General properties of entropy

Alfred Wehrl*

Institute for Theoretical Physics, University of Vienna, Vienna, Austria

It is rather paradoxical that, although entropy is one of the most important quantities in physics, its main
properties are rarely listed in the usual textbooks on statistical mechanics. In this paper we try to fill this
gap by discussing these properties, as, for instance, invariance, additivity, concavity, subadditivity, strong
subadditivity, continuity, etc., in detail, with reference to their implications in statistical mechanics. In
addition, we consider related concepts such as relative entropy, skew entropy, dynamical entropy, etc.
Taking into account that statistical mechanics deals with large, essentially infinite systems, we finally will

get a glimpse of systems with infinitely many degrees of freedom.
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INTRODUCTION

Fntropy is the crucial concept of thermodynamics and
statistical mechanics. Its sovereign role regarding the
behavior of macroscopic systems was recognized about
one century ago by Clausius, Kelvin, Maxwell, Boltz-
mann, and many others. Therefore it is very aston-
ishing to note that most of the main features of entropy
are widely unknown to physicists and that many prob-
lems in connection with entropy are still open or have
been solved only in the last few years.

There may be two reasons for this. The first is that
physicists usually are more interested in determining
the entropy of a given specific system as a function of
some parameters such as temperature, density, etc.,
rather than in considering general properties of en-
tropy. The second is that the proofs of many of those
properties are generally rather tricky and involved and
require some, so-to-say, unusual mathematics, at
least in the quantum-mechanical case.

Traditionally entropy is derived from phenomenologi -
cal thermodynamical considerations based upon the
second law of thermodynamics. This method does not
seem to be very appropriate for a profound understanding
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of entropy and may frequently lead to rather obscure
conceptions and to very speculative or even mystical
ideas. (An example is the famous heat death.) How-
ever, it has to be stressed that the concept of -entropy
is not at all unclear but a very well defined one. Of
course, a correct definition is only possible in the
framework of quantum mechanics, whereas in classical
mechanics entropy can only be introduced in a some--
what limited and artificial manner.

Admittedly entropy has an exceptional position among
the physical quantities. For instance, it does not show
up in the fundamental equations of motion, such as the
Schrodinger equation. Its nature is rather, roughly
speaking, a statistical or probabilistic one; entropy can
be interpreted as a measure of the amount of chaos
within a quantum-mechanical mixed state. However,
entropy by no means has to be considered as an entirely
new quantity going beyond the concepts of classical or
quantum mechanics. This idea has been discussed fre-
quently in the past and, from time to time, is even
found in the present-day literature. Let me emphasize
that for a description of entropy the usual concepts of
quantum mechanics such as Hilbert space, wave func-
tion, observables, and density matrices are absolutely
sufficient (Sec. 1.A).

Entropy relates macroscopic and microscopic aspects
of nature and determines the behavior of macroscopic
systems, i.e., real matter, in equilibrium (or close to
equilibrium). Why this is true unfortunately is not yet
understood in full detail, in spite of a century’s efforts
of thousands and thousands of physicists. There are
many opinions and proposals for a solution to this
problem; however, none of them seems to be completely
satisfactory. Since there is an abundant literature on
this topic, I will not, in this review, try to take account
of all the results obtained so far, but will restrict my-
self to a few remarks only (Sec. I.B.).

What I rather want to do is to give a survey of the
general properties of entropy, i.e., those properties
that do not depend on certain specific systems but are
generally true. This is the main content of Sec. II. Cer-
tainly some of these properties are well . known whereas
others seem to have escaped general attention, as, for
instance, strong subadditivity. But all of them are very
important and indispensable for, say, a correct treat-
ment of the thermodynamic limit and various other
problems. I have tried to indicate in several places
what these properties are good for in physics, however.
Sometimes this will be rather sketchy and I will outline
the main ideas only and will have to refer to the original
papers for a detailed treatment.

Besides entropy itself there are many other quantities
related to it that are of interest, as, for instance, the
relative entropy and several other concepts. They will
be treated in Secs. IIT and IV. One thing should be said
in this connection: there is a tremendous variety of
entropylike quantities, especially in the classical case,
and perhaps every month somebody invents a new one.
Among all these “entropies” I have tried to select those
that, in my opinion, are of some physical significance.
Maybe my choice will be felt to be subjective.

Since statements in statistical mechanics are fre-
quently true in the infinite limit only, one cannot dis-
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pense with an ab initio description of infinite systems.
This will be done in the last section, but again, I can
present only a very sketchy treatment because there
are severe mathematical obstacles that require exten-
sive studies and go beyond the scope of this review.
But after all one cannot avoid this approach because
such important properties as ergodicity, mixing, sta-
bility, etc., can (quantum-mechanically) only hold in
strictly infinite systems.

As already mentioned, entropy can be considered as a
measure of the amount of chaos, or, to what extent a
density matrix can be considered as “mixed.” In Sec.
II.C an elaborate version of this concept of “mixedness”
of a density matrix is presented. Since, on the other
hand, entropy can also be regarded as a measure of the
lack of information about a system (this is just another
point of view of the preceding statement), it is also
necessary to comment on the relation between (physical)
entropy and information theory (Sec. II.G).

Of course, a few words also have to be said about the
classical ensembles of statistical mechanics (Sec. I.C)
as well as about the history of the subject (Sec. I.D).
Again, this will be rather cursory because there exists
a rich and excellent literature about all that.

I hope that the physics will not be hidden behind math-
ematical technicalities. At least I have tried to avoid
this.

I. GENERALITIES
A. Definition of entropy

As already discussed in the introduction, entropy is
different from most physical quantities. In quantum
mechanics one has to distinguish between observables
and sfates. Observables, like position, momentum,
angular momentum, etc., are mathematically des-
cribed by self-adjoint operators in Hilbert space.
States—which generally are mixed—are characterized
by a density matrix, say, p, i.e., a Hermitian operator,
>0, with trace=1. The expectation value of an observ-
able A in the state p is (A)=TrpA.

Now entropy is not an observable; that means that
there does not exist an operator with the property that
its expectation value in some state would be its entropy.
It is rather a function of a state. If the state is des-
cribed by the density matrix p, its entropy is defined
by

S(p)=—kgTrplnp. (1.1)

This formula is due to von Neumann (1927) and gener-
alizes the classical expression of Boltzmann and Gibbs
to quantum mechanics. [von Neumann’s derivation is
based on earlier arguments by Einstein (1914) and
Szilard (1925)]. k, is Boltzmann’s constant=1.38
X107 erg/K. In what follows we will put it equal to 1
which corresponds to measuring the temperature in
ergs instead of Kelvin; thus entropy becomes dimen-
sionless. (Occasionally we will insert in the formula
for S(p) an arbitrary, compact, positive operator rather
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than a density matrix. The quantity thus obtained has,
of course, no direct physical meaning.)*

Entropy is a well defined quantity, no matter what
the kind or size of the system under consideration is.
(This statement, however, has nothing to do with the
question to what extent entropy is a #seful quantity in
physics.) It is always =0, and, as we will see im-
mediately, =0 exactly for the pure states, possibly
=+, (Ina certain sense this latter possibility happens to
be the usual case. Fortunately, this has no serious conse-
quences in physics, cf. Sec. II.D.) It is another question
how well it can be measured (cf. Sec. IV.B). Admit-
tedly in most cases one is not able to perform suffi-
ciently many measurements in order to determine the
density matrix p, and thus S(p), completely. But this
problem does not concern entropy specifically, only
quite generally the quantum-mechanical concepts of
density matrices and wave function. However, it is true
that even if one knows p completely, it may be ex-
tremely hard to calculate S(p), although, of course,
this can be done in principle, because one would have to
diagonalize an infinite matrix in order to compute the
trace of a function of it, namely, —plnp.

1. Various interpretations of the expression for the
entropy

Before trying to clarify the relation between the ex-
pression S(p) and physical reality, I want to mention a
few interpretations of von Neumann’s formula.

Ludwig Boltzmann’s great discovery was the celebrated
formula ‘

S=klnW

whichappeared®in a paper in 1877 and established the
connection between the variable of state, “entropy,”
which had been derived from phenomenological consid-
erations, and the “amount of chaos” (or disorder) of a
system, which, more precisely, means the number of
microstates which have the same prescribed macro-
scopic properties. (This number has been denoted as
“thermodynamical probability, ” in German ‘“thermo-
dynamische Wahrscheinlichkeit” —hence the letter W.)
Of course, Boltzmann’s treatment was a purely classi-
cal one. Since the “number of microstates” does not
literally make sense in classical mechanics he took it
as the available volume in phase space divided by the
volume of an (at first arbitrarily chosen) “unit cell.”
In quantum mechanics, however, there is no ambi-
guity at all; the “number of microstates” may be in-
terpreted as the number of pure states with some pre-

lSometimes, mainly in the mathematical literature, one uses
the letter H instead of S for entropy. It is claimed that the
H should be a capital “eta’”; however, this is not so certain.
In any case, the letter H was introduced by Burbury in only
1890, whereas Boltzmann himself originally used “E.” In
physics, H is not a very good notation because of the risk of
confusion with the Hamiltonian. The name ‘“entropy” is due
to Clausius (1865) and means transformation (Tpomn). The
prefix “en’” was chosen to have a resemblance to the word
“energy.”

’Not quite in this form, which is due to Planck (1906).
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scribed expectation values. Let us assume that in a
certain system there are W different pure states, each
of them occurring with the same probability. Then the
entropy is S=1nW (remember that we have put kg =1).
The density matrix of this system is p=(1/W)P, P being
a W-dimensional projection. One easily can see that
InW=-Trplnp.

If p is of a more general type, then one has to look for
an expression that interpolates between density matrices
of the form 1/W times a W-dimensional projection. Of
course, this is done by S(p)=~Trplnp, but there are
many more expressions which do the same (for in-
stance, -IlnTrp? cf. Sec. IV.B). However, S(p)
=-Trplnp is the only possibility with reasonable pro-
perties (such as additivity and subadditivity, cf.Sec.II.E
and F. Furthermore, the latter expression enjoys nice
“mixing properties” that are very desirable from the
point of view of physics; cf. Sec. II.B).

It is rather instructive to pay attention to the combin-
atorial aspects of von Neumann’s formula. Each den-
sity matrix can be diagonalized: p=3)p,|k) (k| [where |k)
=normed eigenvector corresponding to the eigenvalue
Pu|R) (| =projection onto |k),p, 20,5 p,=1]. S(p)
=~ p.Inp, (we understand that 01n0=0). p, is the
probability of finding the system in a pure state |k). If
one performs N measurements, one will obtain as a re-
sult that (at least for large N) the system is found
b, + N times in the state |1), p, N times in the state |2),
etc. (Of course, these quantities need to be integers,
but this is only a minor point which easily can be cor-
rected.) Now the density matrix does not contain any in-
formation about the order in which one will find the
states |1),]2),..., etc. There are NI1/(p,N)!(pN)!...
possibilities for this; and for N-~ « we find (by virtue
of Stirling’s formula) that 1/N times the logarithm of
this number of possibilities converges to S.

One may likewise interpret this fact in the following
manner: consider N copies of the same system (re-
presented by the Hilbert space H® H® -+ - ® H, H=Hil-
bert space of the original system). In this new system
there are microstates of the form |1)®|2) ..., etc.,
where |1) occurs p,N times, |2) p,N times, and so on.
All these microstates have the same weight. According
to Boltzmann one obtains for the entropy InW, (with W,
=N!/(p,N)!(p,N)! -++). The corresponding portion for
one system is (1/N)1nW,, which goes to S(p) as N— .

2. Entropy and information theory

As already explained, entropy is a measure of the
“amount of chaos” or of the lack of information about a
system. If one has complete information, i.e., if one is
concerned with a pure state, entropy =0. Otherwise it
is >0, and it is bigger the more microstates. exist and
the smaller their statistical weight is. [One easily
checks the inequality S(p)=1n(1/p,), p, being the biggest
eigenvalue (=operator norm) of p.] This principle,
namely, that entropy is a measure of our ignorance a-
bout a system, described by a density matrix, or, in
the classical case, by a probability distribution, en-
ables one to apply results of mathematical information
theory to physics (Sec. II.G). Also the formal corre-
spondence between the expression -3 p,lnp, and Shan-
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non’s expression for the information content of a dis-
crete probability distribution suggests such a proce-
dure. We will discuss it in detail in Sec. II.G.

3. The classical approximation

The “classical limit” of the expression for the entropy
is obtained by the usual prescription (we first consider
the case of one degree of freedom only)

density matrix - probability distribution in phase
space

ap dq

trace— on7i

This can be justified mathematically by means of coher-
ent states.

Coherent states were introduced by Schrodinger in
1927. [A detailed treatment is presented in the book of
Klauder and Sudarshan (1968).] They are functions of the
form U(p,q)|0,0)=|p, q), U(p,q)=e*/M(p9-aP); thereby
P, q =numbers, P, @ =momentum or position operator, re-
spectively; |0, 0) =the wave function in configuration space
n~ 4 ~Hig=*/2 We have (p,q|P(Q)|p,a)=p(g). The
|p, q) are Gaussian wave packets with minimal uncer-
tainty.

One can prove the following important relation:

Tra= [ 290 () glalng).

One should bear in mind that the |p,q) are normed but

not pairwise orthogonal, in fact, using the abbreviation

z=(q+ip)/(2%m)Y? |2)=|p, q) one finds
(z|2")=exp[-3|z|* +2*2" - 3]2’|?].

For 7 - 0 the wave packets |p, q) become more and more
concentrated around (p,q), in the sense that (p,q|(P

- PF|p,q)~ 0 and (p,ql(Q - 9)*|p,q)~ 0. It is possible to
incorporate a factor w in the definition of coherent
states: let

10,0) = (wo/mle)H/3g = ex™/2n

|0, ) = exp(i/%)(w™*/2pQ - w*/2q P)|0,0) .

Our following considerations are equally valid for these
kinds of coherent states.
If one defines

p?(p,q)=(p,qlplp,q)

as the classical probability distribution in phase space,
then

dpdg
S 54 (p,q)=Trp=1

(1.2)

and
d,

S=- f_ﬁhﬂ (p,qlplnp|p,q>. (13)
The classical approximation consists in replacing
(p,q|plnp|p,q) by p Inp:

ol _ dpdq cl
si=- [ 90 5 1t (1.4)

Since -x1nx is a concave function, -{p,¢|polnp|p,q)
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s-p?(p,q)Inp°(p,q) and

s<s®. (1.5)

(In the rest of this article, we simply will write S, p in-
stead of S, p, if there is no risk of confusion.)

The above inequality is a consequence of the following
inequality for matrix elements: let f be a convex (con-
cave) function, A be a self-adjoint operator and ¢ be a
normed vector. Then (¢p|f(4)|d)= (<)f({¢|Ald)). For
the proof let us (for the sake of simplicity only) assume
that A has a pure point spectrum: A =33 a,|k)(%|. Then
o= altTlal=1. @ (Al =X lelPr(@) = (<)
F(SlelPa) =7 (o] Al9)).

For many density matrices, the error due to the re-
placement of (p, qlplnp|p, g) by p Inp° will be negligibly
small. It turns out that the classical approximation is
good as long as p%(p,qg) is a smooth function spread over
a volume in phase space that is >#(Wehrl, 1977). If
there are small distance fluctuations orif p is con-
centrated on small regions of phase space, then the
classical approximation can be very bad. (For an esti-
mate of this error in typical situations, cf. Sec. C.)

There is a striking paradox since quantum-mechani-
cally one always has S(p) =0, because S(p) = -3 p, Inp,,
and, since, p,>0,3 p,=1,p, <1, one has —p,Inp, =0
(=0 if, and only if, p,=0 or 1; hence if one p,=1, all the
others must be =0: therefore p is a one-dimensional
projection, i.e., a pure state). Thus S(p) =0 (cf., also
Sec. II.A). The conventional classical entropy, however,
may very well be <0, even —, in spite of the inequality
S<S°. How can this happen? The reason is that usually
the classical entropy is introduced in a less critical
manner. Namely, it is defined by every probability dis-
tribution f(p,q) (i.e., every function with f >0, [f=1),
no matter whether there is a density matrix p such that
f(p,q)=p®(p,q) or not. Thus one does not suppose that
always f <1 and, consequently, the “classical entropy”
of f,

stn=- [ B finy,

can become negative (see Fig. 1).

Suppose that S(f)<0. Because [(dpdg/h)f=1, the ex-
tent of the region, where f>1, must be <4. Hence a
negative classical entropy arises if one tries to localize
a particle in phase space in a region <%, i.e., if the un-
certainty relation is violated. Therefore in applying the .
conventional classical expression one has to keep in

(0] . |
-x In x

FIG.1 Graph of f (x) =—x Inx.
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mind that not every classical probability distribution can
be observed in nature.

Although the conventional classical entropy has some
other inconvenient features (for instance, it is not
monotonic as the “true” classical entropy is; cf. Sec.
II.F), we will nevertheless, for the rest of this paper,
always understand by “classical entropy” the conven-
tional one, if not otherwise stated, in order to avoid any
confusion.

At this place it should also be remarked—which, of
course, is well known to everybody —that in purely
classical reasoning the expression for the entropy can
only be derived up to an additive constant. For dpdqg
has the dimension of an action, hence in order to obtain
something dimensionless in the normalization condition
“fpc‘ =1” one has to divide dpdq by some quantity of the
dimension of an action (=volume of a “unit cell”). The
right quantity, as we have just seen, is Planck’s con-
stant z (not 7 !). If one takes some other quantity, say
n’ (in a classical theory %z cannot occur), we obtain the
normalization condition f (dpdq/n’)p% =1 and for the
entropy
dpdq

T pcl lnpcl

- apaq .y _1n 2
——f A p’Inp’ —1In 7

V ’
=correct classical entropy —1n %(p'ip %) .

s=_

If, in particular, p=const in a certain region (“phase
volume”) of the (p,q) plane, otherwise =0, then S
=logarithm of the phase volume measured in units of

& =logarithm of the number of “cells.” If the size of
the cells is changed, then of course the expression for
the entropy changes too. (In classical statistical mech-
anics this problem is partly overcome by the ad koc
postulate of the third law of thermodynamics.)

4. The classical discrete approximation

In approximating the expression for the entropy one
can go one step further and discretize the classical pro-
bability distribution p®. That means that one partitions
the phase space into cells of size 2z (enumerated by
some index i) and replaces p¢ in each cell by its aver-
age, which we will denote by p;, i.e.,

_ dpdq
= cl & 71 .
p‘ '/;eu“i " P h

Then },p;=1. The classical discrete entropy is defined
by

(1.6)

Si=— > "p,Inp;. 1.7
Because of the inequality
x(lnx —lny)=x—y, (1.8)

one obtains

Scl,d > Scl
Like the classical (continuous) approximation, the class-
ical discrete approximation may be sufficiently good for

many purposes.
It should be noted that the same formal structure a-
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rises if all density matrices under consideration in a
certain problem commute. In this case, there exists a
common set of eigenvectors |i) such that p{ @)= p{?|:)
(a labels the density matrices) and S(p®) = =3 p{* Inp{ <.
This shows that every general theorem that is true in
quantum mechanics also must be true in the classical
discrete case, or, vice versa, if a theorem is not true

"in the classical discrete case, it also cannot be true in

the general quantum-mechanical case.

5. Hilbert spaces for statistical mechanics

Although the expression for the entropy does not refer
to any special structure of a system, there are some
particular features of many-body systems. Let me be-
gin with a short review of the Hilbert spaces of those
systems that are of primary interest in statistical me-
chanics. For a careful presentation, see Ruelle, 1969.

One-particle systems

The Hilbert space of a particle moving in a subvolume
V of R? (d=space dimension) is L3(V)=space of square-
integrable functions (x) (x € V). Here and throughout
the rest of this paper we neglect spin since our treat-
ment will be a nonrelativistic one only.

Many-particle systems (Maxwel/-Boltzmann statistics)

Here the Hilbert space is the tensor product of N
copies of L*(R?), thus the particles are supposed to be
distinguishable. Since in nature there are only very few
distinguishable particles, Maxwell-Boltzmann statistics
is not very well suited for purposes of statistical mech-
anics.

Bose-Einstein statistics

The Hilbert space of N identical particles obeying B-E
statistics is the symmetric tensor product of N
copies of L%(V):

Hy(V)=L3(V)®- + - ® LA(V)

which equals space of square-integrable functions
(x4, ..., %y) (x; €V), that are symmetric in x,,...,%.
Fermi-Dirac statistics

Like the B-E case, but “symmetric” being replaced
by “antisymmetric”;

Hy(M)=L2(V)®--- @ L*(V).

Fock space

If the number of particles is not kept fixed but if one
rather wants to take into account the possibility of a
variable number of particles, one considers Fock space

H¥(V)= & HX(V).
N=0
[H5 =C (one-dimensional space =vacuum).] If the mea-

sure of the intersection of two volumina V, and V, is
zero (by abuse of language we will always write V,N V,
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= ¢ in that case), then

H*(V,U V,)=H*(V,)®(V,). (1.9)

Lattice systems

Mainly for the study of models (such as lattice gases,
ferromagnets, binary alloys, etc.) one is interested in
lattice systems. There, to each point x of a lattice Z¢
of dimension d, one assigns a Hilbert space H, of fixed
finite dimension. Let VC Z% be a subset. Then

H(V)= ® H,.

xeV

Again, H(V, UV,)=H(V)®(V,) if VNV, =¢.

Several species of particles

We will not consider this case since it can be treated
in an obvious manner once the results for identical par-
ticles are established. :

After having sketched the various types of Hilbert
spaces that we are interested in let us discuss some as-
pects of Eq. (1.1) for the entropy.

Independent particles

Consider N identical particles (fermions or bosons).
Let p be the one-particle density matrix. The N-par-
ticle density matrix might be expected to be p@p®-- -
®p. However, the trace of this operator, restricted to
the Hilbert spaceHy orH,, is not =1. Take, for in-
stance, N=2. Then

3(1 = Trp?) for fermions.

Trp®p= { (1.10)

3(1+Trp?) for bosons .

If Trp® <1 [and, consequently, S(p)>0], Trp®p= 3,
and, similarly, for N particles, Trp®...®p=~1/N1.
The entropy is then= —-TrN!(p®:--Qp)In(N!lp®---Qp)
=~ _1nN! +NS(p). (The necessity of subtracting a term
- 1nN! was first demonstrated by Gibbs’ Paradox.)

Let us illustrate this by the simple example of a
“microcanonical” density matrix p=(1/W)P (P=projec-
tion of dimension W and W > N). Here S=1logarithm of
the number of microstates =1n(}) for fermions,
=1n(**¥ 1) for bosons. In either case S= _InN! + N InW.

The term -InN! that appears in these calculations can
be derived from a rule known as correct Boltzmann
counting: microstates of the type, say, |1)®[2)®---
and |2)®|1)®- - - are to be identified (which clearly is a
consequence of the identity of the particles), whereas
the contribution of the states of the form |1)® [1)®---
can be neglected.

Similar statements, of course, hold for the classical
approximation. Up to now we have considered one par-
ticle and one degree of freedom only. If there are d
degrees of freedom, the classical probability distribu-
tion p(p,q) is obtained in a straightforward manner.
However, for N identical particles one must not—ei-
ther in the normalization condition or in the expression
for the classical entropy—take the integral (we have
put d=3)
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j‘ asp,...d%y ..
AL ,

but rather

d’p, ...d%y .
1N o
in order to correct for the fact that, for instance, the

points in phase space (p,,q;,P,,%,-..) and
(P,,Y,,P;,9;; - - - ) cannot be distinguished.

6. The generalized Boltzmann-Gibbs-Shannon entropy

Let me conclude this section with a remark on a pure-
ly formal level. From the mathematical point of view
the expression for the classical entropy can be con-
sidered as a special case of the so-called “generalized
Boltzmann-Gibbs—-Shannon (BGS)” entropy (cf., Ochs,
1976). Its definition is: Let (22, A, u) be a o-finite mea-
sure space, v be a probability measure that is absolutely
continuous with respect to . (hence its Radon—Nikodym
derivative dv/du exists). Then the generalized BGS en-
tropy is

dv dv

dv dv
=_ [ £ 14 &2 if 22 1n £ is
m In " du (i m In m is integrable).

(1.11)

Important examples are the following ones:

1. Boltzmann—-Gibbs (Classical) Entropy:
du=a**p a**q/n* (or---/n*" N1, respectively),

dv=pldy.

2. Shannon Entropy of Information Theory:

ﬂ={112:' . -}’ M({l})=“({2}):"'=1; V({i})zpi'
Then
S=—Z pilnp; .

3. Relative Entropy. du=0d®*p d*q/n3¥(N1,dy
=pd®p d3q/n*(N!),0, p being probability distributions. In
this case the generalized BGS entropy is —fp (Inp
-1no)d®p d3q/n*N(N'!). With the +sign in front, this
quantity is called “relative entropy” and plays an im-
portant role as we will see very soon. [In quantum
mechanics, one defines the relative entropy between
two density matrices o, p as S(o|p)=Trp (Inp - Ing). We
will study this concept in detail in Sec. III.B.]

4. Renyi’s Information Gain. This is a discrete ver-
sion of relative entropy. ©={1,2,...}as in example 2,
but u({i}) =g, instead of 1,53¢,=1. Then S=-3p; (Inp,
—1Ing;). (See Renyi, 1966.)

The most general concept in this direction is the Segal
entropy (Segal, 1960). It covers both the classical gen-
eralized BGS entropy and quantum-mechanical entropy.
(cf. Sec. IV.C.)
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B. Entropy and physics

The relation between entropy and physics is established
by an empirical principle, namely, the second law of
thermodynamics. There are several formulations of this
law, of varying degrees of validity, which we will now
briefly discuss. However, as mentioned in the intro-
duction, the problem of the second law of thermodynam-
ics does not appear to be fully understood yet.

1. A paradox

A very common formulation of the second law of ther-
modynamics reads as follows: the entropy of a closed
system never decreases; it can only remain constant or
increase. A less sharp formulation is the following
(maximum entropy principle): the entropy of a closed
system in equilibrium always takes the maximal possible
value. (Of course, both formulations are a little bit
vague and have to be specified in concrete instances.)

These statements are, however, in striking contra-
diction to the fact that the entropy of a system obeying
the Schrddinger equation (with a time-independent Ham-
iltonian) always vemains constant. For the density ma-
trix at time ¢—let us denote it by p(¢)—is obtained from
the density matrix at time 0—p—Dby the formula

p(t) = e *Htp etft (1.12)
Since e*f* is a unitary operator, the eigenvalues of p(t)
are the same as the eigenvalues of p. But the expres-
sion for the entropy only involves the eigenvalues of the
density matrix, hence S(p(#))=S(p). (In the classical
case, the analogous statement is a consequence of Liou-
ville’s theorem.)

This result seems to be absurd since one knows by ex-
perimental experience that the second law is something
very sensible and very useful. There is one way out of
this dilemma; that is; that the time evolution of a sys-
tem is not described by the Schrddinger equation but by
some other equation. In fact, in statistical mechanics
one uses, with great success, equations like the Boltz-
mann equation, the master equation, and other equa-
tions.

2. The Boltzmann equation

To begin with, let us look at the classical Boltzmann
equation (Boltzmann, 1872). In historical development,
this equation was the first one to describe an irrever-
sible behavior of a system in a rigorous way. Yet this
equation is still the best known to most physicists. Many
of its features are characteristic of all equations that
aim at overcoming the difficulty that microscopic de-
scription and irreversibility do not fit together. (See
the article by Grad, 1958, or Cohen and Thirring, Eds.,
The Boltzmann Equation, 1972. Of course, the Boltz-
mann equation is also discussed in all textbooks on stat-
istical mechanics.) Perhaps the reader should be warned
that although usual macroscopic equations, such as the
Navier—Stokes equations, can be derived from the Boltz-
mann equation by means of further approximations, the
Boltzmann equation also has to be considered as a mac-
roscopic equation because it provides a description of the
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system in which the original number of degrees of free-
dom, 10%%, is reduced to 6.
The Boltzmann equation is by no means an immediate
consequence of the laws of classical mechanics, i.e.,
the Hamiltonian equations. Rather it is based on several
assumptions, such as, for instance, the molecular
chaos, or the “Stosszahlansatz,” and upon the fact that one
considers the one-particle correlation function only, in-
stead of taking the whole probability distribution in phase
space. It turns out that, although the time evolution of
the total system is given by the Hamiltonian dynamics,
under certain conditions the time evolution of the first
correlation function can be described, in fairly good ap-
proximation, by an irreversible equation.
The correlation function of a system of N identical
particles (with mass=1) is defined by
F(p,q,t)d®p d°*q=number of particles in the
volume d°% d3q at time ¢ (1.13)

[hence (1/N)F =probability of finding one particle in d?%p
d3q, irrespective of where the others are]. From the
definition,

[Fapa‘q-n. (1.14)
F is obtained from p®(p,,q;,...) by the formula
_ (4%, d%,d®pydiqy
F(p’q’t)_f YN - 1)1
Xp® (D, d,Pardzs v st)e (1.15)

(Because of the symmetry of p the exceptional position
of the first particle is only fictitious.)

The assumption of molecular chaos states that the
number of pairs of particles in the element d>g in con-
figuration space, with momenta in d3,, or d®p,, respec-
tively, equals [F(p,,q,t)d°p, d°q][F(p,, q,t)d°p, d°q].

From it one derives (we consider the simplest case:
no external forces, no internal degrees of freedom, etc.)
the Boltzmann equation

(37 +B:5F.= [ @ 2%, 0@ |5, - pa| F4F; - FoF),
(1.16)

where o(R2) is the differential cross section for a collision
(015 02) = (P, p3) (R=solid angle), F;=F(p,, q, 1), F}
EF(PL q, t)(l = 1; 2)-

The Boltzmann equation implies the H Theorem the
function

H(t):—fd3p d3q F1nF (1.17)
is nondecreasing in time. The following remarks apply:

(1) H, as defined by Eq. (1.17), does not coincide with
the classical entropy in general. This is the case only
if p° factorizes: P (w,,w,, ..., wy)=N1pSw,)*+* o (wy)
(w;=(p,,4,)), we then have

51 =NS(pS!) - lnN!

(cf. Sec. A). Otherwise, H= S° (cf. Sec. IL.F).
(2) The correlation function F is obtained from the

(1.18)
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“true” distribution in phase space by some sort of aver-
aging.

(3) The assumption of molecular chaos cannot be jus-
tified from first principles. It may be probable to a
more or less high extent, but it certainly is neither nec-
essary nor true for all time.

From our discussion up to now we have learned that the
mechanism of nondecrease of entropy is based upon aver-
aging and probability assumptions. (We will recognize
this in a somewhat clearer fashion in the example of the
“master equation.”) However, it should be mentioned
that there is a vigorous derivation of the Boltzmann equa-
tion (but only for small times) for a gas of hard spheres
of diameter d in the limit d -0, »®d kept fixed, where
n=number of particles/cm?®, by Lanford (1975). In this
limit, the system consists of infinitely many particles.
This is one of the hints that rigorous versions of irre-
versibility, and quite generally thermodynamical be-
havior, are to be expected for infinite systems (and pos-
sibly for arestricted class of initial states) only [cf. Sec.
IV.C).

Let us return to finite systems and proceed by discus-
sing ergodicity and mixing properties of classical sys-
tems.

3. Ergodicity and mixing

I want to start with the concept of energy shell. Let
p(t) be the time evolution of a density matrix p, i.e.,
pt)=etp ettt and let |n) be the eigenvectors of the
Hamiltonian, thus H|n)=E,|n). Then the matrix ele-
ments of p(f) are

@)y = (nlp(t) Im) = /M (Em=-Ent)(y ! p I m).

We may classify them as follows:

(a) Matrix elements that change in a significant way
only during macrvoscopic time intervals (say, 10™° sec).
They are connected with extremely small (unmeasurable)
energy differences E,, - E, (<107'® erg).

(b) If the difference E,, — E, is bigger, then (p(t)),, is a
very rapidly oscillating function of #. Since macroscopic
measurements last rather long compared with the fre-
quency of these oscillations, they in fact will average
over (p(t)),,- The mean value of these matrix elements
being of order of magnitude %/(E,, — E,)At (At =period of
the measurement), one can neglect them, or, expressed
in other terms, those fluctuations are too rapid to be
observed.

Now let E=Trp(t)H be the expectation value of the en-
ergy. Of course, this is a constant of motion since
Trp(t)H =Tre tHtp e'#tH = Tre ' pH '#* = TrpH. On the
other hand, E=2Jp(t),,E, Due to our foregoing consid-
erations for a description of macroscopic changes of the
system, one only has to take into account the matrix ele-
ments of class (a). Hence we can restrict ourselves to
that subspace of the Hilbert space that is spanned by
those energy eigenvectors |n) for which |E - E,| << with
€ being sufficiently small. We will call this Hilbert
space the energy shell. (In our considerations we always
have assumed that the Hamiltonian has a pure point spec-
trum. However, it is a simple matter to generalize our
arguments to Hamiltonians with a continuous spectrum.)

In the classical case (cf. Sec. A) we formally can put

(1.19)
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7 =0 and therefore we are allowed to choose the energy
shell infinitesimally thin. Of course, here “energy
shell” no longer means a subspace of Hilbert space
L2*(R3¥), but rather a subset of R®. We will denote the
classical energy shell by @, (or simply §):

Qe ={(py,-- -, aqn):H(py, ..., qy)=E}, (1.20)
[H(...)=classical Hamiltonian]. In the following we want
to use the abbreviation w= (p,,...,qy).

The restriction of the measure d%,*++*d3,/N! (as
always we assume the particles to be identical) to the
energy shell Qz, formally given by

G(E "'H(pp e an))d3P1 * ..dsqN/Nl ’

defines a measure dw. (For a more precise definition
see, for example, Reed and Simon (1972) or Arnold and
Avez (1969), and other textbooks on ergodic theory.) By
virtue of Liouville’s theorem this measure is time in-
variant, i.e., dw=dw(t). Let me denote by W(R2) (or
simply W) the measure of all of 2, by W(4) the measure
of a subset AC Q.

In classical statistical mechanics the concept of ergo-
dicity has been introduced by Boltzmann in order to jus-
tify the microcanonical ensemble. A “microcanonical
ensemble” means a uniform probability distribution over
the energy shell, i.e.,

(1.21)

pme(w):ﬁ‘ (1.22)
[ We write p,,, instead of the more precise notation pgl,
recalling our remark following Eq. (1.5)]. However,
ergodicity certainly is too weak a property to establish
that every probability distribution tends (at least in a
certain sense) to the microcanonical one. Therefore one
has to introduce a stronger notion: mixing. (This con-
cept is due to Hopf, 1932.)

A system is called “mixing” if the following is true:
let A, be the time evolution of a subset AC Q (i.e., A,
={w(t): w(0)c A}). Then, for any two sets A,BC §, al-

ways
W(B)
limWA,NB)=W 1.23
lim W4, B) = W) gres. (1.23)
Ergodicity only would state that
1 wW(B) .
E:r: ) W(A,.ﬂB)dt _W(A)W(Q) (1.24)

There is no direction of time favored in this definition,
which perhaps is not easy to recognize at first, be-
cause

lim WA,N B)=1lim WAN B_ J=lim W@AN B,_ ¢)

t—>=c0 t—>mco -t

_ WA)W(B)
W)

One can think of such a system as a flow with strongly
turbulent aspects. After sufficiently large times every
set A is so ragged that its relative portion in every fixed
partB of Q is just W(A)/W () (see Fig. 2). It shouldbekept
inmind, however, thatsuchabehavior hasnotiing to do
withirreversibility. Given A,, for {>0, one canrecon-
struct A for £=0. Infact, this sometimes even canbe done
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FIG. 2 Time evolution of the set A.

experimentally, for instance, inthe spinecho experiment
(cf. Blau, 1959; Mayer, 1961).

Of course, for a mixing system the entropy also re-
mains constant. Nevertheless such a system gives the
impression that if one does not look at it in a highly ac-
curate manner, every set A after a certain time appears
to be distributed uniformly over Q. To make these feel-
ings precise, let us divide § into “cells” (not to be con-
fused with the cells of section A) of finite size: Q=9
UQ,Uee+(Q,N Q,=¢ if i#Ek). The idea behind this is
that macroscopic measuring apparatuses have only a
restricted precision and are not able to distinguish be-
tween points inside one cell. Then also p(w) cannot be
measured by them exactly, but rather only its mean val-
ue over the cells. (Of course, there is a certain arbi-
trariness with this concept because there is no canoni-
cal way of defining these cells.) Let us define the
coarse-grained density as follows:

1 Y do’
pcg(w)“‘ W(Qi) ’/r;‘p(w )dw (1.25)
if we ;. (That coarse-graining is essential in statisti-
cal mechanics was first pointed out by the Ehrenfests,
1911.) This corresponds to replacing p by a distribution
that is uniform inside the cells. As discussed before,
one cannot distinguish p and p., by macroscopic mea-
surements. The coarse-grained entropy is

Sea(p) =S (peg) = = 2_ P, InP,/WQ,),
(1.26)

pw)dw .
9y

P;=

Of course, S,,> S, since we have lost information. (A
proof is easily obtained by means of the inequality be-
low.)

Now mixing implies that

lim [ pw(®)) dw =)

W@ (1.27)

t>goo
because this is true for distributions of the form p(w)
=Xaw)/W(A) [x4(w) = characteristic function of A], hence
for their convex combinations and eventually for the lim-
its of them, i.e., all density distributions. Therefore the
caorse-grained density tends towards the microcanonical
one:
1

pcg(w(t))-————W(m (1.28)
and S_, - InW(R). Note that the convergence need not be
monotonic.

Here InW(R2) is the maximal possible value of the en-

tropy:
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- fplnpdeInW(Q). (1.29)
For the proof we utilize the concavity of s(x)= —xlnx. It
implies that s(y) —s(x) < s’(x)(y —x), hence y(lny — Inx)
>y —x. Puttingy =pw), x=1/W(Q) one finds —p(w) lInp(w)
< —p(w) In[1/W(Q)] +[1/W(Q) - p(w)], and, after integra-
tion, S(p) <InW(Q). If one inserts another distribution
o(w) instead of 1/W(§2), one arrives at the inequality for
the relative entropy | p(inp - lno) = 0.

4. The master equation

The numbers P, as introduced above may be interpreted
as the probability of finding the system in the cell i.

They do not obey simple differential equations; in order
to compute Pi(t‘> 0) it is not sufficient to know all Pj(tz 0)
and perhaps their derivatives of low order.

Under some simplifying assumptions, however, it is
possible to derive a simple differential equation (Pauli,
1928), which, of course, is of restricted validity but may
be suitable for practical purposes.

Take a distribution that is constant in cell ¢ and =0 in
all other cells. By Hamilton’s equations one obtains
from it the density distribution at time #: p(#), and the
probabilities P,(t). If p(t=0) were concentrated in the
cell 4, but not constant, one would obtain another density
distribution 5(¢>0) and other probabilities P,(). Now
if the cells are not too small one can find arguments that
in the overwhelming majority of possible cases P,(t)
=P,(t). Starting with arbitrary distributions p(¢=0), no
longer necessarily concentrated within one cell, one con-
cludes that “almost always” P,(f) can be calculated from
the P,(0):

P,)= Zj T, ()P, (0). (1.30)
On the other hand, p(t+#’) can be calculated from p(¢),
hence, similarly,

P,(t+t")=Y, T,;;(#")P,(t).

For simplicity and mathematical convenience one may
impose the Markov property on the 7T’s:
Tyt +8') = Tp(t' )Ty (1) (1.31)

k
(Chapman-Kolmogorov equation). The differential form

of this equation is obtained by inserting ¢/ =df. Then
T,,(dt) must be of the form

5,,,(1 —dty, W,,,) rAtW .
i

‘The invariance properties of the Hamiltonian equations
imply that W, W(R,)=W,,W(Q,) (microscopic reversibil-
ity, detailed balancing). Also T,,> 0 in order that P,(t)
=0 if P;(0)> 0, hence W,;,> 0. (Note that the diagonal
terms W,, cancel in the above formula.) We thus arrive
at the (classical) master equation

IBJI;(WnPk‘WuPJ)' (1.32)

From it one can derive various macroscopic or pheno-
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menological equations for which I want to refer to the
literature only. (For a good bibliography, see Reif,
1965.)

The considerations presented above are not intended
to give any “proof” of the second law of thermodynamics.
I rather wanted to draw attention to those assumptions
that are necessary in order to “produce” an irreversible
behavior, or to derive equations predicting approach to
equilibrium. Let me single out once more the main fea- -
tures:

(1) Some averaging procedure is needed. Concerning
the Boltzmann equation, it consisted in considering the
first correlation function instead of the complete dis-
tribution in phase space. For closed systems, this leads
to a nonlinear equation. For open systems in free space
(which we did not discuss) this leads to a linear trans-
port equation. The treatment of open systems in bound-
ed regions (systems in a heat bath) leads to master equa-
tions of the type mentioned above or, more generally, to
dynamical semigroups (Kossakowski, 1972; Gorini,
Frigerio, Verri, Kossakowski, and Sudarshan, 1976;
Davies, 1976).

In our last discussion, we introduced coarse-graining.
This may seem to be somewhat artificial. However,
after all, one can regard it in another way. Suppose we
are dealing with a system consisting of two subsystems,
the phase space of one of them being discrete, §;
={1, 2,...} the phase space of the second one being con-
tinuous, and the phase space of the whole system being
=0, X Q,. In addition, assume that the composite sys-
tem is mixing. Let p=p(i, w)(ic Q,, we Q,) be a prob-
ability distribution. The corresponding density distri-
bution of the two subsystems obviously is to be taken as

p. (i) = L dw p(i, w)
2 (1.33)

pw) =D pli, w)
01

(cf. Sec. ILF for this concept); so that the entropy of the
first subsystem is

=Y py)np, (@),

which is just the coarse-grained entropy with respect

to the partition {Q,}(®, ={i} X Q,), except for the term
InW(82,). Thus the entropy of the first system approaches
its maximal value. We will see later on (in detail in Sec.
IV.C) that exactly this mechanism is responsible for the
possible “increase” of entropy in quantum systems.

(2) In order to achieve approach to equilibrium, some
ergodicity properties are definitely needed, and one can
expect that the better the ergodicity properties of the
system are, the more an arbitrary density distribution
will tend'to a stable one.

(3) The derivations of the Boltzmann equation or the
master equation depend on randomness assumptions that
are supposed to hold at any time (molecular chaos, or
replacing p(¢) by a distribution that is uniform inside
the cells, respectively). These assumptions may be like-
ly to hold, but certainly cannot be proven at all. Never-
theless one can say that these equations are the best one
can expect because in a realistic situation there are al-
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ways many uncontrollable perturbations that will have
the effect that the “true” dynamics of the system is
spoiled and that the time evolution of a point in phase
space no longer obeys the Hamiltonian equations but
rather behaves in a stochastic manner.

Properties of the solutions of the master equation were
first discussed by von Mises (1931), Fréchet (1938), and
Feller (1950), just to mention the earliest treatments.

In particular the master equation implies a monotone in-
crease (or nondecrease) of the coarse-grained entropy

P
S = -—Z P, an(—é’—)-.

A more general result in this direction is that for density
matrices p(¢), whose time evolution is given by a dynam-
ical semigroup, the relative entropy S(p, ]p(t)) de-
creases. [See Eq. (1.41) below. P, =the stationary state. ]
The entropy production

~ S polp@)

thenis positive and S(p,l p(¢)) is convex (Spohn, 1977). (The
latter fact relies onLieb’s theorem; cf.Sec.III.) For the

proof of our first statement, let us, for simplicity, as-
sume that all cells have the same size, W(Q;)=w. Then

S, =lnw- Y P,InP,.

Now we arrange the P, in decreasing order: P,=> P,
= +++. For the sum of the biggest nP;’s we find

: . .
E—ZPFZZ (W,kP,,—Wk‘P,)SO.
at 4 i=1 &

Therefore, the sum of the biggest nP{’s at time ¢, is
< the sum of the biggest nP;’s at time #,<¢,. (Note that
the indices of the P, may change with time.) i

Now we use the lemma: Consider two decreasing se-
quences of numbers o, = a,=+++, B, = B,=+++ such that
22 a,=2,B,=1, for which the following relations hold:

a, <8, a1+a2<31+[32,...,a1+a2+---+a's B,
+By++++B,,... . Then, -2, o lne, > -2 B, InB,. The
proof is based on a discrete version of the inequality for
the relative entropy of Sec. A: Eﬁ,.(lnB, -lna;)=0. By
assumption, 2J @, Ina, = @,(Ina, - Ina,) + (@, + @,)(Ina,
—Inay) + (@, + @, + @,)(Ina, —1na,) ++++< B,(Ina, — lna,)
+(B,+B,)(na, — Inay) ++++, i.e., 27 a;lne, <278, Ina,
<22 B;1nb;.

Thus, as far as the master equation is concerned, not
only does the entropy never decrease, but also the sum
of the n biggest eigenvalues never increases. This prop-
erty is referred to as mixing-enhancing (cf. Sec. IL.C.
The English translation of Uhlmann’s original appela-
tion “mischungsverstirkend” is due to C. Fellbaum). Its
meaning is that a la longuethe large P’s will get smaller, the
small P’s will get larger, until eventually all P’s are equal.
It turns out that mixing-enhancement not only implies that
entropy does not decrease but also that, for any concave
(or convex, respectively) function f, Ef(P‘) is nonde-
creasing (or nonincreasing, respectively). This result
follows from a simple modification of our last proof. Let
f be concave. Then 7(8;) —f(a;)= (B, — a, ) (B)). 228,7 (By)
=B (B)) = (B)) + (B, + BY(f (By) = f* (B))++ + + = a,(F(By)
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= (B + (o) + a ) (B,) = (B)) +++ =27 o, f(B,) [remem-
ber that f/ is decreasing, because f is concave, i.e.,
(F(B) - f(B,))< 0]. Hence2ZJ[f(B,)—f(a,)]= 0 (ctf. also
Hardy, Littlewood, and Polya, 1934; Polya, 1950).

There is a close connection between mixing-enhance-
ment and nondecrease of entropy. Suppose that there is
a linear connection between P,(¢) and P,(0) (not necessar-
ily originating from a master equation):

P,(t)=2M,,P(0).

If, for all probability distributions, —2JP,(#)1nP,(t)

> -2, P,(0)1nP,(0), then the mapping (P,(0)) ~(P,(t)) is
mixing-enhancing (Uhlmann, 1977). Let me sketch a
simplified version of the proof, and thus suppose that the
probability distribution is finite: (P,,...,P,). The matrix
M ;, mustbe stochastic, i.e., >5;M;,=1and M;, >0 inorder
to guarantee that(P,(¢), . . ., P,(t)) is a probability distribu-
tion. On the other hand, for P,(0)=1/n (for all i), also
P,(t)=1/n, because otherwise -2 P,(t)InP,(t) would be
strictly <lnz. From this, one finds that ZkM,k =1.
Therefore M is a doubly stochastic matrix, and, by Birkh-
off’s theorem (see, for example, Glasman and Gubich,
1969), a convex combination of permutation matrices.
This immediately implies mixing-enhancement.

If we try to adapt our previous considerations to quan-
tum mechanics, we are immediately faced with the prob-
lem that a perfect analogy cannot exist. According to the
usual “dictionary” one would expect that one had to re-
place

subset of phase space by projection

by trace (=dimension of the
corresponding
projection)

measure of a set

density distribution by density matrix.

Thus “mixing” in quantum mechanics should mean that,
for any two projections (in the finite-dimensional Hil-
bert space describing the “energy shell”), say P and Q,

TrP,Q ~ TrP TrQ /W (1.34)

where P,=e*#*P ¢"*#t (time evolution in the Heisenberg

picture) and W =dimension of the Hilbert space. With the
notation w(P)=TrP/W,
w(P Q)= wP)w@). (1.35)

We may even take w to be any arbitrary invariant state,
i.e., w(*)=Trp+ in a Hilbert space of arbitrary, possib-
ly infinite, dimension and w(P,)=w(P) for all projections.
This implies that TrpP,=Trpe!?*Pe ¥t =Tr "ty o!Htp
=TrpP, and therefore, e '#tpe!?t=p, Writing p in the
form p=2Jp,|kXE|, Cip,=1), it would follow that
et | p)k | 't = | k)R | for all |k), and

w(P‘Q) =Z'Pk<k | et#tp e“”“QIk) R
The limit as ¢ - should be equal to

2opsk| PR 2 b il

In particular, let P=Q = [I){!|. It follows that p2=p,,
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i.e., p;=0 or 1. This shows that Eq. (1.35) can only hold
if the Hilbert space is one-dimensional, which, of
course, is of no interest at all because then a nontrivial
time evolution does not exist. (A similar consideration
applies to the quantum analog of ergodicity.)

Nevertheless it is not excluded that for certain projec-
tions @ (or even for certain partitions Q,, by which is
meant a family of pairwise orthogonal projections with
EQ‘ =1), one always has

w(PQ,) - wPw@)),

at least, if W is large enough, with arbitrarily good ac-
curacy.

An early result in this direction, referring to ergodi-
city rather than to mixing, however, was obtained by
von Neumann, 1929 (“Proof of the ergodic theorem and
the H-theorem in the new mechanics”) under certain
assumptions on the spectrum of A (no degeneracies, no
resonances), in the limit W— « and TrQ,/W kept fixed,
for “almost all” partitions @,,

limtlj: w(P,.Q,)dt' =w(P)w(@),) .

It is very remarkable that von Neumann’s paper ap-
peared even before modern classical ergodic theory was
initiated. The latter started in 1931 only with the work
of Koopman, von Neumann, and Birkhoff.

If, for some partition @, w(P,Q)—~ w(P)w(Q), then,
similarly to the classical case,

Trp,Q,—~ w(@,)

(p, =e"#tpetft), and the (quantum-mechanical) coarse-
grained entropy

S.e(0)=S(o o) ,

with

(1.36)

(1.37)

- TrpQ
Pec= 2 QiTI\TQ:' ,
tends to the maximal value 1InW. (That this is in fact the
maximal value follows from Klein’s inequality below.)
Setting TrpQ ;=P ,=W,

P
See@) ==Y P,an: ,

in close analogy to Eq. (1.26). Pictorially, the coarse-
grained density matrix p_, arises from the true one by
cutting out “blocks” and then replacing every block by

a matrix which is a constant multiple of the unit matrix
with the same trace (see Fig. 3). If we meet such a sit-
uation, then an obvious modification of our previous
arguments will lead us to the quantum-mechanical mas-
ter equation for the P;’s which of course looks like the

(1.38)

; el o]
o N
— —— N
o\o\ *Peg
o <o
o o o™

FIG. 3. Construction of the coarse-grained density matrix.
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classical one. Also the same remarks apply as in the
classical case concerning its validity.

In principle, however, all our previous statements
about quantum-mechanical mixing are false on a formal
basis because of the recurrence paradox (“Wiederkehr-
einwand”). In our case it states that, if the Hamilton-
ian has a discrete spectrum, the function Trp,@ is
almost periodic in {. The way out is well known: the
time it would take until the system gets close to the
original state again is tremendously large for macro-
scopic systems and beyond any sensible imagination.
Thus, if =~ means something like “/ =age of the uni-
verse,” things are certainly okay. To correct for our
above considerations in a mathematically incontestable
way we have to deal with strictly infinite systems. We
will do this in the last section only because of the mathe-
matical technicalities that are involved. At this point let
me just mention that ergodicity and mixing make per-
fect sense in the infinite case.

So far a few remarks (admittedly rather superficial)
have been given on the problem of approach to equilibrium.
For a more careful and detailed discussion I have to
refer the reader to the literature, as announced in the
introduction.

In the rest of this section I would like to comment on
some properties of equilibrium states.

It is often argued on philosophical grounds that the
microcanonical state is the equilibrium state (if the en-
ergy is fixed), because, after all, there is no physical
principle which would distinguish between the different
energy eigenstates of the energy shell and therefore any
-of them must occur with the same probability. However,
it is not obviously certain that this application of La-
place’s principle of insufficient reason to physical sys-
tems is really legitimate; one definitely has to elaborate
those physical laws which are responsible for the validi-
ty of this principle for real matter.

Equilibrium states, and only they, also enjoy remark-
able stability properties which roughly may be charac-
terized as follows: small local perturbations of the
dynamics (which, of course, never can be avoided) only
lead to a local, but not to a global, change of state. In
contrast, if a state is a time-invariant but not an equili-
brium state, an arbitrarily small perturbation may be
sufficient to produce a transition to an entirely different
state. Again, these phenomena can be described rigor-
ously in the infinite case only, so that we will come back
to them in Sec. IV.D.

It is, of course, best known how the other classical
ensembles are obtained from the microcanonical one,
and we will consider them in somewhat more detail in
the next section. What we will learn and what is of
relevance for the second law of thermodynamics are the
following facts:

(1) The classical ensembles obey the maximum entropy
principle, i.e., the density matrix has the biggest en-
tropy among all density matrices with the same pre-
scribed expectation value. In our presentation this
principle appears a posteviori only. It does not seem to
be quite clear whether this principle can be justified
a priovi. Of course, there are arguments in favor of
it invoking Laplace’s principle or using the fact that,
based on the interpretation of the formula for the en-
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tropy of the beginning of this chapter, the density ma-
trix with maximal entropy is the most probable one.

(2) Under certain conditions to be discussed in the
next section, the classical ensembles are equivalent in
the sense that in the thermodynamic limit they give the
same expressions for the intensive thermodynamical
quantities. This shows that for large systems it is not
really necessary that they be in the state with maximal
possible entropy but that deviations from this state that
are not too big do not change the thermodynamics. Thus
“not too big” means that, for instance, a difference in
entropy to the maximal value of, say, order VN does
not at all matter and can be neglected. Before further
discussing the classical ensembles let me state some
mathematical aspects of states with maximal entropy.

5. States with maximal entropy

We study the following problem: given E=TrpH (H
being a fixed Hamiltonian), what does the density matrix
with maximal entropy look like? The answer is well
known: it is

op=e® /Tre™™ =Z 1™ | (1.39)
Z=Tre™® (partition function)

(Gibbs state), where 8 is chosen such that TroH =E.
The proof is based on Klein’s inequality (see, for ex-
ample, Ruelle, 1969): Let f be a convex (concave) func-

tion. Then

Tr[f(B) -f ()] 2, Tr(B -A)f"(A). (1.40)

This inequality is rather powerful and we will frequently
make use of it. Let us state some important special
cases.
(1) Take f(x)=—x1nx. Then
TrA (InA —InB)=> Tr(4 - B).
If, in particular, A and B are density matrices p, 0,
then we find for the relative entropy S(o ] p)=Trp(lnp — Ino)

S(|p)=0. (1.41)

(2) Let A be the “diagonal” of B. By this we mean:
let ¢; be an orthonormal basis, and define A by
(0;|Alp)=(b,|B|¢)0,,. Then, f being convex (concave),

Trfl) S, Trf B), (1.42)

i.e.,

(Peierls’ inequality, Peierls, 1936). This also fol-
lows, of course, directly from the concavity inequality
of Sec. A. h

(3) Replacing B by A +B,A by A +(B), with (B)=TrBe"/
Tre#, one obtains ‘

TreA+B - TreA-r(B); Tr(B - <B>)eA+(B) =0 R
i.e.,

Tre#+8 > TreA+®) (1.43)

(Peierls—Bogoliubov inequality). The analogous classi-
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cal inequality

fef(x)-n-g(x)dx;f oF (4B,

ggf ef(x)g(x)dx/fef(x)dx

is called Jensen’s inequality. We now have to supply the
proof of inequality (1.40). We recall the inequality

(1.44)

@lr@®)e) 2)f (|89

Hence, since convexity (concavity) implies f (y) —f (x)
&) (» =x)f'(x), for the eigenvectors ¢; of A, belonging
to the eigenvalues a; ,

Trlf @) - @] 2 ¥ (ulBoy-a)f @),

which is just Tr(B —A)f’(A). [Since f is convex (con-
cave), there exist at least both one-sided derivatives
f., fi, and the inequality is true for both of them.]

Now we return to the Gibbs state. Suppose that TrpH is
<E, and that TrogH=E. Then

Trplno,=—B TrpH —InTre™¥ |

Troylno,=—B Tro H — InTre™ |
and, by assumption,

~Troglno,= —~Trplnog,

hence S(p) = —Trplnp < ~Trplno, (inequality 1.41)
< —Troglno,=S(o,).

In the classical case the same inequality for the en-
tropy is obtained in a similar way, or directly by using
Lagrangian multipliers.

One can look at our last inequalities in another way.
Define the free energy

1 1
F(p,B,H)=TrpH -3 S(p) =3 S(og|p) +F,
(1.45)
F= L InTre™®# .
B
Then, for p=og, F(p,B,H) is minimal (namely,=F). One
easily verifies the standard relation

E=TrogH=TS+F

with T =1/8.

If His replaced by several operators, say, A, B,C...,
then the same argument as before shows: given num-
bers (A),(B),(C),... then the entropy of any density
matrix p with TrpA=(A). etc..., is <S(s), provided
that a density matrix o of the form g®A*BB+yC++-2/
Tre®4**"" exists with TroA = (A) etc. (This need not be
the case if the operators A, B, C,... do not commute.)
A well-known example in Fock space is the grand-
canonical density matrix pgcze‘aPVeaN—B # which has
maximal entropy among all density matrices with given
expectation value of the energy and the particle number.
(Of course, here a and 8 do not have the same meaning
as above.) (See also Bayer and Ochs, Ochs and Bayer,
1973.)

At this place, the problem of the Third law should be
mentioned: Does S— 0 as B~ «? This cannot be true

(1.46)
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generally (take, for instance, a finite-dimensional Hil-

bert space, and let H=0); on the other hand, it is to be

expected for realistic systems. But there does not exist
a satisfactory solution to this problem yet.

6. Some properties of Gibbs states

a. Sf 0, ) is decreasing in B (or increasing in the
temperature)
This is a consequence of the following

Lemma 1 (Wehrl, 1974): Let f be concave (convex),
with f(0)=0. Then

S <%) (550

This lemma is itself a consequence of the next one, as
we already have seen in our discussion of properties of
the solutions of the master equation.

Lemma 2: The mappings p- f(p)/Trf(p) (for concave
f) and f(p)/Trf(p)~ p (for convex f), all with f(0)=0,
are mixing-enhancing in the sense that, for the eigen-
values p, = p,=---of p, or p{=ps=> ... of f(p)/Trf(p),
the following relations are true:

PLsPby, DL+ <Pi+Pa ...
R 2R MRS T SR N ) S

in the first case, and =< being replaced by = in the sec-
ond case.

Proof. We consider the first case only. For con-
cave fuctions f, with £(0)=0, if x <y, then yf(x)
= xf(y). Therefore p, f(p,) <pn.f(b,) for m <n, and

)+t F (D) Db, <Pyt D) D F (B,
r=1 r=1

i.e.,
pr= L)

- LB +7(p5)
Yur(p,)

> f(p,)

Spy, pit+ps Sp,+p,, ete.

(Remember that 3 p, =1.)

b. Kubo-Martin-Schwinger (KMS) boundary condition

Define the thermal expectation value of an observable
A by

(A) g=TrogA. (1.47)

Consider (A,B)s=Troge! tAe~#tB=7 "1 Trel-P+t)#
xAe iftp=z-1 TrBe(—B+it)HAe-i Ht _ 7-1 Tre'BHBei(’*‘ B)H
xAe™t(t%B) = (BA, V.. Hence, defining F(z)

=Z ' Tre P#Be'*#Ae™"*¥ F(t)=(BA,)s, F(t +ip)

=(BA, 1808 =(AB)p-

As long as we are dealing with finite-dimensional
Hilbert spaces, all operations we have performed are
legitimate. On infinite-dimensional Hilbert spaces one
has to worry about existence and analyticity questions
but eventually arrives at the following:

KMS condition: There exists a function F(z) that is
analytic at least in the open strip 0 <Imz <8 and con-
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tinuous in the closed strip 0 <sImz <g such that, for
real ¢, F(t)=(BA,)s, F(t +iB)=(A;B)p.

The KMS condition is of greater importance since it
extends to infinite systems (where o4 does no longer
exist). It turns out that it entails far-reaching con-
sequences for the structure of infinite systems (Kubo,
1957; Martin and Schwinger, 1959; cf. the last section.
The role of the KMS-condition in infinite systems was
realized by Haag, Hugenholtz, and Winnink, 1967.)

Finally it should be mentioned that there is an in-
teresting inequality between the quantum-mechanical
and the classical partition function, somewhat similar
to inequality (1.5) but much more powerful. If the Ham-
iltonian is of the form H=-3 7., p3/2+V(x) then the
'quantum-mechanical partition function is

Z=Tre Bf=¢ BF

whereas the classical partition function is
a_ d”pd”q _Qj_ :‘_ —apd
z%= f Gy exp[~3 > 5+ Vig) | =e
(1.48)

(we put m=7% =1 and, for simplicity, suppose Boltzmann
statistics; F®=classical free energy). Define the con-
volution

Vla)= <$—)3N/2f d3”q’V(q')exp(-—wZ (qi—q£)2>

3N
FT e

and Z9, Fg as Zz9, F® above, but with V(q) being re-
placed by V (¢q). Then, for all w,

z%<z?,
or (1.50)
Fl<F<F2.

(1.49)

The upper bound for Z relies on the Golden—Thompson
inequality (Golden, 1965; Thompson, 1965): Tre**?
<Tre”*e®. Inserting for A =kinetic energy, B=V(x), one
arrives at

Z <Trex ( ﬂi 1
< P —BZ 5 /exp (—BV).

To exp(—B3,p7/2) there corresponds an integral kernel
K with

3N, 2

which immediately yields the desideratum. For the
lower bound we will consider the case of one degree of
freedom only. The general case is obtained in a
straightforward manner. Using coherent states |z) (see
the first section)

_ dz -BH f dz  _palule
Z = 57 (z|le PB|z) = 7. €

and by an easy explicit calculation one obtains (z|H|z)
=p?/2+%3+V,(g). That 1 can be replaced by w follows
from our remarks concerning the definition of coherent
states in Sec. A. A similar inequality holds for spin
systems (Lieb, 1973a).
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C. The classical ensembles

The most important kinds of density matrices to be
considered in statistical mechanics are the classical
ensembles (see again Ruelle, 1969).

The microcanonical ensemble is the density matrix
in the Hilbert space H x(V) defined by

Pme=€ "M Xrp—c,z (H) (1.51)

(Xr5-¢ .5 7 = characteristic function of the interval [E
—¢€,E], e =“thickness” of the energy shell). Here Smc,
the microcanonical entropy, is

Smc=1n TrX[E-e VE] (H)
=logarithm of the number of energy levels
between E — € and E.

The number € is undetermined to a certain extent. In
classical mechanics it can be chosen equal to zero
(cf. Sec. B; it certainly is not necessary here to dis-
play the corresponding classical probability distribu-
tion p&); on the contrary, in quantum mechanics it is
very convenient to choose € =E, thus

Pre=€ "me TrO(E —H). (1.52)

(We suppose H =0.) It turns out that in fact under cer-
tain conditions it does not matter how big € is chosen,
as we will indicate below. '

The canonical ensemble in H}(V) is given by

P.=0g, (1.53)

o being the Gibbs state at inverse temperature 8. The
entropy is

S.=B(E — F)

[Eq. (1.46)].
The grand-canonical ensemble is defined in Fock
space Hy(V) by

pgcze—ﬂpveow—ﬂi{ (1‘54)

(e =By, i =chemical potential, p=pressure.)

There are also other kinds of ensembles that are
sometimes of use in physics (for instance, the “pres-
sure ensemble”: Lewis and Siegert, 1956. If there are
more parameters, like electric and magnetic fields,
one clearly also has to consider more complicated en-
sembles.) However, I do not want to go into details
since these things are covered in all textbooks on
statistical mechanics.

I would rather like to concentrate on only a few as-
pects that are of some importance for the rest of this
paper.

1. The thermodynamic limit

This is the question whether, if a sequence of volumes
V tends to infinity, the limits

L
vl

or of p as defined by Eq. (3.4), exist, provided that
N/|\V],E/|V| (or a,B) are kept fixed. (We write |V| for
the measure of the region V if there is a risk of con-
fusion.) The existence of such a limit only justifies the

1
Sme, Or ‘—“-/‘I'F,
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FIG. 4. Definition of ny and nj.

usual distinction between “extensive” quantities, like
entropy, free energy, etc., and ‘“‘intensive” ones like
temperature, pressure, etc.

At first one has to make clear what is meant by “V
tends to infinity.” The least restrictive notion in this
direction is “tends to infinity in the sense of van Hove”
(van Hove, 1949, 1950):

Let V(a), with ae R or Z ¢, be a parallelepiped
{xeR*" 0=<x; <a;}. Consider all translates of V(a) of
the form {x: x,=wn,a;+§&;,n; =integer, 0 <&, <a,}. Let
ny or ny, respectively, be the number of all trans-
lates of V(a) that are contained in a given volume V, or
have a nonempty intersection with it, respectively (see
Fig. 4). A sequence of volumes is said to tend to infinity
in the sense of van Hove, if, for any a,

- + -
ng =, ny/ny—~1.

More restrictive is the tendency to infinity in the
sense of Fisher. Define V, to be the set of all points
that have a distance less than % to the boundary of V.
Let D(V) be the diameter of V. Then V-« in the sense
of Fisher if there is a function n(a), with 7(a)- 0 for
a -0, such that, for sufficiently small @ and all V,

lVaD(A) l g77(0!)
v
and, in addition, |V |-,

One often considers less sophisticated kinds of limits
V-~ such as sequences of parallelepipeds V(a), with
all a; -, or sequences of balls with radii going to in-
finity. However, the disadvantage of these limits is
that one never can be sure that the limit is shape inde-
pendent and, for instance, for a sequence of cubes it
could be different from that for a sequence of balls.

Now the result concerning the thermodynamic limit
is that it exists for N-particle Hamiltonians of the form

N
HN=Z 21::; +E @ (x; — x;)

izl i<j

(1.55)

provided that there is a lower bound for the Hamiltonian
Hy>-N-C,
C being a fixed constant, and if, for |x| being suffi-

ciently large,
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®(x) <A |x|7", (1.56)

A>d, (One can also formulate a similar theorem for
Hamiltonians including many-body interactions.) The
proof of this theorem is quite involved and shall be
omitted here. (See Ruelle, 1969, The idea of using
“corridors” in order to prove the existence of the
thermodynamic limit is due to Yang and Lee, 1952, and
van Hove. Rigorous proofs are due to Fisher, 1964, and
Griffiths, 1965.)

Unfortunately, however, these considerations do not
really apply to physics, because, after all, the inter-
action between particles is not “tempered” in the sense
of Eq. (1.56) but, with great accuracy, goes as 1/x:
there is one contribution from gravitation and an
electrostatic part. Also, one usually has to consider
several species of particles (electrons, nuclei,...). If
one neglects electrostatic forces (i.e., if one considers
neutron stars or something similar), then a thermo-
dynamic limit in the usual sense no longer exists. If
one takes the free energy as a function of particle num-
ber, inverse temperature, and volume, the limit

lim N3 F(N, N %38, N"2V)

N>
exists instead of

lim N7IF(N, B, V),

N —>co
i.e., the scaling behavior of the thermodynamical quan-
tities is entirely different from the usual one (Hertel
and Thirring, 1971; Hertel, Narnhofer, and Thirring,
1972)., This shows that it is by no means self-evident,
for instance, that entropy is an extensive quantity.

If gravitation can be neglected, but there are only el-
ectric forces, then for neutral systems (and provided
that at least one species of particles are fermions) it
can be shown that a lower bound Hy = —N - C is true
(Dyson and Lenard, 1967, 1968; Dyson, 1967. A much
better method for obtaining a lower bound was presented
by Lieb and Thirring, 1975) and a thermodynamic limit
in the usual sense exists (Lebowitz and Lieb, 1969;
Lieb and Lebowitz, 1972). This, undoubtedly, is one
of the deepest results of mathematical physics: stability
of matter. (For all that concerns stability of matter cf.
the review article by Lieb, 1976.)

2. Equivalence of ensembles

The next problem is that of equivalence of ensembles:
Are the thermodynamic quantities, computed with the
various ensembles, asymptotically equal in the thermo-
dynamic limit? This, of course, need not always be
true (for instance, inthe regions of phase transitions).
On the other hand, it is “normally” to be expected. Let
me illustrate this question by two examples only.

a. Equivalence of the microcanonical ensembles
Let

s(n) =lim 1 InTrO(n|V|-H)
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(n =energy density; the underlying Hilbert space is that
of N particles, with N/ |V |kept fixed). It turns out that
s is a concave, nondecreasing function of . As long as
it is strictly increasing, all the other ensembles de-
fined by (1.51) yield the same entropy density too (see
Ruelle, 1969).

b. Comparison between microcanonical and canonical,
ensemble

Assuming differentiability of s, take f=8s/6m, and
define f =€ —37's. Then the limit of the density of the
free energy of the canonical ensemble exists and
equals that f. (For more details, once more Ruelle’s
book should be consulted.)

What one can learn from all this is that for large sys-
tems, provided that the thermodynamic.limit exists,
the precise structure of the density matrix is not so
important. To come back to our last example, the dif-
ference of the entropies in the microcanonical and the
canonical ensemble is of order InN, which is big but
on the other hand is negligible in the thermodynamic
limit. Therefore our starting point of Sec. B, the
maximum entropy principle, must be formulated as fol-
lows: given some intensive quantities (such as tem-
perature, density, or energy density, etc.), the en-
tropy density of the corresponding equilibrium state is
maximal.

D. Historical remarks

I would like to conclude this introductory chapter by
some remarks concerning history. There are many
reviews, historical surveys as well as reprint volumes,
containing the decisive papers in this field (for in-
stance, by Brush, 1965, 1966; Klein, 1972; Koenig,
1959; Roller, 1950), that certainly describe the histori-
cal development of the subject much better than I could
do. I only want to make a very few comments that con-
cern “entropy” itself, without pretending that they are
exhaustive or take into account all important steps in
the past.

Thermodynamics in the modern sense has its origin
in the work of Mayer (1842) and Joule (1845), to whom
major credit is to be given in the recognition of the first
law of thermodynamics (conservation of energy, which
in times past was called “force”), and of Clausius (1850)
and Thomson (Lord Kelvin) (1852, 1857), who, based on
previous work of Carnot (1824), formulated the prin-
ciple of dissipation of energy and the second law of
thermodynamics. That this principle leads to the heat
death was worked out by von Helmholtz (1854). The
notion of entropy finally was introduced by Clausius in
1865.

At about the same time the kinetiec theory was put for-
ward by Maxwell (1860) and Clausius. An important step
towards the understanding of irreversibility was Max-
well’s Demon (Maxwell in a letter to Tail, 1867) which
illustrated the statistical nature of it.

The main contributions, however, in this direction,
are due to L. Boltzmann: the Boltzmann equation and
the H theorem (1872), the relation between entropy and
probability theory (1877), etc. ete.
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Boltzmann’s ideas caused many controversies and
there were many objections, such as the reversibility
paradox (Loschmidt, 1876) and the recurrence paradox
(Zermelo, 1896; based on work of Poincare: 1890),
etc. and as we have seen, there are still open problems
with them, at least if one desires full mathematical
rigor.

The next step towards thé modern concept of entropy
was taken by J. W. Gibbs (1902), who adopted the en-
semble point of view and gave a definition of entropy as
the average index of probability-in-phase (this prob-
ability-in-phase is just the classical probability dis-
tribution of Sec. A: the “index” is In 1/p, hence the
average is [pIn1/p).

How the paradox that entropy, after all, should remain

_ constant, could be resolved, was pointed out by the

Ehrenfests (1911), who recognized the role of coarse-
graining.

Finally the quantum~-mechanical expression for the
entropy was given by von Neumann in 1927.

As far as more recent developments are concerned, I
have tried to give the relevant literature in the text.
There have been significant contributions concerning
classical entropy and classical statistical mechanics,
and there has been a strong impetus in creating such
fields as ergodic theory and theory of dynamical sys-
tems. In contrast, the properties of quantum-mechani-
cal entropy have not been investigated in detail for a
very long time, and it certainly is to the credit of E.

‘Leib to put forward their study in the last few years.

Il. PROPERTIES OF ENTROPY
A. Simple properties

In this chapter we come to the very object of this re-
view, namely, to describe the various general proper-
ties of entropy. Let me start with a few extremely sim-
ple ones. Some of them we already have discussed in
Sec. I as, for instance, the following: ‘

Entropy is defined for every density matrix, it is al-
ways =0, possibly =«. For the pure states, and only for
them, S=0.

Again this shows a weak point in a purely classical ap-
proach because in the classical case the “pure states”
certainly are density distributions that are concentrated
at one point (i.e., 6 functions), and their entropy is
=—, This does not fit into the interpretation of entropy
as “lack of information.”

One easily verifies that the range of S(p) is the whole
extended real half-line [0, ], i.e., to every number c:
0< ¢ < there exists a density matrix p such that S(p)
=c.

The range of the generalized Boltzmann—-Gibbs~—Shan-
non (cf. Sec. L.A) entropy is [u,v] or (#,v),u=inflnu(X)
[X =non-null measurable subset of , v:  Inu(R), depend-
ing on whether the infimum is attained or not (Ochs,
1976)] . For the classical Boltzmann~Gibbs entropy, in
particular, it is all of R.

An important property of entropy is invariance. Since
S(p) = =22 py Inpy,p, being the eigenvalues of p,S only de-
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FIG. 5. Construction of p’ =p® 0.

pends on the (strictly) positive part of the spectrum of
p. Any mapping p —p’ that leaves the positivé spectrum
unchanged also leaves the entropy unchanged. Examples
for such mappings are the following:

1. p’=U*pU (U =unitary). (cf. Sec. I.B.) By the way,
for the coarse-grained entropy the above invariance
property is not true, hence, it may change with time.

If, in particular, U is a permutation matrix with respect
to the eigenvectors of p, then the invariance property is

also called symmetry. In other words: S is a symmetric
function of the p,’s :

2. LetH’=H®H”,p’ =p®0. In that case the invariance
property is called expansibility. In graphical language
one adds zeros to p as seen in Fig. 5.

Another simple property is insensitivity. S is a con-
tinuous function of finitely many eigenvalues p,, pro-
vided that the rest of them are kept fixed. (This, how-
ever, does not mean that S is a continuous function of p;
cf. Sec. D.) :

Let us give an example of a function of a density ma-
trix for which the insensitivity does not hold: The quan-
tum-mechanical version of the Hartley entropy S,(p) is
defined by So(p) =logarithm of the number of eigenvalues
that are #0. If, for instance, p,=°**=p,=1/%,Pp) =Ppss
=+++=0, then Sy(p)=S(p). If now p,=p,=+++=0, then S(p)
=—p,1np, — p,1Inp, is continuous in p, and p,, whereas
So(p)=1n2 if 0<p,,p,<1, otherwise =0, hence S,(p) is dis-
continuous in p, and p,. However, it should be remarked
that, apart from insensitivity, many properties of the
Hartley entropy are shared in common with the “right”
entropy, such as additivity, subadditivity, and the above
invariance property.

If p is of finite rank, i.e., if only finitely many eigen-
values are >0, then S(p)<«. Now let p be an arbitrary

density matrix. The canonical approximations are ob-
tained as follows:

N N
P(N)E Z Pk|k><k|/2 Dr-
k=1 2=l

Since
S(p) = Z Insfr—
k=1 k=l Pk k=1Ek

N N N
='Z (Pklnt’k)/zi’ﬁlnz De>
k=1 k=1 k=1

this tends to S(p) because —E:ﬂpk Inp, - S(p) and Eﬁ;,pk
- 1. This fact may be of use in generalizing theorems
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that are first established for finite-dimensional ma-
trices only, to the general case.

In the next section we now want to turn to less terlal
properties of entropy.

B. Concavity

Concavity states that for the density matrix p=2x,p,
+2,0,(p,, p, density matrices x;, 2,2 0,1, +2,=1)

S(p)= 2,5 (p,) + 1S (o)

(see Lieb, 1975, or Ruelle, 1969). [There is an equality
for x,, 2,>0 only if p, =p, or S(p,), or S(p,), respective-
ly is equal to =.]

The proof is very simple. Let p=2Jp,|k)k|. Then,
because of the concavity of the function s(x)= —x lnx, S(p)
==21punp, =215 (k| p|R)) = 2,20 s (k| p, [ #))
+2, 208 (| po| D)= A Z)(kls(pl)lk)+>\2 (|sp.) | )
=x,S(p,) + 2,5 (p,).

Of course, we did not use any special property of s(x)
besides concavity; thus, for any concave function f, the
mapping p—Trf(p) i$ concave.

Why is concavity considered to be important? Entropy
is a measure of lack of information. Hence if two en-
sembles are fitted together (what in mathematical lan-
guage is described by the convex combination X,p,
+X,0,), one loses the information that tells from which
ensemble a special sample stems, and therefore entropy
increases (Wigner and Yanase, 1963).

Let us illustrate things by a simple example. Let p,,
p, be one-dimensional projections, i.e., pure states. In
a case in which A, 2,>0, p=2x,p, +,p, is a mixed state
(unless p, =p,). Therefore, S(p)>1,S(p,)+2,S(p,)=0. By
the way, in that case it is no longer possible to recon-
struct p,, p, from p.

Mixing of pure states (the forming of convex combina-
tions of them) yields a mixed state. More generally, it
seems to be plausible to argue: if we are given two
mixed states that are unitarily equivalent (p,=U*p,U),
then mixing of them yields a new state that is more
strongly mixed than the two original ones, and S(p)
= ;S (p,) + X,S(p,) =S(p,). We will make this consideration
precise in the next section.

(2.1)

It should be anticipated that concavity is a consequence
of subadditivity (Sec. F).

Clearly concavity generaiizes as follows:
P2s « -+ » P, be density matrices, A, A,, ...
>0, with27x,=1. Then

S(E b p,> =3 Sy

Let us now take a fixed density matrix p and let p, be
its time evolution p, —e‘”’“p e!t, The time-averaged
density matrix (1/T)fo p; dt shall be denoted by pp.
Then S(p;)=S(p) by a straightforward modification of our
previous proof. If g, =lim,_. 5, exists, then, for all T,
S@7) < S({E.)-

In the next section we will see that the mapping p—-p,
is even mixing-enhancing.

let Pi>
, A, numbers

(2.2)

Since the entropy of a time-averaged density matrix
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always is bigger than the entropy of a density matrix at
a fixed time, one should not be surprised that many phy-
sical measurements yield a value for the entropy that is
bigger than the correct one, because they last rather
long compared with the “relaxation time.” One should
bear this in mind in discussions about the second law of
thermodynamics.

There is an upper bound for the convex combination
P =2 A; p; given by

S()< DonS(p) = 30 xy Inn, .

(see Lanford and Robinson, 1968). Let us first assume
(2.3) in the special case that all p; are one-dimensional
projections, p;=P;:

(2.3)

S(p)< = Y A lmy,. (2.4)

Inequality (2.3) in the general case follows from the
special case (2.4) because if one decomposes the p, into
one-dimensional spectral projections,

p{ ZZ pg)le) >
then

50)=5( T 0p004") < = T np am + 1npg?)

ik ik
== Almy, - Son bt mplh
== 3 I+ AS(p,).

Now let us turn to the inequality (2.4). Let p,=>p,
> +++ be eigenvalues of p, arranged in decreasing order,
and let also the numbers A, = A, > +++ bearrangedinde-
creasing order. We will show that

P1Z AL Di+DaZ A+, ..

Pr+bo+o e P, SN Aot N, ...

(2.5)

As already discussed in Sec. I.B, this implies that
—Z)pi Inp,; s -2 2A;1lnx;. In order to prove the inequalities
(6.5) we will use Ky Fan’s inequality (Ky Fan, 1949): for
any set of pairwise orthogonal, normed vectors ¢,,

p,+“-+1)n>lz;<¢i]p|¢,). (2.6)

One can prove this as follows: let ¥,,...,%, be another
set of pairwise orthogonal, normed vectors, all of them
contained in the subspace spanned by ¢,,...,¢,. Then
it is immediately seen that 27{(p,|p|¢,) =22 ¥, [p|2p-
Now choose 3,4 |1, |2), ceey In —1) (remember that %)
= eigenvector of p belonging to the eigenvalue pk). This
is always possible since the dimension of the subspace
spanned by ¢,*++¢, is >n— 1. Continue by choosing
P L (D5 [2) o ooy [0=2), 85 Bppt [D),. .., [0 =3),9,
Vparseevs Ly, ..., 9, Since (P, |p|d) <p;, we arrive
at inequality (2.6).

Define H'™ as the subspace generated by P,H,...,PH,
and denote by d its dimension. Let ¢,,..., ¢, be an or-
thonormal basis for H™, Because of Ky Fan’s inequality,
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R L SSRRIET D DICHTIES

d ©
:‘Xﬂ:; A D4 | Py 0

d

;; Zx,(¢,|P,\¢,)=;x,.

{al

Remark: Whereas inequalities (2.1) and (2.2) extend to
the continuous case, the continuous analogs of (2.3) and
(2.4) are false in general. For instance, consider the
projection onto coherent states, |z){z|, which are pure
states, with entropy =0, and let f(z) be a non-negative
function with f dzf(z)/m=1. Let p= f (dzf(z)/m) | 2)z].
Then .

5= - [ Z1e) nfe)

rather than <(Wehrl, 1977).

The term -2 A; Ind; occurring on the right-hand side
of inequality (2.4) is called mixing entropy. It is most
important if the ranges of the p; are pairwise orthogon-
al; in that case, there is equality.

It should be remarked that this fact allows an axiomatic
characterization of entropy: Let & be a mapping of the
set of density matrices into the extended real half-line,
which fulfills the invariance and continuity properties of
Sec. A. Alsolet H=H,®+**®H,, p, =density matrices in
Hi, p=2,0,P°**®Np,. If &(p) always satisfies & (p)

:{E 2®(p;) +®(A), A being a diagonal matrix in the Hil-
bert space C" with entries A,,...,2,, then ®&(p) is a con-
stant multiple of S(p). [This is a quantum-mechanical
version of the characterization theorem of Faddeev and
Khintchine (see Renyi, 1966). The above form of the
theorem was written down by Thirring, 1975.] Hereis

a sketch of the proof: Because of our remarks of the
last section we can suppose that all H; are finite-dimen-
sional. Let p be an » Xn-density matrix. Because of in-
variance, ®(p) is a symmetric function of its eigenvalues
only, i.e., ®()=I,(p,,...,p,). Now the mixing property
implies that 1,(1,0)=1,(1)+0°I,(1) +1,(1,0), i.e., I,(1)=0.
(Take H,, H, to be one-dimensional.) Furthermore we
have (using p’ =p, +p),(Dy, - - -, p2) =p'L(p,/D", po/D")

+ (L =p") oL (ps/ (A =p"), o, b/ (L=p" )+ L(p", 1 = p")

and I,_ (p', pay - - - s p) =PI, (1) +I,(p’, 1 = p")

+ (1 =p" M, (ps/ (L =p"), ... ,p,/ (L =p")), hence I, (p,, .- . ,p,)
:In.1(p1 +D2 D3y v - - ,P,,) + (pl +p2)I2(/)1/(p1 +p3), Pz/(pl +p3)).
See Fig. 6; the left-hand side refers to the first equality,

H P H
(2-dim.) (I-dim)  pr
P2
Pz P3
Ho H2
((n-2)-dim.) ((n-2) -dim.)
n Pn

FIG. 6. Illustration of the preceding identity.
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\ FIG. 7. How to obtain I, from
| a

ne

r-qj .

the right-hand side to the second one. We want to show that
the “information function” I,(p, 1 - p) =c(-p Inp — (1 = p) In(1
- p)). Once this is established, one proceeds by in-
duction: I4(py, pas Ps) =Lo(py + e 3) + (01 + D)0,/ (Py +D5),
Do/ (py+p2)) = c(=p, Inp, — p,Inp, ~ pylnp,) and so on. Now
let a,=I,(1/n,...,1/n). One easily verifies that a,
=a,+0a,. It remains to rule out all other solutions of
this equation except o, =clnn. There is a theorem of
ErdSs which states that this is the case if lim,_,., (o,

-, ,)=0. In order to prove the latter relation, we note
that, similarly as before,

a,=1,(1/n,1-1/n)+ (1 -1/n)a,_, .

Let B,=a,—a, ,,v,=1,(1/n,1~1/n). Here y,~0 as n-—o
by continuity (insensitivity). On the other hand,

7n='8n+ Bz+ﬁ +...+’B-1 ’
n
soby Mercer’s theorem also 8,-0. Turning back to the
information function, it suffices, of course, to show that
L(p,1=p)=c[-plnp — (1 —p)In(1 - p)] for rational p. Let
p=q/7; q,r being integers. Take dimH,=¢q, dimH,=7
—¢q, and let p=(1/b)1. Then

q -9 q q
(IT:—;- aq+—7——ar_q+12<—;—, 1 —-7) 5

and inserting @, =clnn,

12(%—,1-—3—) :c[—%ln%— (1-%) 1n<1--%—)]

which completés the proof (see Fig. 7).

C. Uhimann’s theory

On several occasions we have already met the notion of
mixing-enhancement. It states that for the eigenvalues of
two density matrices p and p’, arranged in decreasing
order, the inequalities

P1(P)5P1(P'), px(l))*'pz(p)s pl(P')‘*Pz(P’)a oo
Prp)+ 22 +p, ()< py(p) 422241, (), . ..

hold. One then says that p is mo ve mixed then p’ (or
movre chaotic), or that p’ is purer than p, and writes
p+p’, or p’4 p, respectively. Properties of this relation
were first investigated by Uhlmann (1971, 1972, 1973);
therefore we propose the name “Uhlmann’s theory” for
this field. [Uhlmann’s original papers referred to the
finite-dimensional case only; the generalization to the

S (2.7)
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infinite-dimensional case as well as quite a few of the
theorems presented below are due to Wehrl (1974).]

Of course, this notion also makes sense in the clas-
sical discrete case. There, “density matrix” is re-
placed by “discrete probability distribution,” and “big-
gest eigenvalue” by “biggest probability,” etc. (See, for
instance, Ruch, 1975.)

Let us recall where mixing-enhancement has appeared
so far:

(1) In our discussion of the master equation.

(2) The mapping p~f(p)/Trf(p), f being concave and
non-negative, is mixing-enhancing (lemma 2 of Sec. I.B).

(3) “Deleting off-diagonal matrix elements” implies
mixing-enhancement because of Ky Fan’s inequality: Let
p be any density matrix, ¢, be an orthonormal basis,
and define p? by .

<¢ilpd| ¢k> = 6(k<¢¢ iP 1 b -

Then the eigenvalues of p® are the diagonal elements
{(p;|p|®ds) and, by Ky Fan’s inequality, the sum of, say,
n of them—in particular of the n biggest ones—is
<py(P)+ - +D4(0).

(4) If p=27);P;, (the P; being one-dimensional pro-
jections, A; =0, 2 A;=1), then p 4+ p’ where p'=2,\; @;,
the @; being any family of pairwise orthogonal one-di-
mensional projections.

Other examples of Uhlmann’s relation will be given
below. This relation plays a role quite frequently, one
reason being its connection with monotone increase of
entropy (see Sec. L.B).

Here p +p’ implies that S(p)= S(p’), but even more,
namely that Trf(p) = Trf(p’) for every concave function
f (we have seen this in Sec. I.B already). This yields,
by the way, a characterization of “p+ p’”: p# p’ if,
and only if, for every concave function f, Trf (p)
=Trf(p’).

The proof is obtained by considering functions of the
form f(x)=x if 0 <x <c,f(x)=c if x=c. Suppose that
p+ p’is not true. Then there exists a smallest integer
n such that p,(p) +++++p,(p)>p,(p') ++-+ +p,(p’). Now
choose ¢ =p,(p’). Then Trf(p)=np,(p")+20 %0+, Pu(p")
> 1P (') +23 i=ns1 Pu(p) = Trf(p) since p,(p’) <pa(p).

Similarly, p+ p’ if, and only if, for every convex
function f, Trf(p)<Trf(p’). (Unfortunately it is not
true that Trp” <Trp’? for all p: 1<p<w implies that
p&p')

Now let us consider another example of mixing-en-
hancement:

-(5) LetU,...,U,... be unitary operators, A; =0,
2oXx; =1. Thenthe convex combination p=X,U*p’'U,
+eee+ X, Usp'U,+++ +is more mixed than p’.

This is again a consequence of Ky Fan’s inequality.
Let ¢, be the eigenvectors belonging to the p,(p). Then
P,(p) teeet Py, (p) =EZ=1Z ir l<¢b I Ui*p,Uiqle
=202 MUy 10" Uspn) < 205200 () =20 5= 108 (07,

This explains the word “mixing-enhancement.” Re-
member our remark of Sec. B: p’ and U*p’U, U being
an arbitrary unitary transformation, have to be con-
sidered as equally mixed; although they do not contain
the same information, they certainly contain the same
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amount of information in any sensible interpretation.
(Cf. also Sec.G.) Now p is obtained from the U*p’U
by a mixing procedure, hence there is a loss of infor-
mation. (Note that the constituents of p cannot be re-
constructed.)

By the way, in example 5 it is not necessary that the
U; be unitary; they may be only isometric (i.e., U}U;
=1).

Clearly the relation + is transitive and reflexive, i.e.,
a preorder. Thus it generates an equivalence relation:
p~p’ if, and only if, p+ p’ and p’+ p, hence if p and p’
have the same positive spectrum. This equivalence
relation may be regarded as the most general concept
of invariance (Sec. A): from the entropy, or more gen-
erally from the information-theoretical point of view,
density matrices with the same positive spectra are
equally good.

Uhlmann’s theorem states that, in essence, mixing-
enhancement is always produced by the mechanism
described in example 5: p+ p’ if, and only if, p is in
the (weak) closure of the convex hull of {U*p’U: U
unitary}. ‘

We will only sketch the proof. It consists of four
steps:

(1) The set A of all operators A =0 such that p,(A)
< p,(p"), p,(A) +D,(A) < p(p’) +b,(p"), . .. is by virtue of
Ky Fan’s inequality convex and weakly closed, hence
weakly compact.

(2) Its extremal elements are exactly those A for
which p; (A)=p;(p’) for all i or p;(A)=p;(p’) for i
<un,p;(A)=0 otherwise.

(3) Apply the theorem of Krein and Milman: A
=closed convex hull of the extremal A.

(4) All extremal A are in the weak closure of
{u*p'U}.

In the finite-dimensional case, there is another way
of proving the theorem invoking Birkhoff’s theorem
mentioned in Sec. I.B. Namely, for two sequences of
numbers @, > a,=**=q,, orp,=p,=-++2p,(a;>0,5
20,77, @;=),%-1 B;=1) therelations a; <B;, a; +a, <B,;
+pB, etc. are true if and only if there is a doubly-
stochastic matrix T such that a; =23, T;;B; (see
Hardy, Littlewood, and Polya, 1934). Then a straight-
forward application of Birkhoff’s theorem yields
Uhlmann’s theorem.

Let us now make a short remark on the order struc-
ture of density matrices (this expression is due to
Thirring, 1975. The lattice structure of density ma-
trices was recognized by Wehrl, 1974):

For any two density matrices p,, p, there exist (up to
equivalence) a “purest” density matrix +p;, P, and a
“most mixed” one 4p,, p,. Thus the equivalence classes
of density matrices form a lattice. Its “purest” element
clearly is the equivalence class of the pure states. A
most mixed element does not exist in infinite-dimen-
sional Hilbert space, only in the finite-dimensional
case, namely, p=1/dimH.

Next, let us generalize example 3: let P; be a family
of pairwise orthogonal projections (not necessarily one-
dimensional) with 3 P;=1. Then } P;pP; + p.

This means intuitively that deleting off-diagonal ma-
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trix elements reduces the information and increases the
degree of mixture. The proof is easily obtained by
means of Ky Fan’s inequality.

The coarse-grained density matrix p =Y, 1;P;(x; TrP;
=TrpP;, cf.Sec. LB is+),P,pP;, hence ¢ p; there-
fore not only S(p,,) =>S(p), but also Trf(p.,) = Trf(p)
for any concave function f. (Remember Fig. 3:
both mappings are mixing-enhancing.)

It is worth mentioning that Uhlmann’s theory has been
generalized to arbitrary von Neumann algebras by
Wehrl (1975), Alberti (thesis, 1973), and Uhlmann him-
self. It turns out that this theory provides a powerful
tool in the investigation of the structure of von Neumann
algebras and, in a certain sense, is the “dual” of the
von Neumann-Murray dimension theory.

D. Continuity properties

In infinite-dimensional Hilbert spaces, entropy, as a
function of density matrices, is discontinuous in the
usual topologies. There are only a few restricted con-
tinuity properties. The problems thatarise in thiscon-
nection may be divided into two groups:

(1) Those which are of more mathematical interest
and which we will not treat in great detail here.

(2) Technical considerations that are of use in ex-
tending theorems that can be proven for finite-dimen-
sional matrices, to the general case. (Cf. the end of
Sec. A. For a typical example, see Sec. III.A.)

From section A we already know insensitivity. Other
restricted continuity properties are:

Lower Semicontinuity. (This fact seems to have been
well known for a long time, but was written down only
by Naudts, 1969; Wehrl, 1976. For other proofs,
cf. Secs. II.B and IV.B). Let p,, p be density matrices,
such that Tr|p - p,| - 0. Then S(p) <lim infS(p,).

Ky Fan’s inequality tells us that, for the eigenvalues
of p,, or p, respectively, arranged in decreasing order,
pl(pn)+ e +Ptz(pn) sTrlpn - pl +p1(p) terctpy (P)

since p,=(p, - p)+p. Vice versa,
P;(P) L +Q1(P) STr| Py — p| +p1(p1) toeee +pk(pn) ’

hence [(#,(p) = pi(p,))++ + = + (Br(p) = Py (p,)| = O and
eventually p,(p,) — p,(p). Thus

k ®
—Z p:(p)1np;(p) =lim[— z P:(p.) 1np;(p,)]
i=1 i=1

and
&

S(p)=sup . (—p;(p) Inpy(p))
LI TS

k

<lim inf supz (=pi(p,) Inp;(p,)) -

k=1

Remark: It is also true that, if p, 2% 5, S(p)
<lim infS(p,), provided that p is a density matvix. In
this case, also Tr|p,—p|-0. If p is not a density ma-
trix, it can happen that S(p) >1lim infS(p,)(Wehrl, 1976;
see also Davies, 1972, and dell ’Antonio, 1967).
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Unboundedness in Every Neighborhood. Let p be a
density matrix and € >0 be an arbitrary number. Then
there always exists another density matrix p’ with
Tr|p—p’'| <e and S(p’)=. (Clearly this implies that
S(p) is discontinuous.)

For this one only has to change, beginning from a suf-
ficiently large index I, the eigenvalues of p in such a
manner that p;=p,,...,p;=p;, and

br~ z(l—lnk‘jg for £ >1.

Entropy is Almost Always Infinite. Due to lower semi-
continuity, the sets {p: S(p) <n} are closed; also they
are nowhere dense because of our above statement,
hence {p: S(p)<=}= U{p: S(p) <n} is a set of first cate-
gory (i.e., the topological analog of a set of measure 0).

The set of density matrices with finite entropy also
has an interesting algebraic property: its finite linear
combinations are a two-sided ideal in the set of all
bounded operators (G. and G. Lassner, 1977).

The proof is obtained by using the following criterion
(see Dixmier, 1957): A set of positive operators, say
J*, is the positive part of a two-sided ideal J, if and
only if the following conditions are fulfilled:

(i) If A€ J*, then U*AU € J* for all unitaries U.

(ii) If Ae J* and 0 s B<A, then BeJ".

(iii) If A, BeJ*, then also A+ BeJ*.

(Note that any element of an ideal is a finite linear com-
bination of elements of its positive part.) Now if S(A4)
<o, then S(U*AU)=S(A)<», Furthermore, let B<A.
Denote by B,=28,>..., or a; >a,>..., the eigen-
values of B, or A, respectively. We have 8, <«;, hence
for all except possibly a finite number of indices,

s(By) s s(a;), thus S(B) <. Concerning condition (iii),
due to the fact that SAA) =1 S(A) A Inr fora =0, wecan
assume that Tr(A + B)=1. (One easily verifiesthat S(A)

<o implies that TrA <«.) Define A’=A/TrA, B'=B/TrB.

By assumption, S(A’)<« and S(B’)< «. Then, S(A + B)
=S((TrA)A’ + (TrB)B’) s (TrA)S(A’)+(TrB)S(B’)
~TrA(InTrA) - TrB(ln TrB) [inequality (2.3)], and,
consequently, is <o,

From these results one may doubt that entropy is a
sensible concept in infinite-dimensional Hilbert spaces.
But fortunately these theorems do not really affect
physics. Let H be a reasonable Hamiltonian such that
Tre P#<w, and let 0, =¢ ®#/Tre ?¥ be the Gibbs state.
Suppose that the energy TrogH is finite. Whenever, for
some density matrix p, TrpH < TrogH, then S(p) <S(0p)
<. Hence a density matrix p with S(p) =~ would also
have infinite energy. The assertion that S(p) is mostly
infinite therefore is as good as the assertion that TrpH
is mostly infinite. However, this is a trivial fact
since H is an unbounded operator, but it has no physical
significance at all.

Also the discontinuity of S(p) is not as bad as it may
look at first. We will show in Sec. III.B that the relative
entropy S(o|p)=Trp(lnp —1Ing), and, consequently, the
free energy F(p,B,H)=TrpH - B-'S(p) (cf. Sec. I.B) is
lower semicontinuous in p. Therefore if not only
Tr|p, - p| - 0 but also Trp,H-~ TrpH, i.e., if the energy
expectation values converge, then S(p) <lim infS(p,),

-S(p) <lim inf[-S(p,) ] = —1im supS(p,), hence S(p)= 1imS(p,).
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One can even dispense with the requirement that
Trp,H~ TrpH if Tre #< for all g2 0<B<w. Then
S(p) in continuous on the sets {p: TrpH < C <}, even if
Trp,H— TrpH. Namely, Trp(BH) - S(p) <lim inf[Trp,(BH)
—S(p,)]; hence —S(p) <lim inf[-S(p,)]+1lim sup|Trp,(BH)|
+Trp(BH) for all $>0. Since the sum of the last
two terms is <2B8C, we have as above -S(p) <liminf
[-S(p,)] and consequently S(p)=1imS(p,).

Now let us turn to the second group of theorems con-
cerning continuity properties, those that are of use for
practical computations. Let me mention two of them
(Simon, 1973):

1. Let A,,A be compact operators, =0 (not necessarily
being density matrices), w—-1imA, =A. Suppose that for
the eigenvalues, arranged in decreasing order, p,(A,)
<p,(A) for all k. Then S(A,)—~ S(4).

2. Dominated convergence theorem for entropy. Again
let A, ,A as above, andw —1imA,=A. If there is a com-
pactoperator B such that A, < B and S(B) <, then
S(4,)~S@).

E. Additivity

Additivity states the following: let H,, H, be two Hil-
bert spaces, and p,, p, be two density matrices. Then the
entropy of the density matrix p,® p, in H,® H, is

S(p,® p,)=S(p,) +S(py) - (2.8)
Of course, this generalizes to
S(0,® p,® ¢+ + +®p,) =5(p,) +S(py) ++ + « +S(p,) . (2.9)

The proof is very simple: let ¢, or y; be the eigen-
vectors of p,, or p,, respectively, belonging to the
eigenvalues p,, or gq;, respectively. Then the ¢,® ¢,
are the eigenvectors of p, ® p, and the corresponding
eigenvalues are p,q;.

S(pl® pz) =- Zj: pkqjln(kaJ)

=_Zpk hmr‘Z g;1lng; =S(p,) +S(p,) .

From the information-theoretical point of view, this
property is quite clear: if we are given two independent
systems, described by H,, p, or H,, p,, respectively,
then the information about the total system, described
by H,® H,, p, ® p,, equals the sum of the information
about its constituents. As concerns physics, additivity
must not be confused with the scaling behavior of en-
tropy. It is often thought to be of apodictical truth that
the entropy of a piece of matter composed of two parts
equals the sum of the entropies of these parts. However,
it is not, as we have seen in Sec. I.C. It is approximate-
ly true for “normal” matter, and exactly true only if
there are no correlations at all between the parts. If
there are considerable correlations between them, the
entropy of the total system may be much smaller (even
0). -

In the classical case additivity reads as follows: let
Q,,Q, be two phase spaces (with elements w,,w,), and
let p,(w,), p,(w,) be two probability distributions. For
plw,, w,) = p,(w,)p,(w,), S(p) =S(p,) +S(p,).
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In the earlier sections the special role of entropy did
not appear; rather, the traces of any concave function
was taken to be more or less as good as entropy. How-
ever, the property of additivity distinguishes entropy
among all functionals of the form p— Trf(p), where f is
a measurable function: if Trf(p,® p,) = Trf(p,) + Trf(p,),
then f(p) =constplnp.

Due to the assumption 22 f(p, ;) =Zf(pk)+2f(qj)
=2.[q;f (py) +1.f(q;)] for all sequences p,,q;, hence
f(pkqj)ijf(pk)"'pkf(qj)‘ For g(x)Ef(x)/x’ g(.bkq,-)
=g(p,)+&(q,), i.e., g(x)=constlnx,f(x)=constx Inx.

There are, of course, other additive functionals of p,
‘but they are not of the form p— Trf(p).

An example is provided by the so-called o entropies.
[In the classical case they were introduced by Renyi.
See Renyi, 1966. For the quantum-mechanical case,
see Wehrl, 1976; Thirring, 1975. The case a =0 was
(classically) invented by Hartley, 1928. The case a =2
has been considered occasionally in the past, for instance
by Fano, 1957, and Prigogine, 1972.] S_(p)=1/

(1 - @)ln Trp® for a>0,# 1,# = ; S,(p)= Hartley entropy
(see Sec. A), S,(p)=S(p),S.(p)= —1Inllpll. (One verifies
easily that, for fixed p, the mapping a—~S, (p) is con-
tinuous for 1 < @ <.) In infinite-dimensional Hilbert
space, these a entropies, for a>1, are not concave,
however (and also not subadditive; this property only
holds for S, and S. Cf. next section). On the contrary,
they are compatible with Uhlmann’s relation: p+ p’
=S,(p)=5,(p").

F. Subadditivity

Like additivity, subadditivity refers to a system com-
posed of two subsystems; however, they are no longer
supposed to be independent. That means that, in the Hil-
bert space H=H,® H,, we consider now density matrices
of a more general kind than p,® p,.

What information about, say, the first subsystem is
contained in p? It is given by the partial trace (reduced
density matrix) p, = Tr,,p. p, is a density matrix in H,
with matrix elements (¢ |p, |9 (¢, ¥< H,) detined as fol-
lows: let e, e,, ... be an orthonormal basis in H,. Then

(ployp)=D_(o®e, |plv®e,) . (2.10)
It can be shown that the right side of (2.10) is independent
of the e; basis. (p, is, so to say, some average over the
second system.) In an analogous way, p,= Tru, p is con-
structed. Of course, for density matrices of the form
p=p,®p,, Tr,,p=p,, and Try p=p,. [The notion of par-
tial trace is a special case of a so-called “conditional
expectation,” (Umegaki, 1954; cf, Takesaki, 1972;
Guichardet, 1974).]

If T = B(H) is an operator of the form 7,® 1
(T, B(H,)), then TrpT =Trp,T,. (This property may
equally be used as a definition of p,.) Since the state of
a system is determined by the knowledge of all expecta-
tion values of observables, one can say that in that
sense p, contains all the information about the first sys-
tem, and p, all the information about the second one.

In the classical case one constructs the reduced dis-
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tributions p,(w,), or p,(w,), from a distribution p(w,,w,)
by integrating over the other variable:

b

p,(w,) = fdwz p(w, ,w,) (2.11)
and vice versa.
Now subadditivity states that
S(p) <S(p,) +S(p,) =S(p, ®p,) . (2.12)

This appears plausible since, when forming p, and p,,
one loses the information about the correlations. (Also,
one cannot reconstruct p from p, and p,.) However, it
is false that p,® p,+p. (Lieb, private communication.
This follows also from the fact that the a entropies for
a+ 0,1 are not subadditive; see below.)

A proof is obtained from the inequality for the relative
entropy (1.41) S(p,® p,|p)=0. Now S(p,® p,|p)
=Trp[1np - In(p,® p,)]=Trp(lnp — Inp, ®1 - 1® Inp,)
=Trplnp- Trp, Inp, — Trp,1np,. In the classical case
the proof is quite analogous, even for the generalized
Boltzmann-Gibbs—Shannon entropy .

Subadditivity is a stronger property than concavity.
In fact, our next example shows that concavity is a con-
sequence of subadditivity.

In order to verify this, take two Hilbert spaces H, and
H,, and let e, e,, ... be an orthonormal basis in H,.
Then H=H,®H,=@dHP H{)=H ®e,. Now let p be the
density matrix ®X;p; (p; =density matrix in H,;,1; =0,
2an=1).. TrH2p=E>\,.p,.. Try, p is a matrix in H, that
is diagonal with respect to the basis e;, and its entries
are the A;. Then S(p) =201, S(p;) = 2o\, In\; by subaddi-
tivity is <S(p,) +S(p,) =SQIX; p;) =222, Inr;, hence
S(2 x,.p,.)zz X;S(p;). One can argue in the opposite di-
rection: subadditivity is implied by the properties (a)
that deleting off-diagonal matrix elements increases en-
tropy (example 3 of Sec. C), (b) the mixing property
SQCINp;) =1;238(p;) =232 ; In), if the ranges of the p,
are orthogonal, and (c) concavity (Wehrl, 1976).

We already have indicated in the preceding section
that the Hartley entropy is subadditive too. There are
no other functionals than linear combinations of S and
S, that are invariant (in the sense of Sec. A), additive,
and subadditive (except for some trivial possibilities
like “entropy” =0 if p has finite rank, otherwise =)
(characterization theorem of Aczel, Forte, and Ng,
1974. The quantum-mechanical version is due to Ochs,
1975). If, in addition, insensitivity is required, we are
left with the constant multiples of S only.

The proof is rather involved, therefore we can give
here only an outline. As in the proof of the character-
ization theorem of Khintchine and Faddeev (Sec. B), it
suffices to consider the finite-dimensional case only.
Then ®(p) is a symmetric function of the eigenvalues of
p; ®(p)=I,(p,,...,P,). Because of expansibility (Sec.
A), . :

In(pu .. ,Pu) =In.>1(p1: L 71)11)0) .
Additivity implies that for » numbers p,, ..
27p;=1 and m numbers ¢, . .

. ,b, With
., q,, With 23g;=1
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lnm(pl ql’ A

PRy -+ Pnm)
=L(Dy, e e s D)+ Ll@ys -5 @)
whereas subadditivity states that
I"m(ifll, e Vg s V) ST Dy, o PGy, )

In the last relation, the 7,; are a double sequence of
non-negative numbers with Ek”,rkj=1, and p; =Ekrik,
q,-=2k1fkj. As in Sec. B, the first part of the proof con-
sists in showing that, for 0<p<1, the information func-
tion I(p,1~p)=aS(p,1 - p)+A,; with S(p,1-p)=—plnp
—(1 -p)1In(1 - p) and a and A, being constants. For this,
we need three lemmas:

(1) Let f(p)=1(p,1-p). We note that f(p)=f1-p).
From the next lemma it follows that f is nondecreasing
in [0,1/2] and nonincreasing in[1/2,1], and that it is
concave.

(2) Symmetry, additivity, and subadditivity can be
used to obtain the inequality

I(1-q,q9) - I1§(1 - p)(A - @)+ p(1 = 7),(1 = p)g +p7)

<LAp(1-q),0q,bs,-- - ,Dm)

~LAp(1=7),07, Pgs - - - s )

SIAp(1-q)+ (1 =p)1=7),pg+(1 = p)r)=L,(1 - 7,7) .
Therefore
L(1-9,9)-I(1-p)1-@)+p(1~7),A-p)g+pr)

SI(p(1- @)+ (L= p)1=7),pq+ (1 =p)) = L(1 —7,7) .
Inserting » =1 - ¢, one arrives at

A <Ap(1-q)+(1-p)g) .

Given g, the set { p(1-g)+(1-p)g:0<p<1} is just
[4,1-¢q], hence f(p) is nondecreasing in [0,1/2] and
nonincreasing in [ 1/2,1]. Inserting p=1/2, we obtain

fEq+37)25 Ag)+51(7) ,

hence f is weakly concave, and, because of monotonicity,
concave.

(3) The above lemma is also the essential ingredient in
proving the following recursive relation: For 0< g< 1,
the difference

Im((l - q)p)pq,p:;; ..

is independent of g,
L(s«s)=pI(s *)=dps(D, b3, -

Now

P)-0I(1-q,q)

sPm) -

I( by, 05, 03) =(Dy +D,) 12(1_);{1_1)2"011:-22

>+J2(p1 43, D3)
Let g(x) = J,(1 —x,x). Because of the symmetry of I, one

obtains the functional equation

Dy
Di+D,

(0407 (525—) + 80 =L by, b2
=13(P1 ;pg’pz)

=(1>1+p3)f<;1]%);) +g(p)
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or, with p,=y, p,=x,

X

25 +a0)

(l—x)f(l—f;> +g(x)=(1—y)f<

Differentiating with respect to x and vy yields

Ty f"(lfx> Ty f”(lfy)

(One can prove that all derivatives exist.) For s=y/
1-x, t=x/1-y, this becomes

S(L=8)f(s) =1~ 1)f (1) .

The left-hand side depending on s only, and the right-
hand side depending on Z only, both sides must be a con-

stant, and by integration one arrives at

S@) ==a[t(nt-1)+(1-2)(In(1=2)-1)] +bt+C .
Because of the symmetry, =0, and thus we have ob-
tained the expression for f(p) asserted above, with A,
=C+a. How do we get from I, to I,,? Suppose all p,>0
and consider the expression

YDy + D3, D3, - - D)+ (D +D,)A,

iy

< 3Dm) = I e i(Dy+ D5, D5, -
- as(pl +pzyp3y ..
It is symmetric in p;,...,p,, and

wm(p1+p27p3)p4"":pm):wm(pl"'pmpz’pm"')pm)'

From this one concludes easily that it is a constant, A,,.
Therefore

b, bs >

I ceesPml= S ’
R e ey e

+aS(Py +P2sPss v -« s D) +Ap

=aS(p1,p2, LR :pm)+Am .

It is immediately seen that A, ,=A, +4,.
(2) and our last result yield

liminf(4,,, -A,)=0.

Inequality

This relation is similar to the one we have obtained in
Sec. B. There we used a theorem of Erdds to conclude
that A, =blnm. In our case this is guaranteed by a
stronger theorem of Katai, 1967. The proof is now
completed by a simple application of expansibility:

L(py,ee pn)=aS(Pry- s bm)+A,,

where 2 =number of p’s that are #0. A final remark ap-
plies: there are various other characterization theo-
rems (see Aczel and Daroczy, 1974). However, from the
physical point of view, the two theorems of this chapter
seem to be the only “natural” ones.

Before discussing some applications of subadditivity, let
me make some remarks on the question of monotonicity.
Neither quantum-mechanically nor in the classical con-
tinuous case is it true that S(p,)<S(p)! In the classical
case, one could, for instance, have S(p,)<0, then S(p),
for p(w,, w,)=p,w,)p,(w,), is < S(p,). (One can easily
give other examples not involving negative values of en-
tropy.) In quantum mechanics, p may be pure, but p,
may not be, hence S(p,)>0=S(p).
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Take, as an example, H,=H,=C? ¢,, ¢, (or ¥,,¥,, re-
spectively) = orthonormal basis in H, (or H,, respective-
ly). Let p=projection onto

1 1
'ﬁ(¢1®¢1 +¢2®d)2)° P :E(’¢1><¢1| + |¢2><¢)2!),

S(p,)=1n2.

This is a strange phenomenon, even though its formal
origin is quite simple. In Sec. III. Awe will discuss why it
is not observed in “real matter.”

In connection with the heat death, it has been noted that
one could imagine that the universe is in a pure state,
with entropy = 0, but nevertheless the entropy of suf-
ficiently small subsystems (earth, galaxies,...) in-
creases (Lieb, 1975). After all, such a possibility is
not excluded. However, this field certainly is very
speculative and I do not want to proceed further in this
direction.

Monotonicity is valid for the classical discrete case
and (in the opposite direction) for the relative entropy
(even in the quantum-mechanical case): S(o,|p,)
< S(c|p). (For aproof, see Sec. II.B.) L is also valid
for the “right” classical continuous entropy (not the con-
ventional one), i.e., for p° as defined in Sec. I.A(Wehrl,
1977).

Let us come back to our example above (p pure, p,
not). Two remarks are appropriate:

(1) If p is pure, then S(p,) =S(p,); moreover, the posi-
tive spectra of p, and p, coincide.

Let ¢4, ¢, be orthonormal bases in H,, or H,, respec-
tively. Let x be the vector 2Jc;,¢;®¥,. p=|x{x]
=2 cuchl oo, ® (90, |. Then p,=2scycfy|9iXd, | 0n
=2scych | 9{P,;|. Let C be an infinite matrix with en-
tries c;,. The eigenvalues of p, equal those of CC*.
Similarly, one finds that the eigenvalues of p, equal those
of C*C. But it is well known that CC* and C*C have the
same positive spectrum.

(2) Given p,, one always can find a Hilbert space H, and
a pure density matrix in H,®H, such that p, =TrH,p.

Let p,=27p,|0:)¢,|. Take for H, a Hilbert space with
the same dimension as H;, and with an orthonormal bas-

iS Zpl)(pz’ tee
pr=Tru,p if p=|xXx|, x=20Vh; 0,99,

From remarks 1 and 2 one can derive the triangle in-
equality (Araki and Lieb, 1970) which gives a partial
compensation for the failure of monotonicity:

|S(0,) = S(p.) | < S(p)<S(p,) +S(p,) -

(Of course, the right-hand Side is merely subadditivity.)

(2.13)

We want to prove the inequality S(p;)< S(p) +S(p,); in-
terchanging remarks 1 and 2 yields the rest. p is a den-
sity matrix in H,®H,. Due to remark 2 there exists a
Hilbert space H, and a pure density matrix o in H,®H,
®H, such that p=Tr, 0. Let 03=Try,,u,p. S(0;)=S(p)
because of remark 1. p,=Try,,u,0- S(p,)=5(0,3), 0,4
=Try,0. By subadditivity, S(p,)=5(0,,)< S(p,)+S(o;)
=S(p,) +S(p).
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It should be noted that the triangle inequality is false
in the classical continuous case, because the analog of
2 dbove does not hold.

Now let us describe some applications of subadditiv-
ity.

1. Existence of mean entropy for translationally invariant
systems

Let VCR? (or Z%) be a bounded region. We attach to it
the Fock space H(V) (Sec. I.A; as concerns statistics, we
do not care for +; our results are independent of whether
there are Fermi or Bose statistics). Remember that
H(VU V)= H(V)®H (V') if VN V' =¢ (in the sense of Sec.
LA).

A state on H(V) is described by a density matrix p,.

It is plausible to require that all these density matrices
are consistent in the sense that py=Tru,,py oy VNV’
=¢. Note: p, is not necessarily a Gibbs state.

The entropy of a subvolume is defined by

S(V)=S(py) -

Subadditivity implies that S(VU V*)<s S(V)+S(V") if V
NV’ =¢. The problem we want to study is the following:
Does there exist a limit S(V)/l VI (l V| being the volume
of V, or the number of lattice points in V, respectively),
as V-~ in some suitable sense (for instance, in the
sense of van Hove; see Sec. I.C), provided that the sys-
tem is translationally invariant, i.e., S(V+a)=S(V) for
all ac R?, or Z¢, respectively.

To begin with let us consider the case of a one-dimen-
sional lattice system. Let V be an interval of length I:
V={k,k+1,...,k+1-1}. Because of translational in-
variance, S(V) is a function of Z only: S(V)=F(1),1=|V|.
By subadditivity of the entropy, F is also a subadditive
function of I:

F(l,+1,)< F(1,)+ F(1,).

(2.14)

(2.15)

Using a classical theorem of analysis (e.g., Polya and
Szegd, 1970) one concludes that the limit F(I)/1 exists:

F@)_,. SW) _ F@)

lim =lim Vi =S, withszinf-—-l—-.

1w L

(2.16)

The same argument would work in the continuous case
(Z being replaced by R) too, provided that one would
have some bound on F (7). However, subadditivity is not
sufficient to provide such a bound.

As an example, consider for V intervals [a, b] and de-
fine “S”([a, b])=0 if b — a is rational, == if b - a is ir-
rational.

We will see in Sec. III.A that such a bound is in fact,
for quantum systems, provided by strong subadditivity,
which is a sharpening of the subadditivity property dis-
cussed in this section. Namely, strong subadditivity
yields, for I’ <l,, the inequality

F(I') +F (21, - I')< 2F(1,), (2.17)

hence in the quantum case, F(I’)< 2F(l,), because the
quantum-mechanical entropy is always =0.

But inequality (2.17), which also holds in the classical
case (see Sec. III.A), allows us to prove the existence
of the mean entropy even for classical continuous sys-
tems, where it is not true that F(I’)< 2F(I,). We have,
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with s = infF (1)/1,
F(')< 2F(l,) - 21, - U")s .

Choose [, such that F(1,) < [,(s + €).
as l=nl,+1’ (n=integer, I’ <l,). Therefore F(I)<
+F(1’) (by subadditivity) and

S FO)_ 2+n)F(1,) - (21, —l')s
S =
l nly+1’

Any [/ can be written
nF(,)

and, since for -« alson-—-=,

F
lim su pi< (l) Ss+e€,

1>

thus limF()/1=s.

2. Monotonicity

If S were monotonic there would be no need to refer
to strong subadditivity in order to establish the exis-
tence of 1imF(I)/I. But monotonicity is generally true
only in the classical discrete case. It will turn out, how-
ever, that it is also true in our case of translationally
invariant systems; again, this result relies on strong
subadditivity.

Nevertheless there are some instances where some
sort of monotonicity can be proved even without any
knowledge of strong subadditivity. We will discuss two
of them:

(a) Quantum lattice systems. (This, of course, also
comprises the case of classical lattice systems, cf. Sec.
I.A)) Letus drop the assumption d=1. Remember that
H(V)= @, H,,H, being Hilbert spaces of fixed finite di-
mension, say k. One readily verifies that

S(V)< |V|ink.

Let VC V’. By subadditivity, S(V')sS(V)+S(V”), Vv”
=V’\V), hence

SV -S(V)<sS(v”)< |V Ink=(|V’| = |V|)Ink.

In the classical case, also S(V)< S(V’).
mechanical case, let

In the quantum-
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Then
swm=<o,

Sv)<Sw) ifv'ov (2.18)

and
S <SW) +S(W\V).

(b) Configurational entvopy of classical statistical
mechanics (Robinson and Ruelle, 1967). In classical
statistical mechanics it is often sufficient to consider on-
ly the probability distribution in configuration space in-
stead of the complete distribution in phase space. Tak-
ing into account the possibility of a variable number of
particles moving in the (bounded) volume V, one thus
arrives at a family of symmetric distributions

oM., ...

M=1).

qu)y N=0,1,... (219)

Since in a classical theory there is no need of introduc-
ing the “correct” normalization condition (1.3) one
chooses it as follows:

f dq, **dqypy" =1

and defines as the configurational entropy

- 1vi
£ (2.20)

N=0

e vl

Sconf (V) ==

f dq, >~ dgyp™ InpW™ . (2.21)
N=0

Note that this kind of entropy is defined in some sort of
“classical Fock space.” It is very different from the
grand-canonical entropy of Sec. I for two reasons: (i)
the normalization condition, and (ii) the kinetic energy
is omitted.
One can show, extending our previous arguments, that

the analog of (2.18) holds:

Sconf(V) <0 H

Seont(V) SS ne(V) If VIOV, (2.22)

and also that subadditivity (and even strong subadditivity)
holds.

S(v)=sv)- | V| lnk. Namely,
i
Seont(V) = i f—l'v-l— f dgq, « + + dgy p¥(Inl - Inp{¥)
N=o Nt vy
© oIV
s NZ: e—N," va dg, « « »dgy(1-p§) (by Klein’s inequality; cf. Secs.I.A and I.B)=1-1=0 .
=0 .

The second inequality follows from the first one and subadditivity: For VCV’,

Sconf(V’) $S conf(V) +Sconf(V’ \ V) sSt’:cmf(V) .

Turning to subadditivity, we first have to define S,,,,(V) and p{*’ in terms of p{¥’:

P (.

© -1V
=5 T )

M=0 Vu.M

etc. (V”=V'\V,x;eV, y,c V"’). Similarly,

Rev. Mod. Phys., Vol. 50, No. 2, April 1978

Ay, e« o dy, pF+M(x, ...

’xN’yU e :yM)

Scons(V’’) and p$¥) are defined. We have
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Semtl¥)=3 S

dgy = + + dgy p{i’ Inp§"
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veN
=_i ﬂ. f f dy, s+ «dy pw+M7(x R S . 1) )-1np$,”+ﬂ"”(..-)
¥aito NIM! VN. dxl"-de ekt 1 M 1 VNI L I M . )
since every point g V’ must either belong to V or to V’/, and
dg, » » e dg, = f dx, « o« dx f dy, » e edy,.
ij ‘i dn KZ;O K VK 1 L 1 N-K
Now,
eVl f d dx. ot ()
Seane(V) =~ ; N Pty of (%y, - ., %y) InpY
e~ \V1 gVl f
- e dx---dxf dv. o o d
,,Z—,; NT T mt S ¥ ) ® Yt
Xp‘VN’*M)(xI""9xN7y17' ',yM)lnngN)(xl;---,xN) .
Note that [V| +|V’7|=|v’|. A similar formula holds for S,,,(V’’), and therefore

sccnt(V) +Sconf(V”) - scmf(V')

e 1Vl
=1\th NIM! fVN dxl...dej;ruM d ...dy p(N+M)(x1?""xN’y1y' '9yM)
[Inp@F ) (x,, ..., 9,) = InpFxy, ..., xy) = Inp4H) (9, ..., 9]
v f d (N & M), (N) )
> e oo o0 * cee - s Y] e
&7 NU MU Jon dxl xN_/;’”M dy.l ay (P (%, V) = P %y, X (v, V)

(again by Klein’s inequality)=1-1=0.

Let us return to our example and indicate how mono-
tonicity can be used in order to establish the existence
of 1im8(V)/|V| or limS,,,(V)/|V|. (Of course, for quantum
lattice systems the existence of limS(V)/ [ Vl alsoimplies
the existence of limS(V)/ | V|.) We shall consider the
above case (a) only (for the configurational entropy things
work in quite the same manner) since for our following
arguments we need only relations (2.18), or (2.22), re-
spectively.

Choose €, [,, I, and  as before in example 1, re-
placing S, however by S in the definition of F(l) thus
defining s = mfF(l)/Z etc. Inequality (2.17) is then re-
placed by

o< FO _ F(nlo) nly F(lo) (2.23)
L 1 1 L,
Consequently,
tim FO e FO)
1 ]
exists.

3. Dimensions > 1

In the case of dimension >1, subadditivity is definite-
ly too weak to establish the existence of the mean en-
tropy, even in lattice systems. Also monotonicity is not
sufficient.
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To illustrate this let us consider S or the configura-
tional entropy. For simplicity we will use the same
letter § for both S itself and the configurational entropy.

Let a=(a,,...,a,) be a vector in Z ¢ or R?, and let V(a)
be the box{xe Z? or R% 0<x;<a;}. Let us also
define
¢ S(V(a)
s=inf
V)|

Suppose now that a sequence of volumes V tends to in-
finity in the sense of van Hove (cf. Sec. I.C). We choose
a, such that $(V(a,)) < |V(a,) | (S +€). Define n3, or n},
respectively., as in Sec. I.C. By assumption, nj/n}~1.
Monotonicity and subadditivity imply in the same way as
before that

5w

v (2.24)

< X (5+¢€) .
n;(

It remains to show an inequality of the kind

S(V) ny v 3

VT ”v (2.25)

which would be a consequence of the inequality

S(Ty)= ny 5| Via)| , (2.26)

where I'}, denotes the union of the #3 translates of V(a,)
that cover V. However, the latter inequality can only be
obtained by invoking strong subadditivity (cf. Sec.

O1.A).



4. The Kolmogorov-Sinai invariant

The construction of the Kolmogorov-Sinai invariant of
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sponding average lack of information is
—ZP¢10g2P,~ . (2.28)

classical ergodic theory also makes use of subadditivity
(see Sec. IV.A). ‘

Let us once more come back to the mean entropy. One
easily can show that the mean entropy, should it exist,
is affine on the set of translationally invariant states.
Again let us consider case (a) only. Since, by Eq. (2.3)
for py=2p,,,+(1 =) p, 4, :

AS(py, ) +(1=2)S(p,, ) <S(py)
<AS(py, ) + (1 =2)S(p,, )
—AlnmA = (1 =) 1In(1-=2)
<AS(p,, ) +(1 = 2)S(p,, ) +1n2

in the limit |V |~

(2.27)

s S( pv) _ § S(phv) . S(pz V)
lim V] =alim v +(1—-7x)11m—|—Vl'—-—.

G. Entropy and information theory

In principle we should now treat strong subadditivity.
However, since it is

(1) closely related to the concepts of relative entropy
and skew entropy, and

(2) requires quite a lot of nontrivial mathematical
preparations, we prefer to devote an extra part of this
review to these problems and to close this second part
with a rough account of the connection between entropy
and information.

The principle that entropy is a measure of our ig-
norance about a given physical system was recognized
very early (see, for example, Weaver, Appendix to
Shannon and Weaver, 1949; v. Smoluchowski, 1914);
Boltzmann was also aware of it.

On the other hand, the mathematical theory of in-
formation (Shannon and Weaver, 1943) originally was
intended as a theory of communication. The simplest
problem it deals with is the following: take any message
(for instance consisting of words or of digits). One can
represent it as a sequence of binary digits and thus, if
the length of the “word” is n, one needs n digits to char-
acterize it. The set E, of all words of length » contains
2" elements, therefore the amount of information needed
to characterize one element of its is log, of (the number
of elements of E,) =log, N, with N=2". Elaborating on
this a little bit, one arrives at the result that the amount
of information which is needed to characterize an ele-
ment of any set of power N (not necessarily of the form
N=2") is log, N. Now let E be a union E\U + « +UE, of
pairwise disjoint sets, N; =number of elements of E,.
Let p;=N;/N, N=2Ni. If one knows that an element of
E belongs to some E;, one needs log, N; additional in-
formation in order to determine it completely. Hence
the average amount of information needed to determine
an element, provided that one already knows to which
E, it belongs, is 2J(N;/N)log,N;=2,p;log, Np,
=Ep,- log,p;+1log,N. Now we just have seen that log, N
is the information that is needed if one does not know
to which E; a given element belongs, hence the corre-
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This is usually called Shannon’s formula, although it was
discovered by Wiener independently.

From here there is a short way to physics: if the set
E is intereted as a set of N measurements, and the p;
are the probabilities of finding the system in the pure
state Ii), then, expect for an irrelevant factor In2,
Shannon’s expression equals the definition of entropy.

This enables one to apply quite a few mathematical re-
sults from information theory to entropy, and we already
have done this on several occasions. Examples are, for
instance, the characterization theorems of Secs. B and
F.

However, one has to bear in mind that information
theory does not contain any quantum mechanics, so that
it can be applied directly to the classical discrete case
only, i.e., if there is no noncommutativity involved at
all. If one wants to apply it to the general quantum-
mechanical case, one usually has to worry about prob-
lems arising from noncommutativity, so that not every
result of information theory has a quantum-mechanical
“translation.”

As concerns noncommutativity, it seems quite natural
to ask for quantities that measure the amount of non-
commutativity of two operators rather than the amount
of information contained in one density matrix. We will )
do this in Secs. III.B. and C., as we just have said, in-
formation theory does not cover that subject.

Turning back to Shannon’s formula, it has to be added
that one can conceive of many other measures of the
amount of information contained in a probability distribu-
tion or a density matrix. These measures usually have
only little importance, as was already pointed out in the
introduction. In the previous section we occasionally
were concerned with the quantum analogs of Renyi’s a
entropies. Other quantities one could think of were, for
instance,

=Inf=*(Trpf(p)) ,

f being an increasing convex or concave function, or

f [ Trpf(-1np)]
(Renyi, 1965; Aczel and Daroczy, 1963) or

=g (Tre®-1),
etc. (Daroczy, 1970).

What one can learn from considering these “entropies”
is that mixing-enhancement means loss of information
in the worst possible way because not only does entropy
increase but also all the other measures of lack of in-
formation increase.

By means of information theory it is possible to re-
phrase the maximum entropy principle in other terms:
suppose that for some system you know only a few,
macroscopic quantities, and you have no further knowl-
edge of it. Then the system is expected to be in the
state with maximal entropy, because if it were in a state
with lower entropy it would also contain more informa-
tionthan previously specified (Jaynes’ principle, Jaynes,
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1957). However, as we have already discussed in Sec.
1.B, one has to be careful with such arguments because
they only make plausible, but do not actually prove, the
maximum entropy principle. )

On the other hand it is amusing to note that in practical
applications of information theory, such as in technology,
biology, etc., the second law of thermodynamics has
been adopted and there called the negentropy principle
(see Brillouin, 1962). Thus we find a mutual interaction
between physics and information theory rather than a
perfect understanding of statistical mechanics on the
grounds of information theory.

111. STRONG SUBADDITIVITY AND LIEB'S
THEOREM
A. Strong subadditivity

In Sec. II.F it turned out that mere subadditivity often
is too weak a property, and that strong subadditivity is
needed. By this, the following is meant: given three
Hilbert spaces H,, H,, H,, let p be a density matrix in
H,® H,® H,. Define the partial traces p, =TT, uy Py
;)12=TrH3 p, etc. (In order to have a less cumbersome no-
tation, from now on instead of p we will write p, ,;, instead
of TrHz® ny We will write Tr,;, instead of Try, we will
write Tr,, etc.) Then

S(py25) +S(p,) <S(py,) +S(P53) - 3.1)

If H, is one-dimensional, this reduces to normal sub-
additivity. The same inequality holds in the classical
case, there being given three “phase spaces” ,,9Q,,Q,;
Pigs 1S a probability distribution in Q, X Q,%x Q, , p,(w,)
= f dwzdws plzs(w1 s Wy, ws)’ plz(wl ’ wz) = f dwz plzs(wl »Was ws)a
ete.

In the classical case, the proof of inequality (3.1) is
very simple: one only has to use the inequaltiy

fdwldz,vzdwgpl23(1np123 -1no)=0 ,

valid for every probability distribution ¢, and to take
0 =p,,055/P,- Then

f dw, dw ,dw,p, ,,(Inp, ,, + Inp, — Inp, , ~ Inp,,) =0 ,

which is just the assertion.

On the other hand, in quantum mechanics the proof is
extremely difficult. Therefore, before turning to it, let
us consider how strong subadditivity can be used in
physical problems.

Let us first put inequality (3.1) into another form: con-
sider two volumes V,V’ (not necessarily disjoint) and the
associated Fock spaces H(V),H(V’), H{VNV’), H(VUV’)
(or the Hilbert spaces for lattice systems as indicated
in Sec. I.A). Then, with the notation of Sec. II.F,

S(VNV+S(VU V)< S(V)+S(V') .

Now we are in a position to state some applications.

(1) In Sec. II.F we were concerned with the problem of
the existence of 1limS(V)/ lVl for one-dimensional,
translationally invariant, continuous systems and saw
that some bound on the function F(I) would suffice for
this purpose. Strong subadditivity provides this bound
in the quantum-mechanical case: let I’< 1. Then,

(3.2)
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F(1") < 2F(l) . (3.3)

This is true because any interval of length I’ can be
represented as the intersection of two intervals of
length 7; thus by strong subadditivity

F(I")sF(")+FQL-1)<F()+F(Q) ,

On the other hand, as we have seen in Sec. II.F, the
second inequality of the latter relation is also sufficient
to prove the existence of the mean entropy in the classi-
cal continuous case (see Sec. II.F).

The following remark, due to E. Lieb, applies: let
x=21-1', y=1’in the last formula. Then 2F(x +y)/2
= F(x)+F(v), i.e., F is weakly concave. To show that
F is concave, i.e., FQux+(1=2)y)=AF(x)+(1 - X)F(y),
it is sufficient to have F bounded above in any interval.
Conversely, if F is concave, this implies strong sub-
additivity. '

(2) This problem is closely related to the problem of
monotonicity of the quantum-mechanical entropy, i.e.,
of proving that F(I’) < F(I) (cf., our remarks of Sec. IL.F).
If there is no translational invariance, we already have
seen that this need not be true. However, if the system
is translationally invariant, then one can use strong sub-
additivity to show that

F(l)-F({l")=F(I+m)-=F(1’'+m)

for every m >0, in particular for m=n(l - 1’), » being an
integer. Consequently,

PO -F@)= % 52 [FQan(=17) = FQ (1~ 1))
= % [F+N(I-1)-F(@)] .

If N—<, the right-hand side is > infF(1’’)/I’’, which we
already know to be limF(I’’)/1’’, and which, in quantum
mechanics, is =0.

3. Now let us consider translationally invariant sys-
tems in dimensions >1. If we are given a lattice system
and consider a sequence of boxes whose lengths tend to
infinity, then again, as in example 1 of Sec. II.F,
1imS(V)/|V| exists.

V being a parallelepiped {x: O<x;<a;}, S(V)is a
function F of a,,...,a, and IVI is @, ° ° o a;. By sub-
additivity alone, F is a subadditive function of every
variable a; separately. A straightforward modification
of the theorem used before shows that

Fa,,...,a;) F(a,...,a,)
a, ~e..a, a, > ea,

lim =inf

Alre o 0 2G> ®©

On the other hand, if we are given a continuous system,
again we have to make use of strong subadditivity. The
following argument is due to Araki and Lieb (1970).
Choose the box V(a,) with edges a{®’, ..., a{®’ so that

S[via)] _

Vel = (5%€)

L S(V@) . Fa,,. .., a)
s=inf V@) =inf 4 a d

Now, as in Sec. II.F, for large boxes V(a) with lengths
a,,...,a, there are integers n,,...,n; such that a,
=n,a{ +b,,0 <b; <al®. Then
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9o

o ae ae

do

FIG. 8. Construction of the mean entropy for boxes.

- Slv@]
[V(a)

and S[V(a)] < S[V(na,)] + contributions of smaller boxes:
see Fig. 8. [V(Na,) is the box with lengths
1,09, . .., 1,05 ]

S[V(na,)]

[Ving)]~ < (S +€) by subadditivity.
0

As concerns the smaller boxes, in quantum mechanics,
due to strong subadditivity, the entropy of any one of
them is <2S[V(a,)], because they can be represented as
the intersection of two translates of V(a,). The number
of these smaller boxes being of the order of the surface
of V(a) only, one concludes as in Sec. II.F that

S[v(a)]

im =

(4) One might think it easily possible to generalize
this proof to volumes that are not boxes but arbitrary,
provided that they tend to infinity in the sense of von
Hove. Unfortunately strong subadditivity does not give
a bound for the entropy of the “surface terms” of a
covering of V by translates of V(a,), i.e., those trans-
lates of V(q,) that have a nonempty intersection with V
but are not entirely contained in V. Namely, in general
these volumes cannot be represented as an intersection
of two translates of a and therefore strong subadditivity
does not help. (As E. Lieb has remarked, the previous
argument does work for states that are also rotationally
invariant, if, in three dimensions, the surface is com-
posed of finitely many flat polygonal pieces. In this case
the shaded part of the volume, according to Fig. 9, can
be decomposed into tetrahedrons, and every tetrahedron
can be represented as an intersection of four boxes. Of

I

FIG. 9. “Surface terms” of a covering of V by translates of
V).
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course, a similar statement holds in arbitrary dimen-
sions d>1.) ’

One rather needs some monotonicity, which, for in-
stance, is the case for the configurational entropy, as
we have discussed already in example 2 of Sec. IL.F.
This provides a bound for S(V) in one direction, but
remember that we were left with the necessity of
proving a bound in the other direction, namely that

S(T%) = nys|Viay)| -

[One checks easily that the configurational entropy is
strongly subadditive too, in fact, even the generalized
Boltzmann-Gibbs—-Shannon entropy is strongly sub-
additive (Ochs, 1976).] This inequality, which is due to
Robinson and Ruelle, is obtained by a more elaborate
version of the method we used in example 2, and is
based on a combinatorial argument that is a little bit
tricky. Note that in the case of boxes there was no need
of proving such an estimate because by definition, al-
ways S[V(a)]/|V(a)| = s; however, since I'}, need not it-
self be a box, a priori it is not impossible that S(I'},)
<s|I'%|, and this is the point where strong subadditivity
comes in to exclude this possibility.

Now, after having indicated some applications, which,
as 1 hope, show why strong subadditivity is an important
property and what it is good for, I should like to make
a few remarks about history.

Strong subadditivity was known for many years in in-
formation theory, but not generally called that. For
statistical mechanics, at least, it was Robinson and
Ruelle (1967) who coined the word and who first realized
that is was important. They proved it in the classical
case. Then Lanford and Robinson (1968) conjectured it
in quantum mechanics.

For five years this conjecture was an open problem.
There were several attempts either to prove or to dis-
prove it but only two partial results:

(a) a proof by Baumann and Jost (1969) for 2x2 ma-
trices and (b) a weak version of strong subadditivity by
Araki and Lieb (1970), which was powerful enough to
establish the existence of the mean entropy for transla-
tionally invariant states of continuous quantum systems.

Finally, the “Lanford-Robinson conjecture” was
proven by Lieb and Ruskai (1973), using the results of
Lieb concerning the so-called “Wigner—-Yanase-Dyson
conjecture” (see Sec. C).

Let us turn to the proof of strong subadditivity for
quantum-mechanical entropy. The crucial quantity to
be considered is the conditional entropy (Lieb, 1975)

5(2[1)=S(pyz) — S(py) -

For simplicity we will from now on write S,, for S(piz),
S, for S(p,), ete.

We will later prove that the conditional entropy is
concave in p,, (Lieb and Ruskai, 1973). This is true
both quantum-mechanically and classically, but we will
consider the quantum case only. Lieb (1975) uses the
expression “relative entropy.” For finite-dimensional
Hilbert spaces, it differs from our relative entropy,
see next section, by a term IndimH,.

The concavity of S,, — S, implies the following in-
equality: for a density matrix p,,;, in H, ®H, ® H,,
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S1+S, SS13+ Sy (3.5)

[S,=~=Trp,1np, (Lieb and Ruskai, 1973), etc.] This
statement, somewhat similar to monotonicity, is ob-
tained by considering

A=(S;3—S,)+(Sps = S,) -

The mapping p;,3—~ py; being linear, S,; — S, is concave

in py,5, and, similarly, the same is true for S,; —S,.

Hence A is concave. For pure states, A =0 since S,,

=S,,S,3 =S, (remark 1 of Sec. II.F). By concavity, for

mixed states A must be =0. [It should be remarked that

inequality (3.5) is false in the classical continuous case. ]
Let us now proceed by choosing a fourth Hilbert space

H, such that, according to remark 2 of Sec. II.F, there

is a pure p,,3, in (H; ® H, ® H;) ® H, such that p,,,

=Tr, pya34- Then

Syog 82 = S1p = Sa3 =S4+ S, = S~ Sy <0
by (3.5), which establishes strong subadditivity.

One might think that there are other inequalities of the
type of the above ones, for instance between S;,; +5,+S,
+S; and S;, + 53+ S,5, but this is not the case. Also S,,

- S, - S, is neither concave nor convex. For a further
discussion of which inequalities are true and which are
not, see Lieb (1975).

The above is the original proof of Liéb and Ruskai of
strong subadditivity. There is another way, due to
Uhlmann, of proving strong subadditivity from the con-
cavity of S;, — S,. Let all Hilbert spaces under con-
sideration be finite-dimensional. Now, as above, S,,,
- S,3 is concave. Denote by dU,; the Haar measure of
the group of unitary operators in H,. Then

- 1
de3U3p123U3 t= a. Pz ®1
3
(ds =dimension of Hy; U, is identified with 1 ® /;). Thus -

- 1
de3(8123 — Sus)(UsPra3Us ") < (Sya3 — Sas) <d P12 ® 1> ,
3

or
S123 = Sp3 < (S, — Inds) — (S, —1nd,) .

So what we have to do is to prove the concavity of S,,
—S,. We will do this for the finite-dimensional case;
the general case follows from an application of our re-
sults of Sec. II.D. To make things more transparent,
let us also abuse language and write p, instead of p,
®1 in H; ® H,.

The essential ingredient of the proof is the following.

Lemma (Lieb, 1973b). For finite-dimensional ma-
trices, the mapping A~ Trexp(K +1nA) (for A >0,K self-
adjoint) is concave.

Now let p;,=2Apl, + (1 = X)ph(0 <X <1). Define

A =Trpy;,(Inp,, - Inp;) — A Trpf, (Inp], — Inp})
- (1 =) Trpg, (Inpf, —1npj) ,
A’ =Trpj, (Inpy, —1np, — Inpj, +1npj) ,

and A” similarly. A=2A’+(1-2A)A”. We want to show
that A <0, or e¢® <1. Because of the convexity of the
exponential function,
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e® <xe® + (1 -n)e?”.

On the other hand, the Peierls—Bogoliubov inequality
(Sec. I.B)

Tre**® < TreAt®
(BY=TrBe*/Tre*,

with A =Inpf,, B=(Inp,, - Inp, — Inp, +1np;) yields e’
<TreX*™Pi, with K=1Inp,, —Inp,, and in the same way
e®"<Tref+*"P{', By Lieb’s lemma,

ATreK”"Pi+(1 _ )\) Trek+ Inpy sTrel(-r()\‘!n/:)i‘r(.1-)s)p,'.’)
<TreX+*P1=Tpre'i12=1

So we have got a proof of the concavity of the condi-
tional entropy by assuming the validity of the lemma.
Unfortunately, the proof of the latter is not easy at all
(see Sec. C).

B. Relative entropy

We have met the concept of relative entropy, which in
general form is due to Umegaki (1962) and Lindblad
(1973), on several occasions already, the first being in
Secs. I.A (as a special case of the generalized Boltz-
mann-Gibbs—Shannon entropy) and I.B. [in our dis-
cussion of the free energy F(p, 8, H)].

Remember that it was defined as S(o|p)=Trp (Inp
—~1no). We have proven that S(o|p) =0 for all
density matrices o, p; by the way, going through our
proof of Klein’s inequality, one sees that S(o|p) =0 if
and only if o =p;

The second important property is joint convexity for
density matrices p,, p,,0,,0, and x: 0sa <1,

S(o|p) <aS(04]py) + (1 = 2)S(02]0,) , (3.6)

where 6=20,+(1 —=2A)o,, p=2p, + (1 = A)p, .

Joint convexity arises from Lieb’s concavity theorem,
which we will discuss in the next section. The latter
states that TrKA'K*B'™*, for 0 <t <1 and A>0, B>0,
and any K is jointly concave in A and B. Hence setting
K =1, taking the derivative for £=0, one finds that

d

—— Tr(A*B'™*)|,.o=TrB(lnA —1nB)

7 (3.7)

is concave, or S(o|p) is convex.

As a consequence, the conditional entropy S,, - S, is
concave: suppose all Hilbert spaces to be finite-dimen-
sional. Then

1
Sz — 5= —5'6’12 lo, ® d_—> +Ind,
2

(d, =dimension of H,), observing that ln(p, ® 1/d,)
=1np, ®1 - 1®(Ind,). (The transition to the infinite-di-
mensional case follows the methods indicated in Sec.
II.D.)

There is a representation of S(o|p) in which the argu-
ment of the trace does not contain a product of two non-
commuting operators:

S(OIp)=St:pr(olp),

Sx(01p) = (1/V[S0 + (1 = 1)p) = AS(0) — (1 -)S(p)|  (3.8)
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(0<a<1). First note that d/dr(1S,)(x=0)=S(o|p). Sec-
ond, A- AS,(c|p) is concave by Eq. (2.1); hence the dif-
ferences (ASy - 0.5,)/2, where clearly 0.S, is under-
stood to be =0, are decreasing (Lindblad, 1974).

Our aim is to show the lower semicontinuity of S(o|p).
Let us, as a preparation, give another proof of lower
semicontinuity of the usual entropy:

The function s(x) = - x1n x being continuous on the com-
pact interval [0, 1], one finds easily that Tr|p, — p| -0
implies that ||s(p,) - s(p)|| - 0 since |A|l=sup(p|A|p)/
{(p|p). Thus, for every finite-dimensional projection P,
TrP[s(p,) — s(p)]~ 0 because of the standard inequality
TrPA<TrP||A| (see, for instance, Dixmier, 1957). On
the other hand,

TrPA <||P| TrA ,
and
TrA=supTrPA.
P

Therefore

S(p) =sup TrPs(p) <lim inf [sup TrPs(p,)]
P n P

=1liminf S(p,) .
Now,
S(o|p) = sug TrP[s(xo+ (1 = A)p) - rs(o) — (1 =A)s(p)]
P,

<lim inf {sup TrP[s(xc, + (1 = X)p,) +rs(o,)
n P,

-1 =ns(p,) ]}

=1im infS(o,|p,);
n

i.e., the relative entropy is, like the usual entropy,
lower semicontinuous. We have already used this fact
in Sec. II.D.

There are other theorems similar to those at the end
of Sec. II.D. For instance, define, for general A, B>0,
not necessarily being density matrices,

S(A|B)=Tr[A (InA -1nB) + (B-A)]. (3.9)

Then, if P, 41 (P, =finite-dimensional projections),

We may use convexity to prove monotonicity. Equa-
tion (3.6) generalizes to S(o|p) <33A,S(0;lp;) (1;, ete,
being defined as usual), in finite dimensions. Also,
noting that

S(U*oUll)*pU) =S(c|p) (3.10)

for unitary operators U, we have for density matrices
o, p in a tensor product H, ® H, of finite-dimensional
Hilbert spaces, using a representation similar to that
used in the last section,

1
0,® o= de2(1®U§*)0( 187,),
A (3.11)
1
p® = [ av,1evpp100,),
and
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S(o,1py) =S(0, ®1[p, ®1)

s feoraeeel [ oeepees)

< f AUS[(1@UFo (18 U, (1 UH)p(1® U,)]
(3.12)

(cf. Sec. II.F. In particular, S=s— |V|1nk for lattice
systems is just —S(o|p), witho=1/k'"".)

Equation (3.12) is a special case of a theorem of
Lindblad (1975), which states that S(®a|®p) < S(o|p) for
every completely positive, trace-preserving mapping
$, which maps B(H), the bounded operators in the Hil-
bert space H, into the B(H,), the bounded operators in
another space H,.

The notion of complete positivity was introduced by
Stinespring (1955). It means the following: let A be an
nXn matrix with entries A,, € B(H), and let &, A be the

‘nXn matrix with entries ®&(4,,). If &, is positive for

all n, then & is called completely positive. Important
special cases are: (a) the partial traces, and (b) doubly
stochastic mappings of finite~-dimensional spaces (cf.

Sec. I.B). In the latter case, S(p)=-S(c|p)=Iny, with

0 =1/ (» =dimension of the space). Thus we recover
our result of Sec. I.B: S(Mp) =-S(c|Mp) +1nr
=-S(Mo|Mp) +1n¥ = -S(0|p) +1Inr =S(p). For a discussion
of the physical meaning of complete positivity see, for
example, Lindblad (1977) or Kraus (1970).

In the classical case Lieb’s theorem is not needed for
a proof but one can argue directly:

S(o|p) = S(o,lp,)= _[dwldwzp("‘h:wz) In g‘
p1(w1)
o, w,)

p/c
= | dw,dw,pln —5—
f 1AWz P 0,/0,

= fdwldwzp[—%%]=l—l+0

1

- f dw,dw,pln

due to the inequality Inx>1 - 1/x.

Taking three Hilbert spaces, application of Eq. (13.7)
yields S(py5]p, ® pas) =5(p,) +S(053) — S(P123) = S(p12|py ® p2)
= S(Pl) +5(p,) - S(Pm), hence S(p,,q) + S(pz) <S(pye) + S(pza);
i.e., strong subadditivity. Hence the latter is a special
case of the monotonicity of the relative entropy, which,
in turn, follows from the convexity.

As an application which, of course, we could already
have mentioned in Sec. II.F, let us consider a variation-
al principle for lattice systems. Let py be an arbitrary
family of consistent density matrices as in Sec. II.F.
Define S(V) as usual, and E(V)=Trp,Hy, H, being the
Hamiltonian of the volume |V|. Also define P,
=(1/|V|)InTre 8#v, The limits, for V- « in some ap-
propriate sense (cf. Sec. II.F), or S(V)/|V|, E(V)/|V],
and Py are known to exist (Araki, 1975; Ruelle, 1969).
The usual techniques establish, by combining the meth-
ods of Sec. II.F and our arguments about the Gibbs state
which, as one might remember, were just expressing
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the positivity of S(oz|p) (Sec. I.B), the variational prin-
ciple

p>s-pn, (3.13)

with p=lim Py, s=1imS(V)/|V|,n=1imE(V)/|V|. The left
side of (3.13) is the “true” pressure (it does not depend
on py). The right side is a function of p.

It is possible to think, at least in the classical dis-
crete case, of generalizations of relative entropy that
are analogous to the generalizations of entropy to
Trf(p), f being a concave function. Namely one could
consider expressions like

Fo,0)=3" pJ(ﬁL;),

f being a concave function, and p;, g; being the values of
the probability distributions p and 0. Based on this
observation, it has turned out to be possible to modify
Uhlmann’s theory and to define a relation # roughly by

o
(1) ( (z>>
- . q'_ > , g.i_ .
g, ;'02 E p.f( Y > z bif Y

However, these ideas have not been completely worked
out yet (Uhlmann, 1977; Ruch and Mead, 1976).

C. Skew entropy and the Wigner-Yanase-Dyson
conjecture

In 1963, Wigner and Yanase proposed a measure for
the noncommutativity between a density matrix p and a
fixed observable K, which they called “skew informa-
tion””:

Ip,K)=-2Tr[p2,K]. (3.14)
The ‘“‘skew entropy” is its negative:
S(p,K)=3Tr[p*?, K. (8.15)

They were able to prove a fundamental property that is
valid for ordinary entropy, for skew entropy, namely,
concavity in p. [Of course, it cannot be expected that
invariance holds, except for the trivial statement that,
for U =unitary, S(U*pU, U*KU)=S(p,K).] (Actually, they
did not suppose K to be bounded, so one usually has to
worry about whether [ p'/?,K], etc., makes sense, but
we will neglect these problems and henceforth hitherto
suppose K to be bounded.) Of course, S(p,K) <0 for all
p,K, and it is exactly =0 if, and only if, p and K com-
mute.

Later on, Dyson generalized the Wigner—Yanase en-
tropy to

Sp(p, K)=3Tr([p*, K[ 0*~*, K1) (3.16)
(0<p<1), (the degenerate case p=0 becomes
zTr{[p,K][1np, K]}
and conjectured that it was concave too. Since
Sy(p,K)=-TrpK?+Trp' ?Kp’K , (3.17)

which follows from Tr(AB:--C)=Tr(CAB---), the as-
sertion that S, is concave in p is equivalent to the asser-
tion that Trp' ®Kp’K is concave in p. [-TrpK? is linear,
hence concave. ]
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No one had any idea that the Wigner—Yanase—Dyson
conjecture was related to strong subadditivity until Lieb
(1973) realized this connection. In fact, the concavity
in p of TrpPK*p' K constitutes the key to the quantum-
mechanical strong subadditivity problem. Certainly,
without Lieb’s work only a few experts would have known
of the Wigner—-Yanase—-Dyson conjecture. The Wigner—
Yanase-Dyson conjecture was proven by Lieb (1973).

(A proof of the conjecture for 2x2 matrices was given
by Baumann, 1971.) Lieb proved even more, namely
that Tr[p”,K*][p*™®,K] is also concave for K not neces-
sarily being self-adjoint. This statement follows from
the fact that, for O<p<1,

TrpPK*p' PK

is concave in p. But Liebeven succeeded in proving
that, for A, B=0, the mapping

(TrAPK*BK)/T

where » = 1/(p+gq) is jointly concave in A and B (for
A,B=0) and, for » <2, convex in K. This is Lieb’s
concavity theorem. (We already have used the special
case K =1 to derive the convexity of the relative entropy
and the concavity of the conditional entropy from it.) It
has to be mentioned that shortly after the appearance of
Lieb’s proof, Epstein (1973), motivated by Lieb’s work,
found another proof. Epstein’s method is based on the
theory of Herglotz functions and is very powerful, be-
cause it also provides quite a few other examples of con-
cave maps. '

The following elementary proof is a variant, due to
Simon (1977), of Uhlmann’s proof (1977). The original
Lieb proof is shorter, but uses complex interpolation
and so is less direct.

Lemma. Let, for i=1,2,R;,S;,T;=>0,[R,,R,]=[S,, S,]
=[1,,T,]=0. IfR,>S,+T, and R, > S, +T,, then RY/2R1/2
> S1281/2 + 71T (= Q).

Proof: [(p|QIp)] < IS¢l IS}l + T2 0|l IT32y]
<(PI(Sy + T )| P2 W|(S, + T,)|9)*7? because of Schwarz’s
inequality s,s, +t,t, < (s? +12)"2(s2+£2)*2. (s,=|S 20|
etc.) Hence |R{**QR;*”|| <1, by taking ¢ =R{**x, ¥
=R;1/2y. Consequently

[|RIVAR;VAQRIY RS 14| = largest eigenvalue of (-« )
=(where “spr” denotes
the spectral radius)
= spr (R{Y*QR;*/?)
<|R;V*QR;M| <1.
(We have used that spr (AB)=spr(BA),spr(4) <| A, and
the commutativity of R, and R,.)
Consider now the space of Hilbert-Schmidt operators,
i.e., the operators with TrA*A <, It is well known that

they become a Hilbert space with the scalar product
(A|B)=TrA*B. Define R,, R,, etc., by

(X|R,Y)=TrX*(24,+(1 - 2)A,)Y,
(X|R,Y)=TrX*Y(A B, +(1 =0\)B,),
(X[S,Y)=2TrX*A,Y,
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etc. Then the lemma tells us that
(X|RYPRLPX) = TeX*(A A, + (1 = NA,)2X(A B, + (1 — ) B,) /2
= TrX*(AA)Y2X(x B,)*/2
+TrX*((1 = MA)2X((1 = 1) B,)*?
=ATrX*AY2X B2+ (1 — \) TrX*AL2X BL/2 |

i.e., the lemma proves Lieb’s theorem for p=1/2.
Our method shows even more. Define, more gener-
ally,

R;: (X|R,Y)=TrX*A’YB'™

R,: (X|R,Y)=TrX*AYB'™",

Sy: (X|S,Y)=ATrX*A’y B1™?,

Syt (X|S,Y)=ATrX*AlYy B17¢,

T,: X|T,7Y)=(1-x)TrX*A’Y BLl™?,
T,: (X|T,Y)=(1-A)Trx*AJy B}™?,
A=xA,+(1-2NA,,B=xB;+(1 -)\)B,).

The validity of Lieb’s concavity theorem at p, or g,
states that R, = S,+T,, R, > S,+T,, hence by the lemma
RIPRLZ > glfegllz L TIRTLR o its validity at (p+q)/2.
The rest follows from a simple induction and continuity
argument. (Since (X|R,X) =0, a standard Schwarz in-
equality -type argument shows convexity in X.)

We have seen in the last sections that Lieb’s theorem
=convexity of the relative entropy and concavity of the
conditional entropy=sstrong subadditivity. Remember,
however, that our first proof of concavity of the con-
ditional entropy was based on a lemma which looked
rather innocent, namely on the concavity of the function
A~ Tre® "4 We did not give a proof there and also
will not do this now since it is surprisingly complicated.
I want to indicate only that the concavity of TreX*™4 can
be obtained from Lieb’s concavity theorem through a
sequence of lemmas. (See Lieb’s Advances in Mathe -
matics paper, 1973b. Epstein’s proof of Lieb’s theo-
rem also gives, among other results, a direct proof of
the concavity of Tre¥*'"4.) So, in conclusion, Lieb’s
theorem is in fact the essential tool in all the considera-
tions of this section.

Let us come back to skew entropy. In consideration of
another most important property of ordinary entropy,
Wigner and Yanase proposed the following generaliza-
tion of subadditivity:

Sp(p1z> L) < 9(91’K1) +8,(pz,K5)

with L=K, ®1+1®K,. This assertion can be rewritten
as

(3.18)

TrplK,p1 K, + TrppK,p; K, > -2 Trp,[K, ®K, |

+Trpl, Loj;?L.  (3.19)
This is true if p,, =p, ®p,, or if K,, or K,, respectively,
=0 (Lieb, 1973). Also is can be proven for p=1/2 pro-
vided that p,, is pure. It is an open question whether it
is generally true. Anyway, after all, skew entropy is a
sort of “relative o entropy” (cf. Sec. II.E), and for «
entropies subadditivity does not hold, although they also
have the property that S,(p, ® p,) = Se(py) + Salp.) (in fact,
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both sides are equal), and for p,, =pure, S.(p;,) <S.(p;)
+So(pg)-

IV. RELATED CONCEPTS
A. Dynamical entropies

Let me start this last part with a description of the
celebrated Kolmogorov-Sinai invariant of classical
dynamical systems (Kolmogorov, 1959; Sinai, 1961,
1965).

In classical mechanics, one is given the phase space
£ and a time evolution, which is a one-parameter group
of mappings ®,: Q- Q. By Liouville’s theorem, these
mappings are measure-preserving; in addition, they
are diffeomorphisms.

The Kolmogorov—Sinai (KS) invariant (or KS entropy)
is constructed as follows: take a partition {Q,;} of &,
i.e., let Q=UQ,;, the Q; being measurable subsets of
Q,92,NQ,#¢ for i#k. (We do not concern ourselves
with sets of measure 0 with respect to the Liouville
measure introduced in Sec. I.B.) The entropy of the
partition w ={Q;} is defined as

S(w) ==Y W(Q,)Inw(R,) (4.1)

‘(remember our notation of Sec. I.B).

Now consider two partitions w, ={Q{"}, w, ={Q®’}.
They generate a partition w, v w, which consists of all
intersections (YN 952). Setting p; =W(Q(,-1)),q;
=W(QS?), 74, =W N QD) S (wy v w,) = =337y, Inry,,
hence, by subadditivity,

S(w; vw,) s S(w,) +S(w,) .

Let ® be one of the mappings &,, for fixed ¢ (i.e.,
some sort of “discrete” time evolution). Since W (®A4)

=W(A) for any measurable subset AC, one has
S(®w) =S(w) (4.3)

for every partition (with @wE{@Q‘}). Therefore our
arguments of Sec. IL.F show the existence of

1
lim = (S(wv®w-++v®" 1)) =s(w,®).

n—>o

(4.4)

There is another way of looking at this limit. Define
the conditional entropy S(w,,w,) of two partitions as

’. .
Slwy, wz)=) " a;s (_‘Lq‘_‘ > == 7ylnry +3" q,1ng;
F

=S(w, vws) — S(w,) , (4.5)

i.e., as the classical analog of the conditional entropy
we frequently were concerned with in Sec. III. (The
quantity

ru_ WL nel)
q, W(sz )

is called “conditional expectation” in probability theory;
this explains the word “conditional entropy.”) Note that
S(w;, w,) =0 since entropy is monotonic in the classi-
cal discrete case.

Therefore the difference A, equals
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A, =S(wv o v®'w) —S(wveeevdily)

=S@"w,wv e vdTTly) (4.6)
Due to strong subadditivity,
S(a,B)=S(a, Bvy) (4.7)

for any partitions a, B, v [because of Eq. (15.5)], hence

A < A _; consequently, limA, exists, and since

S(wV e Ve™lw)=S(w)+A +ore+ A,
Iim% Slwveee vd™w))=1imS (@™ w, wve*eVe™iw)
N

=limA, =s(w, ®). (4.8)

The entropy of & (KS invariant) is defined as

s(®)=sups(w, ), (4.9)

the sup being taken over all finite partitions w.

It should be noted that, in contradistinction to usual
notions of entropy, this kind of entropy is not¢ a function
of a state but rather a function of the dyramics of the
system.

The Kolmogorov-Sinai invariant has the following im-
portant properties:

(1) It is an snvariant of the dynamical system in the fol-
lowing sense: the system is described by £, the Liou-
ville measure u, and the measure-preserving one-to-
one mapping &: Q- Q. Suppose there is another triple
', u’, ®" with the same properties, and an isomorphism
f: Q-+, etc., such that the diagram

<]

is commutative. Then s(®’)=s(®).
(2) Kolmogorov’s theovem. The partition « is called
a generator if the o algebra generated by the sets

®"(A)m=0,+1,42,...,A c @) is all measurable subsets
of €. Then
s@)=s(a, ) (4.10)

(Kolmogorov, 1953, 1959).

Before stating the next important property, one re-
mark should be made. Namely, all our considerations
above apply to abstract dynamical systems too, where
€2 need not be phase space or even any smooth manifold,
but can be any set. Also & need not have anything to do
with time evolution but can be any automorphism, for
instance, space translation, or any symmetry operation.
There is the following theorem relevant to classical dy-
namical systems.

Kouchnivenko’s theorem. The KS entropy of finite clas-
sical dynamical systems is finite. (For abstract sys-
tems it may be infinite.) (Kouchnirenko, 1965, 19617.)

The construction of the KS entropy is very similar to
the one of the mean entropy in Sec. ILF. It can be shown
that for classical lattice systems one can find a trans-
formation such that they become an abstract dynamical
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system (clearly, & then means “space translation”; Rob-
inson and Ruelle, 1967). Then, if s (the mean entropy)
is <o, KS and mean entropy coincide. This means that
the KS entropy, in essence, is a mean entropy. (By the
way, it is possible to generalize KS entropy by replacing
the group of discrete time translation by more general
groups, for instance, Z¢. Many of the important results
then, after obvious modifications, remain valid.)

There is a serious problem with the KS entropy because
it refers to a discrete time evolution. In the more real-
istic case of a continuous one-parameter group &, of
time evolutions the construction presented above does
not work for two reasons: (a) it is not obvious by what
quantity S(wv@dwwve+*vd™'w) has to be replaced. In par-
ticular, there may arise measurability questions be-
cause in the continuous case uncountable unions and in-
tersections of the sets ®,2,; are involved which need not
be measurable. (b) If we adopt the view that the KS en-
tropy is a mean entropy, then, certainly, in the con-
tinuous case strong subadditivity enters in a very essen-
tial way. Thus, in any case, the construction of an anal-
og of the KS entropy in the continuous case must be much
more sophisticated.

As concerns quantum mechanics, one could think of
imitating the original method of Kolmogorov and Sinai
according to our “translation table” of Sec. I.B. How-
ever, this does not work in general. The difficulty lies
in the possible noncommutativity. In quantum mechan-
ics, clearly a partition w has to be defined as a set of
pairwise orthogonal projections P,, WithEP, =1. How-
ever, if we are given two partitions w, ={P{"’} and w,
={P{»}, then it is unclear how to define w,v w,, since
the products P{"P{* in general will not be projections;
they will not even be Hermitian. Also the dimension of
the algebra generated by w, and w, can be exceedingly
large, so that in any case subadditivity arguments cannot
be used.

There is partial success in constructing a KS entropy
for quantum-mechanical K systems (Emch, 1976). They
are analogs of the classical K systems (Kolmogorov,
1953), which are systems with a mixing property that is
much stronger than the mixing property we have used
in Sec. I.B. Unfortunately, this is rather lengthy to de-
scribe and demands a good knowledge of the theory of
von Neumann algebras, so I must refer the reader to the
original papers. There is also a construction for Ber-
noulli shifts on the hyperfinite IT, factor by Connes and
Stgrmer (1975).

Recently, Lindblad (1977) succeeded in giving a de-
finition of a quantum analog of the KS entropy which is
not based on a noncommutative generalization of par-
titions but is rather analogous to the definition of the
mean entropy for quantum lattice systems.

Besides its interpretation as a mean entropy, KS en-
tropy can also be taken as a measure of the strength of
mixing of #. Remember that

s(w, @) =1lim[S(wv *+* VE"w) —S(wv++*ve™'w)].
n-—>co .
Let n=1; the following argument can easily be trans-
ferred to the general case. If S(wvdw)=S(w), then dw
=w, i.e., ® leaves the sets ©; unchanged. If, on the
other hand, the difference S(wvdw)—S(w) is big, this
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FIG. 10. Interpretation of the Kolmogorov—Sinai~invariant.

means that the intersection of every set &Q; with the
original ©; must be quite significant. (See Fig. 10. The
shadedareais ®,; we have not represented the other sets
&Q,°**dQ, for reasons of clearness.) Thus big KS en-
tropy means that the sets of any partition w get rapidly
distributed over the whole phase space, and that the sys-
tem exhibits strong mixing properties.

Similar to KS entropy are Kouchnirenko’s A entropies:
let A be a sequence of integers a,<a,<a;<*+*. Then

sa(w, ®) =1lim sup%[S(@“c’ov s eV Pinw)]
B n

and

s, (@)=sups,(w,®).
w

They also are invariants of dynamical systems(cf.
Arnold and Avez, 1969).

B. Various other concepts

On several occasions we already have met entropylike
concepts that were of a certain use, either directly in
physics, as, for instance, the coarse-grained entropy,
or in order to show that certain properties of the “right”
entropy were not as obvious as one might think at first.

Let me write down a short list of these concepts, as
far as we were concerned with them, or as they seem
to have a certain relevance for physics.

(1) Coarse-grained entropy (see Sec. 1.B).

(2) @ entropies (see Sec. II.LE). One property of @ en-
tropies should be added: for a>1, they are continuous,
i.e., Tr|p,—p|—~0 implies S, (p,)~S(a). For fixed p,
the mappings @ —~S,(p) are convex and decreasing; since
S(p) =supys, S, (p), this provides a third proof of lower
semicontinuity of entropy.

(3) Daroczy and other entropies (see Sec. L.G).

(4) Measures of noncommutativity (see Sec. IIL.C).

(5) Ingarden—Urbanik (IU) entropy (Ingarden and Ur-
banik, 1962; Ingarden, 1965, 1973). This concept in fact
appearedvery early, namely inthe papers ofthe Ehren-
fests (1911), Pauli (1928), and von Neumann (1929), but
was intensively studied in the 1960s. It arises in con-
nection with considerations about the measurement pro-
cess. Let w ={P,} be a partition of one-dimensional pro-
jections, i.e., commensurable “counters” in physical
language. Then a measurement yields the numbers p,
=TrpP,, and the amount of information obtained by this
measurement clearly is

St w)==D p,Inp,. (4.11)
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[i.e., Siy(p, w) is just the S(w) of the last section, but
with w now being a partition of one-dimensional projec-
tions rather than a finite partition.] The effect of a mea-
surement may be described by transforming the original
density matrix p into :

po= 2 P pP,. (4.12)
We know that p,+p, hence S(p,)=>S(p). Performing
another measurement corresponding to another partition
w’, one obtains

(pm)w"'pw ’

i.e., again a loss of information. For details see Wehrl,
1977, and Staszewski, 1977. It also arises in other sit-
uations. Let w be the set of spectral projections of a
Hamiltonian H (and let us assume that there are no de-
generacies). Then, using the notation after Eq. (2.2),

Stu(p, w)=S(@.) .

IU entropy has (of course, besides invariance) many
properties in common with classical discrete entropy,
for instance concavity, additivity, and subadditivity (the
latter ones in some appropriate sense). There are also
continuous analogs of it (Grabowski, 1977). Since S(p)
=inf, S;y(p, ), and =S;y(p, w) if and only if w consists
of the spectral projections of p, the quantity S;y(p, w)

- S(p) may be considered as a measure of noncommuta-
tivity between p and the partition w.

Some concepts measuring the amount of information
have been described. The list is not exhaustive and it
is left to everyone to invent new such quantities. How-
ever, it will be very hard to establish their physical
meaning.

C. Systems with infinitely many degrees of freedom

Many theorems of statistical mechanics refer to the
infinite case, i.e., systems with infinitely many particles
moving in an infinite volume. We have seen that only in
this case phenomena such as quantum-mechanical er-
godicity, etc. can be expected to hold in a rigorous man-
ner.

1. Description of infinite systems

In Sec. ILF we obtained a description of infinitely ex-
tended systems by attaching to every bounded region V
a Hilbert space H, and a density matrix p,; thus we sup-
posed the family of density matrices to be compatible.
Remember that in the continuous case H, was the Fock
space @®Hj (V), with H%(V) being the space of symmetric
(or, antisymmetric, respectively) square-integrable
functions ¥(x,,...,xy), where the arguments x; were re-
stricted to V.

It seems to be quite natural to describe an infinitely
extended system in d dimensions simply by replacing V
by R?. The Hilbert space then would be

H*(R?) =C® L*(RY)®[L*(R?) ® L*RY)]|®++-.

s(a)

(4.13)

This construction makes perfect sense. The unfortunate
thing, however, is that, in general, there is no density
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matrix in this space describing the state. To be more
precise, for any bounded region V, as in Eq. (1.9),

HE (V)@ HE R\ V) = H:(RY) , (4.14)

but there is no density matrix p in H*(R?) such that

Trys@mdv)p=py-
If such a density matrix existed, then, for instance, the
particle density #=1imN(V)/|V| would be=0. This
means that the Hilbert space (4.13) cannot be the right
one for the description of the system.

The algebraic approach (see Ruelle, 1969; Eckmann
and Guenin, 1969; Emch, 1972) now essentially proposes
the following procedure:

Since it is at first unclear what the right Hilbert space
of the system is, one should not worry too much about
it. One should rather concentrate on the operators re-
presenting the observables of the system. Let A(V) be
the algebra for all operators on H(V), for V bounded. If
V/DV, then every operator T A(V) can be identified
with the operator 77 =T®1 on H(V’)=H(V)®H({V'/V),
hence A(V)C A(V’) (isotony). Define

A=UA(V). (4.15)

This is again an algebra since sums and products make
sense. Also there is a norm defined on it, namely, if
T < A(V), just the usual operator norm. Hence A is a
normed algebra, and, if we take its norm completion
(which by abuse of language we also will denote by A),
it becomes a C* algebra.

Every family of density matrices p, defines a state on
this algebra: let T A(V). Define

w(T)=Trp,T .
We know that, for V'OV,

(4.16)

Trpy(T®1)=Trp,T =w(T),

T®1 being an operator on H(V)®H(V’\V)=H(V’). Hence,
this definition of w extends to every element of all of A
and makes sense. Note that w(1)=1, and, for T= 0, w(T)
= 0. Clearly, w also is linear, i.e., in the language of
mathematics, it is a positive, normed, linear functional
on A.

There is now a canonical way of constructing a Hilbert
space for the system: the so-called Gelfand-Naimark—
Segal (GNS) construction (Segal, 1951; cf. also Dixmier,
1964). It tells us that (up to isomorphisms) there is ex-
actly one Hilbert space H,, a representation 7, of A
[i.e., a homomorphism 7,: A —B(H,)], and a unique cy-
clic vector ,< H, such that

w@)=(Q,|7,@)| 2,

for all Ac A. By “cyclic vector” is meant that the set
7,(A)|R,) is dense in H,,.

Of course, as a rule, this Hilbert space will be entire-
ly different from Fock space. The mathematical reason
for this is that, in the case of infinitely many degrees of
freedom, there are infinitely many inequivalent repre-
sentations of the canonical commutation (or anticommu-
tation) relations (cf. Emch, 1972). It is important to
note that the Hilbert space H, depends explicitly on w.
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For a Gibbs state this means that it depends on the tem-
perature.

We have not yet said anything about time evolution. Re-
garding that, from the algebraic point of view, the time
evolution in B[H(V)], the bounded linear operators on
H(V),

iHt <{1Ht
T—-e''Te ,

is nothing else than an automorphism of the algebra A (V)
=B[H(V)]; it is natural to consider the time evolution in
A also as an automorphism of A (or, better, as a one-
parameter group of automorphisms 7,: A —A). In gen-
eral there will not be a Hamiltonian H € A such that

T,A = etHt4 g-iHt
However, in the GNS construction performed with a

time-invariant state w, i.e., an w suchthat w(A)=w(7,4)
for all ¢, there exists a H_ such that

T, (T,A)=etflutn (A) et wt, (4.17)
In that case, Q, is invariant:
ettt Q.. (4.18)

[Note that H, in general neither belongs to 7,(A) nor can
be constructed from it by some limiting procedure.]

Admittedly the above scheme looks a little bit com-
plicated but on the other hand it is very powerful be-
cause it not only gives a description of infinite continuous
quantum systems but also covers the cases of finite con-
tinuous quantum systems, finite and infinite quantum lat-
tice systems, and all sorts of classical systems. [Once
more, Ruelle’s book (1969) should be consulted for these
questions.]

2. Mixing

Utilizing the algebraic approach we are now in the pos-
ition to deal with the problems of ergodicity and mixing
(cf. Sec. I.B) in quantum mechanics. We have discussed
in Sec. I.B the fact that mixing means

wP,Q)~wP)w@) as t-—xo

[Eq. (2.23a)] . Whereas this turned out to be impossible
for finite quantum systems, it is very well possible in
infinite systems that there is an invariant state w such
that, for any two elements A,B€ A,
lim w(T,A *B)= w(A)w(B) .

t—> xw

(4.19)

(The concept of ergodicity for invariant states on C*
algebras was introdued by Segal, 1951.)
In the GNS representation this reads

eifl wt weakly IQw><QwI (4 .20)

for ¢ =+, by virtue of Eq. (4.18). H_ does not have any
other eigenvector than @, because H ¥ =1y,  ortho-
gonal to Q , implies

9117 = Cp 9y = [<pletfuty) |~ | (p|R,) |?=0 .

Hence H , has a continuous spectrum on the orthogonal
complement of € .
It is usually supposed that the time evolution is asymp-
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totically Abelian (Doplicher, Kastler, and Robinson,
1966; Ruelle, 1966; Doplicher, Kastler, Kadison, and
Robinson, 1967), i.e., that the commutator [7,A,B]
vanishes in some appropriate sense as £ —~+«. (There
are different notions of this property which we do not
want to discuss in detail here. So let us for simplicity
suppose that ||[T,A,B]|| -0 as t—~.) This is certainly
true for free systems where the commutator goes as
t=3/2, For systems with repulsive forces only, one can
expect even stronger commutation properties, and for
attractive forces, asymptotic Abelianness will pre-
sumbaly hold as long as the attraction is not too strong.

If asymptotic Abelianness is true, then limw(C(7r,A)B)
=limw(T,A +BC) = w(A)w(BC), hence in the GNS con-
struction 7 (7,A) - w(A) times the unit operator in H .
Now let w’ be a state that is normal with respect to w,
by which we mean that there exists a density matrix p’
in H, such that w’(4)=Trp’m (A). Then w’(7,A)
=Trp'm,(1,A)~ w(A); i.e., states not too far from a
mixing state converge towards the latter. This is a
rigorous result concerning approach to equilibrium
(Sec. 1.B).

Now take a bounded subvolume V. For any A< A(V),
wi(A)= w(T,A) -~ w(A). Let p}, p, be density matrices
on H(V) defined by

w'(A)=Trp,A,
w(A)=Trp,A ,

and let p’(#) be the time evolution of p/, defined in an
obvious manner. Then

Tr p){t)A—Trp,A,

and, consequently, Tr{p{,(t)— pv|~0 (see Davies, 1972;
Wehrl, 1976). As we have seen in Sec. II.D, this does
not necessarily imply that S(p}(f)) -~ S(p,), but under
some weak additional assumptions (which in general can
be expected to be fulfilled) this will in fact be true.

It usually is not possible to define the entropy of the
state w of the whole system; any sensible definition
would give S =, However, in addition to the mean en-
tropy (Secs. II.F and III.A), one can define the relative
entropy of two states by

S(w’ | w) =1imS(p} | py) . (4.21)

This concept turns out to be very useful for infinite sys-
tems too; however, due to mathematical complications
(one has to know about Tomita—-Takesaki theory), we
have to refer the reader to the literature (Araki, 1975).

3. KMS states

In general, for an infinite system there exists no
operator H belonging to A or which can be constructed
as a limit of elements of A such that the time evolution
is given by A—e'#tAe~ ! Therefore one also cannot
use Eq. (1.39) to describe Gibbs states. But one can
use the KMS condition (Sec. I.B) in order to obtain an
analog of them: A state w is called a KMS state at in-
verse temperature B if there is a function F(z) with the
analyticity properties stated after Eq. (1.47), namely

w(BT,A)=F(t), w(T,AB)=F(t+if) . (4.22)
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KMS states have attracted great interest in recent
years both from the physical and the mathematical side,
and there is a rich literature about them (the study of
KMS states was initiated by Haag, Hugenholtz, and
Winnink, 1967). Let me just mention a few results.

(1) KMS states are automatically time invariant.

(2) To a given state w there is exactly one group of
time automorphisms 7, such that w is KMS for them.
(However, there may be more than one KMS state for
a given time evolution.) ,

(3) KMS states can be decomposed into extremal ones,
i.e., those that cannot be written as a genuine convex
combination of two other KMS states. These extremal
KMS states are factorial, i.e., 7 (A)’’ is a factor.
[m,(A)" =set of all operators on H, that commute with
all of m(A), 7 (A)’’=all operators that commute with
T,(A). m,(A)’is called the commutant of 7 (A), 7 (A)"’
the bicommutant. “Factor” means that the center
7,(A)'N 7, (A)’’ consists of the multiples of the identity
only.]

(4) Factorial states (whether they are KMS or not) are
always mixing. '

(5) 7,(A)" and 7 (A)’’ are anti-isomorphic. There is a
deep theory studying this symmetry: the so-called
Tomita—~Takesaki theory, which is one of the most fruit-
ful recent concepts in the field. of operator algebras
(Takesaki, 1970).

4. Stability.

We already have mentioned stability properties of
equilibrium states: small perturbations of the dynamics
do not lead to global changes of the state. Let me sketch
one result in this direction (Haag, Kastler, and Trych-
Pohlmeyer, 1974; Haag and Trych-Pohlmeyer, 1977;
for another approach, cf. ArakiandSewell, 1977).

A small, local perturbation of the dynamics may be
described by changing 7, to T’;”, where T’;" is defined via
its infinitesimal generator (which is in mathematical
language a derivation of the algebra A) as

i %'r’;" =i % T,+NL,
with z€A. (One can also write down T’;" directly as an
infinite series involving time-ordered integrals of multi-
commutators.) Let w (or w*”, respectively) where w**
is defined in a similar way to 7}*, be a time-invariant
state of the unperturbed, or perturbed, system, re-
spectively, and suppose that for every &

loM - w||~0 as A =0 . (4.23)

If [II[7,A,B]lldt< e, [I[T}*A,B]|ldt< = (for small 1),
then, for factorial states w, they turn out to be KMS for
some B. (The B comes in as some “modulus of stabil-
ity.”) On the other hand, every factorial KMS state has
the stability property (4.23). '

Let me close with a few words about a very general
concept of entropy that refers to von Neumann algebras,
i.e., weakly closed*-algebras of operators containing the
identity. [ Examples are 7(A)’, m(A)’’; in fact von Neu-
mann algebras are exactly those operator algebras N
for which N=N'’.]
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5. Segal entropy (Segal, 1960)

We have remarked at the end of Sec. I.A that this is in
some sense the most general concept of entropy. It is
defined as follows: let NC B(H) be a von Neumann alge-
bra. Let ® be a faithful normal semifinite trace on N,
i.e., a mapping of the positive part of N into [0,«] such
that ®(R)+# 0 if R+ 0, ®(AR) =A®(R)(A = 0), ®(R +S) =P(R)
+&(S), ®(U*RU) =®(R) for U =unitary, &N; furthermore
if R, * R, then ®(R,) ¢ ®(R); and finally that, to every R
there exists S#0,<R, with ®(S)< «.

(The usual trace Tr -« fulfills all requirements; how-
ever, there are algebras such that Tr T =« for every
positive T'# 0).

If § is a normal state that can be written as ¥(+)
=®(p+), for some p (the set of all those ¥ is dense),
then let p=[;°A\dE(X) be its spectral decomposition.
[All E(X) belong to N.] The Segal entropy is defined as

S| @)=~ f A IMAdB(E(N)) (4.24)
o]

The most important special cases are:

(1) Let (22, 1) be a measure space. Take H=L3%, u),
N =L®(2, 1) (which is a von Neumann algebra). The
mapping &(f)= [ fdu for f € L* is a trace in the above
sense. Let ¥(f)=[gfdu. g is the Radon—Nikodym
derivative of the measure v defined by

van= [ gfau,

M
and hence

S@W|®)=sw|n) ,

i.e., the generalized BGS entropy (Sec. I.A).

(2) Let N=B(H), ® =the usual trace Tr,  be the state
given by ¥(+)=Trp-. Then S(|®)=the usual quantum-
mechanical entropy S(p).

Many of the properties of classical and quantum-me-
chanical entropy have generalizations to Segal entropy,
and there are also characterization theorems similar to
those of Sec. II.B and F (Ochs and Spohn, 1976).
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