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VI. PuENOMENA NEAR RESONANCE

§1. Simplification introduced near resonance

When the frequency of a light quantum is very
close to a possible absorption frequency the
probabilities of absorption and of scattering
become large. The formulas which we have
derived so far cannot be applied because they
give infinite scattering when the two frequencies
coincide. The effect of interaction between
matter and radiation is not small in this case so
that a special consideration near resonance is
necessary.

Qualitatively the effects near resonance may be
described as follows: If an atom is in an excited
state, it may emit a light quantum when it
jumps to a lower state. The probability of finding
this light quantum increases with the time.
Simultaneously the probability of finding the
atom in the excited state decreases. The smaller
the chance of finding the atom in the excited
state, the slower is the rate at which the proba-
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bility of finding a light quantum increases. The
larger the chance of finding a light quantum, the
more likely it is that the light quantum is
reabsorbed by the atom and the slower the rate of
decrease of the probability of excitation. These
effects are seen to cooperate in slowing down the
emission.

Similarly, if a light quantum is incident on an
atom, there is a chance of its being absorbed and
of the atom being excited. The larger the chance
that the atom is excited, the more likely it is
that another light quantum (of approximately
the original frequency) is emitted. This possi-
bility of emission slows down the rate at which
the excitation of the atom increases. The effect
will be seen to be much the same as though the
atom were a harmonic oscillator of natural
frequency equal to the absorption frequency and
damped by its own radiation.

We have to consider only light quanta of
frequencies in the neighborhood of the ab-
sorption frequency. The probability of finding
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other light quanta is relatively small. Their
neglect is expected to spoil the validity of the
results when the frequency of incident light
differs appreciably from the absorption fre-
quency. Under these circumstances, however, it
is not necessary to take into account the damp-
ing, so that the ordinary emission, absorption and
scattering formulas may be used.

The physical results may be seen by consider-
ing the probability amplitudes of states of
approximately equal energy. In fact, the energy
operator is constant so that the quantum mean of
the energy as well as of all its powers does not
change with time. If at £{=0 the energy has a
certain statistical distribution around a sharp
and narrow maximum, the same distribution
persists for other values of ¢. The interaction
energy between matter and radiation is con-
sidered as small. Equal energies of the whole
coupled system are, therefore, treated as ap-
proximately equal to the sums of the unperturbed
energies of the coupled parts.

There is little doubt that the interaction be-
tween radiation and matter is small and that it
contributes only an insignificant part to the
whole energy. A closer examination of the
equations of the present theory shows, however,
that they give an infinite value for the inter-
action energy. This is a defect of the present
theory. It will be discussed in VII, §6. For the
present, we are satisfied with the supposition
that our instinct is more correct than our

Ai=ann (v, V) 2e R 27hy, V)W Tetif,) nn'.

equations and that the equations will give good
results if we use them as though the interaction
energy were small.

§2. Emission of a resonance line

We consider first the emission of light from an
atom. At the time ¢£=0 the atom is excited and
there are no light quanta. This case has been
already discussed under the heading of spon-
taneous emission by means of Eq. (111). This
discussion applies only for times short in com-
parison with the mean life of an atom and long in
comparison with the period of the emitted light
waves. It will be remembered that these re-
strictions were introduced when the probability
of the atom being excited was supposed to be
constant. We now remove the restrictions of
considering times short in comparison with the
mean life. Let the excited state of the atom be »’
and the normal #, their energies being kv(n’) and
hv(n), respectively, and the energy difference
being written as k(v(n’) —v(n)). The probability
amplitude for the atom to be in the state =’
while there are no light quanta we denote by
ce~?*»mt The probability amplitude for the
atom to be in the state », and there being one
light quantum of the kind s, we denote by
c,e "™t By (110) we have to satisfy the

equation
(d/2midt+v,)c,=A

(122)
(@/2midt+v(n'n))c= YA *c,

where

(122%)

[We, thus, neglect deliberately all ¢'s in (110) except

e(n';0,0, ---)=ce?ri*m¢  and
with »,2v(n'n) since these probability ampli-
tudes refer to the only important states of
approximately the initial energy.]

Approximate solutions of (122) have been
found by Hoyt?® and by Weisskopf and Wigner.3®
The method consists in supposing that to a good

» F. Hoyt, Phys. Rev. 36, 860 (1930).

V. Weisskopf and E. Wigner, Zeits. f. Physik 63, 54
(1930). See here discussion of emissions ending in excited
states. The width of the line is shown to be the sum of
the widths of the initial and final levels; V. Weisskopf,
Ann. d. Physik 9, 23 (1931).

¢(n;0,0,---1,,0,0, - - -)=ce2rirtmt

approximation ¢ = e=2i('m=iD where T is a real
constant. This is suggested by the fact that if all
¢, were zero the last equation (122) would be
satisfied by ¢=e27*('"¢ The analogy to the
classical oscillator leads one to expect that the
absolute value of ¢ would decrease exponentially.
For this reason the factor e=2*i* is also intro-
duced. There are as many equations of the first
type in (122) as there are kinds of light quanta.
Since at the time ¢t=0 every ¢,=0, we can use
this value of ¢, as the initial condition in all the
differential equations. Having also the right-
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hand side as A4,e" 2 :¢('mn=iDt  the values of ¢,
follow at once as
e—ili(!(n’n)—il‘)}_e—iriv.l

=4,

v,—v(n'n)+iT
These expressions must now be substituted into
the last equation (122) because it does not
follow, so far, that this equation is satisfied. On
substitution we obtain

— e~ 2ri(re—r(n/n)+il)t
ir=3,|4.|*
By (109)
alpn'= (27}1)—‘(('2 (e,/2) (c_‘x.“fi+ri¢—"k'n))nn'

in the limit of a very concentrated D', . For
wave-lengths long in comparison with atomic
dimensions we may take

Alpn'= (th)_’e_‘k.l(flz iet't\') nn'y

123
ve—v(n'n) 417 (123)

TA =3 {1 (Ted) nn |24 | (Ze) an’| 2+ [ (T e mnt| 2}/ (2xkn, V).

It is seen to be practically independent of the
frequency if the approximation (123’) applies. It
is also practically independent of », if this
approximation does not apply. However, then
(123") does not hold since the retardation
factors e~®i may not be treated as constants.
Taking |4.|? outside of the summation sign the
summation is replaced by integration [,
—JSdv,/Av,] where (Av,)"! is the number of
possible light quanta per unit frequency range at
v,[(Av,)"1=8m»,2/c*]. It is justifiable from the
present point of view to treat v, as a constant
=p?,s and to extend the limits of integration
from —  to+ . Doing so one obtains

I'=x|A4,|?/Ay. (124)
This expression is independent of the time. This
proves that all Egs. (122) are satisfied, provided
T has the value just given. For future reference
we summarize the results

c= e—z:i(v(n’n)—il‘)l

(e—-lri(-(n’n)—i[‘)t_ —2wirgt
=4, . (125)
(vs—v(n'n)+1I")

The number of light quanta present is Y_,|c,|2.
Using the expressions for ¢, in (125) replacing the

where R is the vector from the origin to the
center of mass of the atom. Substituting this into
(122’) we have

1A0P= I (f-}:ﬂif.)”’]’/(Zrhv,V).

This number is practically independent of »,
within the natural breadth of the spectral line
because this breadth is very small in comparison
with »,. It depends much more strongly on the
polarization vector f,.

It is now important to realize that within a
very narrow range of », the polarization vector £,
may have all sorts of directions. This follows
from the fact that there may be light quanta of
the same frequency moving in arbitrary di-
rections with arbitrary polarizations. In the
summation over s we may, therefore, average
first over the different directions f,. The resultant
average is

(1239

(123")

summation by integration as before we obtain

Z'lC.P:F_(ZV_)IA‘lz(l _e—un).__ 1 —etrlt

by (124). At the same time

[c|2=etrrt,
Thus,
[e]*+X.]eil?=1.

This relation follows also as a general conse-
quence of (122) and the initial conditions. It is
satisfactory to see that the approximations made
have not impaired its validity.

The mean life of the atom in the excited state
is (1/4=T). At the time ¢ =0 the chance of emitting
a light quantum per second is 4xI. By using
(123”) it is seen that 4#T is equal to the ex-
pression (112). The mean life of the atom is thus
given by the reciprocal of Einstein's emission
probabilities. For £2>(1/4#T) the number of light
quanta per unit frequency range is by (125)

C1A.1%/(89) /L (va— w(n'm))2+T7].

The half-value breadth of the emission line is
thus 2T" or (1/2x)* part of the emission proba-
bility. This is exactly the relation which holds for
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the classical harmonic oscillator. More generally,
if ¢ is not very large in comparison with the mean
life, the number of light quanta per unit fre-
quency range is given by

14e 47Tt — 27271 cos 27w (v(n'n) —v,)t | A.|?
(vs— v(n'n))2+ T2 (ar)

In particular, if v(n'n) —v,=0, the numerator of
this expression is (1 —e~2*T*)2. Thus, at the core of
the line the number of light quanta per unit
frequency range increases at the time ¢=0 as ¢
Throughout the whole frequency range the
number of light quanta at t=0 increases as ¢
the main contributions arising from regions
|vo—v(n'n)|>>4xT. The energy first appears,
therefore, in the wings of the line and only later
the maximum at the core is built up.?* These
relations are also exactly similar to those for a
classical oscillator provided one averages over
the initial phase of the oscillator.

Within the approximations of sharp resonance
the relations between Einstein emission coeffi-
cient, the mean life, and the half-value breadth
are independent of the assumption that the effect
of retardation is negligible. The specialization to
long wave-lengths made in (123’) is not essential
for the validity of these relations.

Ce™= (A c/A ")[(V(SO) - VU+i7)//(Vs_ ”0+i7)][e~2ﬁ(”°—i1)‘_e_zﬁv‘l]'
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§3. Absorption by a resonance line

To discuss the relations in absorption we
consider one light quantum of the kind s being
present at the time ¢=0. We suppose that the
atom is at that time in the normal state » and
that there are no other light quanta present.
The frequency v(s;) we suppose to be in the
general neighborhood of »(n'n). Our calculation
will apply if |v(n'n)—v(so)| is of the general
order of T' (e.g., I'/100 or 100T") but not in cases
where it is at all comparable to v(n'n) itself. At
later times there may be a chance of the light
quantum being absorbed and the atom being in
the state n’. The probability amplitude for this
state is ¢. There may also appear light quanta of
other kinds s'#s,, the atom simultaneously
returning into 7. The probability amplitude of
these states is ¢,.

We look for a solution of the type

Cop= €2 (0miNE

(126")

where v, we expect to be approximately v, and y
we expect to be very small. Then it follows from
the sot* Eq. (122) that

c=[(v(s0) = vot1i7)/A s Je 2 0t (126)
Using this value in the equations for ¢, and im-

posing the initial condition ¢,=0(s#s,) we have

(126”')

We substitute the expressions (126) into the last equation (122), replace the summation by inte-

gration, as before, and obtain

[o(n'm) = ro—i( =) J(3(0) = oin) = | A, et o seemt

having replaced the summation over all values of
s by an integral. The solutions (126) do not
satisfy the equations exactly. However, for
1L (2m) [ (v(s0) —v0)?+v2]"} they are satis-
factory. We choose a ¥ so as to satisfy the above
condition for such values of £, i.e., so as to have

[v(n'n) — vo—i(I' =) 1(¥(s0) = vo+iv)=| A, |
(127)

This gives
T2 AulT/LOm = Hs)+ T
vo 2v(s0) + (v/T) (v(s0) — ¥(n'n)).

3t Cf. P. A. M. Dirac, Case of Resonance, Proc. Roy Soc.
Al14, 710 (1927).

The maximum value of v is
[An|* [4sl*A

r —-!;1.‘2 T

However,
Av=(\/L)*c/87L),

where L is the side of the fundamental cube.
The time constant (4ry)~! is, thus, always
greater than

QL/)(L/NA*/ | As®

The fraction |A4,[?/|A4,|? is of the order of
magnitude of 1. The fraction (L/c) is the time
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taken by light to travel through the cube. The
time during which the factor e #*v* may be
replaced by 1 is seen to be exceedingly great in
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comparison with the time taken for light to
travel through the cube.
The derivation of (127) is valid only if

<1/ {2x[(v(s0) —vo)* +7* T} =[(v(n'n) — »(50))*+T* ]}/ (27| A |?).

The minimum value of this upper limit is
T/(2r|A,,|?, which is again of the same order
of magnitude as before. There can be no physical
interest in times so much larger than the time
taken for light to traverse the fundamental cube
because all the physical things supposed to
exist in one fundamental cube are also supposed
to exist in all others. Egs. (126) together with
(127) are, therefore, sufficiently good approxi-
mations.

The solutions (126) represent a condition
somewhat analogous to forced oscillations of a

classical harmonic oscillator under the influence
of a purely sinusoidal impressed wave. The
quantity ¢ is analogous to the amplitude of
classical oscillations. The scattered radiation
must be thought of in this analogy to have been
removed at the time =0 and to build up as
time goes on. It does not correspond to the case of
the atom being initially in the normal state. It is
clear that the latter condition can be represented
by superposing (125) with a proper coefficient
with the solution (126). The result is

IA”IZ e—zri(r(n'n)—tr)l_e—ziiv(lo)l
Cog= € 2Filn=int — (128"
v(n'n) —vo—i(I'—7) v(so) —v(n'n)+il'
e—Zti(r"—i'y)!_e—zri(v(n'n)‘l'r)l
c=4, (128")
v(n'n) —vo—i(I'—v)
e—2'i(vo—i1)l eﬁle(r(u'1l)~l'r)l
Co=AAn* [ - —— - ;
[v(n'n) —vo— (L —7) J(va—vot+iv) [v(n'n)—vo—i(T'—v)](vs—v(n'n)+1I')
e—2r{!.l
| ] (s%s0). (128"
(va—vot+iv) (vs—v(n'n) +il')

Here the small number v(so) — vo-+14v has been eliminated by means of (127). The emission solutions
(125) and absorption solutions (128) when superposed with proper coefficients give general solutions
of (122) for arbitrary initial values of c,, c.

The main features of the state represented by (128) may be seen from the behavior of |c|2 We have

e 4r vt em4rTt— 22 (T4 M)t cos 2w (v(n'n) — o)t

[e]*=|A4.1? (129)
(v(n'n) —vo)2+(I'—7)?
If 1< (27y)~! we may use instead
l+ —Ivl't_z —2xI't 2 ’ —_— c )t
le|?= | 4|2 e e cos 2r(v(n'n) — v(so) (129)

(v(n'n) — v(s0))*+ T
This expression vanishes for t=0 as it should. After ¢ exceeds (271")~! it attains a stationary value
[ A4 [2/L(v(n'n) = v(s0))2+T2].

If we wait still longer |c|?decreases on account of the terms in e~2*7, e=4*7t, Thus for £>(27I)"!, to
the first power of v¢

| 4.2 I't
SEE L —— Y ' E
(v(n'n) — v(s0))2+T?2 [(v(n'n) —v(s0))2+TJ?

le|>= i (>, (129"
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the approximate value of v given by (127')
having been used. Thus, |¢|? first increases to an
almost stationary value following (129’). After
the transient represented by the two last terms in
(129’) dies down |c|? decreases slowly following
(129"). According to (129’) the absorption
probability at ¢=0 depends on »(n'n) —»(so). If
v(n'n)=wv(sy) we have exact resonance of the
incident radiation with the transition n—n’. In
this case the numerator of (129’) is

(1—e2rTeye,
giving an initial increase proportional to ¢2. If,

however, (129’) is averaged over different values
of the incident frequency »(so) in the neighbor-

hood of v(n'n) we obtain

y— Te 471t —ye—4sTt

BREIT

TelP=[4,T5x/T) (1 —e~4T).

The initial rate of increase of |c|? (i.e., the ab-
sorption probability) is, thus,

4x%[4,,|?=4xTAr.

The spontaneous emission probability is 4#T.
The ratio is in agreement with Einstein’s relation
between emission and absorption probabilities.

The probability amplitudes ¢,(s#s,) determine
the probability of finding a scattered light
quantum. The sum of the squares of their
absolute values may be determined by inte-
gration. A simple calculation shows that the
summation, when extended over the scattered
light quanta, gives

a sin 2xat— (L' +v) cos 2xat

J— r+
(x/Av) | A, | 'A'] I [a*+ (P ++)* Ty

where
a=vo—v(n'n).

In taking this sum we have used expression
(128""") also for s=so. This, however, is not

1—e4mrt 4t

—4 e-—!v(l‘+1)t}’
[a*+ (T —7)*][a*+(T+)*]

important because (1/Av») is a large number, so
that making a mistake in counting of one light
quantum too many makes little difference. The
above expression is to a sufficient approximation

a sin 2rat—T cos 2=at

l‘lA..l’{

For t>>(2#T)~! the term in ¢ predominates. In
this condition the number of light quanta
scattered per second is

4rT | A, |/ [a*+ (T +7)*],

which corresponds to |4,,|%/[a?+(I'+7v)?]
atoms emitting with the probability 4xT' per
second.

The expression (128’”’) contains a term in
e~2Tt, As v, varies its absolute value approaches a
maximum when »,=y(n'n). The sharpness of the
maximum is such that the half breadth is 2I.
This term contributes, therefore, light quanta of
the emission frequency »(n'n) with a spread of
approximately I' to either side. The term in
e~27i—int hecomes large when »,=y,, i.e., when
the scattered frequency is approximately equal to
the incident. The half-value breadth of its

Ila*+(T+7)] @™+ (T +)?

absolute value is 2y. The frequencies represented

— 4e—erl

I

by it are, therefore, very closely grouped around
the incident frequency. Finally the last term
becomes large both when »,=», and when
v,=v(n'n). It is a linear combination of two
terms one of which resonates at »o and another at
v(n'n). The term in e~2*T* is very similar to the
impulse oscillations of a classical oscillator under
the influence of a harmonic force applied
suddenly. The vibrations may then be thought of
as the result of superposing a damped oscillation
with the natural frequency of the oscillator and
an undamped forced vibration with the frequency
of the impressed force. In the initial stages of
motion the oscillator radiates waves of its own
natural frequency in addition to those having the
frequency of the impressed force. The distri-
bution of energy among radiated quanta may be
seen best from |c,|? which may be put into the
form

[ +T°T
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IA“'!'A.P e!ri(:-h",)(_l arilztatil)e__1)2

leal?=
PR~

where x=v,—¥(so), a=vo—rv(n'n).

§4. Absorption and scattering by an atom or
radiation emitted by another atom

We consider two atoms located sufficiently far
from each other to make the influence of direct
electrostatic and magnetic actions negligible in
comparison with the effect of radiated light
quanta. Initially we suppose one atom (denoted
by I) to be excited to a state n;’ from which it
may fall to a state #;. The other atom (denoted
by II) we suppose to be initially in its normal
state n;1 from which it may rise by absorption to
an excited state n;’. The frequencies which
correspond to these transitions will be written as
v1, v, respectively. We concern ourselves with
those cases in which only the transitions n;’—n;
and ny—nn’ are of importance, i.e., with such
absorbing atoms which do not have other
absorption lines from 71 in the neighborhood of
vr and with emitting atoms for which » is the
only strong emission line from n;’. The frequen-
cies »1, v11 must, therefore, be not too far apart.
They may, however, be farther apart than the
half-value breadth of either line.

The probability amplitudes which we must
take into account are, e~3"iC(»D+(m)ig, = proba-
bility amplitude for atoms I, II to be in normal
states and for there being one light quantum of
type s, e i+ (m) g = probability amplitude
for atom I to be in the excited state n’, for atom
II to be in the normal state and for there being no
light quanta, e~2i¢(»D++(»m) ¢y, = probability am-
plitude for atom II to be in excited state n1y’, for
atom I to be in normal state and for there being
no light quanta.

For any type of light quantum the two atoms
have definite interaction constants A, (see
(122’)). Their values for I and II, respectively,
will be written 4,7, 4,!.. The time dependence of
the probability amplitude is now governed by
the immediate extension of (122)

(@/27idt+v)co=AJer+A e,
(@/2xidt+vr)er= 2T (A .F)*c.,
(@/2xidt+vi)en= 2 .(A.1) *c..

(130)

x+iy

x+a+il

At t=0, we take in accordance with the above
¢c1=1, cir=¢,=0. Supposing for the moment that
the effect of ¢i1 on ¢; is small, we may consider
(125) as a zeroth approximation to the values of
¢y and c,.

1 0) = e—ﬁri(r[—l’l‘])l,

e—!n’(u—"l‘])l _e—h'iv.l (130')
c.“’) = A.I —_—

Ve— V1 +1FX

This would be the solution of (130) if all the
AT were zero, then ¢y; would also remain zero.
In the next (first) approximation we take the
A, into account. The additions to ¢1 and ¢,
which result, we call ¢;;@, ¢,V, In this approxi-
mation

car=cn®, c=c,94c,O.

The manipulation of equations (130) is dictated
to us now by physical considerations. Atom II
will be excited by the radiation from I repre-
sented by ¢,®. The probability of excitation will
depend on the distance between the atoms, the
spontaneous probability of absorption and also
on the rate at which atom II is able to radiate its
absorbed energy. For the larger this rate, the
smaller we expect to be the value of ci;. The
reaction of the radiation from II on I we expect
to be small if the distance between them is
large. It does not interest us at present because it
may be described as the rescattering by I of the
radiation scattered by II. In order to keep the
calculation simple, we neglect, therefore, the
changes in ¢;® due to ¢,V, thus neglecting the
rescattering by I. The second equation (130)
thus need not be considered any more. The
defining equations for c;1V, ¢,V are, thus,

(@/2xidt+v)c, V= A e ®,
(130
(d/2midt+vin)eun ™ =L (4D *(c, O+, ™).

The first of these is homogeneous in ¢;1V, ¢,V
The second is not, containing a term of zero
power in these variables, viz., 3_(4,")*c,®. The
classical theory analogon of this term is the
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electric intensity impressed by the light wave on
the oscillator.

In the evaluation of 3_(4,)*c,® we encounter
the combination (4,'')*4,!. The polarization
properties of the light quanta enter only through
this combination, the remaining factor of each
term in the summation being a pure function of
the frequency »,. The summation is, therefore,
performed by keeping the value of », within a

very narrow range, averaging each term over
all directions of light quanta, multiplying the
result by the number of possible s per unit
frequency range of », and integrating.

We shall suppose for the present that the
dimensions of each atom are small in comparison
with the wave-length of the light. The essential
features of the phenomena can be seen in this
simple case. We have

(AMD)*A, = e ®RuRO (£ (e1) )y nyy (Fu(€2)T) myny/ (270, V)

where (et)= X ed..

To obtain the average of this for fixed », we turn the coordinate system so as to have Ry1 —R; along
the 2z axis. Denoting the polar angles of k, by ®, ® and the polar angles of (et)an*, (€t)nym;* by

(61, 1), (011, o11), respectively, we have to average

4 {sin 6y sin (o1 —®) sin 651 sin (¢ —®) + [sin 61 cos © cos (¢1 —®) — cos 6; sin O]

X [sin 811 cos © cos (¢r1 —P) —cos 11 sin @ }eikeRir1emO

over © and ®. Performing the averaging and discarding terms in Ry 172, Ri1 1~* we obtain

sin (k.Ru 1) sin 6[ sin 0:[ COoSs (¢[—¢u)

@a=

(keRir 1)

where the matrix elements in | | are the ratios
of the vector matrices to the unit vectors (sin 6
Co8 ¢, sin 8 sin ¢, cos ). It is possible to introduce
the polar angles 8, ¢ only if the absolute values of
the vector matrices have a definite meaning, i.e.,
only if each vector matrix may be expressed as a
unit real vector times a complex number. For
degenerate states this is not possible, in general.

' (et) ’ ﬂu'nlll (d) , nyny’y

4xhv,V

The simple modifications required by degeneracy
will be discussed later. The factor sin 8y sin 611 cos
(‘PI —or1) I (d) lﬂu'ﬂn | (et) l anp’  MAy be inter-
preted as the scalar product of the projections of
the matrix vectors (ét)a; ‘s, (€1)an® ON to a
plane perpendicular to Ry —R;. Denoting these
projections by a superscript (p) we have

(A *A1= (sin kuRux 1/kaRux 1) ()10 o ()10 0o/ (47, V).

We substitute this value into }_(4,'")*c, and treat %,, », as though they were constants as long as
they do not enter in trigonometric or exponential expressions. We let

r=Ru1/c
and make use of the integrals
+ g2rivea +oo e—2rirea
f =0, f L dy= —2migtrita=itna
—w va—u+il; o Ve—v1+iln
(a>0 and real).
Then
oo e 2ri—ilDt _ g—27ivet = e 2riln—ilD (t—7) (>r)
j sin 2nv,7) ——————— dv,=
= v,— v+l =0 (t<m).

Thus X_.(4,%)*, @ =0if t<r. The atom II is not affected by the disturbance from atom I before the
lapse of the time Ri11/c. The interaction between the atoms takes place, therefore, with the velocity of
light.
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After the lapse of the time r

Z‘(A .II) *c_(o) = Ke2ri(n—iln) (l-—v)’

where

K= (et)11®), o (eb)10, o/ (Rix the?).

(130::1)

With (130"") substituted into (130”) it becomes natural to look for a solution of the type

C"(l) = K'e~2ri(n—il'D (l—v)'

which by the first equation (130"") makes it necessary to have

CaW = K'A I (e 2riti— D (=1) — g=2xinaCt=)) /(y, — py +4Ty).

Substituting both of these into the last Eq. (130”") and replacing as usual the summation by an

integration we obtain

K'=K/[vu—v~+i(l1—Tn)].

These solutions satisfy the correct initial conditions for ¢, but not for ¢;;V. Correct initial conditions
for both are satisfied by superposing the emission type of solution (125) for atom II ¢ in (125) being

replaced everywhere by ¢—r. Thus,

e 2riln—ilD (t=1) — p=2xi(ru1—il11) (= 1)

cu®W=K -
vir—v1+4(I'r—Tr) 131
KA,X[ e—zrl(ﬂ—irl)(l“') _e—-'zwlv.(l—Y) c—-2l:(»“—l|'ll)(l—r)_e—ﬁlw.(l- T) ( )
W= [ —
viu—ri+4(F1—Ty) ve—vr+1ly ve—vnn+il'n

According to (131) there is a chance of finding atom II in the excited state n;;’ after the time r.

This chance is

e-—lrl’[(l—v)+e—lvl'u(t—1) — e~ 2 (M1 T (¢—1) cos 2”("1 —V]])(l— T)

len®?=| K|

(131")

(yin=w1)?+ (P —Tp)?

When (—>>(@4#l)", @xTu)~Y, |en®|2-0.
The atom (II) has then dissipated its energy by
radiating it away.

Let the atom II be put now in the vicinity of a
source of light containing many radiating atoms
excited at random intervals. We suppose for
simplicity that the atoms in the source are

excited in not too great numbers so that the
transient (131’) has time to die down between
excitations. We wish to know the chance of
finding II in the excited state. Let the number of
atoms excited in the source per second be N. The
required probability is then

(T+Tuw) | K|®N

Nf len®|di=
l=T

The maximum probability of excitation occurs
when »; =v11. The atoms in the saurce are then in
exact resonance with the absorbing atom II. If
v1— vy is varied, as is the case experimentally on
account of the Doppler effect, the resonance
becomes less effective. The half-value breadth is
then

51’=2(I‘1+Fu)=571+5v1[. (131"')

47T Tl (n—vn)?+ (I‘1+I‘n)2].

(1317)

It is equal to the sum of the half-value breadths
of atoms I and II. The addition of the half-value
breadths may also be explained by considering
the spectral distribution in the emission line
which according to (125) is such that

’ At I 2/[(1‘:_ ’I)2+P12]
is the chance of finding a light quantum of type s
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after the emission took place. On the other hand, the effect on |c11|? due to light quanta is accord-
ing to (128) proportional to [(v,— v11)*+Tu*] " It is easily found that

dv,

#x(T1+Tr)

o
J—c [(ra=w)*+T ][ (va— i)+ I'u’]= Pl (v —wn)?+ (P14 I'u)?]

which agrees with (131”). The additivity of the
damping constants as described by (131”),
(131"") is old and well known for the case of
classical oscillators.?? It has had technical appli-
cations in radiotelegraphy.

For large ¢ we obtain from (131)

|K 2|41
[(re— )2+ T2 (ve—vi)*+ Fu']'

which shows that the distribution of scattered
energy among frequencies follows the same law in
the quantum as in the classical theory. The
total chance of finding a scattered quantum is

| K |*(T1+Tu) /Tt
(v =)+ (F1+Fn)2'

This is seen to be in agreement with (131").
For if there is the number

(C.(l)l2=

Zile W)= 32)

+oo
Nf lCu(l)lzdl

t=T

of excited atoms and if each of them has a chance
47T'11 of emitting one light quantum per second
the rate at which light quanta will be scattered is
given by

+oo
41|’ruNf ‘Cnu)lzdt
34

which by (131”) is N times 3 |¢,V|? as given by
(132), i.e., N times the number of scattered
quanta due to each atom in the source. Care
must be taken, however, not to conclude that the
frequency of scattered quanta is the emission
frequency »i1.

The same result can be obtained by analogy
with classical oscillators. Each atom is then
considered as a classical oscillator with an
effective value of e¢/m given by

(&/m)etr.= 2/h) { | Z (e nn’ |*+ | Z(eq)nn’|*+ | Z(eizi) na’ |2},

which makes the emission probability 4xT
=(2/3c®)(27v)*(e?/m)ctr.. Monochromatic radi-
ation of frequency », with an electric intensity
is scattered by the virtual oscillator of atom II at
the rate

&

4x[ (vr1—»)*+ 1]

where 61 is the angle between the axis of the
virtual oscillator and & On the other hand,
atom I emits a total amount of energy kv during
a time T. This energy is divided among fre-
quencies so that at a distance R from I the energy
density between v and v+dv is

3hvi(T1/7) sin? 6 P &§,2

y=—),
8xRcTY (v—v1)*+T12] 4x
where 6; is the angle between the axis of the

2V, Bjerkness, Ann. d. Physik 44, 74 (1891); 291, 121

(1895); M. Wien, Ann. d. Physik 25, 625 (1908); 29, 679
(1909).

(e?/m)ett. cos? Oy1,

equivalent oscillator for atom I and the line
Rip 1.

In the direction of II the radiation due to I
must be considered as polarized in accordance
with the usual rule of classical electrodynamics.
This determines cos 0y;. Substituting this into the
rate of scattering of energy, multiplying by T and
then integrating over v we obtain the rate of
scattering energy. Dividing this by kv we get the
probability of the scattering of a light quantum.
The result is the same as (132) but multiplied
by (v1?/vv11) where » is the mean frequency of the
scattered light quanta. This correction is not
significant because in the derivation of (132) we
have supposed that (vi1—»1)/n1<1.

§4a. Interference of radiation scattered by
several atoms

We can discuss scattering from several atoms
by the same method. Let atom I emit as before
and let atoms II,, II;, --- do the scattering.
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Similarly to (130), we have a system of equations
(@/2xidt+v)e,= A Joar+ XA Mien,
(d/2xidt+ )= (A))*c.,

(@/2ridt+ i) e, = T u(A,1) *e,,

the meaning of the symbols being exactly
similar to that in (130). We consider the solution
for the condition in which the rescattering by II,,
Il;, --- of the radiation scattered by II; is not
important, and, similarly, we shall neglect the

(133)
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rescattering by I of the radiation scattered by the
I1,. The zeroth approximation will again be given
by (130’). It is clear that we can now solve (133)
simply by superposing the solutions (131) due to
the atoms II. This solution is, of course, not
exact, but the error introduced is small if the
scattering atoms are far apart.

The resultant ¢,V is the result of summing the
expression ¢,() given by (131) over all the
scattering atoms. For £2>(2xT;)~! the probability
of observing a light quantum of type s is simply

2

KA1

|£i(0a“’)n,|’=(

The important point to note is that the position
of the scattering atoms enters this formula
through 4,'% in exactly the way which we would
expect from the virtual oscillator analogy. For
each 4,1 involves as a factor e~ ®Riy1,

By making I'1 very small we approach the
condition of the scattering of monochromatic
radiation. We then have appreciable proba-
bilities for light quanta only when », is very close
to » and the solutions become equivalent to
those of formulas (128).

§5. Polarization of light quanta

So far for every direction of the wave normal
we had two types of light quanta, each linearly
polarized, the directions of the polarizations
being at right angles to each other. Otherwise
there has been no restriction on the choice of the
vectors f,. It is clear that we may carry through
the theory for any choice of the polarization
vectors f, provided they are perpendicular to k
and provided fy, ; is perpendicular to fx, 3. Any
choice is as legitimate as any other. However, for
the discussion of some problems a special choice
may be preferable. We shall make this matter
clear by an example.

We consider the emission of radiation by an
atom due to a transition from an excited to the
normal level. The solution is given by (125). The
probability amplitude for a light quantum of
type s is given by ¢, which according to the
calculation is proportional to 4,. If 4, is zero no
light quantum of type s appears. Now

A, 2e R 2xhy, V) ((e2) L)) nn'. (122%)

ve—n)i4To?

(133")

1 vy — v+l

Let us consider the simplest case of a linear
oscillator with the axis of vibration along the x
axis of coordinates so that:

(Zelﬂt) an'= (Zelii)nn": 0,

and let us look for light quanta with the propa-
gation vector along the 4 axis as indicated in
Fig. 1. It is to our advantage to choose the two
polarization vectors f,, fs (we omit the suffix k in
fx, : because it is irrelevant in the present
discussion) along the x and z axes, respectively.
The probability of finding a light quantum with

Y
[
Ny

6

Ax/s of oscillator
—_— X
A

Direction of
light propagation

ty)
F1G. 1. Linearly polarized light quanta.

the polarization f, is then zero since the corre-
sponding 4, vanishes. The light emitted in the y
direction may be said to be linearly polarized in
the x direction.

We may, however, also use another set of
mutually perpendicular polarization vectors f’,
f’ and perform a calculation with them. For
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each the 4, does not vanish. There is a chance of
finding light quanta of polarizations f," and f,'.
This corresponds exactly to our expectations
from analogy to the classical theory. Light
polarized linearly along the x axis excites
vibrations in oscillators turned at an angle with
respect to the x axis. In order to find out whether
a light quantum of polarization f," may appear we
have to test for its presence. We may do so by
using an oscillator with its axis along f,’ and
observing whether absorption will take place.
The classical analogy leads us to expect that the
absorption occurs for all orientations of the
absorbing oscillator with the exception of f.
This expectation is correct, as shown by (130"),
(131). It is seen from these results that the only
thing of importance in a test for the polarization
of the radiation is the expression

((ef)) (» nu'"n((d)) (”)n]vq'o

If we wished to do so, we could avoid talking about
the polarization of light quanta altogether, because
the final experiment for their discussion elimi-
nates the light quanta. However, there is no
harm in keeping the classical terminology.

In order to complete the connection of the
description by means of the f,, f» polarizations
with the f’, f;’ representation, we must give the
transformations of the radiation variables be-
tween these two systems. We must also show that
these transformations lead in general to con-
sistent results. We go back to formula (1) for the
transverse part of the vector potential. For any
given k we have two sets of radiation variables
(@1, ar*)(as, a:*) corresponding to fi, f. They
contribute

(f1a1+f2a2)e~ %" +i(fia,t +faast)e®r’

BREIT

to (Viv/c)A. We have
f,'=f£, cos 6+f;sin 8,

(134)
fz"'—’ —fl sin 0+fz CcOs 0,
so that if
a,’=a; cos +azsin 6
as’= —a, sin 8+az cos 6
(135)

a/t=a,* cos §+as* sin 6

ag't= —a,* sin +ayt cos 8
this contribution is

(f/a) +£'as) e %0 +4(f)/a)/ T+ £a)/t) e,

The transformation (135) is canonical. 1t leaves
a*a;+astas invariant and, therefore, the Hamil-
tonian function is also invariant. The physical
consequences are therefore the same whether we

work with (a,, a2) or (a//, a2’), just as in Pauli’s
treatment of electron spin.

27 )
£
@2)
17 "
6
Cos ¥ W
—
/3% 7:

F1G. 2. Transformation to elliptical polarization.

We may similarly perform a transformation
from two linear to two elliptical polarizations.
Referring to Fig. 2 we look for two sets of
variables such that

a)'(f\"" cos p—ifs'" sin p)e~*" +ia,'*(f," cos p+ifs’ sin )e® ' +ay’(f" cos o —1if)"’ sin p)e~ &+’

+ias'* (£’ cos p+if)” sin )e™’ = (a.f1+asfa)e % +i(a,Hf +astfy)eks’

By (7’) the variables (a’, a’t) represent a wave in
the vector potential of the form

const. R{(f,"”” cos p—ify"’ sin p)errirt—ikr’}

which is elliptically polarized. The vector po-

. (alllf’u+azule/)e_.1hv+i(alu.).fln+azn+f2il)eukr"

tential at a fixed point describes by its end point
the ellipse designated by (1’) in the direction
indicated. Similarly for (2’). The major semiaxis
is proportional to cos ¢, the minor to sin .

The transformation formulas are:
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ay’'=ay’ cos p—1ay sin o,
ay’'= —1a,’ sin ¢p+ay’ cos o,

a1=a,"’ cos —as’’ sin 0,

as=a," sin 8+a," cos 8,

It is seen again that any succession of trans-
formations (136) leaves invariant: the Hamil-
tonian, the exchange relations and a,*a1+asta,.
We shall obtain, therefore, the same results
whether we work in one set of (g, at) or in
another.

V) {[ay (f1—if2) +as’ (Fa—ify) Je~ % +i[ar +(E1+ifs) +aa’+ (fa+if1) Je*r' ).

The transformation formulas are:
@9 = (a,’—ia,')/2l,
as=(—1ia\'+ay')/2},

We now remember that (a)y, v—1= (AN/(2x)* and

that 4, arose as the (#» #’) matrix element of a

(fp). Working in the circular polarization di-

rectly we obtain then two A'*: 4y, Ay, corre-

sponding to the variables a,’, aJ/, respectively.
Expression (137) shows that

Av=e*R(2xhy V)4((et) (£ —ifs) /2%) n",
Ay=e""R2rhy V)N ((et) (F2—if1) /28 mu.

Thus, if k is along z, f, along x, f; along y, the
emission of circularly polarized light quanta
polarized in the direction of rotating x into y is
determined by the matrix element of

((i+1Y)/2 ‘) n'n

(n' is the upper level) in the same way as the
emission of linearly polarized quanta is de-
termined by (X).'a, (¥)a'n, respectively.® Circu-

8 The same result can be inferred by forming a wave
packet out of the wave function for the upper state and
that of the lower, without making use of Dirac’s theory of
radiation. Let the wave packet be

PRI L COTN e S OV
The variable parts of the quantum mean of x, y are then
2Re(;,."c,.x,.',e""(""‘)‘),
2Re(c,."c,.y..',.ez'"(’"")‘).

These may be regarded as responsible for the emission of
the linear light quanta polarized in the x and y directions.
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a)"t=ay’ cos p+1as't sin o,
., (136”)
ay''t=1a, sin p+ay't cos o,
art=a,"* cos 6—ay''* sin 0,
(136")

ast=a,""* sin 6+as"’* cos 6.

In practical applications (Zeeman effect,
resonance radiation) we encounter most fre-
quently circular polarizations. The corresponding
transformation is a special case of (136). We set
6=0 and ¢==/2. The corresponding term in the
vector potential is

(137

at= (01'++502'+)/2',

(137"
az+= (ia1'++ag’+)/2’.
larly polarized light quanta having the direction
of rotation from y to x are similarly determined
by
((F+ix)/24) nn.

The use of the expression (137) is most
convenient for obtaining the result. It is useful,
however, also to consider the matter from the
point of view of the transformation (137’). We
suppose the problem solved by working with the
variables a,, ¢: and their conjugates. We may
then still obtain all the desired information about
the variables ay/, a//, i.e., about the probability
of circularly polarized light quanta. For if we
wish to know how likely it is that a circularly
polarized light quantum of type 1’ will be found,
we simply have to find the quantum mean of
iai'a)’t. By (137')

aya/*=§(a1+1a:) a1+ —1aq?).
Applying (61) and using (at)n, y41= —i(h/27)}(N

If
—i%n'n

Ynrn +iXa'n

lags 90° behind
leads 90° before

} the x motion so that the
resulting motion is a rotation in the sense from {

xtoy}

the y motion {

ytox
For the y to x rotation x,’a+4ya’n =0, while for the x to
y motion it i8 2xy’s. Thus xn'a+4ya’s is a measure of the
purely rotational motion in the sense x to y.
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+1)¥a)w, n—1=(k/2x)'Nt we have for the desired
quantum mean
Cl“icg 2

21

c1*+ice* c1—1tcr

21 21

in agreement with the previous result. The
probability of finding a light quantum of type
(1’) thus depends on the phase relation of the
probability amplitudes for linearly polarized light
quanta. If ¢,+14cs=0 the probability amplitudes
may be said to imterfere so as to give circular
polarization.

§6. Analogy of atoms to virtual oscillators

It has been seen above that in some special
cases of emission and of scattering there is a
close analogy between the behavior of atoms
according to the theory of light quanta and the
corresponding behavior of classical oscillators. It
appears desirable to see a more general reason
for this analogy than the agreement in special
cases. It may, in fact, be shown that the solution
of the quantum equations for a collection of
atoms is connected with the solution of corre-
sponding classical equations for oscillators in
such a way that the quantum atoms may be
replaced by the classical oscillators provided the
frequencies dealt with are nearly in resonance
with a possible emission or absorption frequency
of the atoms in question. The atoms do not have
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to be exactly alike nor need they be far apart
provided their electrostatic interaction is small.
In this way it is seen that the classical dispersion
theory remains valid for relatively dense matter
and that the approximations of supposing the
emitting and scattering atoms far apart made in
VI §§4, 4a are not essential for the validity of the
classical picture. If there is a strong electrostatic
interaction between neighboring atoms, the
analogy to the ordinary classical dispersion
model is, of course, destroyed.

In the quantum treatment above it is natural
to deal with the probability amplitudes ¢,, ¢y, c11,
etc. All the ¢'s are essentially complex. In the
classical theory, on the other hand, we deal with
essentially real quantities, such as, the electric
intensity at a point, the displacement of a
classical dispersion electron from its position of
equilibrium, etc. In order to obtain equivalent
sets of equations in the two theories, we must
introduce proper complex variables in the clas-
sical theory. We consider a number of classical
oscillators. To an individual oscillator we refer
by the letter j. The j* oscillator is supposed to be
located at the point R;. Its direction of vibration
is supposed to be restricted to a direction
described by the unit vector f;; the displacement
of the dispersion electron from its position of
equilibrium along f; is denoted by r;. Neglecting
retardation within 7; we have: [cf. I, §3 (18)

(14)]

[(d/2midt) +v.Ja*= 2;(20) 7 (0. V)~ H(J f.) e~ =R,

C
[(@/de)+(2xv;)*Tri=2m(ei/m;) L u(v./ VIH(£f,) [ia, *e®Ri —ja e~ %:Ri ], ©
These equations should be compared with the quantum equations for probability amplitudes:
[(@/2xidt) +».J((R/27)Yc.) = X (2m) 1 (#, V) (Jinn'f ) e~ % Ric,, Q

[(@/2xidt)+v;Jci=T b1 (v, V)~ 4(Jin uf e Ri(h/27) c,,

where J7,,’ is the matrix element of the current of
the j* atom and c¢; is the probability amplitude
for the j*h atom to be excited to the energy level
hv;. The frequencies »; are supposed to be
nearly equal, and the possibility of excitation of
the same atom to another energy level is
neglected.

There is a similarity in the form of the first
Egs. (C) and (Q). The second Eq. (C) differs
from the second Eq. (Q), inasmuch as it is of the

second order. As has been just mentioned, how-
ever, it is not to be expected that the essentially
real quantity 7; should be similar to the essen-
tially complex c¢;, We examine, therefore, Egs.
(C) and express them in terms of quantities
having a close resemblance to the quantum
quantities entering in (Q). We look for particular
solutions of (C) having the nature of free
vibrations. Let
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Q= a7 BLe 2T
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Ji=1£i(A e Bjerriv'y),

€= (A ,-e’""‘— Bje‘_z""‘)/(z‘l"il’,).

Since J; must be real

A,’*=B,'.

Substitution into (C) gives:
(et v)ae=2;(2m) 7 (0, V)M (fif)e X Rid ;5

(re=)Bu= I, (20) " (. V) H(f,f) e %R B,

It follows that a,&<B, to the order Av/v. Neglecting a, in comparison with 8, Egs. (C) give the

following relations between 8, and B;

(re=v)Bs=Z,27)7 (v, V)£ f.)e~*RiB;,

(,” v
(vj—)Bj=— p
m; Vj+ v

“
Z' (-I',‘) (fifl)e&xiﬁo-

(S

We also look for particular solutions of (Q) in which the ¢'s vary as exp (— 274»'t). For such solutions

c,=¢,® exp (—2miv't),

where the ¢'” are independent of the time

ci=¢;0 exp (—2miv't)

(va— ) (h/2m)4c, 0= z:‘(z’r)_l("cV)-!(Jinn'f')‘-‘k'x"ci(o)v
(= V)65 O = (V)T ) R Ri(h 2) 0, O,

Egs. (C') (Q’) are identical in form with the
exception of numerical constants which are
easily adjusted and of the occurrence of »'/(v;
+’) in the second Eq. (C’). We replace this
factor by its approximate values %. This is
permissible as long as we are interested only in a
narrow range of frequencies » in the neighbor-
hood of the v;. The general solution for c,, ¢; can
be obtained by representing these quantities as
sums of particular solutions of the type assumed
for (Q’). The important range of values of +' is of
course in the neighborhood of the »;. For every v’
we let
B.= (h/21r)'6,(°), f:'Bi= Jim‘-c,.(“)'

The first Eq. (C’) is then satisfied automatically.
The second equation can also be satisfied,
provided

Bi/c;® = (}/2m)kvs(£;/ Jin'n)
= (&*/2m)hv.(c;*/B;*),

where 7, is the average of », over the range for
which ¢, is appreciable. It follows that

| Bi|2= (ef/2m)h7,| c;® |
and, therefore, that
S,‘z E(Zm,/h'i.) I Jinn' I 2,

Q"

To within the approximations used here we
cannot distinguish between v; and ¥,. The result
is, therefore, in agreement with the customary
interpretation for the equivalent number of
dispersion electrons. [Cf. Eq. 33 of preceding
report. ] Only in the present treatment it is more
natural to think of it in terms of the effective
value of the square of the charge for the equiva-
lent virtual oscillator. We have supposed f; to be
real, and, therefore, we have considered only
linear polarizations. The proof is easily general-
ized to elliptical polarizations by considerations
similar to those of VI, §5.

It is, thus, seen that to within the approxi-
mations of the above derivation the atoms act as
a collection of classical oscillators. The classical
B, is connected with the energy of the radiation
field in the same way as (k/27)¥c,® is connected
with the expectation of the energy on the
quantum theory. Similarly, if the energy of the
equivalent classical oscillator is averaged over
many periods of its own motion it becomes

W= @m;/?)| B;|*=hy|c;®|*

again in agreement with the expectation on the
quantum theory.
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VII. COHERENT AND INCOHERENT RADIATION;
THE RANGE OF VALIDITY OF THE THEORY

§1. Scattering from atoms with degenerate states

Consider one scattering atom with a doubly
degenerate normal state. The two states into
which it splits under the action of an external
field we call n and m. Let the atom be initially in
the state n. After scattering, the atom may
return to », having emitted a light quantum s.
It may also happen that a light quantum has
been scattered but the atom is found after
scattering in the state m. The probability
amplitudes for the two states we write ¢(n, 1),
¢(m, 1,). The two states are orthogonal, and,
therefore, the total chance of a light quantum s
is:

le(n, 1,) 2+ o(m, 1,) |

Let there be two scattering atoms located
sufficiently far from each other to make the
rescattering by II of the radiation scattered by I
negligible in comparison with the direct scatter-
ing. In the absence of II atom I, scattering by
itself, would produce probability amplitudes
el(n1, 1,), ¢'(mi, 1,) for the states in which it is
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in the normal substates 7y, m;, respectively, and
in which there is a light quantum of type s.
Similarly in the absence of I atom II, scattering
by itself, would produce probability amplitudes
(11, 1,), ¢ (mi1, 1,) for the normal substates
of atom II. When both I and II are present the
scattering occurs by either I or II going to an
intermediate state and returning to one or the
other of the normal states. The probability of
both atoms changing their state on scattering is
thus small and may be neglected. Supposing that
the initial states of the atom are ny, 7, the
probability amplitudes which appear after
scattering are:

o(nr, nir; 1,)= o'(n1, 1)+ o' (11, 1,),
e(n1, mur; 1,)= "(mu, 1,),
e(mr, nr; 1,)= o' (my, 1,).

Here ¢(my, n11; 1,) is the probability amplitude
for atom I to be in m;, for II to be in 7y, and for
there being a light quantum s. The value of
¢(my, myr; 1,) is of a smaller order of magnitude
as has been explained above. The total chance of
finding a light quantum 1, is, therefore,

[@'(n1, 1,)+ @ (n11, 1) |24 | @' (m1, 1) |2+ | " (ma1, 1,) |2

Similarly, for three scattering atoms the probability is

| @ (m1, 1)+ @ (n11, 1) + @™ (m1r, 1.) 24| @ (mr, 1) |2+ | @ (s, 1) |24 | @ (g, 10) |2

The probability is seen to consist of two parts.
One of these of the form (133’) is the square of a
sum and implies interference of probability
amplitudes. Another is a sum of independent
contributions. The first part may be said to be
due to coherent and the second to incoherent
scattering. The scattering due to the return of
atoms to the initial state is coherent. The
scattering due to the transition into another
atomic state is incoherent. It should be empha-
sized that it does not matter whether the energy
of the new atomic state is different from the
initial energy. It is only important that the two
states be orthogonal. The fact that the transitions
to » and 7 may give rise to different polarizations
is also irrelevant, since coherent waves with
mutually perpendicular polarizations may inter-
fere when one of them is passed through a suita-

ble optical instrument (quarter-wave plate, for
example).

The above distinction between coherent and
incoherent radiation is identical with the original
terminology of Kramers and Heisenberg [Eqs.
(48), (53)]. Before Dirac’s theory of light quanta
the most direct reason for supposing (48) to be
the coherent part of the scattered radiation has
been that it has the correct frequency. As has
just been explained there exists also incoherent
radiation of unchanged frequency. Thus, the
summation in (48) should be thought of as
including only one substate of J’ if J’ is de-
generate.

If the degeneracy of an atom is due to the
spherical symmetry of the field, it may be
removed by applying a magnetic field in any
direction. The atom is then space quantized. The
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scattering due to the atom leaving a magnetic
sublevel m of the lower state, going to a sublevel
w of the upper state and then returning to the
same m, has coherence properties. This scattering
contributes to the refractive index. The scattering
due to a transition from u to a different sublevel
m’ of the lower state is incoherent and has no
effect on the refractive index. The average
contribution to the refractive index per atom
must be independent of the direction of the
magnetic field if the field is weak [spectroscopic
stability ].

If the magnetic field is parallel to the electric
intensity of the incident light, the absorptions
m—u are due to the » components of the Zeeman
effect and, therefore, the coherent scattering
u—m is also due to the = components. If the
magnetic field is now turned so as to be parallel to
the direction of propagation of the light wave,
the coherent radiation is due to ¢ components.
For a given initial m there may be either just one
coherent ¢ component emitted or else there may
be two. In the first case the ¢ component must
interfere with another oppositely polarized ¢
component due to another atom in another initial
state so as to give a resultant linear polarization
in the direction of the electric intensity of the
incident light wave. If there are two ¢ com-
ponents ending on the same m then it may also
happen that they will combine into a linearly
polarized wave for a single atom. [See example of
mercury resonance radiation below.] Such a
combination can happen only for the coherent
part of the scattering.

If the arrangement of the scattering atoms in
space is so irregular that no interference of
radiations from different atoms can take place,
one can still observe the scattered radiation, as is
the case in experiments on resonance radiation.
Again the intensity and the degree of polarization
of the scattered radiation cannot depend on the
direction of a very small magnetic field. This
comes about through the interference of o
components due to a return of the atom to the
initial magnetic sublevel m. The mathematical
theory of this phenomenon is given in VII, §4
below. There are, thus, two types of possible
interference between radiation in the Zeeman
pattern: the type responsible for the refractive
index and the whole coherently scattered radi-
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ation; and the interference which may take place
in resonance radiation between two Zeeman
components due to absorptions from m to u and u’
and the return from x and u’ to m. The first type
is illustrated by Na below and the second is
illustrated by Hg.

We consider the resonance radiation of mer-
cury (neglecting the nuclear spin). The normal
state has an inner quantum number j=0 and for
the excited state j=1. The scattering gas is
supposed to be in a magnetic field directed along
the electric intensity of the linearly polarized
incident beam. The magnetic quantum number
for the upper state can be m=1, 0, —1; for the
lower state m=0. The transitions 150, —1-50
are circularly polarized (¢ Zeeman components).

m=/
o
-/

y \ o
EWH EL1LH

F16. 3. Zeeman diagram for 22537 of mercury.

The transition 0—0 is linearly polarized (r
component). The scattered radiation is due to the
excitation to m=0 and is, therefore, linearly
polarized. If, on the other hand, the magnetic
field is perpendicular to the incident electric
intensity, the scattered radiation consists of two
frequencies (the two o components) each of
which is circularly polarized. Since the atom
returns in each case to the initial level, the
circular components may interfere. As long,
however, as the frequencies are appreciably
different, the interference is ineffective even
though it exists because the resultant linear
vibration has a rapidly precessing axis. When the
frequencies differ so little that the axis cannot
precess through an appreciable angle during the
time (27I')~! the radiation is again linearly
polarized this time as the result of the inter-
ference of two ¢ components. For small H there is
thus no difference between different directions
of I1. This is, of course, as it should be by the
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principle of spectroscopic stability.* We see that
in this instance this principle is satisfied by the
ability for interference of quanta having opposite
directions of circular polarization. The experi-
ments of Wood, Ellett and Hanle on the de-
polarization in weak magnetic fields may be
regarded as demonstrating the interference be-
tween circularly polarized quanta of slightly
different frequencies. This results in a linearly
polarized quantum with a precessing polarization
axis. It should be remembered, however, that
from the point of view of our theory it is the
probability amplitudes of light quanta having
precisely the same frequency that interfere. We
deal, therefore, with the overlapping of the
spectral ranges of the scattered radiation due to
the two o components. The quantitative features
of these phenomena will be dealt with in the
section on the polarization of resonance radiation.

We consider next the scattering by sodium, and
for simplicity we take into account the D, line
only. The possible transitions and the corre-
sponding polarization characters are shown in the
Fig. 4. Initially, we may suppose half the atoms

m=42

Pz -2
s -
2o m

F16. 4. Zeeman diagram of D, line of sodium.

to be in the s state with m =% and the other half
in the s state with m = —4. For E| | H we obtain
coherent scattering of the #’s and incoherent
scattering of the ¢’s. For E_| H it is the ¢’s that
are scattered coherently while the ='s are scat-
tered incoherently. If H becomes very small but
1 E, the polarization of the coherent part of the
scattered radiation is again that of the x's, as
though H were ||E, on account of the inter-
ference between the coherent o’s.

# W. Heisenberg, Zeits. f. Physik 31, 617 (1925); W.

Pauli, Quanientheorie Handbuch der Physik, Geiger-Scheel
XII1, 86-108.
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Only the coherent part of the scattering is of
importance for the discussion of the refractive
index of a gas. For any system of atoms satisfying
the conservation of angular momentum we can
apply a small magnetic field in the direction of
the incident electric vector. We then have to
consider only the » components. The plane of
polarization is unchanged. There is no double
refraction and no rotation of the plane of
polarization. If a magnetic field of appreciable
magnitude is applied in the direction of the
propagation of light, the ¢ components are re-
sponsible for the coherent scattering and a
rotation of the plane of polarization results. This
is the essence of the Faraday effect of the
magnetic rotation of the plane of polarization.
The difference between the Faraday effect and
the depolarization of resonance radiation con-
sists, thus, in the fact that the Faraday effect is
concerned only with coherent scattering while
experiments on resonance radiation are affected
also by the incoherent radiation.

Interference between Zeeman components as
connected with the polarization of resonance
radiation has been discussed by Heisenberg and
Pauli* before the invention of quantum
mechanics.

$2. Emission from atoms with degenerate states

Again, consider an atom definitely located in a
certain excited state at the time ¢{=0. Let the
normal state be doubly degenerate as before. For

m

Fi1G. 5. Interference of linearly and circularly polarized
quanta.

example, at the time /=0 we may have the atom
in the m =} magnetic sublevel of the p, state of
sodium in the last illustration of scattering. The
atom may pass into either of the two normal
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levels emitting either a = or a ¢ component. A
group of nondegenerate scattering atoms may be
used to test the resultant radiation for coherence.
To illustrate our point we shall use linear
oscillators for the scattering atoms, the line
joining the scattering atoms to the source will be
perpendicular to the magnetic field, and the axis
of the oscillators will be at 45° with respect to the
magnetic field. Both the = and the ¢ components
will affect the oscillators. If we were to think of
the process in terms of classical electrodynamics,
we should expect the amplitude of the oscillator
vibrations to be a function of the phase of the »
and ¢ vibrations. Such a phase might be difficult
to ascertain, and it might be random for a col-
lection of emitting atoms; nevertheless, it exists
for any classical radiating system. The quantum
theory of radiation, on the contrary, does not
leave any possibility for the interference of the =
and ¢ vibrations in their effect on the exploring
oscillators. The = component may be said to be
scattered coherently by the oscillators and the
scattering from them will be given by (133');

¢21i(v(n1)+r(nxl))t=0;
0¢(n1, 111’3 0,0, <+« ) =crra;  O¢(n1, 115 0,

Working near resonance the equations are:

0e(ny', 111;0,0,0, --+)=c¢y;

eee, 1,0, -")=C,,‘;
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similarly, for the ¢ components. The resultant
probability of finding a scattered light quantum
is the sum of the two probabilities.

Although quantum mechanics allows us to
discuss the scattering from an atom in a definite
state, the only meaning of the discussion is the
statistical interpretation which can be made
either by using a large number of identical atoms
in the same state or by using the same atom and
repeatedly bringing it back to the original state.
The sum total of the above discussion for
emission is thus that it is impossible to prepare an
excited atomic state in such a way as to have
definite phase relationships between the electro-
magnetic waves sent out when the atom jumps to
two different orthogonal lower states. Formally,
thisis simply a restatement of the fact that energy
and time are canonically conjugate variables.

We now support the above discussion by
calculation. The two normal states of the
emitling atom we call ny, my, its excited state ny’;
the normal and the excited states of the scattering
atom (1I) ny1, ni/, respectively. We let

0¢(m1, 111’3 0,0, -+ ) =Crtm,

0p(my, n11;0, -+, 1,,0, -+ +) =Cem.

(@/2midt+v(ni'n0))cr =T (A em*Cem+A in'*Cun),
(@/2midt+v(nu'nu))crn =204 ¥ om,
(@/2xidt+v(nu'nin) +v(minn))crm = oA S *Com,
(@/2xidt+v.)con=A . c1+A Merrn,
(@/27idt+ v, 4 v(ming))com= A mlcr + A Merim,
A 2e R0 Q2xhy, V) T iet ) nymy s A unl 26 R12xhy, V)7H T e 10) myaps
Aol 26 R 27k V) (T et ) mpmye
The solution proceeds analogously to that of (130). If atom (II) were absent, we should have
(@/2midt+v(m'n1)) 1 = 3 (A en *Com @ + A sn*¢,n?),
(@/27tdt+v.)con'® = A ,a1c19,
(@/2xidt+v,+v(min1))com'® = A imlcr©.

A sufficiently approximate solution of these equations is

a@=exp {—2mi(v(nu'n)) —iln)t},

Can® = (Aa!/[va—v(m'n1) +4Tr) JLexp { —2mi(v(ni'n1) —iT1)t} —exp { —2min,t}],
Cam® =A e~ 21D /[y, — y(nr'm1) +4iT1) Jlexp { —2mi(v(ni'mi) —iT1)t} —exp {—2mivgt}],
= (’[A"‘I12/(A”))'—-(n1’n1)+(7|Amx ll/(Ay))v—v(ul’mQ-
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The damping constant for emission is seen to be the sum of the damping constants for the emission
of v(ni'ny), v(n'm;) independently as has been shown by Weisskopf and Wigner.%

Neglecting the change in ¢;°, i.e., the rescattering by (I), we have on letting

cnu=cnn(o)+con“); w;

Clra=Crrn'3 o

Com=Com @ +Com® Clim = Clim
the following pair of mutually independent sets of equations
(d/2midt+v,)cen® = 4 Merra®,
(@/27idt+v(nu'ni)cna® = LA I*(C0n @ +c0a®),
(@/2midt+v,) (cemW 2T m1nDE) = 4 1T (cry,,(Dedrirtminnty,
(@/27idt+v(ni'nn)) (crinMerrrminDt) = 57, A4 JT¥ (0 1y (0 4 (V) g27i¥ (1m0,

The solution of the first set is given by (131) directly. The same formulas apply to ¢,.(Ve?ri*(minD ¢
CrmMer*mindt for the second set. The probability of a light quantum of type s is given by |¢,a|?
+ |cum | ? exactly as though there two kinds of incoherent scattered radiation described, respectively,
by the probability amplitudes c¢,., ¢,n. We shall make use of this fact in the next section.

In the classical theory the scattering by an atom depends on the square of the electric field of the
incident light wave. We expect that in the quantum theory it should depend on the guantum mean or
‘‘expectation’’ of this quantity. This is the case as may be seen from the following consideration.

Using expression (4) for & we form the component of § in a given direction defined by the unit

vector f
(£8) = — X 2mi(f£.) (vo/ V)@~ ®F —da,Fe™r ],

We form the square of this quantity. In the result we interchange the position of a, and a,* so as to
have them always in the order a,a,*. The resultant quantity is directly related to the probability of
scattering. To evaluate it we use the values of the matrix elements.

(@er@ar)Ner, Nyrvs Nor =1, Nyrr=1=(h/27) (N N yoo)},
(@otast)ng, Ngvi N1, N +1=(B/27) (N + 1)} (N 1)1,
—1(@ytae )N, N N1, Ny —1= (B/27) (N +1)IN 0.4,
(@,a)Ns, Ny—2=(h/20)N}(N,—1)}; (@staat)ne, Not2=(h/27) (N, +1)}(N,+2)},
—i(aa,t)ng, o= (h/27)N,, —i(astas) = (h/27)(N,+1),

(s"55")

and the general formula (61) for the quantum mean. Confining ourselves to cases in which the
probability amplitudes exist only for those states in which there is not more than one light quantum
present we have after an easy substitution the desired quantum mean at the point r

&)t =X .(4nh/ V)| (ff.) v deerc,, |2, (138)

where the index # refers to the state of the matter.

This should be compared with the last equation
(130) and the second equation (130”). The
absorption by the atom (II) depends on 3_A4,!*c,.
To within the approximations made throughout
the present treatment we cannot distinguish
between the factors »,7} in 4,'T and »,} in (138).
Otherwise these two quantities differ only by a
constant factor if f is taken along (X e.t.)n;ny

Formula (138) shows again the lack of co-
herence of probability amplitudes referring to
different states of matter. It shows also that

> (4whv,/V)iekrc, £, (138%)

is analogous to the electric intensity of classical
theory. The square of the absolute value of the
vector (138’) determines part of the scattering by
an atom put at r. The total intensity of scattering
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is the sum of the intensities due to (138’) for
different n.

(§3) Unidirectional emission of quanta

In all the preceding discussion we have sup-
posed the nuclei of the atoms to be fixed in
position. We shall now take into account the
motion of the nucleus. It is well known that the
emission of light leads to recoil actions on the
atom. According to Einstein, whenever a light
quantum is emitted the atom should suffer a
change of momentum numerically equal to Av/c
and opposite to the direction of emission exactly
as though the light quanta were unidirectional
darts each of momentum hv/c. It is known, on
the other hand, that the light emitted by an
atom resembles a spherical wave in many of its
properties. Thus, for example, the radiation
scattered by a collection of atoms interferes as
though each atom were the source of spherical
wavelets. Similarly, in any discussion of inter-
ference phenomena, such as Newton's rings, it is
very necessary to be able to consider the radia-
tion emitted in different directions by the same
point of the source as coherent. Experience
shows that this view leads to correct results. The
argument of Einstein about unidirectional emis-
sion and the classical requirements of interference
are at first sight in conflict with each other.

The reconciliation of the two demands can be
reached by inquiring more closely into the
meaning of the conditions dealt with in both
considerations. It is at once apparent that in
Einstein’s discussion we have to deal with con-
ditions in which the momentum of the light
quantum and the momentum of the atom are
definitely known.? According to the principle of
uncertainty this automatically excludes the
knowledge of the positions of the atoms and thus
makes a discussion of interference impossible.
On the other hand, in discussing interference we
suppose the position of the atoms to be known so
that the momentum cannot be ascertained.
Under these circumstances the atom may be
said to emit spherical waves. We can say if we
wish that the atom must be held fixed in order
to emit a spherical wave.

3 C. Eckart, Phys. Rev. 34, 167 (1929); W. Heisenberg,
Principles of the Quantum Theory, University of Chicago
Press, 1930; G. Breit, J. Opt. Soc. Am. 14, 324 (1927).
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It is uncomfortable to have this differentiation
without seeing more clearly just what determines
a sufficient degree of fixedness for the atom in
order that radiation emitted in different direc-
tions could be considered as coherent. The
purpose of this section is to clarify this point. We
shall concern ourselves only with the essential
qualitative features of the problem and, there-
fore, shall suppose that the ratio of the nuclear
to the electronic mass is large and that the wave-
length of the emitted light is long in comparison
with atomic dimensions. For the sake of simplic-
ity we discuss the hydrogen atom although all
the essential deductions apply to many electron
atoms and molecules as well.

We denote the coordinates of the electron and
nucleus by indices e and 7, respectively. The
relative coordinates and the coordinates of the
center of mass are then given respectively by

r=r.—r, R=(mr.+Mr,)/(m+M)
and

te=R+[M/(m+M)Tr,
r.=R—[m/(m+M)]r,

and where 7 is the mass of e and M is the mass
of n.

It is well known that the Schroedinger equa-
tion is separable in the variables r, R. The
eigenfunctions which contain r are exactly those
for a particle of mass p=mM/(m+ M) and a
fixed nucleus. The eigenfunctions containing R
are those for a free particle of mass M+m. The
stationary states of the whole atom, therefore,
can be described completely by assigning quan-
tum numbers to the relative coordinate states
which we call # and by assigning momenta to the
center of mass. The latter we denote by the
letter P which stands collectively for the three
components of momentum P, P,, P,.

Initially (at the time ¢=0) we suppose the
atom to be in the excited state »’. Its momentum
we shall not specify exactly. Instead we suppose
that there is a probability amplitude, C(P)
which by the square of its absolute value
determines the probability of there being a
momentum P. Since the momentum has a
continuous range of values, C(P) must refer to an
element of volume in the momentum space
(P, Py, P.). Thus, the probability of there being
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a momentum in the volume element dP.dPdP,
shall be | C(P) |2dP.dPdP,. In the course of time
light quanta are emitted. Correspondingly, there
appear probability amplitudes C,(P’). These refer
to states in which there is a light quantum of type
s and the electronic state is #n. The probability of
finding such a light quantum and simultaneously
of having the atom in the normal state while the
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momentum is in the volume element dP.dPdP,
shall be |C,(P)|dP.dPdP..

In order to find the relations between the
probability amplitudes we go back to the general
Eq. (110). In this the state of the matter was
described by the index #, which denoted col-
lectively all the quantum numbers. In the present
case we replace this index by two letters #, P. We
have, thus,

(27h)datap; wr, pr=(/2)£.[(Po/m)e~%eFe— (Puuc/ M)e~®eirue ], p. wp.

The operators representing the velocities of the
electron and the nucleus are connected by
relations quite similar to those for the coordi-
nates. For a heavy nucleus and for an atom small

(27h)da,, P, n', P = (e/2m)(£.p)n, n’(e_&'l)P; P

where p is the relative momentum, conjugate to
the relative coordinates r. We see that the whole
matrix element splits in this case into two factors.
One of these (f,p)a, » is exactly as though the
nucleus were fixed. The second refers to the

in comparison with the wave-length of the light
we may approximate the above value of
a’s, P; w, P by

(139)

motion of the center of mass. The eigenfunction
h—teCriMP'R

represents a state of constant total momentum
P’. Since

k.
e-.k.RHhiIA)P'R:fs(p' P’-—-—k—)e(""”“dP,dP,dP,
2x

we have by the general expansion theorem

[cf. (70)]

(e=™R)p, p-=5(P, P'—hk./27)  (140)

and similarly
(e®R)p p.=5(P, P'+kk,/2r). (140"

Using (139), (140), (110) and proceeding quite
analogously to the treatment of emission from
fixed atoms [cf. (122)] we have:

d P-G,)? .
£ ——-+».)c.(p—G.)=A.ca>>,
2widt 2Mh
(141)
d 2 .
+ +u(n'n>)cp)= A C(P-G),
(2‘ridl 2Mh ( z ( )

where .
A = (21hv. V)—‘(Z"G,'f.'f,),".'

G,=hk,/2r = (k,/k)(hv./c). (141")

The vector G, is usually called the momentum
of the light quantum. Egs. (141) are seen to
connect probability amplitudes of states with the
same lotal linear momentum. Thus in the state
referred to by C(P) the linear momentum is P,
there being no light quanta; in the state referred
to by C,(P—G,) the light quantum has a mo-
mentum G, and the matter has a momentum
P-G,, giving again P for the total.

Initially we have supposed all C,(P) to be zero.
An approximate solution of (141) can be obtained
for these initial conditions quite similarly to the
way in which (125) was obtained from (122).
Thus,

(141")
and

C(P)=CO(P) exp | —2xi[v(n's)+ (P/2Mh) —iT}t},

C.P-G,)=CoP)4,

(142)

exp { —2xi[v(n'n)+ (P*/2Mh) —4T}} —exp { —2mi[v,+ ((P—G.)2/2Mh) ]t}

vo— (PG,/Mk)+(G.2/2Mk) — v(n'n) +4T
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where CO(P) is the value of C(P) at the time
t=0. Eqs. (142) thus describe emission in terms
of the initial probability amplitudes for different
momenta of the emitting atom. The damping
constant T' is a function of P. Its dependence on P
is slight provided M is large. In order not to
complicate the discussion we shall neglect the
dependence of T on P.

Eq. (138) gives the effective value of the

4xh
(fs>*=—;— T () (H0) (o) () Y=k [ €L (P)Co(P)a,

where

d9p=dP,dPdP,. (143"

The integral over dQp is seen to determine the
coefficient of e*®+""—ks')r in the Fourier expansion
of (fg)%. In order that (f&)? be localized in space
it is necessary for these integrals to have appreci-
able values for the probable ranges of k,, k,.
The localization of the light intensity in space at
a given time may be thought of as the result of
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square of a component of the electric vector as
observed by means of an exploring atom. In its
derivation the stationary states, which have been
denoted by » were supposed to be discrete. In the
present problem the stationary states are con-
tinuous and are denoted by P. The summation
over n must be replaced by integration over
P., P, P,. We have

(143)

the interference of the light quanta k,/, k,, the
effectiveness of the interference being determined
by the integral over dQp in (143). The propa-
gation of the light wave is then described as the
motion of the interference fringes formed by k,-,
k,» and is brought about by the time dependence
of the integrals over d{p.

The same point of view can be taken also in
classical electrodynamics. Here

(16)2= T (47%/ V) (s MEo ) (Eur ) [ et e 4,10, Seithar—ax

When the motion of the emitting system has
subsided the @, depend on the time as a,(0)e? ¢
[see (7)]. They are thus analogous to the
C.*(P). The first two terms in the brackets of
(143"") are similar to (143). Their dependence on
the time has the character

e2ritr(a)—r(s’)) ¢,

The »(s’), »(s"") cover a range of the order of
magnitude of I'. These terms in a,-a,-* represent,
therefore, the motion of the interference fringes
through space which takes place for a given point

fC.'*(P) Cor(P)dQp=A *4,I(s', ") exp [2xi(v(s') — v(s"))t]

_a‘,a.ug"'(k-'*'ka")l—a,:*a,':‘c‘(k""'k"')']. (143"
in approximately the time (2xT)~1. The terms in
Ay, ap*a,* depend on the time as

exp [£2xi(v(s") +»(s"))E].

They represent high-frequency changes in the
light intensity. They have no analogon in (143).
This is due to the fact that only states of
approximately equal energies have been con-
sidered. The absence of high-frequency fluctu-
ations in the light intensity is not serious since
such fluctuations are usually not accessible to
observation. We have:

(144)
Gl’ G.,i

P
I(s', s") = f C""(P+G.,)C“(P+G.~)[ —14exp { —2xi(v(s") — v(n'n) —m—ﬁ—il‘)t”

1 2 3 s ’ PG.” G.”' > r ’ PG,: .
[— +exp{ n(v(s )—v(n n)—m—al—h+tl‘)tllv(s)—v(n n)———————1

Mh

X[v(s") —v(n'n)—

-1
J
Mh 2Mh

PG, G,:2 —1
- +iI‘] dQp. (144")
Mh  2Mk
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It is useful to have an expression for I(s’, s”’) also in terms of the wave function ¥(R) describing the
state of the center of mass of the atom at ¢=0. We have [cf. (61')]

#«(R)=fh"C°(P)e2""”‘de; C“(P)=fh"¢(R)e‘“‘““‘dl2g. (1453)

The terms in [ ] of (144’) can be expressed as a double integral of exponential functions. This
substitution and the substitution of C*(P+G,’), C(P+G,:-) by means of (145) give I(s’, s') as an
integral which reduces, on integrating over P, to

ae [ [ ara [ *(R)B(R R4 3 G""”) (R") [ 2 [() ()= 1]
. t' t,l r I_ ”n —_ ”n —_— i ’ —_ ”l —_ —_ Nl tl
rlj‘: ] ¥ v % ¥ exp wt| v(s') —v(n'n 2% 1

G, 2 27
+21ri[v(s”) —v(n'n) -———+il‘]t"+— (G+R'—G,~R") ,dﬂnrdﬂau.
2Mh h

We let

R=R'4+G,'/M=R"+G " /M

and we have

t at G.,l'
16,5 =an [ [ avar \p*(R————)w(R—
o Yo M

2

- 21rz[ v(s") —v(n'n) —
2

By substituting into (143) and using (144):

1672h
W= f

St videestr [ y(R-
y (]

G,Hl”

G,r
M

) { 2T Ge—GuIR
exp {— (G, -G,
u )P

8 Gn"z
—iI‘]t’—l—Zri[u(s”) —v(n'n) ————+il‘]l” ]dﬂg. (146)
Mh 2Mh

G2

) exp {21ri(v.-v(n’n)+i[‘+ )r
2Mh

2

dQR.

2riG,R
}d'r (147)

If M is made very large the distance G,v/ M can be made so small for all the important values of 7
that ¢(R—G,7/M) is practically the same as ¢(R). For such sufficiently large values of M (147)

simplifies into

4rh

e 2rir(n'm)—il)t _ p=27ivst|2

@wr-— [ ';(ff.)u.*(A.e-*-R)e*-f

By (141'), (122') A,e %R is just what 4, would
be for an atom with a fixed nucleus put at the
point R. Comparing now (147') with (138) and
the emission solution (125) for fixed nuclei we
see that (147’) may be thought of as the result of
adding the light intensities at the point 7 due to
atoms at the points R, each intensity being given
a weight |¢(R)|2% In this approximation, there-
fore, the points R of the initial wave package may

|¢(R) |d0g. (147")

ve—v(n'n)+iT

be considered as emitting independent and inco-
herent spherical waves [cf. (130"’)7]. If the wave
package is made very small, the spherical waves
differ very little from each other and the
propagation of (f&)? becomes identical with that
of a fixed atom.

We call the waves represented by the integrand
of (147’) spherical because we have already seen
[(130), (130"")] that their effect on scattering




QUANTUM THEORY OF DISPERSION

atoms is exactly as though we had a spherical
wave of total energy hv(n'n) emitted. It may also
be verified directly that the summation over s
leads to a wave of this character. The calculation
is exactly similar to the one made for (130""').
Keeping », constant and averaging over the
directions of f, the average value of (ff,)4 e +-R)
is found to be

(E8) = 8a22(n'm) e | £ (e () e 2
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sin k,|r—R|

f( e'f‘(n))“,(z Ry, V)—i ,
X " 2k,|r—R|

where the superscript (p) indicates that instead
of the vector one takes its vector projection in a
plane perpendicular to the line of r—R. Substi-
tuting and performing the integration over v, it is
found that

e—?ti(v(n’n)—il‘)(t—ﬂt—ﬁl lo) |2

[¥(R)|*dQm,

[r—R]|

ct>|r~R|

the integrand being zero if ct<|r—R| and
otherwise having the value written above.
Allowing 47Tt to be large, using (124), and taking
the integral of 8,2+ 8,24 8,2 over all space we
obtain

4rhv(n'n),

so that the energy of the electric field is }v(n'n)
and the total energy is hv(n'n).

In order to obtain the approximation (147’) we
had to suppose that a change in R of the amount
G,7/ M produced no effect on the value of y(R).
The expansion of ¢(R) in terms of C®(P) shows
that this is accomplished if the range of values of
P for which C@ (P) is appreciable is kept constant
and if M increases indefinitely. In the limit of

(ff,) Vn*/; ‘e—-:k.(R—-t)

;v.— v(n'n) — (PoG,./(Mh))+iT'

Ak
({fe)i=—o
%4

This represents the emission from a moving atom
with neglect of the spreading of the wave packet
due to different values of P/M. If T' is small the
emitted frequencies are given by

ve—PoG./ Mh=v(n'n),
which on using (141”") becomes
vo=v(n'n)/[1—(Po/ Mc)(k,/k,)]

which is the Doppler effect formula for emission
from a moving source. Similarly to (147’), Eq.
(148’) can be interpreted as the superposition of
the intensities of light emitted classically by
moving point sources R the velocity of each point
being Po/ M.

infinite M the atom has then the velocity
P/M =0. The limiting form (147’) corresponds,
therefore, to atoms of an infinite mass and at
rest. The limit of infinite mass may be approached
also in such a way as to represent moving atoms.
This condition is obtained by keeping C©®(P)
constant for a given AP when P=P,+AP. The
velocity of the wave packet is then Po/M. This
quotient is kept constant as M approaches
infinity. Thus, we let

Y(R) =e@ril WPRy (R), (148)

where x(R) is independent of P, and suffers a
negligible change when R is changed into
R—G,7/M. Substituting this ¢(R) into (147) we
have:

2

Ee—?n(y(n’u)-i-PoG,/Mh—ll")l_ e—!n‘v.l] |¢(R)]2dQR (1481)

Both (147’) and (148’) are approximations
valid only as long as G,7/M is small in com-
parison with the dimensions of the wave packet
¥(R). The important values of 7 lie in the range
from =0 to values equal to several times the
mean life (4xT')~1. This restricting condition may
be written

|AR|>(|G,|/M)(2#T) (149)

It means that owing to the recoil action of the
emitted light quantum the atom during its mean
life should move through a distance which is
small in comparison with the size of the wave
packet. Supposing that the spread in the
momentum |AP| has an order of magnitude
given by
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|AR||AP| ~k/(27),

(|AP|/M)- (v/c)<T. (149"

For ordinary wave packets the condition (149)
expressed in the form (149’) means that the
momentum distribution should be so sharp as to
make the changes in the Doppler effect due to the
spread of possible values of the momentum
negligible in comparison with the line breadth. If,
therefore, the line is so narrow that the Doppler

we have

f C*(P+G,)C*(P+G,)d0p = f YH(R)e@ilN(@u—0u iRy (R)dg

may be taken as a measure to within which the
strength of the interference between s’, s’ is
preserved by the wave package. The most
favorable condition for all frequencies is to have
a very concentrated ¢(R) and a flat C°(P). In
order that interference be pronounced we, thus,
want
|AR| KA =¢/v. (150"

This restriction is of an opposite kind to that of
(149). If M and T are such that both (149) and
(150’) can be satisfied the conditions for the
emission from stationary atoms can be approxi-
mated. The conditions (149), (149’) are always in
the way of approximating the emission from
stationary atoms quite exactly. For a hydrogen
atom taking (2#T')~! to be 10~® sec. and hv=35
volts the right side of (149) is of the order of 10~#
cm which is not very small in comparison with
the wave-length.

If both (149) and (150’) are to be fulfilled then
it follows a fortiori that

2xD>hit/ Mo, (151)

so that there is not much meaning to the inclusion
of the term

G/2Mh=hv3/2Mc*

in the exponential of (147). This term changes
the frequency v(n'n) into »(n'n)—G,2/2Mh. It
represents thus the frequency change due to the
recoil of a stationary atom. It is closely allied to
the Compton effect. In order that this frequency
change be observable it is necessary to have

r<h?/2Me. (152)
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effect due to AP is readily observable the points
R of the wave packet cease to act as sources of
independent and incoherent waves.

By (146) the strength of the interference fringe
between the light quanta s’, s’ is determined by
I(s’, s”’). Neglecting G,7/M in ¢ of (147) is
equivalent to neglecting changes in P in the
denominators of (144’). The integration over
dQp in (144') becomes confined to the numerator.
The absolute value of

(150)

It is, thus, impossible to observe it satis-
factorily under the conditions required for
approximating a spherical wave since these con-
ditions lead to a directly opposite requirement
(151). In addition we must also require

|AP| Khv/c, (152")

which, for wave packets satisfying |AR||AP|
~h/(2r) leads to

A&2r|AR]|. (152"

The wave packet must be thus spread through a
region large compared with the wave-length.

Since (152) means that the distance travelled
by an atom due to recoil during the time (1/2I')
is large compared to A the term G,7/M cannot be
neglected in (147) for cases where the line is
sharper than the frequency shift G,2/2Mh. The
| |?in (147) depends now not only on the value
of |¢(R)|? but on the special phase relationships
between all the (R — G,7/M). No single point of
the wave packet can be considered now as
responsible for the coefficient of dQg. On the
contrary all points on half a straight line
[R—(G.,r/M)(0<7<)] in the initial wave
packet are seen to interfere. There is no question
of resemblance to spherical waves after the
integration over r has been performed. The
spherical waves due to each dr interfere and give
rise to idirectional guanta having different
frequencies in different directions and described
by (142) for small I' and |AP]|.

The above relations may be illustrated by
means of the Gauss error curve wave packet used
by Heisenberg:
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(X=Xo* (Y=Yo)* (Z-Z,)

=y . . Z_i
V(R)=xHAX-AY-AZ) exp[ 20X

207"’
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2xi
+—(PuR)],
2042)  h
R=(X,7Y,2); Roe=(Xo Yo, Zo). (153)

Here AX, AY, AZ are numbers determining the spread of the wave packet in space. P, is a constant
equal to the mean momentum. For the evaluation of (146) we need to perform the integration over

dQg. It is found that

f W‘(R—%y) exp [<2ri/h>(c..—e.~m]¢(a_

Gt
)

z.¥,2

[(Gzﬂt, - Gzc”t”)2

sexp { - % 4(AX)M?

(G — Gz )AX\ 2
a )]
h

2% Guot'+G,t"\ Py
+— [(G.' -G,) (Ro+——-——) +— (Gt — G.nt”)]}. (153")
h M M

The terms of second degree in ¢/, ¢’ may be neglected in the approximation (148). Doing so and

introducing AP by
AX-AP.=h[2x
it is found that:
(e2riz =it — 1) (g2ritz""+il i _ 1) 27t (Gzar —Gzarr)?
I(s", s") = - - exp ['— (Gv=Gu)Ro— T —“‘—*‘*—'] (153"
(x’—tI‘)(x”-{-zI‘) h z,¥.2 4(AP3)2
where
’ (I) ( ’ ) poG.' G"G‘” " (u) ( ’ ) POG‘” G"G'"
' =y(s")—v(n'n)— H 2 =v(s")—v(n'n)— .
Mh 2Mh ' Mh 2Mh
The terms GuG,+/(2Mh) do not have much significance since #* has been dropped in (153'). The
factor
(Gzn’—'Gzn”)z] [ (k:a’—'kta")AX 2
e o Y =iy 153
p[ v 4(AP,)? P17 % 2 (

represents the blurring effect due to the space
distribution of the wave packet. By (147’), (148')
it should be the same in absolute value as

f exp [i(ks —ky)R]|$(R) | %d0x,

which is readily verified using (153).

§4. The polarization of resonance radiation

The polarization of resonance radiation has
been treated by means of Dirac's theory of light
quanta by Weisskopf.® The theory of the
absorption and scattering by an atom from a
nondegenerate state presented above in VI, §3

has been extended by him to cover the case of a
degenerate normal state and a degenerate upper
level. The intensity of radiation scattered due to
a given frequency of incident radiation »(so) is
then integrated over »(s,). The results are applied
to the calculation of the angle of maximum
polarization in the special case of a nondegener-
ate normal state (7=0) and a triply degenerate
upper level.

The theory is easily generalized so as to cover
the possible cases of groups of hyperfine structure
levels which arise in practice. The calculation can
be made simpler by avoiding the integration over
the incident frequencies. The resonance bulb is
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supposed below to be subjected to the action of
radiation from an atom having a fairly large
damping constant I'y. We make I'y large in
comparison with the damping constant T' of the
scattering atom and we thus approach the
condition of white radiation being incident. The
calculation is very similar to that of VI, §4. We
refer to the sublevels of the normal state by m
and to the sublevels of the upper level by . The
scattering atom is supposed to be initially in a
definite sublevel m,. The emitting atom is taken
for simplicity as having nondegenerate states.
We use the following probability amplitudes:
¢,, m for light quantum s, scatterer in m, emitter
in normal state; ¢, for no light quantum,
scatterer in u, emitter in normal state; ¢i, » for
no light quantum, scatterer in m, emitter in
excited state. The transition frequency of the
emitter we call »;, the transition frequencies

and similarly to (130"")
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between u and m of the scatterer v,m; by 4,1 we
mean expression (122’) for the emitter, by 4,
the same expression for the scatterer using
n=m, n'=p. We have to solve the equations

(d/27idt+v,+v(m))cs, m=AJc1, m+ 2 WA ™,

(d/2xidt+vi+v(m))cr, m= (41 *cs, m)
(d/2midt+v(w))cy= Lo, m(4s™)*c,, m

If there were no scattering the solutions would be

€1, m® = 8y, moe 2F 1ML

=2 =i Dt p=2ra(vatvm) ¢

Cs, m(o) = 5m, m.A l[ .
ve—ri+il'y

Analogously to (130”) we have:

(Whm+n+mmmmm=ZMnm”'<wm

(d/21l"ldl+ V(}L))Cu(l) = Zu, m(A ,""')*(c,m(°>+cm(‘)),

Z‘(A 'm“)*cm(o) = K"mamm.e—ﬂti(n+y(m)—i l'l)(t-—f)'

Ky = (et) un P (et") nyny P/ (Rux 1he?) 5

r=Ri1/c.

We let ¢’ =¢t—r and we look for solutions of the type

M=K, exp { —2ri(vi+v(mo) —il'1)t'},

W =2 K, A [ ve—vi+il't+v(mmo) I [exp | —2mi(vi4v(mo) —il') | —exp | — 27wi(v,+v(m))'}].

Substituting these into (155) we get

K“'(V“ —vi—v(mo)+il'y) = K ymq +Z'i1‘yu'Kp".
Py

where
Pupr =2 m(m/Av)(A")*A (156")

analogously to (124). The bar indicates as before
an average over the directions of s. Expression
(156) is thus to within a constant factor

(e (e s+ (o) () -+ (ed) (e ).

The calculation is simplified by the fact that in
the important cases which may arise this sum
vanishes unless u is p’. In fact it will be shown
that

Ty =Tb,,, (156")

where T is independent of u. That this is true is
well known for the case of no nuclear spin and

(156)

definite values of the total electronic angular
momentum for the upper as well as the lower
states. For it is readily shown that the matrix
I',,» commutes with the matrices representing the
three components of angular momentum for the
upper state. A matrix commuting with these
three matrices is known to be a constant times a
unit matrix which is in agreement with (156'"). If
the nuclear spin I is coupled to the electronic
angular momentum J, Eq. (156’) still remains
correct. To see this, imagine the couplingof I to J
to be first very weak. The nuclear spin orients
itself in the magnetic field independently of J.
Each sublevel u must then be characterized by
the projections m; and m;. In this case (156”)
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is, thus, correct because the eigenfunctions are
simple products of the electronic and the
nuclear-spin functions. If next the nuclear spin
is coupled more strongly to J the eigenfunctions
become linear combinations of the products. The
transformation from the decoupled to the coupled
condition can be represented as a unitary trans-
formation of the wave functions. There is one
unitary transformation S, for the lower state a
and another one S, for the upper one b. It is
readily seen that

“ Fﬁi’” = Sbﬁl“ Py ”S’h

where the bar indicates a state of the coupled
condition. The T, matrix transforms itself

Con® = T4 K g 200 € [ (3, — yr ik (mme)) (v = () +4T).
I
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entirely as J? which is a constant times a unit
matrix both for the weak as well as the strong
field condition. Eq. (156”) remains, therefore,
correct.

We now solve (156) for K,” and obtain possible
solutions for ¢,®, ¢,»V. These solutions are not
yet quite suitable for the discussion of the
problem because ¢,(V70 at ¢/ =0. They must be
combined with emission solutions from the levels
u in such a way that ¢, should vanish at
# =0. The emission solutions are obtained simi-
larly to VI, §2. In the derivation, use is made of
the fact that T',, is T’ times a unit matrix. The
result of the combination with the emission
solutions gives for large ¢

(57)

We make I'y large and obtain by so doing the condition of radiation having a uniform intensity

distribution in the spectrum. Then

[em®?=T1* L, wKurme*Kume (A )*A ™ [ (vy— v(w'm) —iT) (vs— v(um) +4T).

The number of light quanta scattered into a
small solid angle Aw having a polarization of
type s is then

Aw

,(:, m(l)ladl’a' (158)

n 8wAv .

I= (C/ga) Z(:':'l') (etf) um(df)mu‘(etfa) u'm’(ei'fl)m'u/(l - ZFiTV(I"v “)),

where f is a unit vector in the direction of the
projection of (ef').n, on to the plane perpen-
dicular to the line joining the emitting atom
to the scatterer, i.e., f is a unit vector parallel to
the electric intensity of the incident light wave;
f, is a unit vector parallel to the electric intensity
which is transmitted by the nicol prism or some

Iy= (C/EG)Z(:I,‘,.’?') (ej:)»m(ei)mu'(eé)u'm'(eé)m’u/(l —2mrv(u'n)).

If all the v(u'n) =0, Eq. (159’) gives I as thesum
of the diagonal elements of a product of 4
matrices. Such a sum will be denoted by Sp. The
direction of the auxiliary magnetic field used as
an axis for space quantization can now be
changed. The matrices are then transformed
canonically. As a result the Sp is left unchanged.

(157"

This may be summed over all initial states m,
and divided over the statistical weight g, of the
lower state a. The result is the probability of
finding a light quantum of polarization s per
atom of scattering substance and per atom of the
source. The result is

(159)

other analyzing apparatus; 7= (4rI')~! and is the
mean life of the atom; C is a constant involving
Ry 1, T1, T, which is of no interest to us.

If the incident electric wave is polarized in the
x direction and if the analyzing apparatus is
arranged so as transmit waves polarized along a
direction £, we may take

(159’)

The intensities of radiations having different
directions do not depend, therefore, on the
direction of the auxiliary magnetic field. Again
the result is independent of whether one supposes
the nuclear spin ¢ to be coupled to the electronic
angular momentum j or not. In fact, as long as
there is no energy difference between the different
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states u, coupling 7 to j simply means working
with proper linear combinations of uncoupled
states. Such a linear transformation for the upper
states may be represented by a unitary trans-
formation S,. Similarly, for the lower state there
is a similar S,. The matrix product occurring in
(159’) is transformed canonically with S, and the
Sp is unchanged. We see, therefore, that if ¢ is
coupled so weakly to j that the frequency
differences between different hfs levels in the
upper level are small in comparison with the
natural breadth 1/(2x7), the degree of polariza-
tion of the resonance radiation is the same as
though there were no nuclear spin.

G. BREIT

We consider next upper states having hkfs
separations which are large in comparison with
the natural breadth. We use thus all terms in
(159’) except those for which u and u' lie in
different hyperfine structure levels. Let the Afs
levels of b be denoted by ¢ and those of a by f.
The matrices involving only one ¢ and one f are
called submatrices and are written

x# = (x20), xfe=(x]2)
and similarly for y and z. For any direction of

polarization ¢ the intensity of radiation in the
absence of a magnetic field is

(159")

1= (C/ga)g 2; Spl(ed) *(ex)’ #(ed) *"(eb) "' *].

We have the following relations® for any vector with components having the same commutation
relations with J,, J,, J, and F,, F,, F, as (ei), (ey), (e2):

Spl(ez) */(ex)! *' (ex) '/ (ex) " * ] = Sp[(eg) */(eg) ' (e) *'* (eg)”" *] = Sp[(e2) */(e2) *'(e2) *'"(e2)” ( ;:6]6)
Spl(ex) */(ex)!* (eg) /' (ey) " *1=SpL(ey) ' (ey) ' #' (e2) *'/' (e2) "' *] = Sp[(e2) / (e2)/ #'(ez) *'/"(ez) "' *],

Spl(ex) #/(ex)! #(ex) */' (ex) " *]+25p[ (ez) */ (ex) #(eg) */' ()" *]= 20+ 1) A /A *"' /3, (160")
where

A9 = o (1 (€0)y I | () Ly |4 (€)210 1)

is proportional to the transition probability from ¢ to f and is independent of .
The Eqgs. (160) show that (159’) is in agreement with the principle of spectroscopic stability also
in the case of hyperfine structure. In addition

> AY=A, (160")
where 4 is proportional to the transition probability from any sublevel of b and is independent of
s The L= (C/8) K. 1. rSPL(e) ¥1(e)!¥(ek) 7 (e2) '), o1
and I,=(C/ga) L. 5, 1rSpL(ed) ¥/ (ez)! #(eg) */" ()" ],

I+21,=(C/3g) AL ,(2¢0+1) = Cgud?/3ga (161")
by (160’).

Eq. (161) shows that the total intensity of the
radiation scattered in all directions does not
depend on whether the nuclear spin is coupled to

% M. Born and P. Jordan, El tare Quant, hanik,
Julius Springer, 1930, pp. 151-162. The equations used in
the text are derived without difficulty by the methods of
this section.

the electronic angular momentum or not. This is
true, of course, only as long as the incident
radiation forms a broad band with a uniform
distribution of intensity among frequencies. Such
a condition is usually designated as that of broad
incident lines. It was to be expected that (161%)
should hold because otherwise the absorption
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coefficient would depend on the nuclear spin.
The occurrence of A%in (161’) is of no significance
because 4 is involved also in C.

We now apply a magnetic field 3¢ of sufficient
strength to have the Zeeman splitting comparable
with ' but not large enough to make the
Paschen back effect appreciable. The direction

e—2i0

121

of 3C shall be the z axis and the angle between ¢
and 3¢ will be called 4. It is convenient to use the
standard representation of angular momentum
matrices in which (ez) is diagonal and the matrix
elements of (e(—1y)) vanish except when u+1
=m while those of (¢(Z+14y)) vanish except when
p—1=m. Substitution into (159’) shows that

idd

Ie=Z¢{(a¢)+ﬂ(¢) [1

where

1
—irg,eJC/mcﬂrl+i‘rg,eﬂc/mc]}'

(162)

o) =(C/Ag) T 1 T ap AN AN = (C/48) Ty AL,

B(o) = (C/4ga) | T s(e) 2y, wir(eD) %, 1%

(162)

(Aaf =2 () |2+ | (ed)2! |2}

Here (4,),# may be thought of as the transition probability from the magnetic sublevel u of ¢ to f
due to all possible ¢ Zeeman components. We have further

a(e)+26(e) =(C/ga) L. rSp((ex) ' (e)! *(ed) */' (e2)'¥),
() —2B8(¢) =(C/ga) L1 Sp((e) */(ex) #(ey) /" (ey) " *).

Adding twice the second of these to the first and
using (160') (160")

3a(e) —26(e) = (C/ga) 29 +1)4%/3  (163')

Eq. (163’) together with the first equation (162’)
determines a(¢), B(¢) in terms of the intensities
of the lines of the Zeeman pattern.

By (162) the degree of polarization in the
presence of a magnetic field is

Iz“Iv_ (Po);
L+, T 14 (rg.e0/me)?

64)

where

(163)

(Po) p=28(p)/ 2y ().

The calculation can be carried through either by
using (162’) for both « and B, or by using the first
Eq. (162’) for a and (163’) for 8. The latter
method is preferable because it involves only the
use of transition probabilities, One can also
calculate a and B using Heisenberg’s rule as
applied to hyperfine structure by Ellett.?” That
this is true is seen from the fact that Eqgs. (163)
involve only spurs; z may be, therefore, substi-
tuted for x and x for y without changing the
values of the sums. Letting u be any sublevel of ¢
we have from (163)

(164")

a(e)+26(e) =(C/ga) Ly, rLul (D) [2] (e2)27]2,

(164"

a(e) —28(¢) = (C/ga) Ly » Zul € [*{] ()£ |2+ (e2) 5,112}

The interpretation of this formula is that one
can think of a(p)+2B(¢) as being due to the
absorption along = components to the sublevels u
in ¢ followed by emissions of = components from
the same u, the absorptions being taken pro-
portional to I(eé):/ |2 and the emissions to
| (¢2)2”"|%. The origin of a(p)—28(y) is, on the

other hand, first an absorption to u with the
same probability as before followed by the
emission of ¢ components with a probability
2{|(e2)? 112+ | (e2)?”",_1|?}. The result must
then be divided by 2 in order to agree with
(164””). This is in agreement with the fact that ¢

% A. Ellett, Phys. Rev. 35, 588 (1930).
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components radiate only with } the efficiency of
# components in a direction perpendicular to the
magnetic field.

Using (160), (160’), (160"") one can express a,
in terms of quantities proportional to transition
probability. We let A be a number proportional
to the total transition probability from sublevel
u of ¢ due to m components

AT=Xl(y)

ale) = (C/‘q’ga)Zu(A:“)z»

BREIT

and A" we, similarly, make proportional to the
total transition probability due to ¢ components

AP =22 { [(e)f! a2+ [ (ed) £, 2},
then
A=A%+A
is the total transition probability (on the same

scale) and is independent of u and ¢. In terms of
the o components

B(e) = (3C/4g) Lu(A2) — (C/ga) 20 +1/3) A%

By using these expressions, the polarization in zero field is

Py=3 ,Po(p) =3—[44%(2i+1)(2j»+1)/3Z . 4, (42)?]

for broad incident lines. The most convenient expressions are in terms of the = components

a(p) = (C/48a) {Zu(A2)+ (20+1)4%/3)},

2 oa(p) = (C/Ag) (X o (A7) +A(2i+1) (255 +1)/3]

where 7 is the nuclear spin and j, is the inner
quantum number of . For broad incident lines
the polarization in zero field is*® by (165)

o _ T B QA DGt 1)/3
. A AN D) (20 1)/3

(165")

In order to calculate the polarization in a
magnetic field, however, it is most convenient to
use Eq. (165). For narrow incident lines Eq.
(164”) is the simplest starting point. One must
multiply then |(ez),#/|? by I, the intensity of
incident radiation having the frequency »(¢f).

The angle of maximum polarization is found
from Eq. (162). It is given by

28(p) = (C/4ga) [3Lu(A2) — (20+1)4%/3},

(165)

2 #Po(¢) sin 26(p) cos 26(p)
tan 20 = , (166)

2 ¢Po(p) cos? 26(p)

tan 20(¢) = rg(¢)e3C/mc.

where
(166")

Let now the distance between the hfs levels of b be
comparable with the natural breadth of the lines.
It was already seen that if the natural breadth is
large Eq. (159) gives the same result as though
there were no nuclear spin. For small natural
breadths all terms of (159’) in which u and u’
referred to different hifs levels ¢ and ¢’ were
omitted because the denominators were large and
Eq. (159”) followed. For intermediate cases, in
the absence of an external magnetic field we have
by (159), (1607), (165)

=30 u(C/g)(A )+ L1, 11y o> (2C/8) Sp((ed) #/(e3)! ' (e2) *'/' (€)' #) /[ 1 +(27r7v¢/):¥-67)
I +21,=(CA*/3g) X o(20+1) = (CA?/3g0) (2i+1) (275 +1).

The second of these equations shows that the total amount of scattered radiation does not depend on
the relative values of the ifs separations and the natural breadth. By (160)

2y 1 Sp((ex) ¢/ (ex) ¢ (ed) *'/' (ex) ! #) = Lu| X s(e2) el (e2) 2|2

(167%)

% Pauling and Goudsmit, Structure of Line Spectra, p. 241, McGraw-Hill, 1930.
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As an example, consider the D, line of Na on
the supposition that the spin of the nucleus in
units of k/2r is 1. We write the electronic
eigenfunctions of the P, state corresponding to
magnetic quantum numbers $, 3 --- as J(3),
J(3), + - - similarly, the nuclear spin functions as
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I(1), I(0), I(—1) and the electronic eigenfunc-
tions of Sy as Jy', J_;'. The coefficients with which
the products of these functions must be used in
forming the proper functions for Afs levels with
definite magnetic quantum numbers are given in
Table I.

TaBLE 1
1=5/2 3/2 1/2
J@/2)I1(1) | JA/1Q1) | J@3/2)I) | J(=1/2)I(1) J/2100) | J3/2)I(—1)
1 34/54 2451 3410 6!/10} /104 ¢=5/2
24/5 — 345} 23/15} —1/154 —6t/15 | =372 ], b=1P;
1/6} —24/6} 34/6 ¢=1/2 J
m= 3/2 1/2
J'(1/2)I(1) J(=1/D1(1) J'(1/2)1(0)
1 1/3 24/3} f=3/2
—2i/3t 1/3} f=1/2 } =25

By means of Table I (transformation matrix) the
values of X ; in (167’) can be found. The calcu-
lation is simplified by the fact that the matrix
element (J(3)/(e2)/J'(3)) is equal to (J(—3)/
(e2)/J'(—1)) as follows for instance from the

fact that the state ¢ =4, u =3} should not combine
with f=3, m=4}. This matrix element we write
2(3, 3'). The coefficients of 2(}, }') for (ez),,* are
given in Tables II and III.

TasLE I1. TasLe III.
u=3/2 u=1/2
"3 5/2 3/2 1/2 '3 5/2 3/2 1/2
f f
3/2 3/5) /5 3/2 3(1/10)% (2/45)} —1/18t
1/2 1/2 0 —5/45% ~2/9}
Hence the expression (167) is found to have the following values for
(¢, ¢')=(5/2,3/2) | (5/2,1/2) | (3/2,1/2) | (5/2,5/2) | (3/2,3/2) | (1/2,1/2)
14/25 1/10 2/5 117/50 26/25 1/2 X 12(1/2, 1/2") |\
It is easily found that |z(}, 3')|2=242/3. Hence by (167)
97 28/25 1/5 4/5
L= (C/e0 lath, 1) 14| ; l
25 14(Q27r7v(5/2,3/2))* 14 (Q27x7v(5/2,1/2))* 14+ (27x7v(3/2,1/2))?
64 14/25 1/10 2/5

I,=(C/gd) = 1) s*{

25 14 Qrro(5/2, 3/2))F 1+ @2nru(5/2,1/2)) 1+ 2rrv(3/2, 1/2))2}'
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If all the »(¢, ¢’) are made large, one may take
I1,=97, I,=64 corresponding to P=0.205. If all
the v(¢, ¢') are small, one, similarly, gets P =0.60.
According to Larrick,” the splitting »($, 3) =1.44
X108 sec.”! so that »($, $)=0.90X10® sec.”},
v(},3) =0.54 X 103 sec.~* and by using r =103 sec.,
P =0.228. According to the latest observations of
Heydenburg, Larrick and Ellett,® the polariza-
tion for both D lines together is 16.48+.33
percent which according to their calculations
corresponds closely to a polarization of 20.5
percent for D, alone. The calculations of these
authors correspond apparently to the suppo-
sition that the strengths of the incident D; and D,
lines are equal. Calculating, similarly, the ex-
pected polarization for D;+D; we obtain 18.5
percent which is, therefore, somewhat higher
than the observed value. If, on the other hand,
the incident D, line is taken to have its theoretical
strength of twice that of D;, we would get only
15.6 percent with the line-breadth correction and
14.0 percent without it.

Modified formula for unpolarizedincident radiation.
In some experiments the incident radiation is
unpolarized. This practice has the advantage of
giving larger intensities of scattered radiation by
eliminating losses of light in the polarizing
apparatus and we shall indicate briefly the
necessary treatment.

The incident radiation is considered as
traveling along the y axis and the directions of
observation and of the magnetic field are taken
to be the z axis. We consider the incident beam
as a mixture of two beams polarized along 0X
and OZ. The intensities of the two beams are
equal and phase relations between them are
supposed to be absent. The intensity due to the
first beam is given by (162) where «, 8 are
obtained by means of (165). The second beam is
polarized along OZ. We consider the general
formula (159). We have only terms with u and '
lying in the same ¢. For etf we must now write ez.
For this component the selection rule u=m=yu’
applies. Thus the sum (159) involves only terms
with u=4’ and all »,,,=0 which shows that the
magnetic field has no effect on this radiation. Its
intensity is therefore also independent of 4. By a

® L. Larrick, Phys. Rev. 40, 1041A (1932).
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direct application of the formulas already given
this intensity is

(C/28) Ly, wA < **4. %" =a(p) —28(p)

as is clear also from the fact that this intensity
must be equal to the intensity of the radiation
scattered along z polarized along y due to
radiation polarized along x. We may thus use
Eqgs. (162), (164), (164’), (166) provided a(¢),
3 sa(y) are replaced by [see Eq. (165)]

a(p) =2a(e) —2B(¢p).

For zero magnetic field the polarization due to
unpolarized incident radiation is found from the
above to be

Py=Py/(2—Py)

where P, is given by (165’). By (164’) Py(¢)
contains a only in the denominator. Therefore
Py(¢p) is diminished in the same proportion as P,.
Thus the modification of (164), (166) for unpolar-
ized incident radiation consists simply in multi-
plying the values given by these formulas by
1/(2—P,) where P, is the polarization due to
polarized incident radiation in zero magnetic

field.

Modified formula for fluorescence. The formulas
derived above for resonance radiation are easily
extended to fluorescence. We suppose the atom
to be in state ¢ having an inner quantum number
Jay to absorb radiation taking it to state b from
which it falls to various states c. The levels g, b, ¢
are supposed to be split into hyperfine levels
with fine quantum numbers f, ¢, k. We are in-
terested in the polarization of the line due to the
fall from b to c¢. Eq. (159) applies to this case
as well provided m is restricted to lie in ¢ and
m’ in c. This restriction must be made for m
because T'1 of (157) is small compared with |v,|
and because we are interested only in scattered
radiation near the frequency w.. Performing
calculations exactly similar to those above it is
seen that (163) is changed only to the extent of
replacing f by & in the last two factors in the
Sp. Similarly in (164”’) f’ is to be replaced by &.
Eqs. (165) go into
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a(e) = (C/4ga) {Lud (@) A *#(0) + (20 +1) A (bc) A (ba) /3},
28(¢) = (C/4ga) {3 4A (@) A +#*(c) — (2 +1)A (bc) A (ba) /3 }

where A,.(a), A,**(c) are the transition proba-
bilities from the magnetic sublevels u of ¢ due to
m components to all magnetic sublevelsina and ¢
respectively while A(ba), A(bc) are similar
transition probabilities due to both = and ¢
components from b to a and ¢ respectively. With
these changes (164’), (166) still apply. In all of
the above formulas the factor 1/g, is present
so as to give the scattered radiation per atom of
scattering substance. If one deals with a mixture
of isotopes the contributions of « and 8 (i.e., the
intensities) due to the different isotopes are
proportional to their abundance and are obtained
by first multiplying the expressions derived above
for each isotope by its abundance and then
summing the results. Calculations using this
theory have been made for \2537 of Hg by
A. C. G. Mitchell to whom the writer is very
grateful for the permission to reproduce the
graphical comparison between theory and ex-
periment given below.

100—

— Hfs 2537 T=/08x/0"
90 |— === WNo Afs o :8%7 %
©  Ofson's data R =84%
¢ o Olsons data R=79%

*
©
[l Per cent |

3
J

L1 1A fyoy) | !

o ¢/ Q& ©3 ¢7 0% ce o
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Narrow incident lines. It has been supposed
above that the intensity of the incident radiation
is sensibly uniform throughout the range of all
possible transition frequencies between the sub-
levels of the levels a and 4. This assumption has
been introduced in passing from (157) to (157')
by making T'y large. The integration over », in-
volved in passing to (159) can be performed
without this approximation and leads then to

an expression similar to (159). The factor
1/(1—2x4rv,,) is now multiplied by some con-
stants and also by

i/[v(w'mo) = vi+i(T+T1)]
+i/[vi—v(umo) +4(T+T1)].

Let T'; be large compared with T and yet small
compared with the distance between two hyper-
fine structure components. The above factor is
then appreciable only for that kfs component for
which the absorption frequency v(um,) =v;. The
two terms combine under these conditions to give
a resonance factor 1/[ (v(umo) —v1)2+T12] which
is proportional to the intensity of the incident
light per unit frequency range at the absorption
frequency »(umo). Thus for any mixture of wave
trains having I'1 >T we can simply modify Eq.
(162) by including in (163) (164”") a factor
proportional to the intensity of incident radiation
at the frequency v,,. This applies also if I'y~T
provided the incident line is broad compared to
I. In fact in this case we must integrate over v
and we are again left essentially with the intensity
at the frequency »,,. In practice incident lines are
broad in comparison with the natural breadth
and further refinements are not necessary.

§5. The Compton effect and Klein’s method ; the
two-body problem

One of the most striking demonstrations of the
unidirectional nature of light quanta is the
Compton effect. As is well known the wave-
length of x-rays scattered by free electrons
initially at rest is increased on scattering. This
change of wave-length is called the Compton
effect. The x-ray quantum imparts to the
electron a certain momentum and, therefore, also
a certain amount of energy. The amount of
energy available for the scattered quantum is
smaller than that of the incident. The wave-
length shift is derived without difficulty from the
laws of conservation of energy and of momentum
when applied to this collision process. As is well
known, the wave-length shift is

AN=(h/mc)(1 —cos O),
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where O is the angle made by the direction of
scattering with the direction of the incident
radiation.

The theoretical justification of applying the
laws of conservation of energy and momentum to
this collision process is essentially the same as
that used above [VII, §3] in the discussion of
the unidirectional emission of light quanta. The
point in the calculation at which the conservation
of momentum makes its appearance is

(e-*®R)p p.=5(P, P'—hk,/2r). (140)

In the discussion of the Compton effect we let
R=(X, Y, Z) be the coordinates of the electron
and P=(P,, P, P,) its components of mo-
mentum. R occurs in the interaction energy only
as e™%R the — sign occurring with the radiation
variable a, and the + sign with a¢,*. One hasas a
result a selection principle according to which
there can be transitions only between states with
exactly equal total momenta provided each light
quantum is interpreted as having a momentum
hv/c in the direction of its propagation. [See Eq.
(141).] The point at which conservation of
energy is brought in is in the fact that the
problem is treated by means of a Hamiltonian
function. The wave-length shift is, thus, in
agreement with Dirac's theory of light quanta
inasmuch as it is a consequence of the laws of
conservation.

The intensity of the scattered radiation can be
also derived from the theory of light quanta.
The formula believed in at present is that of
Klein and Nishina.*® It is derived using Dirac's
relativistic equation for the electron. Previously
to that Dirac*! and Gordon derived a somewhat
simpler formula by means of Schroedinger’s
quadratic relativistic equation without spin. The
method of calculation in both papers is that of
Klein?? and is closely allied to the treatments of

N,

(te—:k'rfl) nan’ (te—m“rf”)*mn' N (te_‘k’rf,) n'ny (te-x'k”rf”)*n,”’
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optical dispersion by Born, Heisenberg, Jordan
and by Schroedinger presented in IV above. The
relativistic electron equation of Dirac gives better
results for most problems than Schroedinger’s
quadratic equation and the formula of Klein-
Nishina is, thus, to be preferred.

The justification for using the correspondence
method in the discussion of intensity relations in
the Compton effect has been given by Dirac*? and
by Waller.#* Dirac makes use of the general
validity of Einstein's A/B relation [V, §6
above]. Waller performs a direct calculation
using Dirac’s theory of light quanta from the
beginning. The calculations necessary for a
presentation of the connection of the theory of
light quanta with the correspondence method
have been performed by us in V, §7 above. We
explain only the case of the Klein-Nishina for-
mula, since it is probably the more correct
formula and since its theoretical discussion is
simpler than that of Schroedinger’s quadratic
equation.

By using Dirac’s relativistic electron equation
the interaction energy between radiation and
matter is

H'=aeA, (168)
where the electronic charge is e, the vector
formed by the three Dirac matrices a;, a, a3 is
called @ and A as usual is the vector potential. In
order to emphasize the connection with the
nonrelativistic discussion of V above we use

H'= —(e/O)EA. (168"

The calculation for scattering is now practi-
cally the same as that of V, §7 above. Only
the terms in B',‘,',_':ff are now absent. Thus, Eq.
(118’) applies omitting the term in 8. Remember-
ing the definition of a..® given by (109) and
making the distribution function D infinitely
concentrated, we have instead of (118’)

ca= —t,

((l")pﬂ'. =

e ¥
20 (Vv(s")) z"'[

v(n'n)—»"

}, (169)

v —p(nn')

where the incident radiation is referred to by £”/, k'’, ", the scattered by f/, k/, +/, the initial state of
matter by 7, the final by 7, and »’ refers to the intermediate states. Eq. (169) gives the effective

© Q. Klein and Y. Nishina, Zeits. f. Physik 52, 853
(1929); Y. Nishina, Zeits. f. Physik 52, 869 (1929).

« P, A. M. Dirac, Proc. Roy. Soc. Alll, 405 (1926);
W. Gordon, Zeits. f. Physik 40, 117 (1927). For connection

with correspondence principle: G. Breit, Phys. Rev. 27,
362 (1926); Amer. Phys. Soc. Proc., December, 1925,
“ P, A. M. Dirac, Proc. Cam. Phil. Soc. 26, 361 (1930).
4 1. Waller, Zeits. f. Physik 52, 75 (1929).
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value of [see Egs. (109), (111), (114), (118)]

(fe—‘xltfl) nnueﬁ' = ((ZTh) ‘/8) (a")eﬁ..
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(170)

which should be used in emission formulas such as (111), (114) in order to obtain the probability of

scattering a light quantum s’.

In order to see the relation with the classical theory, consider the equation immediately preceding

Eq. (111) from which the latter was derived:

d a’ano e
( +v')a”‘821ir(n) t= " pristnng)tm (pgikef) rintang)t
2midt (Vve)} (27hVy,)}

(171a)

and compare this with Egs. (18) of classical electrodynamics making use of (9):

d
(et
2midt

Egs. (171a), (171b) are very similar to each other.
In (171a) the probability amplitude a,, is
determined by its initial value and by the
matrix element standing on the right; in (171b)
the radiation variable a,* is similarly determined
by its initial value and the integral on the right.
The similarity suggests that the a,, are identical
with the a,* for a proper classical radiation field.
It must be remembered, however, that in (171b)
ej is a current of classical electrodynamics and is,
therefore, necessarily real, while the quantity
which corresponds to it in (171a) is u.*tu,,
Xetrirmnot and is essentially complex. We let,
therefore,

j = Je2fir(nnu) t4 J*e—hiv(nno)t;

J = tn*tune2ririnnot (172)

and we substitute this into (171b) and the corre-
sponding equation for a,. These equations de-
termine a,, a,* as:

A, =a,(Jerririnnot) +a,( *e—2riv(nno) )
J J (172")
(l.* = a'*(Jezri-(nna) t) +a.*(J*e""'"""°) t)'

where by a,*(Je*) is meant the result of solving
(171b) with Je! substituted for j. Thus, in
(172') a,(Jerirtnnot), g *(Je im0 t) are not the
complex conjugates of each other but are simply
functional symbols. The left sides of the two Egs.
(172’) are, nevertheless, just as usual the complex
conjugates of each other because j as defined by
(172) is real.

If v(nn,) <0 and if initially a, ( ), a,* () are
all zero, the only appreciable values of the

e
v.)a.* e —— ff,je"’"d %
27 (V)

(171b) (classical)

functions in (172’) are those of

a'*(JeZn'u(nng) ()' a.(J*e—h'ir(nno) t)

as is seen by comparison with Egs. (111), (114).
[These two quantities’ are also complex conju-
gates.] Thus, the only part of j which is of
importance in (171b) is that containing J. We let,
therefore,

Jeh'l'r(nnn) t— un*tun°e2riv(nnp) l'

a* = (h/27) g e "Mt (173)

and we see that the distribution of energy through
the spectrum and among various space directions
for the classical radiation caused by (172) is the
same as the probable distribution in the quantum
problem. For the classical energy is 27v,|a,|?
which by (173) is the same as the expectation of
the quantum energy hv,|a,,|2

By means of (172) we can picture the emission
of radiation as due to a classical current density.
What has been proved so far is only that the
classical electromagnetic field emitted by j has
the same energy distribution among frequencies
and space directions as the expectation of the
energy distribution has for the quantum problem.
It has already been seen VII, §3 that in some
cases the equality of a., and of a,* leads also to a
similarity of quantum and classical theories so
far as location in space is concerned. It is hardly
necessary to elaborate this point. It will suffice to
remember that (f§)? of the classical theory is
analogous to the expectation of this quantity in
quantum mechanics and that the behavior of the
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classical quantity is quite similar to that of its
quantum analogue.

The validity of considering the radiation as
due to the classical current density (172) is
closely related to the correspondence principle
discussion [see II above]. Einstein's transition
probability from the state J’ to the state J”’ was
supposed to be given by Eq. (47) in which

zer."-’“ = a"|’(‘I)(.’l.,”)l
while the polarization was expressed as
%(C’ezfi(rr) t+ C'te—-ifi(") l).

It is clear that the current density (172) gives the
same rate of radiation as (47) if the atomic
dimensions are small in comparison with the
wave-length. We may, thus, regard (172) as the
generalization of (47) to the case of no restriction
on atomic dimensions.

So far we have explained the justification of
the treatment of emission by means of the
classical current given by (172) in terms of the

Cn.nn - e—?n’v(ng) l'

e
Cpto=— [b(te""f) ane
he

xi(v—r(ng)t

v+ v(nng)
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theory of light quanta. A classical current density
similar to (172) may be used for the discussion of
scattering. There is in fact not very much
difference between spontaneous emission and
scattering if one regards the incident light wave
and the scattering electron as one coupled
system. This point of view has been elaborated in
detail in Section IV of this report. It has been
shown there that it is legitimate to use the
explicit time dependence of the perturbing
potential and that one arrives in this manner at
the same results as follow from a consideration of
the coupled system. The discussion of Section IV
did not include the retardation of potentials and
is for this reason not altogether sufficient for our
present purpose. Including the retardation effects
we consider the electron under the action of an
electromagnetic wave having a vector potential

A=f(bedritrivef proike—2rive)  (174)

Let the interaction energy be given by (168),
(168’). Under the action of the light wave an
atomic state #, is changed into Y ¢."u. where

e—’l’l‘("’l(ﬂ.})‘
+b*(teee) ., }

v(nme) —v

The current density eu, *tu,e?**™ "t which determines the probability of a jump from n, to n, is

changed into

eun‘ttumez:iv(n.ng) ‘4 Zﬂ, —

e! { (fe—-ikl'f) an’
hc

v(n'ni) —v

e ((te®rf), q
43 {~—(’ )

a— u
he Lv+v(n'ny)

This expression will now be used in place of
eJerrirtmnat of (172) and the effective classical
current density ej will be given again by (172).
It is maintained that this procedure is equivalent
to the calculation by means of the theory of light
quanta which led to (169).

In fact, we see that the part of J [see Eq.
(175)] which contains the frequency »(mm,)+»
is very closely related to the complex conjugate of
the expression for ““(a*’) eff.” given by (169). [It
should be remembered that in (169) the incident
frequency » was denoted by »”.] Using (175) we
compute without difficulty ‘“‘(a*’) eff.”” by means

(te—;krf) n'ng
Un*Tlny+————

n TUp,

unl#".u”,}bczvi(v(mng)-f-r)t
v+v(n'ns)

(te&rf) n'ng .

—_— u..,‘tu,.-}b*e’"""‘“‘*’"". (175)
v(n'ng) —v

of (170). The expression in { } involving matrix
elements is obviously identical with the complex
conjugate of the corresponding expression in
(169). The factors by which the sum is multiplied
are also readily seen to be identical, provided we
let

b=ca, /(V¥'")Y; |aw|*=Nyh/2%

in accordance with (1). The
(ete~*'tf), ,°!* is then by (170)

(&/QxR)) (N o/ V') =(e/he) ||

factor for

in agreement with (175). We have not followed
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through the analogy of the classical phases
occurring in a,, a,* and the quantum phases
which occur in the probability amplitudes. This
may also be readily done.

The use of the classical current density (172)
with J given by (175) for the calculation of the
intensity of scattered radiation is the corre-
spondence method of Klein. In applications of
the method it is not always necessary to use Eq.
(175) for in some cases the perturbation of the
proper functions may be computed more con-
veniently in other ways. The only essential point
in (175) is the representation of eJ as a sum of
terms involving definite frequencies. Klein's
method was formulated before the invention of
the theory of light quanta. It may be looked at
either as an a priori hypothesis or else one may
prefer to justify it by means of the theory of
light quanta as we have done here. The latter
way has the appearance of being the better one,
since it makes it possible to treat radiation and
matter as a coupled dynamical system. It should

be borne in mind, however, that the theory of
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light quanta has not gone so far much beyond the
justification of the correspondence method and
that it cannot claim to be logically consistent on
account of the well-known divergence difficulties.
Klein's formulation appears at the present time,
therefore, as a particularly clear way of stating
our knowledge about the probabilities of spon-
taneous emission and of scattering. Although it
does not aspire to the same degree of finish as the
theory of light quanta it is highly recommended
by its simplicity and is likely to be correct quite
independently of the theory of light quanta. In
practical applications it has the additional
advantages of avoiding too complicated calcu-
lations and of enabling one to visualize the
phenomena in terms of charge and current
distributions.

The result of the calculations of Klein and
Nishina is that at a distance 7 from the scattering
electron the intensity of radiation scattered in a
direction making an angle © with the incident
beam and an angle 6 with the incident electric
intensity is

For unpolarized incident radiation:

e
I=

et sin? 0 (1 —cos ©)?
=1, [1 ] (176)
mictr® (14 a(l —cos ©))? 2 sin? (1 + (1 —cos 9))
14-cos? © (1 —cos ©)?
I, [ a? ], (176")
2m2c*r?* (14+a(1 —cos ©))? (14-cos? ©)(14+a(1 —cos 0))

where
a=hy/mc*=A/\ (176")

with the Compton wave-length denoted by
A=h/mc. (176"")

For small values of q, i.e., for long wave-lengths
Eqgs. (176), (176’) are the same as follow from the
theory of scattering according to classical
electrodynamics as given by J. J. Thomson. The
factors in front of [ ] are derivable according to
Dirac and Gordon from the quadratic equation of
Schroedinger. The [ ] represents the modifi-
cation due to Dirac’s relativistic linear equation
as compared with Schroedinger's quadratic
equation. Qualitatively, the important difference
between the formulas of Klein and Nishina and
those of Thomson is that the scattering takes
place more intensely in the direction of the

incident radiation. If ©=0, the intensity of

scattering is the classical intensity on any
theory because for scattering in this direction the
electron is at rest both before and after scattering.
Present experimental evidence speaks in favor
of the validity of the Klein-Nishina formula.#*
In the experiments only light elements seem to
scatter hard vy-radiation according to this
formula. For heavier elements the nuclei pre-
sumably take part in the scattering*® giving an
additional effect and the photoelectric effect is
also responsible for a part of the absorption.4®

# G. T. Tarrant, Proc. Roy. Soc. A128, 345 (1930); C. Y.
Chao, Proc. Nat. Acad. 16, 431 (1930); L. Meitner and H.
Hupfeld, Zeits. f. Physik 67, 147 (1931); J. Jacobsen,
Zeits. f. Physik 70, 145 (1931); Gray, Proc. Roy. Soc.
A130, 524 (1931).

4 W. Heisenberg, in press.

4 Harvey Hall and J. R. Oppenheimer, Phys. Rev. 38,
57 (1931); F. Sauter, Ann. d. Physik 11, 454 (1931); H. R.
Hulme, Proc. Roy. Soc. A133, 381 (1931).
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There appears to be no serious objection to the
use of Dirac’s linear equation in the derivation of
the scattering formulas, although it must be
conceded that the Klein paradoxon makes the
universal validity of Dirac’s equation question-
able. It would appear, however, that a more
serious limitation must be met with when the
wave-length of the incident light is very short. In
particular, one would be inclined toward special
caution when the wave-length is comparable
with or smaller than a=e€?/2mc? which is ap-
proximately the electronic radius demanded by
the classical theory of electromagnetic mass. It
is true, of course, that in the present quantum
theory the electron is supposed to be a point
charge and no direct meaning is assigned to the
electronic radius of classical electricity and
magnetism. Nevertheless, one would hardly
expect quantum theory to be valid when applied
to such small dimensions because the experi-
mental facts which served as guides and tests for
the formulation of the theory have to do with
phenomena on a larger scale. The application of
quantum theory to dimensions of the order of
magnitude of ¢ would at best appear as a
speculative extrapolation of knowledge gained
from larger scale phenomena. There appears to be
no reason to believe in the validity of such an
extrapolation and, in fact, there is strong experi-
mental evidence against it. For it is well known
that nuclear structure cannot be understood in
terms of ordinary quantum mechanics. According
to Heisenberg*’ an electron cannot exist in the
nucleus and have anything like the experi-
mentally observed energy. The thing in the way
is the very small dimension of the nucleus. In his
recent theory Heisenberg supposes, in fact, that
the nucleus is made up of protons and neutrons
and, thus, throws the deviations from quantum
theory into the existence of Chadwick’s neutron.
It is certain, therefore, that quantum mechanics
cannot be applied to the description of phe-
nomena concerned with differences of properties
of points separated by distances of the order of
1073 cm and at first sight one would be inclined
to mistrust the Klein-Nishina formula for wave-
lengths of the incident radiation of this order of
magnitude.

47 W. Heisenberg, Zeits. f. Physik 77, 1 (1932).
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An important consideration of this point has
been given by Bohr at the 1931 congress in
Rome. According to Bohr,*8 one should expect
that the Klein-Nishina formula is nevertheless
correct for still shorter wave-lengths when
measured in a frame for which the electron is
initially at rest even though at distances of the
order of 10~1* cm quantum theory is known to
fail. Bohr's argument is that special relativity
would at all events be expected to be applicable
to the phenomena under consideration. By
choosing a frame of reference moving with an
appropriate velocity one is able to change the
wave-length of the incident radiation at will on
account of the Doppler effect. Simply requiring
that the wave-length of the incident radiation
should be larger than a certain amount therefore
does not have very much meaning because by
choosing a proper frame of reference one can
change this wave-length at will. On the other
hand, there exists a unique choice of a frame of
reference in which the wave-lengths of the
incident and scattered radiations are the same.
This is the frame moving with such a velocity
that the initial momentum of the electron is
equal and opposite to the momentum of the
incident light quantum. On scattering, the
momenta are still equal and opposite, and on
account of the conservation of energy the abso-
lute value of either momentum is unchanged on
scattering.® For this reference system the wave-
length has a unique and simple meaning because
it is the same before and after scattering while for
a frame in which the electron is initially at rest
the wave-length is usually much longer after
scattering so that from the point of view of the
scattered radiation the restriction on the wave-
length would at all events be expected to be less
stringent.

According to Bohr, the limitation on the
shortness of wave-length should be stated for this
particular reference system in which the wave-
length is unchanged by scattering, and in this

48 The writer became acquainted with these consider-
ations through Professor Heisenberg to whom he is very
much indebted also for an interesting discussion of this
matter.

49 This frame of reference has been used with great suc-
cess by Pauli in a discussion of the equilibrium between

black-body radiation and free electrons. W. Pauli, Zeits. f.
Physik 18, 272 (1923).



QUANTUM THEORY OF DISPERSION

reference frame it is expected that when the
wave-length becomes so small as to be compara-
ble with a=¢€?/2mc? the Klein-Nishina formula
will fail.

Let the wave-length and the frequency of the
incident radiation in the frame of reference at
rest with respect to the initial state of the
electron be )\, », respectively, and let the corre-
sponding quantities in the frame of equal and
opposite initial momenta be N, »'. The relative
velocity of the two frames of reference is given by

v=hv/[mc+(hv/c)]

and

(1—-7)/£ H v
-’ 1+v/c) T (142hv/me)
For high values of »

v =(vmc?/2R)}; N =(2AN)% (177)

The wave-length which has absolute significance
for Bohr's argument is \’, and it is the geometric
mean of twice the Compton wave-length and the
wave-length \. When A<KA, )\ is appreciably
greater than X so that N’ may be greater and A
less than a. Numerically, the difference is very
large. Let us require that

N=a
Then by (177)
@ & a
=2 g " a7
2N 2hc 47137 1730

The Klein-Nishina formula may be, thus, ex-
pected to fail when X has the value given by
(178), i.e., when the energy of the incident light
quantum referred to the electron initially at rest
is

¢/N 21730 he/a 2(1730)2mc? =1.5 X102
electron-volts.
If, on the other hand, it is required that
A=a.

The energy of the quantum is hc/ax21730mc?
=8.7 X 108 electron-volts. Bohr'sargument makes
it, thus, probable that the Klein-Nishina formula
is applicable for energies such as are at present
considered in connection with cosmic radiation.*®

5 W. Heisenberg, Ann. d. Physik 13, 430 (1932).
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It should, of course, be regarded not as a proof of
the validity of the K-N formula up to 10
electron-volts but rather as a point of view. It is
essential for Bohr's argument to consider the
limitation as due only to the wave-length and not
to be concerned with the velocity of the electron.
The interaction between two particles can also
be treated according to quantum electrody-
namics,! and it is possible’! to explain by this
means the interactions of the electron spins of
two particles as well as the orbital and orbit spin
interactions. It should be remembered, however,
that the divergence difficulties of the theory
make it impossible. according to Oppenheimer,?
to arrive at a unique interpretation of the results.
It is satisfactory to know that retardation of
potentials applies to the interaction of two
particles. Two limiting cases are fairly well
understood. For particles moving with low
velocities one may use an interaction energy

H' =é/r—(¢!/2)(a’a'/r+4(a'r)(a'r) /7). (179)

According to the derivation of Breit, one could
only be sure of this form of the energy to the
first order in e2. According to Oppenheimer,? the
first term €?/7 should have significance to much
higher approximations. This comes about through
the fact that the electrostatic field may be
eliminated exactly, as has been explained in I
and V above.

The second term involving Dirac’s a's is of a
more questionable type. There is no evidence
that it is correct to higher than the first order in
¢? even though it is analogous to a similar term
occurring in the classical Hamiltonian of Darwin.5?

It is, on the other hand, possible to show a
simple connection between the second term and
Maxwell’s equations quite independently of the
details of the theory of light quanta.®?

Thus, it follows from the equations

&= —0A/cot+¢&'; 3=rotA; div&'=4mp,

rot & =0
used in I and V above that neglecting acceler-

8 G. Breit, Phys. Rev. 34, 553 (1929); see also: J. A.
Gaunt, Phil. Trans. Roy. Soc. 228, 151 (1929); Proc. Roy.
Soc. Al22, 153 (1929).

52 C. G. Darwin, Phil. Mag. 39, 537 (1920).

5 G. Breit, Phys. Rev. 39, 616 (1932).
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ation and higher order effects the energy which must be added on account of the presence of
transverse waves represented by the vector potential A is

1 jpripe  (Gpt)(Gper
AE=___f(JP ir +(,, )(ir ))dVMVM
4c P

4

where the j's represent the electric current
operators at points P’, P’ and r is the distance
between P’ and P”. By the use of Dirac’s
equation, the self energy connected with AE may
be shown to be an infinite constant in the same
sense as this is the case [V, §3] for the elec-
trostatic self energy. One feels rather certain
from purely theoretical considerations, therefore,
that the second term of (179) has a significance
as an additive energy which must be considered
in addition to the term value corresponding to
the use of €?/r alone. At the same time this term
has no significance to higher orders of 2. With
this interpretation (179) is in agreement with
experiment® leading essentially to the interaction
energy set up by Heisenberg® by means of the
spin model.

Au, o= f (%10, {1/} (e 00) =0, apetie {17} (s oty ?) VAV,

where

{1/r} =(1/1) cos 2xr/\s,

Here s, ¢ refer to two unperturbed electronic
stationary states of energies E,, E;; the proper
functions are %, where p is Dirac’s spin index;
P, P’ are two points in space; the elements of
volume at P and P’ aredV and dV’, respectively,
and, similarly, the charge and current indices
with and without are taken at P’ and P. By
expanding the cosine in {1/r} and using its first
two terms one obtains a result in agreement with
(179).

A simple derivation of (180) not involving the
use of the theory of light quanta has been given
by Rosenfeld.’® The particles are described in
their configuration space. Referring to one of

AE=erer1X n, m; r, €n"*em'c ¥ B pm, vey

where

(179

It will be noted that the use of the theory of
light quanta is not essential to the understanding
of (179’) and that the largest claim which can be
made for the theory is its consistency with
experiment provided the divergence difficulties
are treated in a proper way.

It followed already from the first formulation
of the Heisenberg-Pauli theory of wave fields that
retardation of potentials applied also to particles
moving with any velocity. Thus, it was known®!
that to the first order in €? the interaction energy
between two electrons can be represented by a
formula exactly similar to the ordinary formulas
using purely electrostatic interactions with the
simple modification of having all exchange inte-
grals replaced by

(180)
Nee=ch/|E,—E4|.

them as I and to the other as II particle II is
thought of first as subject to the field of I as
though the latter were not perturbed by II. The
“four potential” at ri; due to the current and
charge distribution of I is calculated using the
formulas of classical electrodynamics. The un-
perturbed state of I is taken to be

\b = ZC alt nlv
where the u,! are eigenfunctions of states # of I
not involving the time while each c,! involves the
time in the form of exp (— 2xiv(n)t). The energy

which must be added on account of the action of
I and II is then found to be

(181)

Bom; re =f { (T tmT) (20,57%2,10) — (0T * @lttT) (2,1 1* @102, 10) } 2 7irmmlier—t1stle/ |0y —pyy | d VI VL,

G, Breit, Phys. Rev. 36, 385 (1930).
8 W. Heisenberg, Zeits. f. Physik 39, 499 (1926).

(181')

% L. Rosenfeld, Zeits. f. Physik 73, 253 (1931).
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It should be noted that the above procedure implies the same time dependence of the wave
functions of I as though II were not interacting with it. In this respect the theory is inaccurate.
For equal particles we must deal with an antisymmetric wave function.
Let

y= 2_‘(2 ncnlunlzﬁrnur" - chnxunu}:rcv\"url) = 2_‘2 n, r(CnICru - Cnucrl)(unxuru *“un"ur!)- (182)

It is reasonable to expect that the procedure used in obtaining (181) will also apply for this anti-
symmetric y. We calculate the electromagnetic four potential due to II for the condition of the
system in which I is at r;. We obtain thus the addition to the energy due to the fact that I may be

1, and we then average this result over r;. We obtain

AE='}ZM,".C,.I*C“IC,”*C,“(B,.' m; r, J+Br. 5 n, m)

= }ann(cnhcr”‘ - C»"":r“) (CMIC:" - Corfmn) (B nm; n-+Bn; am)s

where the indices n, m, r, s take independently all
their possible values and the symbol Bum; s is
defined by (181’) and is thus unsymmetrical with
respect to an interchange of n, m, with 7, s. The
combinations of the B’s occurring in (183) is such
that #, m, may be interchanged with r, s so that
(183) is symmetrical with respect to I and II.
Obviously, we would have arrived at the same
expression if we had taken I in the field of II.
For the special case of a stationary state de-
scribed by

(1729 (uau, " — 0 1)
Eq. (182') gives

AE:Bnn; fr"%(an; rn+Brn; nr)v (183,)

which is in agreement with (180). In presenting
the above discussion of Rosenfeld we have
deviated from the original by not using the
method of quantized amplitudes which are known
to be equivalent to the simple considerations in
configuration space. Needless to say a similar
treatment can be given for particles obeying
Einstein-Bose statistics. The perturbation energy

(183)

operator (183) is not expected to be valid except
to the first order in €2, because in the derivation
the field of particle I acting on particle 11 was
supposed to be unaffected by the interaction of
the two particles.

The perturbation energies (181) and (183) may
be used not only for calculations of energy
changes of stationary states but also for the
discussion of collisions between particles. The
results are again expected to be valid only to the
first order in the interaction energy and have,
thus, significance for fast electrons. The method
of treatment which enables one to treat the
problem is due to Mgller’” who starts out in his
discussion with Born's method for collision
problems.

Mgller’s formula is essentially equivalent to
(180) and is easily connected with (181). We let
the proper functions u, correspond to states of
constant momentum. We may then regard
ere11Bum; r» as the matrix element of the pertur-
bation energy in momentum space. Using the
proper normalization factors h~* for each particle
(11, §3] and (181’) we have:

Bom; u=fh‘“lr1—l'n|‘l exp { 2mi/B)[(Pa—Pm)T1+ (P-— P11 ]+ 2min (nm) |11 —rur | /c}

where the a's involve Dirac's spin index so that

‘ (@n*am) (ar‘an) - (an*ﬂam) (ar‘wo) }dVld Vi,

Upn= eZii(pul)l "an-

Let

I=h"fln —T1r| "t exp {(27i/h) (P, — pu)Trr+2miv(nm) [rr—ru | /c}d Vi

7 C. Mgller, Zeits. f. Physik 70, 786 (1931); H. Bethe, Zeits. f. Physik 76, 293 (1932).
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(Ar+4n22(nm) /) = — dmh3e@xiN Brpory,

A solution of this equation is

T= (h/m)erinorpors/[ (p,— p.)t— htst(nm) /7]

and it may be seen that this is the correct solution to use. Hence

1 (a.*am)(a,*a.) — (an*aan)(a aa,)

Bn. m;r, 8=

5(Pn+Pr—Pm—P-). (184)

wh (pr—ps)2—h¥2(nm) /c?

which is Mgller's formula. Conservation of
momentum is satisfied automatically by (184).
The conservation of energy also follows in this
method of treatment as a result of using a
Hamiltonian. Eq. (184) is symmetrical in the
two particle states because we may use not only
Pr—P:=Pm—Px but also v(nm)=v(sr). A similar
treatment can be given for unequal particles.
Mgller’s result is of importance for the discussion
of penetrating radiation.’® A systematic deriva-
tion of Mgller’s formula from quantum-elec-
trodynamics has recently been given by Bethe
and Fermi.®® The derivation is subject to the
divergence difficulties of the theory. Disregarding
these it shows that to within the first power in e?
there is no probability of emitting light quanta.

These authors derive the interaction energy
(179) from Mgller's equation. This connection
has been previously discussed in® where Eq.
(180) was the starting point. Bethe and Fermi's
discussion is somewhat more general not being
confined to the treatment of identical particles.
The essential point is again that cos (277/)\)
when expanded according to powers of 7/\ gives
rise to correction terms to the electrostatic
interaction. It should be remembered however
that (179) applies very accurately in the region of
small velocities while (180) is accurate only to the
first order in €% It is thus impossible to really
derive (179) from (180) but it is possible to
demonstrate its plausibility.

Bethe and Fermi also derive both (179) and
Mgiller’s formula from the theory of light quanta.
The authors obtain Mgller's form by considering
equations in the momentum space of the two
interacting particles. The particles are supposed

88 W. Heisenberg, Ann. d. Physik 13, 430 (1932).

8 H. Bethe and E. Fermi, Zeits. f. Physik 77, 296 (1932).
See also B. Podolsky and V. A. Fock, Phys. Zeits d. Sow.
2, 275 (1932).

to have initially definite momenta and definite
energies their interaction with the radiation
field being neglected. This initial step presupposes
that the electrostatic interaction between the
particles may be considered as small for otherwise
the energy and the momentum cannot be
simultaneously specified. For the same reason the
particles in question must be considered as free.
The interaction with the radiation field is then
introduced. If there were only one particle
initially in an energy state n the initial state of
the particle and the radiation field would be
described by ¢(n; 0, 0, ---) where the zeros
indicate that there are no light quanta. The
interaction with the field will bring in also the
states ¢(n’; 0, - - - 1,, 0) in which the energy of the
particle has been changed and a light quantum
appeared. Such states may be said to describe to a
first approximation the particle and its own
electromagnetic field.

For two particles I, II the initial state is taken
to be ¢(n1, nu; 0, 0, ---)=¢(n;, nu). The
interaction with radiation brings about the states
o(nt’, ni; 1,) and ¢(n1, ni’; 1,) in which the
energy of one of the particles has been changed
and a light quantum appeared. In this approxi-
mation we are dealing with two particles and
their own fields. The interaction of the particles
with each other has not yet been taken into
account. It appears only in the next approxi-
mation. The state ¢(n/, ni; 1,) gives rise
through the absorption of a light quantum to
o(ny', nut’, 0,0, - - -) and similarly the same state
may arise from ¢(n1, 7n11’; 1,). The simultaneous
change of the energy of both particles without a
change in the number of light quanta is thus
represented in two successive steps, the first step
being the emission of a quantum and a change of
energy of one of the particles while in the second
step the light quantum is absorbed and the
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second particle changes its state. On performing
the calculation Bethe and Fermi make use of the
fact that

(ar(pt’ —p1))(an(pr’ —pur)) — (Ei' — Ep)?/c2=0

where p, E are the momentum and energy and
the ’ refers to quantities after collision. This is
essentially the continuity equation for matter
waves. The use of this continuity equation is
common to all derivations of interaction energies
from the theory of light quanta and is also
involved in the derivation of (180). In order to
obtain physically sensible results it has also been
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necessary to consider only such states n{’, ny’ for
which the energy of the two particles together is
equal to the sum of their energies in the states
ng, ni. This is a weakness of the theory of light
quanta and it is connected with the fact that the
result is accurate only to the first power in €* as
well as the supposition that spontaneous radi-
ation of light quanta is not important.

It is instructive to consider the interaction
energy in the six dimensional coordinate space of
the two particles and to derive it from the theory
of light quanta. The equations for the probability
amplitudes are

{(h/1)3/0t+E(n)) +E(mu) + X Nhvoteren/r+ L ay, Kerw, $[(aa®) anpy NiA,~
F (@) g (N +1)28,7 I (11 /11) + onyy, oKenva 3 (aa®s) nppngr VA4

4 (01 1®*) nyyny (Ns+ 1)1, ] (n1y /m11) § - @ (m1, 111, Ny, -+

where

K =(he/ V)3,

(alk') nyny’ = (“!fse—'k‘n) nyny’

the operators A,~, A,* lower and raise respectively
N, by 1 and I(n’/n) converts n into n’. The
approximation which involves the first power of

« N, --)=0

K represents the particles with their own fields
and is given by
¢(n1, nr)

=¢O (ny1, n11) exp [ —2mi(v(n1) + v(m1))t)

where ¢° does not involve ¢, and by

¢(m1, nix; 1,) = a1 K (ar®) myn @ (minar) /v (v(nym) — v,)

as well as similar expression for ¢(n, mi; 1,).
When we omit a N, we mean that N,=0. The
above solution represents a stationary state
since the time dependence is represented by the
same exponential for all ¢’s. Strictly speaking one
must discuss the states before and after collision
as such stationary solutions. This is however not
necessary if we are interested only in such states
for which ¢(my, miy) is D>¢(mi’, mn’; 1,). The
way in which the probability amplitude for any

ekr

r=x

such state varies may be then taken to be the
same as that for ¢(my, m1). From the Schroed-
inger equation and the first approximation we get

{(#/1)0/0t+ E(n1) +E(nu) }p(ni’, nut’)
~+eten { (m'nu’ |77t ninn) + S (ning) =0
where

S=ffu*,.lru*,.u'Tun!u,.udVIqu
and

e—ikr

Here r=r;—r; and the indices s are omitted in
k and ». The integration for S involves also a
summation over the spin coordinates. Using the
transverse polarization property of the elec-
tromagnetic waves we obtain

T=3%x(c¢/nV)[(aramn)
—k~*(a1V1) (an1Vir) J(v® — ve®) ! cos kr

52
’ _2_74'.; {v[v(nunn’) - v:] rv[v(nm,’) - ll]

} (ﬂlf.)(ﬂuf.)-

where we supposed conservation of energy to
hold and have set vo=v(nunu’) =v(ni'n;). The
operators Vy, Vi are supposed to be applied only
to the r in the cos kr and not to the variables in
functions u. Replacing the summation by an
integration we get

T= - (ﬂlﬂu/f) COs kof
- (ulvl)(uuvll)(l —COSs kof)/ko’f
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ko = ZTVo/C.

Substituting T into S the gradients can be transferred to the eigenfunctions by partial integration

giving rise to

—-f(l —cos rko)r ko2 Vi(ur"* ayur) Vit (ur"*anur)d Vid Vi

summations over spin indices being indicated by
( ). By the continuity equation for matter we
have

(E—E")(u'*u)— (h/9)V(u'*au) =0

S=

and is simply the matrix element of the quantity
in { }(1/r). Combining this with 1/7 we obtain
the matrix elements of the interaction energy as
the matrix elements of

(erexr/r) (1 — aragr) cos kor.

It will be noted that the above written operator
contains explicitly the unperturbed energies of
the two particles [in ko]. This is inherent to the
treatment which takes into account retardation
only inasmuch as the time dependence of the
unperturbed wave functions of the system is
known.

It will also be noted that the treatment is
inapplicable to problems in which common
energy differences do not exist for the two
particles. Transitions for such systems involve
not only the two particles but also the emission or
absorption of light quanta. The part S of the
interaction inergy is accurate only to the first
power of ¢* while the additional term €?/r has a
much higher degree of accuracy for low velocities.

In the discussion of collisions between free
particles Mgller's method does not introduce
transitions to states of negative energy on
account of the simultaneous validity of the
conservation of energy and momentum. This
may be seen by considering the particles in the
reference system of their center of gravity. We
have then pr= —pi1, pr’ = —pu’ where ’ denotes
the quantity after collision. Hence

E*—Eg?= L"(p[" —p?) = C’(PII” —p?)
=Ey" —Erf

which gives
Vi(ur™* agur) Vir (unn* arnsenn) = ko?(r*ur) (unr *urr)

Hence

ul""uu'*(l/r) [ —'1+(1 —ﬂ](ln) Ccos kof}ulund V[d Vn,

and by the conservation of energy
E( —E;= —(Eu'—En).

Hence either: (a) Ey'+Er= —Eun’—En which
together with the conservation of energy gives
El= —Eu, E1'= -—Eu’ or else (b) E1'=Ex,
Eyt’ = Eq1. In the case (a) one of the particles has
a positive and the other a negative energy both
before and after collision. The total energy is
zero. In case (b) the values of the energy do not
change for either particle.

It will be seen from the above review of the
work on the two electron problem that the
theory of light quanta is not a very satisfactory
tool for its discussion. Results can be obtained,
but without additional physical considerations
they are not unique. For this reason a formu-
lation similar in point of view to that of Klein has
been given by Heisenberg®® for the treatment of
the interaction of radiation with matter. In this
paper Heisenberg uses quantum-electrodynamics
but writes the equations in a form identical with
that of classical electrodynamics. This is ac-
complished by the use of quantized wave
amplitudes. It enables one to keep in mind the
analogy to classical theory. He is able to show
very elegantly the equivalence of the light
quantum treatment to the visual representation
of charge and current densities of Schroedinger
and Klein. He also shows that radiation is
travelling with the velocity of light directly from

s W. Heisenberg, Ann. d. Physik 9, 338 (1931); see also
L. Rosenfeld, Zeits. f. Physik 71, 273 (1931).
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Maxwell's equations. This method has the
advantage of conciseness. Since, however, it is
mathematically equivalent to the calculations
which we presented above, we do not go into the
details of Heisenberg’s mathematical procedure.
Instead we would like to emphasize Bohr's point
that the applications of quantum-electro-
dynamics are made possible in this as well as in
all other papers only by the supposition that the
interaction between radiation and matter may
be treated as small while according to quantum-
electrodynamics it is infinite.

§6. Convergence difficulties

We have attempted above to present those
parts of the theory of radiation for which the
conclusions are certain and the results are likely
to be physically correct. Before closing the report
it is necessary to discuss briefly also the nature
of the unsatisfactory features of the theory.

As is well known the theory of light quanta
suffers from divergence difficulties. The infinities
which arise in applications of the theory have the
appearance of being of the following kinds: (a)
those having to do with the zero-point energy of
radiation in empty space; (b) those having to do
with the finite size of the electron.

The first kind (a) is by itself not very trouble-
some because the zero-point energy _.hv,/2 is an
additive constant in the total energy of the
system. As has been explained in V above the
order of factors in the Hamiltonian function can
be chosen in such a way that this zero-point
energy does not occur at all. Even though it may
be, thus, formally removed, the peculiarities of
the quantum treatment which are responsible
for it are still present. We can illustrate the point
by considering a single simple harmonic oscillator
of frequency ». It also has a zero-point energy and
by subtracting from the Hamiltonian function
mvi(PQ—QP) we can remove this energy. Never-
theless, we still have a finite value of (% and of P?
for the normal state of the oscillator, and we see
from the fact that the Schroedinger wave
function is of the form e—=9* that the oscillator is
neither in its equilibrium position nor in a state
of rest. This state of agitation for the normal
modes of vibration of a crystal is, for example,
demonstrated experimentally by a residual dif-
fuseness of x-ray diffraction patterns produced by
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crystals even at low temperatures. We see,
therefore, that, although the purely additive
constant ) ,hv,/2 in the energy is not a real
stumbling block of the theory, it is connected
with a condition of the electromagnetic field in
the absence of light quanta which may be
described by saying that there is a state of
residual agitation in the field. It is impossible to
remove it just as it is impossible to find a
stationary solution for the harmonic oscillator
for which it can be considered as being in a
state of rest. It is essentially for this reason
combined with the postulated existence of an
infinite number of states for any light quantum
that the theory is intrinsically divergent quite
apart from the question of the size of the
electron. Thus, it has been shown by Rosenfeld®!
that even in the absence of matter the gravi-
tational field due to light quanta is infinite. In
this work it is supposed that the formalism of
general relativity may be transferred to the
discussion of the interaction of gravitational and
matter waves. By taking into account terms in
the first power of the gravitational constant it is
found that the interaction between the gravi-
tational and the light wave field gives no
contribution to the expectation of the mutual
energy and an infinite contribution to the
expectation of the energy of the gravitational
field. The origin of the infinity is traced to the
occurrence of summations which extend over all
possible frequencies and cover, therefore, also the
range of infinitely high frequencies. It is, further-
more, pointed out that from the point of view of
the configuration space of light quanta the
divergence is attributable to the infinitesimal
volume given to the light quantum. Needless to
say there is a direct connection between these two
aspects just as in the case of matter waves, and
it is, furthermore, clear that the problem here
considered is analogous to the discussion of the
interaction of electrons with light quanta, with
light quanta substituted for electrons and
gravitational quanta for light quanta. The par-
ticular significance of this work lies in empha-
sizing the generality of the divergence difficulties
when applied to any system of wave fields.

The divergence difficulties (b) having to do
with the size of the electron have been already
"W L. Rosenfeld, Zeits. f. Physik 69, 589 (1930).
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partly discussed by us. We saw [I, §§5, 6] that
classical electricity and magnetism is subject to
the same defect, and [V, §3] we, further,
convinced ourselves that the electrostatic part of
the self energy behaves in quantum theory
exactly in the same way as it does in the classical.
This part of the self energy is not especially
bothersome, for, as has been shown, it may be
regarded as an additive constant characteristic of
the distribution function D(r;—r’). It will be
recalled, however, that in the classical theory the
infinite contribution to the energy of the electro-
magnetic field is due not to the electrostatic
energy alone but also to the transverse waves;
the purely electrostatic part is given by Eq. (28),
while the whole energy is given by Eq. (27).
Corresponding to this, there are also in the
quantum theory infinite contributions due to the
energy of the transverse waves. This has been
shown by direct calculation by Oppenheimer® for
stationary states and by Waller for free elec-
trons.® It is especially important to note that the
infinite contribution to the energy due to trans-
verse waves cannot be considered as an additive
constant. It has, in fact, been shown by Oppen-
heimer® that the difference between the self
energies of two different electronic stationary
states is, itself, infinite. The theory thus leads to
an infinite displacement not only of spectral
terms [which by itself could be harmless] but
also to an infinite displacement of spectral lines
and is, thus, in direct contradiction with experi-
ence. The displacements calculated by Waller®?
are, of course, of the same character. That the
differences between the self energies of different
spectral terms should be infinite is to be ex-
pected® by analogy with classical electricity and
magnetism. The range of probable electronic
velocities is different for different stationary
states. According to the well-known expression

W=wi1+(*/3)]/[1-p)] (2D

the difference W(8,) — W(B,) becomes infinite for
Wo— o which corresponds to a point electron.
Care should be taken, however, not to carry
this analogy too far, because the particle picture
is applicable only partially in quantum me-
chanics. As is well known, there exists a compli-

% I. Waller, Zeits. f. Physik 62, 673 (1930).
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mentary duality between waves and particles,
and neither the wave nor the particle picture
gives a universally appropriate description of
nature.®® This complimentarity of the wave and
particle aspects of matter can be emphasized by
means of the mathematical machinery of second
quantization, i.e., of quantization of matter
waves.%* The point of special interest to us is that
one may start either with a mathematical
treatment in the configuration space of the
particles or else one may start with a three-
dimensional description in terms of matter waves.
Dealing with the configuration space of the
particles one is in a convenient position to see the
analogy to the equations of motion of classical
particle dynamics (Newton’s laws of motion) and
one sees this connection quite apart from any
special form of the Hamiltonian function as has
been emphasized in Part II of this report.
Connection between the particle picture of
classical dynamics and the physical reality de-
scribed by the equations of the quantum theory
is of course given in the sense of Bohr's corre-
spondence principle. The connection is put into
the theory by arranging the quantum Hamil-
tonian so as to lead to the classical equations of
motion for the quantum operators. Often this is
done by making the quantum Hamiltonian
identical with the classical one. In the mathe-
matical formulation by means of quantized waves
one starts with a Hamiltonian function analogous
in form to a classical one describing the behavior
of matter waves. The classical matter waves are
to be thought of as smeared out in space and
their interaction may be pictured as due to the
mutual energy of the charge densities at different
points in space. In this classical picture there is no
indication of the discreteness of the number of
particles, and there is also no indication of any

6 N, Bohr, Nature 121, 580 (1928); see also W. Heisen-
berg, The Physical Principles of the Quantum Theory,
University of Chicago Press, 1930.

® For a brief presentation of this mathematical method,
see W. Heisenberg, The Physical Principles of the Quantum
Theory, pp. 177-181, University of Chicago Press, 1930;
see also: P. A. M. Dirac, Proc. Roy. Soc. Al114, 243 (1927);
P. Jordan and O. Klein, Zeits. f. Physik 45, 751 (1927);
P. Jordan, Zeits. f. Physik 45, 766 (1927); 44, 473 (1927);
P. Jordan and E. Wigner, Zeits. f. Physik 47, 631 (1928);
V. Fock, Zeits. f. Physik 75, 622 (1932); P. Jordan, Zeits.
f. Physik 75, 648 (1932).
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particle size. It is these properties of the physical
reality [the particle aspect] that are introduced
by the second quantization, i.e., by the treatment
of y* and ¥ as noncommuting quantities, as is
shown by the fact that it may be proved mathe-
matically that the quantized wave treatment is
equivalent to the particle treatment by means of
Schroedinger’s equation in configuration space.
Thus, by formulating the theory by means of
quantized waves we have a convenient way of
seeing the analogy to classical matter waves
again in a sense via the correspondence principle.

Knowing the equivalence of the treatment in
configuration space with that by means of
quantized matter waves, we see that Bohr's
principle of complimentarity finds here its proper
mathematical formulation. We do not expect to
have a complete description either by means of
the particle or by means of the wave picture. It
would also be unwarranted to expect the particle-
aspect consideration made in connection with
Eq. (27) to be wholly applicable. Neither should
we consider the smeared-out charge distribution
picture to be literally valid. According to the
latter we would only expect a contribution to the
magnetic energy of the order of the energy of the
magnetic field due to the smeared-out current,
and this energy would not be troublesome.
However, the calculations of Oppenheimer,
Waller and Rosenfeld show that the particle
aspect plays an important part although the
form of the mathematical expressions arrived at
is not very reminiscent of the corresponding
classical particle formulas. It, thus, comes about
that the self energy due to the transverse waves is
infinite, and yet it is not directly representable as
Eq. (27).

It must be emphasized that the divergence
difficulties are characteristic of the original Dirac
theory of light quanta and that they are not due
to the formalism introduced by the wave field
theory of Heisenberg and Pauli. This is obvious
from the fact that on eliminating the electrostatic
field the wave field theory is equivalent to
Dirac’s theory of light quanta. It must, further-
more, be borne in mind that the use of Dirac's
relativistic linear equation made in the work of
Oppenheimer and Waller cannot be held re-
sponsible for the failure of the theory, because as
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has been shown by Rosenfeld® that the failure
sets in even if one uses Schroedinger’s non-
relativistic wave equation. In this calculation
Rosenfeld starts out with an initial state of the
coupled system consisting of radiation and
matter in an initial condition of having matter in
a stationary state and no light quanta. He then
calculates by the method of variation of constants
the behavior of the system at later times. The
matter is supposed to be a classical harmonic
oscillator which is the direct opposite in its
general properties to the free electron considgred
by Waller. He finds that with the lapse of time
the expectation of the energy of the electro-
magnetic field becomes infinite. The infinity
comes about mathematically through a sum-
mation over the possible frequencies of light
quanta. He breaks off the summation at an
arbitrarily chosen high frequency, and he finds
that the result is a function of the vibrational
quantum number for the initial state. Letting
this vibrational quantum number be # and the
frequency at which the sum is broken off be ¥, the
energy behaves as »"*}. Now a consideration of
the matrix elements a..' entering in V above
shows without difficulty that breaking off the
summation at v is nearly equivalent to dealing
with an electron having a finite size described by
the distribution function D and that this size is
of the order of magnitude of ¢/v. For different
initial vibrational states, therefore, one obtains in
the limit >0 infinite differences between the
expectations of the energies of the radiation field.

It is instructive to consider the relation of this
flux of energy into the radiation field with the
principle of conservation of energy. One is, of
course, sure that this principle is correct for any
calculations involving quantum mechanics be-
cause of the existence of a Hamiltonian function.
The total Hamiltonian may be written as

=1+ e+1I,

where I1,,, II; refer, respectively, to radiation
and matter alone and II' describes their inter-
action. For Rosenfeld’s case I, is positive
definite and so under no circumstances can
II.= — . It has, furthermore, been seen [I, §7,
V, §2] that

s I.. Rosenfeld, Zeits. f. Physik 70, 454 (1931).
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H=mi*/24+V(r)+Hp.

It is found that Hg= + . Therefore, H=+
because neither ¥ nor 7 can be — «. Therefore,
initially also H = + . However, initially H,, was
finite and H=0. Therefore, initially H'=+ .
Now H' itself consists of a sum of two parts one
of which is linear in the vector potential A and
the other involves A% The linear part is readily
seen to have an expectation value =0 and,
thus, the source of trouble may be said to be the
term in A% An easy direct calculation shows, in
fact, that the expectation of A? is infinite. It is
curious to note that the infinity is, thus, finally
traced back to the fact that the oscillators
describing radiation may not be said to be in a
state of absolute rest even when physically we
like to deny the presence of light quanta. In this
way even though we remove the infinite additive
energy Y .,hv,/2 the origin of it—the lack of
possibility of having a condition of absolute rest
or a position of equilibrium—makes itself felt at
another point of the theory.

Attempts at rectifying the theory by simply
introducing a finite radius for the electron do not
appear very rational because by so doing the
relativistic invariance of the mathematical
scheme is destroyed. It, furthermore, does not
appear to have very much physical sense to
assign to the electron any particular shape or
dimensions. There is so far no evidence of a
possibility of exploring such properties experi-
mentally, and there is at present no way of
explaining how such an electron would stay
together. These difficulties of the classical theory
remain in full force also in quantum mechanics.
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It is, on the other hand, likely [VII, §5] that
quantum mechanics fails within the nucleus and
that the representation of interactions between
particles at nuclear distances is impossible by
means of theories advanced so far. It, thus,
appears reasonable to expect our present-day
descriptions within nuclear dimensions to be
fallacious, and there is from this point of view
nothing very surprising in arriving at ultimate
contradictions by having used calculations
dealing too specifically with electrons and light
quanta of zero dimensions.

An attempt at removing the difficulties by an
apparently different formulation of the theory
has been made recently by Dirac.®® A more
detailed investigation by Rosenfeld® shows,
however, that the requirements laid down by
Dirac are satisfied by the Heisenberg-Pauli
theory of wave fields. It, thus, does not appear
likely that one will arrive at a solution of the
difficulties by formal methods based on present-
day quantum mechanics.

On the other hand, the fact that quantum
theory fails in the nucleus makes one hope that
studies of nuclear physics will ultimately suggest
a solution of the present difficulties of quantum-
electrodynamics.

The writer is very grateful to Professors Pauli
and Heisenberg for many discussions on the
above subject.

« P, A. M. Dirac, Proc. Roy. Soc. A136, 453 (1932).

¢7 L. Rosenfeld, Zeits. f. Physik 76, 729 (1932). P. A. M.
Dirac, V. A. Fock and Boris Podolsky, Phys. Zeits. d. Sow.
2, 468 (1932).



