oscillator strength
with respect to the momentum transfer

Section IIL.3 of Inokuti’s review (1971) treats integrals
(including sums over discrete spectra) of the generalized
oscillator strength with respect to the energy transfer,
i.e., the usual sum rules. Here we point out another
family of relations involving integrals with respect to
the momentum transfer and discuss applications of some
of these relations. :

We begin with the definition

G, = [ (Kao)f,(K)d(Kay,) Q)

where f,(K) is the generalized oscillator strength for ex-
citation to state » (either discrete or ¢ontinuum) at mo-
mentum transfer K#. The integration domain is taken
over all positive values of Ka, for 0=21<9+2(1+17'),
where [/ and I’ are the orbital angular momentum quan-
tum numbers of the active electron in the initial and fi-
nal atomic states, respectively. For larger values of
A, the integral diverges because of the asymptotic be-
havior f,(K) = O[K~1*-2¢*!"] for large K (Rau and Fano,
1967). For A<0, the integrand becomes singular in gen-
eral at K =0; then we consider the integral with a small
but positive lower limit K, in accordance with the
physical fact that the momentum transfer for any inelas-
tic collision is never zero (p. 301 of Inokuti, 1971). [A
comprehensive treatment of G,(A) will be published by
M. Matsuzawa, S. Mitsuoka, and M. Inokuti; what fol-
lows is an excerpt from this work.]

Using Egs. (2.5) and (2.9) of Inokuti (1971) and formal-
ly carrying out the K integration first, we can write

G, = %L f drpg,(r) f dr’po(r')g(h, r 1), (2)
where we define

g, r—r)=ay (4m)? f dKE**expliK - (r -r)], (3)
and

Pon(r) = (0] ?: 8(r; —r)|n) )

sin(K|r—r’))

1y = =2 ° -3
g(-1,r-r')=a; f dK K Rl —1]

Kmin

= 3K mia@) 7+ [ 36 +57 + 3 I(Knq) ([ = 7 [ /) + 4(|r = x7[/2,)* In(|r = v/ [ /5) + O nin®a) ,

is the one-electron density for the transition between
the ground state 0 and the state n. In the derivation of
Egs. (2) and (3) and throughout the present discussion,
we presume that the atoms or molecules are either
spherical or randomly oriented and imply that all matrix
elements have been averaged over magnetic sublevels

of the ground state and summed over magnetic sublevels
of the state »n; this stipulation permits one to replace

J dK by (4m)* [ dKK-2.

Thus we see that g(A, r —r’) is the object of study here
and is independent of the target species. By virtue of the
orthogonality of the states 0 and #, we may add to g(x,

r — r’) any constant or any function of r or r’ only with-
out affecting the value of G,(A\). The integral of Eq. (3)
is improper in general but may be readily interpreted in
the sense of generalized functions (Lighthill, 1958). For
example, some specific forms of g(x,r — r’) are as fol-
lows:

g(4,r—r')=27%a36(r - r’), (5)
g3, r—r")=(a,/|r-r"|)?, (6)
g(2,r—.r')=(1r/2)(a0/|r—r’]), )
gl,r—r)=-In(|r-r'|/a,), (8)
g0, r=r)==(n/4)|r=1'|/a,. 9)

Insertion of each of these explicit forms into Eq. (2),
together with Eq. (1), gives a nontrivial relation between
the generalized oscillator strength and the transition
density. Some of those relations and their variants,
e.g., for elastic scattering form factors, have been dis-
cussed in the literature (Silverman and Obata, 1963;
Tavard and Roux, 1965; Tavard ef al., 1965; Kohl and
Bonham, 1967; Bonham, 1967; Sahni and Krieger,

1972; Lassettre and Dillon, 1973; and O’Connell and
Lightbody, 1975). A remarkable application has been
found by Lassettre and Dillon (1973) for A =2. According
to Eqs. (2) and (7), the essential factor in G,(2) is the in-
tegral '
I=[ drpo,,(r)f dr'p,(x") |r -/ |™*. (10)
If one considers a single-electron excitation from a
closed-shell ground state, then one can equate, within
a certain approximation, I with the exchange integral
well known in spectroscopy and then relate I with the sin-
glet—triplet splitting in the excited state .

For A <0, we set the lower limit in Eq. (1) or Eq. (3) at
Ko, >0, as we stated before. Let us consider x =-1 as
an example. Throughrepeated partial integrations, itis
possible to show (Matsuzawa and Inokuti, 1976) that

11)

where v =0.5772 is the Euler constant. When we insert Eq. (11).into Eq. (2), the first term of Eq. (11) gives zero
contribution because of the orthogonality of the states 0 and n. Further we note that

Z
f drpo,,(r)f dr'po(x)(|r =1’ |/a,)? 1=-2|(n| ,Z r;|0) |?/a%=-6M2,
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where M2 is the squared dipole matrix element in atomic units, as defined by Eq. (2.11) of Inokuti (1971).

Thus we may write

c,,<-1>=<E"/R>{[-m<z«:mmao>+L;—-v]Mf, v [ awo o) [ axonen (FEE) 1 (£

Actually, G,(-1) is the essential-factor in the integrated
cross section as defined by Eq. (4.1) of Inokuti (1971),
and Eq. (13) is an alternative form of the Bethe asymp-
totic cross section, i.e., Eq. (4.15) of Inokuti (1971). The
major distinction is that Eq. (13) éxpresses the cross
section in terms of the transition density directly and
thus bypasses the generalized oscillator strength. Equa-
tion (13) not only gives a general insight into the cross-
section formula, but also may prove useful in numerical
work, especially because some theories are now begin-
ning to give as an output the transition density (as op-
posed to wave functions) of atoms and molecules. [See,
for example, McCurdy and McKoy (1974), Yeager et al.
(1975), and Chang and Fano (1976)].

The quantity G,(1) for X <0 has other applications, as
we illustrate below.

The angular distribution and the polarization of light
emitted by targets excited by a fast charged particle are
governed by the angle x defined by

cosy =k« (k-k’)/[k|k-Kk'|]=(k-K)/kK , (14)

where 77k and 7Zk’ are the momenta of the particle before
and after the collision [p. 512 of Bethe (1933); Vriens
and Carriére (1970); Fano and Macek (1973); and Mc-
Farlane (1974)]. The importance of this angle x is read-
ily apparent if one recalls that the target response is
specified within the first Born approximation by the mo-
mentum transfer 7K =7%(k - k’) and the measurement
always uses the incident momentum 7k as a reference
direction. By simple algebra, one can express cos?y as

cosx= (-’%) "L (ay ((a) MY’
~ () [ () (&) o]
(15)

where E, is the excitation energy of state » and M is the
mass of the charged particle. What counts in practice is
the average of cos?®y over different momentum trans-
fers, i.e., the integral

f do,cos? ,

do, being the differential cross section given by Eq.
(2.14) of Inokuti (1971). This integral thus reduces to
G,(-3), G,(1), and G,(-1), the last of which is related to
the integrated cross section we have already discussed.
The quantity G,(1) may be treated by use of Eq. (8). Con-
sequently, only G,(-3) calls for a new analysis (Mat-
suzawa, Mitsuoka, and Inokuti, to be published).
Finally, the sum

Z f do, cos?y
n
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(13)

—_ ’
ar l) +O(K?nma§} .
0

f

(including the integration over continuous spectra as well
as contributions from elastic collisions, i.e., n=0) gives
an average deflection of a beam of charged particles
transversing matter [Fox (1970) and p. 169 of Dettmann
(1971)].

F. Minima of the generalized oscillator strength

The general significance of the minima was discussed
in Sec. IIL.4 of Inokuti’s review (1971). Since then, many
examples of the minima have been studied both experi-
mentally and theoretically, e.g., in the papers by Hanne
and Kessler (1972), Miller (1973), Kim and Bagus (1973),
Robb (1974), Wong et al. (1975), and Matsuzawa ef al.
(1976). A new topic concerns the consequence of the
minima on the integrated cross section for inner-shell
ionization by protons and other heavy particles (Nikolaev
and Kruglova, 1971; Kruglova et al., 1973; Kruglova
and Nikolaev, 1974; Merzbacher, 1973; Choi, 1973;
Datz et al., 1974; and Manson and Msezane, 1975). The
integrated cross section is given by an integral of the
generalized oscillator strength with respect to In(Ka,)?
[Eq. (4.1) of Inokuti (1971)], the lower and upper limits
of the integral being

(Koin®)? = E2/ART
and
(K max®)* = (4T /RY (M /m)? .

For inner-shell ionization, the excitation energy E, is
very great, and therefore K, often becomes so great
that (K,;,4,)* > E,/R; then minima of the generalized os-
cillator strength at extremely large K (which are dif-
ficult to observe in the angular distribution of scattered
particles) manifest themselves in the dependence of the
integrated cross section upon the incident particle velo-
city v, or equivalently upon 7 =mv?/2. With increasing
T, K., decreases steadily and may pass any one of the
minima of the generalized oscillator strength; then the
integrated cross section fails to increase (as it would
do in the absence of such a minimum). Therefore, one
expects to see a shoulder in the T dependence of the in-
ner-shell ionization cross section if the corresponding
generalized oscillator strength has minima. This ex-
pectation has been borne out for the ionization from the
2s inner subshell, where the generalized oscillator
strength usually has a minimum attributable to the node
of the 2s orbital (Datz et al., 1974; Manson and Mse-
zane, 1975). In contrast, the ionization from the 2p in-
ner subshell has no minimum in the generalized oscilla-
tor strength and no shoulder occurs in the T dependence
of the integrated cross section.
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G. Recent calculations of the generalized oscillator
strength

To supplement the discussion near the end of Sec. III.4
of Inokuti’s review (1971), we point out here recent cal-
culations that specifically include electron correlation
effects and appear to be accurate. Our listing of refer-
ences is representative rather than exhaustive.

The first class of calculations uses the traditional
method of the superposition of configurations to obtain
accurate eigenfunctions and thence the generalized oscil-
lator strength. Typical studies of this class include
those of Kim and Bagus (1973), Robb (1974), Banyard
and Taylor (1974), and Wells and Miller (1975).

The second class is exemplified by the work of Davis
and Sinanoflu (1975), who apply a many-electron theory
emphasizing intrashell pair correlations.

The third class isthe application of another technique
of many-electron problems, i.e., the random-phase ap-
proximation. A review of the current status has recent-
ly been published by Amusia and Cherepkov (1975). To-
gether with the work of McKoy and co-workers [as seen
in the paper by McCurdy and McKoy (1974)], this ap-
proach differs from the traditional calculations in direct-
ly obtaining the generalized oscillator strength without
‘constructing a pair of eigenfunctions first.

Finally, the energy and angular distribution of elec-
trons ejected in an ionizing collision has been studied
in great detail for He (Jacobs, 1974; Robb et al., 1975;
Burnett ef al., 1976), other rare gases (Amusia and
Cherepkov, 1975), and atomic oxygen (Burnett, 1976).
The studies on He (Jacobs, 1974; Robb et al., 1975;
Burnett ef al., 1976) use accurate eigenfunctions for both
the initial and final states and may be regarded as being
as trustworthy as the earlier work on discrete excita~
tions (Kim and Inokuti, 1968 and 1969).

H. The Renner-Teller effect and the Jahn-Teller effect in
the generalized oscillator strength

Section IIL5 of Inokuti’s review (1971) fails to point out
some manifest departures from the Born-Oppenheimer
separation of electronic and nuclear motions in mole-
cules. In a non-Z electronic state of a linear polyatomic
molecule, vibronic couplings may cause the Renner-Tel-
ler effect (Herzberg, 1966). Some consequences of this
effect in inelastic collision cross sections have been dis-
cussed (Kiselev et al., 1971). A study of the generalized
oscillator strength, especially its dependence on the mo-
mentum transfer, is likely to bring forth deeper under-
standing of the Renner-Teller effect than has been ob-
tained so far solely by optical means. The same remark
applies to the Jahn—-Teller effect (Herzberg, 1966) in a
nonlinear polyatomic molecule. No extensive work
seems to have been reported yet.

I. Generalized oscillator strength for a purely vibrational
excitation of a molecule

Expression (3.47) of Inokuti (1971) is correct only when
electronic and vibrational transitions occur simultane-
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ously (i.e., n#mny, v#v,). For a purely vibrational excita-
tion (n=mn,, v#v,), the nuclear contribution must be re-
tained in the integrand of Eq. (3.47). That is, the ex-
pression for the electronic part of the form factor should
read

en(K;Rl,...,R,,):fw,’fo(rl,...,rz;Rl,...,RN)

Z N :
X [; exp(FK - r;) - ; z;exp(iK - Rz):l

X wno(rl, eeoyTz; Ry .., Ry)dr, «+<dry,,
where z;, and R; are, respectively, the charge and the
position vector of the I/th nucleus. For a diatomic mole-
cule, R,;(=1,2) can be reduced to the internuclear sep-
aration p. More details on this topic are given by Iti-
kawa (1973)..

Bonham and Geiger (1969) expanded the form factor for
vibrational excitation in power series inK and showed that
the expansion coefficient can be expressed in terms of
the moments of the molecular charge distribution. [Some
errors in their paper were corrected by Bonham (1975).]

J. The continuity of the generalized oscillator strength
across an ionization threshold

According to the quantum -defect theory, atomic eigen-
functions of successively higher discrete states of a
given symmetry connect smoothly as a function of ex-
citation energy E with continuum eigenfunctions be-
longing to the same symmetry at the beginning of the
continuum, i.e., at the ionization threshold. Therefore,
the matrix element of any operator (presumed to be
independent of E) for successively higher discrete ex-
citations from a fixed initial state (e.g., the ground
state) must connect smoothly with the corresponding
matrix element for continuum excitation. The general-
ized oscillator strength whose essential part is the
matrix element €,(K) as seen in Eq. (2.8) of Inokuti
(1971) has the continuity property, and so does the
dipole oscillator strength. Further, all quantities that
depend linearly upon the generalized oscillator strength,
e.g., the integrated cross section 0, in the first Born
approximation [Eq. (4.1) of Inokuti (1971)] must have
the continuity property.

The above point was made by Inokuti (1971) [see Foot-
note 4 on p. 310 and the commentary on Eqs. (4.23) and
(4.24) on p. 327], but a stronger emphasis would have
been in order. Indeed, it has been demonstrated (Kim
and Inokuti, 1973) that the continuity property of the
generalized oscillator strength provides a powerful test
of consistency of data on ionization with those on dis-
crete excitation.

Actually, analyses of the dipole oscillator strength
according to the quantum-defect theory have proven
powerful and successful, especially in bringing out
hidden systematics for cases when multichannel effects
are important (Lu, 1971; Fano, 1970, 1975). Extension
of those studies to the generalized oscillator strength
is highly desirable.
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K. Some properties of the cross sections for secondary-
electron ejection

An analysis (Kim, 1972) of the angular distribution of
secondary electrons resulting from ionizing collisions
supplements the discussionof Sec.IV.1, IV.2, and V.3 of
Inokuti’s article (1971). Let d?0/dEdQ be the (doubly)
differential cross section for the ejection of electrons
into the infinitesimal ring dQ =27 sin®dO at angle ©
measured from the direction of incidence of a fast
charged particle. Then a plot of (T/R)(4ma?2z?)"*d?c/
dEdRQ vs InT (at fixed E and ©) should approach a
straight line at sufficiently great 7. Further, the as-
ymptotic slope on that plot at fixed £ depends upon ©
in a simple analytic form, which is identical to the
angular distribution of electrons emitted after absorption
of unpolarized photons with energy E. This relation en-~
ables one to test consistency of secondary-electron
data with photoelectron data (Kim, 1972; Hamnett
etal., 1916).

The cross section do/dE per unit range of excitation
energy E in a continuum is written as Eq. (4.22) of
Inokuti (1971). If the (quantum) yield of ionization n(E)
is known, 7(E)do/dE gives the energy distribution of
secondary electrons (integrated over the angle © of
ejection). To study this distribution, it is useful to con-
sider its ratio to the Rutherford cross section

A0py4n/dE =41a5z*T " (R/E)?

for energy transfer E to a single target electron. Sev-
eral general properties of the ratio, which may be
written as

Y(E, T) = T(E/R)*n(E)(do /dE) /(4T agz®)

are noteworthy. For E greatly exceeding the relevant
ionization threshold I, Y(E, T) should approach a con-
stant, which represents an effective number of target
electrons. For E up to a few multiples of /, the E
dependence of Y(E, T) should resemble that of En(E)df/
dE, i.e., the photoionization cross section (at photon
energy E) multiplied by E, according to Eq. (4.22) of
Inokuti (1971). Further, if one plots Y(E, T) against
R/E, the area under the curve represents contributions
to the total ionization cross section o; [Eq. (4.29) of
Inokuti (1971)] from each interval of R/E. Kim and co-
workers (Kim 1975a, b, c; Kim and Noguchi, 1975;
Tuckwell and Kim, 1976) have successfully exploited
these and other properties of do/dE, first for testing
the consistency of various experimental data, and
eventually for constructing comprehensive and trust-
worthy sets of do/dE to be used in many applications.

The validity of the first Born approximation has been
recently examined in a comprehensive study of d?c/
dE d for proton impact on helium (Manson ef al., 1975).
Similarly extensive studies on other targets are highly
desirable.

Finally, the general topic of secondary-electron spec-
tra resulting from ionic collisions has seen consider-
able progress, as reviewed by Ogurtsov (1972) and by
Rudd and Macek (1972). As already noted in Sec. V.2 of
Inokuti’s review (1971), a notable departure from the
first Born approximation is seen in the forward peaking
of secondary electrons that have velocities comparable
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to the velocity of an incident (positive) ion. This
peaking is often referred to as charge transfer to the
continuum. Section 6 of Rudd and Macek (1972) ex~
cellently summarizes the findings about this phenom-
enon. As for the importance of this phenomenon, Kim
(1975b) has pointed out that the charge transfer to the
continuum accounts for some 25% of the total ioniza-
tion cross section for incident protons of 100-500 keV,
in excess of the same cross section for incident elec-
trons of the same speed. (It is suspected that, for
negative massive particles such as 7~ and u~, the
secondary-electron spectra may show a depression in
the forward direction for electrons having velocities
similar to the velocity of the incident particles.) Parts
of the 2z° effect, discussed extensively in Sec. I1.Q,
should be related to the forward peaking effect. How-
ever, the relation between the two effects has not been
elucidated yet.

L. Condition for the Morse formula for the differential
cross section for total inelastic scattering

The condition “R/T << §<< 1” given in the line immedi-
ately above Eq. (4.69) of Inokuti (1971) should be re-
placed by “% m/M)(E,/T)<< <1 for the majority of
states n to be considered.” To verify the condition, we
may inspect Eq. (3.7) of Inokuti (1971); if s&¢<< o<1,

then y= 9%/2 and hence we obtain Eq. (4.69) from

Eq. (2.186).

M. The significance of the form-factor concept in
distorted-wave approximations

In an extension of the discussion about the Coulomb-
Born approximation on p. 341 of Inokuti (1971), let us
consider the matrix element

('n|V'|KO) = f [ () Pk (e, ooy 1) V757 (1)
Xttg(Tyy oo, 0z)dr . ..drdr.

Here u, and u, represent the initial state and the final
state of the target, respectively, and (pf(‘)(r) and

#$7(r) may be Coulomb wave functions for the incident
particle before and after the collision. But ng(')(r) and
z[;?ﬁ(r) may be more generally distorted waves con-
structed as appropriate. The plus sign refers to the
outgoing-wave boundary condition, and the minus sign
to the incoming-wave boundary condition. The symbol
V' represents the potential responsible for the inelas-
ticity and its relevant part is the Coulomb interaction
between the incident particle at position r on the one
hand and the target electrons at position r; on the other
hand. Following the treatment of Sec. 2.3 of Fano
(1963), we express the Coulomb interaction as a Fourier
integral

z

Z
> ze?/|r; —r|=(271%)"z¢ 2 ;quq'zexp[—iq-(r—ri)].

i=1

By the use of this expression, we can write (Fano and
Inokuti, 1976)
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(k'n| V’|K0) = (27%) ze? j da q~2(k’| exp(—iq - r)|K)

z
x(n| Y expliq-r,)|0).
i=1

The second factor
z
(n| 2, exp(iq - r,)|0)
i=1

in the integrand above is the usual form factor €,(q),
which is a target property. The first factor

(k’| exp(—iq - r)|k) is a matrix element between the
distorted-wave states of the particle. In the (plane-
wave) Born approximation, it reduces to &(-k’ —q +k)
apart from a normalization factor, and specifies un-
iquely the momentum transfer (k —k’)% to the target.
In any distorted-wave approximation, (k’|exp(—iq -r)|k)
expresses a distrvibution of momentum transfer q to the
target; physically, the distribution arises because the
use of the distorted waves amounts to letting the in-
cident particle change its momentum in the field of the
target. Yet, the response of the target to each value
of q is still described by the same form factor as in the
Bethe theory. Additional remarks are given by Fano
and Inokuti (1976).

The factorization of (k’z|V’|k0) enables one to sepa-
rate the issue of target wave functions (generally un-
known) from the validity of any version of distorted-
wave approximations. A suggested application is to
evaluate (k’| exp(-iq -r)|k) as soon as the distorted
waves are determined, and then to use trustworthy
data on form factors €,(g), either theoretical or ex-
perimental, in the factorized formula. An analysis of
distorted-wave approximations along this line and
others seems to be amply warranted in view of their
recent successful applications (Madison and Shelton,
1973; Calhoun et al., 1976; Thomas et al., 1974;
Chutjian and Thomas, 1975; Baluja and Taylor, 1976).

N. The stopping power of a plasma

The method of Secs. 2.1-2.11 of Fano’s article (1963)
can be adapted to the calculation of the energy loss of a
heavy charged particle moving through a plasma. A dif -
ference appears in the low-Q range, where the nature of
a plasma as a continuous medium should be fully taken
into account. Replacing Formula (35) of Fano (1963) by
‘the contributions from the collective excitation [Egs. (45)
and (47)] and using the dielectric constant of a plasma

2
€(w)=1——5—b

w? —iwy (v=+0),

one obtains the stopping power of a plasma in the form

_4E _ 41rzzezN [ 2mv® 1 1 1 52]
. .

ds = mv? hw, +-2—1111—[32 )

Here w,= (41rNeez/m)1/2 is the plasma frequency and N,
is the number density of the plasma electrons. With the
use of different methods this formula has been derived
by Tsytovich (1962), Gould (1972a,1972b, 1972¢c), and
Vriens (1973). A corresponding formula for the incident
particle with a nonrelativistic velocity has been obtained
also by Larkin (1959) and by Honda (1964). It should be
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noted that the above formula is valid only for v> e%/i.
Otherwise, the close collision needs to be considered
more carefully [see, for example, Honda (1964) and
Gould (1972b)].

If hw, is regarded as a mean excitation energy of the
plasma, the above formula for the stopping power can
be understood easily. As is stated in Sec. 2.110f Fano’s
(1963) article [specifically in the passage immediately
after Eq. (47) on pp. 20 and 21], the low-@ transverse
excitations in a plasma are restricted to the spectral
range Ree(w)>1/B%. This condition is not satisfied by
the dielectric constant used here; as a consequence, the
collective transverse excitations cannot be excited in
such a plasma. For this reason, the stopping power re-
duces by the amount (47z%e2N,/mv?)[ - In(1 — £2) — 342,
compared with the usual formula [Eq. (38) of Fano (1963)
or Eq. (4.64) of Inokuti (1971)].

Finally, it should be noted that the above formula for
the dielectric constant of a plasma has been derived on
the assumption of a “cold” plasma. The thermal motion
of plasma particles has little effect on.the stopping po-
wer, unless the velocity of the incident particle is com-
parable to or smaller than the mean thermal velocity of
electrons in the plasma.

0. The stopping power at extreme relativistic energies

An ion colliding with an atomic electron may be treat-
ed as a point particle when the impact parameter is
large compared with atomic dimensions. Bethe’s rela-
tivistic stopping-power formula for the distant (“low-@”)
collisions, Eq. (35) of Fano (1963), thus applies to all
types of charged particles and is valid at very high en-
ergies. In contrast, the formula for high-@ collisions,
Eq. (37) of Fano (1963), was derived by making use of
his relation (7), which is equivalent to writing ym/M
<1, where v=(1-82""2 The Bethe theory is thus re-
stricted to heavy charged particles below certain ener-
gies, e.g., =10 GeV for muons and =100 GeV for pro-
tons, and the usual relativistic stopping-power formula
does not depend on the spin or structure of the incident
particle. Under the condition ym/M << 1, the incident
particle can lose only a small fraction of its energy in

" a collision with an atomic electron. Use of the small-

recoil approximation [p. 6 of Fano’s article (1963)] and
of the small-angle scattering formulas simplifies the
theory considerably.

At extremely high energies, a particle can lose a large
fraction of its energy in a single collision and be scat-
tered through a large angle. The high-@ contribution to
stopping power at such energies can be calculated by ut-
ilizing the appropriate formula for electron scattering
from a given particle. This procedure was carried out
for protons and muons (Turner ef al., 1969). The char-
acteristics of the incident particle itself enter the theory
in a straightforward manner. The Rosenbluth formula
(1950) was used to calculate the high-@ contribution to
stopping power for ultrarelativistic protons. The addi-
tional terms, not present in the Bethe theory, depend on
the spin, anomalous magnetic moment, and distributions
of charge and magnetic moment. To calculate the effects
of the proton’s structure, the form factors of Hand ef al.
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(1963) were used by Turner et al. (1969). The new
terms, which are all relatively small in magnitude when
v<10* tendto offset oneanother; the force duetothe spin
of the proton increases the stopping power, but the finite
extensions of the particle’s charge and magnetic moment
decrease it. The net effect is a decrease in stopping po-
wer of about 10% when the proton energy is 10* GeV.

The stopping power for muons at ultrarelativistic en-
ergies was obtained by adapting the proton formula to a
point Dirac particle with no anomalous magnetic mo-
ment. The calculated ultrarelativistic decrease is about
10% for muons of energy 10° GeV (Turner el al., 1969).

The differential electron scattering cross section of
Gourdin (1963) was used to calculate ultrarelativistic

stopping power for the deuteron (Vora and Turner, 1970).

Form factors associated with the distributions of the
deuteron’s charge, electric quadrupole moment, and
magnetic dipole moment were employed. At an energy
2x 10® GeV, the ultrarelativistic effects decrease the
deuteron stopping power at about 8%.

Following this work, a general formulation of the stop-
ping-power problem for a nucleon was carried out with-
out the restriction ym/M<<1. Equation (32) of Turner
et al. (1973a) gives the ultrarelativistic generalization of
Eq. (16) of Fano (1963).

In practice, these ultrarelativistic effects would ap-
pear to be outweighed by other factors, such as the den-
sity effect [as shown by Turner ef al. (1969) and by Vora
and Turner (1970)] and radiative corrections. Further-
more, stopping power itself may no longer be a relevant
quantity when significant amounts of energy are lost by
means other than collisions with atomic electrons [cf.
Sec. 2.12 of Fano’s review (1963)]. A brief review of
calculations of charged particles through matter at very
high energies is given by Turner (1970).

P. Neutron stopping power

Although uncharged, a neutron can lose energy to
atomic electrons by virtue of its magnetic moment and
internal structure. A semiclassical calculation (Vora
et al., 1971) indicated that the stopping power for a
point neutron is some five orders of magnitude less than
that for the proton when y=(1 —2)"1/2=10. A quantum-
mechanical calculation of neutron stopping power has
subsequently been carried out (Turner et al., 1973b).
The high-Q contribution can be obtained readily from
the corresponding formula for the proton, i.e., Eq. (19)
of Turner et al. (1969), or computed from the ultrarela-
tivistic generalization of the theory applied to nucleons
(Turner et al., 1973a). Analysis of the low-@ contri-
bution shows that it is negligible at neutron energies
>47°35 GeV, where Z is the atomic number of the me-
dium traversed. The quantum-mechanical result for
neutron stopping power shows a weaker dependence on
energy than the semiclassical formula, although the two
formulations give comparable results in the energy
range 5-10 GeV. Numerical calculations were per-
formed up to 7000 GeV by Turner el al. (1973b), without
the inclusion of the density effect or radiative correc-
tions.

Similarly, a moving magnetic monopole would lose en-
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ergy to atomic electrons, and an extension of the Bethe
treatment to the magnetic monopole is possible. Evi-
dence for the detection of a magnetic monopole has been
presented (Price et al., 1975), but has met with mixed
reception by other workers."

Q. Dependence of stopping power on the charge of an
incident particle?

The Bethe theory of stopping power assumes that the
speed of the ion is much greater than that of the atomic
electrons and uses the first Born approximation, accord-
ing to which the cross section for inelastic collisions is
proportional to (ze)?, the square of the charge of the in-
cident particle. (Incident electrons and positrons are
excluded from this discussion.) Because successive
Born approximations yield an expansion of scattering
amplitudes in powers of the coupling constant for the in-
teraction between the incident particle and the atomic
electrons, inclusion of the second Born approximation in
the calculation of stopping power gives an additional
term proportional to z3. The presence of the z° contri-
bution would manifest itself experimentally in at least
two ways. First, the stopping powers and ranges of
particles of the same mass but opposite charge (e.g.,
pions, muons, proton-antiprotons, etec.) would be dif -
ferent. Second, the ratio of stopping powers for parti-
cles of the same velocity would not be exactly equal to
the ratio of the squares of their charges. These points
were mentioned on p. 23 of Fano’s article (1963) and on
p. 340 of Inokuti’s review (1971). Considerable develop-
ments made after 1971 call for an amplified discussion
here.

During the 1960s rather clear experimental evidence
for the existence of departures from the z? dependence
predicted by the Bethe theory was accumulated (Barkas
et al., 1963; Heckman and Lindstrom, 1969; Heckman
1970). Ashley, Ritchie, and Brandt (Ashley et al., 1970,
1972,1973) carried out a nonrelativistic calculation of
the additional z*® contribution to stopping power. They
assumed that the incident particle moves in a straight-
line trajectory and treated the electrons of the target
medium classically as isotropic harmonic oscillators.
As in Bohr’s semiclassical treatment, one can identify
z* contributions to stopping power that result from both
“distant” and “close” collisions, depending upon whether
the atomic binding of the target electrons is important.
The classical terminology of “distant” and “close” cor-
responds in Bethe’s quantum-mechanical theory to “low”
and “high” momentum-transfer collisions. The Ashley,
Ritchie, and Brandt analysis shows that the z*® contribu-
tion arises principally from distant collisions, while
close collisions contribute mainly as described nonrela-
tivistically by the Rutherford scattering formula, which
is proportional to z2. Using the Lenz—Jensen statistical
model of the atom to determine the distribution of oscil-
lator strengths for the target atoms, they obtained ex-

isee, for example, Phys. Today 28, No. 10, 17 (1975).
2The authors are grateful to R. H. Ritchie, W. Brandt, and
J. C. Ashley for substantial contributions to this section.
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cellent agreement with the data of Andersen, Simonsen,
and Sgrensen (1969). Measurements made by Sellers,
Hanser, and Kelley (Sellers et al., 1973; Kelley et al.,
1973) show further evidence of the deviation of stopping
power from a strict 2% dependence in the energy range
of a few MeV/amu. Using the z® correction of Ashley,
Ritchie, and Brandt (1972), these investigators obtained
agreement between theory and their measured values,
which have only small experimental uncertainties.

Hill and Merzbacher (1974) reported the results of
another nonrelativistic calculation of the z® effect for
distant collisions. They treated the incident particle
classically and the atomic electrons quantum mechani-
cally as harmonic oscillators. Their results confirm the
predictions of Ashley, Ritchie, and Brandt (1972) and
demonstrate the exact equivalence of the classical and
quantum-mechanical treatments of the z°® effect in the
harmonic-oscillator approximation.

Ashley, Ritchie, and Brandt (1972) employed an adjust-
able parameter to fit the data of Andersen, Simonsen,
and Sgrensen (1969). Later, they (Ashley et al., 1973)
eliminated the adjustable parameter from their theory
by including the deviation of actual oscillator-strength
distributions for atoms from those predicted by the stat-
istical model. They give simple formulas and tables for
evaluating the z® correction to stopping powers and ran-
ges in elemental and compound target materials. The
predicted range differences are in good agreement with
the measurements of Barkas, Birnbaum, and Smith
(1956) and Tovee et al. (1971). Like some of the data of
Tovee et al. (1971), however, their values are about
40% smaller than the range differences reported by Bar-
kas, Dyer, and Heckman (1963) for stopping sigma hy-
perons. These discrepancies have not been fully analyzed.
Ashley (1974) has also studied the effects of the z3 depen-
dence on the evaluation of mean excitation energies and
shell correctibns.

Jackson and McCarthy (1972) chose a somewhat differ-
ent minimum impact parameter in the formulas of Ash-
ley, Ritchie, and Brandt (1972) and considered the effect
of close collisions in the z°% correction. As already
pointed out by Ashley, Ritchie, and Brandt (1972), the
Rutherford formula describes the collision of two un-
bound charged particles at low velocities, both classi-
cally and quantum mechanically, the exact scattering
cross section being proportional to z2. However, at high
velocities, the Mott cross section, which is not strictly
proportional to z%, applies. Eby and Morgan (1972) also
used the Mott cross section to study close collisions.

As Jackson and McCarthy relate, Fermi, in a letter to
Barkas in 1953 (Barkas et al., 1956), pointed out this
fact and calculated the differences in the average mo-
mentum lost by electrons in collisions with positive and
negative mesons. The Mott term taken from the litera-
ture by Fermi, was, however, in error. The correct
formula was used by Jackson and McCarthy, who carried
through the calculation of the close-collision contribu-
tion to the z® effect. This contribution approaches a con-
stant value as 8 -1, implying that the relativistic z°® term
introduces a constant fractional difference in the ranges
of positive and negative particles of the same mass and
velocity at high energies. This fractional difference,
which does not depend strongly on the atomic number of
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the stopping material, is of the order of 2X 1073,

Jackson and McCarthy compare the results of their
calculations with available experimental data. Theoreti-
cal predictions of the z° effect are in good agreement for
energy-loss measurements (Andersen ei al., 1969) of
slow helium ions and protons at the same speed. The
predictions are also in general agreement with other
measurements in which there are large uncertainties
(Jackson and McCarthy, 1972). Less definitive is the
general agreement with the data of Heckman and Lind-
strom (1969) for the difference in energy loss between
slow negative and positive pions in emulsions. Jackson
and McCarthy also calculate range differences for posi-
tive and negative particles in a number of absorbing ma-
terials. They report that the calculated differences are
in rough agreement with the emulsion data for stopping
sigma hyperons (Barkas ef al., 1963) and pions (Heck-
man and Lindstrom, 1969). They obtain good agreement
with data for fast muons (Clark et al., 1972).

Recently, Lindhard (1976) has considered this prob-
lem anew. Hill and Merzbacher (1974) had already no-
ticed that the Bloch (1933) stopping-power formula, valid
at large velocities, is to be replaced by the semiclassi-
cal Bohr formula at low velocities. Lindhard (1976) has
shown that this correction to the Bethe formula may be
represented in lowest order in z by a term proportional
to z*. Further, he has given qualitative arguments to
the effect that a contribution proportional to z* originates
from the region of small impact parameters and that this
contribution is roughly equal to that calculated by Ashley,
Ritchie, and Brandt (1972,1973) from a model which em-
phasizes the importance of contributions from large im-
pact parameters. Recent experimental work by Ander-
sen, Bak, Knudsen, and Nielsen (1977), which compares
the stopping power of several materials for protons,
alpha particles, and Li®*" ions at the same velocity, tends
to support Lindhard’s analysis, if one includes the
Bloch z* term. This is equivalent to choosing the mini~
mum impact parameter to be somewhat smaller than the
first trial value used by Ashley, Ritchie, and Brandt
to fit these data satisfactorily (Brandt and Ritchie, to
be published). Thus the question of the contribution of
small impact parameters to the z°® effect is still not
completely resolved. It is possible that experimental
data on the charge dependence of the stopping power of
matter from channeled particles may be helpful in set-
tling these questions.

The underlying physics responsible for the z* effects
in stopping power manifests itself in other phenomena.
Deviations from Born-approximation predictions have
been observed for K x-ray emission from materials
excited by alpha particles and deuterons of the same ve-
locity (Lewis et al., 1971). Basbas, Brandt, and co-
workers (Basbas et al., 1971a,1971b,1973) have used the
theory of Ashley, Ritchie, and Brandt in a modified form
to account for the variation of K-shell ionization data
with the charge of fast projectiles. Additional K -shell
ionization data of Cue and co-workers (Cue et al., 1974)
with heavy projectiles also show a dependence on z3.

Still other departures from z® dependence must apparent-
ly be attributed to different physical processes. For
example, some inner-shell ionization effects have been
ascribed to perturbations of the target atomic states by
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the passage of a slow charged particle. Some discus-
sion of these and other problems is given elsewhere
(Brandt, 1973; Madison and Merzbacher, 1975). New
effects, which augment stopping power through the prox-
imity of projectiles moving in clusters, have recently
been observed (Brandt et al., 1974) and reviewed (Brandt
and Ritchie, 1976).

R. K-shell ionization by relativistic particles

Several recent papers on K -shell ionization add im-
portant information on relativistic effects discussed in
Sec.II.3 of Inokuti’s review (1971). This topic was
touched upon also by Fano (1963), who cited the earlier
work of Perlman (1960) in connection with the stopping
power of K electrons in heavy elements. Theories of
K -shell ionization by high-energy electrons in medium-
and high-Z materials have been reviewed by Madison
and Merzbacher (1975). The subject of inner-shell
ionization cross sections has also been surveyed for
incident electrons by Powell (1976), and more generally
by Tawara (1977).

Davidovi¢ and Moiseiwitsch (1975) calculated K -shell
ionization cross sections for incident relativistic elec-
trons as functions of the electron energy and the atomic
number of the target atom. They employed the Darwin
approximation for the K electron. Anholt and co-
workers (1976) measured cross sections for producing
K -shell vacancies with 4.88-GeV protons incident on a
number of elements between Ni and U. They also cal-
culated Born-approximation cross sections with the
relativistic proton—electron interaction, but used non-
relativistic, single-electron 1s and continuum wave
functions for the electron. The measured cross sec-
tions were significantly larger than their calculated
values. Moiseiwitsch, Norrington, and Davidovié¢ (1977)
extended the work of Davidovi¢ and Moiseiwitsch (1975)
to relativistic protons, allowing also for a change in
spin direction of the atomic electron. They calculated
the K-shell vacancy cross section as a function of
atomic number for 4.88-GeV protons. The new com-
puted cross sections appear to be in satisfactory agree-
ment with the measurements of Anholt et al. (1976).
Moiseiwitsch, Norrington, and Davidovié attribute the
difference between their calculations and those of
Anholt et al. to the latters’ only partial inclusion of
relativistic effects.

Despite all the new developments, the subject re-
mains open for further study. It is desirable to for-
mulate calculations in such a way that one clearly
distinguishes the effects of the relativistic motion of
target electrons from the effects of incident particles’
relativistic kinematics and interactions. Presumably
the treatment by Bethe (1933) and by Fano (1963), as
summarized in Sec.II.3 of Inokuti (1971), should fully
incorporate the latter effects. In that treatment an im-
portant assumption is the validity of Eqgs. (2.29) and
(2.30), which concern the dynamics of target electrons.
It remains unclear how well these equations are sat-
isfied, because none of the theoretical results have
been analyzed or even presented from our point of
view.
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I1l. ERRATA
A. Corrections to Inokuti’s review (1971)

Page 298, left column. Line 10 should read “...the
Franck-Hertz ex-".

Page 300, Fig. 1. Plot (a) and (b) should be inter-
changed.

Page 301, left column. The second line below Eq.
(2.16) should read “occurs at 6=0, and...”.

Page 301, left column. The second term in the brace
in Eq. (2.17) should read

e
2\MT /*

Page 302, left column. The equation in line 5 should
read

Q=(EK)?*/2m.

Page 302, left column, footnote 2. The content with-
in the parentheses in the second line should read “at a
fixed T.”

Page 304, right column., The argument of the expo-
nential function of Eq. (2.34) should be —iEt /7.

Page 308, right column. The content in the first
square brackets of Eq. (3.9) should read :(n?-1)
+ (nKa,)®.

Page 309, left column. The argument of the expo-
nential function in the third line of Eq. (3.10) should

read
{— 2 arctan[--»--]l.
Ka, f

Page 317, left column. Line 17 should read
“Massey-Mohr result was...” .
Page 318, right column. Add a closing parenthesis
after “ ...a summary” on line 13.
Page 325, left column. The first term on the right-
hand side of Eq. (4.12) should read

" faK)
In

u)»

d[1n(®a,)?].
(]
Page 326, right column, line 14 from bottom.
Change “causal” into ‘“casual,”
Page 327, right column. The right-hand side of Eq.
(4.23) should read

[(R*/EYAf/AE)]p=, -

Page 335, right column. The second to the last line
of Eq. (4.78) should read as follows: exp(iK -r,)exp{(it/
7 H+(EK)?/ 2m.

Page 336, left column. On the right-hand side of
Eq. (4.83) change p; to p;.

Page 336, right column. In the right-hand side of
the unnumbered equation above Eq. (4.87), the second
term within the bracket should read

3
+ £ (21;2172 .

Page 340, right column. The reference on line 19
from bottom should read ARB72.

Page 343-347. Bibliographic data on Inokuti’s (1971)
references A71, ARB72, CK72, H71, HBE64, MT1,
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MGV63, OM71, OPB71, PD71, VW71, and YS71 were
given incompletely or incorrectly (ARB72 and CK72
appear as ARB71 and CK71). For correct citations,
see the following in the list of references of the present
article: Amusia, 1971; Ashley et al., 1972; Cooper
and Kolbenstvedt, 1972; Hudson, 1971; Hirschfelder
et al., 1964; Miller, 1971; Meyerson et al., 1963;
Oldham and Miller, 1971; Opal et al., 1971; Peart and
Dolder, 1971; Van der Wiel and Wiebes, 1971;
Yamamoto and Suzuki, 1971. The work cited as
RP65-70 has been published by Rieke and Prepejchal
(1972). The work cited as OPB71 has been extended to
many molecules (Peterson et al., 1971 and 1972; Opal
et al., 1972)

Page 347, right column. The reference code CDJ70
should be changed to VDJ70.

B. Corrections to Fano’s article (1963)

" Page 7. The first term within the braces of Eq. (12)
should carry a minus sign. [The same error first oc-
curred in Eq. (2) of an earlier paper (Fano, 1956).] Be-
cause the two terms within the braces differ in the parity
of atomic states involved, the present correction is of
no consequence to the treatment of particle penetration,
to which the Fano article is exclusively devoted. ' That
correction, however, is significant when one uses Eq.
(12) to evaluate the angular distribution of electrons
ejected by charged particles. The difference in the signs
in the two terms may be remembered in terms of the
elementary fact that electric charges of the same sign
repel each other, while electric currents in the same di-
rection attract each other.

Page 8. The exponentsin Eq. (17) shouldread 2miq-r,/%

Page 9. Equation (19), as it stands, has no clearcut
mathematical meaning. Probably the bracket on the
left-hand side was intended to denote an average over
collisions with different @ but with a fixed £,. With this
interpretation, one finds that

<E,,_Q>2 ~ <K>o
E, +@Q E,
from inspection of hydrogenic matrix elements F,(q).
The above estimation also results from a general argu-
ment based upon the binary-encounter theory, e.g., by
use of Eq. (4.83) of Inokuti (1971).

Page 12. Change +3* to —* in Eq. (25).

Page 12. In the line above Eq. (26), “order @/mc®”’
should read “order (Q/mc?)?.” Terms of order Q/mc?
actually cancel out, making Eq. (26) more nearly exact.

Page 13. The second term within the braces of Eq. (32)
should read In1/(1 —B3).

Page 24. Footnote 20 may be brought up to date by
noting the work of Ball, Wheeler, and Fireman (1973),
who solved the Bloch equation for the dipole oscillation
of the Thomas—Fermi model and thereby determined
I/Z to be 4.95 eV. This value, however, is much too low
compared to experimental data of Table I of Fano (1963),
and exemplifies unrealistic aspects of that particular
model. Indeed, the dipole spectrum of the Thomas—Fer-
mi model is nonvanishing at arbitrarily low frequencies,
whereas the spectrum of any real atom begins at its first
excitation threshold.
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Atomic shell structure gives rise to a periodic varia-
tion of I/Z as a function of atomic number Z. The vari-
ation is largest for low Z and damps for high Z [see
Sec. IIIC of the paper by Dehmer, Inokuti and Saxon
(1975) for more details].

Page 41. The last term in the parentheses of Eq. (65)
should have 2mc? instead of mc? in the denominator.

Page 43. The last term within the braces of Eq. (77)
should have a factor 2/3 instead of 1/3.

Page 44. Equation (80) should start with f(E, s).

Page 52. In the caption to Fig. 7, the equation for
“Theoretical asymptotic law” should begm with (1378%0; /
4ﬂa0
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