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I. lNTRGDUCTIGN

The main purpose of this review is to investigate the
physical consequences ensuing from the restructuring
of the pion field in a sufficiently dense nucleon medium.
Inasmuch as the energy gained thereby is proportional
to the volume of the system, we are dealing with a
phase transition ("pion condensation" ). The most im-
portant physical consequence of this phase transition
is the feasibility, in principle, of the existence of
superdense nuclei, in which the energy gained in the
phase transition offsets the energy loss due to contrac-
tion. The estimates of the condensation, as we shall
show, are insufficiently accurate for any reliable con-
clusion concerning the existence of such anomalous
nuclei. Further experiments will make it possible to
redefine the parameters introduced into the theory, and
to make more reliable statements.

The uncertainty in the estimate of the critical density
does not exclude the possibility that a phase transition
has already taken place in ordinary nuclei. In this case,
the presence of the z condensate would be manifest
in the presence, in the nucleus, of a periodic struc-
ture of the spin density of the nucleons with the wave
vector 0, = P~, which would exert an influence on the
scattering of the nucleons and electrons by the nuclei.
In addition, in second order in the amplitude of such a
standing spin wave, a periodic structure can arise in
the density of the neutrons and protons, with wave vec-
tor 2k, and could explain the anomaly of the electric
form factor of the nucleus, which manifests itself in
the elastic scattering of the electrons.

Regardless of whether a phase transition has occurred
or not, the closeness of the nuclei to condensation is
revealed by a large number of experimental facts,
namely, in all the phenomena in which an important
role is played by exchange of one-pion excitation. The
closeness to condensation makes the pion degree of
freedom "soft," and this leads to an enhancement of the
matrix elements which have pion symmetry. Among the
phenomena greatly influenced by the decrease of the
pion energy in nuclear matter are the following: the
shift of the levels 0, 1', 2, . . . in comparison with
their position in the sheQ model, enhancement of M1
transitions with change of the orbital angular momentum

by two units (/-forbidden transitions) and enhance-
ment of the Gamow-Tell. er transitions. The softening
of the pion degree of freedom should also be taken into
account in calculations of the suppression of the spin
part of the magnetic moments in the nucleus. Close-
ness to condensation exerts a. particularly strong in-
fluence on the intensity of the E-forbidden transition-
the intensity of these transitions exceeding in many

cases the calculated values obtained without allowance
for the closeness to condensation. The decrease of
pion energy in the nucleus, predicted by the theory,
manifests itself directly in the spectral data of the z-
atom.

Pion condensation has interesting implications for
the structure of neutron stars. At a neutron density
noticeably lower than nuclear (n, = 0 5n.,), quasiparti-
cles are produced whichare bound states of a proton and
a neutron hole, and which have the quantum number of
the gr" meson (we shall call them n, ' mesons). As a
result of the condensation of such n, ' mesons, the
equation of state of the neutron star becomes. "softened, "
and the pressure becomes smaller at the same density.
At a higher density, production of z g, ' meson pairs
begins, as a result of which the compressibility can
change the sign and a density jump takes place.

At the outer radius of the star there is a phase with
a density n = n, = n, and inside there is a superdense
phase with n- (3-5)n,.

To understand all these phenomena, it is very useful
to trace the mechanism of n condensation, using first
simple examples of condensation in an external scalar
or electric field, and then the most interesting case of
z condensation in a nucleon medium.

Pion condensation in an external field is of indepen-
dent physical interest, apart from methodology, in con-
nection with the possible existence of supercharged
nuclei, in which the energy gain due to condensation in
the electric field of the nucleus is partially offset by the
energy loss due to the Coulomb field.

In the next section of this chapter an attempt will be
made to present a simple and illustrative description
of z condensation, both in external fields and in a nu-
cleonic medium.

A. The physical nature of vr condensation

Restructuring of the vacuum in strong fields

Problems connected with the restructuring of the
vacuum in strong fields have recently been intensively
investigated. This restructuring takes place in those
cases in which the energy of an individual particle
drops below -mc', so that the production of particles
from the vacuum becomes possible. Such a restructur-
ing of an electron -positron vacuum takes place in the
field of anucleus having alarge charge, Z& Z, (Z, = 170)
when the energy level of the K electron drops to a value
—RZC ~

At Z& N the ground state of the va, cuum corresponds
to a charge -2e, distributed in the vacuum with a den-
sity close to the density in the K shell. With further in-
crease of Z, the next restructuring of the vacuum takes
place when the energy level of L, electrons rea, ches
—inc' —the ground state of the vacuum will then corres-
pond to a charge equal to the sum of the charges of the
K and I shells. Thus the vacuum is so restructured
that there is one vacuum electron charge for each non-
degenerate level crossing the boundary —m e'.

A much more appreciable restructuring of the vacuum
takes place in the case of Bose particles, since there
is no longer a limitation on the number of produced
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particles due to the Pauli principle. The stability of
the system has to come from the interactions between
the bosons, and particle production will stop when the
density of bosons is such that the interaction energy
compensates the energy given by the external field.
Therefore this interaction between particles has to be
repulsive. In fact, in the case of attraction between the
Bose particles, the vacuum will be unstable even with-
out an external field. Indeed, at a sufficiently large
particle density, the energy loss to particle production
(m c ') is offset by the gain due to the attraction, and the
system energy decreases with further production of
parti cles.

The vacuum instability manifests itse1f in simplest
form in the case of scalar field in the form of a broad
square well. The influence of the external field in this
case reduces to a change in the particle mass (c = 1)

m =m —Uo2= 2 (1.1)
where U, is the depth of the scalar well Lthe scalar
field Uis connected with the V of the Schrodinger equa-
tion U =2mV (see below)]. When the effective mass m
vanishes, the vacuum becomes unstable. Particles are
produced until the repulsion between them leads to no
further energy gain. An analogous instability can arise
in an electric field, but in this case two types of vacuum
restructuring are possible, depending on whether the
charge of the system is constant or can change via suc-
cessive P decays. In the former case, only pairs of
particles with opposite charges can be produced, re-
quiring that the sum of the energies co'+co- = 0. We
shall henceforth consider, for the sake of argument,
m' and g mesons and assume that the electric field is
produced by the positive charges, that is, constitutes a
well for the z mesons. Then instability, generally
speaking, sets in when the level of the z meson reaches
a value -m, c' (a.s we shall see in Sec. II.A, for a narrow
square weQ the instability sets in at an even smaller
drop of the level). As the well becomes deeper, m'm

pairs will accumulate to danger ous levels until the re-
pulsion between them causes the process to stop.

On the other hand, if the charge of the system can
vary, for example as the result of P decay of the pro-
tons that produce the electric field, then the instability
sets in at a smaller depth of the well, namely, when
the energy of the n meson vanishes —in this case the
restructuring of the vacuum begins with accumulation of

mesons —the positive charge is carried away by the
P positrons. This case could be realized in super-
charged nuclei if the latter exist (see Sec. I.B).

Greatest interest attaches to restructuring of the pion
field in a rather dense nucleon medium. We shall first
explain the mechanism whereby the instability of the
pion field is produced in this case.

u'=1+ k' —4znP(k), (1.2)

2. Instability of the pion field in a nucleon medium

We regard the nucleon medium as the source of a field
acting on the pions. The pion energy u as a function of
the momentum k can be obtained from the known rela-
tion (8 = c = m „=1)

co' =1+0'+ lI (k, cu) (1.3)

where the quantity II(k, &u), called the polarization oper-
ator, contains, in addition to terms of type (1.2) a term
that takes into account the possibility of virtual pro-
duction of particles and holes in nucleons with a Fermi
distribution.

As shown by a theoretical analysis, the polarization
operator is determined by the following processes: (1)
S-wave scattering of pions by nucleons of the medium;
(2) P-wave scattering of pions by nucleons with forma-
tion of the N,*, resonance in the intermediate state;
these two terms are contained in Eq. (1.2). However,
the resonant scattering amplitude I ~. is not the ex-
perimental one, but must be obtained theoretically "off
the mass shell" (i.e. , when u' f1+k'); (3) P scattering
of a pion by a nucleons. with one nucleon in the i.nter-
mediate state. This "pole" part of the polarization
operator, after taking the Pauli principle into account
in the intermediate state, turns out to be a complicated
function of w and k.

After substitution of these three terms, Eq. (1.3) is
transformed into a transcendental equation for the
energies w(k) of a,ll the excitations with the quantum
numbers of the pion. This equation has in general
several solutions producing several branches for the
excitation spectrum. Therefore beside the pion branch
w'hich becomes the free pion branch by turning off the
m —N interaction, there are other branches with the
quantum numbers of the pion (0, T = 1).

For m. condensation there are two important branches:
(i) the pion branch, (ii) the branch that corresponds to
collective excitations of the nucleon medium with the
quantum numbers of the pion and can be called the spin-
isospin sound branch. To clarify matters, we recall
that in a Fermi system, in the case of a repulsion in-

where n is the nucleon density and F(k) is the forward
pion-nucleon scattering amplitude. The first two terms
yield the energy of the free pion, and the third term
constitutes the effective field acting on the pions in the
nucleonic medium. For simplicity, we have dispensed
with the isotopic indices. The scattering amplitude I,
for both z' and z mesons, has the sign corres-
ponding to attraction (I:&0), and therefore at sufficient-
density the frequency can vanish, meaning instability
of the pion field. However, E(k) is small at small k

and instability sets in at k = k„which corresponds to
the minimal value of k' —4mnP(k). The instability con-
dition is w' = 0 or

1+ k', =4m.nF(k, )

When the condition co =0 is satisfied, pions of a given
type will accumulate at the corresponding level (k = k,)
for any one of the three pion types. The relation (1.2)
does not take into account the possible excitation of the
nucleonic medium by the moving pion —the nucleons
are regarded as an external field (the "gas" approxima-
tion).

This approach describes the phenomenon only in rough
outline. For a more exact calculation it is necessary to
take into account the particle-hole excitations of the nu-
cleon medium. The pion energy as a function of the
momentum is written in the form
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2u)
' -(sli/s~) m» ~ (1.4)

A similar condition exists for the z meson. By ana-
lyzing the solutions of Eq. (1.3) in neutron matter we
get the following results: At a certain density a spin-
sound branch appears with a wave vector k of the order
of P~ and a negative energy (co,

'
& 0). When the density

is larger than e,' = 0.4n, the energy of this branch ex-
ceeds in magnitude the neutron Fermi energy
((u,+ & —ez~" ~) corresponding to an instability with respect
to m,

' production according to the reactionp —n +m,'.
As will be shown in the next section, this gives rise to
a "condensate" of g,' mesons. In the language of nucleo-
nic excitations, this condensate is made of particles
that are bound states af a proton and a neutron hole,
with binding energy

~ co,
'

~
.

For m mesons, there is no spin-sound branch. With
further increase of the density, at n =n,' ='n„ the
sum of the energies u + co,

' vanishes, indicating the
onset of instability with respect to the production of
m,', n meson pairs.

teraction of the particles at the Fermi surface, there
exist collective excitations called "zero sound, " which
can be interpreted as particle-hole bound states. These
excitations can be of four types; (1) scalar —ordinary
sound, (2) spin —representing a spin-density wave, (3)
isotopic —corresponding to an isotopic-spin wave, and
finally (4) spin-isospin waves having the pion quantum
numbers.

The instability of the pion field in an isospin sym-
metric medium (N=Z) manifests itself in the fact that
at a definite nucleon density the frequency w," ' of the
spin-isospin branch vanishes at a definite k =k,. (In
o~der to distinguish the spin-isospin sound branch from
the pion branch we shall label the corresponding quan-
tities with the subscript s.) This means that at a high
density in a medium, a periodic inhomogeneity of the
spin density of the nucleons with wave vector k, is pro-
duced.

As will be shown later (Secs. II.A and VI.A), in a finite
system the amplitude of this wave executes zero-point
oscillations, so that in the ground state the expecta-
tion value of the field is zero, and only the expectation
values of the even powers of the field differ from zero.
Thus, the instability of the pion field in a medium with
N =Z corresponds to simultaneous vanishing of m,'(k)
for the three pion types.

The instability picture is much more complicated in
a, medium withZ «N (neutron star). In this case Eq. (1.3)
for neutral pions retains the same form as in the case
of amediumwith Z = N, and the instability of the neutral
pion field (z, & 0) manifests itself in formation of a,

standing spin-density wave of the nucleons with wave
vector k, . The instability sets in at n —n, .

For charged pions we have to consider the two charge
states at the same time when solving Eq. (1.3), as
should be the case for equations describing relativistic
particles, solutions associated with antiparticles coming
in with a minus sign. The criterion for the selection
of solutions with the quantum numbers of the m' meson
ls:

)
~ 2 ~

2 4
(1.5)

At u&' = 1+k ' and A. = 0, Eq. (1.5) goes over into the known
expression for the energy of a free meson field. We
have introduced phenomenologically the effective re-
pulsion between the pions in the nucleon medium
(H' = &cp /4, A. & 0), which is necessary for the stability of
the system.

The interaction between pions and the nucleon medium
is the sum of their interaction in vacuum and the inter-
action due to exchange of excitations of the nucleonic
medium. The determination of this interaction is a
complicated problem, to which a separate chapter of
the review is devoted. Near the transition point, when
the field y„ is not very strong, assuming that the con-
densate field is characterized by one wave vector k,
the real ~~ interaction takes the form assumed in
(1.5) with a constant A. that depends on the parameters of
the (NN) interaction (A. -1-10).

Near the instability point, the frequency of the con-
sidered degree of freedom can be written in the form

(o'=q(n, —n), q )0. (1.6)

The quantity '9 is simply related to the polarization
operator. At n&n, , when cu'& 0, a static condensate
field is produced, and its value can be obtained by mini-
mizing (1.5) with respect to cp'k.

Using (1.6), we obtain

(d(p'k) = — = —"(n —n, ) .

The energy density 4, of the condensate is obtained by
substituting (1.7) in (1.5).

(u' P (n —n, )'
4x 2

We note that this is precisely the scheme used to con-
struct the Landau theory of second-'order phase transi-
tions, in which the free energy was expanded in powers
of an "order" parameter. The phase transition cor-
responded to vanishing of the coefficient of the linear
term. In our case, the quantity p'k plays the role of
the "order" parameter, and H plays the role of the free
energy. Since the order parameter y k increases from
a zero value, we are dealing with a second-order phase
transition.

The total energy density can be written in the form

g(n) =g„(n)+b (n).

3. IVlodel of vr condensation

Let us explain now how the pion field becomes re-
structured after instability sets in. For this analysis,
it is irrelevant in which field the instability has set in.
It is only important that the frequency of some degree
of freedom passes through zero. Inasmuch as the "con-
densation" consists in the fact that the field p~ cor-
responding to this degree of freedom is "strong, " we
can neglect the influence of the fields corresponding to
all other degrees of freedom. Then the energy of the
condensate can be written in the form
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According to (1.8), a jump of the compressibility (a
jump of d'&/dn') takes place at n =n, . If this jump ex-
ceeds in absolute magnitude the compressibility of the
nuclear matter prior to condensation, then after the
condensation the compressibility turns out to be nega-
tive, and the density of the system will increase until
a stable state is reached.

B. Physical consequences of m condensation

We begin our analysis of condensation phenomena with
the simplest case, namely condensation in unbounded
matter. A physical example of such a case is a neutron
star ~

1. Condensation mechanism in homogeneous nuclear
matter

Letus firstintroduce some refinements into the simple
condensation model considered above. It is known that
allowance for the increasing role of fluctuations near
the critical point alters significantly Landau's simple
theory of phase transitions. Similarly, near the n.

condensation point, the constant of the (w, ~) is strongly
influenced by exchange of "soft" excitations, the fre-
quency of which vanishes at the critical point.

It turns out that near the transition point, at n = n, ,
the constant A. reverses sign. It is necessary to take
into account the next higher terms of the expansion of
the energy of the (~m) interaction in powers of the field

It is easily seen, by minimizing the energy, that a
finite field p is produced at the transition point. Thus
the transition is not of second but of first order. How-
ever, for numerical reasons, the discontinuity in the
value of the field p' turns out to be small and the formu-
las obtained assuming a second-order phase transition
are in error only in the immediate vicinity of the criti-
cal point. It is therefore possible to use Eqs. (1.7) and
(1.8) for estimates and forget this refinement.

In a medium with N = Z, all three types of pions are
under identical conditions (isotopically symmetrical
medium), and the condensation sets in simultaneously
for the m', , w, and n,' mesons. Expressions (1.7)and
(1.8) remain in force if P' is taken to mean the sum of
the squares of all three fields.

The picture of condensation in a neutron star is much
more complicated. In this case the instability sets in
originally for the n, mesons. When the density n is
reached a spin-sound branch with energy co,'~-e~&"~
appears and the protons present in neutron matter (be-
cause of P equilibrium) are transformed according to
the process:

P ~ Q + 7l'g ~

For this process to be possible the p,
' excitation has to

give enough energy to promote the proton at the top of
the neutron Fermi sea. The charge of the produced
m, mesons is offset by the charge of the electrons pre-
sent prior to the transition. With further -increase of
the neutron density as a result of the P process

the density of the m,
' mesons and the electron density,

which is equal to it, wiQ increase together with increas-

Using (1.11), we obtain

s, = -I (u,
' I'/12m'. (1.12)

Thus the energy of the condensate is discontinuous with
respect to the density. However, this jump is compen-
sated by the change of the nucleon energy, so that the
total energy of the system remains continuous (see Sec.
V. A).

We see that near n,' the density of the condensate and
the condensate energy are limited not by the repulsion
between the pions, but by the Pauli principle for the
electrons. With further increase of the density, the
increase of

I ~," I
with density is slowed down by the

influence of the repulsion between the pions. Further-
more, as we have seen, an instability for the production
of the w w~ pairs sets in (at n & n,'), as a result of
which a m -meson field appears in the condensate in
addition to the m,'.

Owing to the influence of the n,' condensate, the energy
of the condensate acquires a complicated dependence on
the density. However, since the numerical factor in
the denominator of (1.12) is large, the influence of the
v,
" condensation is small, and Eq. (1.8) can be used at

n& n,'.
If we use Eq. (1.8) for an estimate of the condensate

energy, then it is easy to verify that at a density n
ranging from rs, to n,' the compressibility first
vanishes and then becomes negative. Compressibility
is proportional to the second derivative of the energy
density with respect to density. The condensate term
(1.8) of the energy density makes a negative contribution
to compressibility, which is larger in absolute value
(at a density n, ) than the nucleon contribution to com-
pressibility. With further increase of the density, the
repulsion between nucleons at short distances assumes
an ever increasing role, and in addition, when the pion
field becomes strong enough, the growth of the con-
densate energy slows down, as a result of which the
sign of the compressibility is restored. As we shall
see in the section devoted to superdense nuclei, a mini-
mum corresponding to a superdense state of nuclear
matter ca.n appear on the S(n) plot at a certain density
n=n~, ~ The possible existence of superdense neutron
nuclei is discussed in Secs. ~.A". and VG.B. If these
nuclei are stable, neutron stars of a small size should
exist. Their stability would be provided not by gravita-
tion, as in usual stars, but by hadronic forces.

Since a state with negative compressibility is unstable,
a sharp boundary separates matter with density n = n,
from matter with density n =n

The sharp change of the nucleon density along the

ing I ~; I, since at equilibrium, in accordance with
(1.9), the Fermi energy of the electrons is equal to

For densities close to n,+, the energy density of the
z,' condensate is given by

= n, a),'+ I (u,
'

I
/4n', (1.

where the second term is the kinetic energy of the rela-
tivistic electrons (e~'~ » m, &').

The density of the condensate is (using p~' = e~~'&)

n,' = n, =
I (u,

" I'/3&' ~
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A. B. IVligdal: Pion fields in nuclear matter

radius of a neutron star is accompanied by a sharp
change in the energy of the n, mesons, and conse-
quently, of the Fermi energy of the electrons. But a
change in the end-point energy of the electrons means
that a change takes place in the depth of the electric
potential well V(x) that retains the electrons.

At equilibrium we have

e~~'~(x)+ V(r) =const

e~"(~) + (u,
' (r ) = 0 ~ (1.14)

As a result, strong electric fields are produced, which
can be obtained from the relation

d V dc@+,

dx dJ'

Thus z condensation exerts a strong influence on the
structure of neutr on star s.

y = a(r) cosk, z. (1.16)

The amplitude a(x) is constant inside the volume and
vanishes in the layer 6 at the boundary of the nucleus.
In the case of a deformed nucleus, the layers are orien-
ted perpendicular to the major axis.

The additional surface energy connected with the m

condensation is proportional not to the total surface of
the nucleus, but to the smallest equatorial section. Con-
sequently the condensation contributes to prolation of
the nucleus and in principle could lead to the appear-
ance of a second minimum on the plot of the nuclear
energy against the deformation, i.e. , to shape isomer-
ism.

The structure of the condensate [Eq. (1.16)] induces a
layer structure for the neutrons proportional to the
square of the field amplitude and with a wave vector 2k, .

2. Possibility of vr condensation in ordinary nuclei

An estimate of the critical density for m condensation
in symmetric nuclear matter (&u," '(ko) =0) gives a
value n, =n, . The inaccuracy of this estimate is due
to the inaccuracy of the constants of the (KN) and (m~)
interactions in the medium, which were introduced in
the theory. The uncertainty of the estimate n, is such
that it admits fully the possible existence of a z con-
densate in ordinary nuclei. It is therefore of great. in-
terest to analyze the experimental data in which a z
condensate might appear, and the experiments that
make it possible to establish the degree of proximity of
the nuclei to condensation if the condensation has not
yet taken place; such analysis will also improve our
knowledge of the constants introduced into the theory,
a particularly important step in the assessment of the
possible existence of superdense nuclei.

To this end it is necessary first of all to consider m

condensation in a finite system. Such an analysis shows
that in medium and heavy nuclei one obtains a conden-
sate-energy density that differs from the case of an in-
finite system only in a thin layer 5 «R near the bound-
ary of the nucleus. A periodic flat structure of the con-
densate field is realized

n„& n——o&(1+ g'cos2 k, z)

$'- a'

The layered structure (1.17) may cause a rotational
spectrum to appear in nuclei that are spherical in the
sense of the deformation parameter. In addition, a
layered structure of the proton densities should in-
fluence the nuclear electric form factor that appears in
electron scattering. In elastic scattering of electrons
there are observed anomalies that offer evidence of a
periodic structure of the proton density with wave vec-
tor q- 3E '. This value agrees with the value of 2k,
obtained from the

~

ur'(k, ) ~,„condition and should cor-
respond to a m condensate. However, an open question
still remains: Is not the observed structure due to shell
fluctuations of the density'7

The strong decrease of pion energy in the nucleus,
predicted by the theory, manifests itself in a number of
experimental facts. Thus the spectral data of the 7t atom
yield the "optical" potential of the pion in the nucleus
(i.e. , the effective potential well of the pion). It is clear
that the .optical potential is directly connected with the
polarization operator II(k, u), introduced in (1.3). Rea-
sonable agreement is obtained between the theoretical
optical potential and the experimental one. The compar-
ison makes it possible to refine the constants that enter
into the theory.

To cheek on the expression employed for II(k, ~u) and
to refine the constants it is important to compare with
experiment the energies of the levels having pion sym-
metry. Such states include. the levels 0-, 1', 2-. . . The
shift of the energies of these levels in comparison with
values obtained in the shell model is determined to a
great degree by the interaction of the nucleons via ex-
change of a "softened" pion. Satisfactory agreement
with experiment is obtained.

Closeness to condensation exerts a particularly strong
influence on the /-forbidden Ml transitions (transitions
with change of orbital angular momentum by two units).

The intensity of such transitions contains a term due
to one-pion exchange and having a pole at the critical
point (&u,(k o) = 0). The intensities of these transitions
exceed in some cases by many times the calculated
values obtained without allowance for the exchange of
the "soft" pion. This fact offers evidence of the prox-
imity. of the system to condensation, but leaves open the
question of whether a phase transition took place.

Important information is provided by the still uncom-
pleted analysis of the influence of one-pion exchange on
the magnetic moments (in this case the influences are not
very great) and on the probabilities of the Gamow-
Teller P transitions. It is of great interest to search
for anomalies in the scattering of nucleons by nuclei,
and also to analyze the nuclear magnetic form factor
obtained in experiments on large-angle electron scat-
tering. In these experiments, the spin structure of the
nucleon density can manifest itself (unlike the electric
form factor, which is determined by the structure of
the charge density).

Thus, an analysis of the available experimental data.
confirms the main conclusions of the theory and so far
does not contradict the assumption that a condensate
exists in the nuclei.
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One can assume that a more careful analysis of the
available facts, and also of the data obtained in experi-
ments on scattering, will make it possible to resolve the
question of the existence of a condensate in nuclei and at
any rate will help to refine the constants in the theory so
that more definite predictions can be made concerning
the possible existence of superdense nuclei.

3. Possible existence of superdense and neutron nuclei

We consider first the possible existence of superdense
neutron nuclei. The energy density of nuclear matter, as
a function of the neutron density, is, according to (1.8)

4. Supercharged nuclei

If the Coulomb potential well is deeper than m„c', vr

condensation becomes possible. This effect may appear
in supercharged nuclei with Ze'& 1 which corresponds to
Z &1600. If the condensation energy gain exceeds the
Coulomb energy, such nuclei may be stable. The ques-
tion of stability of such nuclei with the screening effect
of electrons and r mesons taken into account is con-
sidered in Sec.VII.A. It is shown that electric condensa-
tion does not provide the stable state but the effect of nu-
cleon field apparently may lead to stable nuclei with nor-
mal density and with a charge Z ~1600.

g(n) =h (n) ——p(n —n, &+ -')'
(1.18) G. Guide to the review and remarks on the literature

dS(n)/dn=0; n —n, & -'=0.2/P . (1.19)

With further increase of the nucleon density, the rigidity
of the nuclear matter increases sharply, the growth of
the condensate energy slows down, and at n =n,„(n,„
-5n, ) a minimum appears on the $(n) curve, meaning
that a superdense state of nuclear matter exists. In
order for a nucleus with such a nucleon density to be
stable, it is necessary that its energy be lower than the
sum of the energies of the free nucleons.

Calculations show that the stable state corresponds to
reasonable values of NN and mN interaction constants,
but at the same time no definite conclusion can be drawn
concerning the existence of such a stable state, inas-
much as the energy of the nucleus constitutes a small
difference between two large numbers —the positive nu-
cleon energy and the negative condensate energy. Defi-
nite conclusions call for either direct experiments aimed
at finding such anomalous nuclei or experiments that re-
fine the constants introduced into the theory.

Calculations show that superdense nuclei with N =-Z
should have a higher binding energy than nuclei withZ«¹ Therefore neutron nuclei should undergo a cas-
cade of P decays, until they reach the composition N =—Z.
The energy of the P electrons at the start of the cascade
xs 100—200 MeV, which corresponds to a 18etxme
-10 '—10 ' sec.

Under certain assumptions concerning the constants,
one may obtain "neutron" nuclei that are stable with re-
spect to p decay and fission, with Z«N at N&10'-].0'.
Such nuclei could be observed in cosmic rays in the form
of large fragments. With the same choice of constants,
superdense nuclei with Z =N and a relatively small num-
ber of particles would also be stable with respect to P
decay and fission.

where $~(n) is the energy density of the nucleons in the
absence of a condensate.

As already mentioned, Eq. (1.8) underestimates some-
what the condensate energy, with no account taken of the
contribution of the m", condensation. Calculations show
that P =—1. We shall show that near n =n, the energy h(n)
has a maximum. According to calculations of the energy
of neutron matter in the absence of a condensate, we
have, in pionic units (P = c = m, = 1) at n =n,

dS„/dn=-0. 2 .
Therefore $(n) ha.s a maximum near n, '+ '-n„ the posi-
tion of which is determined by the condition

The first sections of the Introduction present a qualita-
tive picture of all the phenomena considered in the re-
view. Readers not interested in details can confine their
reading to this part of the review. Since the main con-
cepts have already been defined, we proceed here to a
more detailed exposition of the plan of the review and to
a discussion of the references employed.

Section II of the review is an abbreviated exposition of
an earlier paper. (Migdal, 1971), which contains the first
investigation of r condensation in external fields and in
nucleonic matter, and the first discussion of the possible
existence of superdense nuclei. Section II begins with an
examination of the behavior of Bose particles in strong
scalar and electric fields. We discuss limitations of the
single-particle approach due to particle production from
the vacuum. It becomes necessary here to make use of
quantum field-theoretical methods. It is shown that a
vacuum of Bose particles in strong external fields be-
comes restructured, leading to a lowering of the energy.
The value and the energy of the field of Bose particles in
the new ground state of the system is determined.

In the case of an external field in the form of a broad
square well (R»8'/m, c), the energy gained from re-
structuring of the boson vacuum is proportional to vol-
ume of the system, i.e., this restructuring can be re-
garded as a phase transition (m condensation). The ques-
tion of r condensation in an electric field is considered
here in greater detail than in the earlier paper (Migdal,
1971). This result is used in Sec. VII to estimate the
possible existence of supercharged nuclei.

Section II deals next with conditions of the instability
of pions in a nucleon medium and discusses the simplest
m-condensation model introduced in the earlier paper
(Migdal, 1971). The condensate field and the condensate
energy near the critical point are obtained.

'The influence of the nucleon medium on pions is con-
sidered in Sec. II in the gas approximation. Such a
treatment gives only an approximate estimate of the
critical density and of the condensation energy, since
no account is taken of the possible excitation of the nu-
cleonic medium by the moving pion. In Sec. III, methods
associated with the many-body problem are applied to a
quantitative study of pion motion in the nucleon, with
account taken of all the essential processes that in-
fluence the pion motion. The method of calculating the
polarization operator of the pion in the nucleon medium,
developed by Migdal (1972), is described. This method
is based on subdividing all quantities into two types: (1)
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quantities that vary slowly with the momentum (char-
acteristic range m~), and (2) quantities with a rapid
variation (characteristic range I,). Quantities of the
first type are replaced by constants that must be deter-
mined from experiment, and quantities of the second
type are calculated exactly and are expressed in terms
of introduced constants.

Migdal (1972) obtained in this manner a quantitative
expression for the polarization operator at N =—Z. Be-
sides the process of the virtual transition of a pion into
a nucleon and a nucleon hole, account is taken of the
very appreciable contribution of transitions into an N„
isobar and a nucleon hole. In addition, the (NN) interac-
tion is quantitatively taken- into account, and the char-
acteristic constant is determined from nuclear experi-
mental data. An analogous calculation of the polariza-
tion operator for a medium with Z «N (neutron star)
was carried out by Migdal (1973). Account was taken
of S scattering of a pion by a nucleon (which is inessen-
tial at N =Z), a method was established for selection of
the physical solutions of the equation for co(k), and in-
stability conditions were obtained for the m', &

mesons (see below).
The first part of Sec. III is devoted to an elucidation

of processes that determine the polarization operator,
and to its calculation. Account is taken here of 8 and P
scattering of a pion by a nucleon, and also of the in-
fluence of nucleon correlations. An expression is ob-
tained for the polarization operator both for the case
N=Z (nucleus) and for the 'case Z«N (neutron star).

In the second part of this Sec. (IILB) we discuss the
influence of the "pion degree of freedom" in the nucleus
on the nuclear phenomena, and present a possible
scheme for a consistent allowance for this degree of
freedom in the theory of nuclear matter.

Section III.C is devoted to a discussion of the various
branches of the spectrum of excitations having the pion
quantum numbers. These branches are obtained by solv-
ing the transcendental equation (1.3) with the polariza-
tion operator obtained in the first part of Sec. ID. In
addition to the physical branches, as already mentioned,
"superfluous" solutions are obtained, corresponding to
antiparticles. To select the physical solutions, a
scheme is developed for quantizing the field in a medium
with arbitrary polarization operator, and the branch
selection criterion.

2&d'+' ' —(BII'+' '/8&d) &+ ~
- »0

obtained by Migdal (1973) is derived; references to later
papers are given in Sec. IG.C.

In analyzing the branches of the pion spectrum we find
that instability of the spin-acoustic branch sets in at a
definite density of the nuclear matter.

I or the case N=Z, this instability was first observed
by Dover and Lemmer (1968). They have shown that the
(m, N) interaction can lead to an instability of the nuclear
medium with respect to the formation of a nucleon spin-
density wave, which in fact corresponds to condensation
of the spin-acoustic branch.

For the case of a neutron star (Z«N), the instability
of the pion field was investigated by Sawyer and Scala-
pino (1972). They considered a simplified but exactly
solvable model of m condensation in a neutron star.

H' = Xy /44' X & 0 (1.22)

The true interaction, as shown in Sec. IV, takes this
form only for a weakly developed condensate near the
transition point.

In the Scalapino-Sawyer model, the condensate energy
could be obtained for a condensate field in the form of a
running wave with arbitrarily large amplitude. There-
fore this model was developed and improved in a number
of studies.

Sawyer and Scalapino (1972) considered only m

mesons, an approach corresponding to describing the
pions with the aid of the Schrodinger equation rather

This paper has exerted a significant influence on the
development of more realistic methods, which we shall
discuss later, of treating a strongly developed conden-
sate.

The connection between the instability obtained by
Sawyer and Scalapino (1972) and the instability obtained
by the more realistic model of Migdal (1973) is dis-
cussed at the end of Sec. GI.

Sawyer and Scalapino (1972) worked from the assump-
tion that, starting with a certain density, neutron mat-
ter becomes unstable with respect to the reaction

A ~P+ 7T

For the realization of this idea, they consider ed the
Hamiltonian of nucleons that interact with a classical
field of ~ mesons. Assuming that the ~ -meson con-
densate is a running wave with a single wave vector
k= k„ the problem can be solved exactly. At a definite
nucleon density, an instability sets in, and this instabil-
ity was interpreted as a confirmation of the initial idea.
Actually, the instability obtained by Sawyer and Scala-
pino (1972) does not correspond to the reaction n -P+ ~ .
This instability would remain even if the interaction of
the pions with the nucleons were to be turned off, where. —

as the instability observed by Sawyer and Scalapino
vanishes in this case.

As shown (see Sec. III.C) by Migdal (1973) and by Mig-
dal, Markin, and Mishustin (1974), the Sawyer —Scala-
pino instability consists in vanishing of the sum of the
energies (d + ~', , where co', is the energy of the nu-
cleonic spin-sound excitation with the quantum numbers
of the m meson (see also Anderson et al. , 1975).

The calculation of the polarization operator, given in
III.A is an abbreviated exposition of the paper of Migdal,
Markin, and Mishustin (1974). That paper contains also
a detailed analysis of the objections made to the method
developed by Migdal (1972) for the calculation of the
polarization operator (this analysis and the correspon-
ding references are given in Sec. VLB).

The critical nucleon density corresponding to the in-
stability of the spectrum, for different values of the
constant g characterizing the influence of the (NN) in-
teraction on the polarization operator, is given in Table
I, which lists also the values of the pion momentum k,
at which instability sets in.

To obtain the magnitude and energy of the condensate
field it is necessary to find the effective pion interaction
in nuclear matter. This is the subject of Sec. IV.
Migdal (1971) introduced this interaction phenomenologi-
cally in the form
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than the Klein —Gordon —Fock (KGF) equation. Sawyer
and Yao (1973) introduced, to get rid of this short-
coming, ~ mesons whose density was determined by a
variational method. Migdal (1973b) developed a method
of finding the effective Lagrangian of pions, correspon-
ding to a consistent relativistic description of pions in
a nucleon medium, and obtained an expression for the
energy of a strong pion field in a model that takes into
account (nK) interaction only. This method is described
in Sec. IV.A. The problem of finding the energy of a
developed pion condensate was solved by Baym and
Flowers (1974) with the aid of the Hamiltonian function
for the pion field.

In the same paper, account was taken of the vacuum
pion-pion and pion-nucleon interaction for strong pion
fields in the form of a traveling wave, which follows
from Weinberg's nonlinear Lagrangian.

A method for considering strong pion fields, with ac-
count taken of the influence of the N~ resonance, was
proposed by Campbell, Dashen, and Manassah (1975).
They obtained a nonlinear Lagrangian that includes the
interaction of the N* resonance, and makes it possible
to obtain the condensate energy for a pion field in the
form of a traveling wave for a large range of amplitude.
The nucleon correlations were taken into account in this
model by Baym, Campbell, Dashen, and Manassah
(1975).

The results of these studies are described in Secs.
IV.A and IV. B.

In the case of a weak condensate field, which corre-
sponds to proximity to the critical point, a nonlinear
Lagrangian for a periodic condensate field with wave
vector k =(u, k) leads to an expression for the energy in
the form (1.22), with replacement of X by the function.
A(&o, k). The calculation of the function A(~, k) is the
subject of Sec. IV.B.

In a realistic mode1, the calculation can be carried out
only for a condensate field in the form of a traveling
wave. A method of calculating the condensate fieM in
the Thomas —Fermi approximation is described in Sec.
IV. C. This method makes it possible, in principle, to
calculate A(~, A;) for a condensate field of arbitrary con-
figuration. So far, calculations have been performed in
a model that takes into account only the (w, N) interac-
tion. Secs. IV.B and IV.C are in fact expositions of the
work of Migdal, Markin, and Mishustin (1976).

Section V is devoted to the calculation of the energy
and the magnitude of the condensate field, for both the
case of a weak field (near the condensation point) and a
strongly developed condensate. Use is made in this sec-
tion of the effective (w, r) interaction obtained in Sec. IV.
The character of the modulations of the spin density and
nucleon density, due to the condensation, is determined,
and the (m, m) interaction singularities due to exchange of
soft excitations (Dyugaev, 1975) near the condensate
point are discussed.

In Sec. V.B, the method developed by Campbell,
Dashen, and Manassah (1975) and by Baym et al. (1975)
is used, and an expression is presented for the energy
of a strongly developed condensate (the model of the
limiting field), which is used in Sec. VII.B for estimates
connected with the possible existence of supe'rdense nu-
clei.

Section VI presents the arguments for and against the
existence of a condensate in ordinary nuclei, and also
discusses experiments which make it possible to estab-
lish the closeness of nuclei to condensation when con-
densation has not taken place.

The assumption that pion condensation is possible in
ordinary nuclei was first advanced by Migdal (1972) and
subsequently discussed in a number of papers (the ap-
propriate references are given in Secs. VI.A and VI.B).

Section VI contains a brief exposition of work by Mig-
dal, Kirichenko, and Sorokin (1974), in which the pion
condensation problem is solved for a sufficiently large
but finite system (medium and heavy nuclei), and the
effect of the condensate (if it does exist in ordinary nu-
clei) on the deformation of nuclei and on rotational levels
is discussed.

The conditions for pion instability in nuclei were in-
vestigated by Sapershtein, Tokonnikov, and Fayans
(1975). They employed the methods of the theory of
finite Fermi systems, which made it possible for them
to consider light nuclei a,s well.

The critical value of the spin-isospin constant,
g' =g /2, at which instability sets in, was determined.
For medium and light nuclei, the values obtained for
g', wer e the same as in an inf inite system

Section VI.A deals also with Goldstone excitation
modes that result from condensation. This question was
first considered by Migdal (1974). Kirichenko and
Sorokin (1975) have shown that the lowest mode of the
Goldstone oscillations corresponds to rotation of the di-
rection of the condensate layers relative to the major
axis of the deformed nucleus. These oscillations might
be observed in heavy nuclei.

It is shown in Sec. VI.A that, owing to the quantum
character of the condensate field, the existence of a
condensate does not violate the law of parity conserva-
tion in the nucleus.

The main task of Sec ~ VI.B is to consider experiments
which can establish the degree of proximity of the nuclei
to condensation, and at the same time refine the values
of the constants introduced into the theory. The first to
be analyzed are the nuclear experimental facts, and it is
shown that our assumptions concerning condensation do
not contradict the known data. The methods of the theory
of finite Fermi systems are next used to investigate the
influence of one-pion exchange on the spectra and prob-
abilities of the transitions. This problem was investi-
gated by Sapershtein and Troitskii (1975), who showed
that proximity to condensation exerts a particularly
strong influence on I-forbidden M1 transitions.

Next, in Sec. VI.B, the influence of the distortion of the
pion energy in the nucleus on the optical potential of the
pion in the ~ atom is explained.

A detailed analysis is made of the possible influence of
the condensate on the elastic scattering of electrons by
nuclei (Migdal, 1974), and experiments on the scattering
of nucleons and electrons by nuclei, in which m con-
densates can appear, are discussed.

Section VII is devoted to perhaps the most interesting
but the least secure task of the review, namely to ques-
tions connected with the possible existence of anomalous
nuclei, such as superdense nuclei with Z —=N and super-
dense "neutron" stars (with Z«N), as well as super-
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charged nuclei (Z ~ (137)'~').
In the first part of Sec. VIE, the question of the possible

existence of superdense nuclei is considered and a model
proposed by Migdal (1974), representing a development
of his first approach (1971). In these papers, an expres-
sion is used for the condensate energy nea. r the critical
point, and the change in compressibility of the nucleon
medium, resulting from condensa, tion, is determined. If
the compressibility reverses sign, then the system
should be compressed, until it goes over into a new
denser state. (The stability of this new s tate is examined
in Sec. VII.B.) Furthermore, in VII.A, an assess-
ment is made of the possible existence of supercharged
nuclei in which the energy gained by condensation in the
electric field offsets the Coulomb repulsion. 'This equa-
tion was discussed by Migdal (1972, 1974), who sug-
gested the possibility of condensation with production of

pairs. As shown in Sec. II.4, however, in the dis-
cussion of condensation in an electric field, ~ -meson
condensation takes place at an even smaller nuclear
cha, rge, and as to condensation of (m ' v ) pairs, it must
be considered with allowance for the screening of the nu-
clear field by the electrons resulting from the restruc-
turing of the electron-positron field near a nucleus with
charge Z» 1'70. 'The m -condensation energy is esti-
mated in VII.A and found to be of the order of the Cou-
lomb energy. The question of the stability of such nuclei
therefore still remains open, until more exact calcula-
tions are made.

'The end of VII.A deals with the feasibility of a super-
dense state of nuclear matter, due to instability of the
nucleon —antinucleon vacuum (Lee, 1974). It is shown
that if such an instability is possible, it sets in at den-
sities ~ -10', .

An expression for the condensate energy near the criti-
cal point was used in the estimates of the energies of
superdense and neutron stars given in Sec. VG.A. To
obtain the plot of energy against density and to assess
the stability of the superdense state, we must have An

expression for the condensate energy and for the nucleon
energy at a density noticeably higher than n, . These
problems are discussed in VII.B.' To determine the ~-
condensate energy at high density, the limiting-field
model (V.B) is used. The energy of the nucleon subsys-
tem is estimated from the theory of neutron matter at
high density (Pandharipande, 1971). Separate interpola-
tion formulas are obtained for the nucleon and conden-
sate energy (at an arbitrary ratio Z/N), arid these go
over into the known expressions for low and high densi-
ties.

An equation of state is obtained for the matter of neu-
tron stars. The results are compared with calculations
made by Hartle, Sawyer, and Scalapino (1972), Au and
Baym (1974), and Weise and Brown (1975).

We analyze the existence and the stability of super-
dense (Z =N) and neutron (Z«Ã) nuclei for different
choices of the parameters of the theory.

The exposition follows the paper of Migdal, Markin, Mis-
hustin, and Sorokin (1976).

I I. BOSE-PARTICLE CONDENSATION IN AN
EXTERNAL FIELD

'The problem of the motion of a single boson becomes
physically meaningless in strong fields, when boson
production energy approaches zero. Here we have the
possibility of real or virtual particle production, so that
a many-particle problem arises. Instead of the single-
particle equation it is necessa, ry to use the methods of
quantu~ field theory, which yield the field of the pro-
duced or virtual particles. The energy of one particle in
this approach is defined as the difference between the
field energy in a state with the quantum numbers of one
particle and the vacuum energy.

We ascertain below the conditions under which the sin-
gle particle becomes unstable in the presence of scalar
and electric external fields, and determine the critiea, l
field. We solve the quantum f i.eld-theoretical problem
for bosons with interaction II'- Xy', & & 0, in an arbi-
trary potential well and show that in strong external
fieldsthebosons produce a screening field such that
the effective sum of the external and screening fields
does not reach the critical value.

These results will be needed to assess the quantum
nature of the condensate field in a finite system (as we
shall show, only in a sufficiently large system can the
condensate field be regarded as cia, ssical).

Of particular importance in what follows is the pos-
sible instability of the pion field in a nucleon medium
treated as an external field. Using a very simple model
as an example, we ascertain the mechanism of m con-
densation in a nucleon medium.

A. Bosons in scalar and electric fields

The condition for the instability of the single-particle
problem for bosons moving in a scalar or in an electric
field is obtained. The problem of finding the pion field
in external fields exceeding the critical value is solved.
Condensation of bosons in strong scalar and electric
fields is considered.

b g+[ uF —I] /=0 (2.1)

For states with a definite momentum we have
~ =+ (1 +k')'~'. The positive root correspondsto the
usual relativistic relation between the energy and mom-
entum of the particle.

The negative sign corresponds to the antiparticle ener-
gy taken with a minus sign. Thus Eq. (2.1) describes
simultaneously the behavior of'particles and antipar-
ticles.

In the simplest case of a static scalar field U(y) we
have

4$+ (&u' —1 —U)/ =0 . (2.2)

l. Instability of the single-particle problem

Let us find first, for a number of very simple cases,
the critical parameters of the external field at which the
single-particle problem become unstable

Bose particles are described by the Klein-Gordon-
Fock equation (KGF). In the absence of an external field,
this equation takes the form (5 =m =c=1)
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The scalar field is added to a scalar quantity —the
square of the mass (= 1). By changing notation uP —1
=2E and U=2V we can write (2.2) in the form of the
Schrodinger equation

~g+2I- E —V] /=0
It must be remembered, however, that Eq. (2.2), unlike
the ordinary Schrodinger equation, describes simulta-
neously two types of particle —the particle and the anti-
particle.

The scalar field U differs from the potential V of the
Schr'odinger equation by a factor 2mc' (i.e., by a factor
of 2 in our units. ) Multiplying (2.2) by Q and integrating,
we obtain

C
Uo

Uo

FIG. 1. Dependence of energy
1S level of a scalar particle in
a scalar field on a parameter
proportional to the depth of the
well.

(2..5a)

whence

~=V+(I+P'+V' V')'~'

=1+P'+U, (2.3)

where p' is the momentum squared averaged over the
wave function of the considered state (P'= J &P'&dr

vg I'dr ) and U is the mean value of U(x).
If the field U is of the form of a broad square well with

radius R and depth Uo = —U, then for the ground state we
have ~P- P/R and P'-R '. For the energy we get the ex-
pression

cu'=1 U, +0(1/R') .

At U, =—1, the external field "eats up" the mass of the
particle and the system becomes unstable —particles
can be produced from the vacuum and accumulate in the
considered state. In the case of a narrow well (R«1),
the criterion for the vanishing of u will coincide in order
of magnitude with the criterion for the appearance of a
bound state in a square we1.1,

U, R' 1

Recognizing that at ~ = 0 the wave function outside the
well takes the form $=c,(e "/x) (c, is a number on the
order of unity), we obtain from Eq. (2.3) the estimate

uP =1+(c,/R) —c,U, R,
where c, and c, are numbers of the order of unity. At

U, R2&c, /c, +R/c, the sign of uP is reversed. In the case
of a square well it is easy to solve the problem exact-
ly for an arbitrary well radius.

A plot of energy against the depth of the well takes the
form shown in Fig. 1. The dashed line marks the branch
emerging from -1, which yi'elds the antiparticle energy
with the minus sign. At U, = Uo, the curve terminates.
In the case of a deeper well, single-particle solutions
exist only. for those levels whose frequencies co„&0.

In the case of a static electric field, the potential is
not a scalar, but the fourth component of a potential
4-vector, and therefore the field must be added to the
fourth component of the 4-vector (i.e., to the 4-compo-
nent of the energy-momentum 4-vector).

The Klein —Gordon-rock equation takes the form

The plus si.gn corresponds to a particle, for when the
field is turned off, the energy ~ must go over into the
free-particle energy:

" =V+(1+P'+V' —V')'" . (2.5b)

The antiparticle energy is obtained from this expression
by -reversing the sign of the charge, i.e ~, by changing
the sign of V

~'= —V+(1+P'+ V' —V')'~' (2.5c)

u2 —1 =2E; —V +2wV=2U .

Then Eq. (2.4) becomes

'y+2(E U)y=o.

(2.6)

As seen from Eq. (2.6), the effective "potential" of the
Schrodinger equation, for any sign of the charge, con-
tains a term —1/2V', corresponding to attraction. (The

~ ~

Thus Eq. (2.5a) yields the antiparticle energy taken with
the minus sign. It can be shown +at for a sufficiently
deep square well the radicand vanishes. Vie confine our-
selves to presenting plots of the particle and antiparticle
energies as functions of a parameter g proportional to
the depth of the well (Fig. 2). At a value g =g„&u'+ co =0,
and the vacuum becomes unstable with respect to pair
pr oduction.

It is amazing that for a sufficiently Jeep square well
(f&f,), the bound state (~&1) is produced not only for
particles (for which V is a potential well), but for anti-
particles, for which the potential -V corresponds to
repulsion. The formal reason can be easily seen by
writing (2.4) in the form of a Schr odinger e'quation,
putting

b.$+ [(~—V)~ —1] / =0 (2.4)

It is assumed that V has the form of a potentaal well
(and consequently the form of a potential hump for anti-
particles). Multiplying (2.4) by P and integrating, we
obtain the quadratic equation

H —2(oV —1+V —P =0,

FIG. 2. Dependence of energy one 1S level of a scalar particle
in an electric field on a parameter proportional to the depth
of the well. The curves and ~+ correspond to particles for
which V& Q and V&0.
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quantity U can be termed a potential only arbitrarily,
since it depends on E). At a sufficient well depth, the
first term of U, corresponding to attraction, becomes
more substantial than the second, and a bound state is
produced also for V&0 (antiparticle).

2. Determination of the boson field

How must one solve the problem of the motion of bo-
sons in a strong external field, after the onset of the in-
stability?

We first explain how the instability of the single-par-
ticle problem manifests itself in field theory by con-
sidering the case of scalar bosons in a scalar external
field. Let the bosons be described by the field y.

We obtain the Lagrangian I. = f Zdr of the meson field
y in the presence of the external field U. The density 2
of the Lagrange function is defined such that the least-
action requirement 5S =0 (S = jLdt = j Zdrdt) leads to
Eq. (2.2) for p. This corresponds to a, Lagrange density
20 equal to (in units of I =h =c = 1)

&.=-'(V' —(&q)' —(1+ U)q') . (2.7)

dr, X)0 .

The Lagrangian density takes the form

g =g —Xy4/4

For the field energy we obtain

g' x~q
2 4

(2.11)

(2.12a)

where

the problem to that of an oscillator with classical fre-
quency ~ equal to the energy of the "dangerous" state.
When ~' goes through zero, the problem becomes
meaningless —there exist no stationary solutions edith
finite values of q and the meson field is infinitely large.
For the problem to become meaningful at ~'(0, it is
necessary to introduce interaction between the bosons.
We shall take this interaction into account below in a
phenomenological form. We begin with consideration of
the simplest model of the interaction, by adding to the
field energy a term

Indeed, it is easily seen that the condition
A. , =A. I/I'dr&0 . (2.12b)

leads directly to Eq. (2.2).
The field energy is determined from g with the aid of

the relation

H= y ".-g dr. (2 .8)

For the meson-field energy we obtain from (2.7) and
(2.8)

y'+ (&y)'+ (1+ U)cp' d
0 2

(2.9)

V(r) = q4(r); Iy['dr=1 . (2.10)

As we shall see presently, the problem of determining
possible values of the system energy reduces to an os-
cillator problem in which q plays the role of the coordi-
nate and the quantum number n (the oscillator excitation
number) determines the number of bosons in the con-
sidered state.

Substituting (2.10) in (2.9) and using (2.2), we obtain

Q' +(d Q'

0

The problem of finding the field cp and determining the
possible values of the system energy becomes much
simpler if it is recognized that the main contribution to
the field y is made by particle creation and annihilation
processes on a "dangerous" level, i.e. , on that level
whose energy goes through zero.

It can be verified that if ~' is negative for the "dan-
gerous" state the influence of the remaining states intro-
duces small corrections. If we retain only the danger-
ous state Q, then the coordinate dependence of the field
y(r) is known and the operator cp(r) can be written in the
form

q', = Icy'I/A, (2.13)

We can approximate U(q) in the vicinity of q = q, by:

U(q) = ~'/4&, +
I
~'I—(q-—q 0)" (2.14)

The eigenfunctions break up into two types, symmetrical
and antisymmetrical with respect to the reversal of the
sign of q. If the barrier separating the two minima has
low penetrability, then the energies of the symmetrical
states will be lower than the energies of the antisymme-
trical states by a small amount proportional to the bar-
rier penetrability. The solution within each of the wells
corresponds to the problem of an oscillator with fre-
quency &u, = W2 I&uI.

FIG. 3. Potential-energy
curve of anharznonic oscilla-
tor .

Thus the solution of the field-theoretical problem re-
duces to the determination of the eigenfunctions and ei-
genvalues of an anharmonic oscillator. This problem
can be solved either numerically or in the semiclassical
approximation, which can be formally used for high ex-
cited states, but gives fairly accurate results even for
the ground and first excited states (Migdal, 1971).

Of particular interest is the region of large negative
values of M .

In this case the oscillator potential energy U(q) =

( —
I
u'I /2)q'+X, q /4 takes the form shown in Fig. 3. The

first energy levels correspond to motion near q, and -q, .
The positions of the minima are determined by the con-
dition dU/dq =0, whence

where co' is defined by Eq. (2.3). We have thus reduced
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FIG. 4. Energy of one-boson
(~) and two-boson (~™2)excita-
tions.

where 0 is the volume of the system (lgl'= I/O). Ac-
cording to (2.15), the energy gained from the rearrange-
ment of the vacuum is proportional to the volume of the
system. It follows from (2.13) that a "condensate" field
ls pl oduced

&y'& = &a'& ill'= —~'/&.

The "condensate" energy density is equal to

h = -cv'/4A. .

(2.18)

(2.19)
If we neglect the exponentially small increments, then

the energy of the ground state, as follows from the ex-
pansion (2.14), is equal to

CO + —W2l col,4x, 2
(2.15)

and the energy of the state with quantum number n' of
the oscillator in one of the wells is

E = — + tl' + — W2l Ctf
l4z 2

(2.16)

Each level of this oscillator has a "fine structure"
corresponding to the symmetrical and antisymmetrical
states.

The ground state corresponds to a symmetrical func-
tion that goes over into the ground state of this oscilla-
tor near the minimum of each of the wells.

The next state, corresponding to one-meson excita-
tion, is given by the corresponding antisymmetrical
function. The energy of the one-meson excitation is de-
termined by the expression (Migdal, 1971)

~ = E(1) —E(o) = 7T I Go l

exp 4x,
(2.17)

where E(n) is the energy of the n meson excitation. It
is easy to verify that the first antisymmetrical state
goes over in the harmonic limit (~'&0) at cu'»A. , into the
first excited state of the harmonic oscillator, i.e., it
must be interpreted as one-meson excitation. Let us
consider two-meson excitation. In the harmonic region
~'» ~, it corresponds to the second level of the harmonic
oscillator with energy ~2= 2~. If the problem param-
eters are varied adiabatically, this state remains the
second excited state, i.'e. , it corresponds in the trans-
critical region to a symmetrical state with n'= 1, where
n' is the number of the state in an individual well. Its
energy in the transcriiical region is equal to

~2= E(2) —E(o) = ~2 l~l .
Plots of u and ~, against the parameter g proportional
to the well depth are shown in Fig. 4.

As can be seen from Fig. 4, the energy u tends to zero
in the transcritical region, whereas the energy of co, de-
creases and then increases with increasing f.

The energy decreases with increasing leg'l, i.e. , with
increasing depth of the well.

We noted that the expectation value of the field y in the
ground state is equal to zero:

&V» = &4')0=0.

Since the first excited state has an energy that tends ex-
ponentially to zero with increasing system volume [Eq.
(2.17)], degeneracy arises in large systems. By mixing
the ground and first excited states we can obtain states
with a nonzero average field &y),

&q, &
—= e.g; &q.& -=-e.4

The states ((1)) and (&2)) correspond to the system's
being located in the right-hand and left-hand well of our
oscillator, respectively.

4. Condensation in an electric field

Now let us consider the polarization of a vacuum of
charged bosons in a static electric field. The Lagrangian
of the system is

-iV y' '—+iV cp —Vy Vy

—g q" 'q" ——
(cP '(P )', Z & 0. (2.20)

cp = qy/v 2, (2.21)

and obtain the equation for g from the exact equation for
the operators y

We have assumed a very simple interaction between
the bosons. It can be shown that the vacuum can also be
stabilized by a purely electric interaction, but it is nat-
ural to propose that the hadronic interaction is more
substantial, i.e., & +& e'. It will become clear that mod-

ificationn

of the form of the hadronic interaction does not
influence the qualitative results.

The solution of the problem becomes exceedingly sim-
ple if it is recognized that the main contribution to the
field cp is made by "dangerous" states with energies that
tend to zero.

We write q in the form

3. Condensation in a scalar field
4cp+ ——+zV —p q —A.q cp =0.

Bt
(2.22)

The most important result obtained so far is that the
rearrangement of a boson vacuum in 3, sufficiently strong
field (when ~'&0) lowers the system energy. I.et us con-
sider a large homogeneous system. We then have from
(2.12b)

The equation for g is obtained from the condition

I pA /M2 = cP px& & ([H ~ 0 ])p1 = ~zV p& .
01

The matrix elements are taken over the exact states—
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vacuum and vacuum plus one particle. Then g is an ex-
act (normalized) function, and 10, is the exact energy of
one particle with allowance for the interaction. The
equation for P follows from (2.22)

I 2 1—
X" + 2 - E'(n, m) —U(() — 2 y = 0,2(

where

+

&4+ I(~, —v)' —&'] 0 ~e' "',= o.
2q01

(2.23)
~2(2

g= (q', + q', )'~', U(g) = ' +Z, —

+
iV(q'q —q'q) A, +

2 4
+ —jq q~

where the bar denotes averaging over g

(2.24a)

q'dr p'= (&tl )'dr . (2.24b)

We introduce in place of q and q+ the Hermitian opera-
tors q, and q, :

+q=q, +iq; q =q, —zq

The generalized momenta corresponding to q, and q, are

BI - — BL
P = ~ = q —Vq2; p, = . = q2+Vq1 pq 1 2 & 2 pq

It remains to diagonalize the Hamiltonian, which de-
pends on q and q, and which we shall presently derive.
It is then straightforward to determine the matrix ele-
ments (q'q')„and q„.

Substituting Eq. (2.21) into the Lagrangian density
(2.20), and integrating over the volume, we obta. in

2dr = -(p.2+p' —V') +
q'q q'q

2 2

and E'(n, m) is connected with E(n, m) by the relation

E (n, m) = Vm+ E (n, m) . (2.27)

In the semiclassical approximation, which can be seen
from the example of the scalar well to be fairly accurate
even for the ground state, we have

~2 — 1/2
2 E'(n, m) —U(&) —, dg = (n+2)7r . (2.28)2$'

~:= -~(K t.)-
and assume that I010I »x, '. Then the potential energy
U($) has a minimum at

The Langer correction for a centrifugal potential is
taken into account (see, e.g. , Migdal, 1975).

We consider first the case of a weakly charged system
(m —1) and assume that the quantity 100 IEq. (2.26)] van-
ishes at a certain value of the parameter g proportional
to the well depth. This case is realized in a square well,
and also for other potentials that decrease sufficiently
rapidly as 2 - ~ (Mur and Popov, 1976).

We represent u~ near such a critical point in the form

We obtain the Hamiltonian $2 g2 2/y (2.29)

BL . BLII =q1 . +q2 .— —L
and the problem, as before, reduces to that of a harm-
onic oscillator with frequency 10'= (2I1020I)'~'.

For E(n, m) we readily obtain

Here

2 2 2 2 2Pl P2+ ~0(q 1 q2) 1
(

2 2)2 V(p p )

(2.2 5)

m2
E(n, m) = Vm + U (g 0)+, + (n + 2 ) (2 I

01',
I )

' '
0

4 W2',+, ~,+ (n+-.')(2I~;I)'"+ vm.
4A. 1 2~0 (2.30)

co,'= U' —U'+ p'+p' . (2.26)

that

2 -p2q1 — pQX' =Z~

i.e., the angular momentum rn has the meaning of the
total boson charge. The radial quantum number n has
the meaning of the number of pairs.

The energy E(n, m) is determined in terms of the en-
ergy eigenvalue of the equation for the radial function of
the oscillator

Thus the problem has been reduced to that of a two-di-
mensional anharmonic oscillator with a potential energy
that does not depend on the angle. The stability of the
problem is ensured by the fact that ~&0. The energy of
such an oscillator depends on two quantum numbers, on
the radial quantum number n and on the angular momen-
tum m about an axis perpendicular to the plane of the
oscillator. It is easy to verify from the expression for
the particle density

/

—. (q q —q'q) -2vq'q IQI'
2

It follows therefore that the energies of the oppositely-
charged particles are

(o- =E(0, —1) —E(0, 0) = V+
A, 1

0

&u' = E(0, 1) —E(0, 0) = -V +
2 100(

The course of the energies ~ and (d as functions of g
are shown by points in Fig. 2. The pair energy does not
depend on Z, = ~, and increases with increasing distance
from the critical point

E(1,m) -E(o, m) = (2I~20I)".

Just as in the case of a scalar field, condensation has
set in. The energy of the system decreases as a result
of the rearrangement of the ground state. In a large
system, according to Eq. (2.24b), we have X, = X/2Q, and
the decrease of the energy density is equal to 8,= —00~0/2&.

We note that the terms (2.30) conta. ining m influence
significantly the system energy only if the charge Z is
proportional to volume of the system. ' The condensate
field in a homogeneous system (I/I'= 1/0) is determined
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by the relation

2
(2.31)

trons. In this case it is necessary to add to the energy
E,(g, Z, ) the energy of the positrons, the density of
which is n, = n „. The positron energy density takes the
form

These results were obtained with a fixed charge of the
system. Physically this corresponds to exclusion of P
decay. If the system exists a sufficiently long time,
then the P decay will eventually produce in it a charge
corresponding to the energy minimum.

We assume that the electric field is produced by a
positive charge. Then a m meson condensate will de-
crease the energy of the system. There are two possi-
bilities here: (1) the positrons and the neutrinos pro-
duced together with the m leave the system. This case
is realized for condensation in the field of supercharged
particles (see Sec. VII.A). (2) The system is large
enough to satisfy the charge-neutrality constraint. Then
the positrons remain and fill the Fermi sphere in such
a way that their charge cancels the m meson charge.
This case could be realized in supercharged stars if the
latter were to exist.

In the first case, on the basis of (2.27) and (2.28), the
system energy as a function of ( and Z takes the form

(2.32)

Here V&0. We have neglected in this expression the
term P/2, which makes a small contribution (-(~ &u'~)' ')
that does not contain the volume of the system.

Minimizing E(g, Z, ) with respect to $' and Z„we ob-
tain

2n'

(2.36)

where q'= g'/Q. Minimizing (2.36) with respect to n„
and g, we obtain

2
(V+ P,) —~, (2.37)

(2.38)

(2.39)

Equation (2.38) is an equation for the determination of
p, and, by the same token, n .

It is convenient to introduce the frequencies ~' and
According to (2.5b) and (2.5c)

~e= 4„2
=

4 ~~e~

where p, is the chemical potential of the positrons equal
to

p., = (3v'n, )'i'.
The total energy density is, according to Eqs. (2.24b)
and (2.32),

2 2V
A, ~

(2.33) + +
(d — (0 +(dV=

2 2

Z =-VV
1

(2.34) The condition q &0 takes the form

(V2 2)2

4x, (2.35)

As seen from these expressions, in a large system (',
Z„and E, increase in proportion to the volume of the
system. Such a "charged" condensation takes place re-
gardless of the sign of ~', . For a large class of poten-
tials (when ~,' does not go through zero at any well
depth), ~', is estimated as

-'=1.V'-V'-P =-1-0 '. .Q2

For such a system, the critical field of a "charged"
condensate is

Thus the condensation corresponds to a negative value
of ~ + g, . Near the transition point (~u I, p, «~"), Eq.
(2.38) is written in the form

P = -cu

The critical field V, corresponds to the condition

V =-u
C P 7

=V+w =V —V, .
Equation (2.39) then becomes

V~= 1. h ==,'n P, +O((K —K,)') =- —12, (V —V,)'.
12m

(2.40)

In a large system, if co'p vanishes, it does so at V~ 2,
but at V= 1 we have ~', =—1 (this result can be easily ob-
tained in a broad potential well with a flat bottom and an
arbitrarily shaped "diffuse" edge). The expression for
the critical field of a "charged" condensate therefore
corresponds in all cases to V, = 1. Let us now consider
the second case, in which positrons remain in the sys-
tem and cancel out the charge of the n . The solution of
this problem will help to solve a similar problem in neu-
tron stars where the m,

' charge is compensated by elec-

In this case the condensate energy is limited not by the
repulsion between the pions, but by the Pauli principle
for the positrons.

B. Pion fields in a nucleon medium

The instability of a pion field in a nucleon medium is
discussed in the "gas" approximation.

A very simple model of m condensation in a nucleon
medium is presented and makes it possible to explain the
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physical meaning of the condensation. This treatment
makes it easy to proceed to the realistic description of
pion motion in a nucleon medium as presented in the fol-
lowing sections.

(u' = 1+k' —4mnF (k, (u) = 1+ k'+ nA (k, (u), (2.41)

where n is the nucleon density, and + is the forward
scattering amplitude of pions with momentum k and en-
ergy ur by a nucleon of the medium (we omit the isotopic
indices for the time being). Here A(k, ~) = 4wF(k, -&u) is
the scattering amplitude in the "energy" normalization.

It is easy to derive (2.41) by considering the Klein-
Gordon-Pock equation, treating the nucleus as a dilute
gas of noninteracting scattering centers and assuming
that the m-nucleon scattering amplitude is known.

Since atk =0, the interaction of the nucleons with the
pions is small (F«1), an instabiIity can set in only if
F(k, ~) & 0 at some k & l. In pa, rticula, r the contribution
of N~ resonance to the scattering amplitude has such a
behavior —the sign of the amplitude I' corresponds to at-
traction between the pions and the nucleons (F &0, k s 1).

Moreover, at a sufficiently high density n, when the
principal role, as we shall. show below, is played by a
resonant scattering of pions by nucleons, Eq. (2.41),
which was used by Migdal (1971), accounts sufficiently
well for the real change of the pion energy.

According to (2.41), at sufficiently high density n, the
value of &u'(k) can vanish for some k= k, . The pion field
instability described above then sets in, and to solve the
problem it is necessary to introduce the interaction be-
tween the pions. This interaction in a nucleon medium
differs greatly from pion-pion interaction in vacuum,
and will be considered in greater detail below. As a
simple model we can use the interaction H'= X@'/4,
which was introduced above, and regard ~ as a phenom-
enological constant which will be estimated below.

It is easy to verify that at 1V=Z the nucleon medium
acts in the same fashion on the m', m, and m mesons,
i.e., the field produced by the medium is an isotopic
scalar. According to (2.41), the problem reduces to
that solved above, concerning instability in a scalar
field. In the case of a neutron star (Z «N), the instabil-
ity condition must be investigated separately for each
type of pionic. excitation. We consider below in detail all
possible types of pion field instability in a nucleon med-
ium with arbitrary ratio Z/N

2. Simplest model of vr condensation

To explain the physical idea of 7t condensation, it suf-
fices to consider the case of an isotopic scalar nucleon
field. The energy in the transcritical region is given
by (2.15). The term

E, = —((u'/4X, )

Instability of pion fields in a nucleon medium

Can a nucleon medium play the role of a certain ex-
ternal field for pions, and can the pion field become un-
stable thereby 7 To answer these question, Migdal
(1971) considered the influence of nucleons on pions in
the gas approximation. The meson frequency was ob-
tained from the formula

yields the energy gained as a result of the "condensa-
tion. " "Condensation" means that ai a large value of
l&u'l the mean square of the field in the ground state ex-
ceeds the square of the zero-point oscillation field. Ac-
cording to (2.10) and (2.13), we have in the transcritical
region

The mean value of the field cp is then equal to 0.
In the case of a system of large dimension A» 1 (the

case of interest to us from now on), the frequency
squared u& becomes a negative quantity for a large num-
ber of states with values of k close to the value ko for
which l&u, l is maximal. The minimum of the system en-
ergy, as follows from (2.15), corresponds to the state
at which the "condensation" has occurred in the state
ko(la& l is maximal). All the remaining degrees of free-

0
dom, when the field y 0 is taken into account, will then
have positive frequencies. Indeed, the. Hamiltonian for
an oscillator with frequency a„(kw k,) becomes, after
making the substitution y y&+ yo

9'~+ ~aPa 2 9'a(9'0) + ~9'~
2 2 4 (2.42)

We shall show that the third term is positive and larger
than the second negative term. Thus condensation in the
state k, stabilizes all the remaining states for which
u~& 0. The value of the additional term in (2.42) depends
on the form of g(r). For a homogeneous unbounded sys-
tem, the most general form of g(r) for a real field cor-
responding to a wave vector k„ is

q (r ) = Q a „sink ~r,

k~ = ko.

In our simplest case it is easy to verify that the mini-
mum energy E corresponds to the case when there is
only one term in this sum. In the real formulation of the
problem, the determination of the geometrical and iso-
topic structures of g(r) is a complicated problem to
which we shall return in Sec. IV.

Using the expression for cpo and the connection (2.12b)
between A., and X at ( = (2/0)'~' sinkox, we find that the
resultant frequency of the oscillation with the wave vec-
tor kt ko is

Thus all the oscillations are stable in the transcritical
region.

As seen from (2.15), the energy E, gained through m

condensation is proportional to the volume of the system,
inasmuch as

Near the critical density, when ~„' passes through

g dr-—4 A.

1 0
At g(r) = (2/0)'~'sink, x, we have A. , =(2)(A/0) and the con-
densation energy is equal to

440E~ 0.
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we obtain for the energy density 8 the expression

8, = — ' 8(n —n.).P(n -n.)' (2.43)

The 8 function expresses the fact that 8, = 0 at n &n, .
Estimates, which will be detailed later on, yield P- 1.

III. PION EXCITATIONS IN NUCLEAR MATTER

In this section we investigate in detail processes that
determine the change of the pion energy in a nucleon
medium with an arbitrary ratio Z/N. A consistent real-
istic method is developed for the calculation of the spec-
trum of the p +, &, and r' me sons in nuclear matter,
using the methods of the many-body problem. Our cal-
culation is based on separation of processes that depend
essentially on the 4-momentum of the pion and on re-
placing the slowly-varying quantities by constants, in a
manner similar to that used in the Fermi liquid theory.
These constants must be obtained from experiment, or
else estimated with the aid of the theory of nuclear mat-
ter. We discuss the influence of the pion degree of free-
dom on the interaction of the nucleons in nuclear matter
and obtain Fermi liquid theory equations that take into
account the role of one-pion exchange. A scheme is pro-
posed for the inclusion of pion degrees of freedom in
nuclear matter theory.

The energy spectrum of the &', r", and m.
' mesons is

investigated in a medium with N= Z (nucleus) and in a
medium with Z«N (neutron star). It is shown that be-
sides the pion excitation branch, which corresponds to
the free pion energy when the (mN) interaction is turned
off, additional spectrum branches with the quantum num-
bers of the pion are produced in the system and must be
interpreted as bound states of a nucleon with a. nucleon
hole (spin-sound branches). In the case N = Z, starting
with a certain density, there appears simultaneously for
the three types of pions (n', m, and m') a region of val-
ues of the wave vector k such that u'(k) & 0, for the spin-
sound branch, indicating instability of the nucleon-pion
system with respect to the production of 7t", and m,+, n,
meson pairs. (The symbol s denotes spin-sound excita-
tion with the quantum numbers of the pion. )

In the case of a system with Z«X, a m,
' branch with

energy co,+& —&~~"' is first produced, making possible the
process p-n+m", , and all the protons of the medium
change into neutrons and the bound state (Pn). At larger
density, instability sets in with respect to the produc-
tion of (m, m,') pairs and m' mesons.

The nature of the instability observed in the model of
Sawyer and Scalapino (1972) is explained. It is shown
that this instability has the same nature as the instability
with respect to production of (w, n,') pairs that appears
in the more realistic model (Migdal, 1973; Migdal,
Markin, and Mishustin, 1974).

zero, we have

(u„' =q(n, —n), 7))0.
The value of q is easily determined from (2.41). Putting

n'=
3A,

A. Determination of the pion polarization operator
iri nuclear matter

In this section we a.nalyze the possibility of using meth-
ods associated with the many-body problem for the study
of excitations having pion quantum numbers (pion de-
grees of freedom). All the processes that are essential
for the calculation of the pion polarization operator are
investigated in detail. An expression is obtained for the
polarization operator with account taken of nucleon cor-
relations, N* resonance, and S scattering.

1. Use of the methods of the many-body problem

We have shown in the last section how to determine
the pion spectrum in the gas approximation. Here this
problem is considered in a more realistic formulation,
with account taken of all the essential excitations of the
medium. We recall from Eq. (1.3) that the pion energy
~ in homogeneous nuclear matter as a function of the
momentum k is written in the form (8= m„= c = 1)

The quantity II(k, &g) takes the polarization of the medium
into account.

In the case of an electromagnetic field, the analogous
quantity II"'(k) is directly connected with the dielectric
constant e(k, u), inasmuch as in this case

11+—tt'"'(a ~)) .c(k, (u)

This analogy is frequently used to obtain, in the case of
pions, a formula similar to the Lorenz-Lorentz formula
(Ericson and Ericson, 1966). It must be assumed here
that the amplitude of the virtual nN scattering (i.e. ,
off—the-mass shell) is &-like and does not differ from
the real amplitude. These assumptions certainly are
not satisfied in nuclear matter with nuclear density.
Yet, as we shall see, there exists a consistent method
of determining the polarization operator, free of these
restrictions. Of course, the exact calculation of the
polarization operator in a medium of strongly interac-
ting particles is an insoluble problem. It is easy, how-
ever, to separate the slowly varying quantities, which
can be regarded as constants and determined from ex-
periment, and express in terms of them other quantities
that vary significantly in the region of interest, in
analogy with the procedure used in Fermi liquid theory
(Migdal, 1967). This method is based on the fact that
all processes that determine II(k, cu) can be divided into
two classes: those occurring at distances smaller than
or of the order of 1/m~, and those occurring at dis-
tances on the order of unity in pion units. Processes of
the former type, in a medium with density that is low in
comparison with m3~ - 300, proceed just as in a vacuum,
whereas processes of the latter type are appreciably
distorted by the medium. Thus, for example, the local
pion-nucleon interaction vertex, as can be verified by
considering the relevant diagrams, is determined by the
small distances x,- 1/m~ or 1/m~, a.nd consequently the
nA'-interaction constant in a medium of nuclear den-
sity differs little from the interaction in a vacuum.

Let us make a fear remarks concerning the diagram-
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matic calculation method that will be frequently em-
ployed here.

Graphs or diagrams are primarily a convenient
method of illustrating the occurring processes. They
can be given the meaning of quantitative relations by
assuming that each diagram describes a definite transi-
tion amplitude. Then, according to the superposition
principle, the total transition amplitude is the sum of
all the possible physically different amplitudes. In ad-
dition, if the diagram involves intermediate states, the
corresponding amplitude is given by the product of "ele-
mentary" amplitudes corresponding to each subdiagram,
integrated over the intermediate times. If we introduce
time-independent amplitudes, then this statement cor-
responds to the known quantum-mechanical formula

Ol (3.1)

Any process, no matter how complicated, is made up by
consecutive use of several simple amplitudes, which can
be obtained once and for all by comparing the corre-
sponding element of the diagram with perturbation theo-
ry. Thus the graphic method in the form in which we
shall use it constitutes a simple utilization of the for-
mulas of ordinary quantum mechanics and calls for no
additional knowledge. For example, the pole part of the
forward scattering amplitude of a 7t' meson by a neutron
at rest can be written in the form

which corresponds to the fact that the final meson is
emitted first, and the initial meson is absorbed next.
The amplitude in this ca.se is

lrl' Ir I'
(o+ m„—(2(u + E(k)) —or + m„—E(k)

More complicated diagrams will be explained as they
appear.

In the intermediate state there is a proton with momen-
tum A'. According to (3.1), this amplitude is equal to

farl'
u+m~ —E(k) '

where 1 is the amplitude for the absorption of the pion
by a nucleon, ~ is the pion energy, and E(k) is the nu-
cleon energy. In the case of pole scattering of a w mes-
on by a neutron, the only possible diagram is

operator is in fact this contribution, in the gas approxi-
mation we have

II(k, (u) = M(k, co). (3.2)

The normalization of the amplitude & is determined by
the fact that in the Born approximation A. becomes the
volume integral of the energy of the perturbation due to
one nucleon. To get rid of the gas approximation, it is
necessary to introduce in place of the total density of
the nucleons the Fermi distribution density n(P) for the
neutrons and protons and to take into account in the cal-
culation of & the Pauli principle and the interaction be-
tween the nucleons in the intermediate states. As a re-
Sult, the & amplitude itself turns out to depend on the
distribution n( p).

Before we proceed to the calculation of II(k, u), let us
ascertain which of the processes determine t4e gN
scattering amplitude in the vacuum. It is known that the
zN scattering at low pion energies ~ -1 is described
with good accuracy by the following processes:

I"X'

I'(NmN) =fgy„yst $8„y„,. (3.4)

where g is the wave function of the nucleon, y„are Dirac
matrices, 7 are the nucleon isospin matrices, and y
are the components of the pion field. The fields of the
m', m, and w' mesons are connected with y by the re-
lation

(3.3)

The first of the diagrams corresponds to one nucleon in
the intermediate state (the "pole" term of the scattering).
The second diagram corresponds to a transition to the
N,*, resonance (the resonant part of the scattering). We
shall show that both terms describe P scattering. The
last of the terms in (3.3) is S scattering. It is repre-
sented by a point, meaning that it can be regarded as a
local interaction. and consequently does not depend on the
pion momentum. Indeed, it can be verified that S scat-
tering is due to intermediate states that have high ener-
gies and momenta, and therefore depend little on the
pion momentum at low pion energies. For the same rea-
son, we use points to represent the vertices NmN and¹.N*, in the first and second graphs. There is an ad-
ditional part of P scattering due to the distant resonan-
ces, and one should take into account the off-mass-shell
dependence of the 8 scattering. The corresponding con-
tribution in the scattering amplitude is determined below
from the experimental scattering data. To find the off-
mass-shell amplitude the results of current algebra are
used. The ¹Nvertex is written in the form (see, for
example, Gasiorowicz, 1966)

2. Diagrams that determine the polarization operator

The contribution of the medium to the square of the
pion energy is expressed in the gas approximation in,
terms of the zero-a, ngle scattering amplitude in the en-
ergy normalization [Eq. (2.41)]. Since the polarization

Pl +2 ~0
vZ

(3.6)

The constant f in (3.4) equals g/2m~, where g is a di-
mensionless interaction constant; g '/4m =—14, and in pion
units m~= 6.7 and f= 1.0. —
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For nonrelativistic nucleons, Eq. (3.5) simplifies to

I'(N, m, N) =f—P'o„7'~/V „p~, (3.6)

where o is the nucleon spin matrix.
As follows from (3.6), the vertex is proportional to the

pion momentum, and the first term of (3.3) describes
p scattering. Since the spin of the Ã" isobar is 3/2
[the resonance Ãf, (1232)], the second term also corre-
sponds to p scattering and its vertex is also proportion-
al to the wave vector of the pion; the proportionality
coefficient can be obtained sufficiently accurately from
the cross section for the scattering of pions with energy
close to resonance.

Accordingly, for the third process of (3.3), which de-

termines the (mN)S scattering amplitude, the polariza-
tion operator at pion 4-momenta co- 1,k-1, as will be
shown, is determined by the same ~N scattering mech-
anisms in a medium. The pole (resonant) interaction of
the pion with the nucleons of the raedium can be repre-
sented in two ways: either as scattering of a pion with
a transition, of the nucleon into a state lying above the
Fermi surface (an isobar), or as the production of a
nucleon (an isobar) and the appearance of a hole in the
nucleon Fermi sea. The second approach is for many
reasons more convenient than the first and is in fact the
one used in the many-body problem and in the Fermi
liquid theory, the results of which we shall use.

Thus the polarization operator is represented by a sum

of three diagrams:

ll(k, (u) =
Pluri

(3.7)

Lines with. arrows directed to the left and to the right
represent holes and particles, respectively. The shaded
triangles represent vertices that take into account the
NN and NN* correlations in nuclear matter. Expres-
sions connecting these vertices with the constants of the
NN and N¹interactions will be given later on. The
first term, designated II~, corresponds to production of
a nucleon hole in the Fermi sea and the isobar N,*,(1232)
("resonant term"). The "pole" term II~ corresponds to
excitation of a particle-hole type in the medium. The
third term takes into account the S scattering. All the
remaining diagrams that have no parts connected by a
particle and hole or by a hole and isobar are determined
by the large 4-momenta of the intermediate states
(=m~). They may make a small contribution, or differ
little from the corresponding vacuum diagrams, which
were already taken into account in the observed pion
mass or they may be contained in the effective mass m*
of the nucleon, which will be used below (m*=0.9m~).
In other words, these. .diagrams are characterized by
spatial dimensions - 1/m~ and are not greatly distorted
in nuclear matter, where the distance between particles
is of the order of m, '. These diagrams depend little on
the 4-momenta of the incoming particles, since we are
interested in 4-momenta -m, . They can therefore be
replaced by constants, which should be obtained from
experiment.

As is well known, the same idea is used in Fermi liq-
uid theory to introduce the constants that determine
the interaction near the Fermi surface, and also to in-
troduce the effective mass and the effective local
"charge" of the quasiparticles in: an external field (Mig-
dal, 1967).

As an illustration let us estimate the pion-mass error
resulting from the fact that the incoming pions in 0 are
taken not on the mass shell, but at k' -m' —= m Since

the vacuum part of the polarization operator changes
significantly at momenta on the order of m~ or on the
order of the squared mass of the corresponding reso-
nance, it follows that

&rr mm2 vac (k2 —m2 )
w m

QP2
N

We see that this error is small.
Thus, the use of the methods of the many-body prob-

lem makes it possible to separate and calculate diagrams
that vary strongly in the range of variables of interest
to us, and replace the remaining diagrams by constants
obtained from experiment.

3. Resonant part of the polarization operator

The isotopic structure of the NzN* vertex is some-
what more complicated than for the NpN vertex. We
consider first the amplitude of the g'n scattering. The
second term of (3.4) must be written out in greater de-
tail, since it consists of two parts

We denote the matrix element of the vertex by Wak.
The first term corresponds to the second-order energy
correction and is equal to the square of the vertex di-
vided by the energy difference between the initial and in-
termediate states:

Qk(+ +s n)
co —co„+iy,k'
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k~
(d ~ = Rl ~+ —RZ ~ + = 2

~
4 .

2%2 ~+

The denominator of the second term is equal to

(u —[2(u+ (uR -iyok'].

(3.8)

It can be easily verified from laws for the addition of
the isotopic angular momentum that a factor equal to
W3 appears in the second diagram A. s a result

1 3A""= —ak'
~ ~ ~3 + 3co~ —(u —iyok (u~+ m —iy, k

(3.9)

We note that the second term is usually omitted, since
at m —= mR it amounts to 1/o of the first term. Far from
resonance, however, when a «(d~, it must be taken in-
to account.

The "optical theorem" (the unitarity condition) estab-
lishes a connection between the imaginarypart of the zero-
angle scattering amplitude and the corresponding cross
section integrated over the angles. It follows from this
relation that a(k) = 4my, (k). The function a(k) is chosen such
that Eq. (3.9) describes the observed resonant scatter-
ing. It is customary to use the empirical expression
[all parameters were taken from the paper of Carter
et al. (1971)]

0.08 1.01
1+ 0.23k' 1+0.23k' (3.10)

The strong k' dependence of a(k) does not correspond to
the theoretical expectations for the form factor g*(k') of
the mNN* vertex The rea.sonable form of g*(k') is

g*'= 1 —k~/A' k«A

where A- (1/2)nz'„. Therefore the empirical expression
(3.10) takes into account the additional P scattering pro-
vided by distant resonances. To extract the N*-reso-
nance P scattering we shall use a value a which is found
below, . g = 1.8a(kR) (the form factor momentum depen-
dence is omitted).

We are interested in values ~ & ~~ and k & 1, at which
the damping can be omitted from (3.9). Therefore the
resonant part of the polarization operator of a m+ meson
in a neutron medium takes the form

The damping of the resonance is taken into account here,
and the kinetic energy of the N* particle in the intermedi-
ate state has been discarded:

We have also made use of the fact that the polarization
operator is a function of k . In a medium with Bn ar-
bitra. ry ratio N/Z we obtain in accordance with (3.11)
a.nd (3.12)

H~ 2 2 Qg, 1 + +Pl~ 1 (3.13)

We have introduced in (3.13) the factor I'R, which takes
into account the change of the N, ¹ vertex, owing toN¹interaction in nuclear matter. The factor I'~ can be
approximately written in the form

1
1+ vn

(3.14)

where v is a constant characterizing the N¹interaction
and n=n~+n„. We shall derive (3.14) below after calcu-
lating the influence of the NN interaction on the pole part of
the polarization operator. Unfortunately, it is theoreti-
cally difficult not only to estimate the factor Z'~, but even
to determine whether it is larger or smaller than unity
(i.e. , to determine, the sign of v). If it is assumed that
the NN* interaction is of the same order as NN then Bt
n=~zo=0. 5 we have I ~ =0.8-0.9. On the other hand ifN¹does not contain repulsion at short distances and is
determined by one-pion exchange, then I'~ =1.1—1.2.
Favoring this assumption is the large cross section of
the reaction (Pn; nN') at large momentum transfers, at
which the N¹repulsion at short distances should mani-
fest itself (Mountz etal. , 1975). The data on the spectra
of the n-ta o.mseem to yield I'R -=1(VI.B).

We note that the expression we have used for the res-
onance scattering amplitude at low pion energies turns
out to be smaller than the total amp1. itude of P scatter-
ing. This means that we need to add to the resonant
part of the polarization operator the contribution from
remote P resonances. This contribution can be taken
into account by representing the P-scattering amplitude
at low pion energies in the form

A~~, =A~ +A~, .
The first term corresponds to resonance scattering¹»,and the second takes into account the contribution
of all the remaining P scatterings.

To determine A.~, we can use the expression given be-
low for the zero-angle P-scattering amplitude obtained
from a detailed analysis of experiments on zN scattering

4nak' I — ca~
(3.11) 0.8+, k.k', AR„,=—0.2k k'RR' 1 ~2 ~2

R

The polarization operator for the m meson can be ob-
tained from II' by using the crossing-symmetry require-
ment. Crossing-symmetry means that any transition
amplitude (and, in particular, a polarization operator),
must not change if we go from particle to antiparticle
and simultaneously reverse the signs of the energy and
momentum (the absorption of the particle with momen-
tum k is equivalent to production of an antiparticle with
momentum -k). Using in addition isotopic inva. riance,
we obtain the relations

A' = —(A "-A-")1
2

are the isotopic symmetric and antisymmetric ampli-
tudes. At ~ « ~~ we have

IIR "((u, k) = II "(—~, —k) = rr "(—(u, k)
II' ~ "((u, k) = II' t'(a, k). (3.12)

Thus, the correction due to the distant resonances,
which is negligibly small at co = co~, turns out to be quite
appreciable at smaQ w a 1.
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4. S-wave scattering

Since the S-scattering amplitude is ~-function-like, it
should not change noticeably in the medium, and conse-
quently we can use formula (2.41)

Ii'...= (n„+ n~)A ~+ (n„—n~)A'
(3.16)

II'... = (n„+n~)A. '
These equations are valid for a]l local contributions to II.
Here A is the local scattering amplitude in vacuum in the
energy normalization. On-the-mass shell (uP = 1+0'),
A~ ' should agree with the experimentally obtained scat-
tering amplitude. It is necessary to obtain A '(cu, k) off-
the-mass shell. It follows from crossing symmetry that
the difference between the z n and m n scattering
amplitudes is an odd function of co:

A = Alta +A3(d + ~ ~ ~

It follows from current-algebra considerations that
the expansion is in powers of m, /m„.

The value of A, obtained from m' and m scattering by
protons depends little on 0 at k «m» and is equal to

00 +'Ol 11 +10 +20

A. 1.5 -1.2 -0.15 -1.1 -0.2
v 'A.' -1.5 +0.1 0.2 0

The value of a00 was chosen such as to obtain the correct
value of A' at the threshold. The expression for A. en-
ables us to separa, te the contribution of the N* resonance.
If it is assumed that the dependence on v' = u2 is deter-
mined by the N* resonance, then A can be represented
in the form (at n = 1):

qq' &u' —k k' s f', 2f'
2' 2'

J p 2 ~ m

Since we have subtracted from A the only rapidly-varying
(pole) term, we can confine ourselves in A to the terms
linear in t and in v.

In the paper by Nagels et al. (1976), the amplitude A
at v = 1 is represented in the form (the quantity C intro-
duced there differs from A in sign)

A = aoo+ (a» +a»v')t+ (a»+ a.„v')v' + n (v —1) (3.17a)

The coefficients a~'„are approximately equal to

A, = —2~ (E ~ "(m, ) —E' ~ "(m,))=-2m(0.21) = —1.3

Here P~ "(m,) is the amplitude in the usual norma. liza-
tion.

We note that the theoretical value of Al obtained from
current-algebra considerations (Heisenberg et a/. , 1969)
agrees mell with this:

We thus have

II ~' = (n„—nq).A' = 1.4(n„—nq) (u .
To determine the isotopically-symmetric part A~~ of

the S-scattering amplitude it is necessary to use the re-
sults obtained in current algebra for the mN-scattering
amplitude off the mass shell. However it is more
convenient to discuss the total amplitude without sep-
arating S and P-waves. We denote the incoming and
outgoing 4-momenta of the pion and nucleon by q, q'
and p, p', and introduce the usual notation s = (p+q)'
=(p'+q')', t=(q —q)', and u=(p —q')'. Let the nucleon
be on the mass shell p2 =p' =~ . The scattering ampli-
tude can be rega, rded as a function of the variables t,
v= (s —u)/4m = (u+ t/4m, v = (q'+q")/2, where m is the
meson energy in the laboratory frame.

According to the "self-consistency condition" (Adler,
1965) the scattering amplitude, after subtracting the
pole part, should vanish at q'=1 and q'-0, i.e. , at
t=1, v=0, and v=&1

B 2
001 glo

'00 +Ol 2 ~ 21 —CO / (dR 1 —(d f (dR
(3.17b)

Indeed, calculation of the diagram corresponding to N*
resonance leads to an expression in the form

U the scattering were to be determined entirely by the
N* resonance, then the value of a, would be 40 —50%
larger, in accord with the thorough analysis carried out
by Hohler et al. (1972). Comparing the value of a~» with
the quantity a introduced into the N*-resonance amplitude
[Eq. (3.13)], we get

-4a/us = 2a», a —= 0.9

CREER + R
R 1 A2/KZ 1 K2/B

Accordingly, the ratio of the coefficients a,„/a„ is equaI. ,
with good accuracy, to I/m'.

The contribution of the resonance to the term propor-
tional to t is determined from the value of g» and from
the experimental value of the P-scattering length a~ a,t
the threshold

a,",/up'„=a„; 2 (a",'+ .", , = —2.6 .
1 —1/ (dR

After adding the P-scattering pole term, which is equal
to -2f'/m =0.3, this result agrees with the experimental
value a~ = 0.21.

We obtain:

A —= (A —A~) ~,g- 1
y =1/2

=0.

where

, a

p W

The pole term A~" can be easily calculated

(3.17) in place of the value a(k =k~) =0.5 given above. The rea-
son for the discrepancy is that the simple resonant ex-
pression used by us ceases to be valid, owing to the
large resonance width, long before the point k =AR is ap-
proached.

To find the constant u, we use the self-consistency
condition (3.17)
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R'
aors aors+ a()z = & ~ ~ ~

The expression for the S scattering is obtained from
(3.17b) by replacing t with —2k . For simplicity we pre-
sent only Ass at m=0

0.7 + 1.4k'.

We have confined ourselves to the case of nonrelativistic
nucleons.

Equation (3.19) becomes rigorous if the intermediate
state is taken to mean not the state of a free nucleon and
a free hole, but states consisting of a quasiparticle and
a quasihole. By the same token we have taken into ac-
count all the diagrams that correct the nucleon motion

We obtain an expression for the zero-angle scattering
amplitude (t =0) which enters in the polarization operator
without a breakup into the S and P amplitudes. From
(3.17b) we get

A (t = 0) = —(a,o+2ao, ) —2(aoo+ a,', )k'

in the medium, e.g. , of the type
of the type

Diagrams

(aoo '01) a00 1 2 J 21 —{d / CO&

We have used the fact that the amplitude at the threshold
is small and becomes even smaller after subtracting
the pole term (=f'/m =0.15), i.e.,

in which the wavy line represents a free pion, have al-
ready been taken into account in the observed nucleon
mass. Similarly, diagrams of the type

A (t=0) =0.7 —0.8k'+ 0.8—-g, 1.2
1 —&d (d~—

A' (t = 0) = —1.5u(1 —0.13(u').

(3.17c)

This expression, in the region of interest differs not very
much from the value A'(t= 0) obtained without allowance
for the additional contribution to the P resonance and
S-scattering (Migdal, Maikin, Mishustin, 1974).

5. Pole part of the polarization operator

The pole part of the polarization operator, without
the correlations taken into account, is given by the

diagrams

(3.18)

a + 'o =0Q

1 —I/u' R

Substituting the numerical values of the coefficients we
have

where the lines correspond to a nucleon and antinucleon
(and not to a particle and a. bole) are taken into account
in the observable pion mass. The change over, to quasi-
particles complicates the function E(p), but for momenta
not too far from the Fermi surface it is possible to char-
acterize the nucleonic excitations by two numbers, the
Fermi energy and the nucleon effective mass. In a med-
ium with N ~Z, these quantities are different for the neu-
tron and proton. In a medium with N =—Z, these quanti-
ties are sufficiently well known from nuclear data. The
effective mass of a nucleon quasiparticle is m*= 0.9m
(Migdal, 1967), and the Fermi energy is determined by
the density of the nuclear matter and is equal to

-=45MeV.
p' (1.5"~)'~'
2m* 2m*

As a rough estimate we can assume that in a neutron
medium m*=m and determine the difference of the
chemical potential of the neutrons and protons at Z ~N
(disregarding for the time being the Coulomb field) from
calculations for nuclear matter (Pandharipande, 1971).
Equation (3.19) can be written in the form

m +P~
11; "= -4f ' k', y, (k, ~) (3.20)

We consider first a neutron medium. For II+'" we ob-
tain

where

m*' a' —b' a+ b
ln —ab

The second graph of (3.18) is allowed by the charge con-
servation law only if the medium contains protons (a pro
ton hole must be produced).

Using (3.1) and (3,6) we easily obtain

a = co — ~, b =kv~.2m* '

At ~a ~»b we have

m'n 1
nz*P~ k2

2m*

6. Nucleon correlations

(3.21)

(3.22)

II' ~ "=2f k
n'"& (p)d'p 2

a) —e'"(p+k)+e'"'(P) (2m)'
' To take the interactions between nucleons into account

it is necessary to replace one of the vertices of each of
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the diagrams in (o.18) by an exact vertex. Indeed, to take the NN interaction into account, it is necessary to sum
the diagrams l

(3.23)

The shaded triangle denotes here the exact vertex
/„ containing no parts joined by one pion line. The equ-
ation for the vertex &, in nuclear matter was investigated
in deta. il by Migdal (1967), both for the case of a system
of finite size (nucleus), and for the case of unbounded
nuclear matter. %e confine ourselves here to a brief
explanation of the method of finding the vertex. For V,
we can write the symbolic equation

= Vo+ %~A. V~

(3.24)

Here 1 0 is the "bare" vertex, P, is the local interaction
of the quasiparticles in the nuclear matter, and A is the
amplitude of the transition of the quasiparticle and quasi-
hole (the product of the Green's functions of the quasi-
particle and the quasihole). A coincides with Eq. (3.19)
divided by the square of the bare vertex (i.e., by the
quantity 2f'k'. Thus, in our case, the basis of (3.20),
the value of A reduces to

Here g =g""-g"~ = 2g'=1.6. This numerical value was
obtained from an analysis of the nuclear data on the sup-
pression of the spin part of the magnetic moment in
spherical and deformed nuclei and from a renormaliza-
tion of the Gamow- Teller matrix elements of the P de-
cay (Osadchev and Troitskii, 1968). In a medium with
Z «N, the corresponding constant is unknown and can be
estimated generally from the theory of nuclear matter.
However, in the case of a neutron star, @,«I for the
relevant values of 0 and u, and the influence of the cor-
relation is not very appreciable. As a reasonable esti-
mate we can take the value of g in vacuum, which does
not differ very strongly from the value in nuclear matter
with N =Z.

An expression analogous to (3.27) can be obtained also
for the vertex I's introduced in (3.14). To this end it
suffices to replace the quantity A in (3.24) by A'~'

n(p) 2d'p 1
~+~'"'(p) —e'"*'(p+k) (»)' '

Assuming that co„»kv~ and w~» e, we obtain

(3.25)

o'

1+g (ps/poN'i(~~ k)
(3.27)

The local interaction P, is expressed in terms of dimen-
sionless constants, which should be obtained from exper-
iment or calculated from the theory of nuclear matter.
These constants are introduced in the following manner
(Migdal, 1965)

(dn/de ) . 6:, =fLf+f 'r, ~, +(g+g'~, r,)e,a,)5(r, —r, ) .
(3.26)

Here v, and v, are the isospin matrices, 0, and e, are
the spin matrices of the two nucleons, while po = 1.92
is the Fermi momentum in the nucleus. The local inter-
action was assumed to be &-like. The only reason for
the noticeable deviation of this interaction from a &

function is the contribution of the one-pion exchange.
But from the definition of the polarization operator the
diagrams corresponding to one-pion exchange in the
particle-hole channel do not enter the interaction re-
presented by the shaded triangles in (3.23).

In the case of a 5-function interaction, Eq. (3.24)
reduces to an algebraic one. Since in our case the
bare vertex, according to (3.6), is proportional to the
spin and isospin matrices of the nucleon, Eq. (3.24) con-.
tains only the spin-isospin term (3.26). Using (3.24),
(3.25), and (3.26), it is easy to obtain

~(R)—
(d~

Assuming the N¹interaction to be 5-like and denoting
the coefficient of 5(r, —r, ) by v, we obtain

1
I +n(v/&u„)

which corresponds to Eq. (3.14) with v =v/&us. Repul-
sion (v &0) corresponds to a positive sign of v(I'+&1),
whereas attraction (v&0) yields v&0 and I s&1. As al-
ready mentioned (page 126), we can expect the interval
of I s to be I's-0.8-1.2. Substituting (3.27) in (3.23),
we obtain

,k, m*pp p, ((u, k)
1+g-(p /p, ) y, (~, k)

' (3.28)

The expression for the polarization operator of the w

meson can be obtained in similar fashion, but recog-
nizing that in this case only the second of the diagrams
of (3.18) is present. It suffices, however, to use cross-
ing symmetry and obtain II directly from {3.28)

II"~" (&g, k) = II~ "(-u, -k) = Ii~' " (—co, k) . (3.29)

We now find the polarization operator of the m' meson
in a neutron medium. In this case both diagrams of
{3.18) t~e part. Without taking the (NN) interaction into
account, we have
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. . m "py @(k, (u)
m' 1+g p(k, (u)p~/p,

(3.32)

IIo, n o
P O +

Therefore, without allowance for the NN correla-
tions we obtain in place of (3.20)

ilo @2k2 P+
@( k)

7T'

where

P(&u, k) =@,((u, k)+Pg(-~, k). (3.30)

Allowance for the nucleon correlations, as can be easily
obtained by a procedure analogous to that used in the
case of the n' meson, yields

,k, m*P~ P(.k, (u)

I+I:""(p&/p.)@(~,k)
' (3.31)

We consider the case of a medium with N = Z. In this
case the polarization operators of the m+ and m mesons,
just as of the m meson, will contain both diagrams of
(3.18). Since the medium is isotopically invariant, it
follows that

11"(~,k) = II' (~, k) = II"(~, k).
The expression for II'(co, k) differs by a factor of 2 from
Eq. (3.31), and in addition, the denominator will contain
in place of g"" the same combination as in the case of

in a neutron medium, namely g =g""-g"&. Thus, if
N=Z we have

where pz"'=pz~' =p~. The quantity 4(u, k) is given by
(3.30) and (3.21). The expression for the pole part of
the polarization operator in the case of an arbitrary
ratio N/Z is given in the paper of Migdal, Markin, and
Mishustin (1974).

B. Pion degree of freedom in nuclear matter

The influence of one-pion exchange on the interaction
of nucleons in nuclear matter is discussed. The equa-
tions of Fermi liquid theory in nuclear matter are ob-
tained with allowance for one-pion exchange. It is shown
that the distortion of the pion propagator in nuclear mat-
ter, which is not taken into account in the usual ap-
proaches to the theory of nucleon matter, alters signif-
icantly the nucleon interaction. A possible scheme of a
consistent allowance for the pion degree of freedom in
the theory of nucleon matter is presented.

1. Allowance for one-pion exchange in Fermi liquid
theory

Equation (1.3) for the spectrum of the pion excitations
can also be obtained from consideration of the poles of
the NN scattering amplitude in a medium (correlation
function).

Let us recall how the equation for the NN scattering
amplitude is derived in the Fermi liquid theory (Migdal,
1965). In the ease when the momentum k =(m, k) in the
particle-hole channel is small, this equation is deter-
mined by summation of the particle-hale diagrams

+ ~ ~ ~

In symbolic form we have

(3.33)

Here 5 is the sum of all the diagrams tha, t do not con-
tain parts joined by a single pair, a.nd A is the particle-
hole propagator.

The reasoning behind this form of the expression is
that the block P incorporates all the diagrams that are
not sensitive to the value of the momentum k. Therefore
P can be expressed in terms of constants that are deter-
mined from experiment and are the same for all nuclei
and all processes, while the propagator A„which
depends essentially on k and on the singularities of the
shell. structure, can be calculated exactly. According
to the reasoning presented above (page 129), the quantity

5, determined in terms of diagrams that contain more
than one pair, is characterized by large intermediate
momenta and changes significantly at k -mN. The only
exception is the one-pion exchange diagram, which, as
we shall see, changes significantly at momenta k-m, .

For the case of very small momenta, this diagram

O'Pl f'k'I+
d& (d' — 1+k +&' k, co

(3.34)

By definition, P and consequently g~ does not. contain

makes no contribution, since the n.N interaction ver-
tex is proportional to k. For momenta k of the order
m„however, in which we are interested, it is neces-
sary to separate out the diagram of the one-pion ex-
change and reduce to constants only the remaining part
of P, which depends less strongly on k.

We note that an analogous extraction of the strongly k-
dependent part of the interaction is made when the Cou-
lomb screening in a plasma is evaluated (for a simple
exposition see Migdal, 1975).

Since the ~N interaction is -0 TB, one-pion exchange
influences only those terms of the interaction 5 which
are of the form (u,o,)(v,v', ). Therefore the interaction
6' can be written in the form (3.26), with the constant
g' replaced by the function g,'(k, &u), which takes into ac-
count one-pion exchange in the considered channel:
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particle-hole graphs. Therefore II'=II-II (see the next
section).

Inasmuch as the interaction P is ~-like in the coordi-
nate representation with respect to all the coordinate
differences that enter in these quantities, I' in an infin-
ite homogeneous system depends only on the difference
between the incoming and outgoing coordinates. In the
momentum representation Eq. (3.33) becomes algebraic.
Using for A, at N=Z an expression analogous to (3.25)

A = —(dn/de ~),@(k,~)
and substituting in (3.33) the interaction (3.34), we obtain

+l f (ko)T
1+2g'P(k, co)

' (3.39)

(3.40)

The second term of (3.38) has a pole at u- 0 and k =k, .
As ~-0, the denominator of D takes the form

where D is the pion propagator in nuclear matter. For
I', and E, we have

1+2g,'(k, ~)P(k, (u)
' (3.35) ~'(k) = 1+k'+ II(k, 0)

The pole of this expression corresponds to the condition

1+2g,'(k, (u)4&(k, (u) =0. (3.36)

The quantity g introduced above is equal to g = 2g'.
Equation (3.36), with allowance for (3.34), coincides

exactly with Eq. (1.3) for the frequency of the pionic ex-
citations. It follows from (3.36) that for densities of
the order of the nuclear density no, the function gt(k, 0)
reverses sign at k =—l(g, =0 at k =0.8 for g'=0.8 and
n =n, ). A similar investiga. tion was carried out by Back-
man and Weise (1975). This behavior of g~'(k, m), as we
shall see (VI.B), is confirmed by the experimental data.

In (VI.B)below we shall consider the influence of one-
pion exchange on the effective-field equation that leads
to an enhancement of the probability of the transitions
having pion symmetry. Since the effective field can be
expressed in terms of I', the one-pion exchange can be
taken into account in the same manner as in the problem
considered here.

It is more convenient, however, especially when it
comes to generalization to the case of a finite system,
to express the amplitude I' in a different form. We shall
gather into blocks all the graphs that do not contain a
pion line in the particle-hole channel (channel with zero
baryon charge). Then the NN scattering amplitude is
written in the form

1"(k, (o) = I', (k, (u) + ir, (k, (u) i'D(k, (u) (3.38)

(3.37)
where I', is a scattering amplitude that contains no pion
excitation in the considered channel, and V, is the ver-
tex that transforms the particle-hole into a pion excita-
tion and also contains no pion pole. A similar separation
of the term containing the pole that corresponds to a
definite excitation is frequently used in the theory of
finite Fermi systems (Migdal, 1967) to study collective
levels.

The vertex 7, is determined by the relation (3.27).
Analogously, the equation for I', differs from the equa-
tion for I' in that the total interaction P is replaced by
the interaction g, which does not contain one-pion ex-
change in the considered channel.

Changing over in (3.37) to the momentum representation,
we obtain

Thus the pole of D corresponds to imaginary u, i.e.,
it does not correspond to real oscillations. As we shall
see, the situation is different in a finite system, where
relations (3.24) and (3.33) are integral equations. These
equations for fields with different symmetry were solved
with a computer (Migdal, 1967). Inasmuch as the ob-
served quantities are expressed in terms of matrix ele-
ments of vertices of the type v; (when there is no one-
pion exchange), a comparison with experiment makes it
possible to determine the constants f, f', g, and g' of
the theory.

In a homogeneous infinite system, the quantities I,
and v, depend only on the difference between the incom-
ing and outgoing coordinates. In a finite system this
is not the case, since an important role is played by
the reflection of the particles from the system bound-
ary. In a sufficiently large system, the reflected waves
have large phase shifts and their averaged contribution
totheobservedquantities is small. As shown by the cal-
culations, even heavy nuclei are not large enough for
the reflection from the boundary to play a minor role.
Therefore, the propagator A in the kernel depends on
two variables, A =A(r, r'). The same pertains to the
quantities I', and E,. Nonetheless, for the wave vectors
k-pz of interest to us, Eq. (3.38) retains its form also
in a. finite system. Indeed, at distances

~
r —r'~ «r,

corresponding to k»1/R, all the quantities are func-
tions of r —r' only. However, 7, and I', must be deter-
mined not from relations (3.39) and (3.40), but by the
corresponding integral equations in which account is
taken of the fact that the system is finite, as is done
in the theory of finite Fermi systems. In addition, the
fact that the system is finite introduces an appreciable
change in the form of D near the pole. Namely, if co

is smaller than the energies of the first particle-hole
excitations, then II(k, co) has no imaginary part. More-
over a,s it follows from the dispersion relation for II(&u)
in the regions of small damping BII/Bcu'& 0.

The quantity eII/ace' should be calculated with the ac-
count for pairing and finite radius of the system. Ex-
pressions (3.21) correspond to large damping due to the
particle-hole creation and give the wrong sign for (BII/
Bco ),. The pole in D is determined by the relation

[I —(811/BuP)] uP —&P(k) = 0,
i.e., it corresponds to the real oscillation branch. We
shall see below (VI.1) that even in a, nucleus close to con-
densation the lowest frequency of this branch is appar-
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ently much higher than the frequency of the single-par-
ticlee

excitations.

2. A scheme for a consistent theory of nuclear matter

The motion of the pions in nuclear matter, as we have
seen, is greatly distorted by interaction with the nucl-
eons. As shown by Migdal (1972), this distortion is not
taken into account in the usual approach to the theory
of nuclear matter. This approach is based on the as-
sumption that the nucleus can be regarded as the gas of
nucleons with a pair interaction obtained from an analy-
sis of nucleon-nucleon scattering in a vacuum. Yet
part of the vacuum nucleon-nucleon interaction, cor-
responding to the one-pion exchange diagrams, is dis-
torted by the change of the pion propagator in the med-
ium. In a symmetric medium (N=Z) when S-wave
n-N interaction can be neglected, the distortion of the
pion propagator due to resonant zN scattering is es-
sential.

Indeed, diagrams of the type

spin-spin NN interaction in nuclear matter in terms
of its vacuum value and in terms of an interaction cor-
responding to exchange of one distorted pion.

Qualitatively, the situation was formulated in the re-
view by Rho (1975) "The nucleus is not a gas of nucleons,
but a soup of pions. " To verify that we are not dealing
here with small corrections but with a significant modi-
fication of the theory of nuclear matter, we present for
the pion energy the expression that follows from the for-
mulas for the polarization operator at small k and u in
nuclear matter see (3.17c)

u'= g+ bk'+ ceo' a= 1+ 0 35—
np

b = 1 —0.4 —,c = 0.2n/n,
np

This corresponds to a propagator

Exchange of such a "pion" over distance x» 1 leads to a
nucleon-nucleon interaction that differs strongly from
that in a vacuum. By considering elastic scattering of
two nucleons

which describe the decay of a pion in a particle and a
hole are taken into account in the usual approach, since
these diagrams correspond to interaction between two
nucleons with a virtual excitation of a nucleon of the
Fermi sea. However, all the diagrams that contain
pion lines are affected by N* resonance corresponding to exchange of one "pion" with q

=(0, k «1), and changing over to the coordinate repre-
sentation, we readily obtain

are completely lost in the usual methods of calcUIlating
nuclear matter.

A correct theory of nuclear matter should be construc-
ted in accordance with the following scheme. It is nec-
essary to subtract from the vacuum pair interaction the
one-pion exchange graph. The remaining part of the in-
teraction is included in the Hamiltonian as an NN
pair interaction. Added to this interaction in the Ham-
iltonian of the system is the z¹interaction with the
va, cuum constant f (see the reasoning on page 123).
Also added is the pion-field Hamiltonian which contains
the vacuum mm interaction. Of course, this problem
of interacting nucleon and pion fields cannot be solved
exactly. Taking into account the hypothesis concerning
the equality of the local quantities in the medium to their
vacuum values, it is possible to simplify the formula-
tion of the problem greatly and to develop a consistent
theory that is applicable up to fairly large densities.

All the NN interaction graphs, with the exception of
the one-pion exchange graph, are assumed to be ~ func-
tions and reduce to constants that can be obtained from
the vacuum interaction after subtracting from it the one-
pion exchange graph. The &-function interaction obtained
in this manner is supplemented with a one-pion exchange,
taking into account the distortion of the pion propagator
in the medium. Our first problem is to express the

This expression differs from the vacuum value by a fac-
tor =-1.3 in the argument of the exponential, and by mul-
tiplication by the factor 1/b =—1.7.

C. Pion spectrum and conditions for instability of
a pion field

It is shown in this section that when the pion field in a
medium is quantized the coefficients of the plane-wave
expansion of the field contain the factor [2&@»—BII/sm] '~'

&»k
which goes over in vacuum into the usual factor
(2&v») "'. The condition for the stability of the field is
that the radicand be positive for each type of pion exci-
tation. A general selection rule is given for the physi-
cal solutions of the dispersion equation for the pion en-
ergy. The solutions of this equation are analyzed both
for Z —=N and Z«N. A physical interpretation is pre-
sented of the possible excitation modes for each type of
pion. It is shown that at Z =N the instability of the

meson field manifests itself in the vanishing of
the frequency a', '(k ). The symbol s denotes here the
spin-isospin sound excitation with the quantum numbers
of the corresponding pions. At Z«N, the instability of
the ~ -meson field is of the same kind, and for the n'

and ~ mesons the instability corresponds to vanishing
of the sum of the energies (d', + ~ =0. In addition, in-
stability to the reaction P -n+ m,

+ appears and causes all
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the free protons of a neutron star, at densities n ~ no/2,
to go over to a bound state 7[', = (pn) of the proton-neu-
tron hole type. A connection between the results ob-
tained here and those of Sawyer and Scalapino (1972) is
established.

errK= Q II» cu» 2[u» —— )II»

~k=~(k)

= Q ((c»+)'[u'(k)&'(k)a»'a»+ (c„)'[u (k)Q (k)b»'b»j

1. Quantization of the pion field in a medium

In the preceding sections we have investigated in de-
tail the properties of tbe polarization operator 7[(k, [u) of
pions in a nucleon medium. We now discuss the main
properties of the solution of the equation for a pion field.
We begin with the case of charged pions, for which'

(we have used the equality II'(k, [u) = II (—k, —[u).
stipulate that the Hamiltonian be of the form

/

K= Q (co' (k)a»a„ +[u (k)b»bJ. ,

(3.44)

[[u' —1 —O' —ll+ (k, [u}]pe~, = 0 ~

We introduce the complex field that combines cp+ and y

2 = ge,'[[u'» —1 —O' —ll "(k,[u»)]+»,
k

(3.42)

where mk is an independent variable which must not be
confused with tbe solution [u(k) of tbe dispersion equa-
tion. Using the usual method of treating I agr3ngians
with time derivatives of arbitrary. order, we easily ob-
tain the following formula for the component T44 of the
energy-momentum tensor:

(3.43)

Let us illustrate this relation using as an example an
electromagnetic field in a medium with a permittivity
&([u) and a magnetic permeability p([u). Tbe time-aver-
aged Lagrange function, expressed in terms of the vec-
tor potential A(B = curl A, E =-A, A. =AD sin[ut}, takes the
form

(c' a» e xp [i ( [u'»t —kr) ]+c„b» exp[ i([u„ —t —kr) ]],
k

where ak and bk are the n' and m meson annihilation
operators. If, at a given momentum k, there exist in
the medium several excitation modes with the quantum
numbers of the m' or m meson, then the summation im-
plies throughout also summation over the excitation
modes.

The coefficients c' and c are determined in the fol-
lowing manner.

The Lagrangian of the field 4 is given by

where [u'(k) is the n' meson energy. It follows from
this condition that

(c,')-' = n'(k), (c,-)-' = n-(k) .
Thus

a„exp [i[u'(k) t —ikr ]
[n" (k) ]"'

(3.45)

s,' exp[ )a ():)&+i—kr)
I[n-(k) ]"' (3.46)

eII'
j =e =e~e' 2~k ———--

0 k k k
~ =~(k)k k

(3.47)

Stipulating that j0 take the form

(3.48)&0= P(»»
we again obtain (3.39). The factor 2[u —sII/8[u in (3.47)
is obtained also from Ward's theorem, according to
which the fourth component of the electromagnetic ver-
tex ls

BD ~ BIIz'-~~ =
~(d 8 {8

where D is the pion propagator in the nucleon medium,

D ~ = [u' —1 —O' —II(k, [u) .
As follows from (3.46), the function [u'(k) for 7[' me-

sons should be such as to satisfy the condition

The same result can also be obtained in another way.
The method used to obtain the expression for T44 yields
as well the current 4-vector. From (3.42) we obtain for
the charge density

From this we obtain with the aid of (3.43), for the aver-
age field energy,

d(e[u) E, d(p, [u} IIO
'44

den 16~ d~ 16z
'+

in agreement with the formula of Landau and Lifshitz
(1959).

From (3.42) and (3.43) we easily obtain an expression
for tbe Hamiltonian K of the pion field (we omit, for
simplicity, the labels of the excitation modes):

8II'(k, [u)
8(d

For m mesons we have

BII (k, [u)
CO

or

sli'(k, [u)
4)

&Q.

&0.

2Here we wil1 use the notations II+, Ij: instead of II",H" .

We thus obtain the following selection rule for the so-
lutions (Migdal, 1973; Migdal, Markin, and Mishustin,
1974). Assume that the solutions [u(k) have been obtained
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for the equation

w' = 1+k'+ ll'(0, m) .
The solutions situated in the region

2&4 —slI (k & co)/8 co )0

correspond to m+ mesons. Those solutions which are
situated in the region

2co —BII (0 co)/st) & 0

—
I =

-2—

2 5 4 5
k

become, following the substitution co ——~, the disper-
sion law for the v mesons. '

It is easy, in analogy with the derivation of Eq. (3.46)
for the charged-meson field P, to obtain the correspond-
ing exgression for the TI. -meson field. The z -meson
density ls

(g)'= &+ A, +II)" + II+"

= 1+ 9'+yg 0.7-0.8k'+ 0.8—,, (gr'
R

—1.5'�(1 —0.13~')
I

~ BZ +PR @~(COq k)
1+g (PR/Po) (3.49)

Figure 5 shows the result of a numerical solution of
Eq. (3.49) for n & n,' Here an. d below in this section the
numerical results are taken from the paper by Migdal,

BII

~~ =~(n)

Here II is an even function of co.
From the spectral representation we see that sII'/Bu' & 0

[this is evident also from (3.31) and (3.32), for ex-
ample]. The physical solutions for the n' mesons
therefore correspond to the condition co &0.

2. Pion spectra in the cases Z=O and Z=N

We consider first the case Z=0. Using Eqs. (3.16),
(3.17b), and (3.28), we obtain the following equation for
the determination of the z'-meson energy:

FIG. 6. Spectrum of charged pions in a neutron star with den-
sity n=0.3(n~&n&n+, g =0.8). For 2&k&5.5, the energy ~~
«z, leading to instability of the protons in such a medium
with respect to the process P n+ 7r~. The quantity ~+ ~ is
positive throughout.

Markin, Mishustin (1974) where slightly different ex-
pression for II have been used. The solid lines are the
spectral branches with 2m —sll'/s&u & 0, i.e. , correspond-
ing to ~' mesons, and the dashed lines are the sections for
which 2co —sli'/s&u c 0, i.e. , corresponding tom mesons
(we recall that the sign of ~ is reversed for the w

mesons). Starting with a density n', =-0.2, a solution
with co & —e~~~ appears in the n'-meson spectrum (see
Fig. 6). The physical meaning of this v -excitation
mode is that it represents a bound state of a proton and
a neutron hole —spin-isospin sound excitation (see the
next section). This branch vanishes when the ~N in-
teraction is turned off, whereas the second branch re-
mains and coincides with the free-pion branch. It is
natural to call the latter the pion branch, and the former
the "spin-isospin-sound" branch or "spin- sound" for
short (see Migdal, 1972, 1973; Migdal, Markin, and
Mishustin, 1974). To avoid confusion, we shall label
the spin-sound excitations (n' mesons) with a subscript
"s." The second branch is missing from the p -meson
spectrum. A similar interpretation is arrived at also
by Anderson et al. (1975), who call the w', excitations
"spin-isospin waves. " The presence of such solutions
leads to instability of the protons in the neutron medium
(P —n+ w', ). We note that at n(n', the pion energies are
such that w'+ co &0.

The spectrum of the charged pions in a medium with
density n ~n, = 0.4 (Fig. 7) has a distinguishing feature,

0

—
I

- ————

-2—

FIG. 5. Spectrum of charged pions in a neutron medium with
density n=0.1&n~(g =0.8). Solid line, energy +(k) of 7T' me-
sons; dashed line, energy -~ (k) of 7r mesons with the sign
reversed. For all k we have ~'+(d &0 and ~'&0.

FIG. 7. Spectrum of charged
mesons in a neutron medium
with density n= 0.5& n+, (g
= 0.8). At k= k~=1.6 we have
~~+ ~ =0. A system with
such a density is unstable to
prOduCtiOn Of 7r~7r -meSOn —

I

pairs .

2
I

k

3These conditions are derived anew from time to time (see,
for example, Bertsch and Johnson, 1974, 1975).
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Il QJ2

Pg & 8F (n)
~ (n)

/
/

/
l

0 I 2 0

namely a point at which co, + m = 0. At this point 2'
—ail+/Bcu =0 and a&u/ak=~, i.e. , a system having this
density is unstable to the production of z,'z meson
pairs, in analogy with the situation in a strong electric
field (Sec. II.A).

Figure 8 shows a plot of the minimum energy ~,„(n)
of the z meson against the neutron density for n&n', ; it
is seen from the figure that even if no account is taken
of the stabilizing action of the condensate we have

—e~ & 0. It follows therefore that a second-order
phase transition with formation of a g condensate
(n-p+ n ) is impossible.

The dispersion law for r mesons takes the form

(d = 1+0' +II +IIloc p

P

=1+k'+n 0.7 —0.8k' + 0.8—,, (g)'
1 —(d /(da

,k, m*P~ P(k, ~)
m' 1+g""(p~/P, )@(k, (o)

(3.50)

A numerical solution of this equation yielded the uP(k')
spectrum shown in Fig. 9 for n&~, =0.4. At the density
n&no (Fig. 10), a region with uP &0 appears, indicating
instability of the system to the production of neutral
pions.

%e proceed now to the case Z=¹~e have already
stated that in such a medium, by virtue of isotopic in-
variance, the results are the same for all pions. The
pion energy &u(k) is determined by tbe equation

FIG. 8. Solid line, dependence of the minimal energy co (n) of
mesons in a neutron medium on the density n; dashed line,

energy e~= (3x n) ~~/2m of the neu. tron Fermi boundary; cu (n)
&&+, so that the process n —p+7r is impossible.

0
—I-

k2

uP = 1+0.7n+ (1 —0.8n) k'+ n 0.8—
1 —(d /(da

,—~ f'O'P(k, (u) 1+—~g @(k, u))
Po

(3.51)

It takes the same form as the equation for the neutral
pions at Z=O.

At ~&n, the spectrum is similar to Fig. 9; at n&n,
=0.3, just as before, a region with u' 0&appears (see
Fig. 11), but at N= Z this means already instability with
respect to simultaneous production of m', 7t-, and m

me sons.
The table lists the characteristic parameters for dif-

ferent values of g and g"". The columns 0,'and k, con-
tain those values of k for which ~'=0 and accordingly
n = n,'(Z = 0) and n =n, (Z = N); k,' is the value of k for which

(g', + co =0 (at Z=0).
It is seen from Figs. 5—11 that there are three

branches of pion spectra in accord with the three types
of excitations: the pion branch (~(k = 0) = 1), the reso-
nant branch (excitations of the isobar —bole type)
(~(k = 0) = &u„), and a particle-hole branch, which we
shall call spin-sound. The resonant branch is of inter-
est in problems connected with the scattering of pions
by nuclei in the region of the N,*, resonance. The two
others are significant in the study of stability problems.

In an isotopically symmetrical medium (N= Z), as al-
ready mentioned, the polarization operator is an even

FIG. 10. Spectrum of 7t mesons in a neutron medium with den-
sity n=. 0.9 &n (g""=1). At 1.5~ k ~ 1.5 there exists a branch
with [~(k)] & 0. A system with such a density is unstable with
respect to production of ~~P mesons.

Qj 2
QJ 2

Q0 I

~2- k vF2 2

2
I

4 k

2
2 2

= V(&

Q~~ f I I I

4' 8 k2

FIG. 9. Spectrum of x mesons in a neutron medium with den-
sity n= 0.3&n, (p""=1). The three branches of the spectrum
correspond to the three possible types of excitations: of the
isobar-hole-type ["resonant branch, " cu(k = 0) = 1], and particle—
hole-type ("spin= sound branch" ). For all k we have [cu(k)]~&0.

FIG. 11. Spectrum of mesons in a medium with N= Z at a den-
sity n=np=0 5&n~ (np is the nuclear density, g =1.6). At 2
~ k ~ 15 we have (d & 0. The system is unstable with respect
to production of m~, 7t~., and 7|~P mesons.
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Z=O
g n k n' k+

Z=O
gnn ~0 ko

N=Z
g nc

0 0.37
0.3 0.39
0.6 0.41

1.4
1.6 0.2 Pp

0.8 0.43 1.6i

0.2 2.4

0.4 2.5

1.6 0.6 2.5

0 0.10 1.60
0, 4 0, 13 1.78
0.8 0.18 1.93
1.2 0.25 2.07
1.6 0.34 2.13
2.0 0.43 2.10

TABLE I. Critical values of the nucleon density (n~) and of the
condensate-field momentum (k,) for the various types of in-
stability corresponding to different values of spin-spin nucleon
interaction constants (g"",g ).

FIG. 12. Solution of disper-
sion equation for charged
pions in neutron matter in the
high-frequency approximation
~ » kv~. The solid lines show
the branches of the 7t -meson
spectrum, and the dashed
lines show the branches of
the 7t'-meson spectrum with
the energy sign reversed.

a
2

O

function of the frequency, and the physical solutions
correspond to ~&0. Starting with n=n, =0.3, a solution
with ~'&0 appears for all pions (the k' interval in which
uP&0 increases from zero with increasing n). If this
estimate were correct, then it would follow that the nu-
cleus should contain the ~ condensate, the presence of
which would influence the calculation of the different
characteristics of the nucleus (see Sec. VI.B).

For Z«N (neutron star), at a certain density, there
appears for the 7t+ mesons a branch with energy u,' &0.
At a density n&n+, =-0.2, the energy of this branch
reaches a value co', = q~~' —q~"'. This leads to an impor-
tant consequence: A neutron star contains an admixture
of protons whose charge is cancelled by electrons.
Since co', + q~ ' —q~~'&0, the protons will be transformed
into m', mesons and neutrons (p - nw+', ). The equilibrium
values of the m', mesons and electrons is determined by
the equation

co +g =0

At a density n = n', =-0.4, the ene rgy ~', + ~ of the ~' m

meson pair vanishes at k', = 1.6, and this leads to forma-
tion of the m', m condensate. The m~-meson condensate
is produced at approximately the same density. As
shown by Migdal (1971, and later in 1972), the appear-
ance of the condensate makes the system stable. The
formation of the condensates corresponds to second-
order phase transitions.

The minimal m- -meson energy prior to the appearance
of the m+, m and m' condensates is larger than q~', so
that a second-order transition with formation of a m

condensate is impossible. Upon formation of the con-
densates, the minimal energy of the ~ mesons in-
creases, as shown by Migdal (1973), so that ~ —q~"'&0,
at least up to very high densities; thus the instability
detected by Sawyer and Scalapino (1972) does not cor-
respond to the reaction n=p+ m . The nature of the in-
stability observed by Sawyer and Scalapino is discussed
below.

3. Pion spectrum in a simple model

To explain the results obtained in the case K» Z, we
simplify the problem of determining the spectrum, re-
taining only the pole part of the polarization operator
(Migdal, Markin, and Mishustin, 1976). In addition, we
assume that the frequency ~» kv~. While this is a
crude assumption at n-n„ it does hold true, for in the

case Z«N the significant values are co-1, whereas
kv~- q~ —-0.3. The dispersion equation is then so sim-
plified that it can be solved analytically. The dispersion
equation for the determination of the energies of the pion
quasiparticles in the normal phase of neutron matter is
given by expressions (3.20) and (3.22)

2n 2k'
D (k~ (d) = hP —CO&+ = 0 (3.52)

FIG. 13. Spectrum of charged
mesons in a neutron medium
in the high-frequency approx-
imation, ~»kv~, at n&n',
=1/2f2. Curves 1 and 3—
meson branches; curve 2—
spin-isospin sound branch
(7r+).

From here and beyond (d~= 1+k'. The last term in this
equation is the polarization operator of the m meson in
the approximation ~» kv~"', taken with a minus sign.

The solution of (3.52) can be written in the form

0'(u)=aP —1/(1 —™
),

where o. =2nf'. At c/&1 there are three branches of the
spectrum (Fig. 12).

As shown above, the classification of the branches is
determined by the sign of the residue D(k, ~), i.e. , by
the sign of the quantity

&D ~ BII k= 2(d — = 2 (d —A —~

9 Q3 9 co (d

The branches on which (2~ —sll/8&v) &0 correspond to
vr mesons, and branches on which (2w —BII /Bw) &0
yield the dispersion law of the m+ mesons after replacing
~ by -w. Branch 1 of Fig. 12 corresponds to m mesons,
inasmuch as (2&v —sII /8~) & 0 on it. On branches 2 and 3
(2~ —BII /&co) &0, so that after reversing the sign of w

these branches yield the dispersion law of quasiparticles
with the quantum numbers of m' mesons. Thus, there
are two types of 7t.+-meson excitations in the medium,
m' and ~+,. The quasiparticle spectrum takes the form
shown in Fig. 13. When the pion-nucleon interaction is
turned off, branches 1 and 3 go over into the vacuum
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spectra of the w and z' mesons (~- ~~), while branch
2 goes over into the spin-isospin-sound dispersion law.
It follows from the exact calculations that the section of
branch 2 with

~
co~ c kv~P vanishes, and at n & keg~ there

is no m', branch at all. It is the appearance of this
branch which signals the aforementioned instability with
respect to the reaction p —n+ m', .

With further increase of the density, the branches m

and vr', drop lower, the value of (~;+ &u ),.„decreases,
and for +=1 there is a value k, at which co', + co =0 ap-
pears on the spectrum for the first time. The value n
= 1 corresponds thus to the critical density n, = 1/2f' of
m', m. condensation. It is obvious that Rt the critical point
(2~ —BlI /Bw) =,0, which corresponds to coa,lescences
of the two roots of Eq. (3.45), i.e., to a double pole of
the pion propagator D(k, ~). At n = 1 the spectrum is
degenerate and splits into two curves, ~ =1 and
k' = ~(ar + 1). The coordinates of the intersection point of
these curves are the critical parameters of the n. +, m

condensation in this model, namely k;=v'2 and ~,=1.
At cv &1, as can be easily verified, the spectrum takes

the form shown in Fig. 14. It has one distinguishing
singularity, namely, a break on the edges of which
dm/dk = ~. In the region of the break we have (u,'+ w )' & 0.
This attests to the instability of the system to the forma-
tion of the ~', m condensate. Thus this simplified model
accounts correctly for the main results of the exact cal-
culation.

We turn now to the models of Sawyer and Scalapino
(1972, 1973). In this model they consider a system con-
sisting of neutrons, protons, and m mesons populating
a single state with wave vector k. The degrees of free-
dom are artificially restricted here —the m' mesons are
not taken into account; this corresponds to describing
the m. -meson field by the SchrOdinger equation in lieu
of the Klein-Gordon-Fock equation. As a result, the
equation for the energy (chemical potential) of the w

meson takes, in contrast to (3.52), the form

to prove the stability of the system with respect to the
reaction e-p+ ~™.

Within the framework of the model considered by Saw-
yer and Scalapino (1972, 1973), it is difficult to offer a
reasonable physical interpretation of the second root of
(3.53), for which 1 —B&' '/9~&0. It follows from the
analysis of Eq. (3.52) above, the second root should be
interpreted (after reversing the sign of ~) as the m', -
meson branch, i.e. , as a bound state of a proton and a
neutron hole (p, n). If the condition 1 —4f2k'n/u„' =0,
which coincides with the critical condition obtained by
Sawyer and Scalapino (1972, 1973), is satisfied, the en-
ergy sum ~', + ~ vanishes (the two roots coalesce) and
the system becomes unstable to the appearance of an
electrically neutral m', v condensate. It is easy to obtain
the values of the critical parameters of the 7T', n con-
densation in this model.

We note that Sawyer and Scalapino take the term "pion"
to mean a "bare" pion, whereas in our approach we have
in mind pion quasiparticles, including also the spin-
sound branch. The positive charge of a hadron system,
in the language of bare particles, consists of the charges
of the bare protons and m' and z mesons. In the lan-
guage of pion quasiparticles, this charge is the differ-
ence between the number of the v,'and v mesons (the
baryon quasiparticles are not charged).

In terms of the bare pions, it is easy to make an error
in the classification of the solutions of (3.49); thus, for
example, the w', branch is ascribed by Sawyer (1973) to
the m meson). For a clear physical interpretation, one
should use the quasiparticle language, as is always done
when studying phase transitions, rather than the bare
particle terms. It is especially important in nucleon'
matter, since there are several branches of excitations
carrying the pionic quantum numbers.

~ = co„—nf'k'/~„~ . (3.53)

The second term in the right-hand side is the self-
energy part Z' ' of the z meson.

Equation (3.53) has two roots:

co=—1k 1—4f*k'n)'~'
2 cog,

k
C

FIG. 14. Spectrum of charged
ploIlS Rt 'fl & 'fIC.

-QJ
C

The upper sign corresponds to the ~ meson. For this
solution, the residue of the m -meson Green's function
is positive (1 —BZ' '/B~&0), as it should be. In addi-
tion, when the interaction is turned off we have ~- ~„.
This is precisely the branch considered by Migdal (1973)

IV. EF FECTIVE INTERACTION OF PIONS IN
NUCLEAR MATTER

The structure of the condensate, i.e. , the amplitude,
the coordinate dependence, and the isotopic structure of
the condensate field are determined by the effective in-
teraction of the pions in the nuclear matter. For the
qualitative analysis we have used above (Sec. II) the
—,'Acp4 phenomenological interaction model.

The task of the present section is to find the effective
interaction and the structure of the m condensate in nu-
clear matter using a possibly more realistic model.

The effective pion interaction consists of the vacuum
interaction, determined by the steinberg Lagrangian,
and the interaction due to exchange of nucleon excita-
tions. It is convenient to describe the condensate field
with the aid of an effective pion I,agrangian averaged
over the motions of the nucleons. To obtain this Lagran-
gian it is necessary to find the energy of the nucleon
subsystem as a functional of the condensate field. It is
the nonlinear terms of such Lagrangians which consti-
tute the effective interaction of the pions in the medium,
replacing the Ay~/4 phenomenological interaction.
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In the case of small amplitude of the condensate field,
ihe expression for the effective Lagrangian becomes
much simpler. The energy of the nucleon subsystem
can then be obtained by perturbation theory in terms of
the amplitude of the pion field, and the vz interaction
takes the form —,'A(k, ~)(~~(() ~)'. It is possible to obtain
A by perturbation theory only by specifying a simple
form of the condensate field.

We develop next a method for calculating A, using the
Thomas-Fermi approximation, which makes it possible
to obtain the energy of the condensate with less re-
stricted assumptions concerning the condensate field
than in the case of perturbation theory.

1. Procedure for determining the Lagrangian

The Lagrangian describing the system with interacting
nucleons and pions can be represented in the form

NN &n' & (4.1)

where Z, and R„are the free I,agrangians of the pion
and nucleon fields, while 2,» », and Z„are the La-
grangians of the ~N, NN, and ~z interactions. When
describing the ground state of the system with the con-
densate, we can average in (4.1) over all the degrees of
freedom of the nucleon and meson field, leaving only the
classical part y, which describes the condensate field.
To this end it is necessary to introduce in place of 2
another quantity —the effective I.agrangian Z, which is
obtained from (4.1) by averaging over the exact states
of the nucleons in the condensate field. The role of the
nucleon medium reduces here to a, change of the spec-
trum of the pions and their interaction in comparison
with the vacuum values. Since the interaction of the pion
quasiparticles with one another and with the averaged
field of the nucleons is connected with exchange of low-
frequency particle-hole excitations of the medium, this
interaction is essentially retarded, i.e. , the effective
Lagrangian contains high-order derivatives of y with
respect to time. If, however, q describes a stationary
state, i.e. , it depends on the time like e '"', this does
not lead to any complications. Instead of a dependence
on j, jo, etc. it is possible to introduce in the effective
Lagrangian, as independent variables, the frequency co

A. Pion effective Lagrangian

The method of finding the effective Lagrangian is il-
lustrated with a simplified model in which only the zN
interaction is taken into account.

The effective Lagrangian, even in the ca.se of the sim-
plified model, is a, complicated function of the field and
of its derivatives with respect to time. We investigate
the character of the possible solutions for the pion field.
We next present the Weinberg Lagrangian, which is used
to determine the vacuum contribution to the y~ inter-
action.

In the case of weak fields, the effective interaction of
the pions acquires the simple form —,'(p~ p ~) . This ex-
pression will be used to obtain the quantities character-
izing the system near the phase-transition point. For a
realistic model (with allowance for the N* resonance
and the nucleon correlations), the function A(k, ~) is
determined in Sec. IV.B.

and the amplitude cp(r) of the condensate field.
Let us consider, by way of illustration, a Lagrangian

containing only the zN interaction:

4p (gg —H)'kp + —Q (co —(d),)p), cP

+i fg 4~ (ok)vC z (,y„.
pk

(4.-')

Here I and co are the frequencies of the nucleon and
meson fields. We have omitted the isotopic symbols,
and II is the Hamiltonian of one nucleon. Variation with
respect to Cp and q ~ yields the following system of equa-
tions for the field y and the operator 4;

(~' u~)(()& ——if g+'(o k)v4 +), (4.3)

To find the effective Lagrangian of the pions we deter-
mine the energy of the system of nucleons in the field p.

he y-dependent part of the nucleon energy plays the
role of the "potential energy" for the mesons. Then
the effective Lagrangian 2 in the momentum representa-
tion can be written in the form (Migdal, 1973; Migdal,
Markin, and Mishustin, 1976):

+= z Q(~ —~y)Vp9
k

+g((()'"' —e'"'(p)) n~ n~+g(w' ' —~' '(p)) p~p(,

(4.4)

Here i'"' and e'P' are the exact single-particle energies
of the neutron and proton in the condensate field; np and

pp are the creation ope rators of the "new" neutron and
the "new" proton defined such that

+(n)(~)+ ~(n) I ~(P)(p)g ~(P)
Ãpal p Pppp

()(~) ()--0 - ( (p) ((P-
where 6~"' and 6~P' are the Fermi energies of the "new"
particles, which are obtained from the condition that the
total number of the nucleons be conserved in the con-
densate field. Thus, the problem is to determine the
changes of the nucleon energy in the external field, the
role of which is assumed by the field of the pion conden-
sate.

Equation (4.4) gives the correct equations of motion:
the Schrodinger equation for the nucleon field and the
Klein —Gordon —Fock equation for the meson field altered
by the ~N interaction.

It is easily seen that for a weak field Eq. (4.3) yields
a Klein —Gordon-Pock equation in which uk' is replaced
by su~2+ II~(k, (d), where II&(k, ur) coincides exactly, as it
should, with the pole part obtained in Sec. III for the
polarization operator [without allowance for the NN
interaction].

The energy density of the system (the average Hamil-
tonian density) is connected with the effective Lagrangian
(4.4) by the equation (Migdal, Markin, and Mishustin,
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1974; Migdal, 1973)

( ) Bc@ (p) Bg Bg+= 28 (~)+ ZV
Bso Bgg B co

(~)+ (d —g. (4.5)

We shall also need a formula relating the 4-vector of the
charged-quasiparticle current with the effective Lagran-
gian (4.4) (Migdal, Markin, and Mishustin, 1974; 1976)

Bg
/~= e (4.6)

where k= (&u, k) is the 4-momentum of the considered
particle.

It should be noted that when (4.6) is taken into account
for the zeroth component of the current 4-vector, rela-
tion (4.5) assumes a form similar to the relation between
the free energy of the system and the thermodynamic po-
tential Q. Thus, the effective Lagrangian Z is equivalent
to the potential -0, in which the roles of the chemical
potentials are assumed by the frequencies of the meson
and nucleon fields.

It follows from (4.4) and (4.5) that to find the energy of
the condensate it suffices to calculate the energy of the
nucleons in the field

E~[p]=QC„R'R+QEpP P .

Later on we shall add to (4.4) the interaction terms
g» and 2„, and also the AN¹ interaction, which
makes it possible to take the N* resonance into account.

We use the effective-Lagrangian method to take into
account the vacuum contribution to the total n-z inter-
action, both in the case of weak fields (Sec. IV. B) and
for strong ones (Sec. V.B).

not only at the critical point, but also at n&n," .
Thus the wave function of the condensate field p(r, t),

which describes simultaneously the m and ~', compo-
nents of the meson field, should take the form:

p(r, t) =-,'(p, e '" '+ cp,*,e' ') = y(r)e ' ', (4.7)

where

ZP2|d—:(d . = —CO, P~ 1=
2

2. Character of possible solutions

As already noted, production of zp pairs and ~,
quasiparticle pairs becomes possible in sufficiently
dense neutron matter. The produced particles "popu-
late" macroscopically the state of lowest energy, form-
ing the condensate field. We shall henceforth consider
a classicaI condensate field cp(r, t), comprising the
mean value of the pion-field operator over the new
ground state with broken symmetry. The quantity cp(r, t)
will be the complex order parameter characterizing the
new phase.

From the condition of thermodynamic equilibrium with
respect to the creation and annihilation of the ~p
meson pairs, it follows that the frequencies (chemi-
cal potentials) of the w and ~; mesons in the conden-
sate are connected by the relation

co +co =0

p(g ) = ae (traveling urave)
1
2 (4.8)

y(z) = asinkr (standing zoave) (4.9)

The amplitude "a" is defined in such a way that the
mean value is y,'+ p,'+ p', = O'. Since the field of the m'

mesons is real and static, the simplest solution for the
neutral component of the condensate field takes the form
(4.9).

The effective Lagrangian Z is a, function of three inde-
pendent variables u, k, and a. The equation of motion
reduces to an algebraic equation for the determination
of the optimal amplitude a of the condensate field:

' =0 (4.10)
BQ

In some cases the electroneutrality condition for pion
quasiparticles j,= e(BZ/B&u) = 0 is satisfied. Then, the
energy minimalization implies BE/Bk = 0 and it follows
that BZ/Bk= 0, i.e. , there is no 4-current in the ground
state. Thus

B 2/B (u = 0 B 2/B k = 0 (4 11)

From (4.10) and (4.11) we determine a, cu, and k.
In the limit as a-0, when we confine ourselves in the

Lagrangian 2 to terms of order a', the three equations
in (4.10) and (4.11) go over into a system that deter-
mines the critical parameters of the ~',m condensation,
namely n,', ~„and k,'. At the critical point, the
coefficient of a' in 2 reverses sign, and to determine
the condensate parameters it is necessary to include
in 2 terms nonlinear in a'. The calculation of these
terms is rather difficult in a realistic formulation.
'This problem can be solved for a condensate field in
the form (4.8), to which Sec. IV. B is devoted. Of course,
the assumption that only one field harmonic remains in
the case of strong fields is completely unfounded; there-
fore the results obtained by such a method are only
qualitative in character.

3. Expansion in the amplitude of the condensate field

By virtue of the pseudoscalar character of the pions,
the effective Lagrangian of the pion field should be an
even function of the field y = (y„cp„y,) (y „i= (y,

+ihip,

)/W2;

p,o= p, ). Near the critical point, it can be represented
in the form

&.=2K~ 'I ~.l' -4+A(k k' ~)
I ~.l'I &'I'

k kk'

A time dependence of similar type is obtained for the
condensate field in the Hamiltonian formalism (Sawyer,
1973). As to the coordinate dependence, the exact form

. of p(r) should be determined from the equation of mo-
tion, which in this case is a nonlinear integro-differen-
tial equation. Leaving aside the attempts to find an exact
solution, we use a variational method —we specify
various trial functions y(r) and choose the one corre-
sponding to the lowest energy. Since the instability sets
in for a nonzero momentum 0-m„, the trial functions
should be periodic functions of x. 'The simplest func-
tions are
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where D is the propagator of the pion in the nucleon
medium

& ' = (u' —(1+k') —II(k, ~) . (4.»)
The function A in (4.12) describes the effective inter-

action of the pion quasiparticles in a nucleon medium.
The condition for a second-order phase transition to
really take place is that the second term in the right-
hand side of (4.12) be positive-definite in the vicinity
of the critical point, i.e. , when the coefficient of

~ y~~
'

vanishes Z A
~
p J '

~
p, ,

~

')0. In the opposite case we get
a first-order phase transition and the expansion in y„
is not valid.

We define the quantity A(k, k', cu)
~
„~, such that the ef-

fective Lagrangian takes the same form for both a
traveling and a standing wave:

g, = —D 'a' —A(k, co) a'+ O(a') . (4.14)

The amplitude a, the frequency cu, and the wave num-
ber k of the condensate field are determined from the
three equations (4.10)—(4.11). The first equation is the
equation of motion for the condensate field, which in
this case is algebraic. The two other equations ensure
the absence of a 4-current in the ground state of the
system.

Near the second-order transition point, the amplitude
of the condensate field &-0, and equations (4.10) and
(4.11) take the form

1973b) and by Migdal, Markin, and Mishustin (1974).
As to the mass term of the Lagrangian, which is pro-
portional to nz,', there are several variants of its re-
normalization. Inasmuch as the results depend little
on the specific choice by fields y of small amplitude,
we shall use the simplest variant proposed by Wein-
berg (1966):

2

1+ p'/E' (4.17)

The Lagrangian of the system of nucleons and pions,
without allowance for the nucleon correlations and N*
resonance, takes the form

2=~4"@—(x& 4')'(a3 4)/2m„+f@'o ~8% n y8

~'v '-(&v )'
(1+ p2/E2)2 2 1 p y2/E (4.18)

where +=1,2, 3. In the limit y«E, this Lagrangian
is identical to Eq. (4.2).

As shown by Au and Baym (1974), in the case of a
traveling wave the transformations of the fields (4.15)
and (4.16), which leads to. the Weinberg Lagrangian,
reduces to a shift of the nucleon 4-momenta. Putting

8= 2arctan(a/E)

we obtain from (4.15) and (4.16) the following rule for
the transformation of the 4-momenta of the nucleons and
of the pion field

&u' = 1+k'+ ll (k, ~)

2(u — = 0 2k+ = 0.8II BII
847 ek

p- p+ 7 ksin—2 0
3 2

20 28e(ii) - e (p+ v,ksirP — —~,~sin*—
(4.19)

The first of them is the dispersion equation of the pion
excitations. The second expression is the condition for
the instability of the pion field with respect to the pro-
duction of n'm pairs and n' mesons.

Thus, in the case of weak fields, the task of finding the
Lagrangian reduces to a calculation of the quantity
A(k, k', w). To determine the condensate field it suffices
to know the quantity A(k„k„&u,), where ~, is the fre-
quency of the condensate field near the critical point (in
a system with X=Z we have ~, = 0).

4. Vacuum interaction of pions

The nonlinear Lagrangians are obtained in the PCAC
theory from the requirement of chiral symmetry as
nz, —0. As shown by Weinberg (1966), the simplest
nonlinear Lagrangian that includes the nucleon and pion
fields can be obtained from the linear one by replacing
the general derivatives

(4.15)

(4.16)

where E= 1.35m, = 189 MeV is the pion decay constant.
We note that the second term in the square brackets of
(4.16) describes the S-wave mN interaction in the lowest
order in p. Its contribution to the polarization opera-
tion of the pions was investigated by Migdal (1973a,

using (4.17) one finds

a'- (E'/4)sin'8 (4.20)

The free Lagrangian of the condensate field takes as
a result of the transformations (4.17) and (4.20) the form

j2
(k' —co')sin'8+ 4sin'— (4.21)

Once the transformations (4.19) and (4.20) are made,
it is not difficult to calculate the energy of the m conden-
sate for an arbitrary amplitude (see Sec. V.B).

B. Interaction of pions in the case of weak fields

'This section is devoted to the calculation of the func-
tion A(k, ~), which determines the interaction of the
pions in weak fields

1= —Aa'
4

At first we calculate A in the simplified model con-
sidered above [see Eq. (4.2)], in which only the zN
interaction is taken into account. An expression is ob-
tained for the nucleon energy in the field of the conden-
sate, accurate to a4, which makes it possible, after
substitution in (4.4), to determine A for both a traveling
and a standing wave.

The effect of the nucleon correlations of the value of
A is then taken into account. 'The principal effect of the
nucleon interaction is that the value of A obtained in the
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simplified model is multiplied by the factor
«4

1+g 4 (k, o)
PQ

The contribution made to A by the vacuum nm interac-
tion, as well as the influence of the N,*, resonance, are
then taken into account.

1. Calculation of the interaction parameter A

2. Processes that determine the vrz interaction

We begin by presenting the diagrams that determine
the interaction A

+
(2)

+

As follows from the Lagrangian (4.4), the coefficients
of expansion in the amplitude a can be obtained by cal-
culating the sum of the single-particle energies of the
nucleons e(p) in the condensate field y.

Indeed, we write down the nucleon energy density in
the condensate field in the form

+ + (4.23)

(4)

The first of these diagrams corresponds to the vacuum
mm interaction. The nonlinear Weinberg Lagrangian
expresses the vacuum vertices

d 'p IIa' Aa4h„(y)=2, Z(p)= h + + +0(a')

&(P)«~ (4.22)

l

I

I

I

I

(x)

r

(3)
where &F is the Fermi energy in the condensate field.
For H and A we have (4.24)

in terms of the known constants f and E. The triangle
in diagram 3 of (4.23) represents the already known
vertex of the mN interaction in the medium

Thus, to determine II and A it suffices to obtain C(p) ac-
curate to terms of fourth order in the field amplitude.
The new Fermi surface is determined by the condition

t(P)= const= C~

and the energy &F is obtained from the requirement that
the particle number be conserved:

=2 p pF
(2m)' 3m' '

where p„ is the momentuM of the old Fermi surface.
We note that in all the cases, we have considered and
in particular in the most realistic model given below,
we have co, & &F("'. 'The reaction n-p+7t is not, allowed
by energy conservation since, to transform a neutron
quasiparticle into a proton quasiparticl. e and a ~ meson
it is necessary to expend an energy &c= u, - —EF"'. On
the other hand, in the case of mp condensation, only the
new neutron states are filled.

To verify this method of calculating II and A, we can,
find an expression for the energy C(p) in the model con-
sidered above, in which there is only mN interaction.
In the case of a running wave it is easy to find an exact
expression for C(p), without expansion in powers of a,
for in this case the problem reduces to that of two levels
with momenta p and p —k (Sec. V.B).

After finding the energy C(P) up to terms a4 inclusive,
we obtain from (4.22) an expression for II, which coin-
cides exactly, as it should in this model, with the pole
part II~ of the polarization operator (without allowance
for the nucleon correlations). This serves as a good
check on the correctness of the calculations. Another
method of finding A is to calculate directly the diagrams
that determine this quantity.

E,=V I,= K, 1+g P, (k, ~)
PQ

in the case Z =0.
The quantity I" gives the quenching of the vertex in the

nucleon medium. According to the arguments presented
above (see page 125), all diagrams that are joined by
more than one particle —hole pair are determined by
the large 4-momenta of the intermediate states and
differ little from their vacuum values. 'The vertices
(4.24) in the medium can therefore be replaced by their
vacuum values obtained from the Weinberg Lagrangian.

Thus, for example, a diagram of the type

g/
/ W

\

I I

r'

should be regarded as equivalent to diagram (4) of Eq.
(4.23).

In fact, the part of the diagram enclosed in the dashed
circle was determined by large 4-momenta, and such
diagrams, as we have already seen (page 125), are
either small or are included in the corresponding
vacuum vertex.

The first of the diagrams of (4.23) is obtained directly
from the expansion of the Weinberg Lagrangian in pow-
ers of y up to the y' term.

The second diagram is obtained either by direct cal-
culation with the aid of a Green's function, or by finding
the nucleon energy $„(a') in the condensate field accu-
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rate to a4 terms. 'The same result is obtained by both
methods.

The third and fifth diagrams are expressed in terms of
the pole part of the polarization operator. 'The fourth
diagram of (4.23) is expressed in terms of the deriva-
tives all/s~ and sII/Bk. These diagrams can also be
calculated either with the aid of Green's functions or
from the expansion (4.22), if we include in the Lagran-
gian the mN interaction determined by vertices 1, 2,
and 3 of Eq. (4.24). Finally, diagram 5 is expressed
in terms of vertex 4 of (4.24) and the nucleon density,
inasmuch as a closed nucleon loop corresponds to a
Green's function

G(r, r) = (e'(r), e(r)) = n(r)

Thus Eq. (4.23) for A can be obtained either directly
with the aid of Green's functions, or by expanding, in
terms of the field amplitude, the Lagrange function, in
which we include not only the ordinary mN interaction
but also the interactions corresponding to the vertices
of (4.24).

As we shall see later (Sec. IV.C), an essential role
near the critical point is played by diagrams of the type

A diagram of this type, with four pion lines, is deter-
mined by large 4-momenta and is taken into account in

the first vacuum vertex of Eq. (4.23). With increasing
distance from the critical point, the unaccounted-for
part of this diagram becomes inessential. In addition
to all the foregoing diagrams, an important role is also
played by diagrams in which one or two nucleon lines
are replaced by N*-resonance lines.

3. Allowance for the N resonance

To obtain the diagrams containing N* it is necessary
to know the vacuum vertices of the type of figure (4.24),
in which one or two nucleon lines are replaced by N*-
resonance lines. 'This calls for the introduction into
the nonlinear Weinberg Lagrangian of not only the nu-
cleons and pions, but also an additional particle with
quantum numbers S = T = 2. This problem was solved
by Campbell, Dashen, and Manassah (1975) with the
aid of the chiral-symmetry requirement. A connection
was obtained between vertices of the type ¹wN
N*2mN, ¹mN*, ¹2mN* and the analogous nucleon
vertices on the basis of the SU(4) quark model. The re-
sults can be written compactly in the form of a 6 && 6
matrix (in the basis of the N*",N*', p, n, N*', N* states).
The elements of this matrix give those vacuum-Lagran-
gian terms which determine the corresponding process.
The problem was solved for a field of charged pions in
the form of a running wave of amplitude (F/2) sin0. It
was assumed (without any justification whatever) that
there was no condensate of neutral pions.

In that case, to determine the single-particle energies
of the "new" particles it is necessary to diagonalize the
matrix

(a+ 3b+ 9c + 4)

(a+ b+ c+ b.) (0)

(0) (0)

(-"".) ("")

(0)

(0)

(0)

(";.)
(

2~d)

(5id) (4~'d)

(0) (a —b+ c+&)

(a —b+ c) (0)(
5id
3

(-",".)

(~)
('")

(4.25)

(0) (0) (0) (a —3b+ 9c+ L)

where

P' ' 1 1
Q= + —(d; ~= — —~ cosH~ c = . cos H

2m 2 ' 2 m ' Bm

3 Qd= gksinH 4=m~* —m~=2 2 H=arctan-
yp A ~ P F

Expanding the corresponding matrix elements in power
of 8, we can obtain the vertices (4.24), both for the case
of nucleon transitions and for transitions with participa-

tion of the N* resonance.
It follows from (4.25) that the Pan vertex (Hg„) is

connected with the N*'mn vertex II~+ „by the factor
(8/25)'~'= 0.56. This is in fair agreement with the value
0.47 obtained for the ratio of these vertices at 0=kR by
using, as was done in Sec. III, the experimental data
on the mN scattering in the region of the N33 resonance.

The method proposed by Baym et af. (1975) to take into
account the nucleon correlations corresponds to the as-
sumption that the NN, NN*, and N*1P' interactions
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are the same apart from the Clebsch-Gordan coeffi-
cients. Yet the experimental data on (Pp;¹n) scat-
tering with large momentum transfers, q-600 MeV/c
(Mountz et al. , 1975) seem to indicate a weak N¹
interaction at short distances. We shall therefore pre-
sent estimates under two assumptions: (1) the same
interaction between all the baryons, and (2) correlations
exist only between the nucleons.

Equation (4.25) was used by Campbell et al. (1975)
and by Baym et al. (1975) to describe w condensation in
a pure neutron medium. They carried out an explicit
diagonalization of II* in the two interesting limiting
cases, 8-0 and 8-7f/2. As 8-0, the problem reduces
to a determination of the critical parameters of the ~
condensation. The values obtained by Baym et al. (1975)
for n„k„and ~, turned out to be close to those calcu-
lated by Migdal, Markin, and Mishustin (1974) by an-
other method. We shall return to the question of the
contribution of the N* resonance in the case of a. devel-
oped condensate (8-7f/2) in Section V.B.

the aid of Green's functions and by expanding the effec-
tive Lagrangians up to terms a'. Terms of type (3), with
allowance for N* resonance, reduce to the polarization
operator, while terms of type (4) reduce to its deriva-
tives. 'The last term is proportional to co, and there-
fore vanishes at N =Z.

We present the results of the calculation of A.' As
already noted, the calculations have been carried out
for a-condensate of charged pions in the running
wave form (4.8). The corresponding expressions are
also given for the polarization operator, since they dif-
fer somewhat from those obtained in Sec. III.

In a medium with Z= 0, the formula for A turns out in
the general case to be very cumbersome. We present
here the result obtained in the approximation of high
frequencies ~ » kvF. Assuming that the local amplitudes
of the NN, NN*, and N*N* interactions are the same we
have:

A(k, (o) = —~[2(k' —(u')+1] ——,II (k, (u)

4. Results of calculation of A

The individual terms of expression (4.23) were calcu-
lated by several methods (with the exception of the first
term, which is obtained directly from the Weinberg
Lagrangian). The second term was obtained both with where

+ 8(fl,*k)'n(u ' + 4(fI',*k)'nII', ——,neo,

(4.26)

sr
2

II (k, (u) = -2f'O'I,*nW„ I","= I+g nW,IPp
1 8 1 24 1-

W = —+- +
co 25 ++ 40 25 + —co

1 8 1 ~ 1 3 1 3 8 1' 1 3 0.8 1.2 2.4
Qp 25 Qp zA + co E —(d 6 6 + 2co 25 (d (A + co) (6 —co) A(6 + (0) (6 + (d)(E + 2') 6(6 —co)

64 1 3 3 9 0 5 0.3&5 1 175 1 5
625 (4+ (u) (b, +(u)'(a —(u) (a —~)'(a+ (u) (a —(o)' &(&+ (u)' (&+ 2~)(44 + &a)' &(& —(u)' (a —a)a(a+ (u)

If there are no NN* and N~N~ correlations, then the re-
normalization factor I'~ is replaced by

m' n1",= 1+g
tBPp (d

Here

4IfI"8)'
(

8
)

2'84 (4, )' (
2

)
20 4

)
(4.27a)

and only the terms containing 1/u, 1/&u', and 1/&u' in
II and A are renormalized by the factors I'„ I",, and
I'~.

In a medium with N= Z, for a condensate field in the
form

p(r) = a(coskr, —sinkr, 0)

(running wave with ~ = 0), with identical NN, NN*, and
N*N* correlations, we obtain the expression

II(k 0) = — f'O'I'*4*r' PF

] g PQ
Pp PF

C(x) = —+ ln
1 1-x' 1+x'

1-x
128 cFC*(x) = C(x)+

A(k) = ——,(2k'+ 1) ——,II(k, 0)
2 2 4

8~ PF 1"~k 8 k 64 kz)F 2

3 —,1+x' 1 1+x
C2(x) =16 2

ln'
1 —

——ln
1 +1—

4These results have been obtained by I. N. Mishustin.
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If the correlations exist only between nucleons, and the
local NN* and N~N* amplitudes are equal to zero, then
we have for N = Z2, 4
A(k) = ——,(2k'+ 1) ——,II(k, 0)

PQ p2Q @
F

4(fk)
(

k

)
$84 (a„)"

(4.27b)

rr(k, o)=,~~f'k' re +
2p 75 ~

Equations (4.26) and (4.27) for the parameter A, which
describes the interaction of the pion excitations in a nu-
cleon medium, will be sufficient for our discussion. We
shall use them subsequently in the numerical estimates.
In the vicinity of the critical point, in all the cases con-
sidered, A is positive. Thus, at n=no, 0=p~, and g
=1.6, Eqs. (4.27a) and (4.27b) give, respectively, the
values 0.4 and 8.j..

We note that even the most complete model considered
above cannot determine A quantitatively. No account was
taken of the local scalar NN interaction, of many-parti-
cle correlations, and of many other factors indicated
above. The NN* and N*N* interactions are unknown, and
in addition, we do not know the constants of the spin-
spin interaction between the nucleons for a neutron me-
dium. Finally, the possibility of a first-order phase
transition was not investigated —such an investigation
calls for the use of numerical methods.

In the next section we shall consider the Thomas-Fer-
mi approximation, which is valid at k'/4p~'«1. This
method can be used to obtain an expression for A at an
arbitrary form of the condensate field cp(r). In addition,
this approximation provides a good method of verifying
the formulas obtained above in the limit as k-0.

C. Approximation of weakly varying fields

This section is devoted to the investigation of m con-
densation in isotopically-symmetrical nuclear matter
(Z=N), and also to m' condensation at ¹»Z. As already
noted, owing to isotopic symmetry, instability in a sys-
tem with Z= N sets in simultaneously for all three types
of pions, w", m, and m . This instability results in a
static electrically neutral m condensate p =(p„y„yJ.
(y„=(y, af p, )/v 2, y,o= qr, ), with the possibility of hav-
ing all three components of the pion field different from
zero. Therefore, on top of the difficulties in determina-
tion of the spatial structure of the condensate field, we
encounter one more difficulty, connected with the choice
of the optimal isotopic composition of the condensate.
This raises a problem which is rather difficult to form-
ulate realistically, that of finding the energy of the sys-
tem in the presence of a condensate that has a compli-

1. The Thomas-F ermi method

We consider a system of nucleons (N= Z) interacting
with a classical field of a static pion condensate. When
we disregard the transitions of the nucleons into N,*,
states, such an interaction can be described by a poten-
tial

(4.28)

which is an operator in the space of the spin and isospin
variables.

The energy density of nucleons in the Thomas-Fermi
approximation is given by the expression:

g 2(2m)' '
(( ),/, )

2(2m)' '
( (- ),/, )5m' 37t'

(4.29)

The brackets correspond to the averaging over space,
spin, and isospin variables. The density and the spin
density of particles are:

n(r) =, —Tx,Tr, (c~ —U)'/';2(2m)'/' 1

S(r)=, —T~,T~,[o(~~ —U)'/'j .
2(2m)'/' 1

(4.30)

In Eqs. (4.29) and (4.30) there is a factor 2 which takes
into account the two types of particles.

The nucleon Fermi energy e~ in the field U is deter-
mined by the conservation of the particles:

2 3n(r) = —;P~
3m

The insertion of n(r) in (4.30) gives

3m3 1 I

2 &U'& — 6 (&')'+ —&&') +&(&') (4 31)P P 2p2 8P6

cated spatial and isotopic structure.
A convenient method for a qualitative solution of this

problem is the Thomas-Fermi approximation. The con-
dition for the applicability of the Thomas —Fermi method
in the case of periodic potentials is the inequality

k'/4p' «1
(k is the wave vector of the field). Yet, according to cal-
culations, condensation takes place at k= p~, so that
when we use the Thomas-Fermi approximation we can-
not count on obtaining good quantitative accuracy. As
we shall show, this approximation makes it possible to
find the condensation parameters under less restrictive
assumptions concerning the spatial and isotopic struc-
ture of the condensate than in the case of perturbation
theory. Moreover, this method can be so developed that
account is taken of all the vertices of (4.24) which result
from the Weinberg Lagrangian.

The most favorable configuration turns out to be a
three-dimensional lattice for a m' condensate in neutron
matter. In symmetric nuclear matter (X= Z) isospin
asymmetric configurations can be lower in energy than
the symmetric ones.
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The total energy density is the sum of the nucleon part
(4.29) and the free energy density of the pion field.

TABLE II. Ratio of energies of different condensate configura-
tions [@3(~)]to the energy of the three-dimensional structure
in the Thomas-Fermi approxilnation.

& = &&+
2

&V')+
2

&(&V)'&

For periodic fields y(r) with wave number k, minimiz-
ing with respect to the field amplitude, we obtain an ex-
pression accurate to p (Migdal, Markin, and Mishus-
tin, 1976)

8= $(p=0)+8,

(X') = SiHkx+ slHkg+ sll1kZ

@~2~(r)= sirkx+ sinky

q "'(r) = sinux

E(n)( +')
E(v) [p (1)]

50/5&

25/27

(
sk„ (4.32)

q ~4)(z) = sinux sinuy spaz 2O/2j.

where

ku&2=1+ k' -f'k' (1+g pF/p, ) ', X=, 1+g

configurations. The lowest energy is possessed by a
meson field in the form of a three-dimensional lattice:

Here 8, describes the decrease, due to condensation, of
the ground-state energy. The factor (1+g pF/po)

' takes
into account the main contribution of the nucleon corre-
lations.

As a result of simple transformations we obtain

(
4

a r, ' =(Vy)'+ (VP, X V@2)'+(Vq, XVy2)'
ex~

cp2(r) =(2/3)' 2a(sinkx+ sinky+ sinks)

for which

24 ~2 24 a4a'=- ——. 8 Q=—'=
25K 100K

In these expressions

(4.37)

+ (Vy2 && Vy2)2 (4.33)
2 ] k2 f2k2 I gnn Fdpi' p 1

CRF PQ

= Vp' nf4k4 ] ++nn F
4&3F PQ

(4.38)

2. Spatial and isotopic structure of the condensate

Information on the isotopic and spatial structure of the
condensate can be obtained by a.nalyzing Eq. (4.33).

The last three terms vanish in the case of a one-di-
mensional (or spherically symmetrical) field, while the
first term is in this case minimal if (Vp) does not de-
pend on the coordinates:

(vq)2= const. (4.34)

y(r) = a(coskx, -sinkx, 0),
coskx coskxrp(s)=s, , sisksI, . . .

2
'

2

(4.35)

(4.36)

Thus one-dimensional fields satisfying the condition
(4.34) correspond to the minimum of the energy (4.32).

For such fields we have 8,=($,),„= -&u /4X. Exa.mples
of one-dimensional solutions of (4.34) are

Thus the most probable structure of the m' condensate
in a neutron medium is the three-dimensional lattice
(4.37). It should be stressed that this conclusion is
based on an approximate ca,lculation method (valid for
k'/4p2F «1), and that for a, final solution of the problem
of the m condensate structure in a neutron medium it is
necessary to carry out the calculation for k=PF. In ad-
dition, we need to take into account the %33 resonance,
the vacuum mm interaction, and finally, the interaction
of the m condensate with the condensate of the charged
mesons, which also influences significantly the struc-
ture of the condensate (Markin and Mishustin, 1974).

Using (4.30), we easily obtain the distribution of the
particle density and of the neutron spin density in the
field (4.37).

Expanding n(r) and S(r) up to the square of the poten-
tial, we obtain

We note that pion fields satisfying condition (4.34) modu-
late neither the neutron nor the proton density (the ques-
tion of the modulations of the nucleon density is con-
sidered in V.1 in a more realistic model, without the use
of the Thomas —Fermi approximation).

We proceed to the case of m' condensation in a neutron
medium (Z=O). To this end we set y, = F2=0 in Eq.
(4.33).

Table II gives the energies of the different configura-
tions of the field y2(r), comparing in particular one-di-
mensional, two-dimensional, and three-dimensional

f2k2a'

8&F

2

$+g fltl PF
PQ

with the spin density

mpS(r)=, (1 „„ / )
VV2(r).

n(r) = n[1+ f'( cos 2xk+ cos2ky+ cos2kz) J,

(4.39)

(4.40)
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V. PION CONDENSATION IN A NUCLEON MEDIUIVI

In the case of second-order phase transitions, the or-
der parameter characterizing the new phase increases
from a zero value, so that the problem has a smallpara-
meter near the transition point. Using the smallness of
this parameter, we can find the equation of state of the
new phase. In the theory of ~ condensation near the crit-
ical density, this small parameter is the amplitude
y(r, f) of the classical pion field. To study the proper-
ties of the condensate near the critical point we can
therefore use the expansion obtained above for the effec-
tive Lagrangian function in powers of the field amplitude.
With thi:s expression we shall obtain the amplitude of the
condensate field and the energy gained by condensation
as a function of the nucleon density.

In the case of a neutron medium, the condensationme-
chanism is somewhat more complicated than for a medi-
um with N = Z. First, at ri = 0.4+„r,-meson conden-
sation sets in, followed at n-no by instability for pro-
duction of m m,

' meson pairs. In the ease of a neutron
star, where the electroneutrality condition is satisfied
and the charge of the n,' mesons is cancelled by the elec-
tron charge, the density of the m,

' mesons and the ener-
gy of the v,' condensate are small, and the m,

' condensa-
tion alters the expression for the r n,' condensation en-
ergy only near n = n, . Neutron systems of finite di-
mension, when the electroneutrality condition does not
hold, are considered in Sec. VII.B in connection with an
assessment of the existence of neutron nuclei. The am-
plitude of the spin density modulation and of the total
density of the nucleons due to m condensation is deter-
mined.

Singularities in the effective pion interaction, due to
the "softening" of the pion degree of freedom near the
condensation point, are investigated. Because of these
singularities, the second-order transition gives way to
a first-order transition with a small discontinuity of the
field p. This phenomenon alters the results obtained by
assuming a second-order transition only in the nearest
vicinity of the phase transition point.

Section V.B is devoted to the determination of the con-
densate energy in the case of a strong condensate field.
The expression given in this section for the condensate
energy at a nucleon density n»n, (the limiting field
model) is used in Sec. VII.B to assess the possibility of
the existence of superdense nuclei.

A. Properties of the condensate near the critical point

The effective pion Lagrangian obtained in the case of
weak fields (Sec. IV.B) is used to determine the ampli-
tude and energy of the condensate near the criticalpoint.
Properties of n.,+ condensation in a neutron medium are
elucidated.

Expressions are obtained describing the modulation of
the density and of the spin density in the condensate
field. It is shown that, owing to quantum fluctuations,
condensation corresponds to a first-order phase trans-
ition, but with a small discontinuity of the pion energy,
such that the expressions obtained assuming a second-
order phase transition cease to hold only in the imme-
diate vicinity of the critical point.

$,(a') = ——,'D '(k, cu)a'+ —,'A(k, (u)a',

where D(k, u&) is the pion propagator

(5.1)

D = (d —(d& —II(k, h7) ~

Minimizing S,(a') with respect to a' and using the con-
ditions (4.11), we obtain a system of equations for de-
termining a', the wave vector k, and the condensate
frequency K:

(u' —(d' —II (0, (u) —Aa' = 0

BII 2, BA 42m — a' ——' — a =0
B(d BGO

(5.2)

BII 2, BA 42k+ —a'+ —,
' a' = 0.

Bk Bk

At the critical point, i.e., at n =n, and a' = 0, we get

2~ —— = 2k+ — =0

Near the critical point we have

D '= 2~ —— — 2y+ —+ — (n n,)—dm BII dk
s(u dn Ba dn sn ),

= ('—,"„)(--..). (5.3)

Substituting this expression in the first one, we obtain
from (5.2)

1 BII
a ' = o (n —n ) c( =-

A B~
(5.4)

Substitution of (5.2) and (5.3) in (5.1) yields

(n-n. )' 1 ail '
2a B~

(5.5)

Using Eqs. (3.49)—(3.51) for II, and also Eqs. (4.26) and
(4.27) for A, obtained in the most realistic model for the
the case of a running wave, we can calculate the para-
meters c(, P, and q, which determine the properties of
the condensate near the critical point. We present here

Energy and amplitude of the condensate

To find the energy of the condensate near the critical
point we can use the weak-field Lagrangian obtained in
Sec. IV.B.

If we disregard the not-too-significant influence of m,
condensation in the neutron medium, which will be con-
sidered in the next section, the expressions for the con-
densate energy in the cases Z ==N and Z «N are of the
same form and differ only in a numerical coeffieientand
in the value of the critical density.

We consider an electrically neutral condensate, when
the pion electroneutrality condition &2,/8&v =0 is satis-
fied. The case of a charged condensate (m' condensa-
tion) will be considered in the next section.

From Eq. (4.5) between the energy and the Lagrange
function it follows that if the pion field is electrically
neutral then the energy density of the condensate differs
only in sign from Eq. (4.14) for 2,
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values of these parameters for a medium with N=Z,
obtained under the assumption that there are no NN* and
N*N* correlations, and that the NN correlation constant
is g =1.6. Using the values n, =0.34 and k, =2.13 from
Table I, we obtain

F'rom (4.5) and (4.14) we get for the pion energy density

co~+ II —Q) 2 0"—Z =(d'n + ' g'+A —.t S g ~ O' '. S ff

Using (5.2), we obtain

~ = 0.4, P = I.3, q = 6.2. a4
g =4) n —A —.

ff S f)'
(5.8)

Account was taken here of the possible difference be-
tween the constant f' of the wN interaction in a medium
and the vacuum value f. It must be emphasized that in
all cases P turns out to be close to unity.

2. m.+ condensation in a neutron medium

It has already been shown (Sec. III.C) that in a neutron
medium, at a density n&n, =0.4np, the 7T, -meson branch
has an energy w', & —(cz —c&~). This results in an insta. -
bility with respect to the process p-n+7T,'. - Thus a 7T'

-meson condensate is produced even before the onset of
the instability connected with the production of 7T

pairs.
Just as in the ca.se of condensation in an electric field

(Sec. II.A) the result depends on whether the electroneu-
trality condition is satisfied in the system. We consider
first a. neutron system of large dimensions (neutron
sta, r), in which this condition should be satisfied.

Prior to condensation, the proton density is equal to
the electron density

n~ =n, = p, ,'/3w'.

The chemical potential (the Fermi energy) of the elec-
trons in equilibrium prior to condensation is p,, = E~ —E»
and after condensation we have p,, = —&u,'. (This follows
from the equilibrium with respect to the varia, tions
n =p + e + p, n = n +'we++ p. )

The total energy density of the system can be written
in the form

8 = 8„+8,+ (p, ',/4w') (5.6)

where the last term is the energy of the relativistic
electrons.

Let us find the energy of the 7T,
+ condensate. To this

end, we write the Lagrangian of the pions in the form
2 4

[QP —(d& —II(k, M) ]

where a is the amplitude of the field of the 7T,
' mesons.

In contrast to the case considered in the preceding sec-
tion, here the pion electroneutrality condition is not
satisfied (BZ„/2m WO).

According to (4.6), we have

Bg 8II +a OA Q
n = 2(d—

(d (d 2 ~co 4 (5 7)

The parameters n, and p, calculated under the assump-
tion that the NN, NN*, and N*N* interactions are the
same for the cases N=Z and Z =0, are listed in Table
III as functions of the parameter y that defines this in-
teraction:

Near the critical point we can neglect the second term
of (5.8). The energy density of the system after the con-
densa, tion is then

~W &4(
4~2 37T

The energy density prior to condensation is

(5.9)

(e~ —e~)
47T'

Substituting this expression in (5.9), we obtain

(~,')' (&")'
127T2 127T2 (5.10)

The energy of the system does not experience a jump
at n=n,', inasmuch as at n=n,'we have cd', =&~ —E~~—= e~.
With increasing density,

~
m,'~ increases more rapidly

than ez, but with increasing a', according to (5.2), the
growth of

~
~;~ is slowed down by the repulsion between

the pions (A)0). As a result no instability with respect
to production of w w,

' pairs arises (u +~,'=0)—it
arose only when no account was taken of the field of the
7T,
' condensate. This can be easily verified by using the

expressions for n, and for u,'.
The result is a complicated dependence of the conden-

sation energy on the density, but qualitatively the pic-
ture is perfectly analogous to that of condensation in an
electric field, which was considered in Sec. II.

If we introduce the concept of "free" 7T and 7T,
+ mesons

(w and w' mesons not perturbed by the field of the w',
S

condensate), then such pairs are produced at n & n, ,
when the condition (u +m ), ,=0 is satisfied. This pro-
cess, however, can be described also in terms of the
exact 7T,

' mesons with allowance for the condensate field.
As we have seen with condensation in an electric field

as an example [Eq. (2.35) j, at the point of the instabil-
ity for the production of "free"pairs &uo2=0) no phase
transition takes place —the process is described in
terms of exact 7T,

' pions.
The expression for the condensate energy under the

condition -~p. ++ t/ has changed over into the formula
for the energy of the 7T'7T pair condensate.

We can therefore expect in our case, starting with
certain values of (n —n,'), the formula for the w,

+ con-
densate to go over into expression (5.5), which was ob-
tained without taking the 7T, condensation into account.
Moreover, since the expression for the energy of the

We shall neglect for simplicity the kinetic energy of the
protons {atn-n, the proton density in a neutron star is
-10 'n„). Then the change of the nucleon energy upon
condensation is equal to (n protons go over into the neu-
tron state)

S~ —8'„=n e,"—= (e~),'/3w'.
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3. Equation of state

The total energy density is

S(n) = $„(n) ——,'P(n —n, )'6(n —n, ),
where

( )
I, x&0
0, (0.

(5.11)

)t,' condensate contains, according to (5.10), a large
number in the denominator, the transition to the simple
expression (5.5) should occur even at a small excess of
~ above n, .

Thus in spite of the fact that in a neutron star, accord-
ing to our terminology, v', condensation does take place,
we can use the expression obtained for m,"m condensa-
tion to find the condensate energy.

The ease of a finite system, when the electroneutrality
condition is not satisfied, will be considered in Sec.
VII.B in connection with the possible existence of "neu-
tron" nuclei (Z «N). Numerical calculations of the v

condensation energy in a neutron star under P-equilib-
rium condition, which is equivalent to allowance for the
7t,
' condensation, was carried out by Baym and Flowers

(1974), Au and Baym (1974), and Au (1976) .

4. Modulation of density and spin density of nucleons

As shown in Sec. IV.C, the spin density S(r) of nu-
cleons is modulated in the condensate field with the wave
vector ko.

In Sec. IV.C this result was obtained in the Thomas—
Fermi-approximation, i.e., for the case ko «2p~. In
this section we obtain the amplitude of the modulations
of n(r) and S(r) without this assumption, and also take
the influence of %33 resonance into account.

The ordinary quantum-mechanical approach to this
calculation consists in finding the perturbation of the
nucleon wave function in the condensate field, and then
determining the changes of the average nucleon density.

It is much more convenient, however, to perform this
calculation by a graphic method, i.e., with the aid of
Green's functions. This approach makes it possible to
take into account very simply the contribution of the nu-
cleon correlations and the influence of transitions with
production of the %33 resonance in the intermediate
state. To this end, we introduce the nucleon density
matrix p. The density matrix p(r, o(; r', o. '), where o' and
&' are the spin indices, can be written in the form

At the critical point the quantity d'8/dn' has a discon-
tinuity (second-order phase transition).

The pressure is connected with the energy density by
the relati. on

P = n ——8 = P ——.P (n - n ) 8(n - n ).
dS

N C

The angle brackets denote the expectation value in the
ground state of the system. From this expression and
from the definition of the Green's function it follows
that (see, for example, Migdal, 1967)

. G(r, r'; e),
d&

2rg

The condition-for the stability of the system is a positive
compressibility

Therefore, if the inequality

p) (d'h ~/dn'),

is satisfied at the phase transition point, then the nu-
clear matter will be compressed until the influence of
the repulsion forces at short distances leads to satis-
faction of the condition d'8/dn') 0. Since the matter is
unstable in the region where d'8/dn'& 0, a density dis-
continuity takes place. The jump in density is deter-
mined by the relation

where the P, =n(dS, /dn) —8, is the. pion pressure (P, (0).
A method of calculation of $(n) for large n is discussed
in Sec. VII.B.

where G()(, ,x', a) is the Fourier transform of G(r, r'; ~).
It is convenient to change over in the calculations to the
momentum representation and to introduce

p„„,= (e; (r)p(r, o. ; r', o. ')+,, (r')),
where P~= g„ef'", and y is the spin function. The change
of the density matrix in the condensate field is then

(5.12)

Here G~~, (e) is the exact Green function in an external
field, in this case in the condensate field; G„(e) is the
Green's function at @=0. Contributions to the scalar
quantity 5n(r) can be made only by matrix elements cor-
responding to nucleon transitions with emission or ab-
sorption of an even number of condensate mesons. In
an isotopically symmetrical field (4.28), in a medium
with N =Z, such transitions are described by Green's
functions of the type

G(p, &;p —2k, &) = + ( ('
p~ E p —$~ 6 p —2Q~ t ' p~ & p —2Q~ 6

Az(k, m) (5.13)
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where@~+ 'is the resonant scattering amplitude given in
Sec. III (page 41). The change of the nucleon density
5n(r) is expressed in terms of the change of the matrix
&p», as follows

5n(r) = Q (&p)„~,4'~(r)4'„(r) .

only the mean value of the operator v, v', , which has the
symmetry of the charged pion field, is different from
zero (modulation of the spin-isospin density). A con-
tribution to the modulation-of the density and of the spin
density is made by the field of the no mesons (for which
only a standing wave is possible).

In our case only the terms with p'=p+2k differ from
zero, where k is the wave vector of the condensate.

Omitting the spin indices, we have

6n'"'(r) = 6n"'(r) =n(' cos2kz. (5.14)

The quantity t2 with allowance for the nucleon correla-
tions is given by (Migdal, Markin, and Mishustin, 19'l6)

6n(r) = P (6p) „„e"~'+ (6p),„e "~'

Confining ourselves to terms of order a', it is easy
to obtain from (5.12) and (5.13), for the case of a stand-
ing wave

5. Singularities in pion interaction near the critical point

As shown by A. M. Dyugaev (1975), a long range pion-
pion interaction takes place near the phase transition
point. As a result of this interaction, the constant of
the effective 4-boson interaction A can reverse sign
near the transition point at a density n &n, . In this case,
a first-order phase transition takes place. As we shall
verify, this phase transition proceeds with a small jump
of the condensate-field amplitude a and therefore differs
very little from the second-order transition considered
above.

We confine ourselves below to a consideration of sym-
metrical nuclear matter (Z =Ã).

Let us present the results of Dyugaev (1975). He con-
siders first the mm interaction diagram corresponding to
exchange of two "dangerous" pions:

k' 0.15 k
co~ 1+0.23k' p~

(5.15)

S(r) = g (5p)g;0'„.(r)oe,(r).
u,'

Contributions to S(r) are made only by the matrix ele-
ments p», corresponding to absorption or emission of
an odd number of condensate pions. For the field (4.9)
in the lowest order in a we obtain

(5.16)

S,"&(r)=fk, C 1+g —4 —a coskg(„2'y k P y

7/ 2p+ ~0 ~F

In the case of Z «N, in a m~n condensate field of the
standing-wave type (4.9), the nucleon density is also
subject to modulation with a wave vector 2k and an am-
plitude, near the critical point, equal to

g2 L

n C

At the same time, in the field of a z,z condensate in
the form of a running wave, the density of particles
of each type remains uniform both at Z = 0 and at N = Z,
and the spin density is equal to zero. The reason is that
no off-diagonal transitions p-p +2k exist in such a field,
and the transitions with emission of one pion, for which
P-p+k, are accompanied by a change in the isotopic
index of the nucleon. It is easy to verify that in this case

where 4(x) is given in Eq. (3.30).
At the critical. values n, and k, and at the nuclear value

g = 1.6 we have

a n —n2
$' = 0.5 —,~-

v~ n,
We obtain in similar fashion the distribution of the spin
density of the nucleons in the condensate field

-ko

The quantity Ao is defined by the expression

id')d 'k, A'(k~, -k, ;k„-k,)
(2m)' [&u'-H —II(k (o))'' (5.1V)

In this expression A should be taken to mean the sum
of all the diagrams for which there are no two meson
lines with small total momentum in any of )he channels.
This A will be local (&-like) in the coordinate represen-
tation in terms of the differences of the coordinates of
the input ends. At k, =ko, the value of A coincides with
A(k, ) calculated in the preceding sections.

It is easily seen thai near the transition point, the
main contribution to the integral is made by the region
k I ko (d 0 In orde r to ve rif y this, we w rite down the
expression for II(k, u) as &u-0. In the real part of II
we can put u =0:

Deli(k, cu-0) = II(k, 0)[l+O(&u'))

ImII(k, u-0) =ImII (k, &u-0)

2m*p~ » vr I cu I

2kv~(l+g )'

where m* is the mass of the nucleon quasiparticle.
ln the expression for ImII it was assumed for simpli-

city that k«2p~. Then the inverse pion propagator takes
the form

D '(k, u& —0) = —uP (k) + i g
~
u ~,

where

and the imaginary part is the result only of the pole term
of II
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u7(k) = uP~+II(k, 0) = cd', + «
k3 k3 3

a-a. ' 4k:

7c' 2kvr(1+g )' vr(1+g )'
'k'

(5.18)
(sin«, r)' cd 2nu0

A (r)-- ' ~ exp ——'- rcpt»1.0 r3 ~ ~ I 0

This is indeed the long-range interaction referred
to above.

The pion interaction energy in the coordinate repre-
sentation takes the form

Using the form c03(k) near k0 (5.18), we obtain after inte-
grating (5.1V) with respect to cd A(r, r„r„r,)y(r)cp (r, )cp(r, )cp(r, )drdr, dr, dr, .

A 2 4mkodk
(2~)3 g c00+ «(k —k,)'

A'(1+g )'k0 1 co,

f '7cm * Mic c00 cd0
(5.19)

'The local interaction A corresponds to an energy term
equal to

Acp'(r)dr .

At m*=6.7, g =1.6, ho=2, and v =0.4 we have w,
= 0.05A.

Thus the quantity A, has a pole at the critical point,
when uo equals zero. Therefore diagrams of this type
become significant even before the onset of the second-
order phase transition, and must be taken into account
in all orders in A.

An examination of an analogous diagram with momen-
tum q in the horizontal channel would lead us to an ex-
pression of the type

A (q)=A
g(d + Kg

Changing over to the coordinate representation, we get

'The long-range interaction diagrams correspond to a
case in which two of the distances between the points r,
r„r„and r, are small, and the two others large.

here are three cases: any one of the three points ry,
r„or r, lies close to the point r, and the corresponding
term in H„ takes the form

A, (r, —r, )cp'(r, )cp'(r, )dr, dr3= —A, cp'cp'V,

where

A, (r)dr = A, (q = 0).

The quantity A, is determined by the sum of the l.ong-
range diagrams

Ao Ao+ 1 ~ 0 A + + + y ~ ~

Using (5.19), we obtain 2A 2(da4+ a'+ ' =0

3 1 —c0~/cd0

2 1 + cd~/(d0
(5.20)

It follows from this expression that A reverses sign at
c00= c0„and with further increase of the density (de-
crease of cd0) the system becomes unstable with respect
to a, first-order phase transition.

he transition point is determined by the condition
d@ (a')/da' = 0. Writing down the energy in the form

@(a)= —a+ —a + —g,~o 2 A c I" 6
2 4 12

where 0& p. -1, we get

1 —c0~/c00

Taking the field y in the form y =aW2sinkz and substitut-
ing in H,„, we obtain the expression H„=Aa'/4, where
A is equal to

hence

A2— o
Q = ——+

p, p. p,

At A' . (4)p Q2 p, , a real solution is obtained with a'
= c00&2/p, which corresponds to a minimum of S(a')
(the minus sign in front of the square root corresponds
to a maximum of 8(a'), i.e., to the unstable branch).

As shown by Dyugaev (1975), allowance for the quantum
fluctuations of the meson field leads to singularities not
only in A but also in other quantities. Thus, for example
near the critical point, the quantum correction to the
self energy of the nucleon becomes singular:

~Z, 1
Bg tp l ~p~ '(d p

6 ~g

It is clear that for a correct description of the vicinity
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of the transition point it is necessary to separate in suc-
cession the "dangerous" diagra, ms not only in 4, but also
in all the quantities having a singularity at , =0.

1. Nucleon energy in a coridensate field

We consider a m'+, m condensate field in the form of a
running w ave

V(r, &) = e- icot+zkr +1 ~+2

where a is real.
In such a field, a11 the m mesons wi11 occupy a single

state, with frequency u and momentum k, and all the m,
'

mesons populate a state with frequency -cu and momen-
tum —k. The N7/N interaction vertex I'o =i W2f( ko)r'"'
transforms a neutron with momentum p into a proton
with momentum p —k. Inasmuch as only these two nu-
cleon states take part in the processes, the problem can
be solved exactly. Writing down the system of two equa-
tions relating the proton and neutron states, -' we easily
obtain an expression for the energies of the new neu-
trons and protons (Sawyer and Scalapino, 1972). We have

B. A developed condensate

In this section we investigate an exactly solvable mod-
el of m. condensation, in which a condensate field in the
form of a running wave (4.8) is assumed. The energy
of this condensate can be obtained without assuming
proximity to the critical point. We consider in detail
the high-frequency approximation (w» kuz) within the
framework of which we can obtain analytically the crit-
ical parameters and the energy of the m condensate.

We discuss the model of a strongly developed conden-
sate, proposed by Campbell, Dashen, and Mana, ssah
(1975) and by Baym et al. (1975).

proton states, which shouM be accompanied by forma-
tion of a m condensate, would be possible only under
the condition co & i~', which is shown by Migdal (1973)
not to be satisfied up to very high neutron matter den-
sities.

Thus, in n,+m condensation, only the new neutron states
are filled. The Fermi surface S„'"' is then no longer a
sphere a,s in the normal phase. Its equation is obtained
from the condition

&'"'(p)
I -( )

= &~"' ~ (5.23)S n

The value of the exact Fermi energy &~~"' is determined
by the requirement that the total number of nucleons re-
main unchanged after redistribution in the condensate
field. The kinetic energy of the nucleons in the conden-
sate field, which enters into the effective Lagrangian'
(4.4), is obtained from Eq. (4.22).

The problem of determining the system energy in the
presence of a m', m condensate in the form of a traveling
wave can be solved without assuming small amplitude
of the condensate field. - The calculations are carried
out in the following manner. Equation (5.21) is used to
obtain the exact neutron energy i'"'(p) as a function of
the parameters n, ~, Q, and a . This energy is then
substituted in Eq. (4.22) for gN. Equation (4.4) is used
next to construct the effective condensate-field Lagran-
gian Z(a, k, u, ), from which the system of equations
(4.10) and (4.11) is obtained for the determination of a',
u, and k. Substitution of these parameters in (4.5) yields
the total system energy b (n) as a function of the nucleon
density n.

Determining the condensate energy density entails
computational difficulties and calls for the use of numer-
ical methods even in the simplified theory variants con-
sidered above (Baym and Flowers, 1974; Au and Baym,
1974).

Q~+ 6 ~&„g~+ Qp E~ —E )y g —hi
c " (p) = +

4f 2/ 2~2 ~ /2

(6 —E.
) ~(

—(d)

~"'(p) = +-( 6g + E )y-rl —~ &g —& ly+kl+ ul

2 2

4f 2/ 2&2 1/?

(x f+
(6 —E~ &~+a)

(5.21)

(5.22)

2. The high-frequency approximation: w && kv&

To illustrate the method of calculating h, (n) it is useful
to consider a less approximate variant of the theory, but
one tha, t admits of a simple analytic solution —the high-
frequency approximation (Migdal, Markin, and Mishus-
tin, 1976; Baym et a/. , 1975).

In this approximation, the frequency e of the conden-
sate field is assumed to be large in comparison with the
difference of the kinetic energies of the nucleons

„~, i.e., ur»kv&~'. From (5.21) and (5.22) we
obtain the single-particle energies of the "new" neutrons
and protons at m»&& —E~

The signs in front of the square roots are chosen such
that the e'" /'(p) coincides with the free particle energy
e'"'/'=p'/2nz as a 0. Since the inequality e,-& e~" holds
for this model, the filling of the new proton states is not
possible. Indeed, as shown by Migdal (1973), the trans-
formation of a small number of neutrons into protons
and exact excitations with quantum numbers of the m

mesons (n-P+ m ) leads to a change in the system ener-
gy

6$ =(~, —i~"')v,

where v is the density of the new protons, and is equal
to the density of the w mesons. The filling of the new

e'"&(p) =e ——(y-1), i'~'(p) =e + —(y+I)

4f2/ 2&2 1 /2
y= j+

It is clear that in this approximation the neutron Fermi
sea remains spherically symmetrical, and the new Fer-
mi momentum p~~"', by virtue of the conservation of the
total number of nucleons, coincides with the Fermi mo-
mentum p„'"' at a=0 and at the same total density:

P'"' = (2~&'"'+~~(X-1))'"=P'"'

From (4.4), taking into account the fact that at v& e~"'
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there is no filling of new proton states, we obtain

Q
&, =I:(~)—40)=

2
(&- I)+(~' —~;) 2

.
Varying 2, with respect to a', we obtain an equation

of motion that connects the frequency and amplitude of
the condensate field

92~ 2 2 2rif
2 —

2
= Z — + =0.s(a') ' (uy

(5.24)

~k g Q)p, 2

(5.25)

(5.26)

In the limit as a-0(@=1), the system (5.25) and (5.26)
coincides with the conditions that determine the critical
parameters of the w,'p condensation n'„k'„and ~,

&&II' ' k u)~2 —~2 —II' '(k ~) =0 2k+ ' =0'
sk

811' '(k, (o)
Geo

(5.27)

Here II' '(k, e) is the polarization operator of the &T

meson in the nucleon medium. In the considered case
II' '(k, cu) coincides with the pole part of the polarization
operator of them meson in a pure neutron medium (with-
out allowance for the nucleon correlations):
Ii&- &(k ~)» kv&" &= (2nf'k'/&u). From the system (5.27)
we obtain

The electroneutrality conditions in the absence of an
electric current (4.11) assume the form

~2 2nf 2k2 n ~2 ~2
—2(d —

2 + (p —1) —(a)Q 1 + 2
—0

&2 (o'y 2 (u'(1+ r)

er. The main cause of the instability, homever, is of
course the fact that in the derivation of (5.30) we did not
take into account the strong repulsion of the nucleons at
short distances ("cores") and the vacuum»» interaction,
which limits the amplitude of the condensate field at high
densities.

Even though it is crude, the high-frequency approxima-
tion turns out to be useful in tracing qualitatively the in-
fluence exerted on the parameters of the n,'m condensate
by such important factors as nucleon correlations, the
N* resonance, the S-wave mN interaction, and the vac-
uum»» interaction (Baym et a/. , 1975).

3. Model of a developed condensate

Calculation of the energy of a strongly developed m con-
densate with allowance for the N~ resonance and for the
nucleon correlations was performed by Campbell,
Dashen, and Manassah (1975) and by Baym et af. (1975),
who used the chiral-symmetry approximation.

An expression was obtained for the m-meson field La-
grangian with allowance of the N* resonance an/ the nu-
cleon correlations. Without taking the N* resonance into
account, the same result can be obtained from the Wein-
berg Lagrangian (Au and Baym, 1974). We derive first
the Lagrangian of the system without taking the correla-
tions and the N* resonance into account.

Substituting (4.19) in (4.18) and changing over to the
nonrelativistic limit, we obtain

1 kp- 1, —cos0
2m 32

(d 1—&,
2

cose+ —g„(~k)y, sing 4'

(5.28)
(k' —uP) sin'8+ 4m', sin'— (5.31)

At n&n'„using Eqs. (5.24) (5.25), and (5.26) without
assuming that we are close to the critical point, we ob-
tain the parameters of the m,'m condensate:

—1 ~ (d —(d =1~ k' = 1+
C C

(5.29)

Substituting the values of (5.29) in Eq. (5.1) for the
total energy of the system, we obtain the energy gain
connected with the formation of the new phase:

@(,& )
(n —n', )'

4n'
C

, n&n,'. (5.30)

It must be emphasized that Eq. (5.30) for 8 "'(n) is
only a rough estimate. That this estimate is unsatis-
factory is obvious even from the fact that at high den-
sities 8 "& ~ (-n'), whereas the kinetic energy of the nu-
cleons increases like n'~', so that a system with such a
condensate would be unstable with respect to a
limited compression ("collapse" ). This is connected
primarily with the fact that the approximation used by
us is quite crude. As seen from the presented values of
n'„cu„and k'„even at the critical point the expansion
parameter is not small: (kv~"&/&u)' =1/4, and as the den-
sity is increased the approximation becomes even rough-

~h~~~ g„=fP is the axial weak-interaction constant.
Here + is the Fourier transform of the nucleon-field

operator 4(r) with a momentum shifted by —kr, /2:

4' = d're '" '~'~&'C(r)

p + cos'8
2m 8m

cu — cos 8+g k sin 02 2 2 ~ 2

2 m A (5.32)

The eigenstates corresponding to the two signs (+) are
linear combinations of the neutron and proton states

lN '& = cos —"
l p, . ~ &+ i(ok)~ sin —ln„~ &,

2 "2 (5.33)

In isospin space, 4», is a spinor (pp &, /2n~ &, /2), where p~
and rs, are the annihilation operators for the bare proton
and the neutron with momentum p. The terms propor-
tional to»', in (5.31) describe the S-wave mN interaction,
and the term proportional to v'2 corresponds to P scat-
tering.

Diagonalizing the nucleon terms in (5.31), we obtain the
exact single-particle energies of the nucleons in the con-
densate field
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1

~N ) = cos —~n, .&) +i(ok)'sin —
~ P, . & ), (5.34)

where

g~ 0 tan&
tanX =

pk/m

Q:2
S,= ——n((u -g„k) —

8 [(k ' —ur')+ 2m', ]. (5.35)

Tbe condition 82/sk„=o for the absence of the 4-current
yields

&u = 2n/F ', k = 2g~n/I" (5.36)

The system energy change due to the z condensate then
takes the form

(5.37)

This expression is valid at n»n, .
One of the most important results of Campbell, Dashen,

and Manassah (1975) is the extension of the o model by
inclusion of the isobar N„(1232), which is regarded as
an additional "elementary" particle. This has alrea-
dy enabled us above, in Sec. IV.B, to find the contri-
bution of the N* resonance to the function A and the en-
ergy of the condensate near the critical point. %e shall
now demonstrate how N* influences the energy of the de-
veloped condensate.

The idea of including the N* resonance is based on the
following: The Lagrangian of the interaction of the nu-
cleons with the pion field ean be expressed in terms of
vector and axial currents.

H' = k"(V~ cos8 —A„sin8).

Added to these currents is the contribution of the N*
particles, calculated with the aid of the SU(4) quark mo-
del. The matrix elements II' over the states N*+', N*+,
p, n, N*o, and N* are given in Section IV. B [Zq. (4.25)].

At 8 = w/2, the matrix (4.25} can be diagonalized analy-
tically. Just as before, in this ease one Fermi sea is
filled, but now the baryon quasiparticles are superpos-
itions of states N and N*. The charge density
of the baryon subsystem remains equal to n/2, where n
is the total baryon density. For the condensate energy
in this case we obtain the expression

To find the effective Lagrangian and the energy of the
system, it is necessary to find the sum of the exact en-
ergies of the nucleons over the new' Fermi sea. This
problem is particularly easy to solve in the case 8 = n/2
(limiting condensate field a = E), which describes conden-
sation as n- ~. It is easy to verify that in this case only
states of the type N are filled, which in this case
(y = m/2) contain a neutron and a proton with equal
weights.

It follows therefore that at 8 = z/2, regardless of the
relation between N and Z in the normal phase, the num-
ber of bare neutrons and protons in the system is equal,
and the charge density of the bare nucleons is equal to
n/2. Since at 8= ~/2 there is no p, dependence of q~',
the Fermi surface is spherically symmetrical and the
calculations are trivial. As a result, the expression for
the effective Lagrangian takes the form

(5.38)

%e recall d =mE*- mN. For simplicity we have confined
ourselves in the derivation of (5.38) to the first two
terms of the expansion of the parameter 6/g~k, which is
small at hxgh density.

The next improvement of the developed-condensate mo-
del consists in taking the nucleon correlations into ac-
count. A method that can be used for this purpose was
proposed by Baym et al. (1975) and by Weise and Brown
(1975}. The result of their calculation reduces to tbe
fact that in the expression for the condensate energy it
is necessary to renormalize the axial coupling constant

(5.39)

where y is connected with the Fermi-liquid spin-spin in-
teraction constant g by the relation g =f'(2mPo/m2)y
(Po =1.92 is the Fermi momentum at normal nuclear
density).

We note that the simple result (5.38) was obtained un-
der the assumption that, up to Clebsch-Qordan coef-
ficients, the local amplitudes of the NN, NN*, N*N* in-
teractions in a nucleon medium are the same. This as-
sumption, however, is entirely arbitrary, inasmuch as
at the present time there is no direct experimental
information of the N¹ and ¹¹ interaction. As
can be assessed from the exper iments of Mountz
et al. (1975) on the (pp, nN*) reaction with large
momentum transfer, the local NN* interaction seems
to be much weaker than the NN interaction. %hile an
analysis of the spectral data of the m atom seems to of-
fer evidence of a noticeable NN* interaction. On the
other hand, no account was taken above of the suppres-
sion of the vertices at large pion momenta, which leads
to a decrease of the condensate energy. For the time
being it is impossible to take consistent account of all
these effects consistently, and we shall therefore use
for our estimate Eq. (5.38) with g~ from (5.39).

In concluding this section, we present an expression
for the condensate energy in the case when the system
is not electrically neutral. This will be useful to us
later on in the analysis of anomalous nuclei. %'e first
connect the frequency (chemical potential) of tbe pions
with the total charge of the system, &. Considering bare
particles the total charge is the sum of the bare baryon
charge (equal to A/2) and the bare pion charge (which is
negative). When discussing the excitations there are no
charged baryon quasiparticles and the total charge equals
the charge of the pion excitations (which is positive).
Hence from (4.6) one finds

where v=Z/A.
Using (5.35) one obtains

(g = (2n/E')(1 —2v), v —= Z/A.

Now, knowing the effective Lagrangian and its connec-
tion with the energy of the system (5.38), we easily
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obtain

E'm n'
+ ' +, (1 —2v)'. (5.40)

At v= 0 this expression coincides with (5.38). From
(5.40) we see that, at a given y, the lowest energy is
possessed by the system having a charge A/2, i.e. , in
the language of bare particles, by a system with a static
electrically neutral condensate. In the Language of pion
excitations, this charge is equal to the difference be-
tween the charges of the m,

' and p quasiparticles.

Vl. l3OES A CONDENSATE EXIST IN ORDINARY
NUCLEIC

So far, pion excitations and condensation have been
considered in infinite homogeneous nuclear matter. In
order to be able to apply these results to nuclei,
it is necessary to discuss the pion condensation
in a finite system. This task is facilitated by the
fa,ct that the instability of the pion excitation sets in at
a wave vector 0=—p~»1/R. Therefore, even in middle
nuclei, the influence of the nuclear surface on the con-
densation is not very large. We consider below conden-
sation ina sufficiently large spherical system. It be-
comes necessary to solve a nonlinear equation for the
pion condensate field in a nucleus in coordinate
representation. Outside the nucleus, the field goes over
into the solution of the free Klein-Gordon-Fock equa-
tion. An approximate analytic solution, valid near the
critical point, is obtained. Inside the volume of the nu-
cleus, a solution is obtained thai agrees with the case of
an infinite system and goes over, at a thickness «&R,
into the value of the field on the surface of the nucleus.
The volume part of the condensate energy coincides with
the energy of the homogeneous system. The resultant
surface condensate energy turns out to be proportional
to the cross section area perpendicular to the direction
of the wave vector of the condensate field, favoring the
orientation of the wave vector along the largest axis of
deformation of the nucleus. The condensation contri-
butes to elongation of the nucleus and can lead to shape
isomerism. The presence of a Layei ed structure could
lead to the appearance of rotational levels in spherical
nuclei. Inasmuch as the condensate field violates trans-
lational and rotational symmetries, Goldstone oscilla-
tion modes set in. The low'est frequency corresponds to
osciLLations of the wave vector around the axis of elonga-
tion. The mean value of the condensate field in a nucleus
with zero angular momentum is equal to zero. Only the
mean-squared condensate field differs from zero. There-
fore condensation would not lead to violation of parity
conservation in nuclei.

To establish the existence of a condensate in nuclei, it
is necessary first to ascertain whether this assumption
would contradict the known. nuclear facts, and then to in-
dicate possible experiments capable of proving or re-
futing the existence of condensate innuclei.

Even in the case when there is no condensate in the
ground state of the nuclei, it is of great interest to de-
termine the parameters characterizing the closeness

of the nuclei to condensation.
It turns out that the presently known experiments do

not contradict the existence of a condensate, and at least
indicate that the nuclei are close to condensation, .

Valuable information concerning the parameters of
mN and NN interactions can be obtained from the posi-
tions of the levels 0, 1+, and 2, which are strongly in-
fluenced by one-pion exchange. Information on the "res-
onant" part of the polarization operator (more accurately,
the non-pole P-wave part) can be obtained from an an-
alysis of data on the m atom.

Anomalously Large values of the matrix elements of
certain l-forbidden Ml transitions can be naturally ex-
plained as being due to the closeness of the nuclei to
condensation. Indeed, the probability of an I-forbidden
transition contains a term that has a pole at

~

m',
~

= 0.
A rough estimate yields

~
~g - 0.2, but this still

leaves open the question whether this value corresponds
to a condensate or whether u', &0 and the system is close
to condensation.

In the scattering of electrons by nuclei, anomalies
were observed and were explained by assuming a layered
structure of the proton density. If a condensate exists,
then it should lead to a layered structure having just the
period which is observed in experiment (an anomalous
behavior of the form factor is observed at a momentum
transfer q = 3 E ' = 2k,).

Experiments on the scattering of nucleons and pions
by nuclei, and also on the large-angle electron scatter-
ing, when the spin density of the nucleons acquires a
structure, can yield valuable information on the param-
eters that determine the closeness of the nuclei to con-
densation. Some other experiments which can determine
nuclear interaction parameters and can show the proxim-
ity of nuclei to the critical point are discussed.

A. Pion condensation in a finite system

An equation describing the condensate field in a finite
system is solved. The influence of condensation on the
deformation and on the moments of inertia of the nuclei
is discussed. It is shown that condensation contributes
to elongation of the nuclei and could lead to shape iso-
merism. Goldstone low-frequency modes produced as a
result of condensation are investigated. The frequencies
of the lowest oscillations are estimated. It is shown that
condensation in a finite system does not violate parity
conservation.

1. The condensate field in a finite system

The equation for the pion frequency, without allowance
for condensation, at u «1 and for N= Z, when ll(k, ~)—is
an even function of ~, can be written in the form (see
Sec. III.B.I.

where

co ~
= 1 + k'+ II(k, 0),
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In sufficiently weak fields and at low frequencies ((d «1),
the effective pion Lagrangian can therefore be written
in the form

(1 —(811/8(u')) y' —q (d'(k) (P f/('A(k) q
'

r 2 4

The isotopic indices have been left out for simplicity.
In the coordinate representation, to which we have

changed over, A(k) and ~(k) should be taken to mean dif-
ferential operators obtained after the substitution
k —(I/2)~.

The Lagrange function (6.1) yields the following equa-
tion for p.

(6.2)

We consider a finite system with dimensions R» 1/k„
where k0 is the wave vector corresponding to the con-
densate field of an infinite system. Then the Fourier
transform of the field y(r, t) in tbe finite system will
contain the wave vectors k= k, + 6k, where d k- 1/R.
Therefore the functions m2(k) and A(k) can be expanded
about k = k,. For A(k), the zeroth term A(k) = A(ko) =X
is sufficient, while 52(k) can be represented in the form

m = —CO0+ & 2 CO0&0 &&0.
(k' —ko)

4y2 s 0
0

(6.3)

For a static condensate field (we assume N= Sand co—n-
sequently the condensate is static) we obtain from (6.2)

{d (k) p 0 + X (I({()
= 0. (6.4a)

Using (6.3) we obtain (Migdal, Kirichenko, and Sorokin,
1974)

{III- ()'f{I"{=a (f{r') —
&
f*{I"{), (6.4b)

These relations are determined by the harmonic part of
the Lagrange function. The anharmonic term for weak
fields is given by

A(k)g

It is easy to verify that this solution satisfies Eq. (6.4b)
accurate to terms -V c. It corresponds to a spherical
layered structure of the condensate. The solution (6.6)
corresponds to a condensation energy

~ —S V+S

where S, is the volume density of the energy,

h, = —(d,'/6X, (6.7)

V is the volume of the nucleus, S is the area of the sur-
face, and S, is the surface energy

&.=-: 6lh. t. (6.6

The solution that corresponds to plane layers in the in-
terior is of the form

(k2 2 pl2){./2 j zl
I= th sin(z'+ &) (6.9)

the nucleons, and consequently the character of the be-
havior of the density at the edge of the nucleus has little
effect on the solution. It can be assumed for simplicity
that the nucleus has a sharp boundary. Substituting
(6.5) in (6.4b) and using the smallness of e, we can
easily obtain second-order equations for the quantities
a and X. The boundary conditions for the equation can
be obtained by joining together our solution with the so-
lution of the Klein-Gordon-Fo. ck equation in a vacuum.
It is easy to show that the slowly varying phase X is in-
essential for the calculation of the energy, while the am-
plitude can be obtained with sufficient accuracy from the
condition a= 0 on the surface of the system. For the sys-
tem energy we obtain after integrating by part

4u)40E= — ' f'dr.
gX

In a spherical nucleus with radius R» &, Eq. (6.4) has
a spherically symmetrical solution at e «1 in the form

f(r') = th sin(r'+ X); &= 2W2 = (2((:) '/'(k -r') . , 1,, 1

~k.

where

.f =—a = ——r'=k r4o. P0. 2 4 o.
+y2 u y 0 3 y & 0

0 0

))~~(R2p2)l/2))5 pl k(z/ 2 +yl 2)1/2

The energy corresponding to (6.9) is

f= a sin((t(, + y) (6.5)

where a and X vary appreciably over distances r on the
order of the 5- (1/We)(l/k, ). We see that the depth over
which the amplitude of the condensate field varies is
large in comparison with the distance r, 1/ko, between

We have seen that a0 is the amplitude of a periodic con-
densate field in an infinite medium. Near the critical
point we have e «1. %'e shall use below the smallness
of this quantity for an approximate solution of Eq. (6.4b).

We are interested in those solutions of (6.4b) which
have a constant amplitude a, far from the surface of the
nucleus (only such solutions make it possible to mini-
mize the energy) We consid.er two possibilities —spheri-
cal and plane layers f= sing„where Po= r' and z', re-
spectively. Then

E= S,V+ 2S,S„ (6.10)

where S, is the area of the equatorial section of the nu-
cleus. Expressions (6.7) and (6.10) are valid for spher-
Qldal &ucle1.

According to (6.10), in a deformed nucleus, the mini. -
mum surface energy corresponds to orientation of the
wave vector of the layers along the major axis.

It is seen that in sufficiently large systems (R» ~) the
solution (6.9) with flat layers is realized, since it corre-
sponds to the smaller surface energy.

The contribution of the condensate to the volume ener-
gy does not depend on the shape of the layers.

For light nuclei (R- 5), this "macroscopic" approach
is not suitable. As shown by Sapershtein et al. (1975),
in this case the pion instability (as a function of the nu-

I
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cleon density) sets in first for states with zero angular
momentum. In calculating the polarization operator of
the pion, summation over the quantum numbers of the nu-
cleon in a spherical nucleus was carried out instead of
integration over the momenta of the nucleon states (as
was done in an infinite system), and the constant
g'=g,' at which the instability sets in was determined.
The values of g,' obtained for medium and heavy nuclei
are practically the same as in an infinite system.

2. Deformation and moments of inertia of nuclei in the
presence of a condensate

We consider a heavy nucleus in which a plane-layer
structure (6.9) was produced. Since the condensate in-
crement to the surface energy is proportional to the
cross section of the nucleus, the presence of the con-
densate will contribute to elongation of the nuclei along
the direction of the wave vector of the layers.

Inasmuch as the cross section contains a term that is
linear in the nuclear deformation, the dependence of the
nuclear energy on the quadrupole-deformation param-
eter P is given by (Migdal, Kirichenko, and Sorokin,
1974)

rigid-body value I,:

0
(6.12)

p' mf 'a'k 1
2m 4 p,' —(k'/4) (6.13)

In the semiclassical approximation it is easy to con-
nect p, with the projection M of the angular momentum.
Directing the x axis along the radius vector of the parti-
cle, we have

M =0 M = —yp M =y p .M =y p M =M cos28

whence

p =p sin gcos y = —p (6.14)

From (6.14) we get

where e„—e„„is the difference of the energies for
neighboring projections of the angular momentum of the
particle on the direction of the layers, and 6 is the pair-
ing energy or the energy gap in the doubly magic nucleus.
The difference between the single-particle energies is
obtained from the expression for the nucleon energy in a
periodic field y,

(6.11)

Account must be taken of the well known fact that rigi-
dity to small deformations (P&A '~') is determined by
the disarrangement of the shell structure and is of the
order of o.'(0) a~A, whereas rigidity to large deforma, —

tions (P&A ' ') is determined by the surface energy of
the system and, as follow s from the semiempir ical
formula for the binding energy of the nuclei,
o.(p) -(1/6)@~A' ' i.e., it is much less than o, (0). It is
easily seen that E(P) has a minimum at low deformation
po = 47tH'8, /3n„and that at 8~R'8, /3 & (d(np')/dp), „a
second minimum is produced at large deformation, and
could lead to shape isomerism. We note that if the sec-
ond minimum exists as a result of shell effects, then
the condensate makes this minimum deeper. However,
a minimum can appear even if it is not called for by the
shell calculations. We note here also that the initial ri-
gidity of the nucleus may turn out to be so large that,
by virtue of the smallness of the equilibrium deforma-
tion P„ the corresponding rotational band falls in the re-
gion of the single-particle energies, i.e. , becomes un-
observable. Choosing by way of estimate the values
X —= 10 (see page V8 above) and using for the estimate of
a'-

~
ug /X the value

~

a', ~

= 0.2 (see p. 121), we obtain
P, - 10 '-10 ' for A = 100.

However, even if P, -0, the formation of flat layers
leads to violation of spherical symmetry and consequent-
ly to the appearance of the moment of inertia in the
spherical nuclei. For a noticeable moment of inertia to
be produced it is necessary that splitting of the single-
particle energies with respect to the projection of the
angular momentum in the field of the layers be compara-
ble with the pairing energy, or else, in the case of dou-
bly magic nuclei, with the distance to the first levels
(Migdal, 1974).

Using the results of Migdal (1959) it is easy to obtain
an estimate of the ratio of the moment of inertia I to the

f2~2k2

[I+g-@(k/2p )]' (6.15)

The last factor takes into account the interaction between
the nucleons. Using the estimate of a' given above, we
obtain

(6.16)

In the case of ordinary deformation we have
(1/Io)'~'-P&~/jA. Thus we see that the layered structure
is equivalent, in the sense of the moment of inertia, to a
deformation P-0.1. Of course, these numbers are only
by way of illustration.

Let us trace the mechanism whereby the Goldstone
modes are produced. To this end we derive an'equation
for the oscillating field. To obtain this equation

3. Goldstone oscillation modes

The appearance of the field y, signifies breaking of .

various symmetries. Owing to the coordinate dependence
p, (r) =a sinks", translational symmetry is broken. The
existence of a preferred direction indicates violation of
rotational symmetry. Finally, in the case of an isotopi-
cally asymmetric field po, isotopic symmetry is viola-
ted. It is seen that violation of continuous symmetry in
an infinite system leads to the appearance of an oscil-
lation mode with zero minimal frequency (the Goldstone
theorem). In a finite system, this theorem leads to os-
cillations with frequencies that tend to zero like a cer-
tain power of the radius of the system. Thus, for ex-
ample, violation of rotational symmetry in a deformed
nucleus leads to the appearance of a rotational spectrum
with a minimum frequency
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in simple form it is necessary to represent p in (6.2) in
the form y= y0+ y' and retain the first term of the ex-
pansion in terms of y'. Indeed, if an oscillation of a de-
finite type, for example with fixed wave vector, is weak-
ly excited, then its amplitude is of the order of the am-
plitude of the zero-point oscillations for one degree of
freedom, i.e. , it contains the square root of the volume
of the system in the denominator. From (6.2) we obtain

the angle between q and ko. At q ff ko we have

4Kq

1 — 2
end

and at q, &k

Kq

[1 —(BII/B~') ] k',

(6.21)

(6.22)

, f q '+w'(k)q'+3xqoq'=O.2
II I ~2 I

~

20
I ~~ I

eco ) (6.17)

As a result we obtain an equation independent of y'. The
oscillation frequency, as a function of the wave vector

lS

(6.18)

Here k = (1/i%).
If the wave vectors that play an important role in y'

ax'e DlucI1 smaller than k0y tllen p( ln tile third term of
(6.17) must be replaced by its mean value. Using the re-
lations obtained in (6.4b), we get

3X

In a finite system, the lowest oscillation corresponds
to q,„-R, with q„-q,- 1/R, so that the minimal oscil-
lation frequency is determined by the terms containing

min 1 (Bll/B 2)

and for

~=0.4;I —,", —fll
f

where ~ is the average distance between levels of pion
symmetry (the exact value of BII/B~' may be obtained
only by the methods of the theory of finite I'"ermi sys-
tems; we have used 4-10-20 MeV), we have

'
x. + ~'(k) 'x -x~'(k)(

8II 8 .. 8 8

k=k ~X ex
0so= 0

(6.20)

We consider first the case of an infinite system and
let X be characterized by a wave vector q. Then, using
(6.3), we can easily obtain from (6.20) the following ex-
pressiqns for the oscillation frequency:

q'+ 4(qk, )'
[1-(BII/B~')]k', '

At smq. ll q, the frequency depends essentially on

The presence of the condensate consequently stabilizes
the oscillation (&g' &0). This expression corresponds
a finite minimal frequency (w'-~20) and is not related
to the Goldstone oscillation mode. The se oscilla-
tions exist as after as before the condensation
and their frequency is strongly diminished by the
factor 1/(1 —BII/Bu&') (see below). To see how the
Goldstone modes arise, we differentiate Eq. (6.4a) for
p with respect to the coordinate x (x ffk) Migdal, 1973):

~'(k) ~'+n. q', ~'=0.9 9
(6.19)

Bx ~x

Here again k= (1/&&).
Comparing this relationwith (6.17), we find at y'- Byo/Bx

the oscillation frequency of q' vanishes. In a finite
system, — the wave vector of the oscillatio~ can be chosen
to be equal to k, accurate to ak-1/R. Therefore the
minimal oscillation frequency vanishes only as B-,
and at finite A, as we shall show, it depends on B in
power-law fashion.

To estimate the oscillation frequency, we represent
p' in the form

p'= ~'x9
~X

where X is a slowly varying function. Multiplying (6.19)
from the left by x and substituting in (6.17), we obtain

0.2 30
comfn ~g /3 ~g/ 3 MeV+

Thus this oscillation mode is mixed with particle-hole
excitations of the same symmetry and cannot be ob-
served. Kirichenko and Sorokin (1976) have estimated
the frequencies for various types of Goldstone oscilla-
tions, which should appear in the nucleus if a conden-
sate were to exist.

They reached the conclusion that the lowest minimal
oscillation frequency corresponds to oscillations of the
directions of the layers relative to the elongation axis.
The following expression is given for the frequency of
such oscillations

6P(2/~)'~'

R(k,R)'(1 — ~ )
(6.23)

4. Quantum character of a condensate field in a finite
system. Parity conservation

In an infinite system, the condensate field can be re-
garded as classical, i.e. , it has a definite value at each
point of space.

In a finite system, as we have seen from the example
of condensation in an external field (Sec. II), the ground
state of the system is characterized by a wave function
with zero mean value of the field. The condensation
manifests itself in the fact that the mean square value
of the field is large positive and negative values of the

where P is the deformation parameter.
For P= 0.2 and cu', = —0.2 (see page 121) we obtain

ru„, -0.4 MeV. It should be noted that Eq. (6.23) is valid on-
ly so long as co„, exceeds the frequency of the rotational
levels (m„,&1/I) Observation . of such a level would be
a serious argument in favor of the existence of a con-
densate.
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field at a given point are equally probable. Indeed, let
us represent the field operator y in the form y=q4,
where 4'(r) gives the coordinate dependence of the field
in the ground state (the solution, corresponding to the
lowest state; of the Klein —Gordon-Fock equation in a
field). Then the ground and the excited states are de-
termined, as we have seen, by the wave function X(q),
which describes the motion in two identical wells sep-
arated by a potential barrier. The ground state corre-
sponds to a symmetrical wave function y.,"'(q), and the
first excited state to an antisymmetrical function Z", (q),
which constitute approximately a symmetrical and anti-
symmetrical superposition of the lowest states in each
of the wells.

As we have seen, the energy of the first excited state
is exponentially small

(2.17)

In a sufficiently homogeneous system we have

and consequently the first-excitation energy decreases
exponentially with the volume of the system. Thus, in
a sufficiently large system, degeneracy sets in and in-
stead of X,"' we can take the ground state to be
X~""=y~"'+y~"'/v 2. One of these states corresponds to
predominantly positive values of q, and the other to pre-
dominantly negative values. The mean value of the field
y is nonzero and of opposite sign in these two states.

Equation (2.17) permits a reasonable estimate of the
first-excitation energy (analogous to y,"') also for the
case of a nucleus. For 4 one should choose the solution

2
sink()x

V

which is normalized to unity volume, and therefore

3
V2

For the constant X we can choose the value obtained from
the estimates given above (Sec. IV, p. 78), &=10. The
quantity u' should be replaced by -~20 =

~
&3(ko)

~

2.

The value of ~' is unknown. For the sake of argument,
all estimates containing coo here and below are made un-
der the assumption that a condensate with ~0= —0.2 ex-
ists (see page 121). Approximately the same value cor-
responds (&u2O= —0.1) as we shall show, to the assump-
tion that the anomalies in the scattering of the electrons
by nuclei are due to scattering by a layered condensate
structure.

Substitution of these numbers in (2.17) yields

~& ~ =0 20e ~ 6 ~~ =28e 0 96 ~ MeV

At A = 50 we obtain co'~ = 17 MeV, i.e., a rather large
value. At this energy, the decay into particle-hole ex-
citations would lead to a smearing of this level, and it
would be difficult to establish it. However, ~"'= 4.1 MeV
already at A = 200, and a level can appear (a state
with quantum numbers of the pion). Of course, this esti-
mate is only illustrative, since the employed value of

uo is perfectly arbitrary, and the value of A. was esti-
mated accurate to a factor -1.

Both the ground and the excited states of the conden-
sate, if it exists, have a definite parity and therefore the
presence of the condensate with (y) =0 would not violate
the classification of the nuclear levels by parity.

B. Experiments that make it possible to determine the
closeness of nuclei to condensation

It is shown that the known nuclear facts do not exclude
the possibility of condensation, and apparently offer
evidence that the nuclei are close to the critical point.

By reproducing the positions of the levels
0, 1,2, . . . it is possible to refine the constants of the
mN and NN interactions. The constants assumed by
Migdal (1972, 1973) and by Migdal, Markin, and Mishus-
tin (1974) do not contradict these data. An analysis of l-
forbidden M1 transitions makes it possible to estimate
the closeness of the nuclei to the critical point.

It is shown that the anomalies in electron scattering
by nuclei might be attributed to the layered proton-den-
sity structure due to condensation. Possible experi-
ments on nucleon and pion scattering by nuclei, capable
of yielding information on the parameters that determine
the condensation, are discussed.

Does condensation contradict the known nuclear
facts'

The assumption that a condensate may exist in nuclei
(Migdal, 1972) has raised many objections (Barshay and
Brown, 1973), which were analyzed by Migdal, Markin,
and Mishustin (1974) and by Migdal (1973). I.et us list
the most important of these objections. A statement was
made that allowance for the repulsion of the nucleons at
short distances should lead to a strong decrease of the
mN interaction in the nucleus and to a change of
Migdal's estimate (1972) of n, . As we have seen, the
NN interaction is taken into account in the polarization
operator by introducing the constantg . This means that
the mNN vertex of the interaction is assumed to be
weakened

V'(w, NN) = g, (mNN) v~(vr NN)
I+g @(k, 0 2, 6 (6.24)

It is this weakening which is caused by the repulsion of
the nucleons at short distances. However, instead of
calculating this repulsion with the aid of the NN inter-
action in vacuum, we determine the corresponding can-
stant in the theory of finite Fermi systems empirically,
from a comparison with other processes containing an
interaction of the same symmetry as in the case of
mNN. Indeed, the constant g enters in the renormal-
ization, in the medium, of all the vertices having the
symmetry of the pion (the vertex -o„~8). This method is
much more reliable than calculations based on the theory
of nuclear matter, since the latter does not take into ac-
count the distortions of the one-pion exchange due to
many-particle interactions (see Sec. IIIA). It is surpris-
ing that the value of g obtained in such calculations
(Barshay and Brown, 1973) turns out to be not greatly
different from the empirical value (g = 1.2—1.4 instead
of g = 1.6).
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The example used to refute the mN approximation as-
sumed by Migdal (1972) is the shift of the 0 level in 0".
The level energy is E= 12.78 MeV, whereas the energy
of the particle-hole excitation obtained from the mass
differences of the neighboring nuclei of 0", is 12.42
MeV. Thus, the interaction results in a positive energy
shift DE=0.36 MeV. The shift was estimated with the
aid of the one-pion exchange diagram

The value b,X = —4.8 MeV (Barshay and Brown, 1973) was
regarded as contradicting the interaction assumed by
Migdal (1972). In this estimate no account wa, s taken of
repulsion at short distances. The level shift is deter-
mined by two types of diagrams

(6.2 5)

The second of these diagrams gives the contribution of
one-pion exchange with allowance for repulsion at short
distances [Eq. (6.24)], which decreases the modulus of
the foregoing value of AE(-4.8 MeV), namely

4.8AE, = —
( )2 MeV.

The first term in (6.25) is the sum of all the interac-
tions that do not contain one-pion exchange in con-
sidered channel. That is, owing to the repulsion at short
distances, the first term of (6.25) makes a positive con-
tribution to the level shift, AS„, =—1 MeV. This results
in a reasonable estimate of the observed shift.

We present below several examples of calculation of
the energy shifts in different nuclei by the method of the
theory of finite Fermi systems. It is shown that the in-
teraction constants assumed above make ii possible to
explain the observed energy shifts.

Another objection was that the attraction due to one-
pion exchange should have led to an enhancement of the
spin part of the magnetic moment, whereas experiment
has yielded a suppression. A detailed analysis of the
influence of one-pion exchange on magnetic moments will
be given later on. Here we present a simple qualitative
reasoning, which shows that there is no contradiction to
the suppression of the magnetic moment. First, one-
pion exchange influences only that part of the magnetic
moment which has 07 symmetry. In spherical nuclei,
as we shall show, this influence is noticeably weakened.
Nonetheless, the role of one-pion exchange manifests
itself in the fact that the weakening of the corresponding
part of the magnetic moment is determined roughly by
the relation

S
~8 I"o

1 +geff

with a constant g, ff = 1 instead of g = 1.6. This. weaken-
ing of the repulsion interaction is due to ihe influence of

ihe one-pion exchange. Thus the phenomena considered
here not only do not contradict the interaction constant

- values assumed above, but have provided a confirmation
when a more thorough analysis is made.

Moreover, analysis of the probabilities of /-forbidden
Ml transitions (see below) shows that the nuclei are ei-
ther close to condensation or have a weak condensate.
Nor is the possibility excluded that the observed anom-
alies in the scattering of the electrons by the nuclei are
the result of the condensation-induced layered structure
of the nuclear matter. We consider below possible ex-
periments that can decide whether a condensate exists
in nuclei, and if it does noi, they can establish how close
the nuclei are to condensation.

V = V, + FA V = V, + I'A V, (6.26)

Here F is the effective interaction in the nuclear matter,
A is the (quasiparticle —quasihole) pair propagator. The
second term in (6.26) describes the additional field re-
sulting from polarization of the medium. I is the NN
scattering amplitude in the medium.

The energy levels are determined as the poles of I (or
V). Particularly simple in form is the energy of the
particle-hole level

(6.27)

where e„ is the quasiparticle energy. The second term
yields the level shift due to the interaction of the quasi-
particle and the quasihole. In those cases when the ef-
fective field corresponding to the considered process has
pion symmetry, it is necessary to take into account the
contribution of the one-pion exchange to the NK inter-
action. The same pertains also to the energy shift of the
particle-hole excitations.

If the state XX' has pion quantum numbers, account
must be taken of the contribution of one-pion exchange
to the amplitude I'. A comparison of the theory with ex-
periment can serve as a check on the correctness of the
chosen interaction constants and make it possible to as-
sess the closeness of the nucleus to condensation or
whether a condensate is present. Phenomena of these
type include magnetic P transitions and the renormaliza-
tion of the spin magnetic moment, Gamow-Teller tran-
sitions, and spectra of nuclei in states T = 1,0, 1+,2, . . .

We consider first the influence of one-pion exchange
on the level position. The quantity I", as we have seen
in Sec. III, is determined by the following diagrams

2. influence of one-pion exchange on the spectra and
probabilities of the transitions

The effective field acting on a nucleon inside a nucleus
differs from the external field because of the polariza-
tion of the medium. The probabilities of single-particle
transitions and the mean values of the additive quantities
in the nucleus are expressed in terms of the matrix ele-
ments of the effective field V. In symbolic form, the
connection between the effective field and the external
field Vo is-given by
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(6.28)

The quantities I", and 9 „by definition, do not contain
one-pion exchange in the considered channel, and the
blocks are connected by the exact pion propagator in the
medium. According to (6.27), the single-particle level
energy shift is

&) x' —~x+~y' =

dkdg'
(+~+a ) «I (&, &')(+z+~ )-«(2 )6

(6.29)

where (%&4' )» is the Fourier component of the product
of the particle and hole wave functions.

For a rough estimate of the level shift we use for I'
and V', Eqs. (3.39) and (3.40), which were obtained for an
infinite system. Thus the first term in (6.28) is positive,
i.e., it corresponds to repulsion and leads to a raising
of the level in comparison with the difference of the sin-
gle-particle energies. The. second term is equal to

By averaging over the spin variables and using Eq.
(3.39), we obtain

(6.30)

bution of the repulsion at small k is approximately equal
to the contribution of the attraction at large k, so that
the resultant shift turns out to be small, and can be of
either sign. The shift of the single-particle 12.78 MeV
0 level in 0' was estimated by Sapershtein and Troit-
skii (1976), whereas from the masses of the neighboring
nuclei of 0" it follows that the energy difference E), —c),
of the noninteracting quasiparticles is 12.42. The level
shift is DE=0.36. It turned out that the observed shift
does not contradict the values of f and g chosen above.

Sapershtein and Troitskii (1976a) carried out a de-
tailed calculation of the spectra of the considered type in' 'Pb and ' 'Ti. using the methods of the theory of finite
Fermi systems. The values of the constant g' at which
the calculated frequency coincides with the observed one
were obtained. It was assumed that the renormalization
of the constant f of the medium is equal to f* =0.9f. The
results for ' 'Pb are summarized in Table III. The val-
ues obtained for "'Ti at E„„=4.21 are 4 e = 4.09 and g'
= 0.81. A deviation is observed only for "'Bi (E. ~

= 3.65,
b, e = 3.57), where the shift is too small (E —ae =0.08)
to be explained. It was assumed in the calculation that
I"„, which characterizes the change of the mN~N vertex
in the medium [Eq. (3.14)], is equal to unity.

The identical values of g' in the four cases offer evi-
dence in favor of the chosen set of constants (g
f= 0.9, I's = 1).

The level shift is determined by the value of I" at co=0.
Thus the term I" " makes a negative contribution to the
level energy. The amplitudes I', (k) and I'i I(k) become
comparable at k' - l. I" '

(k, &u = 0) has a maximum at
k =ko=P~ =2, inasmuchas co'(k) =co2«+II(k, 0) has amini-
mum near ko. Of course, Eq. (6.30) is valid only if con-
densation has not yet set in. In the presence of a con-
densate w'(k, ) &0, but a term 2~&@ (ko)~ is added to
II(k, 0), so that the denominator has the same sign be-
fore and after the condensation.

-The sign of the energy shift depends on the relative
contribution of the large and small k to the Fourier ex-
pansion of the product of the wave functions

In all the investigated cases it turned out that the contri-

3. Magnetic moments

We proceed to an analysis of the magnetic moments
and magnetic transitions. The operator of the spin part
of the magnetic moment of the nucleon is of the form

(~) 1 73 1 + 73y„+y&

Thus p, ~'~ contains a term p.,(y« —y„)~,a/2, which has o7.
symmetry. To find the magnetic moment of the nucleus
it is necessary to obtain the effective field corresponding
to the bare fields o and ev. One-pion exchange and the
local interaction g = 2g' enter only in an effective field
of the form m'. We consider first the effective field pro-
duced from an external field -m when the one-pion ex-
change is turned off

TABLE III. Comparison of the experimental shift of the siagle-
particle levels with that calculated with allowance for one-pion
exchange.

+ 0 ~ ~

0 5.28

7.2 0.9
0.9

0.85

0.87

0.82

E)„i=Ac

(, , S,"(,) = 5, 46

&&= &&a"~&2»6"g2&=5 84

&& = (2geg, 2f5g ~) = 4, 00
V, ' (~) = u, (~)v vs+ v,(x), " vq.(„8) (re)r „ (6.31)

Calculations show that the functions u, (r) and v, (x) are

The field V, does not contain pion diagrams in the hori-
zontal channel. In the coordinate representation, the
field V, consists of two terms
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of the same order. The NX interaction corresponding
to one-pion exchange, Eq. (3.41), contains the angles be-
tween the spin vector and the wave vector. It is easy to
verify that for this reason the one-pion exchange renor-
malizes only the second term of (6.31).

If the field V, (x) has been determined, then the effec-
tive field, with allowance for one-pion exchange, is
equal to V), g = ()Ig(0'k)7'8&g ) „v(k, (d))k

d'k
(6.34)

In this case, the only term of V that makes a non-
zero contribution is of the type (o'r)r„, which is greatly
enhanced by one-pion exchange.

Qualitatively, this enhancement is determined by Eq.
(6.33) with u, =0. Indeed, the matrix element can be re-
presented in the form

= V, + v, O(r~ V,)

(6.32)

1+2g'(P
(Tk)

1+2g'(P

V"(k) =u(k)v +v(k) —,"(Tk) k„

Summing over the spin variables in the parentheses of
(6.32), we readily obtain

u(k) =u, (k),

~(k) =~,(k) II, (u, (k)+t, (k))
(d) k

(6.33)

where H~ is the pole part of the polarization operator.
The magnetic moment in the state A, is determined by the
matrix element Uzz of the effective field. The part of
the magnetic moment of interest to us (-Ov) is

~(s) ~ e " Vo

Integra»tion over the angles yields

(Or)z
y2

(-I)'2i
2k+ 1

At large K, the contribution of the one-pion exchange
can be estimated by using, as was done earlier, the for-
mulas of an infinite medium. We write V, and 9, in the
form (we omit the isotopic symbols for simplicity)

V, (k) =u, (k)o „+v, (k)
(Fk) k

with &=a~ —e~ . Neglecting the ratio ~'/(d', we arrive
at Eq. (6.33) under the sign of the integral with respect
to k. If the nucleus is close to condensation, then u'(k)
is close to zero at k-=k„and under a favorable distri-
bution of (4 „*(0'k)7')Id~, ) ~ with respect to k, an appreciable
increase of the transition probability can occur. The in-
fluence of one-pion exchange on /-forbidden transitions
was considered by Sapershtein and Troitskii (1975, 1976).
A comparison of theory with experiment shows that the
observed probabilities of the l-forbidden transitions ex-
ceed in some cases by dozens of times the results of
calculation without allowance for one-pion exchange.
Unfortunately, it is difficult to draw definite conclusions
from this analysis concerning the values of the constants
of the theory, but the general result is that the nuclei
are very close to the phase transition, the possibility
not being excluded that a small condensate is present.

Using information from the particle-hole level shifts
and the l -forbidden transitions, it is possible to estab-
lish the correct values of the interaction constants and

'thus obtain the critical density. In the case when the l-
forbidden transition is anomalously large, it must be at-
tributed to the role of the second term in (6.33); more-
over, a strong increase of the matrix element is possi-
ble only in the case of an anomalously small value of u, .
Let us find the contribution made to the integral (6.34)
with respect to k by the region k - ko, where the pion
propagator has a pole.

We write the matrix element of interest to us in the
form

(d»)'(», »»)d» ) = d).'(d(d)»-
a (k)

We separate the integral into regular and'singular parts.
Let the pole of the denominator correspond to k =k, (k, = ko)

at large j. Therefore the contribution of the term
-( r)or ~8 is much weaker than that of the term -v„v().

Thus one-pion exchange exerts an appreciable influ-
ence on the magnetic moments only in the case of small
j. In states S,~, the experimental values of the magnetic
moments deviate systematically from those calculated in
the theory of finite Fermi systems without allowance for
one-pion exchange. It is possible that allowance for one-
pion exchange can explain these deviations and yield
better values of the constants g' and f*/f.

Inasmuch as the first term does not contain a pole, its
contribution will correspond to the "background" of rel-
atively small values of the transition probabilities.
Large values can come only from the second term.

Using the expression (d'(k) = u', +~(k' —ko)'/4ko and in-
tegrating with respect to k, we obtain

(+) V+) ) = (@~V+x )~.g+&(k.)/l~ol ~)(' ~

4. /-forbidden transitions

One-pion exchange plays a much more important role
in the case of /-forbidden Ml transitions. The transition
probability is determined by the matrix element Vzz. ,
and in the case of I-forbidden transitions we have l' = l + 2.

According to (6.33) we have B(k,) =A(k, )ll~(k, ) at u=0.
In addition, since the region of the integration with re-
spect to k is b'ounded, on account of the properties of
4')„by the values k=2P~, we have (k~VC), ) ~„-A(P~)P~.

As a result we obtain the following estimate for the
transition probability:
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To determine the effective pion optical potential we use
the expansion

Thus the appreciable enhancement of the transition prob-
ability should be attributed to the smallness of the de-
nominator in (6.35). At B/IT=—20 we obtain lcu',

I

—0.2. If
condensation has set in, then 11(k, u) acquires a term
Ay,

' that causes I&vol to replace ~o both before and after
condensation, and Eq. (6.35) remains valid in the pres-
ence of a condensate. Therefore an analysis of the in-
tensity of the /-forbidden transitions cannot answer the
question of whether condensation took place, but can
establish the proximity of the nucleus to the critical
state. Is there another explanation of the anomalously
large probabilities of the L-forbidden transitions'8

It is possible to apply to Gamow-Teller P transitions
also the arguments advanced concerning the magnetic
moments and l -forbidden M1 transitions. For allowed
transitions one-pion 'exchanges are important only for
low angular momentum initial si.ngle particle state. One-
pion exchange makes the largest contribution in the case
of I-forbidden P transitions. In this case, resonant
enhancement of the transition probability are also
possible.

5. Pion optical potential

Information on the pion polarization operator in a nu-
cleus can be obtained by analyzing data on the m -atom
spectra.

From these data we can determine with high accuracy
both the real and the imaginary part of the pion optical
potential. Since small momenta play the significant role
in the wave function of the m-mesic atom, it suffices to
retain in this potential the constant term, which is con-
nected with the S-wave 71' scattering, and the term
containing the square of the pion wave vector (i.e.,
AC, ). The pion optical potential is expressed in terms
of the polarization operator II(k «1, ~ =—1). The wave func-
tion of the pion satisfies the Klein- Gordon-Fock equation:

~e, + [(~ V)' ll (k, ~ - V) —1]e, = O, (6.36)

where V is the potential of the electric field and k = (I/i)7.
At small k and at co = 1 the pole term makes a small
contribution, since 4(k« 1, ~=—1) = k'v~/3~' [see Eqs.
(3.3) and (3.22)]. We therefore have at N=Z

II = II„,(k«1, (u
——1) =n(A~(t =0)l ~+A~, (t =0)1~ ]'

where I~ is the vertex, introduced above, for the NmN~

interaction in a medium, I'~, is the analogous vertex for the
second term, which takes into account the contribution to P
scattering by the distant resonances. If a condensate
does exist in the nuclei, then a term 3A(k, k,)yo is added
to the polarization operator. We have seen that A- k' at
small k, so that the additional term takes the same form
as the term due to I' scattering, but differs from it in
sign. If it were to turn out that I'~ contradicts other
experimental data, then this would be an argument in
favor of the existence of the condensate (Troitskii et al. ,
1975).

For simplicity we confine ourselves to the ca.se N=Z.
Then

rI =nA'.

11(k, ~) =11(0,1)+, (~' 1)+, k'.&H

Bk

Putting u —U = 2 and substituting the expansion of II(k, a)
in (6.36), we obtain

1+ (BII/ak )-k /, )
+, + ((3' —1)4', = 0 . (6.37)

Changing over to the nonrelativistic limit, we obtain

aC, +2(E —U)+, =0

i.e., the Schrodinger equation with energy

(d —1
2

and with potential

1, (a 11 /sk') + (all/a ~')
2[1-(sll/8 )]

where V is the Coulomb potential.
The role of the optical potential is played by thequant-

ity (we neglect the small term —V'/2)

(BA.'/8k~) + (BA'/8~2)
out 2[1 + (s~s/s 2)]

We have neglected so far the variation of the scattering
amplitude in the medium. Using (3.17c) we obtain

BA BA.

Bk 8Qp

As a result, the coefficient of k /2 is equal to
-1.9n/(1+ 1.1n) = -0.6 at n =n .

Experiment yields 0.7—'0.9. It should be noted that
the coefficients in (3.17c) had not been determined with
sufficient accuracy.

6. Scattering of electrons by nuclei. Scattering of
nucleons and pions

The nucleon-density modulation due to n. condensa-
tion (Sec. V. A) exerts an influence on the electric form
factor of the nucleus. It will be shown that these mod-
ulations cou1d explain the experimenta11y observed
anomalies in the e1astic scattering of electrons. We
shall consider the shell density fluctuations and show
that they cannot account for the singularities of the
scattering without a special choice of nucleon-nucleon
interaction parameters. For the simplest configuration of
the condensate field, in ihe form of a standing wave, the
density of either the neutrons or the protons takes the

To separate the principle effects, we regard for the time
being the operator k' a.s a number, i.e., we neglect the
change of density at the edge of the nucleus [allowance
for the n(x) dependence introduces corrections of the
order of A' ']. We have used in (6.37) the fact that
II(0, a = 1) is negligibly small because of the smallness
of the scattering amplitude at the threshold. Equation
(6.37) can be rewritten in the form

(sll/sk') + (all/s(u')
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form

n(r) =~(I+ ('cos2k, z)

where g' is given by (5.15)

sin2k, r '

n(~) =n, (r) 1+ ('
uo

(6.38)

Before we estimate the contribution of these density
modulations to the amplitude of electron scattering by
nuclei, we recall how these experiments were analyzed
(see, for example, Bellicard et a/. , 1967; Heisenberg
et a/. , 1969; Sinha et a/. , 1973; Li et a/. , 1974). The
proton density distribution was chosen in the form

(0)
1+ (W9 /R )

1+ exp j(r —R)/5)
(6.39)

The constants W, A, and 6 were chosen to obtain the
best description of the experimental data in a wide in-
terval of sma. ll q(q & 2F '), while the constant n~(0) is
determined by the condition Z = f n~dr. The scattering
cross section for large q was calculated after finding
the constants. The net result of all the experiments is
that in a narrow interval of q, near q = qo = 3 I ', a
large deviation from the cross section calculated from
the distribution (6.39) is observed, amounting some-
times to an order of magnitude. A similar phenomenon
has been observed in proton scattering (Palevsky et a/. ,
1967; Alkhazov et a/. , 1972). In this case, too, the
cross section deviates at q=3 I ' from the calculated
value obtained with the aid of the optical potential.

The variation of the cross section in a narrow inter-
val of q seems to point to the existence of the periodic
structure of the density, of the type (6.38), for all the
investigated nuclei. Consider by way of illustration
the Born approximation. The essential part of the Born
form factor, corresponding to the distribution (6.39), is
equal to (at qR» 1)

E(q) =—,cosqR ~ 4 (~q5 ) ——3 g' sin(q —2k, )R
q- 2~0 (6.40)

where g(x) =x/sinhA. . The experimentally observed
change of I means that at q = q, we have

= 24' (77q05) cosqoR.

('=5 9 cP=
c

In See. VI. A we have shown that this result, obtained
for an infinite system, should remain in force also in
medium and heavy nuclei, and is distorted only in a
layer 6 «A near the surface of the nucleus.

As we have seen (Sec. VI. A), the direction of the
layers is closely tied in with the direction of the nuclear
deformation. In the rotational ground state, averaging
takes place over t'he direction of the deformation and
the direction of the layers. Indeed, the wave function
of the deformed nuclei constitutes a product of the wave
function in terms of the internal variables by the wave
function in terms of the angles determining the nuclear
orientation. Therefore in elastic- scattering experi-
ments, when rotational levels are not excited, a density
distribution averaged over the angles of the vector ko

will be produced, namely

The experimental value of (' obtained from this condition
is of the order of (5—8) x 10 '.

We shall show that shell fluctuations of the density ean
apparently not explain the observed variation of the
cross section. Shell modulations of the density can be
obtained analytically in the semiclassical approximation
(see, for example, Kirzhnits and Shaptakovskaya,
1972). The corresponding form factor is a smooth func-
tion of q. This smooth function is taken into account
automa, tically to a considerable degree in the analysis
method used to reduce the scattering experiments.
Addition of a smooth function of q leads only to a small
change in the empirical distribution constants (6.39).

To verify this, the following computational experiment
was performed. The proton distribution function for' 'Pb and Ca were obtained with the aid of the 4 func-
tions of the individual nucleons in the Woods-Saxon
model. This was followed by a Fourier analysis, i.e.,
the Born-approximation form factor corresponding to
the obtained density distribution was determined. In
addition, as is done in the analysis of the experiments,
the distribution parameters (6.39) giving the best agree-
ment with the form factor at q & 2 E ' were found, after
which the form factor was calculated for q & 2 F '. The
deviations of the form factor corresponding to a smooth
distribution fromthe true form factor are small and are
distributed in a broad interval of q.

It should be noted that there exist shell-fluctuation
calculations in which, at the cost of introducing an in-
teraction that contains arbitrary parameters, it be-
comes possible to reproduce the form factor at
q = 3I' ', butat the same time, the agreement for small-
er q becomes much worse (Friar, Negele, 1973; Bethe,
1974).

More complete information on the layered structure
could be obtained in experiment on the scattering of
electrons by oriented nuclei. Experiments of this kind
were performed on ' 'Ho (Urhane e/ a/. , 1971), but the
momentum transfers were too low. In these experi-
ments, the orientation of the nuclei led to orientation of
the quadrupole moment, inasmuch as the odd proton in
Ho has an angular momentum projection on the elonga-
tion axis m =j (j = —). Since the direction of the layers
is connected with the elongation direction, the orienta-
tion of the nuclei means also orientation of the layers.
This should lead to an increase of the diffraction by
the layers in comparison with the case of layers aver-
aged over the directions. It should be noted that ac-
cording to Kirichenko and Sorokin (1976), in the case
of a weakly developed condensate the direction of the
layers executes zero-point oscillations relative to the
elongation direction, and these can greatly weaken the
effect.

We note that experiments on large-angle electron
scattering would make it possible to observe the layered
magnetic structure in the nucleus, corresponding to the
periodicity of the spin density of nuclear matter. The
corresponding maximum of the scattering cross section
should correspond to q =k, =1.4 j' ', i.e., to a momen-
tum transfer half as large as in the case of scattering
by the charge distribution. The layered spin structure
could also manifest itself in experiments on the scat-
tering of m mesons and protons by oriented nuclei.
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Significant information on the closeness of nuclei to
condensation could be obtained from elastic scattering
of protons by the pion field produced by the odd nucleon
of the nucleus. The interaction of the scattered nucleon
with the ood nucleon is determined by the diagrams

If the nucleus is close enough to condensation, then
V~~ (q), as is readily seen, has a. sharp maximum at
q(~ =0, k =ko). The separation of this maximum would
make it possible to obtain the value of ~, and by the
same token establish the parameters that determine
closeness to condensation. It was shown by Troitskii
(1977) that in the presence of the condensate with the
amplitude cP =0.04 the probability of one-nucleon ~
capture should be increased by 100 times.

Important information could be obtained from the
angular distribution of the photoproduction on nuclei
(M. Ericson, private communication). If the condensa. te
exists, the photoproduction amplitude as a function of
q=k& —k„should have amaximum at q=k, which cor-
responds to a, process involving the condensate.

The value of A characterizing the 4-pion interaction
in a medium determines the amplitude of the condensate
field, if condensation did take place. In addition, as we
shall show in Sec. VII. A, knowledge of the value of A
provides an answer to an important question —is there
an instability point on the plot of the energy? Yet, as
we have seen, it is only possible to estimate A. It
would be therefore extremely important to determine
this quantity directly from experiments of pion scatter-
ing by nucleons, the scattering amplitude containing the
term

in Sec. VII. B). Section VII. A deals next with the possi-
ble stability of supercharged nuclei (Z ~ 137'~'). The
results obtained by considering z condensation in an
electric field are used. The energy gain due to 71 con-
densation offsets in part the Coulomb energy. The pos-
sibility of v', ~ condensation is limited by the screen-
ing of the nuclear field due to the restructuring of the
electron-positron vacuum for a nucleus with a large
charge.

The possibility of nucleon-antinucleon instability in
dense nuclear matter (the Lee model, 1974), due to
interaction of nucleons with scala. r mesons, is analyzed
at the end of Sec. VII. A. It is shown that the constant
of this interaction, no matter how large it may be, is
renorrnalized in the medium in such a, way that in-
stability arises, if it does at a, ll, only at very high
densities pg ~ 100&go.

The second half of Sec. VII, which is based on work by
Migdal, Markin, Mishustin, and Sorokin (1976),
is devoted to clarification of the stability conditions of
the superdense state relative to evaporation of parti-
cles, fissiotx, and P decay. The results of Campbell,
Dashen, and Manassah (1975) and of Baym et al. (1975)
are used to determine the pion energy, and those of
Pandharipande (1971) for the energy of the nucleon med-
ium at large nucleon densities without allowance for the
condensate. Interpolation formulas are set up sepa-
rately for pion and nucleon energy, and combine the
results for small and large densities. With the aid of
these formulas, the energy and density of the super-
dense state of nuclear rnatter is determined, and the
regions of stability with respect to fission and P decay
are evaluated for different values of the constants of the
theory.

Possible ways of observing superdense nuclei are
discussed.

A. Anomalous states of nuclear matter

p+q

In addition, A could be determined from experiments
of the type (~, 3n) on nuclei. This would yield the inter-
action in the final state in nuclear matter rather than the
vacuum, i.e. , the value of A.

Vll. z CONDENSATION AND POSSIBLE EXISTENCE
OF ANOIVIALOUS NUCLEI

In the first half of Sec. VII we present arguments
favoring the existence of superdense nuclei, by using
the expression for the nucleon-system energies at den-
sities close to n, . This discussion follows that of Mig-
dal (1971,1974). For definite values of the constants of
the theory, the compressibility reverses sign at the
critical point and the system should be compressed until
it goes over into a state with positive compressibility.

The energy, density, and stability conditions of this
state cannot be obtained in such an approach —it is nec-
essary to know the energy of the system at densities
much higher than n, (these questions are considered

It is shown in this section that at reasonable values of
the constants introduced into the theory, ~ condensa-
tion makes nucleon matter unstable —the compressibility
becomes negative. This instability occurs both at Z
m N (superdense nuclei) and at Z «N (neutron nuclei).

We discuss the question of the possible stability of
nuclei with charge Z ~ 137'~' (supercharged nuclei).

We analyze the possibility of instability of nucleon
matter relative to production of nucleon-antinucleon
pairs (the Lee model). An estimate n, —100 n~ is pre-
sented for the critical density of this process.

8 (n ) = S~ (n) + $„(n ), (7.1)

where $~(n ) is the nucleon energy density without al-
lowance for the n condensate, and $~(n) is the conden-
sate energy density, which at densities 0 & n —n, «n,
takes the form

1. Superdense and supercharged nuclei

We shall show that allowance for n condensation can
lead to the possible existence of two minima on the plot
of the energy density $(n) against the density n. We
write down the energy density of nuclear matter, with v

condensation taken into account in the form
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&.(n) =-(p/2)(n- n. )'

As we have seen in Sec. VI.A, n, =-n and P -1.
The first term of g(n) has been calculated in numer-

ous papers on the theory of nuclear matter (e.g. , Bethe,
1974). It has turned out that at 1U'=—Z the $»(n ) curve
has a minimum at a density nooclose to the nuclear
density no

We assume first that a condensate already exists at
nuclear density, i.e. , n, & no. Then, expanding the
energy density in powers of n —no, we obtain

g( )
p, (n —n', )' p(n —n, )'

2 2

we obtain from the condition (dg/dn)„„=0
n, —n ,'= (p/p, )(n, —n, )«, —n, ~ (7.3a)

We now consider the case when n, &noo. Then g(n) has
a minimum at n =no I.f P, & P, then this minimum is a
single one. On the other hand if P & Po, then a second
minimum must exist. Indeed, in this case, at
n =n &n„a maximum appears, with n determined
by an expression similar to (7.3a):

$(n) —h(n, ) = 2," —p(n, ) (n —n, )' n,„—n', = (p /p, )(n,„—n, ) . (7.3b)

+ — «-3 —(n-n, ) .1 d'8» dP
6 dn ' dn

(7 2)

The coefficients of (n —no) is connected with the
volume rigidity of the nuclear matter

K d 8 K~
n o Etta no

If P(n ) is an increasing function of n at n» no, then the
coefficient of (n —n, )' may turn out to be negative. In
this case a maximum appears on the b(n) curve at

K
n p npK

where g is equal to

3 dp 1 d'g»
Gn

With further increase of the density, the growth of the
condensate energy weakens and the g(n ) curve begins to
grow. In addition, at a sufficient increase of the density
the repulsion at short distances becomes appreciable
and 8»(n) increases sharply. A second minimum should
therefore appear on the 8(n ) curve (Fig. 15) at nano.
This sign of z is regarded as natural in the paper by
Migdal (1974). Certain model calculations seem to
argue against this possibility. For example, in a run-
ning-wave model without allowance for additional nuclear
interactions, the condensation energy density takes the
form 8, (n) = -(n —n, )'/4n„ i.e., P = 1/2n, and dP/dn = 0.
Thus, in this model rc &0 and consequently there is no
second minimum a,t n, &n.

It follows from (7.2) that at n & n, the condition

K/n =pa —p & 0

With further increase of the density, as already men-
tioned, the growth of 8(n) resumes and $(n) is minimal

n min nm&x '
If the first minimum corresponds to ordinary nuclei,

then the nuclei should have a density nooand have no
condensate. A discrepancy between the observed den-
sity no and the calculated value no is then attributable
not to the condensate but to the inaccuracy of the cal-
culations. On the other hand, if the second minimum is
more stable and a density n,.„corresponds to ordinary
nuclei, rather than n„ then the results should be
noticeable inequality np = n;„&np. The author does
not plan to pass judgment as to whether the parameters
introduced into the calculations of nuclear-matter en-
ergy can be chosen such that n, turns out to be, say,
no= n, /2. A developed condensate should then exist
in the nuclei. Metastable nuclei with anomalously low
density could exist in such a case (with n =noo& no).

Thus, at no & n, and at P & Po the second equilibrium
state exists only at e & 0 (which is doubtful). At n, & no
and at P & Po, there is one equilibrium state with n =noo,
and at P & Po there are two equilibrium states with den-
sities np and n,.„. If the nuclei correspond to np =n p,
then one should seek a second state with higher den-
sity. On the other hand, if the nuclei correspond to
np =n;„, then there should exist a state with an ano-
malously low density n =no.

2. Neutron nuclei

For simplicity we shall disregard the complicated
density dependence introduced into the condensate en-
ergy of a neutron medium by w' condensation (Sec. V),
and write the energy density h,"'~ in the same form as
for the case of nuclear matter with Z = X.

should be satisfied. Owing to m condensation, the den-
sity n, differs from no. Writing h(n) at no& n, in the
form

@(„)( )
p„(n-n, )'

2 (7.4)

N Z

FIG. 1,5. Plots of energy den-
sity of a nucleus with (N=Z)
against the density n, with
allowance for condensation.

where p„=—1, n,
' &n, &n, , n,' and n,' are the

critical densities of the m,
' and g,+m condensations, and- np. In contrast to the case N=Z, the function g~"

has no minimum —no neutron nuclei exist without allow-
ance for the condensate energy. From the calculations
of the energy of nuclear matter we have

(d gg ~/dn)„„=20 MeV =0.15.
fl ~alt ITI I A Then 8 " (n) =h»" (n)+8," (n) has a maximum at

n = n „,where n „is determined by the condition
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FIG. 16. Plot of the energy.
density of neutron nuclei
against the density n, with
allowance for condensation.

no

Ii 8(n)
Z&&N

where

Expanding II(k, ~) in powers over ~ and using only the
first terms (which is correct if

~
V

~ «kg~), one has

[(1—all /a(u')jp' —cg'(k') ]4 = 0. (7.7)

dS~ ~(n) 0 n, „—n, (dh/dn) (7.5)

Here ~2(k2) =1+k2+II(k, 0) has a minimum at k =ko.
Using this equation for ~, multiplying it by 4, and in-
tegrating it is straightforward:

3. Supercharged nuclei

In a nucleus with Ze /» 2m„c which corresponds to
, Ze'~ 1, m'm condensation should occur (Sec. II.A). The

gain of the condensate energy may exceed the Coulomb
repulsion energy and those nuclei would be stable. In
fact the depth of the Coulomb potential well cannot reach
the value 2m, c due to the screening effect of the vacu-
um electrons created near the nuclei at Ze'& 1. The
distribution of the vacuum electrons ("electron conden-
sation") was considered in Muller, Rafelski (1975) and
Migdal, Popov, and Voskresenskii (1976, 1977). At
Ze'» 1 the proton charge is screened by electrons in-
side the nucleus, and only the surface charge in a thin
layer near the nuclear surface remains. Thus the Cou-
lomb energy is considerably suppressed by electron
screening. Nevertheless the kinetic energy of electrons
makes a positive contribution to the nuclear energy and
leads to the instability of these nuclei.

A greater release of energy is obtained in the case of
one-pion condensation when the proton charge is

J

screened by m mesons. But even in this case the en-
ergy of the nucleus is still positive [Chernoutsan,
Voskresenskii (1977)]. The stability of supercharged
nuclei apparently cannot be provided by the pure elec-
tric condensation. One should take into a.ccount the
strong interaction and consider the condensation with
the wave vector ko corresponding to the minimal value
of oP(k)

If the critical density n, only slightly exceeds the
normal density no, then m condensation may appear in
a normal nucleus. In fact, consider for simplicity the
case N =Z. The m meson energy is determined by the
equation

(1+k'+II(k, (g) —(g')q =0, (v.6)

With further increase of the density, the growth of the
condensate energy becomes weaker, andinaddition, re-
pulsion forces come into play. As a result, a minimum
is produced at n nmin nmax Thus, at a density
n =n, „ there exists a nuclear-matter state with positive
compressibility (the question of the stability of this
state is discussed in Sec. VII. B). This means that with
a sufficient number of neutrons, when the surface ef-
fects can be neglected, neutron nuclei with density
n = n,-„can exist.

A pure neutron state will acquire a charge because
of the process n -n +m,+ +e+ v and, as we shall show in
Sec. VII.B, can go over into a P- stable state with
Z &(N(N ) 10 ).

(u'(k')
~ —2~co — ~ + t/

1 —&II/O Q)
(7.6)

The bar means averagingover ~@'~ and (4' ~' assumed to
be normalized to 1. It foliows from this equation that

-2 x /2
=V+ t/ —V + -- =—V+

1 —BII a~~ (v.9)

Thus the field V shifts the system towards condensa-
tion. The w condensation starts at ~ = 0. Therefore
the condensation may occur in the region of stable nu-
clei if

For highly charged nuclei, fission instability is most
important. Fission stability is possible only if the Cou-
lomb energy is considerably suppressed. This means
that the m charge should be of the order of Z. As we
have shown [Migdal, Voskresenskii, and Chernoutsan'
(unpublished)], at A - 1; Z„=Z at Ze'- 1. Thus the con-
siderable suppression of the Coulomb energy at Ze'-1
can lead to the stability of supercharged nuclei. The
relation between the energy of these nuclei and the en-
ergy of superdense nuclei with the same charge re-
mains open. We hope to consider this problem in more
detail elsewhere.

4. Instability of nucleon field (the Lee model)

Lee (1974) considered a system of nucleons interact-
ing with a field of scalar mesons. The corresponding
Hamiltonian is

It was assumed that scalar me sons exist with mass
M „=-MN and with an interaction constant g = 15. Of course,
at such a tremendous interaction constant one cannot
speak of determining the system energy in analytic
form, and only guiding considerations are possible.
Lee (1974) considered for this purpose an expression
for the system energy in the self-consistent-fieM ap-
proximation, which is valid when g «1. I'he main
result of his approach was that at n =n, = M~M /g
the matter becomes unstable to the production of nu-
clear pairs, and this leads to the appearance of a new
stable state of nuclear matter with density n=—n, -=2no.

We shall first repeat Lee's results in a form more
convenient for our purposes, and then show that a more
realistic analysis shifts the critical density into the re-
gion n, - 100n, where repulsion at short distances plays
a dec.isive role.

Rev. IVlod. Phys. , Vol. 50, No. 1, Part I, January 1978



A. B. Migdal Pion fields in nuclear matter

For simplicity we consider nonrelativistic nucleons.
Then our results are exact at densities on the order of
those of the nuclei, and will be of the correct order of
magnitude in the region where the instability of the nu-
cleon field appears. We introduce the energy density as
a function of cpa and n (yo is the static field)

~' V'n$(n, y, ) = h ~(n ) +gn y, +

Minimizing with respect to yo, we obtain

(7.10)

which corresponds to taking into account the interaction
between the nucleons onaccount of y-meson exchange
(in the lowest order in g'). The effective potential acting
on the nucleon as a result of the field yo is

& h, (n ) g'n
8pg M„

Instability sets in when this field "eats up" the mass of
the nucleon and, consequently, the critical density n, is
equal to

The effective field V acting on the nucleon at a nuclear
density n, (q, =0.5) and g=15 corresponds to a well depth
equal to

2

V =— '=—300 Mev.

It is clear that this well has no connection whatever to
reality, and consequently the second term in (7.10), if
it does exist at all, shouM be almost completely can-
celed by the repulsion present in $~(n).

At a constant g = 15 and ( = 10, we must give up a,s
hopeless any attempt to calculate the system energy.
We can, however, car.;"y out a very convincing phenom-
enological analysis that makes use of the properties of
nuclear matter at densities n=e, .

We first present a rough estimate of the lower limit
n„which follows from the condition of equilibrium of
nuclear mat ter at a nuclear density eo.

Writing the total energy density near n =n, in the form

we obtain from the stability condition

= M~M /g2 . (7.11) d'g 2&~

This formula coincides with the expression obtained by
Lee (1974).

An analysis of this type is not convincing for a number
of reasons. First, the interaction is very strongly re-
normalized in the medium. Let us find the parameters
characterizing this renormalization.

We consider by way of example one of the diagrams
determining the polarization operator of mesons in a
medium at co = 0 and A; -0. We obtain

where y includes all the nuclear interactions at n- no
(the interaction introduced above, y =g '/M'„}.

For the critical density we have

3%2g 'Do
n, = —& — ' -30vo

y 2&~-

Let us trace in greater detail the restrictions imposed
by the condition of nuclear matter stability at n =no.

We rewrite S~ in the form

II(0, k —0) =

The meson mass renormalization is given by

dnM' =M' —g' =M'(1 —()

where Q(n) contains the entire interaction, including the
influence of repulsion at short distances.

Variation of 8 with respect to density yields

Thus the role of the parameter determining the re-
normalization is played by the quantity
4=(g'/M~„)/(d+Id&z)„~ „—= 10. Yet it follows from (7.12)
that the equilibrium condition is $( 1. At g =1, insta-
bility of the meson field sets in and the matter begins to
become compressed. Indeed, the denominator of the
second term of (7.10) will contain not M2, but the quan-
tity M2 (1 —f), which vanishes at $ = 1, and d'h /dn' be-
comes less than zero (negative compressibility).

Of course, the calculation of all the essential diagrams
at ( ~ 10 is an insoluble problem, but the qualitative
result is as follows: there are two possibilities: (1)
allowance for all the diagrams leads to a change of sign
of the interaction between the nucleons and to an effec-
tive interaction constant g', « —-1, (2) the system- is un-
stable and will be compressed until repulsion at short
distances cancels out the attraction. Thus, either the
interaction constant g,« is small (g',«-1), or else re-
pulsion must be taken into account in addition to attrac-
tion.

C

We estimate d@/dn from the condition for the stability
of nuclear matter at e=n, . We have

0

d g 2 &~ d (f& g
dn~ 3 n de M

K
P — 0 )0

n0

It follows therefore that

&o -2- — =&0+ —&Z .

It is the increment to E~ which is the effective field
acting on the nucleon near the Fermi surface. There-
fore the condition of instability with respect to pair pro-
duction is determined by the relation
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Thus dP(n)/dn increases in the region n-n„with in-
creasing ~, more rapidly than ~. In the region of large
n, the growth of d@/dn increases because of repulsion
at short distances. If no account is taken of m conden-
sation, there are no grounds whatever for expecting a
nonmonotonic increase of dQ/dn. Therefore the quantity
g'n/M'„— dP/dn should decrease with increasing n and
should reverse sign at n ~n, . Thus the condition (7.13)
is not satisfied, and the system remains stable with
respect to nucleon-pair production. This phenomeno-
logical analysis, in contrast to that of Lee (1974), does
not mean the use of perturbation theory, and the term
g 'n/M'„ is separated from the interaction energy only to
compare our conclusions with I ee's results. Lee at-
tempted to take the repulsion into account by excluding
the region of small distances between the nucleons. The
influence of repulsion on the effective potential acting on
the nucleon is then lost. It appears that this is the
reason why the value obtained by Lee (1974) for the
critical density is too low. Owing to n condensation, the
growth of the effective field ceases to be monotonic, but
even in this case the effective potential is of the order
m, and is insufficient to compensate for the nucleon
mass. Thus there are no grounds for expecting nucleon
instability, at least up to very high densities (-100 n, ),
at which new phenomena can set in (for example, con-
densation of heavier resonances).

B. Stability of anomalous nuclei

Interpolation formulas are obtained for the energy of
the baryon subsystem and for the energy of the con-
densate at an arbitrary density; at n- ~0 and n» n, these
formulas coincide with the well known expressions.
Conditions are formulated for the stability of the anom-
alous nuclei with respect to fission, particle evapora-
tion and P decay. Two stability regions are possible:
at small A with Z/A —= 1/2 (superdense nuclei) and at
large A with Z/A«1 (neutron nuclei). Curves of the
nuclear energy against density are plotted. At certain
parameter values, a minimum corresponding to the
existence of stable or P-active superdense and neutron
nuclei can appear on these curves.

The accuracy of the theory is at present insufficient
to conclude definitely that such nuclei exist, but this
existence is feasible for a reasonable choice of nuclear
constants. Possible ways of observing superdense and
neutron stars are discussed.

1. Energy of a nucleus with allowance for condensation
as a function of the density

The energyof asystem of A nucleons with charge Z
and with density n, reckoned from the sum of the nu-
cleon masses, can be written in the form

E(~,A, v) =as(n, v)A+ a~(n, v)A'~'+ ao(n)v'A'~'+e (n, v)A,

(7.14)

where v =Z/A and Z =Zs+Z„ is the sum of the baryon
and piori charges. The terms proportional to A 3 and
A'/' correspond to the surf ace and the Coulomb energy.
The last term is the energy connected with the appear-
ance of the pion condensate.

We shall neglect the corrections necessitated by
pairing, def ormation, and shell effects. The quantities
in (7.14) were calculated for two limiting regions:
1 —2 v «1 and v «1. As we shall see below, it is pre-
cisely these regions which are of greatest interest.

We consider the case 1 —2v«1 and obtain first the
baryon energy. In the density region n —~, &no, the
volume part of the baryon energy can be expressed in
terms of the compressibility of nuclear matter K. We
have

es(n, v) = —e, + n(n)(l —2v)'+ — 1 —— (7.15)

where e, =15.7 MeV=O. ll; n(no) =25 MeV=0. 18. Ac-
cording to the theory of finite Fermi systems, K is ex-
pressed in terms of the constant f, of the NN interac-
tion

0.].4x ~

es(x) = —O.ll+ 0.3Vx+ 1 (7.16)

where x=(n —n, )/n, . The function (7.16) at x&1 and v

=1/2 coincides with expression (7.15), and at x =6.36
(n = 7.35yg, =1.25$' ') it is chosen such that it coincides,
together with the first derivative des/dx, with the re-
sults of the calculations of Pandharipande (1971). The
surface term in (7.14) can be estimated under the as-
sumption that the width of the surface layer depends
little on the density. Then the surface energy is pro-
portional to the energy per unit volume. We have

n '~' e(n, v)
n, e(n„—,') (7.17)

at ~ =n, and v = —,', this expression coincides with the
corresponding term of the Weizsacker formula. The
factor a~, which determines the Coulomb energy under
the assumption that the charge is uniformly distributed,
has the following value in pion units.

l. /3
a@——5x10 (7.18)

For the condensate energy at v= —,
' we have in the case

K= —', &~(1+2fo),

where f, =0.25, whence %=40 MeV=0. 29 (Osadchiev and
Troitskii, 1968).

At large densities ~» n„a strongly developed con-
densate is produced and the baryon system is substan-
tially restructured: the two (neutron and proton) Fermi
spheres are replaced by a single Fermi sphere of a
baryon quasiparticle constituting a superposition of six
baryons N"'', N* ', P, n, N*', and N* (see Sec. V.B).
The potential energy of these quasiparticles is deter-
mined at high densities by the short-range repulsion of
the baryons. If it is assumed that this repulsion is the
same for all the participating baryons, then the baryon
energy, at sufficiently high densities, should coincide
with the energy of the neutron matter without allowance
for condensation. This energy was calculated by Pand-
haripande (1971).

Under this assumption, the volume part of the baryon
energy can be expressed, in the entire interval of the
densities n, in the form of an interpolation formula:
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of low densities n —n, & n, (Sec. V.A)

8, p (n —n,)'~ (n)= —'= ——
2

(V.19)
p = z/A. f'/f Pic

TABLE IV. Parameters that determine the condensate energy
{Eq. (7.23)].

In the case of high densities, w'e can use the expression
obtained by Baym et al. (1975) for the case of a devel-
oped condensate (Sec. V.B).

We have

e,(n, v) =&,(n)+ o.,(1 —2v)'

81
~ (n) = — —f'(1 —r)n ——,. 50 3

0.5
0.5
0.5
0
0
0
0

0.9 0.45 0.54 0.69 1.47
0.9 0.5 0.65 0.81 1.34
0.9 0.55 0.79 0.89 1.19
0.9 0.45 0.69 0.80 0.91
0.9 0.5 . 0.79 0.63 0.78
1 0 4 0 48 1 19 1 42
1 0 45 0 54 1 11 1 26

0.32
0.49
0.63

-0.20
-0.21
-0.05
-0.08

-1.10
-1.02
-0.93

0.09
0.06

-0.18
-0.07

~&'&= "--=0.14—
2I'" 2 n

(V.22)

where & = mN~ —m = 294 MeV = 2.1.
In these expressions, I =1.35 is the pion decay con-

stant. The ~N interaction constant is connected with the
constant I" and with the axial constant g~ by the relation
f=g~/I'. As shown by comparison of theory with experi-
ment, in ordinary nuclei, a weak renormalization
f -f '=0.9f takes place (Migdal, 1965). This renormal-
ization is taken into account in the calculation presented
below.

The quantity y takes into account the contribution of the
nucleon correlations, and is connected with the constants
g and g' introduced above by the relation

g 2@I f t2 0 y—2 VEp

p(n) (n —n, )'
2 B

(V.23)

where P, is the Fermi momentum at normal density
(po =1.92).

We have omitted from (7.21) the term E2/4n, inas-
much as in the region. of the densities of interest to us
it is almost completely cancelled-by the second term of
the expansion of the condensate energy over the parameter
&/g~h, where h is the wave number of the condensate
field.

In the derivation of (7.21) it was assumed by Baym et
al. (1975) that, up to Clebsch-Gordan coefficients, the
local amplitudes of the NN, NN*, and N*N* interaction
in a nucleon medium are the same. This assumption,
however, is theoretically unfounded. At present there
is no direct experimental information on the NN* and
N*N* interactions. It appears that the local NN+ inter-
action is much weaker than the NN intera. ction, as fol-
lows from experiments on (PP, N*n) scattering with
large momentum transfers (Mountz et a/. , 1975).

Allowance for this fact would lead to an increase of
the condensate energy. Qn the other hand, Baym et al.
(1975) did not take into account the suppression of the
NN+ vertex, which leads to a lowering of the condensate
energy.

It is at present impossible to take all these effects in-
to account. We shall use (V.21) as a reasonable estimate
of &, at high densities.

Equations (7.19) and (V.21) can be written in the form
of an interpolation formula suitable in the entire range
of values of n of interest to us (for v-= 2).

where

Bo. n
p(n) =A. + '+ C—;

2. Stability conditions

We formulate the equilibrium conditions that must be
satisfied by a finite system of particles at zero pres-
sul e.

(1) A positive mass defect

-S' &0. (7.24)

This satisfies automatically the condition that the nu-
cleons be bound, i.e. , that the chemical potentials of the
neutrons and the protons be negative

&0 pp= & 0

It is easy to verify that at E&0 the chemical potentials
of the nucleons are positive, and consequently the sys-
tem is unstable with respect to particle evaporation.

(2) P equilibrium (the electyons a2e fusee to leave)

(7.25)

(3) Stability zoith respect to pressure. e

z'—& 50f(n, v) . (V.26)

The right-hand side of this inequality is determined by
the ratio of the coefficients in the surface a.nd Cou-
lomb energies.

On the basis of (V.17) we have

The coefficients A, B, and C are given in Table IV.
They are such that the values of P(n) coincide with the
results given in Table IV at n =n, , and that e,(n) together
with da, /dn coincide with (V.21) as n/n, -~.

We proceed now to the case v«1, which we shall need
in order to assess the stability of neutron nuclei.

For the baryon energy we can use, in the entire density
interval, the results of calculations for neutron matter
(Pandharipande, 1971).

For the pion energy we use the condensate energy near
the critical point, calculated in Sec. V.A, and for. large
densities we use Ecis. (7.20), (7.21), and (V.22) with
v « l. Again, writing an interpolation formula for e,(n)
in the form (V.23), but with different coefficients A, B,
and C, we ca,n find the condensate energy in the entire
density interval.
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0.2—

0 I-

Z = —A
I

2
f = 0.9f

a. y = 0.45
= o.5o

c. y = 0.55

0

b
10

0/Ap

Ap -O. I
—i

FIG. 17. Regions of existence of anomalous nuclei. (a) Curve
corresponding to P stability; (b) limit of stability to fission
(the region of stability is below curve b). The thicker parts of
curve (a) correspond to stable anomalous nuclei. I, regions of
P+ activity; II, regions of P activity that lead to a stable state;
III, region of P activity that leads to fission. -0.5—

)
e(n, v)
&(n„-,') ' (7.27)

FIG. 18. Energy of nuclear matter per baryon in the case Z/A
=1/2. Dashed line, baryon energy [Eq. (7.16)J. Curves a, b,
and c correspond to (NN) interaction constants p=0.45, 0.5,
and 0.55, respectively.

At ~ =~, and v=- ~ we obtain the known criterion of
stability with respect to fission.

We assume now that condition (1) is satisfied; we then
obtain from (V.14), (7.20), and (7.25) the equilibrium
value of v at high densities:

1 1 a
2 4

2/3 p((
Qq

(7.28)

3. Estimate of the density and of the binding energy of
anomalous nuclei

We Dote first thet at high densities the total energy of
the system is a difference of two large numbers, the
baryon-subsystem energy and the condensate energy,
and these cancel each other to an appreciable degree.
The accuracy of the calculations of each of the terms is
at present low (at best we have order-of-magnitude esti-
mates), and consequently the results of calculations of
the total energy of the system should be regarded only

From (7.26) and (7.28) we obtain two stability regions:
(1) at A( A, =200f(n, 1/2), and v =1/2; (2) at A )A,
=2 & 10'(n/no)'f '(n, 0) and v=53(n/no)'~'A '~'.

The first region corresponds to superdense nuclei. The
second region corresponds to neutron nuclei. These nu-
clei, in spite of the small Z/A ratio, have a. cha, rge high
enough for the Coulomb energy to forbid P decay, but at
the same time Z'/A is small enough for fission to be
impossible. Nuclei with a, Z/A, ratio different from the
equilibrium value are P-active. The regions in which
stable and P-active anomalous nuclei exist are shown in
Fig. 17. We note that in the region of P' activity (I) and
in the region of P activity (II) the evolution of the nu-
cleus terminates at the stability line, whereas from re-
gion (III) the nucleus will go across the limit of fission
stability.

It is seen from the foregoing expressions that A, and
A, depend essentially on the parameters of the model.

as illustrations of the various possible cases.
Using the interpolation formulas obtained above for es(n)

and for e (n), and substituting them in (V. 14),we can obtain
the E(n, v) curve or the e(n, v) curve at different values of
the parameters entering in the problem, for two regions
of the equilibrium values of v (v-=—,' —superdense nucleus,
and v«1—neutron nucleus). If the minimum correspon-
ding to the anomalous nucleus lies below zero, then the
system is bound.

We consider first superdense nuclei.
The results of the calculations of e(n) for superdense

nuclei (v = 2) are shown in Fig. 18. Curve (a), calculated
for y =0.45, demonstrates the case when the binding en-
ergy of the superdense nuclei exceeds the binding energy
of the ordinary nuclei. If such a situation were actually
to take place, then normal nuclei would be metastable
with respect to transitions to the superdense state. The
minimum corresponding to the superdense nuclei on
curve (b), calculated at y =0.5, lies higher than the mini-
mum corresponding to ordinary nuclei. In this case the
superdense nuclei would be the metastable ones. We
note also one important circumstance. In the calcula-
tions of curves (a) and (b) in Fig. 18 we used nuclear-
constant values such that v, &~, . 'The condition n, & n, is
possible j,Migdal, 1972; Migdal, Markin, and Mishustin,
1974); in that case the pion condensate exists in ordinary
nuclei, and the constants that characterize the ordinary
nuclei already contain the contribution of the condensate.
It is most probable that in such a case no superdense
nuclei exist.

The results of the calculation of the energy of neutron
matter (v«1), with the condensate taken into account,
are shown 1n Fig. 19. The dashed curve ls the encl gy Df

the neutron matter without condensation. Curves (a) and
(b) were calculated with the same values of the nuclear
constant as the corresponding curves of Fig. 18. It is
seen that in this case the energy gain due to m condensa-
tion is insufficient for a bound state to be formed. How-
ever, one cannot exclude the possibility of a certain
change of the constants with changing isotopic composi-
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Z =0 excluded, and the final solution of the problem can be
provided only by experiment.

0.2—

a. y = 0.45
b. y = 0.50
c. y = 0.40
d. X = 0.45

7 = 0.97

t =1.0f

=- n/no

-0.2—

FIG. 19. Energy of neutron matter per baryon. Dashed line,
energy of neutron matter without allowance for condensate.
Curves a and b correspond to the same values of the parame-
ters as in Fig. 18. Curves c and d, calculated for f'=f=1.0
and for p= 0.4 and 0.45, correspond to stable neutron nuclei.

As shown by Chernoutsan, Sorokin, Voskresenskii {1977),
taking into'account vacuum electrons, screening the Cou-
lomb field of the nuclei with Z~1/e, significantly extends the
region of stability for such a nuclei.

tion of the medium. Curves (c) and (d) of Fig. 19, calculated
at g~ = 1.36 and at y = 0.4 and y = 0.45 illustrate the case in
which abound state appears for neutron nuclei. '

Thus our analysis depends essentially on the pion-nu-
cleon and nucleon-nucleon interaction constants, which
determine the m condensate energy.

Beside the uncertainty coming from the lack of know-
ledge on the interaction constants, the model used by us
(Campbell, Dashen, and Manassah, 1975; Baym et al. ,
1975) takes into account only the energy connected with
a charge-pion condensate having a spatial running-wave
structure. As shown by Migdal (1972, 1973) and by Mig-
dal, Markin, and Mishustin (1974), in a nucleon medium
at a density close to n„ there should appear also a neu-
tral-pion condensate, which leads to an additional energy
gain. Moreover, the minimal energy of the system can
correspond to a condensate-field spatial structure more
complicated than a running wave (Migdal, Markin, and
Mishustin, 1976; Markin and Mishustin, 1974; Sorokin,
1975). All these effe'cts are additional factors favoring
the existence of anomalous nuclei. Qn the other hand,
the choice of a stiffer equation of state of the nucleon
subsystem than that given by Pandharipande (1971), and
also allowance for the suppression of the pion-nucleon
vertices at large momentum transfers, would lead to an
increase of the total system energy. At the present time
it is impossible to take all these effects into account with
the required accuracy, and the main conclusion that can
be drawn on the basis of the foregoing analysis is that
the existence of anomalous nuclei is theoretically not

4. Possible. ways of observing anomalous nuclei

We now make a few remarks concerning possible ex-
periments aimed at observing anomalous nuclei.

If superdense nuclei do exist, it is not clear to which
of the nuclei, normal or superdense, the larger binding
energy corresponds. It is possible in principle that
superdense nuclei have the larger binding energy. The
experimental limitation on spontaneous transitions of
normal nuclei into the superdense state are of particular
interest in this connection. We note that so far,
searches for nuclei with anomalously high binding energy
have yielded no results. (Price and Stevenson, 1975;
Holt et a/. , 1975; Frankel et al. , 1976).

Searches for stable or short-lived P-active anomalous
nuclei of small dimension (A = 100) in the fission pro-
ducts of ordinary nuclei are also of interest ~

It is possible that superdense nuclei can be produced
in collisions between heavy ions, at energy on the order
of several hundred MeV per nucleon and affect the angu-
lar and energy distribution of the reaction products.
This problem was considered. by &. Ruck et al. (1976).
A more detailed analysis of the effect of the phase tran-
sition on the shock wave dynamics was made by Galitskii
et al. (1977). At sufficiently large P, the compressibility
of the system becomes negative already at n =n, . There-
fore in order to initiate the formation of the superdense
phase, it should be sufficient to compress the system to
a density ~, . Regardless of whether stable superdense
nuclei exist or not, pion condensation should greatly in-
fluence the dynamics of the collisions.

Finally, one can hope to observe anomalous nuclei in
cosmic rays, as noted already by Migdal (1971).

It is interesting to note in this connection that the
track ascribed to the magnetic monopole by Price et aE.
(1975b) can be interpreted as the track of an anomalous
(neutron) nucleus. The possibility of observing in cos-
mic rays stable anomalous nuclei or their P-active frag-
ments with anomalous Z/A, produced by interaction with
nuclei of the atmosphere, should be taken into account
when the experiments are performed and analyzed. It is
also of interest to search for superdense nuclei of cos-
mic origin, accumulated over cosmologic time periods
in the surface layers of lunar soil and in meteorites.
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