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I was cited for work both in the field of magnetism and
in that of disordered systems, and I would like to de-
scribe here one development in each field which was
specifically mentioned in that citation. The two theo-
ries I will discuss differed sharply in some ways. The
theory of local moments in metals was„ in a sense,
easy: it was the condensation into a simple mathema-
tical model of ideas which were very much in the air
at the time, and it had rapid and permanent acceptance
because of its timeliness and its relative simplicity.
What mathematical difficulty it contained has been al-
most fully cleared up within the past few years.

Localization was a different matter: very few be-
lieved it at the time, and even fewer saw its impor-
tance; among those who failed to fully understand it
at first was certainly its author. It has yet to receive
adequate mathematical treatment, and one has to re-
sort to the indignity of numerical simulations to settle
even the simplest questions about it. Only now, and
through primarily Sir Nevill Mott's efforts, is it begin-
ning to gain general acceptance.

Yet these two finally successful brainchildren have
also much in common: first, they flew in the face of
the overwhelming ascendancy at the time of the band
theory of solids, in emphasizing Locality: how a mag-
netic moment, or an eigenstate, could be permanently
pinned down in a given region. It is this fascination with
the local and with the failures, not successes, of band
theory, which the three of us here seem to have in com-
mon. Second, the two ideas were born in response to a
clear experimental signal which contradicted the as-
sumptions of the time; third, they intertwine my work with
that of my two great colleagues with whom I have been.
jointly honored; and fourth, both subjects are still ex-
tremely active in 19'77.

require an additional excitation energy U, the energy
necessary to change the configurations of two distant
atoms from d" +d" to d +d"+'. This energy U is es-
sentially the Coulomb repulsive energy between two
electrons on the same site, and can be quite large (see
Fig. 1). To describe such a situation, I set up a model
Hamiltonian (now called the "Hubbard" Hamiltonian).

H= Q bt~c,'., c~, +Q Un, i n;) .

Here b, &
represents the amplitude for the electron to

"hop" from site to site —such hops as shown in Fig. 1,-
rigM half; and U represents the repulsion energy be-
tween two opposite spin electrons on the same site
(parallel, of course, being excluded). With Eq. (1)—
appropriately generalized —it was possible to under-
stand the predominantly antiferromagnetic interactions
of the spins in these Mott insulators, which include the
ancient "lodestone" or magnetite, as well as the tech-
nically important garnets and ferrites. These inter-
actions are caused by the virtual hopping of electrons
from a site to its neighbor and return, which is only
possible for antiferromagnetism, where the requisite
orbital is empty. From simple perturbation theory,
using this idea,

2b', ~ /-U, (2)

where b represents the tendency of electrons to hop
from site to site and form a band. [The provenance of
(2) is made obvious in Fig. 2]. In fa.ct, I showed later
in detail (Anderson, 1963) how to explain the known
empirical rules describing such interactions, and how
to estimate parameters b and U from empirical data.

The implications for magnetism in metals —as op-
posed to insulators —of this on-site Coulomb interaction
U were first suggested by Van Vleck and elaborated in

I. THE "AN DERSON MODEL": LOCAL MOMENTS
IN METALS

To see the source of the essential elements of the
model I set up for local moments in metals, it will help
to present the historical framework. Just two years
before, I had written a paper on "superexchange"
(Anderson, 1959) discussing the source and the inter-
actions of the moments in insulating magnetic crystals
such as MnO, CuSO, .5H,O, etc. I had described these
substances as what we should now call "Mott insulators"
on the insulating side of the Mott transition, which un-
fortunately Sir Nevill says he will not describe. Brief-
ly, following a suggestion of Peierls, he developed
the idea that these magnetic insulating salts were so
because to create an ionized electronic excitation would

(extra repulsive
)energy U

(8) MAGNETIC STATE (b) ONE FREE PAIR

FIG. 1. Mott-Peierls mechanism for magnetic state. State
with free pair has extra repulsive energy "U" of two electrons
on same site.
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FIG. 2. Virtual hopping as the origin of superexchange.

Hurwitz' thesis (1941) during the war, and later in a
seminal paper which I heard in 1951, published in 1953
(Van Vleck). Also, very influential for me was a small
conference on magnetism in metals convened at Brase-
nose College, Oxford, September 1959, by the Oxford-
Harwell group, where I presented some very qualita-
tive ideas on how magnetism in the iron group might
come about. More important was my first exposure
to Friedel's and Blandin's ideas on resonant or virtual
states (Friedel, 1956 and 1958; Blandin and Friedel,
1959) at that conference. The essence of Friedel's
ideas were (1) that impurities in metals were often
best described not by atomic orbitals but by scattering
phase shifts for the band electrons, which w'ould in
many cases be of resonant form; (2) that spins in the
case of magnetic impurities might be described by
spin-dependent scattering phase shifts.

Matthias and Suhl, at Bell Laboratories, were at that
time much involved in experiments and theory on the
effect of magnetic scatterers on superconductivity (Suhl
and Matthias, 1959). For many rare earth atoms, the
decrease in T, due to adding magnetic impurities is
clear and very steep, [see Fig. 3(a)], and even steeper
for most transition metal impurities. For instance, Fe
at the 10 ' level completely wipes out superconductivity
in Mo. But in many other cases, e.g. , Fe in Ti, a nom-
inally magnetic atom has no effect, or raises T, [as in
Fig. 3(b)]. A systematic study of the occurrence of mo-
ments was carried out by Clogston et al (1962). As yet,
no real thought (except see Blandin and Friedel, 1959)
had been given to what a magnetic moment in a metal
meant: the extensive investigations of Owen et al (1956)
and of Zimmerman (Crane and Zimmerman, 1961), for
instance, on Mnin Cu, and the Yosida calculation (1957),
essentially postulated a local atomic spin given by God
and called 8, connected to the free electrons by an em-
pirical exchange integral 4; precisely what we now call
the "Kondo Hamiltonian":

II= Q e~n ~, +PS' s,

kcr +0 c'~ k'e'
kk'

is the local spin density of free electrons at the impur-
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FIG. 3. Effect of magnetic impurities on T, of a superconduc-
tor (a); when nonmagnetic T, goes up (b).

The "Anderson model" (1961) is the simplest one which
provides an electronic mechanism for the existence of
such a moment. We insert the vital on-site exchange
term U, and we characterize the impurity atom by an
additional orbital P~, with occupancy n~, and creation
operator c~, over and above the free-electron states
near the Fermi surface of the metal (the obvious over-
completeness problem is no real difficulty, as l showed
later (Anderson and McMillan, 1967). The physics
should be clear by reference to Fig. 4. The Hamiltonian
ls
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FIG. 4. d resonance due to tunneling through the centrifugal
barrier.

A simple Hartree-Fock solution of this Hamiltonian
showed that if E~ is somewhat below E~, and if 6/U
& m, the resonance will split as shown in Fig. 5 (from
the original paper). One has two resonances: One for
each sign of spin, a mostly occupied one below the
Fermi level and a mostly empty one above. This leads
to a pair of equivalent magnetically polarized solutions,
one for each direction of spin. In these solutions, the
local state @~ is mixed into scattered free-electron
states: there are no local bound electronic states, but
there is a local moment. Again, in Hartree-Pock theo-
ry, the magnetic region is shown in Fig. 6. The param-
eters could be estimated from chemical data or from
first principles, and it was very reasonable that Mn or
Fe in polyelectronic metals should be nonmagnetic as
was observed, but magnetic in, for instance, Cu.

This seems and is a delightfully simple explanation
of a simple effect. The mathematics is shamelessly
elaborated (or simplified) from nuclear physics
(Friedel's improvements on Wigner's theory of reso-
nances) and similar things occur in nuclear physics
called "analog resonances. " Nonetheless, it has led to
an extraordinary and still active ramification of in-
teresting physics.

where in addition to free electrons and the magnetic
term U, we have a d-to-k tunneling term V„~ represent-
ing tunneling through the centrifugal barrier which con-
verts the local orbital @~ into one of Friedel's reso-
nances. The resonance would have a width

Pl ~).o
rl

II

Qg i

b, = vr ( V~~ ) p(E„), (5)

and in the absence of U would be centered at E„,the en-
ergy of the d resonance (if the density of states p is suf-
ficiently constant —see Fig. 4 again).
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FIG. 5. Spin-split energy levels in the magnetic case.
FIG. 6. Magnetic region of parameter space in the "Anderson
model.
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Before discussing some of these branchings, let me
say a bit about the model's simplicity, which is to an
extent more apparent than real. The art of model-build-
ing is the exclusion of real but irrelevant parts of the
problem, and entails hazards for the builder and the
reader. The builder may leave out something genuinely
relevant; the reader, armed w'ith too sophisticated an
experimental probe or too accurate a computation, may
take literally a schematized model w'hose main aim is to
be a demonstration of possibility. In this case, I have
left out the follow'ing:

(1) The crystal structure and in fact the atomic nature
of the background metal, which is mostly irrelevant
indeed.

(2) The degeneracy of the d level, which leads to some
important physics explored in an appendix of the paper
and later and much better by Caroli and Blandin (1966).
In the Appendix I showed that if the resonance was suf-
ficiently broad compared to other internal interactions
of the electrons in the d orbitals, the different d orbitals
would be equally occupied as is usually observed for
transition metal impurities; in the opposite case the
orbital degrees of freedom will be unquenched, " as is
almost always the case for rare earth atoms.

(3) All correlation effects except U; this relies on the
basic "Fermi-liquid" idea that metallic electrons be-
have as if free, but detaches all parameters from their
values calculated naively: they are ~enoxmazized, not
"bare" parameters. This is the biggest trap for the
unwary, and relies heavily on certain fundamental ideas
of Friedel on scattering phase shifts and Landau on
Fermi liquids. I have also left out a number of real
possibilities some of which we will soon explore.

One of my strongest stylistic prejudices in science is
that many of the facts Nature confronts us with are so
implausible, given the simplicities of nonrelativistic
quantum mechanics and statistical mechanics, that the
mere demonstration of a reasonable mechanism leaves
no doubt of the correct explanation. This is so espec-
ially if it also correctly predicts unexpected facts such
as the correlation of the existence of moment with low
density of states, the quenching of orbital moment for
all d-level impurities as just described, and the re-
versed free-electron exchange polarization which we
shall soon discuss. Very often such a simplified model
throws more light on the real workings of nature than
any number of ab initio calculations of individual situa-
tions, which even where correct often contain so&much
detail as to conceal rather than reveal reality. It can
be a disadvantage rather than an advantage to be able
to compute or to measure too accurately, since often
what one measures or computes is irrelevant in terms
of mechanism. After all, the perfect computation simply
reproduces Nature, it does not explain her.

To return to the question of further developments
from the model: I should like to have had space to lead
you along several of them. Unfortunately, I s&all not,
and instead, I shall show you in Table I the main lines,
and then follow one far enough to show you an equation
and a picture from the recent literature.

The one of these lines of development I would like to
take time to follow out a bit is the "model" aspect I.
This started as a very physical question: What is the

TABLE I. Ramifications of the Anderson Model (AM).

I. AM as an exact field-theoretic model-see text:

(a) AM = Kondo; Anderson, Clogston, Wolff, Schrieffer

(b) Fundamental difficulties of both: Alexander, Schrieffer,
Kondo, Suhl, Nagaoka, Abrikosov

(c) Solution of Kondo: PWA, Yuval, Hamann, Yosida,
Wilson, Nozieres, etc.

(d) Solution of AM: Hamann, Wilson, Krishna-Murthy,
Wilkins, Haldane, Yoshida, etc.

II. "Microcosmic" view of magnetism in metals; interacting
AM's and rules for alloy exchange interactions, Alexander
and Anderson (1964), Moriya (1967)

III. Applications to Qther Systems

(a) Adatoms and molecules on surfaces, Grimley (Grimley,
1967a and 1967b; see also Bennett and Falicov, 1966),
Newns (1969), etc.

(b) Magnetic impurities in semiconductors, Haldane
QIaldane and Anderson, 1976)

(c) With screening +phonons, —U: mixed valence, surface
centers, etc. , Haldane (1977). The sky seems to be
the limit.

sign and magnitude of the spin-free electron interac-
tion'? Already in 1959 befoxe the model appeared, I
made at the Oxford Discussion a notorious bet of one
pound with (now Sir) Walter Marshall that the free-
electron polarization caused by the spins in metals
w'ould be negative, for much the same reason as in
superexchange: the occupied spin state beloM the
Fermi level is repulsive, that above is attractive be-
cause it can be occupied by the free electrons of the same
spin. Clogston and Ipublished this result for the Ander-
son model (Anderson and Clogston, 1961). This was
formalized by Peter Wolff, and published later with
Schrieffer (Schrieffer and Wolff, 1966), into a pertur-
bative equivalence of "Kondo" and "Anderson" models
with the exchange integral 8 of (3) being

Soon, however, it came to be realized that neither
Kondo nor Anderson models behaved reasonably at low
temperatures [Kondo (1964), Suhl (Suhl, 1965, and
Abrikosov, 1965), Schrieffer (Schrieffer and Mattis,
1965), etc. j, but exhibited nasty divergences at low
temperatures which seemed to signal disappearance of
the local moment. The best physical description of w'hat

happens (for a more extensive review for nonspecialists
perhaps my series of papers in Comments on Solid State
Physics will suffice) is that at high temperatures or on
high energy (short time) scales, the Hartree-Pock
theory given above is correct, and there is a free spin.
But as the energy scale is lowered, the effective anti-
ferromagnetic coupling between this spin and the free-
electron gas "bootstraps" itself up to avery large value,
eventually becoming strong enough to bind an antiparal-
lel electron to it and become nonmagnetic. This is a
very precise analog of the process of continuous "con-
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I am indebted to a London Times article about Idi
Amin for learning that in Sw'ahili "Kondoism" means
"robbery with violence. " This is not a bad description
of this mathematical wilderness of models; H. Suhl
has been heard to say that no Hamiltonian so incredibly
simple has ever previously done such violence to the
literature and to national science budgets.
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FIG. 7. Susceptibility of the Kondo model as calculated by
Wilson.
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which may be used to find the properties of one model
from the other, e.g. ,
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FIG. 8. Susceptibility of the "Anderson model" showing equi-
valence to Kondo (from Krishna-Murthy et aE. , 1975).

finement" of the color degrees of freedom of modern
quark theories (Anderson, 1976) and is a, delightful ex-
ample of the continuing flow of ideas and techniques
back and forth between many-body physics and quantum
field theory.

In the past few years extensive investigations via re-
normalization group theory [which, in a nearly modern
form, was first applied to this problem (Anderson,
Yuval, and Hamann, 1970)j have led to the essential
solution of this "Kondo problem. " A very succinct way
of describing that solution is the computation of the
scaling of the susceptibility as a function of temperature by
Wilson (19V5) (Fig. 7). For comparison, and to show
the remarkable precision of the Schrieffer-Wolff trans-
formation, we give as the last figure of this subject
Krishna-Murthy's corresponding calculation (Krishna-
Murthy et a/. , 19V5) for the Anderson model (Fig. 8)
and one equation: Haldane's precise equivalencing of
the parameters of the two models, from his thesis
(19VV):

In early 1956, a new theoretical department was or-
ganized at the Bell Laboratories, primarily by P. A.
%olff, C. Herring, and myself. Our charter was unusu-
al in an industrial laboratory at the time: we were to
operate in an academic mode, with postdoctoral fellows,
informal and democratic leadership, and with an active
visitor program, and that first summer we were for-
tunate in having a large group of visitors of whom two
of those germane to this story were David Pines and
E lihu Abrahams. ~

The three of us took as our subject magnetic relaxa-
tion effects in the beautiful series of paramagnetic re-
sonance experiments on donors in Si begun by Bob
Fletcher and then being carried on by George Feher.
Feher was studying (primarily) paramagnetic resonance
at liquid He temperatures of the system of donor im-
purities (e.g., P, As, etc. ) in very pure Si, in the con-
centration range 10"-10"impurities/cc encompassing
the point of "impurity band" formation around 6 X10'7.
At such temperatures most of the donors were neutral
(except those emptied by compensating "acceptor" im-
purities such as 8, Al or Ga), having four valences
occupied by bonds, leaving a hydrogenic orbital for the
last electron which, because of dielectric screening and
effective mass, has an effective Bohr radius of order
20 A (Fig. 9). The free spin of this extra donor orbital
has a hyperfine interaction with the donor nucleus (~'P
or As, for instance) leading to the clean hfs (Fletcher
et a)., 1954) shown in Fig. 10. In addition, isotopic sub-
stitution proved that most of the residual breadth of the
lines is also caused by hyperf inc interactions, of the very
extended electronic orbital with the random atmosphere of

5% of Si~ nuclei in natural Si, and for reasonably low
donor densities of -10'6/cc the actual spin-spin and spin-
lattice relaxation times were many seconds. That is,
the lines were "inhomogeneously broadened, " so that
many very detailed experimental techniques were avail-
able. Feher and Fletcher (Feher, Fletcher, and Gere,
1955) had already probed what we would now call the
Mott-Anderson transition in these materials [Fig. 10(a)].
As the concentration was raised, first lines with frac-
tional hfs appeared, signifying clusters of 2, 3, 4, or

~It may be of interest to note that theorists permanently or
temporarily employed at ]3ell Labs that summer were at least
the following: (a) (permanent or semipermanent) P. W. Ander-
son, C. Herring, M. Lax, H. W. Lewis, G. H. Wa~n~er, p. A.
Wolff, J. C. phillips; (b) (temporary) E. Abrahams, K. Huang,
J. M. Luttinger, W. Kohn, D. Pines, J. R. Schrieffer, p. Nozi-
eres; (c) (permanent but not in theory group) L. R. Walker,
H. Suhl, W. Shockley.
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FIG. 9. Donor wave functions in Si and 298i nuclei: schematic.
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FIG. 10. (a) Hyperfine structures of donor EPR at increasing
donor (P) concentrations through the Mott-Anderson metal-in-
sulator transition. (b) Example of well-developed cluster
lines.

more spins in which the exchange integrals between
donors overweighed the hf splitting and the electron
spins saw fractionally each of the donor nuclei in the
cluster. [A good example is shown in Fig. 10(b).] Final-
ly, at -6&&10, came a sudden transition to a homoge-
neously broadened free-electron line: the electrons
went into an "impurity band" at that point. Pines, Bar-
deen, and Slichter (Pines, Bardeen, and Slichter, 1957;
see also Abrahams, 1957) had developed a theory of
spin-lattice relaxation for donors, and it was our naive
expectation that we would soon learn how to apply this
to Feher's results. In fact, no theoretical discussion of
the relaxation phenomena observed by Feher was ever
forthcoming, only a description of the experiments (Fe-
her and Gere, 1959). What the three of us soon realized
was that we were confronted with a most complex situa-
tion little of which we understood. In particular, we
could not understand at all the mere fact of the extremely
sharp and well-defined "spin-packets" evinced by such
experiments as "hole digging" and later the beautiful
"ENDOR" effect (Feher, 1959, and Feher and Gere,
1959). [In the ENDOR experiment Feher would select a
spin packet by saturating the line at a specific frequency
["digging a hole, " Fig. 11(a)] and monitor the nmr fre-
quencies of "Si nuclei in contact with packet spins by ex-
citing with the appropriate radio frequency and watching
the desaturation of the packet [Fig. 11(b)]. In this figure,
the many seconds recovery time after passing the
ENDOR line is actually an underestimate of the packet
T,: because the system is driven. ] Thus every individual
I' electron had its own frequency and kept it for seconds
or minutes at a time.

We assumed from the start the basic ideas of Mott
with regard to actual electron motion: that since there
were few compensating acceptors, Coulomb repulsion
kept most of the donors singly occupied leaving us with
the paramagnetic spin system we observed. W. Kohn
seems to have suggested that even the empty donors
would be pinned down by staying close to their compen-
sating negatively charged acceptors because of Coulomb
attraction (see Fig. 12). Thus there was little actual
electron motion, and we noticed only some speeding up
of the relaxation times as we approached what now would
be called the "Mott-Anderson" transition. Stretching our
gullibility a bit, we could believe that nothing spectacular
was necessarily required to prevent mobility of the ac-
tual charged electron excitations. [It was, however, at
this time that I suggested to Geballe the study of dielec-
tric relaxation in these materials to probe this motion,
which led to the discovery of the now well-known Pollak-
Geballe "uP'~' conductivity (Pollak and Geballe, 1961).
I felt that the absence of conduction in the impurity band
was also a serious question, in this as in many other
systems. ]

No arguments using Coulomb interaction saved us from
a second dilemma: the absence of spin diffusion. Bloem-
bergen, in 1949, had proposed the idea of spin diffusion
in nuclear spin systems, which has since had much ex-
perimental verification. His idea was that the dipolar
interactions caused mutual precessions which, in the
high-temperature paramagnetic state of a spin system,
could by diffusion equilibrate the spin temperature in
space, thereby giving a means —for example —for nu-

Rev. Mod. Phys. , Vol. 50, No. 2, April 1918
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198 P. W. Anderson: Local moments and localized states

to everyone with "my" theorem: Peter Wolff had given
me a short course in perturbation theory, Conyers
Herring had found useful preprints from Broadbent and
Hammersley on the new subject of percolation theory,
Larry Walker had made a suggestion, and Gregory
Wannier posed a vital question„etc. But my recollec-
tion is that, on the whole, the attitude was one of hu-
moring me.

Let me now give you the basics of the argument I then
presented (Anderson, 1958) but in much more modern
terminology (the mathematics is the same, essentially).
I don t think this is the only or final way to do it; a dis-
cussion which is more useful in many ways, for instance„
can be based on Mott's idea of minimum metallic con-
ductivity as used by Thouless and co-workers and as he
will touch upon; but I think this way brings out the es-
sential nature of this surprising nonergodic behavior
most clearly. I apologize for this brief excursion into
mathematics, but please be assured that I include the
least amount possible.

The first problem was to create a model which con-
tained only essentials. This was simple enough: a li-
nearized, random "tight-binding" model of noninter-
acting particles:

if W is zero and all E) the same (say 0), (10) describes
a band of Bloch states of width about ZT;~. For %"«F;
=V, the theories of transport recently developed by Van
Hove and Luttinger (see, for example, Kohn and Lutting-
er, 1957) clearly would describe resistive impurity scat-
tering of free waves (say, electrons, for simplicity). If,
on the other hand, 8'»V, that would describe our system
of local hf fields large compared to 4&, , or of random
Coulomb and strain energies large compared to the hop-
ping integrals for the electrons from donor to donor.

What is clearly called for is to use S' as a perturbation
in the one case, and V&& in the other; but what is not so
obvious is that the behavior of perturbation theory is ab-
solutely different in the two cases. For definiteness, let
us talk in terms of the "resolvent" or "Greenian" oper-
ator which describes all the exact wavefunctions Q„and
their energies F.„:
G=E, i.e., G(~, ~') =Z Q.*(r) p (y'), (]])

where the Q„andE„arethe exact eigenfunctions of the
Hamiltonian (9). In the conventional, "transport" case,
we start our perturbation theory with plane-wave-like
states

in which the "hopping" integrals V&; were taken to be non-
random functions of &., (the sites i can sit on a lattice if
we like) but E& was chosen from a random probability
distribution of width W (Fig. 14). The objects c, could
be harmonic-oscillator (phonon) coordinates, electron
operators, or spinors for which V„-&=J;; and we neglect
the ~&, S';S& interactions of the spin flips. The essential
thing is that (9) leads to the linear equation of motion

inc, =E,c', +g V„.c'., .
i

with energy

P V;& cos&(R& —Rz)

1
kk E E g(

where ~, the "self-energy, " is itself a perturbation
series [Fig. 15(a)]

(12)

which we assume are only weakly perturbed by the scat-
tering caused by randomly fluctuating E s. The E~'s
are a continuum in the limit of a large system and we
take advantage of this to rearrange perturbation theory
and get

G G V, ' +

E'
t

G

G
X X X X

+ ~ ~ ~

.~k k k m

+ ~ ~ ~

FIG. 14. Model for diffusion in a random lattice. (a) sites
and hopping integrals; (b) probability distribution of E;.

FIG. 15. (a) Self-energy diagrams in coliventional "propaga-
tor" theory. (b) Self-energy diagrams in "locator" theory.
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site i. Qf course, there are sum rules stating that every
state is somewhere and that no states get lost:

These are satisfied by C (i)- (v N) ', where N is the to-
tal number both of n's and i's.

My contribution was just to show that this is not the on-
ly possible case, other than just an empty band of ener-
gies, or a set of discrete states as one may have near a
single attractive potential like a hydrogen atom. What I
showed is that one m3y have a continuum in energy but
not in sPace. This is immediately made plausible just by
doing perturbation theory in the opposite order.

In this case one takes E, as the big term, and the start-
ing eigenfunctions and eigen-energies are just

(16)

and V~& is the perturbation. In this case, (which Larry
Walker suggested I call "cisport") we use a "locator" in-
stead of a "propagator" series, for the "locator" G«not
the "propagator" G»..

1G„(E+@)= E+ is —E, —Z, (E+ is ) '

where now the self-energy Z is a superficially similar
series to (13) [Fig. 16(b)]

(20)

If at this point we make one tiny mistake, we immed-
iately arrive back at Portis' answer (8): Namely if we
average in any way, we get

FIG. 16. (a) ImG;; in extended case. (b) IxnG;; in localized
case. (V2

Ave lim [Imz(E+is)]
g~ 0+

(21)

which, since E~ is a continuum, has a finite imaginary
part as E approaches the real axis

lim ImZ=+w
l V»,I26(E„,—E)+...

ImS'~ +0

lim G„(E+is) = (15)

Here G has a genuine cut on the real axis, and there is
a continuum of energy states at every site, of every en-
ergy in the band: the states are what we now caQ "ex-
tended. " That is, the definition (11) of G basically tells
us

imG(i, i; E) =~ g l@.(r,) l'6(E-E.).
Transforming (15) to find G&&, we find that the

l p (y'&) l'
are each infinitesimal of order 1/v N, forming in the li-
mitN- ~ a true continuum of states of every energy Bt

(16)

Note that V», in this case comes from the width "R"' not
V]~.

This equation means that E~ has a finite width in ener-
gy, and ImG, the density of states, is a finite, contin-
uous function of E (Fig. 16).

But there is a very important fundamental truth about
random systems we must always keep in mind: no real atom
is an average atom, nor is an experiment ever done on
an ensemble of samP/es. What we really need to know is
the Probability distribution of ImZ, not its average, be-
cause it s only each specific instance we are interested
in. I would like to emphasize that this is the important,
and deeply new, step taken here: the willingness to deal
with distributions, not averages. Most of the recent pro-
gress in the fundamental physics of amorphous materials
involves this same kind of step, which implies that a ran-
dom system is to be treated not Bs just a dirty regular
one, but in a fundamentally different way.

Having taken this point of view, it is sufficient to study
only the first term of (20), it turns out. Let us first pick
a finite s, and then take the limit as s -0. With a finite
Sq

(
Z I V„I'

Im
S

Z (E —EZ)2+S2 '

The condition that Ez appear as a peak of Im(Z/s) is
that E& be within s of E, and that V,&&s. To assess the
probability that V, &

is large enough, use the physically
realistic assumption of exponential wave functions:

V(a) = V,e ~'~.
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In the energy interval of size s, there will be ns/W en-
ergies E& per unit volume (X is the site density per unit
volume), while V&s implies

V&s:A &Ro ln —,
0

and the probability that both V&s and E —E&&s is

P(s —0) = 0.

It is easy to formalize this: One may show that the prob-
ability distribution of ImZ is essentially

lim P(Im —=X)d2C= e '~xZ dX
s X'~'

which indeed has a divergent average as it should, but is
finite nonetheless, so that ImZ ccs and there is not a fin-
ite cut at the real axis.

When we stop and think about what this means, it turns
out to be very simple. It is just that we satisfy the sum
rules (17) not by each @ (i) being infinitesimal, but by a
discrete series of finite values: the biggest P is of or-
der 1, the next of order 2, etc. , etc. , (see Fig. 16b).
Thus, Imt"„is a sum of a discrete infinite series of 5
functions with convergent coefficients. This is the local-
'ized case.

That is more than enough mathematics, and is all that
we will need. The rest boils down simply to the question
of when this lowest-order treatment is justified, and how
it breaks down.

The bulk of the original paper was concerned with how
to deal with the higher terms of the series and show that
they don't change things qualitatively: What they do, act-
ually, is just to venom'malice V&& and the E&'s so that even
if V,.&

is short-range initially, it becomes effectively ex-
ponential; and, of course, the V&&'s broaden the spec-
trum. If this is the case, one then realizes that the ex-
tended case can only occur because of a breakdown of
perturbation theory. This comes about as the higher
terms of perturbation theory "renormalize" V(R&) and
stretch it out to longer and longer range, so that the ex-
ponentially localized function become less so and finally
one reaches a "mobility edge" or "Anderson transition. "

Here we begin to tie in to some of the ideas which Pro-
fessor Mott will describe. First, it is evident that the
self-energy series is a function of E—i.e. , of where we
are on the real energy axis —so it will cease to converge
first at one particular energy E, the "mobility edge. "
For a given model, it is reasonable —in fact usual —to
have the localized case for some energies, the extended
one for others, separated by a "mobility edge. " The sig-
nificance of this fact was realized by Mott.

The actual calculation of this divergence or "Anderson
transition" was carried out by me using conservative ap-
proximations in the original paper, but it was only much
later realized (Abou-Chacra, , Anderson, and Thouless,
1973) that that calculation was exact on a "Cayley tree"
or Bethe Lattice (Fig. 17). Much earlier, Borland
(1963), and Mott and Twose (1961) had shown that local-
ization always occurs in one dimension (also a Cayley
tree case, with EC= 1). Since it is easy to convince one-

FIG. 17. "Cayley Tree" on which localization theory is exact.

self that the Cayley tree is a lattice of infinite dimen-
sionality d (though finite neighbor number) it is likely
that delocalization first occurs at some lower critical
dimensionality d„which we now suspect to be 2, from
Thouless' scaling theory (Licciardello and Thouless,
1975). This dimensionality argument (or equivalent ones
of Thouless) first put to rest my earliest worry that my
diagram approximations were inexact: in fact, they un-
derestirnate localization, rather than otherwise. A sec-
ond reason why I felt discouraged in the early days was
that I couldn't fathom how to reinsert interactions, and
was afraid they, too, would delocalize. The realization
that, of course, the Mott insulator localizes without ran-
domness, because of interactions, was my liberation on
this: one can see easily that the Mott and Anderson ef-
fects supplement, not destroy, each other, as I noted in
some remarks on the "Fermi Glass" (Anderson, 1970)

FIG. 18. Computer demonstration of localization (courtesy of
Yoshino and Okazaki). (a) W/V=5. 5; (b) W/V=8. 0.
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FIQ. 19. Efforts to avoid localization (Dodson).

which more or less marked my re-entry into this pro-
blem. The present excitement of the field for me is that
I feel a theory of localization with interactions is begin-
ning to appear, in work within my group as well as what
Professor Mott will describe. It is remarkable that in
almost all cases interactions play a, vital role, yet many
results are not changed too seriously by them.

I milk close, then, and leave the story to be completed
by Professor Mott. I would like, however, to add two
things: first, a set of figures of a beautiful computer
simulation by Yoshino and Okazaki (1977), which should
convince the most skeptical that localization does occur.
The change in 8' between these two figures is a factor
1.5, which changed the amplitudes of a typical wave func-
tion as you see, from extended to extraordinarily well
localized (see Fig. 18).

Finally, you wi11 have noted that we have gone to extra. —

ordinary lengths just to make our magnetic moments —in
the one case —or our electrons —in the other —stay in one
place. This is a situation which wa.s foreshadowed in the
works of an eminent 19th century mathematician named
Dodson, as shown in the last figure (Fig. 19). "Now
here, you see, it takes all the running you can do, to keep
in the same place. "
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