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I. GENERAL THEORY

1. Introduction. Statement of the problem

HIS report deals with the attempts which

have been made during the past decade and
a half to solve the general problem of the
structure of the universe as a whole. The re-
crudescence of such cosmological speculations is
due to Einstein, who through his general theory
of relativity advanced the view that the struc-
ture of the space-time continuum is determined
causally by its material and energetic content,
and who took the first step toward a solution.
That the general theory of relativity is acting
within its domain in attacking this problem can
be doubted by no one who accepts it in its
original form, perhaps on the basis of its well-
known successes within the solar and galactic
systems, but it must be borne in mind that in
applying it or its later modifications to cosmology
the choice of a particular one among the multi-
tude of possibilities which it offers must be on
the basis of additional facts supplemented, if
these alone do not suffice, by such hypotheses as
appeal to the general or philosophical predilec-
tions of the investigator. The observations which
lend themselves to this purpose are meager

indeed, consisting in the main in a relationship
which has recently been found to exist between
the distances and apparent radial velocities of
extra-galactic nebulae, and in conclusions con-
cerning their distribution within that portion of
the universe which can be surveyed with the
most powerful telescopes. Nevertheless, we hope
to show that with their aid, under the guidance
of a few seemingly natural assumptions and
extrapolations, we can arrive at an intrinsically
reasonable system of relativistic cosmology which
is not in serious conflict with modern astro-
physics; this, in brief, is the purpose of the
present report.

The plan of the report is to present in the text
a systematic account of the main results of these
investigations in a manner in keeping with the
purpose of these Reviews, avoiding as far as
possible unfamiliar mathematical methods. But
since the entire subject is based on certain
aspects of the mathematical discipline known as
differential geometry, some understanding of
which is essential to a deeper appreciation of the
problem, we have ventured to supplement the
text by notes of a more mathematical nature in
which the elements of the appropriate mathe-
matical tools are presented. Also, in order not to
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RELATIVISTIC COSMOLOGY 63

interrupt the development of what may be called
the mechanics of the universe, we have placed
among the notes an account of a most promising
line of attack, which has been initiated above all
by Tolman, on the problem of the thermody-
namics of the universe. The bibliography at the
end contains only those articles which have been
drawn upon heavily in the preparation of the
report—indeed, the report attempts to present
a unified digest of the results contained in these
sources.

We therefore begin this report on relativistic
cosmology with a very brief summary of the
general theory of relativity, of which it is a
natural offshoot. According to this theory the
four-dimensional space-time of experience is a
manifold in which space-like and time-like inter-
vals are measured, on introducing general coor-
dinates x* (u=0, 1, 2, 3), by an invariant Rie-
mannian metric

ds?=g,,(x)dx*dx’, (1.1)

which measures the four-dimensional interval ds
between the two events whose coordinates are
x# and x*+dx*, respectively; repeated greek
indices g, », --- imply throughout the summa-
tion of the term in which they occur over their
range. The contingency of this metric on the
physical content of space-time is expressed by
means of the ten field equations

Ruv—guw(R/2—N\)=—«T,, (1.2)

for its ten coefficients g,,(x). The expression on
the left, involving the contracted Riemann-
Christoffel tensor R, and its associated scalar R,
is, except for the (so far arbitrary) cosmological
constant A, a function only of the g,, and their
first and second derivatives with respect to the
coordinates x*; this tensor has the extremely
important property of having a divergence which
vanishes identically.! (Einstein’s constant of
gravitation x=2.07 X107* c.g.s. units is related

1See note A, p. 83, for explicit definitions of these
quantities. The notation is adapted from W. Pauli’s
article, Relativititstheorie, in Encykl. Math. Wiss. V19, pp.
539-775 (Teubner, Leipsic 1921), and from L. P. Eisen-
hart’s Riemannian Geometry (Princeton, 1926); the reader
is referred to these treatises for more detail concerning
the physical and mathematical aspects of the general
theory of relativity and its underlying geometry.

to the Newtonian constant G=6.66 X 10~8 by the
equation k=8xG/c*, where ¢=3.00X 10" cm/sec.
is the velocity of light i# vacuo.) The stress-
energy tensor T, of the matter-energy field is,
on the other hand, determined by the actual
physical content of space-time, although it will
in general contain the coefficients g,, as well; the
vanishing of the four components

(1/85(3/9x) (g3 T) — 3(3g,»/3x9) T =0 (1.3)

of its divergence yields the so-called conservation
laws of energy and momentum. The theory of
relativity allows a precise formulation of Mach's
principle, according to which the inertial field
is determined solely by the distribution of matter
in the universe; in its more modern form it
appears here in the weaker statement that the
metric field (1.1) is causally determined to
within a possible transformation of coordinates
by the stress-energy tensor through the funda-
mental field equations (1.2).

The equations of motion of matter are con-
tained implicitly in the field equations. In par-
ticular, it can be shown with the aid of (1.3) that
the path of an isolated neutral test particle is a
geodesic in space-time; its equations are, in
terms of an arbitrary parameter o,

d*x» w) dx’ dx* dx*d%s sds

ol wawww
where

(ds/do)?=g,.(dx*/do)(dx"/da) (1.5)

and {:‘p} is the Christoffel symbol of the

second kind formed from the g,, and their first
derivatives.? These equations may be consider-
ably simplified by choosing the parameter o«
proportional to the proper distance s along the
path, but we have written them in this more
general form for later purposes and because in
this form they are more readily applicable in
determining the path of a beam of light, which
is a geodesic for which
ds=0. (1.6)
Again, the equations of motion of an ideal

2 See note A, p. 83.
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hydrodynamic fluid may be obtained from the
divergence relations satisfied by the stress-energy
tensor

T# = (pm~+Pm/ ) v*v"— prmg” 1.7

for such a fluid, where the two scalars p, and
Pm are interpretable in terms of density and
pressure, and the vector v*=dx*/dr—in which
dr=ds/c is the proper time interval measured
along the world line of the fluid—defines the
velocity field. This tensor (1.7) may also be
made to describe the stress-energy tensor of
isotropic radiation of density # by replacing
Pm,y ?m by

p,=u/62, Pr=u/3v ”“=60‘| (18)

where 8 =1 if u=» and =0 otherwise.

The three principal observational predictions
of the general theory of relativity—the advance
in the perihelion of mercury, the deflection of
light passing through the field of the sun, and the
mass red shift in the spectra of the sun and of the
companion of Sirius—are obtained from a single
rigorous solution of the field equations, Schwarz-
schild’s solution for the field of a spherically
symmetric body. Very considerable difficulties
stand in the way of obtaining further rigorous
solutions of astronomical importance—even the
problem of two bodies is as yet unsolved. Approx-
imations to the theory of # bodies have been
given, but they are restricted in application by
the limits of observational accuracy.

The problem with which we deal in this
account is of a quite different nature; relativistic
cosmology is an attempt to examine the structure
of the universe as a whole, neglecting the local
irregularities due to the agglomeration of matter
into stars, or even into stellar systems. This
rawest of all possible approximations may be
considered as an attempt to set up an ideal
structural background on which are to be super-
posed the local irregularities due to the actual
distribution of matter and energy in the actual
world. The empirical justification for such a
treatment is to be found in the fact that recent
astronomical research on extra-galactic nebulae,
the most distant objects observed, indicates that
although they are often observed to occur in
large groups or clusters, yet on a still larger scale
the density of distribution of these objects in

space—the analogue on a tremendous scale of
the density of molecules of a gas—is uniform
throughout the observable universe, and that the
relative peculiar motions of the nebulae in a
given region, insofar as they are known, are, at
most, of the order of a few hundreds of kilometers
per second. Hubble? remarks that ““to apparent
magnitude about 16.7 . . . the number of nebulae
to various limits of total magnitude vary directly
with the volumes of space represented by the
limits” and concludes that the density of nebulae
is 9X107'® nebulae per cubic parsec or, on
introducing an estimate for the mass of an
average nebula, 1.5X10~%! grams per cubic
centimeter. In a more recent estimate he places
the density of the luminous matter contained in
nebulae at the somewhat higher figure

po=5X10"% g/cc. (1.9)

The fact that more nebulae per square degree
are observed at higher galactic latitudes than in
the neighborhood of the equator is attributed
to the obscuring effect of matter in our own
galaxy.

These observational results—the constant
density of observable matter in the large and the
fact that known velocities can be considered as
relatively small deviations from the mean for
the region under consideration—lead us to con-
sider that approximation in which the entire
space is filled with a homogeneous and isotropic
distribution of matter. But in order to specify
more precisely this spatial uniformity we must
first set up a space-time framework in terms of
which we can express it.

2. Cosmic time. A priori specification of the line
element

That we require the spatial distribution of
matter in our highly idealized universe to be
uniform implies the existence of a significant
simultaneity, and would at first seem contrary
to the postulates of the theory of relativity,
according to which each observer refers the world
to his own proper space and time. But this dif-
ficulty disappears on introducing, in accordance
with the observed facts, the assumption that

1See bibliography, 1926.1, p. 321. See also Hubble
and Humason, 1931.3, and Shapley and Ames, 1932.7.
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there exists in each region of cosmic space-time
a mean motion which represents the actual
motions to within relatively small and unsys-
tematic deviations. That some assumption con-
cerning the natural state of motion of the
matter in the universe is required in order to
account for the facts has been emphasized above
all by Weyl¢; we take the above as the expression
for the case in hand of his assumption (for the
de Sitter universe) that the world lines of all
matter belong to a pencil of geodesics which
converges toward the past—the universe is a
coherent whole rather than the fortuitous super-
position of two or more incoherent parts.

We now set up a coordinate framework for
space-time which satisfies the following, rather
loosely expressed, conditions: (a) The lines of
parameter x,=¢ shall be geodesics, along which ¢
measures proper time, so chosen that for a given
time £, each shall represent, as closely as con-
sistent with regularity and the condition below,
the mean motion of the matter in its neighbor-
hood (where, by this latter, we mean a region
whose linear dimensions are large compared with
the mean distance between nebulae), and (b) the
space ¢=const., the coordinates of which are x=
(e=1, 2, 3), shall be orthogonal to this (normal)
congruence of geodesics. The possibility of thus
introducing in a natural and significant way this
cosmic time t we consider as guaranteed by
Weyl’s postulate, which is in turn a permissible
extrapolation from the astronomical observa-
tions. The effect on the line element (1.1) of this
resolution of space-time into space and time is
expressed by the fact that it may now be written
in the form

ds? =P+ gpdxadsP,
(a, 8 summed over 1, 2, 3),

(2.1)

where the g.s(¢, x) are such that ds*<0 for any
two neighboring points in the same space
t=const. This partial reinstatement of absolute
simultaneity into the actual world allows us to
give a relatively precise formulation of the as-
sumption that our ideal approximation to the
actual world is spatially uniform. We demand (c)
that to any observer (test body) in the idealized
universe all purely spatial directions shall be

4 See bibliography, 1923.2; 1930.10.

fully equivalent in the sense that he shall be
unable to distinguish between them by any
intrinsic property of space-time and (d) that he
shall similarly be unable to distinguish between
his own observations and those of any con-
temporary observer. These two assumptions con-
cerning the spatial isotropy and the spatial
homogeneity of space-time are, in virtue of Mach'’s
principle, fully equivalent to the corresponding
assumptions concerning its material content
which were obtained in the previous section by
extrapolation of Hubble’s data. Now the appro-
priate mathematical tool for the further speci-
fication of the line element (2.1) in accordance
with these uniformity assumptions is the theory
of groups of motions, as developed by Lie,
Killing, Fubini and others®; with its aid we are,
in fact, able to show that the line element must
be of the form®

ds*=cde— R*(t)du?, (2.2)
where R(¢) is an arbitrary function and
A1t = hog(x12%9%)dx*dx? (2.3)

defines a space of constant Riemannian curva-
ture’ k in which du*>0 for any two distinct
neighboring points. We can, without loss of
generality, take k=41, 0 or —1 according as it
is >0, =0 or <0, respectively, for we need
merely replace R? by R?k in the first case and by
— R?k in the third. The first of these cases, which
will be found to be of most interest in our dis-
cussion of cosmology, characteristizes a space-
time in which the three-spaces ¢{=const. have a
finite volume which is proportional to R(¢), and
is in particular equal to 27?R® or 7?R® according
as (2.3) is interpreted as defining ‘spherical” or
“elliptic” space, respectively.®

We consider in passing the further restriction
placed on (2.2) by the a priori requirement that
the structure of space-time be stationary. That
an observer shall be unable to distinguish by any
intrinsic property of space-time between its state

s For a brief account of the elements of this discipline
and for references see note C, p. 84.

¢ See bibliography, Robertson, 1929.2. Also see note C,
p. 85.

7For an elementary discussion of this concept see note
B, p. 83.

8 See note B, p. 84.
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at any two arbitrarily chosen times ¢y, #; is readily
shown to imply one of the two possibilities®

k arbitrary, R=const., (2.49)
or

k=0, R({)=Res. (2.5)

The plausibility of this result will be more ap-
parent in the sequel, for we shall find that the
first of these two possibilities leads to the Ein-
stein universe (§5) in which all matter is at rest,
and the second to the empty de Sitter universe
(§6).

In order to discuss the properties of the space-
time universe as a whole or to set up the analogue
of the Minkowski diagram for such a universe it
is often convenient to consider it as a four-
dimensional surface imbedded in a flat space of
higher dimensionality. It can be shown that from
this point of view the space defined locally by
(2.2) has the same intrinsic geometry as a general
hyper-surface of revolution in a flat five-space.”
We shall in fact have occasion to resort to this
representation in discussing the stationary uni-
verses of Einstein and of de Sitter in §§5, 6 below.

3. Physical interpretation of the line element

The above considerations led to the conclusion
that any relativistic cosmology which considers
the actual world as approximated by a spatially
uniform background must be based on a line
element of the form (2.2), involving an arbitrary
function R(f) and a constant k which may assume
any of the three values +1, 0 or —1. We have
now to examine what further restrictions are
placed on the line element by the requirement
that it satisfy the field equations (1.2) for some
suitable choice of the stress-energy tensor T,,.
To do this we begin by computing the T,
defined by these field equations when the values
of g,, given by (2.2) are substituted into the
left-hand side; we find that the resulting stress-
energy tensor may be written in the form

Trr = (p+p/c?) 6o*60"— pg*”, 3.1)

where
2= —\+3(k+R?/)/R,
KpC ( /e/ 3.2)

xp=A—2R" /R~ (k-+R*/3)/R?,

9 See bibliography, Robertson, 1929.2, p. 825. See note
C, p. 85, for a sketch of the proof.

10 See bibliography, Robertson, 1929.2, p. 826. See note
D, p. 86, for the explicit result.
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and the prime indicates differentiation with
respect to £. The conservation equations (1.3),
which are of course automatically satisfied by
(3.1), reduce to the single relation

Rp’+3R'(p+p/c*) =0

between the quantities (3.2).

On comparing (3.1) with (1.7) we see that (2.2)
may be interpreted as defining the field due to
matter which is at rest (v*=4§¢*) and whose
density and pressure are given by (3.2); this
result is immediately understandable in view of
the fact that we introduced our coordinates x*
in such a way that the material content of the
universe is on the whole at rest with respect to
them. We may, however, consider (3.1) as con-
taining a contribution due to a field of isotropic
radiation; if % is the energy density of this radi-
ation field we have, on taking (1.8) into account,

p=pmtu/3, 34)

where pn and pn are the density and pressure
of matter. Of these quantities certainly p.. and
u are inherently non-negative, and we shall for
the most of our report make the reasonable
assumption that p=0.

The matter contained within a closed surface
S, whose equation S(x*) =0 is independent of ¢,
can never cross over the boundary, and the rate
at which radiation is escaping through S is just
balanced by the rate at which it is entering.
Denoting by V(f) the volume in the space
t=const. enclosed by a surface S whose volume
content is unity with respect to the auxiliary
metric (2.3), and by M(f) and E(f) the total
mass and energy (which includes the energy
content of matter in accordance with the law
E.n=Mc of the theory of relativity) contained
within it, we have

V=R, M=pnV, E=pV=Mce+uV.

3.3)

p=pmtu/c,

(3.9

The conservation Eq. (3.3) now assumes the sig-
nificant form

dE+pdV =0. (3.6)

The general line element (2.2) is thus found to
satisfy the field equations for a spatially homo-
geneous distribution of isotropic radiation and
matter at rest, without restriction on the three
arbitrary elements %, R(¢) and \, except for such
inequalities, such as p=0, as we may impose in
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order to insure a sensible interpretation. The
further specification of the line element must
therefore rest on assumptions concerning the
finiteness of space, the density or pressure of
matter and radiation, and the cosmological con-
stant \; the precise specification of the arbitrary
function involved will in the main be accom-
plished by imposing assumptions concerning E
or M, or both. For.this purpose it will be found
convenient to consider E as a function of R
which is single-valued over a sufficiently re-
stricted range of R; the first of Egs. (3.2) may
then be written, with the aid of (3.5),

R 3x
c(t-—to)=i£0 (D(x, )\)) dx, (3.7)

D(x, \) = kE(x) — 3kx+ 2o,

where
(3.8)

The determination of R as a function of ¢ is thus
reduced to the quadrature (3.7) and the sub-
sequent inversion of the resulting equation
t=t(R). But even in cases where E is not known
explicitly as a function of R these results will be
of considerable value in discussing the behavior
of R as a function of ¢, as will be shown in §7
below.

The treatment which we have here given the
general foundations of relativistic cosmology—
which is based only on translating, with the aid
of Mach's principle, into mathematical restric-
tions on the line element observational results
concerning the uniform distribution of matter in
large and their extrapolation—follows compara-
tively recent work of the author, as indicated in
the references, and deviates from the historical
development in the following particulars. The
first treatment of the subject, that of Einstein,"
dealt only with the stationary case (2.4) in which
k=41, R=const., p=0 (cf. §5) and was fol-
lowed shortly by de Sitter's treatment® of the
alternative stationary possibility (2.5) in which
k=0, R=e¢'s, p=0 (§6). The first general treat-
ment is that of Friedmann,”® who arrived at the
line element (2.2) for k=41 by a combination
of a priori homogeneity assumptions and the
requirement that the matter-energy tensor be of

1t See bibliography, 1917.1.
12 See bibliography, 1917.2, 3.
13 See bibliography, 1922.1; 1924.1.

the form (3.1) (for p=0), but his homogeneity
requirements are weaker than those imposed
in the above and as a result his derivation of
(2.2) is incorrect. Friedmann discussed in some
detail the various cases arising for k= 41 under
the assumption p=0 (cf. §8). Subsequently
Lemaitre!* wrote down the line element (2.2)
as representing an Einstein world of variable
radius, threw the conservation equation into the
form (3.6), obtained E(R) explicitly under the
assumption M =const. (see Eq. (9.1)) and dis-
cussed in detail a particular case (see Eq. (8.4))
contained in Friedmann's survey, suggesting it
as an alternative to the de Sitter-Weyl explana-
tion of the red shift in light from distant nebulae.
The next general treatment was that outlined
in the above account, into which is incorporated
Weyl's coherency assumption, and which ex-
hibits explicitly the full range of possibilities.
This was followed shortly by an alternative
derivation by Tolman® of the case k=+41,in
which a priori homogeneity assumptions are
supplemented by the requirement that the
matter-energy tensor be of the form (1.7) where
p and p are functions of ¢ alone. Tolman'® has
also initiated an extension of the subject into the
domain of thermodynamics, but in order not to
interrupt the development on the basis of the
hitherto accepted principles of the relativity
theory, which are capable of dealing only with
the mechanical aspects of cosmology, we have
chosen to give a brief account of this most
interesting extension in note F, p. 87.

4. Motion of particles and of light

Before considering the various special assump-
tions leading to the more precise specification of
space-time we develop certain aspects of the
geometry and kinematics of the general case.
The Egs. (1.4) of the geodesics, which represent
the paths of particles and of beams of radiant
energy, assume a particularly simple and useful
form on choosing as the parameter o the distance
u measured along the projection of the geodesics
in the auxiliary space (2.3). In the first place,
three of the four Egs. (1.4) become!

14 See bibliography, 1927.1.

15 See bibliography, 1930.6.

16 See bibliography, 1931.8-10; 1932.5-6.

17 See note E, p. 87, for a derivation of these results.
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@*x* () *dxfdxr
o { } __=0v (a’ﬁy7=1,213)v (4'1)
dw By

du du
where the asterisk on the Christoffel symbol
indicates that it is computed from the coefficients
of the auxiliary metric (2.3); one of these three
equations may of course be replaced by the first
integral

hap(dxe/du) (dx? du) = 1. (4.2)

The remaining Eq. (1.4) (for p=0) may be
replaced by the first integral

(R(du/d1))*=c*/(1++'R?); (4.3)

the constant of integration v has the value 0 for
light and « for a particle at rest. Egs. (4.3) and
(1.5) then determine the spatial distance % and
the space-time interval s as functions of ¢ by
the quadratures

dt
u= :i:cf e,
R(1+yRY)}
Rdt
o [ R
(1++2R3)t

These results show that the spatial projection of
a geodesic is itself a geodesic of the space ¢t=
const.—or, what amounts to the same, of the
auxiliary space (2.3). The function R(f) enters
into the determination of the geodesics only by
the first of the Egs. (4.4), which tells us at what
point % of its path the particle is to be found at
time £

In the idealization contemplated in relativistic
cosmology the extra-galactic nebulae are repre-
sented at rest in the coordinate system ¢, x°;
hence if « is the (constant) parameter distance,
measured with respect to the metric (2.3),
between two such objects at Py and P,, the space-
time interval between them at time ¢ is described
by the ‘‘distance”

I(t) = R(t)u.

(4.4)

(4.5)

This distance is therefore in general a function
of time, and we may speak of its rate of change

v=dl/dt=(1/R)(dR/dt)l (4.6)

as the ‘‘apparent velocity” of P, relative to Po;
this apparent velocity of such an object is
consequently proportional to its distance. We

have now to examine the possibility of deter-
mining this velocity by means of observations
on light emitted by the nebula at P, and received
by an observer at Py; this we do with the aid of
a simple, practically corpuscular, theory which
is justified in its essential predictions by a more
rigorous investigation of von Laue!® based on
wave optics. The light emitted from P; at time
t, is, in accordance with (4.4) for y =0, received
at Py at the time ¢, defined by

hodt wu

4w R ¢

Consequently the light which is emitted at P,
in the time interval A¢, is received at P, in the
interval Aty=A¢,-Ro/R,, where R, and R, are
the values of R(¢) at times ¢ and #; this will
cause a change Ay defined by

—Av/v=(Ro—R1)/R,

(4.7)

(4.8)

in the frequency » of the light. On expanding
R(t) and R, in a Taylor series about t={, we
find, with the aid of (4.5)— (4.8), that the shift
AX in the wave-length X\ is given by

c(AN/N) =vo— (1/2¢) (v +vo') +- - -,

correct to terms of order higher than the second.
Hence to a first approximation, the velocity of
recession attributed to the spiral nebulae because
of the red shift exhibited in their spectra may in
fact be equated to the apparent velocity (4.6)
if we wish to interpret the observed shifts as due
to this kinematical effect (but see §11 below for
the logical position of this assumption). The
work of Hubble and Humason® on nebulae with
radial velocities ranging up to more than 20,000
km/sec. shows that the observed dependence of
the Doppler velocity cAN/\ on distance ! is, in
fact, linear within this range, making allowance
for small deviations as peculiar motions, and
allows us to take

h=(R'/R)o=1.8X10"" sec.”..

(4.9)

(4.10)

It is to be noted in passing that this approximate
linearity of velocity of recession with distance

18 See bibliography, 1931.4. Our analysis follows Le-
maitre, 1927.1.,

19 See bibliography, 1931.3. For critical discussion see
bibliography, Oort, 1931.12.
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was first predicted by H. Weyl® in 1923 on the
basis of the more restricted cosmology of de
Sitter, to be considered in §6 below. We are not
as yet in a position to conclude anything from
the observational data concerning the value of
the second order term in (4.9).%

The above treatment of the red shift tacitly
assumes that (4.7) has a solution—i.e., that the
value of the integral for fp= = is greater than
u/c. But this need not be the case, and we are
thus led to the conclusion that there may exist
events Py(t1, x1) of which an observer at Po(xo)
can never be aware; we will in this case be able
to speak of the “radius I(f) of the observable
universe at time ¢,” which is defined by

- o dt
() =R(t)ya(t) where 12(!)=cf —R—(t—)_ (4.11)

All events at time ¢ of which a stationary ob-
server can ever be aware must at that time lie at
a distance I<I(f). An additional conclusion
which may be drawn from this result is that if
we are considering the case k=+1 in which
space is spherical (elliptic), a beam of light or a
particle of sufficiently high velocity starting
from 0 at time ¢, will be able to circumnavigate
space and return to 0 at time ¢, defined by (4.7)
in which % is replaced by 2=(r), provided
u(ty) >2w(7).

A definition which is in closer accord with
astronomical practice than (4.5) has been sug-
gested by Tolman and by Whittaker.?? Since the
distances of extra-galactic objects are estimated
with the aid of intensity measurements and it is
assumed in practice that the intensity falls off
inversely with the square of the distance, these
authors propose as a measure of the distance a
quantity which is proportional to the square root
of the intensity of a standard source. For the
case of spherical or elliptic space this quantity,
which we denote by d, is found to be

d=R(t) sin %, (4.12)
but this expression differs from (4.5) only in

10 See bibliography, 1923.2.

1 See bibliography, Tolman, 1930.7.

2 See bibliography, Tolman, 1930.8; Whittaker, 1931.11.
An explicit application of this definition to general cosmo-
logical spaces, leading to (4.12) for k=1, is given in
note E, p. 87.

terms of third and higher orders in % and will
therefore lead to an expression for AN/\ which
differs from (4.9) only in terms of order higher
than the second.

II. STATIONARY UNIVERSES

5. The static Einstein universe

We consider first the stationary cosmology
(2.4) in which R=const. (referred to in the fol-
lowing as of type E). This case is of considerable
historical interest, as it was obtained by Ein-
stein® in conjunction with his attempt to avoid
the difficulties inherent in an infinite space filled
with matter by introducing the cosmological
constant X\ into the field equations (1.2). We
shall not review the arguments which led
Einstein to this hypothesis, as he no longer
considers them valid.*

The physical specification of this space-time
is given by the matter-energy tensor (3.1),
which is expressed in terms of the density p and
the pressure p by

kpc?=—\+3kR?, «kp=A—Ek/R%. (5.1)
If we demand that =0, p>0 we see that, of
the three possibilities for k, the only one which

is permissible is k=<1, whence

A=xp+1/R? «xpct=—xp+2/R%. (5.2)
Einstein further assumed that the density of
radiant energy is negligible compared with the
energy density of matter and that matter exerts
no pressure; we then have

A=1/R?, «pc*=2/R? (5.3)
and the total mass contained in the (spherical)
universe is

27t M =4x2R/xc%. (5.4)

Hubble's value (1.9) for the mean density of

 See bibliography, 1917.1.

% See bibliography, Einstein, 1931.1, p. 236, where he
characterizes the \ term as ‘“‘theoretically unsatisfying’’;
however, this view does not seem to be shared by all
relativists—cf. e.g., A. S. Eddington, The Expanding
Universe, Proc. Phys. Soc. London 44, 1-16 (1932), in
particular p. 5. For an exhaustive review of the older
arguments concerning the structure and physical content
of the world as a whole see F. Selety, Beitrige sum kosmo-
logischen Problem, Ann. d. Physik [4] 68, 281-334 (1922).
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luminous matter contained in the nebulae leads
to a radius

R=4.6X10% cm; (5.5)

if we multiply this value of the density by a
factor o (between 1 and 1000?) to allow for
nonh:minous matter R is decreased in the ratio
1:a'.

The Einstein universe has the amusing
property of allowing light to circumnavigate
space—in 27R/c=9.6X10® sec. or 3 X 10" yrs.!
But such a static universe is unsatisfactory for
two reasons: In the first place it does not enable
us to explain the motion of recession of the spiral
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FiG. 1. The Einstein universe.?

% For the preparation of the figures, I am gratefully
indebted to Dr. Edwin M. McMillan.

ROBERTSON

nebulae, and in the second it is unstable, as was
pointed out explicitly by Eddington®—a slight
disturbance will lead to a continued contraction
or expansion, as discussed more fully in §§7 and
10.

As shown in note D, the Einstein universe may
be considered as a four-dimensional cylinder of
radius R in a five-dimensional flat space, the
axis of which is along the direction of cosmic
time; this fact enables us to obtain a graphic
representation of it as an ordinary cylinder of
radius R in three-space on disregarding two of
the spatial dimensions. This cylinder, which is
the analogue of the Minkowski diagram of the
special theory of relativity and which may be
obtained from it on rolling it up into a cylinder
of radius R in such a way that the world line of
the observer becomes a generator of the cylinder,
is illustrated in Fig. 1, showing the paths of the
observer, particles at rest and in free motion,
and light. On allowing R— o the Einstein
universe degenerates into the space of special
relativity (type SE) and the cylinder into the
familiar Minkowski diagram.

6. The de Sitter universe

The second of the two stationary possibilities
(which we refer to as of type S), suggested by
Ehrenfest and investigated by de Sitter,” offers
considerably more promise than Einstein’s. On
suitable choice of coordinates we may take the
line element of this de Sitter universe in the
form?

ds? =P —eVo(dx 2+ dx?+dxs?).  (6.1)
We then find from (3.2) that
kpc?=—\+3/a* «xp=\—3/a? (6.2)

and on requiring that neither p nor p be negative
it is evident that they must both vanish and that
A=3/a*. We are thus dealing with that approx-
imation in which the effect of matter on the
underlying metric is neglected; the nebulae are
to be considered as test particles whose existence

26 See bibliography, 1930.1.

27 See bibliography, 1917.2-3.

28 See bibliography, Lemaitre, 1925.1; Robertson, 1928.1;
As shown by Weyl, 1930.10, these coordinates are the
explicit analytical expression of the geometrical derivation
in Weyl, 1923.2.
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has no effect on the structure of the universe.
Eq. (6.1) defines a four-space of constant Rie-
mannian curvature — 1/a?; this case has therefore
often been called the ‘‘spherical’’ universe.

Egs. (4.7), (4.8) lead to the rigorous law

—Av/v=1/a (6.3)

for the red shift, and on applying Hubble's and
Humason's value (4.10) for k=R'/R=c/a we
find

a=1.7X10¥ cm. (6.4)

It is to be emphasized that this possibility of
obtaining a unique Doppler shift in the de Sitter
universe is directly attributable to Weyl's
assumption that the world lines of matter con-
stitute a pencil which converges toward the past;
the many (impossibly low) determinations of the
“radius” of the de Sitter universe made by
Silberstein® between 1924 and the present are
obtained from data on red and violet shifts in the
spectra of stars, globular clusters and nebulae
without the aid of any such assumption, and
are therefore without the spirit of this report.

In the de Sitter universe space is unlimited,
but objects at a distance greater than the radius
I=a (4.11) of the observable universe will be
completely isolated from an observer at O, as
light from such objects can never reach O (as
may also be seen immediately from (6.3)); in
this sense space has an apparent constant radius
a.
As shown explicitly in note D, de Sitter’s
spherical universe can be represented by a
portion of a certain four-dimensional surface,
which we may call a “pseudo-sphere,” immersed
in a flat five-space. On suppressing two of the
spatial dimensions the situation is given graphic-
ally by Fig. 2, in which space-time is represented
as that portion of an hyperboloid of one sheet
which is bounded by two parallel generators L
—the world lines of light which was emitted at
time ¢{=— o from the vertex of Weyl's diverging
pencil of geodesics. The observable universe of an
observer O consists entirely of that portion of the
diagram which lies within the two parallel
generators L’ which represent the paths of light

29 For an account of this work see L. Silberstein, The
Size of the Universe (Oxford, 1930). But see review and
criticism by the present author, Am. Math. Monthly 39,
600-603 (1932).

which approach the world line of O asymptotic-
ally in the future. The world line N of a nebula
at rest in the ¢, x* coordinate system is asymptotic
to that of O in the past, and will at some time
in the future cross one of the generators L’ which
represent the limits of O’s observable universe;
this, together with the fact that de Sitter’s
original coordinates covers only this observable
universe in such a way that his time coordinate
has the value + « on the lines L’, accounts for
the illusion of a ‘‘mass horizon” which once

.

F1G. 2. The de Sitter universe.

seemed so puzzling. The “‘spaces’ ¢=const. are
the parabolas in which the hyperboloid is cut by
planes parallel to the plane determined by the
two generators L. The two generators, such as
_"", through any point P represent the paths of
a beam of light sent out from or received at that
point, and the world line M of any particle
passing through P must lie between the positive
directions of the two null-lines L. The fact that
all such generators or world lines seem, on fol-
lowing them backward in time, to have entered
the universe merely means that they mrust at



72 H. P. ROBERTSON

some previous point have suffered an interaction
with other matter which threw them off their
natural course; as we follow them still further
back they must, in accordance with Weyl's
coherency postulate, approach asymptotically
the world line of O.

We should, of course, expect that any universe
which expands without limit will approach the
empty de Sitter case, and that its ultimate fate
is a state in which each physical unit—perhaps
each nebula or intimate group of nebulae—is the
only thing which exists within its own observable
universe. In this connection it is to be noted,
however, that the stationary form (6.1) of the
de Sitter universe is not the only line element
suitable for relativistic cosmology which de-
scribes an empty universe for A >0, although in
accordance with Mach’s principle it must be
possible to transform any other such line element
into this stationary form.® In order to discuss
all such possibilities we need only evaluate the
integral (3.7) on setting E=0; by writing A= 3/a?
as above, R is defined (for an expanding universe)
by the equation

B dx
c(t—t) =a j;o M(x’-ka’)*'

The stationary form considered above is, of
course, that in which 2=0. The case k=+1
leads to the solution

R=a cosh [¢(t—1)/a],

(6.5)

(6.6)

which was found some years ago by Lanczos,®
and the case 2=—1 to the solution

R=asinh [c(t—1)/a]. (6.7)

The existence of these alternative forms for
the de Sitter universe emphasizes the necessity
of augmenting the field equations by some as-
sumption, such as Weyl's, concerning the natural
state of matter; as remarked above, these line
elements are mathematically equivalent to (6.1),
but the physical universes which they describe

30 That this is in fact the case, is readily seen from the
formulae (A. 7) for the Riemann-Christoffel tensor for a
space in which both p and p vanish, for according to them
all such spaces are of constant Riemannian curvature
— /3 and may therefore be transformed into one another
(cf. Eisenhart, Riemannian Geomelry, p. 86).

3 See bibliography, 1922.2.

are not stationary if ¢ is interpreted as cosmic
time—for example, the time required for light
to travel a given proper distance ! depends on
the time at which it starts. Obviously both of
these universes pass into the de Sitter universe
as t—>o—for a formal proof we need merely
replace t—t by t+(a/c) log (24/a) and x= by
x*/A, and allow 4>,

The remaining possibilities for an empty uni-
verse lead only to the Minkowski world (for
A=0, k= +1) and to the form

R=bsin [c(t—2)/b]
for 0> A= —3/8% k= —1.

(6.8)

III. NONSTATIONARY UNIVERSES

7. Types of nonstationary universes in which
=0

Preliminary to a more detailed discussion of
the nonstationary solutions of the Egs. (3.6),
(3.7), which have received special attention at
the hands of various authors, we examine the
range of types which may arise under the
physically plausible assumption that the total
pressure p is never negative. This classification
of types, which follows closely the scheme em-
ployed by the Russian mathematician, Fried-
mann, for the cases in which p=0 (cf. §8 below),
is accomplished in terms of the three constants %,
M and R,, the initial (i.e., present) value of the
radius R(¢).

We first note that under the assumption p=0
Eq. (3.6) implies that E is a monotonically de-
creasing (increasing) function of ¢ during the en-
tire duration of a phase of expansion (contrac-
tion) ; we here employ the term ‘‘monotonically
decreasing” in the weakened sense of ‘‘never
increasing,” thus allowing for the possibility
that E remains constant over any part of the
range. Since furthermore E=0 over the whole
range, E(R) must approach an asymptotic value
E_=0 as R»>», and in such a way that the
integral

p(x)x%dx
Ro
exists. On the other hand, as R decreases E(R)

may increase without limit to a singularity at
some value of R; we take explicit account here
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only of those cases in which this singularity, if
it exists, is at R=0, as the behavior of R(¢) in
all other cases can be inferred immediately from
its behavior in these. We may, of course, assume
that E(0) >0, as E(0) =0 leads to the de Sitter
universe considered in the previous section.

Eq. (3.7) or

R?*=cD(R,\)/3R 7.1)

tells us that the only admissible values of R for
a given \ are those for which D(R, \)=0, and
that the only points at which R’ may change
sign are the zeros of D(R,\). We are thus led
to examine the roots of the equation D(R, \) =0,
which is most conveniently done by considering
the locus of these points (R, \) in the (R=0, \)
half-plane; since the behavior of the curve differs
essentially in the two cases k=41 and k=0
or —1 we treat these cases separately.

Case k=+1. Those cases in which space is
finite offer by far the most varied and most
interesting range of possibilities. The critical
curve D(R, \)=0 or

A=3/R*—«E(R)/R? (7.2)

has as A\-extremals those points R for which

d\/dR=—6/R%+4-3xE/R*+3«kp/R=0, (7.3)
and the value of \ at such a point is
A=1/R*-xp (>0). (7.4)

From these results and the assumptions E=0,
»=0 we can conclude the following points con-

A

F16. 3. Behavior of D(R, \)=0 for =1 on assumin;
$=0 (in full line; dotted line illustrates hypothetica
possibilities considered in text).

cerning the behavior of the critical curve, as
indicated in full line in the accompanying Fig. 3.
(a) The curve is asymptotic to the negative
M-axis and as R increases from zero it rises stead-
ily until it crosses the R-axis, for by (7.4) it
cannot have a horizontal tangent for any point
at which A=0; (b) it has at least one maximum
M(Re, Ne); and (c) it approaches the R-axis
asymptotically as 3/R? as R— .

The only (R, \) points which can represent a
state of the universe are those which lie above
or on this critical curve. From the facts we have
stated above we are able to predict without
ambiguity the general behavior of a universe for
which \ is greater than the maximum value A,
assumed on the curve, or for which it is less than
or equal to zero. The behavior for values of A\
greater than zero but not greater than A\, depends
on the nature of the non-negative function p(R),
but we are, nevertheless, able to survey the
various types which may here arise—and, as we
shall see shortly, the introduction of a physically
plausible assumption cencerning p(R) enables us
to remove the ambiguity in this intermediate
region as well. In describing the various possi-
bilities which may arise we shall in general con-
fine our attention to those which are in the
expanding phase at the initial time ¢=¢,.

In this case the line \=const. does
not cut the critical curve, and consequently the
point (R, \) representing the universe moves out
along the line with a velocity which approaches
(A/3)¥cR; the universe approaches the stationary
de Sitter state (6.1) through the nonstationary
Lanczos form (6.6). Looking backward in time,
we might say that the universe ‘‘began’ at that
finite time

1 pko 3x H
0= d
! ¢ f; (D(x, k)) ¥

in the past when its radius was 0; we should of
course not expect our idealization to hold back
to such a time, but we might consider a singularity
of E(R) at some point R>0 as the ‘‘beginning.”
If we wish to follow its course back through such
a singular state we find that at all times still
further in the past the radius was decreasing.
Such a universe, which expands monotonically
in the future and which was in such a singular

(7.5)
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state as R=0 or that state R at which E(R) has
a singularity, we refer to as a monofonic world
of the first kind and denote it by M,.

Here the point (R, \) representing the
state of the universe must be on the line A=
const. between R=0 and that point R, in which
this line cuts the critical curve D(R, \) =0. The
fate of such a universe is to expand until its
radius attains the critical value R;, at which
point it begins to contract and continues to do
so until it reaches the singular state R=0. If we
care to follow it further we should expect to
find that it will again expand, only to repeat the
oscillation—which is strictly periodic in time if
E(R) is a single-valued function of R. Such a
universe we refer to as osctllating and denote it
by O; that all universes for which k=41, A=0
are of this oscillating type has been proved by
Tolman and Ward.®

As stated above, the general features of the
critical curve for 0<A=\, are not uniquely
specified by the assumptions imposed so far in
this section—the essential features for our
present purpose being the number and distri-
bution of horizontal tangents to the critical
curve D(R, N\)=0. Let us consider briefly the
conditions under which horizontal tangents in
addition to that one at M(R,, A\¢) may exist.
Obviously, the existence of any minimum such
as m on the dotted line in Fig. 3 (which may,
however, occur on either side of M) implies the
existence of a subsequent maximum N ; it is then
readily seen from (7.4) that this situation can
only exist if py>pm. Again, the existence of a
point of inflection, such as I in Fig. 3, or of hori-
zontal tangents (including A =X.) possessing any
higher order of tangency to the curve, implies,
as can be seen by differentiating (7.3), that at
such a point dp/dR>0. Hence if we impose the
additional physically plausible assumption that
the pressure can never increase with the radius
we automatically exclude the possibility of any
horizontal tangent other than the simple tangent
A =X, through M, and the curve is of the general
form indicated in Fig. 4. We therefore consider
in detail the behavior of any universe in which
dp/dR=0 before returning to a brief survey of
the more general situation.

3 See bibliography, 1932.6.

[0<A<\, dp/dR=0] Here D(R, \) has two
positive roots R;(A) <R»()), between which D is
negative; two cases may therefore arise for each
value of N\, according as Ry<R,; or Ry>R;. The
first of these possibilities obviously leads to a
universe of the type O which expands until
R=R;, and subsequently contracts to the
singular state; whether it passes through the
singular state only to repeat the process as in
those cases for which A=0 (as it will if E is a
single-valued function of R) or whether it then
becomes a universe of type M; (or A; as de-
scribed below) depends on whether X is less than
the new A, or not. The second case, in which
Ry>R,, continues to expand monotonically as
those of type M. The essential difference
between this type, which we refer to as a mono-

)

M,

o—
A, E A,
Q : M
o— [ —

R

0
O

F1G. 4. Types of universes for 2=1 in which dp/dR=0.

tonic world of the second kind M,, and M, is
that at a finite time

Ro 3x H
f ( ) dx
& \D(x,))

in the past it assumed a minimum radius R= R,;
on following it back through this state we find
that it was at all previous time monotonically
contracting.

[A=X, dp/dR=0] The case in which A is just
equal to the maximum value A\, assumed on the
critical curve is the most interesting of all.
D(R, \.) has a double root at R=R, and the
radius may therefore remain at this critical

(7.6)

lo=
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value; this is, in fact, the general form (5.2) of
the static Einstein universe discussed in §5
above. Such an equilibrium is of course un-
stable,® as is readily seen from Fig. 4. If R, <R,
the radius increases monotonically, approach-
ing the critical value R=R, in such a way
that as t—, R,—R—0 asymptotically as e=C¢;
we refer to such a universe as an asymplotic
world of the first kind and denote it by A,
Finally, if Ro>R. the universe continues to
expand monotonically without limit into the de
Sitter universe as in types M; and M., but it
differs from them markedly with respect to its
behavior in the past, for it has been expanding
forever; its deviation R— R, from the equilibrium
radius is in the earlier stages of the form e°,
from which time may be said to become ‘‘loga-
rithmically infinite” in the past, of which more
anon. This unique type A,, the asymptotic world
of the second kind, may be considered as having
originated in an Einstein universe which began
to expand because of perturbations (cf. §10
below), and is the nonstationary transition stage
between the two stationary types E and S.
Returning to the general case by dropping the
assumption that p is a monotonically decreasing
function of R, we see that for all values of \
greater than zero but not exceeding A\, there
exists a universe which is either of type A; or O,
depending on whether A =const. is tangent to the
critical curve at its first contact with it or not.
Similarly there exists for each such value a uni-
verse which is either of type A, or M,, depending
on whether A =const. is tangent to the curve at its
last point of contact or not. If in these asymp-
totic cases the tangency is of order n>2 the
deviation from the (unstable) equilibrium state
is measured by (£)?/*~" instead of by the ex-
ponential e™¢¢ as in the case of simple tangency
n=2, thus replacing the ‘“logarithmic infinity”
of ¢ by an infinity of higher order. If the critical
curve possesses a true minimum (as at m in
Fig. 3) there exists a stable Einstein universe E
corresponding to this minimum value; for each
value of N\ not too much greater there exists an
oscillating universe neither limit of which is the
singular state and which is strictly periodic if
3 An explicit analytical proof of this result has been

given by Eddington, 1930.1 (see bibliography), for the
Lemaitre case of »=0.

E(R) is a single-valued function of its argu-
ment.3* As \ increases still more this oscillating
universe goes over into one which is of the
asymptotic type at either or both of its limits.
What happens as it increases beyond this value
depends on the nature of the curve in more
distant regions, but the total range of possi-
bilities is completely covered by the preceding
analysis.

Cases k=0, —1. The cases in which space is
infinite are treated together, for the types of
behavior which such universes may exhibit and
their dependence on \ are the same in both.
Subject only to the assumption =0, the curves
D(R, \)=0, or

A=3k/R?—«kE/R?, (7.7

are asymptotic to the negative A\-axis and to the
positive R-axis, and have throughout a positive

A

FiG. 5. D(R, \) =0 for k=0, —1.

slope (Fig. 5). Hence but two types of universes
arise, depending on the sign of \.

A=0| The line A=const. does not cut the
critical curve, and consequently R increases
monotonically without limit, giving rise to a
universe of the type M, which approaches the
stationary de Sitter world S—directly if =0
and through the intermediate nonstationary form
(6.7) if k= —1. Note, however, that in case A\=0
this ultimate form is that of Minkowski—a de
Sitter world in which a= .

% As shown by Tolman, 1931.10, p. 1764 (see bibli-
ography), the pressure at the upper limit of such a universe
exceeds that at its (nonsingular) lower limit.
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[X<0] Here the line A=const. cuts the
critical curve in a point R,, leading to an oscil-
lating world (type O).

Our survey of all cosmologies in which =0
leads to the conclusion that the only type (As)
in which the universe has been expanding for all
time in the past is possible only if k=<1,
A=X\>0; while we are hardly prepared to
maintain that it is the only type fulfilling the
requirements for a system of relativistic cos-
mology, we can say that unless we wish to go
beyond the idealization contemplated so far in
this report it would seem to be the only one
which is consistent with the spirit of Weyl’s
postulate concerning the coherency of all matter
in the actual universe—unless we wish to assume
that the world ‘‘began’ at a definite time some
10" years in the past. We shall also find addi-
tional evidence for this view in the fact that the
time scales to which the other possibilities lead
in the more specific models considered in the
following section, seem difficult to reconcile with
modern astronomical theories; as we shall see in
the following sections even this case has been
objected to because of its time scale. We have
collected in Table I the results of this section

TABLE 1. T'ypes of universes in which E>0, p=0, dp/dR=0.

N 1 0, —1
>he M,
>0 Ae A, E A, M,
<Ne (o) M,
0 (o] M,
<0 (0] )

for universes in which p is a monotonically
decreasing non-negative function of R; the
additional possibilities obtained on the weaker
assumption that $=0, upon which we touched
briefly in the above, affect only the compart-
ments k=1, 0<KA=A\,. It is to be noted that
Einstein’s recent proposal to set A=0 would
restrict us to the oscillating universes (type O)
and the monotonic universes of the first kind
(type M)), both of which originate in the singular
state R=0.

8. Universes in which energy is conserved

Having set forth in the preceding section a
general survey of the possible types of universes
we return to a more nearly historical account of
the specific models which have been proposed.
Soon after the appearance of Einstein’s and de
Sitter’s solutions it was generally conceded that
no further stationary universes could exist,
although no satisfactory proof of this fact was
given until much later.® Accordingly, in 1922,
Friedmann® set himself the problem of deriving
the most general line element, regardless of the
condition that it be stationary, and although his
derivation was faulty he succeeded in obtaining
the fundamental form (2.2) for the cases k= =+1;
he apparently did not entertain the possibility
k=0, but we shall nevertheless consider it as
falling under his general class of solutions in the
following discussion.

From the beginning Friedmann restricted him-
self to universes in which the total pressure p
vanishes; in accordance with (3.6) this is equiva-
lent to the assumption that the total energy
contained in a volume whose boundaries are
fixed with respect to the spatial coordinates x*
is rigorously conserved. Support for the con-
tention that this represents a good approximation
to the actual world is found in the fact that the
density # of radiant energy, which we consider
largely responsible for the pressure p, is estimated
to be but a small fraction of the energy density
pmc® due to matter. Friedmann then analyzed
the various possibilities which could arise under
these conditions; the essential points of his
analysis are in fact used as a basis for the more
general treatment given in the preceding section.
Since dp/dR=0 the critical curve is of the form
shown in Fig. 4 (which was in fact drawn for
just this case E=const.); it cuts the R-axis at
R=«E/3 and is maximal at

Ro=xE/2, No=1/R2=(2/kE):. (8.1)

For general values of \ the radius R is expressible
in terms of ¢ by means of elliptic functions, but

# See bibliography, Robertson, 1929.2, p. 825. Fried-
mann, 1922.1, and Tolman, 1929.3, had previously pub-
lished proofs of the fact that no additional static solutions
satisfying the general requirements for a system of cos-
mology could exist.

% See bibliography, 1922.1; 1924.1.
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for some particular values of \ these reduce to
elementary functions. Because of the interest
which some of these latter have attracted of late
we devote the remainder of this section to an
explicit determination of them; their place among
the other types of energy-conserving universes is
shown in Table II.

TABLE I1. Universes in which energy is conserved.

k| E N Ro | Type Remarks
0 >0 | Arb. S | Lanczos' form (6.6) of S.
>Xe | Arb. | M, | —(6.6)—(6.1).
<R, | Ai |—E(5.3).
+1 De R, E | Einstein universe [§5].
>0 >Re| A: |Lemaitre's case (8.4).
SO | >R | My | —=(6.6)~(6.).
<Xe | <R =0 Einstein’s case (8.6).
1 >0 | Arb. | S [ Stationary form (6.1) of
0 de Sitter universe.
0 | Arb. | SE | Minkowski universe.
0 >0 | Arb. | M, |—(6.1).
so| O Arb. | M, | Einstein’s and de Sitter’s
case (8.8)
<0 | <Ry
>0 | Arb. | S |Form (6.7) of S.
0 0 Arb. | SE | Minkowski space R=ct.
1 <0 | <R, | S |Form (6.8).
>0 | Arb. | M, | —(6.7).
>0| 0 Arb. | M, | =Minkowski space SE.
<0 | <R, | O

Lemaitre's case k=1, \=X\,. Of all Friedmann's
worlds that one of type A,, for which k=+1,
A=\, Ro> R,, is of most interest, for, as indicated
by Friedmann, it is only when we allow \ to
approach this critical value we get a universe
with a limitless time scale. Five years after the
appearance of Friedmann’s first paper the Bel-
gian mathematician, Lemaitre,” set up the line
element (2.2) for k=1 as “‘an Einstein universe
where the radius of space or of the universe is
allowed to vary in an arbitrary way’’ and, after

37 See bibliography, 1927.1.

drawing certain general conclusions which are
discussed in other sections of this report, confined
himself to the discussion of this most interesting
case.

The cubic D(R, \.) has a double root at R=R,,
and the integral (3.7) or

i dx
t—t) =R ﬁ 0 (x+m) —

is therefore expressible in terms of elementary
functions; the indefinite integral is

F(x)=2-3"log [x'+ (x+2R.)}]
+log [(3x)'— (x+2R.)"]
—log [(3%)*+ (x+2R)'] (8.3)
and consequently
c(t—to) = R F(R)— F(Ro)]. (8.4)

In order to apply this idealization to the
actual universe it is only necessary to determine
two constants, the equilibrium radius R, and
the present radius Ry, from empirical data. This
we are able to do from Hubble’s value (4.11) for
the constant of proportionality & in the velocity-
distance relation and from his estimate (1.9) for
the density of the luminous matter which is
contained in nebulae, by means of the equations

(R’ C(Ro (Ro+2Rc)’
) 3R, /'
R.= KE/2 =«xpcR3/2

obtained from (7.1) or (8.2), (3.5) and (8.1).
Since, as Hubble points out, p may be consider-
ably in excess of the value 5X10~% because
of the existence of nonluminous or scattered
matter, we have set p=a5X10™* and com-
puted the resulting values of R,, R, for various
values of a ranging up to one thousand; the
results of this computation are collected in
Table III. The equilibrium radius R., which is

(8.2)

TaBLE I11. R, and Ry for various densities p= a5 X 1073,

a Re X102 Ry X102 Ro/Re
0.1 9.60 274 28.6
1 9.54 127 133
10 9.29 58.4 6.29
100 8.37 26.2 3.13
1000 6.15 11.0 1.78
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of the order of 10 cm, is found to be surprisingly
insensitive to density in the range considered,
whereas the present radius R, shows a consider-
able variation. The dependence of R/R. on
¢t/R., which is independent of the particular
constants involved, is represented in Fig. 6; the

x=1000

)
ct/Re

F1G. 6. Lemaitre's case A; of Friedmann's universes.

points on the curve show the present state of the
universe for the various assumed values of «
from one to one thousand. The lighter curve
shows Lanczos’ nonstationary form (6.6) of the
de Sitter universe, to which Lemaitre’s case of
Friedmann’s worlds is asymptotic; the two curves
agree to within less than one percent at all
points above R/R.=3.

Einstein’s case k=1, A=0. This periodic uni-
verse, to which Friedmann referred explicitly in
order to obtain some estimate of orders of mag-
nitude, has recently been investigated in detail
by Einstein.® The fundamental Eq. (3.7) is in
this case readily integrated; in parametric form
the solution is the cycloid

2ct=Ri(¢—sin ¢), 2R=R,(1—cos ¢) (8.6)

38 See bibliography, 1931.1.

generated by a circle whose radius is one-half
the maximum radius R;=«E/3 of the universe.
On applying the observational data on red shift
and density as in the case considered above we
find that the present and maximum radii are

. 10% 0.031a10%
’(0.031a—36)t  (0.031a—36)%"

8.7

whence the solution is inapplicable unless the
density of matter in the actual universe is in
excess of one thousand times that estimated by
Hubble for matter observed in nebulae. The
present radius R,, or R, and hence the period
T'=wR;/c, is very sensitive to variations in the
density; following Einstein in assuming that
Ry— R, is of the same order as Ry we may take
a~2000 (p~10"% g/cc), Ry~2X10¥ c¢cm and
T~5X10" sec. or 1.7X10'° yrs. But in the
present state of our knowledge such extremely
high densities seem difficult to justify—and the
higher the density we must assume, the less
important are some of the objections which have
been raised against the case considered by
Lemaitre.

Einstein's and de Sitter's case k=0, \=0. As
the last case of a world in which energy is con-
served we consider that extremely simple one
of type M, which has been discussed recently by
Einstein and de Sitter jointly.® The dependence
of R on ¢ is found immediately from (3.7) to be

R = (0.75kE)1/3(ct)?1s (8.8)

where ¢ is measured from the time at which
R=0. Here the predictions concerning red shift
and density of matter are not independent, for
we have

R'/R=c(xctp/3)}; (8.9)

on setting this equal to 1.8 X10~Y from (4.10)
we find p=5.8X107%, which is just on the upper
limit of the densities considered in the foregoing.

3 See bibliography, 1932.1. These authors, as well as
Tolman-Ward, 1932.6, and de Sitter, 1932.4, attribute
the possibilities k= —1, 0 to Heckmann, 1931.2, although
the former had been discussed explicitly by Friedmann,
1924.1, the latter had been used by Lemaitre, 1925.1, and
the present author, 1928.1, in their discussions of the
stationary form (6.1) of the de Sitter universe, and both
had been derived from the general standpoint of this
report by the present author 1929.2!
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9. Universes in which matter is conserved.
Effect of annihilation on the line element

The next extensive class of models of the uni-
verse to receive detailed attention is that in
which matter is rigorously conserved and exerts
no pressure. The explicit form of the dependence
of E on R was found by Lemaitre,* and a sys-
tematic discussion of the dependence of R on ¢
for the various types for which k=41 was sub-
sequently given by de Sitter.# On requiring that
M be constant and that p,, vanish (3.6) becomes

d(uR¥)+uR?dR=0, (p=u/3),

whence
u=8/RY, E=Mc+8/R. 9.1)

Since here both E and p are positive monotonic-
ally decreasing functions of R the classification
of possibilities in §7 applies in toto; the universes
of this class differ but little from those we have
already discussed, and we therefore confine our-
selves to the explicit solution of two cases of
particular interest.

The first of these is the unique solution k= 41,
A=X\., Ro> R, which gives a universe which has
been expanding forever, and is the immediate
generalization of the corresponding Lemaitre
case of Friedmann’s universes. Here R, is the
positive root of the quadratic

6R.— 3k Mc2R,— 418 =0,
and ). is determined in terms of it by
A=1/Re+xB/3Rs.
The dependence of R on ¢ is defined by

R

9.2)

(9.3)

c(t—1o) =33R, (9.4)

Ry X’(x_Re)
where
X = (14 «B/3R%) (22 +2R.x) + «B;

the integral can be evaluated in terms of
logarithms.* For any reasonable estimate of the
pressure this solution is indistinguishable from
Lemaitre’s (for which p=0), and we therefore
carry the work no further; for a more detailed
account the reader is referred to de Sitter’s
original papers.

(9.5)

49 See bibliography, 1927.1.
4 See bibliography, 1930.3; 1931.7.
4 See bibliography, de Sitter, 1930.3.

A case of some theoretical interest, although
without application to the actual world, is that
in which there is only radiation, i.e., M=0.
Eq. (3.7) then becomes

R xdx

(l—1) =3} L el

and is immediately integrable. The only universe
of this type which has been expanding forever
is that special case obtained from (9.2)—(9.5) on
setting M =0:

Ri=2«8/3, N=3/2R
9.7
— R
2c(t—1ty) = Re log ———-
( 0 g R 5

As pointed out by de Sitter, this solution parallels
remarkably closely the one considered by
Lemaitre.

An investigation of the effect of the random
motions of nebulae on the line element has been
carried out by Lemaitre® in order to explain an
apparent discrepancy found by de Sitter.* On
assuming motion in geodesics for which the
integral R%du/ds=1/vy#0 [cf. (E. 5)] the pres-
sure pn, due to matter is computed and incorpo-
rated into the fundamental equation for the deter-
mination of R(f). But on replacing this R? by an
appropriately chosen linear function of R?, which
differs but little from the identity, he shows that
this complete equation reduces to precisely the
same one as that one resulting from (9.1) above.
Lemaitre concludes that the average value of
1/~ will give a good approximation to the true
situation—this is indeed the procedure on which
the general development of §2 was based. The
course of the various possibilities arising under
this assumption has been sketched by Heck-
mann.®

The assumption on which this section is based,
that matter is rigorously conserved, must, how-
ever, be modified in view of present tendencies in
astrophysics, for if we are to account for the
long life of the stars we seem forced to assume
that in them matter is continually being trans-
formed into radiation. The effect of this loss of

43 See bibliography, 1930.2.

4 See bibliography, 1930.3.
4 See bibliography, 1932.2.



80 H. P. ROBERTSON

matter on the structure of the universe has been
investigated by Tolman* and by de Sitter.4 The
former has attacked the problem by considering
the effect of the various coefficients of ¢ in the
Taylor expansion of R(f) (or rather of log R)
on the logarithmic derivative dM/Mdt of the
total mass M. But, whereas the coefficient of ¢
is determined uniquely by the red shift, the coef-
ficients of the second and third powers enter
into the present problem in such a way as to
frustrate any attempt at a unique prediction
until further observational data are available.
de Sitter, on the other hand, assumes the
definite law

(1/M)(@M/dt)= —~(1/R)(@R/dt)
or M= Mo(Ro/R)"

for the rate of decrease of matter, and determines
the constant of proportionality v to be of the
order of 2X10~7. The conservation equation(3.6)
then allows him to conclude that

(9.8)

My Ry B MRy B
u= —_ = —+— (9.9
1—y R¥*r Rt 1—yR* R

The pressure is a monotonically decreasing
function of time, and this universe is accordingly
included among the general types discussed in
§7; however, this conclusion will only hold at
all times in the past provided $=0. de Sitter has
shown that the fact that the total amount of
radiation in a fixed coordinate volume is de-
creasing, in spite of the annihilation of matter,
can be attributed to the accompanying decrease
in pressure under the expansion; he also rightly
insists that the provisional law (9.8) can only
be considered valid over a comparatively short
range. The assumption of the “‘short time scale”
for the life of the stars would of course still
lessen the importance of this correction to the
law of conservation of mass assumed in the
above.

IV. ConcLusiON

10. The condensation problem

Our survey of all universes suitable for cos-
mology has led to the conclusion that under the
reasonable assumption p=0 the only possibilities

4 See bibliography, 1930.6-7.
47 See bibliography, 1930.3.

for a universe in equilibrium or for one which
has not arisen in finite time from the singular
state R=0 are included under that class in
which space is finite and the cosmological con-
stant is greater than zero. We are, therefore,
tempted to conclude that the ideal background
of the actual universe is of this type—that it
has arisen from the unstable Einstein state by
the influence of some perturbation and is now
expanding at an ever increasing rate which will
lead it eventually into the de Sitter state in
which the observer and his more immediate
physical system (nebula or intimate group of
nebulae) are the only things existing within their
own observable universe. The question which
naturally arises concerns how this expansion
originated—what processes in a universe in
unstable equilibrium can be considered respon-
sible for the impulse which set it off on its course?
Here we are indulging in speculations which far
transcend those contained in the foregoing, but
the problem in one form or another is of such
importance to modern astronomy that we can
well afford to recount the progress which has
been made in this direction.

The question naturally divides itself into two
parts: How can we account for the initial expan-
sion in terms of the quantities with which we
have dealt so far, and to what physical agencies—
perhaps without the province of our previous
interest—can we attribute these intermediary
effects? To the first we can give a definite an-
swer, but with regard to the second we can only
indicate the partial attempts which have been
made to answer it. What, then, are the changes
in such quantities as pressure or density which
can cause a universe in equilibrium to begin to
expand? In its equilibrium state such an Einstein
universe is specified by a pressure p, and a
density p, which are related to the cosmological
constant A>0 and the radius R, by Egs. (5.2);
we think of these quantities as having these
constant values up to the time ¢=0, at which
time they begin to vary. For simplicity, we sup-
pose that they are continuous at =0 and that
for a sufficiently short time thereafter they may
be expanded in powers of t—although the validity
of the results is not dependent on this simpli-
fication. First, the Egs. (3.2) which govern their
behavior and the continuity condition require
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that at time =0 both R’ and R” vanish, and we
may therefor write the excess AR of R over R
in the form

AR=R(t)—Ro=At™+---  (10.1)

(plus terms of higher order), where n>0. On
substituting this expression for R into Egs. (3.2),
(3.4), (3.5), we find that the variation in p, p
and the quaritities derived from them accom-
panying such a variation in R are

Ap=—[64/kR I+,
Ap=—[2(n+1)(n+2) A /xR +- -,
Bpu=[6(n+1)(n+2)A/kc*RI"+- -,
AM=[6(n+1)(n+2)ReA/xcsTt"+ - -,
AE=—[3pRoATt™24 - --.

From this result we can conclude that if any
cause produces a diminution in the pressure or an
increase in the proper mass or density of matter,
the universe will begin to expand and in its
subsequent course will be of type A., and if on
the other hand these changes are of the opposite
sense it will begin to contract.®® By an elegant
method, the result of which includes the fore-
going as a special case, Lemaitre has examined
the effect of an instantaneous decrease of pressure
to zero and has found that the present state
would be attained in a period of time of the
order of 101*-10" years.

This last result requires a few words concerning
the time scale to which we are led by relativistic
cosmology. All of the universes of types other
than A, which have been investigated in detail
lead to times of the order of the foregoing since
the universe was in the singular state. Such a
time scale seems far too short for modern astro-
physics, according to which the ages of the stars
and the time required to reach the observed
degree of equipartition of energy may be of the
order of 10 years or more. Hence, unless we wish
to revise these estimates downward—perhaps on
the basis of an acceleration of the processes in-
volved at a time when the radius was less than
at present—or to admit that the radius has at
some comparatively recent time gone through

(10.2)

18 See bibliography, Lemaitre, 1931.5. See also Edding-
ton, 1930.1.

the singular or minimum state, we are forced to
accept the unique possibility A, which allows an
infinite time. But if we further require that
dp/dR =0, as indicated in the above, this infinity
is only a logarithmic one,® and the time which
has elapsed since the perturbation set in is apt
to be exceedingly short, as evidenced by Le-
maitre's result quoted above. Nevertheless we
can obtain as ample a time scale as we wish by
assuming sufficiently weak perturbations—and
we are thereby brought face to face with the
second question: What physical processes are
responsible for the initial disturbance?

It was suggested by Eddington that the
development of a condensation in the regular
distribution of matter might be responsible for
the initial impulse which started the expansion.
To test this hypothesis McCrea and McVittie®
undertook an investigation of the effect of one
or more spherically symmetric condensations of
mass m on the structure of a universe in equilib-
rium; however, they found that to terms of first
order in m the volume of space was unaltered by
the presence of such singularities—agreeing with
the conclusions of Lemaitre, who attacked the
problem from a somewhat different standpoint.5
Lemaitre then showed that although the mere
existence of such condensations could not account
for the expansion, a process which he calls
‘“stagnation,” and which he attributes to the
presence of condensations, causes a decrease in
pressure, whence in accordance with (10.2)
the universe will begin to expand. This stagna-
tion is the result of kinetic energy, which would
otherwise be free to wander through the uniform
world, being captured, thereby causing a decrease
in the pressure due to matter. Although his
specific analysis has been criticized severely by
McCrea and McVittie, their only pertinent
objection—that this diminution in pressure is in
fact a consequence of the formation of condensa-
tions—is partially answered on the ground that
the decrease in pressure to which Lemaitre refers
is a secondary effect which could not occur if it
were not for the existence of random motions.

4 To which Eddington, 1930.1 (see bibliography), ob-
jects on the ground that such infinities are usually found
illusory in physics.

 See bibliography, 1931.6; 1932.3.

#1 See bibliography, 1931.5.
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More recently McVittie® has carried his investi-
gations further, and concludes from them that
Jeans’ time scale for the formation of nebulae
can be reduced to one-quarter, bringing it nearer
to 10'° years.

Throughout this report we have emphasized
those universes of type A, which allow, at least
in principle, and indefinite time scale in the past
as well as in the future. However a recent
investigation by Lemaitre® of the problem of
the formation of condensations in a universe of
the type M, which began in the singular state
R=0 at a finite time in the past, is based on
the opinion that the relatively short time scale
to which such a universe leads is not necessarily
irreconcilable with modern astrophysics. This
investigation leads to the interesting conclusion
that whereas matter at a sufficient distance will
recede from the particular condensation in
question in much the same manner as in a
homogeneous universe of type M;, the nearer
matter will fall back into the condensation as in
a periodic universe of type O, thus contributing
to the formation of a nebula.

11. Summary

We conclude with a brief statement of the
results so far attained in the field of relativistic
cosmology, with emphasis on the assumptions
involved and on the relation of the observations
to the general theory. In the first place, we accept
the data, due primarily to Hubble and Shapley,
on the uniform distribution of matter in the large
within the visible universe, and extrapolate them
to the universe as a whole. In addition to this
uniformity of distribution, we accept the evi-
dence showing that the relative peculiar motions
of neighboring nebulae are extremely small com-
pared with the velocity of light and base upon
it an assumption, due in the first instance to
Weyl, which allows us to introduce a cosmic time
enabling us to speak in a significant manner of
simultaneity in the world at large. The assump-
tion concerning the uniform spatial density of
matter (and radiation) now allows us to con-
clude, on the basis of the general theory of
relativity and its precise formulation of Mach’s

© As presented by Professor Lemattre in a i in

P. ROBERTSON

principle, that the ideal background of the actual
universe is one in which the spaces ¢{=const. are
of constant Riemannian curvature and in which
the lines of parameter ¢ are the geodesics repre-
senting the mean motion of matter, as formulated
more precisely by (2.2).

We have thus arrived at a form for the struc-
ture of the universe as a whole without making
use of the empirical data concerning the red shift
observed in light from extra-galactic objects, except
insofar as we drew upon them to justify Weyl’s
postulate—which can, however, be made to
stand upon its own by @ priori reasoning accept-
able to many. That such a universe will in general
lead to a relation between distance and red shift,
which is linear over a sufficiently restricted
range, was a consequence of the previous work,
although from it alone we could gain no estimate
of the constant of proportionality.

Our survey of the possible types of universes
led to the conclusion that the only ones in which
the total pressure due to matter and radiation is
never negative and in which the universe is
never in the singular state R=0 (or its equivalent
in which E(R)= =) are those for which space is
finite and the cosmological constant greater than
zero. Under the additional physically plausible
assumption that the pressure does not increase
with the radius of the spherical (or elliptic)
space, we found among these a unique type E
(the Einstein universe) which is in equilibrium,
and a unique type A; which may be considered
as arising in this equilibrium state and allowing
an infinite time scale both in the past and in the
future; of these we considered in some detail the
case of Friedmann’s energy-conserving universes
discussed by Lemaitre and the corresponding
matter-conserving universe discussed by de
Sitter. On interpreting the observed relationship
between red shift and distance as that predicted
by the theory we found that in general the meager
time scale of the order of 10! years offered by all
other possibilities was against them, and that
even those of type A, were subject to a corre-
sponding—but in our opinion not necessarily
insuperable®—difficulty in that their infinite past
time was due to a logarithmic dependence
between time and the variation of the radius

Princeton University, November, 1932. To appear shortly
in Phys. Rev.

8 See bibliography, de Sitter, 1932.4, who seems also to
be of this opinion.
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from its equilibrium value. (If, as indicated by
Oort,"® Hubble's value (4.10) of the expansion
constant % is too large, the time scales allowed
by all types of universes will be correspondingly
increased.) We also indicated in brief the prog-
ress made by Eddington, Lemaitre and others
toward an explanation of the disruption of
equilibrium.

Itis clear from this summary that the existence
of the so-called velocity-distance relation formed
no essential part of the deduction, which was
based entirely on the evidence for the uniform
distribution and state of motion of matter in the
large, and on an acceptance of the general theory
of relativity in the form proposed by Einstein in
1917—in which the cosmological constant \ is
included. If we consider the observed red shift
as arising from the nature of space-time we find
in it additional evidence for the theory—and in
particular for an asymptotic universe of the type
A,. It is therefore clear that any alternative ex-
planation of the red shift (such as that proposed
by Zwicky,* who would attribute it to a gravi-
tational analogue of the Compton effect, or the
kinematical model proposed by Milne%) which
does not deny the general theory of relativity, is
forced on the basis of other evidence to choose
between one or another of the various types
covered in this report—among which is to be
counted the flat Minkowski space SE which
most nearly approaches the Newtonian cos-
mology. In giving this survey of cosmologies we
are convinced that the underlying theory forms
an integral part of the theory of relativity, and
that although the choice of a particular model
may for the present be influenced by the pre-
dilections of the individual, we can hope that the
future will reveal additional evidence to test its
validity and to lead us to a satisfying solution.

V. NotEs

A. Mathematical formulae

We place here for reference the explicit definitions of
various expressions employed in the text. Greek indices
u, v, etc., range from O to 3 and indices «, 8, etc., from

8 F. Zwicky, On the Red Shift of Speciral Lines through
Interstellar Space, Proc. Nat. Acad. Sci. 15, 773-779
(1929).

8 E. A. Milne, World Structure and the Expansion of the
Universe, Nature 130, 9-10 (1932).

1 to 3; repeated indices imply summation over their
range. g=|gu| <0, determinant of the coefficients g,,.
g*”=cofactor of g, in g divided by g itself. A*¥=g*"4,,
A,u=guwA”—any index may be raised with the aid of g+”
or lowered with g,.

v =}gar ?&_‘,_—_ag"_*_.ag“' .
uy x’ = 9xt  axT

et e

9gor guy 9gor gur
Ropvr =gapRitye = + -k
onr = BopRure =1 <ax“ ax’ 0x"0x™ 9xdxT ox"ox’

sa([LH0-CHN) o

(A.1)

dlogg
Ruy=Rio=
B Hvo ;ax“ax,‘
aJ al
el bR a
Ix7 v ua) {pv uvj O0x°
R=R,*=g"Ry,. (A.S5)

For the line element «lefined by (2.2), (2.3), we obtain
the following nonvanishing components:

{a}_{a}‘ {0}_RR’h.,g {a}_R'bp"
By By o8 e ' \os R

where the asterisk on the Christoffel symbol indicates
that is is to be computed from the coefficients kg of the
line element (2.3).

Ragys=— R2(k+R*[c?) (hayhps— hashpy),

(A.6)

(A7)
Roaog=RR"hap.
Rag=—[RR"42(kc*+ R Jhap/c?,
af [ ( J -] (A8)
Row=3R"[R.
R=6(RR"”+R"*+ke?) |R2c. (A.9)

B. Riemannian curvature. Spherical space

The Riemannian curvature of a three-dimensional space
Vs is a directional quantity which is defined in terms of the
more familiar total or Gaussian curvature of certain two-
dimensional sub-spaces V; as follows. We first recall the
definition of this latter; for this purpose consider the
family of plane curves which are obtained by cutting an
ordinary two-dimensional surface in three-dimensional
Euclidean space by the family of planes containing the
normal to a given point P on the surface. A curve of this
family will have a curvature 1/p at P, where p is the
radius of the osculating circle to the plane curve in question
at P; let 1/p;, 1/ps, denote its maximal and minimal
values. The total or Gaussian curvature of the surface at
the point P is then the product £(P)=1/p1p2 of these two
extremal values and is an intrinsic invariant, i.e., it is
unchanged on making an arbitrary deformation of the
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surface without tearing or stretching, and can be computed
from the coefficients of the line element and their first and
second derivatives at P.

Returning to the three-space V;, consider the surface
defined by all geodesics (curves in V; for which the integral
of ds between any two points on them is extremal) passing
through a given point P, whose directions at P lie in the
plane of directions

A%=ENT+ EaA® (B.1)

determined by the two vectors \,%, A\* at P. The Rie-
mannian curvature at P of the space V; in the two-spread
of directions \* is defined to be the Gaussian curvature
k=Ek(P, M, \) of the surface thus generated by the geo-
desics; it is given explicitly in terms of the coefficients hqg
of the line element of V; by*®

(&, &, arbitrary)

b= R‘uﬁﬂh“&" NS
(hayhgs— hashgy) M NPMTA?

(B.2)

where R%.gys is the Riemann-Christoffel tensor (A.3)
formed from the h.s. These results are immediately
applicable to spaces of a higher number of dimensions.

If the Riemannian curvature  is independent of direc-
tion the above allows us to conclude that

.aﬂ‘ﬂ = k(ha-yhﬁl - hathn)

and it can be shown that & must also be independent of
the point P (Schur’s theorem); in this case we speak of
the V; as having constant Riemannian curvature k. The
coordinates x* may be chosen in such a way that (2.3)
assumes the form

dut=(dx,*+dxs*+dx?) [(1+ kr*[4)*

(B.3)

(B.4)

where 7% is the sum of the squares of the coordinates.
For k=1/p*>0 (B.4) describes spherical space of radius p,
where the variables range from — « to + «; the total
volume of this space is readily found to be 2x** (where,
as always in differential geometry, the volume of the
elementary parallelopiped defined by the surfaces x*
=const., x*+dx*=const. is k¥dxdxidx,, where k is the
determinant of the coefficients of the line element du?).
The analogy with an ordinary sphere in Euclidean three-
space is strikingly brought out by considering spherical
space as the hyper-surface

uttut+ud+ud=p? (B.5)
in the Euclidean four-space whose line element is
dut =du+dust+dud +dug. (B.6)
On introducing the parametric representation
ua=x[(1472(4p?),  wi=p(1—r*/4p?)[(1+1*/4p%) (B.T)

in terms of the spatial coordinates x* we obtain from
(B.6) the line element (B.4) for spherical space of curvature

8¢ Cf. Eisenhart, Riemannian Geomelry, pp. 79-88, for
this and the following results.

k=1/p*. Another form for the line element of a space of
constant curvature 1/p? is

dut= p*(dx*+sin*xd6*+sin?x sin*d o*) (B.8)

where the coordinates vary over the range 0=x=r,
0=0=w, 0=¢ <2x; this elliptic space, which results from
spherical space on identifying antipodal points, has a
total volume of »*o%.

C. Groups of motions. Periodic and stationary universes

The theory of groups of automorphisms or motions of a
space into itself constitutes the natural mathematical tool
for the investigation of spaces characterized by a priors
symmetry conditions. As such, it is of particular value in
the theory of relativity, for in virtue of Mach’s principle
it enables us to interpret directly in terms of the line
element of space-time the effect of symmetry properties
in the material and energetic distribution which determines
the world geometry. Because of the lack of an adequate
discussion of this discipline and its applications in the
physical literature we have ventured to sketch briefly its
main features and to indicate the application of it to the
present problem.

Suppose that two points P, P of space-time are physically
equivalent in the sense that all intrinsic properties of the
world as viewed by an observer O at P are indistinguishable
from those as viewed by O at P. Then by Mach’s principle
this is tantamount to the assertion that the geometrical
structure of space-time is the same from the standpoint
of O as from the standpoint of O; the equivalence of P
and P is then expressed by the assertion that O can choose
a coordinate system x* in terms of which the new metric
is defined by coefficients g, (x) which are exactly the
same functions of the ¥* as the g,,(x) are of the original
coordinates x* : g,,(%) =g, (x). On employing the law of
transformation of the tensor g,, we conclude that the
equations

£or(X) (977 [3x*) (3%7 |9%") = 2ur(%) (C.1)
are to admit a solution x*=x*(x) which sends P into the
point P equivalent to it.

If we now assume that P can be reached from P by a
path consisting of points equivalent to P then the Egs.
(C.1) for an automorphism of the space on itself will
admit a solution

x=y¥(x, o) (C2)

containing a continuous parameter ¢, for some value—
say o =0—of which (C.2) becomes the identical transfor-
mation ¥*=x*. But these equations then obviously define
a one-parameter transformation group in the sense of Lie,

% For a more complete development of the theory see
chapter VI of Eisenhart’s Ri ian G tryand for ap-
plication to Schwarzschild’s problem of determining the
field of a spherically symmetric body see J. Eiesland, The
Group of Motions of an Einstein Space, Trans. Amer. Math.
Soc. 27, 213-245 (1925). The application of interest here
is an amplification of Robertson, 1929.2 (see bibliography)
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for if Py is equivalent to P and P to P, then P, is equivalent
to P. Denoting the infinrtesimal transformation belonging
to this group by 30

T =x44 .80, where e"(x)-[a—‘“—;:'—’)] , (CJ3)
e

the Egs. (C.1) for the automorphism become the equations
of Killing
3gur g, o

;g:ffr'*“Zna-x;'i'!nr'a;;-o- (C4)
So far as symmetry properties which are expressible by a
continuous transformation group are concerned we may
replace the finite Eqs. (C.1) by the linear homogeneous
Eqgs. (C.4) involving only the generators ¢ of the group
in addition to the g,,. Dropping for the moment the
restriction #=4 by allowing the indices to run through
the range 0, 1, 2, --+, n—1, the fundamental result is
that an n-space having the symmetry characterized by
the r-parameter group with generators £ (¥=1,2, -+, 1)
is such that the coefficients g, of its line element satisfy
the Egs. (C.4) for each of the £*. In particular, it can
be shown?®® with the aid of the conditions of integrability
of (C.4) that an n-space can have at most an [n(n—1)/2]-
parameter group of motions, and that such a space is of
constant Riemannian curvature k.

To return to space-time and the original problem of
determining the restrictions placed on (2.1) by the uni-
formity conditions discussed in the text, the equations of
Killing become

ag° T at®
= — — =0,
gun—-at 0, g, +Knoax¢ s
e, Ofap, O OET ’
a1 & o € et b 5=0.

Now the group which specifies the spatial isotropy and
homogeneity of space-time leaves ¢ unaltered (f=¢, whence
$=0) and involves six parameters, corresponding to the
equivalence of all =3 points in the three-space ¢=const.,
of all «? spatial directions about each point and of all «!
two-spreads of directions through each direction at each
point; Egs. (C.5) then require that each of the six gener-
ators £* be independent of ¢ and satisfy the fundamental
Eqs. (C.4) on restricting u, », 7 to the range 1, 2, 3. But
then the g.p(t, x) define a three-space which admits a
six-parameter group of motions, and in accordance with
the remarks above this three-space is consequently of
(spatially) constant Riemannian curvature k(). Now it
can furthermore be shown that this three-space must be
of the form

Zap(t, x)dx*dxP = — R¥(t)hap(x)dxdxP (C.6)

introduced in the text, as otherwise certain of the gener-
ators of the group would necessarily contain ¢, contrary
to the above. A rigorous and more elegant derivation of

8 Cf, Ei

hart, Ri ian Gi iry, p. 238.

this result, involving, however, more technical machinery
than that sketched in the foregoing, is due to Fubini.*?
The additional requirement that space-time be station-
ary is expressed by the requirement that there exist an
additional one-parameter group of motions for which #°
does not vanish and is at most a function of ¢. It can be
shown®® that (C.5) and their conditions of integrability
allows us to conclude that
R(t) =Roectlo, kla=0, (C.7)
from which the two cases (2.4), (2.5), follow immediately.
As a further example of the methods here employed we
derive, from a somewhat more elementary standpoint,
the restriction imposed on the line element (2.2) by the
condition that the structure of space-time be a periodic
function of cosmic time. This investigation, which includes
the above paragraph as the special case in which the
period r=0, is suggested by work of Tolman® which is
based on one of the possibilities obtained below. The
condition is expressed mathematically by the requirement
that there exist a transformation of the form
i=t+r, x*=%%t, x), (C.8)
which preserves the form of the line element; on replacing
I by ¢+ the terms in df* drop out, leaving us with the
equation
R+ 1)hap (%)d%°d%° = R} (Dhap(x)dx®daf.  (C.9)
But it is at once evident from the definitions (B.3), (A.3)
that the Riemannian curvature of the manifold defined
by the line element on the left is k/R*(¢+7), while the
curvature of the one defined by that on the right is k/R*(t);
hence we must have

k[R(t+7)— R} (t)]=0. (C.10)
Consequently, if k#0 we must have
R(t) = periodic function of ¢ with period », (C.11)

and the transformation x—x may be taken as the identity
—the case considered by Tolman. But we may alterna-
tively have k=0, in which case the space (2.3) is Euclidean,
and by a well-known theorem due to Liouville the only
transformations satisfying (C.9) are combinations of
translations and rotations with the dilatation

R(t+7)x*=R(t)x* (C.12)
where ¢ is considered as a parameter. But ¢ is actually
a space-time coordinate, and in order to avert the appear-

89 G. Fubini, Suglh spazii a quattro dimensioni che
ammetiono un gruppo continuo di movimenti, Ann. Mat.
pura appl. [3] 9, 33-90 (1904)—in particular, p. 64.

8¢ See bibliography, Robertson, 1929.2, p. 825. See
also reference to Fubini given in footnote 59 above, p. 83.

¢ See bibliography, 1931.10.
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ance in (C.9) of terms of the form dxd! we must have
R(t+7)=CR(t), or

R(t)=ectlsP(t), (C.13)
where P(t) is a periodic function of ¢ with period 7. These
two periodic possibilities (C.11) and (C.13) obviously
degenerate into the Einstein and de Sitter solutions on
setting 7=0.

D. Representation of space-time in five-dimensional flat
space. The Minkowski diagram

In order to obtain a graphical representation of the
general space-time (2.2), corresponding to the Minkowski
diagram of the special theory of relativity, we first show
that such a universe may be considered as a four-dimen-
sional surface in a flat five-dimensional space,—i.e., in a
space in which the coefficients of the line element may be
taken as constants. To this end we restrict ourselves for
the moment to the case k=<1 in which the auxiliary
metric (2.3) defines spherical space, which seems to be of
most physical interest, and make use of the formulae
(B.5)—-(B.7) for its representation as a surface in four-space.
On defining the five variables 8o, 24, %, as functions of
t, x* by

2= f (@+RMa,

where the #'s are defined by (B.7) for p=1, it is readily
shown that the line element (2.3) may be written

Za=Ru,, ze=Ru,, (D.1)

ds? =dz*— (dz*+dzs*+dzs* +d2d); (D.2)
space-time may therefore be considered as the hyper-
surface of revolution

22 +22 +3? 22 =R? (D.3)
in the five-dimensional z-space, where the R(¢) on the right
is to be thought of as a function of the distance s, along
the axis in virtue of the first of the Egs. (D.1).®? In par-
ticular the Einstein universe R=const. is represented by
a cylinder.

In order to obtain the two-dimensional representation
corresponding to the Minkowski diagram, we drop two of
the spatial dimensions by setting xs=x;=0; the kine-
matical background of this abbreviated space-time is then

the ordinary surface of revolution (Fig. 7)
22 +22=R[#(20) ] (D.4)

whose parametric representation in terms of the co-
ordinates ¢, x,=x is

- Mgy n=R—2 g =pEl
n=[@+Ra, = R *=Rgs ©9

The world lines of observers ‘‘at rest” at the distance
uR(t) apart are the intersections of this surface by meridian
planes through the z¢- or time axis and including an angle
% between them,

2 See bibliography, Robertson, 1929.2, p. 826.

Zs

world-lina of :

light \ ndbula

part icle obsarver

F16. 7. Minkowski diagram for general cosmologies & = +1.

The representation of spaces for which k= —1 is similar
to the one considered above—with the characteristic
difference that dz¢ now appears in (D.2) with a positive
sign. But we pass on to a brief statement of the corre-
sponding results for the remaining case k=0, whose
representation is surprisingly complicated compared with
the above. We may here set

2o=(R/2b)(b*+7%) +£(8),

Zq=Rx%, (D.6)
2= (R/2b)(#*—r*) —f(®)[ =bR—z0],
where
2bf()) =¢c* %‘; (D.7)

and b is an arbitrary constant which we take to be positive.
Space-time is then the hyper-surface

20*— (212 +22*+ 25 +2) = 2bRf,

where the function of ¢ on the right is to be considered as
a function of 2o+2.=>bR(f). In contrast with the previous

(D.8)
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case, space-time is represented by only a portion of this
surface, for we must have 2zo+2 greater than some non-
negative lower bound.

For the de Sitter universe (6.1) R=e¢‘/s, whence

2bf(t) = — a?/R(E).

This stationary universe is therefore represented by the
pseudo-sphere

(D.9)

—zi a2tz +al t2ld=a?, (D.10)

or parametrically in terms of the space-time parameters
t, x* by
zo=a sinh (ct/a)+ (r*/2a)ect/s,

2o =40, (D.11)

ze=a cosh (ct/a) — (r*/2a)ectls

on choosing b=a. The Minkowski diagram for the de
Sitter universe is obtained from this result on suppressing
two of the spatial coordinates by setting 2,=2;=0; it is
that part of the hyperboloid (D.10) of one sheet which
lies above the plane zo+2=0. This diagram is illustrated
in Fig. 2 and described in the accompanying text of §6;
the assertions there made concerning the relations existing
between various world lines can be obtained with the aid
of this representation.

E. Geodesics in space-time. Tolman’s and Whittaker’s
definition of distance

The Egs. (1.4), (1.5) are, in terms of the parameter %,

gx:+ a}'dxﬂdx*_ &s [ds_ 2dR\dx
dst ' \Bvy) du du \dw?/ du R du) du’
& RdAR d'sdt [ ds

@i e dt dwdu/ du

h.,‘k‘-"d"at (ii—’>’=c=<ﬂ>’—m (E.3)

au du du, du

(E.1)

where

On differentiating the second of Eqgs. (E.3) with respect
to # and eliminating d¢/du, d*t/du* by means of (E.2) and
(E.3) we find

d*s/dw? = (2/R)(ds/du)(dR/du), (E.4)
whence (E.1) assumes the form (4.1) and in addition
ds/du=~yR:. (E.5)

Eq. (4.3) is then obtained from (E.3) on eliminating
ds/du by means of (E.5).

The fact expressed by (4.1) that the spatial projection
of a geodesic—including that of a null-line which represents
the path of a beam of light— is itself a geodesic of the
auxiliary space (2.3) enables us to investigate with ease a
proposal due to Tolman and to Whittaker®® concerning a
definition of distance in space-time. Following the more
general point of view of the latter, we define the distance
@ of an event P from a world line L as proportional to the
square root of the normal area at the point of reception

8 See bibliography, Tolman, 1930.8; Whittaker, 1931.11.

on L of light emitted in an infinitesimal solid angle at P,
the constant of proportionality being so chosen that this
definition agrees with the ordinary one for small distances.
Since the projection onto the space (2.3) of the path of
light is a geodesic we need only compute the normal area
of a cone of geodesics at a point at distance % (as measured
by the metric (2.3)) from the vertex of the cone; the
product of the square root of this area into the function
R(t) computed at the time ¢ of reception is then propor-
tional to the distance d defined by Whittaker.

Considering in particular the case 2= -+1 in which (2.3)
defines spherical space of unit radius, % is the angular
distance between the points P’, L’ whose coordinates are
the spatial coordinates of P and the event on L which
represents the reception of light from P. Now by spherical
geometry the normal area at L’ of the infinitesimal cone
with vertex at P’ is proportional to sin?#u—as can be
readily seen by cutting the spherical space with a fixed
meridian plane, for the distance between the meridians on
the resulting two-dimensional sphere, which are generators
of the cone, is proportional to sin #. Hence d“~R(f) sin «,
and in order that this agree with the ordinary definition
of small distances the constant of proportionality must be
unity, as expressed in Eq. (4.12).

Obviously for the case k=0 we have

d=R(u,  (k=0),

agreeing with our (4.5), and a computation similar to that
above enables us to conclude that for k= —1

d=R(!) sinh %, (k=—1).

(E.6)

(E.7)

F. Tolman’s relativistic thermodynamics

In following up the problem of the entropy of the
universe as a whole, Tolman has recognized the desirability
of supplementing the accepted mechanical principles of
relativity, on which the development treated in the body
of this report is based, by an appropriate generalization
of thermodynamics. He has accordingly proposed a
covariant form of the second law of thermodynamics—
the first law being an adaptation of the conservation
equations (1.3)—and has in particular applied it both to
universes in static equilibrium and to cases of the more
general nonstationary cosmologies defined by the line
element (2.2).% Because of the importance of this problem,
having as it does a possible bearing on the origin of cosmic
radiation, we give here a summary of the, at first sight,
rather startling conclusions to which Tolman has been led;

“ Insofar as it relates to the general cosmologies covered
in this report Tolman’s work is contained in 1931.8-10,
1932.5; Tolman-Ward, 1932.6 (see bibliography). For a
statement of the general principles on which it is based
see R. C. Tolman, On the Use of the Entropy Principle in
General Relativity, Phys. Rev. [2] 35, 896-903 (1930);
R. C. Tolman and H. P. Robertson, Or the Interpretation
of Heat in Relativistic Thermodynamsics, to appear shortly
in Phys. Rev. For a general resumé and bibliography of
previous work (including applications to the static Einstein
cosmology) see Tolman 1931.8 (see bibliography).
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that we have chosen to present it in the unified form of a
brief note is motivated by the fact that in this way the
continuity of development of the purely mechanical aspects
of cosmology is not interrupted, and by the further fact
that a more extended and authoritative account will be
given soon by Tolman himself in the 1932 Gibbs’ lecture
Relativity and Thermodynamics.

The general covariant form of the second law of thermo-
dynamics for a thermodynamic fluid with velocity dx*/dr
states that the proper density of entropy go must satisfy
the condition

(9/0x*)[ po( —g)}(dx*/d7) JBZZ=dQo/To,  (F.1)

in which the equality holds for reversible processes; here
dQ, is the proper measure of the net heat flowing into the
space-time region dZ whose spatial boundaries share the
motion of the fluid at points on them, and T is the proper
temperature of the boundary. Because of the spatial
isotropy of the space-times considered in relativistic
cosmology dQo=0, and furthermore dx*/dr=(1, 0, 0, 0);
for such space-times the second law may therefore be
written in the form

3%/0t=0, where &= ¢,V (F.2)
is the proper entropy of that portion of the thermodynamic
fluid occupying a volume V'=R? whose coordinate volume
in the auxiliary space (2.3) is unity, in accordance with
the nomenclature of §3.

The first problem involving nonstationary cosmologies
to which Tolman has applied his principle is that of
determining whether a universe expanding or contracting
at a finite rate can do so reversibly, a possibility which is
suggested by the existence of periodic cosmologies of type
O on purely mechanical grounds, but which is apparently
in conflict with classical thermodynamics. With this in
view he has considered in detail, among others, a universe
filled with black-body radiation,® whose line element is of
the form (9.6) for k=1, and a universe containing an
equilibrium mixture of a perfect monatomic gas and
black-body radiation.® In each of these equilibrium cases
Tolman has been able to establish the reversibility from
the equation®”

d®=dE[To+(p/To)dV (F.3)
for the increase d® of entropy in a given portion of the
fluid; in fact, the first law, which here assumes the form
(3.6), guarantees the vanishing of d®.

More recently®® Tolman has turned his attention to the
investigation of universes in which irreversible processes
occur, and has arrived at the possibility of such irreversible
universes in which the entropy is not limited by an upper
bound nor the free energy by a lower bound; this reasoning

& See bibliography, 1931.8, p. 1653; 1931.10, p. 1767.

% See bibliography, 1931.9, p. 805; 1931.10, p. 1769.

¢7 See bibliography, 1931.9, Eq. (14), p. 803; see also
1932.5, Eq. (18), p. 327.

8 See bibliography, 1932.5.
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he has applied in detail to a universe with irreversible
annihilation of matter.®®

VI. BIBLIOGRAPHY

This bibliography contains only those articles whose
results have been incorporated into the unified account
given in the report. For convenience the full titles have
been given, together with a brief mention of the leading
points discussed.

1917

1. A. Finstein, Kosmologische Betrachtungen sur alige-
meinen Relativititstheorie, S.-B. preuss. Akad. Wiss.
1917, 142-152. Introduction of cosmological constant.
Original treatment of Einstein static universe.

2. W. de Sitter, On the Relativity of Inertia. Remarks
Concerning Einstein's Latest Hypothesis, Proc. Akad.
Wetensch. Amsterdam 19, 1217-1225. Original treat-
ment of de Sitter world.

, On Einstein's Theory of Gravitation, and its
Astronomical Consequences I1I, Monthly Not. Roy.
Astron. Soc. 78, 3-28. Includes account of original
treatment of de Sitter universe.

1922
1. A. Friedmann, Uber die Kriimmung des Raumes, Zeits.
f. Physik 10, 377-386. Finds line element (2.2) for
k=41 and discusses cases in which energy is con-
served.
2. K. Lanczos, Bemerkung zur de Sitterschen Welt, Phys.
Zeits. 23, 539-543. Contains derivation of non-
stationary form for k= -1.

1923

1. K. Lanczos, Uber die Rotverschicbung in der de Sitter-
schen Welt, Zeits. f. Physik 17, 168-189. Elimination
of “‘mass horizon" and discussion of red shift in non-
stationary form k= +1.

2. H. Weyl, Zur allgemeinen Relativitiistheorie, Phys.
Zeits. 24, 230-232. Geometrical discussion of de Sitter
universe. Introduction of postulate concerning co-
herency of matter and deduction of linear velocity-
distance relationship.

1924
1. A. Friedmann, Uber die Moglichkeit einer Welt mit
konstanter negativer Kr g des R Zeits. f.

Physik 21, 326-332. Extends 1922.1 to cases in which
k=—1.

1925
1. G. Lemaitre, Note on de Sitter’s Unsverse, J. Math. and
Physics (M.I.T.) 4, 188-192. Derivation and dis-
cussion of stationary form.
1926

1. E. P. Hubble, Extra-galactic Nebulae, Astrophys. J.
64, 321-369. Survey of these objects establishing their
uniform distribution in visible portion of universe.

# See bibliography, 1932.5, p. 334.



RELATIVISTIC COSMOLOGY 89

1927

1. G. Lemaitre, Un Unsvers Homogeéne de Masse Constante
et de Rayon Croissant, Rendant Compte de la Vitesse
Radiale de Nébuleuses Extra-galactiques, Ann. Soc. Sci.
Bruxelles 47A, 49-59. Writes down line element (2.2)
for k=1 and obtains condition (9.1) for conservation
of mass. Detailed analysis Friedmann world for k=1,
A=)y, Ro>R, (Translation in Monthly Not. Roy.
Astron. Soc. 91, 483490 (1931).)

1928

1. H. P. Robertson, On Relativistic Cosmology, Phil. Mag.
[7] 5, 835-848. Discussion of stationary form of de
Sitter universe in coordinates employed by Lemaitre,
1925.1.

1929

1. E. P. Hubble, 4 Relaiion between Distance and Radial
Velocity among Extra-galactic Nebulae, Proc. Nat.
Acad. Sci. 15, 168-173. The empirical relationship
deduced from observational data.

2. H. P. Robertson, On the Foundations of Relativistic
Cosmology, Proc. Nat. Acad. Sci. 15, 822-829. Deri-
vation of most general line element by symmetry
properties. Embedment in five-space.

3. R. C. Tolman, On the Possible Line Elements for the
Universe, Proc. Nat. Acad. Sci. 15, 297-304. Con-
cludes Einstein and de Sitter worlds only possible
static spherical symmetric ones.

1930

1. A. S. Eddington, On the Instability of Einstein's
Spherical World, Monthly Not. Roy. Astron. Soc.
90, 668-678. Proof of instability and discussion of
Lemaitre, 1927.1.

2. G. Lemaitre, On the Random Motion of Material
Particles in the Expanding Universe. Explanation of
a Paradox, Bull. Astron. Inst. Netherlands S, No. 200,
273-274. Universe of constant mass for k= +1 when
random motions are taken into account.

3. W. de Sitter, The Expanding Universe. Discussion of
Lemadtre’s Solution of the Equations of the Inertial
Field, Bull. Astron. Inst. Netherlands 5, No. 193,
211-218. Universes of constant mass for k=1, A>0.
Effect of annihilation of matter. Geodesics.

4. ——, Further Remarks on the Astronomical Consequences
of the Theory of the Expanding Universe, Bull. Astron.
Inst. Netherlands 5, No. 200, 274-276. Modification
of 1930.3 in view of Lemaitre, 1930.2. Effect of
expansion on gravitational field of material bodies.

5. ——, On the Distances and Radial Velocities of Exira-
galactic Nebulae, and the Explanation of the Latter by
the Relativity Theory of Inertia, Proc. Nat. Acad. Sci.
16, 474-488. Universe of constant mass for k=1,
A>0. Discussion of case A=)\, of type A,.

6. R. C. Tolman, Tke Effect of the Annihilation of Matier
on the Wave-Length of Light from the Nebulae, Proc.
Nat. Acad. Sci. 16, 320-337. Derivation of (2.2) for
k=1. Effect of annihilation of matter based on model
R=exp (kt).

7. » More Complete Discussion of the Time Dependence
of the Non-static Line Element for the Universe, Proc.
Nat. Acad. Sci. 16, 409-420. Effect of first three
terms in expansion of R on logarithmic decrement of
mass.

8. ——, On the Estimation of Distances in a Curved
Universe with a Non-static Line Element, Proc. Nat.
Acad. Sci. 16, 511-520. Doppler effect. Effect of
distance on luminosity; results in modification of
definition of distance.

9. ——, Discussion of Various Treatments which Have
Been Given to the Non-static Line Element for the
Universe, Proc. Nat. Acad. Sci. 16, 582-594. Com-
parative résumé of previous work.

10. H. Weyl, Redshift and Relativistic Cosmology, Phil.
Mag. [7]9, 936-943. Restatement of 1923.2 in coordi-
nates employed by Lemaitre, 1925.1, and Robertson,
1928.1.

1931

1. A. Einstein, Zum kosmologischen Problem der allgemeinen
Relalivititstheorie, S.-B. preuss. Akad. Wiss. 1931, 235-
237. Discussion of case k=1, A=0, p=0. Expresses
preference for A=0.

2. 0. Heckmann, Uber die Metrik des sich ausdehnenden
Universums, Nachr. Ges. Wiss. Gottingen 1931, 127-
130. Suggests space may have zero or negative curva-
ture (but see Friedmann, 1924.1; Robertson, 1929.2).
Influence of random motion of matter on line element.

3. E. P. Hubble and M. L. Humason, The Velocity-
Distance Relation among Extra-galactic Nebulae,
Astrophys. J. 74, 43-80. Empirical. Finds shift
attributable to velocity of 558 km/sec. for every
10® parsecs.

4. M. von Laue, Die Lichifortpflanzung in Riumen mit
zeitlich verinderlicher Krii g nach der allgemes
Relativititstheorie, S.-B. preuss. Akad. Wiss. 1931,
123-131. Wave, as opposed to geometrical, optics in
such spaces.

5. G. Lemaitre, The Expanding Universe, Monthly Not.
Roy. Astron. Soc. 91, 490-501. Finds condensations
do not affect radius of universe in equilibrium (con-
trary to previous results of McCrea and McVittie—
see 1931.6), but that a process of energy transfer
(stagnation) does.

6. W. H. McCrea and G. C. McVittie, The Expanding
Universe, Monthly Not. Roy. Astron. Soc. 92, 7-12.
Corrections to previous papers. Criticism of Lemaitre,
1931.5.

7. W. de Sitter, Some Further Compuiations Regarding
Non-static Universes, Bull. Astron. Inst. Netherlands
6, No. 223, 141-145. Universes of constant mass for
k=1, \ arbitrary.

8. R. C. Tolman, On the Problem of the Entropy of the
Universe as a Whole, Phys. Rev. [2] 37, 1639-1660.
Generalized second law of thermodynamics and
detailed application to universe filled with isotropic
radiation.

, Non-static Model of Universe with Reversible

Annihilation of Matter, Phys. Rev. [2] 38, 797-814.
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Detailed application of relativistic thermodynamics
to universe consisting of monatomic gas in equilibrium
with black-body radiation.

10. , On the Theoretical Requirements for a Periodic
Behavior of the Universe, Phys. Rev. [2]38, 1758-1771.
Non-existence of strictly periodic reversible universes
(between nonzero limits). Quasi-periodic solutions of
Einstein (p, A=0), universe filled with radiation
alone, universe with radiation and matter in equi-
librium.

11. E. T. Whittaker, On the Definition of Distance in
Curved Space, and the Displacement of the Spectral
Lines of Distant Sources, Proc. Roy. London 133A,
93-105. Definition of distance in accordance with
astronomical usage (cf. Tolman, 1930.8). Application
to de Sitter universe in Cayley-Klein coordinates.

12. J. H. Oort, Some Problems Concerning the Distribution
of Luminosities and Peculiar Velocities of Exira-
galactic Nebulae, Bull. Astron. Institute Netherlands
6, No. 226, 155-160. Disagrees with certain conclu-
sions of Hubble and Humason 1931.3, and obtains
tentative value of & half as large.

1932

1. A. Einstein and W. de Sitter, On the Relation between
the Expansion and the Mean Density of the Universe,
Proc. Nat. Acad. Sci. 18, 213-214. Discussion of
case k=0, \=0, p=0.

2. 0. Heckmann, Die Ausdehnung der Welt in ihrer
Abhingigkeit von der Zeit, Nachr. Ges. Wiss. Gottingen
1932, 97-106. Plots all types of universes in which
matter and radiation do not interact.

3. G. C. McVittie, Condensations in an Expanding
Universe, Monthly Not. Roy. Astron. Soc. 92, 500-
518. Effect of condensation on radius. Revision of
Jeans’ work on condensation of matter into nebulae.

4. W. de Sitter, On the Expanding Universe, Proc. Akad.
Wetensch. Amsterdam 35, 596-607. Analysis and
classification of all of Friedmann's worlds p=0.

5. R. C. Tolman, Possibilities in Relativistic Thermo-
dynamics for Irreversible Pr Without Exhausti
of Free Energy, Phys. Rev. [2] 39, 320-336. Estab-
lishes possibility of universe in which reversible
processes take place without energy reaching a
maximum or free energy a minimum.

and M. Ward, On the Behavior of Non-static
Models of the Universe when the Cosmological Term is
Omitted, Phys. Rev. [2] 39, 835-843. Proves that
universe for k=1, A=0, $=0 is of type O.

7. H. Shapley and A. Ames, A Survey of the External
Galaxies Brighter than the Thirteenth Magnitude, Ann.
Astron. Obs. Harvard 88, No. 2, 43-75.

For a general non-technical view of the field covered
more thoroughly in this report the following accounts are
to be recommended:

A. S. Eddington, The Expanding Universe, Proc. Phys.
Soc. London 44, 1-16 (1932).

E. P. Hubble, The Exploration of Space, The 1931 Vanuxem
Lectures, delivered at Princeton University (to be
published by Princeton University Press).

G. Lemaitre, La Grandeur de I'Espace, Rev. d. Quest.
Scientifiques, March 1929; L'Expansion de I'Espace,
do. November 1932,

H. P. Robertson, The Expanding Universe, Science 76,
221-226 (1932).

J. H. Reynolds, Physical and Observational Evidence for
the Expanding Universe, Nature 130, 458-462 (1932).

W. de Sitter, The Expanding Universe, Scientia 49, 1-10
(1931). German translation available in Naturwiss.
19, 365-369 (1931).

R. C. Tolman, Models of the Physical Universe, Science 75,
367-373 (1932).



