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T is well known that there are four methods of
x-ray analysis of crystal structures: (1) the
spot method of von Laue,! (2) the powder method
of Debye-Scherrer? and Hull,? (3) the ionization
spectrometer method of the Braggs,* (4) the
rotating (oscillating) crystal method of Seemann,’
Schiebold® and Polanyi.”

I. THEORETICAL CONSIDERATIONS

The first adequate theoretical attempt to ac-
count for the intensity of x-ray reflection was
given by Darwin® in a series of three papers. In
his second paper Darwin allows for the mutual
reactions of the scattering atoms. In his third
paper he handles the matter of extinction, experi-

mentally encountered by Bragg, James and
Bosanquet.? Darwin distinguishes between pri-
mary and secondary extinction, primary extinc-
tion “‘consisting in the reduction of the beam
reflected from a perfect crystal owing to the
defect in the radiation reaching its lower layers,”
and secondary extinction ‘‘consisting in the re-
duction in intensity of the transmitted beam on
emerging from the lower side of a small crystal
in which some reflection has taken place,” to
quote Darwin’s original wording in each case.
He states that the methods used by Bragg,
James and Bosanquet removed the secondary
extinction but didn’t touch the primary extinc-
tion. However, Havighurst!® found it necessary
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to apply their correction for secondary extinction
to their results for rocksalt to get agreement with
his own best (Sample 3) results. He states that
when the crystal particles become as small as 102
to 10~? cm in size, secondary extinction becomes
negligible but that primary extinction remains
appreciable until the size of the perfect crystal
blocks becomes less than 5X10~® cm.

This figure is derived from the correction factor
worked out by Darwin for primary extinction,
viz.,

tanh [(2Qd? cot 6)/\ ]}
yoglmleertany
[(2Qd? cot 6) /A T}

the coefficient of Q on the right-hand side being
almost equal to unity only for crystals smaller
than 5X10~° cm when rhodium rays are used, d
being the crystal thickness.

Now there has never been any satisfactory
testing of this or other extinction formulas al-
though it is known that the errors due to ignoring
the effects of extinction are large. It has already
been mentioned that Bragg, James and Bosan-
quet corrected their results on rocksalt for sec-
ondary extinction but Havighurst found that
the correction for secondary extinction applied
by James and Randall'®* did not bring their
results for fluorite into agreement with his own.
Havighurst showed moreover that both primary
and secondary extinction are eliminated for very
finely powdered crystals and it is this fact that
up to date has rendered the powder method
alone the only true precision method. For this
reason the intensity formulas for the powder
method are discussed in this survey. Much fur-
ther investigation is sorely needed, especially for
crystals containing atoms of large atomic number
before one is safe in saying that there is no error
due to primary extinction for very finely divided
crystals.

II. INTENSITY FORMULA FOR THE POWDER
METHOD

1. Polarization factor

The question of the polarization of the x-rays
emitted by the anticathode of an x-ray tube has
never been adequately investigated as a function
of the hardness of the rays emitted, as a function
of the direction of the rays coming from the anti-
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cathode, though a good deal of work has been
done. However, the work of Bearden'® and of
Wollan'® seems conclusively to prove that the
characteristic rays, at least, are unpolarized. In
discussing the scattering of x-rays by matter it
is customary to assume the primary rays as
unpolarized and various experimenters!! have
found good agreement between their results and
the classical theory of scattering, first worked out
by Sir J. J. Thomson,”* whereby the factor
4$(14cos?26) has come to be known as the
Thomson polarization factor. This factor is read-
ily determined in the following way. If E is the
electric force in the primary x-ray making an
angle ¢ with the face of a crystal, the electric
force making an angle ¢ with the positive x-axis,
the energy in the secondary beam would be pro-
portional to

E? sin? ¢+ E? cos? ¢ cos? 20 = E2(1 —cos? ¢ sin? 26)

and the total energy of the secondary beam is
proportional to f3**(1—cos® ¢ sin? 26)dé that is
proportional to }(14cos?26). Putting this in
another way one can say that an unpolarized
ray can be said to have two equal unit electric
vectors each of amplitude 3(2)!. (Fig. 1.)

FiG. 1.

At the point P the horizontal vector is acting
with full effect but the vertical vector V has
only the component 4(2)t-cos 20 effective, for it
is known that an electric doublet radiates zero
energy in a direction parallel to the axis of the
doublet. The intensity at P which is proportional
to the square of the amplitude thus has the value
4$(14-cos® 26). There is no distinction between
the various methods of analysis as to this factor;
hence it is common to all methods.
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2. Lorentz factor

A second factor upon which the reflection
intensity depends is the so-called Lorentz factor.
This arises from the fact that in the various
methods of crystal analysis (except those where
the primary beam consists of a strictly mono-
chromatic beam such as one gets after reflection
from a single crystal such as calcite) the primary
beam is not strictly monochromatic, nor is the
beam a parallel one but generally divergent.

Suppose a primary beam of x-rays makes the
angles ag, 8o, 7o with the three axes of a crystal,
such that one can say that the three edges a, b, ¢
of the unit lattice of the crystal constitute a
volume grating with the spacings a, b, ¢ in the
three directions of the axes. Then if one considers
the secondary beam as having the direction «, 8,
~ with the crystal axes it is well known that the
v. Laue relations hold

a(cos a—cos ag) =h\
b(cos B—cos Bo) =kN [, (2)

¢(cos y—cos vo) = I\

where k, k, | are whole numbers, the so-called
Miller indices.

Now in the differential equation for spherical
waves, v1z.,

*u %u ’u u

(o),

e ax? 9y* 92?
the solution is

u=(A/r) cos (o'r—wt)=(4/7r) cos (r/N—1t/7),

3)

where
rP=x+y'+22 and =00’ =N/72=)"/)?
with

v=w/2r=1/N and V=w/2x=1/r.

The various points of the volume grating are
given by their position vectors

nw=M+ub+vc A\ pxv=01,- -, m—1). (4)
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For the sake of clearness, thinking in two
dimensions only, as drawn in Fig. 2, one sees
at once

fxu=’—(’lu'e) =r—)‘(a-e)—p(b-e),

where e is a unit vector drawn in the direction
of the secondary ray and each parenthesis repre-
sents the scalar product of the two vectors within
it. But the angle between a and e is a, between
b and e it is 8 and between ¢ and e it is v. Hence
for three dimensions one can write at once

P =7—(Drwr-€)

=r—XNa-e)—u(b-e)—v(c-e) (5)

=r—\a cos a—pb cos B—vc cos v

If, now, again for the sake of clearness, one
thinks of a linear grating with the grating space
a (Fig. 3) one sees from the figure that ro=7,
n=r—d, -+, ra=r—nd where d=a cos a. If now
the waves sent out by all the points of the grating
have the same amplitude and the same phase
then the resultant solution is given by the super-
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position of waves indicated by the equation

m—1 m—1
u= Z A.el'(u'rg—wl) =A‘i(u'r—ﬂl)z e—l'«"uf
0 0
. (6
1—giemd
=Aeito'r—aty
p—

The conjugate complex quantity # is given by

]
-

m—lm'~1m’’—1

u=

-M

Z Ax“,ei(v’q‘,wl) = Aeiw'r—ut) Z Z Z g’ (Aa cos a+ub cos B+rc cos v)
0
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1—glu'md
=Aeiwr-wt),
1—giwd
and the product of these two gives
—2 cos w'md 0 sin? (w'md/2)
7 sint (0'd)2)

Generalizing these equations to three dimen-
sions we have at once

2
Jul=ar
2—2cosw'd

™

m—lm’—1m’’—1

@®)

0 0 [

But the triple summation is resolvable into separate fractions, e.g.,

m—1

Z e—tw'h\acosa— (l — p—iw’ma cos a)/(l — g—’a cos a)'.

0

Carrying through the numerical work to get
|%|? for the three dimensional grating we get

sin® mx sin? my sin? msz

ul?=A? , 9
lul sin?x sin’y sin’z ©)
where
x=(7a/N\)(cos a—cos aj),
y=(xb/N)(cos B—cos f),
and

2= (xc/\)(cos ¥ —cos ¥o),
M being the wave-length of the radiation used.

—L—

r’f‘ﬁ{o

fs

fr

F1¢. 3.

This expression is a maximum if the v. Laue
relations (Egs. (2)) hold, and equal to A*(mm'm'’),

since
f f | %|*dxdydz = A*mm'm"’

if x=h, y=Fk and z=I. Now this triple integral
can be resolved into three separate single inte-
grals each of which plots in general as sharp
maxima as shown in Fig. 4. So long as only one
maximum occurs within the limits of integration
it is a matter of small moment what the limits
are and they may conveniently be chosen as 4.
Then we have

(10)

+4
(sin? mwxx/sin® xx) =m.
=]
Now from Eq. (10) it follows that the intensity
is proportional to the number mm’m’’ of radiated
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atoms. It should increase with the thickness of
radiated material but within the crystal the rays
suffer absorption which is greater the greater the
thickness. This so-called absorption factor will
be discussed shortly.

Since the differential dxdydz has no direct
physical meaning the |« |? integral does not rep-
resent the integrated intensity. Rather it is the
differential of afyagBoyor connected as above with
x, ¥, z that does that; but because of the inter-
connection between «, 8 and ¥ only five instead of
seven quantities are needed. Thus the integrated
intensity becomes I=J/|u|*dadBdandfudN. If,
however, we allow only three of the variables to
vary at one time we can write

I=f|u|’dxdydz=fFluI’dudvdw, (1)

where F is the functional determinant belong-
ing to the transformation of variables.f By
geometrical considerations we proceed to cal-
culate this determinant. Introduce the vector
r=ua*+vb*+wc* where a*, b*, c* are the edges
of the reciprocal lattice and related to the edges
of the customary space lattice by means of the
equation

dV = (a*[b*c*])dudvdw =dudvdw/(a[bc]). (12)

We can consider this volume element in an-
other way by first considering the vector

r=y(\r) =»(e—ey) (Fig. 5), (13)

getting a volume element by variation. Now we
can make either » variable or e or .. By varying
» we can obtain the total energy in the element
of solid angle dQ. Varying e, means the primary
beam is polychromatic making an element dw of
a light cone. Now we can keep €, constant and
think of the crystal (or the reciprocal grating)
as being rotated through the solid angle dw.

We must now distinguish two cases of prac-
tical importance.

First, we can make e vary through the solid
angle dQ2 and we can vary \ by the amount @\, »
changing to »’ = y+dv. Representing d2 in Fig. 5
between the unit vectors e; and e; we keep A
constant and call the vector E.E,, closing the
triangle with sides e, and e,, Ar. If we multiply

tSee M. Laue, Enz. d. Math. Wiss. Vol. 5, Wellen-
optik.
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this vector by v=AE,=AP,=AP; we get the
vector EqP =r whose end points lie on the cone
of radius ». The surface area over which the
point P can play is accordingly »*dQ. If now we
vary A by the amount d\ then the region P,P,
goes over into Py’ Py’ lying on a cone of radius »’.
Thus the point P describes the element of volume
dV given by the product of the surface element
v?dQ and the height FP,'. Now in the right-angled
triangle FP;P,’, P, Py’ = EoEadv =2sinfdv since the
angle FP,P,’=0. Then FP,'=2sin?60dv giving
dV =2:*sin? 6dvdQ. But from Eq. (13) we get
r=2v sin 0 since e —eo=2 sin 6 giving

dV=4rdvdQ. (14)
By comparing (12) and (14) we get
dvdQ = 2dudvdw/r*a[bc)). (14a)

Calling the intensity I integrated over dv and
dQ we get from (11)

1= [2/beD] [ (ult/rdudud. (15)

Here the subscript L refers to the Laue method
using white radiation. This integral can be sim-
plified by replacing * by (4 sin®8)/A\* and re-
membering (10). Thus we get

Almm'm'’ 24mm'm'' @*

I,= = (16)
2(a[bc]) sin?@  n*(a[bc])
because of the Bragg relation
n\=2d sin 6. (17)
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The factor A\?/2 sin? @ can be called the white or
polychromatic Lorentz factor. Thus the inten-
sity in the Laue spot method, using white radia-
tion, varies inversely as the square of the order
of interference. It is greater, too, the smaller the
indices of the plane considered since

d=1/In| (18)
|h|=|ha*+kb*+ic*|. 19)

This polychromatic Lorentz factor was first given
by Professor Lorentz to his classes, it appearing
in the literature first as an addendum to the
paper of Professor Debye on his temperature
factor for intensities.*

Second, we can vary e by the angle 2d6 and
the position of the crystal by the solid angle dw.
Thus in Fig. 6 the end point of the vector r

where

FiG. 6.

describes the line element P,P,. If the crystal is
rotated through the solid angle dw then PP,
describes in the space of the reciprocal grating
a volume element dV given by the product
of the surface r’dw by the corresponding height
EyP;—E.P,=dr. Now by differentiating the
equation Az =2 sin 6 we get Adr =2 cos 648 whence

dV =r¥drdw= (27" cos 8d6dw)/\.  (20)
* Debye, Ann. d. Physik 43, 93 (1913-14).
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By comparing (12) with (20) we get
Nudvdw b
= = d v
r?cos §(a[bc]) 2cosd

because of (14a).
If we call the corresponding intensity factor
Ip (D=Debye) then we have

A Almm'm''\3

I = .
"2 cos 8 4(a[bc]) sin? @ cos 6

2d0dw

Q,

ID=

(1)

This factor is known as the monochromatic
Lorentz factor and was first given by Debye and
Scherrer,* and it is stated that the proof of the
formula would be given later. This monochro-
matic Lorentz factor obviously applies to the
powder method where the sample is rotated,
filtered rays being used. For a given substance
since the wave-length is held constant one can say
that the Lorentz factor for the powder method
varies inversely as 2 sin?# cos 6=sin 26 sin 6,
the usual expression found in the literature. The
discussion of these two important cases for the
Lorentz factor is taken more or less bodily from
Schleede and Schneider's Rintgenspekiroskopie
und Kristallstrukturanalyse.t This two volume
work is one of the best published on the whole
field of crystal structure work by means of x-rays.

Darwin in his third paper} shows for a single
crystal that the Lorentz factor is proportional
to csc 20 as does Professor Compton (X-Rays
and Electrons, p. 125). For a thick plate of
powdered crystals Compton shows (p. 130) it
proportional to csc 26 csc 8, the expression used
by Havighurst.|| This is in agreement with (21).
It is obvious that this same expression holds for
cylindrical rods of powdered crystals, provided
there is no “preferred orientation” of the crystals
such as always comes from forcing the powdered
crystals through a die.

It is important for the reader to get the sig-
nificance of the distinctions developed in the two
cases of the Lorentz factor. In the first case the
frequency or wave-length was varied, while in
the second it was not. Again, in the first method

* Debye and Scherrer, Phys. Zeits. 19, 481 (1918).

t Vol. II, 240-244 (1929), Walter de Gruyter & Co.,
Berlin and Leipsig.

{ Darwin, Phil. Mag. 43, 808 (1922).

|| Havighurst, Phys. Rev. 28, 873 (1926).
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the change in direction is through a solid angle
and the wave-length variable, thus this case
applies directly to the Laue method for single
crystals. On the other hand, in the second case
the direction changes through a plane angle
(oscillation or rotation of the powder sample)
and the crystal through a solid angle (random
orientation of all the very small crystals making
up the powder). Hence this second case should
cover the practice of modern powder methods,
whether briquets or rods of finely powdered
crystals are used.

3. Temperature factor

A third factor upon which the powder and
other methods depend is the so-called Debye
temperature factor. It is obvious from general
considerations of molecular and atomic agitation
due to heat that the atoms in a crystal lattice
vibrate about their equilibrium positions. As the
vibrations increase in intensity with temperature
rise the chance for x-ray interferences is propor-
tionately lessened, the clearness of these inter-
ferences for all methods of analysis decreases,
becoming zero when a sufficiently high tempera-
ture is reached.

The influence of temperature upon x-ray reflec-
tion has been handled theoretically by Debye,
v. Laue,* Darwin,”® Schrédinger,’* Faxen,!’
Brillouin'® and Waller.!* In the literature com-
parison between theory and experiment has been
largely made with the theory as formulated by
Debye and some of the experiments seem to
agree best with the modification he made to
include the case of the zero-point energy being
other than zero. Other experiments seem to sup-
port the theory where the zero point energy is
taken to be zero.

In his earlier papers Debye supposed each
atom to be bound by a quasi-elastic force to a
position of equilibrium at one of the lattice-
points of the crystal. Heat motion displaces the
atom from its equilibrium position. Were all the
displacements at any time known the effect on
the intensity of the beam of x-rays diffracted in
any direction could be calculated. By carrying
through the calculation for a given configuration,
multiplying the intensity factor so obtained by
the probability of occurrence of the configuration,
and then summing for all possible configurations,
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Debye obtained a value for the mean intensity
in a given direction. Maxwell’s distribution law
was applied in getting the probability of a given
set of displacements. Thus he showed the inten-
sity of the beam in any direction consisted of two
parts, the incoherent (or Compton) scattering
and the coherent part or interference maxima.
Increased temperature tends to increase the
scattered radiation and to decrease the intensity
of the interference maxima. In his earlier papers
Debye showed that the intensity of the scat-
tered radiation contained a temperature factor
1 —e16e T ein? )i while that of the interfer-
ence maxima contained the temperature factor
e(16rk T sin? 0)/f where T is the absolute tempera-
ture, k the gas constant, f the quasi-elastic force
per unit displacement of the atom, and 26 the
angle between the incident and diffracted beams.

But the useof the Maxwell-Boltzmann distribu-
tion law is equivalent to assuming that the dis-
placements of the atoms are all independent,
which is not true. For the atoms are bound one
to another rather than to a fixed position of
equilibrium and the displacement of one disturbs
those of neighboring atoms. Born and Karman?®
showed in 1913 that the heat motions of the
atoms in a crystal may be considered as a series
of “elastic waves.” So Debye in his last paper
recalculated the influence of heat motion on the
interference maxima on the basis of quantum
theory.

Debye shows, if zero point energy be assumed,
that the influence of temperature is to introduce
the factor e2Mt into the intensity formula for
x-ray interferences, where M is given by the
equation

6h? sin”){'p(x) 1}' )

mk® N\ 4

where m is the mass of the atom, & is Planck’s
constant, k the gas constant and © the so-called
characteristic temperature, equal to kv./k where
vm is the maximum frequency of the elastic
spectrum, A\ being the wave-length and 6 the
glancing angle. In (22)

#(x)/x=(1/2) Sy £dt/(et~1)]

and x is the ratio of the characteristic tempera-
ture of the crystal to its actual temperature,

t Corrected by Waller, Zeits. f. Physik 17, 406 (1923).

x
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expressed in degrees absolute. Debye shows that
x x* o x x8

+ +
4 36 3600 211680 10886400

| E
T

¢(x)=1

holds for small values of x and

=1 1 1 1
d(x) =— ——e'“‘(l +—) ——e"’(—-+—)
6 x x. 2 4x

1 1

- 843(_+_ —_—
3 9

holds for large values of x. He gives the following

table, Table I, connecting x and ¢(x).

TaBLE I,

x (%) E ¢(x) x  ¢x) «x #(x)
0 1 1.2 0740 3 0483 9 0.183
02 0951 14 0704 4 038 10 0.164
04 0904 16 0669 5 0321 12 0.137
06 0860 18 0637 6 0271 14 0.114
08 0818 20 0607 7 0234 16 0.103
10 0778 25 0540 8 0205 20 0.0822

Now from the Bragg relation, n\=2d sin 6,
one sees that in the expression for M one can
substitute n/2d and since % is fixed for a given
face and d is fixed at a definite temperature it is
obvious that the Debye temperature factor is
independent of A\, the wave-length of x-rays
used. This is to be expected, of course, from the
fundamental principles of heat agitation.

Debye has plotted both ¢(x) /x and (¢(x)/x) +1}
against 1/x=7/0. The results are shown in

7

/ ’

/ s /
o // /

y
72 ’
481
'/, Ve 4
a4
s / 4
s /
7 / 4
7
7
—1 / 2 f‘
z / 4
, / s
’
s /] I
a/ = -
//
. /
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Fig. 7. The two curves shown lie between the
two approximations

¢/x=(x*/6)T?/0* and ¢/x=T/0—1
for the case of no zero point energy, and between
¢/x+1=(x*/6)T?/8*+% and ¢/x=T/0

for the case of zero-point energy. Debye points
out that the approximational equations hold for
low temperatures up to 7/© =% while for high
temperatures the corresponding approximation
holds from 7/ © =1.6 on with an error not greater
than one percent.

Waller® has followed Born® in his theory of
the normal coordinates of a crystal lattice. He
has developed a method different from that of
Debye for connecting the amplitudes of the
atomic vibrations with the normal vibrations of
the crystal. Waller objects? to Born's treatment
for determining the normal coordinates of the
lattice on the basis that they are not independent
and develops a method free from this objection.
For crystals containing more than one kind of
atom Waller shows that the structure amplitude,
obtained from the contributions from all the
atoms which are in phase, is of the form Y Fe~*
where F is the structure factor for an atom at
rest. For face-centered cubic crystals M is given
by

M =8x(sin? 0/\)u,s, (23)

where %%, is the mean of the squares of the dis-
placements in the x-direction for atoms of type x
from their mean positions. He finds that pro-
vided T> ©/2x where © is the characteristic
temperature of the crystal, #%. is given by the
equation

We=actBtve/T+6/T+--.  (24)
In (24) Waller shows that
1 h\?1
‘Y:=-1'27‘ ; ;, (25)

where m, is the mass of the atom, and & and &
are Planck’s and Boltzmann's constants, being
thus independent of the atomic forces. He shows
that 5, on the other hand depends on the atomic
forces, but it is in a term whose value is very
small and Waller and James® show that it can
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be estimated with sufficient accuracy. Assuming
zero-point energy equal to Planck’s value, a, in
(24) is equal to zero, leaving B, the only constant
which cannot be calculated directly. However,
Waller and James® show that a weighted mean
given by the equation

B=mB./Tm.

can be determined with a fair degree of accuracy
from a knowledge of the elastic constants of the
crystal under investigation. From (23) and (24)
they get for two different temperatures T; and T,

(26)

A2
———— {(M)1— (M )2} =BT —T;
o, (M= (M) =BuTi= T

177

Now (27) should be constant for all values of 8
for each kind of atom. Experimentally the mean
of the left-hand side of (27) can be determined
from all of the lines on a powder film for the two
temperatures 7, and T3 (which should for accu-
racy be sufficiently wide apart) and thus g, can
be determined. By the use of rocksalt crystals at
room temperature and at the temperature of
liquid air they determined B, for chlorine to be
5.31X10% and B, for sodium to be 6.56 X102,
Checking the centroid mean of these with the
theoretical value obtained from elastic constants
the agreement is remarkably good, the centroid
mean being of course given by

They show B to be given also by the equation
involving the elastic constants of the crystal, viz.,

(28)

B= (miBy+mafs)/ (ms+ms) =5.8X 10-2,
1 1 1 1
(o) +i(m=)+ o @
+ (Tl Tz) T T@ + @7
A= k {(3"”)"’0 cu(2en+cu) +1bi(cutcn) R 3 }
12(mi+mp) | =? 5"‘“’+ibl(5u+6u)£u+r&xb1’bx1ﬂ'vo’ !

In (28) by=cu—cie—2cu, bs=cu+2cn+cu, and
¢, ¢12 and cy are the elastic constants of the
crystal in Voigt’s notation.** Voigt obtained for
rocksalt Cu=4.650)<10", c,,=l.294><10“, Cu
=1.270X10". In (28), »(=c/N\) is the limiting
frequency of the residual infrared rays which
Havelock® has calculated to be 61.9u from Mac-
laurin’s? formula. In (28) p is the crystal density,
2.17 for rocksalt, and a the edge of the lattice,
here 5.628A. Thus § comes out 5.7X10™%, in
good agreement with the x-ray value above.
Waller and James show that the term involv-
ing & is very small, even at liquid air tempera-
tures, decreasing rapidly as T increases. From
the two values of g8 for sodium and chlorine they
proceed to determine M for each atom out of
(28) and (23), finding for %2, chlorine, the value
0.0158 X 10~ cm? and for %%, the value 0.0196
X107 cm?. Now weighting the directions equally
we have u?,=3u?,, giving the mean square dis-
placement of the chlorine atom 0.217A and of

k (67%)

the sodium atom 0.242A at room temperature
(290°K). James and Firth,” using Fourier anal-
ysis, first introduced by Duane,*® applied it to
determine the change in electron distribution in
the crystal with temperature thus getting for the
mean displacement of the chlorine atom at room
temperature 0.20A and for the sodium atom
0.23A, a remarkable agreement with the values
of Waller and James considering that the method
of James and Firth is equivalent to taking
Planck’s zero-point energy to be zero. For syl-
vine, KCl, James and Brindley* have determined
B as 6.96X107%. But they found it impossible
to determine M for chlorine and potassium sepa-
rately since the diffracting powers of these are
too nearly equal. They accordingly treated the
atom of sylvine as simple cubic and took m in
(28) as the mean of the masses of the atoms of
chlorine and potassium. Thus for a simple cubic
lattice with only one atom (28) reduces to

cu(2en+cu)+1bi(cutc)

pa »
3m 2x? ncu+ ibx(¢1x+cu)6«+r%vbl'b:

in which James and Brindley have dropped the
second term of the bracket in (28) without com-

(29)

ment, though the residual rays from sylvine
differ not greatly from those from rocksalt. Their
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value for the mean square displacement of sylvine
is 0.255A at 290°K and 0.149A at 86°K.

In Fig. 8 we show the Debye temperature
factor e2™ for aluminum, copper, silver, gold,
platinum, tungsten, lead and diamond. The
values for the first five named are taken from
Rusterholz,* for tungsten from Claassen.®> We
have determined those for lead and diamond
from known data for those elements. In all
of the curves of Fig. 8 the zero-point energy
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is included as given in (22). James, Waller
and Hartree®? have verified the justification
for zero-point energy. James, Brindley and
Wood® have determined 8 in (27) for aluminum
to be 3.218 X10~? and M from Waller's formula
is 0.01182(h2+k2+12) for T.=290°. If zero-point
energy be dropped M is 0.00804(h%+k%+1%). We
have determined e~?¥ for face 333 of aluminum,
with zero-point energy. These points are shown
in Fig. 8 for aluminum and lead. It is thus seen
how close the agreement is between Debye's and
Waller’s formulas, the difference for face 620 in
the case of lead, being 4 parts in 27 or 15 percent
and for face 333 (511) of aluminum the error
being 2 parts in 50 or 4 percent, zero-point
energy being assumed in both formulas.

4. Absorption factor

A fourth factor affecting intensity is the ab-
sorption factor, one which has been known* for
some time but which has been ignored by most
experimenters except in special cases® until the
year 1930 when Claassen’s paper appeared.*

*Cl The Calcwlation of Absorption in X-Ray
Powder Photographs and the Scattering Power of Tungsten,
Phil. Mag. [7] 9, 57 (1930).

F. C. BLAKE

In Claassen’s paper the absorption factor 4,
i.e., the ratio between the intensity of the dif-
fracted beam and the intensity of the same beam
without absorption is given as

A=(1 /wr’)fe“‘“‘-dw,

where d is the length of the ray through the
powder sample, considered made up of strips,
and p is the linear absorption coefficient. Claassen
states that this integral cannot be evaluated in
the ordinary way but it can be solved graphically.
For this purpose he divides the rod into strips
of size Aw such that rays diffracted by points in
Aw traverse a distance d between d and d+Ad
through the rod, giving approximately

A=/ T e Ao, (30)

Claassen carries the division into strips out
geometrically in the following way (Fig. 9). Call
OI the incident beam axis and EQ the reflected
beam axis, the angle between these two axes
being 26. Divide OI and EO up into tenths
(Claassen _used fifths) as indicated. From the
points 0.40I and 1.4EQ, say, draw two arcs of
circles of radius r intersecting in S. Then the
ray scattered in S has travelled a distance equal
to 1.8r through the rod. Similarly any other two
points, as 1.20I and 0.6EO, one on the incident
ray (x;) axis the other on the reflected ray (x.)
axis, and adding up to 1.8r as measured along
these axes, determine a point scattering a ray
that travels 1.8r through the rod. In this way
the curves PSS'Q and MS” N are obtained. Thus
as shown in Fig. 9, for the case where 6=22.5°,
all points on MN and PQ scatter x-rays whose
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length of path through the rod is 1.8 times the
radius. Claassen calls the points along the curves
PQ and MN for shortness ‘‘points 1.8¢"" and in
general all such points “points a.” Constructing
the loci for several values of a, the size of the
strips Aw belonging to these values of a are ob-
tained by measuring their area with a planimeter.
Putting x=d/r in (30) the area, As, expressed in
terms of the total area of the sample as unity,
contains all points from x to x+Ax and is a
function of x only. Hence (30) becomes

A=Yew=.As. (31)

Claassen presents a table connecting x and As
for variations of x of 0.2 from 0 to 3.8, the values
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of 6 varying from 0° to 90° by steps of 22.5°.
We have reduced the steps for both 8 and Ax
by half. Fig. 9 shows, for 6=22.5° the strips of
cross-sectional area which were measured to de-
termine Aw, from which As was then calculated.
These values of As are shown in Table II.
With the formula

A(0) =Y ewri=tian A (32)
the first seven curves of Fig. 10 for ur=0.2, 0.4,
0.6, 0.8, 1.0, 1.5, 2.0 were plotted from the
graphical integrations (Table II).

As shown below from the work of Rusterholz®
for very large values of ur the value of 4(8) by
integration is given by

cos 20+sin @

7o cos? 0
A(0)=— {1+———log.
m 2sin 6
TasLE II.

x+3ax 6=0° 11.25° 22.5° 33.75° 45° 56.25° 67.5° 78.75° 90°
005 0001 00.18 00.33 00.81 1.18 175 220 3.02 3.27
15 004 023 041 087 1.56 2.00 2.68 3.03 3.24
25 010 030 066 094 172 2.18 2.73 3.05 3.21
35 019 040 084 107 1.77 235 278 3.07 318
45 032 053 097 148 182 2.53 2583 3.08 3.16
55 047 066 115 165 208 2.66 2.89 3.10 3.14
65 070 081 133 183 226 276 2.96 311 3.12
75 096 104 1.50 2004 2.46 2.84 302 3.12 3.10
85 129 139 174 226 2.64 291 307 3.11 3.08
95 162 175 191 2.47 280 301 3.2 3.10 3.06
105 206 213 217 270 292 3.4 3.7 309 3.04
{5 251 250 242 292 313 327 322 308 3.02
25 311 312 283 348 3.33 337 327 3.07 3.00
35 382 380 4.6 3.46 349 347 3.32 305 298
45 477 464 355 377 3.69 357 335 303 296
55 605 5.63 4.67 415 3.90 3.65 3.30 301 293
65 775 705 579 450 4.13 370 3.25 298 2.90
75 1010 9.33 7.20 5.04 4.33 3.75 3.20 2.95 2.87
85 1457 12193 891 5.60 4.64 377 317 292 2.84
95 30.56 23.87 13.34 7.05 4.92 380 3.12 2.88 2.80
2.05 17.62 20.1S 845 S5.13 3.75 3.09 2.84 2.75
15 1497 9.80 523 3.70 3.04 279 2.0
25 1107 525 365 299 273 2.65
35 1109 521 3.57 294 2.66 2.60
45 092 513 349 2.87 2.58 254
55 500 339 268 2.50 248
65 462 327 258 242 242
75 442 312 250 2.34 235
85 124 294 241 226 227
95 273 231 218 2.16
3.05 2.40 214 210 2.06
15 195 196 201 195
25 139 175 191 183
35 017 149 179 170
45 110 164 156
55 064 146 141
65 124 125
75 097 107
85 0.73 0385
95 0.50

Between this limiting value of A(8) and the
values given by (32) Claassen shows it is possible
to obtain 4(8) by a series method for values of
x less than 1. Call f(x) the area containing all

(1+sin 6)(1+42 sin 0)]} ' 7

points less than x. Taking f(x) as a power series

f(x) = ax+pxt4yx3+ dat+ - - (33)
we have ds = (df/dx)dx, whence
A= jie"‘"' (df/dx)dx
(34)

=fe—w- (a+2Bx+3yx+- - - )dx.

Integrating from 0 to o, which s permissible
for u large gives

1 28 6y
=_(,,+_+_+..., (35)
Ko uro  plro?

where 7y is the sample radius expressed in cm.
Claassen tabulates the coefficients «, 8 and ¥
for 22.5° steps. These are shown plotted in Fig.
11. Our values for these coefficients are also
shown in the figure.

When Table 11 is plotted the graphs of Fig. 12
are obtained. Slight errors in the planimeter
work in getting areas are ironed out in the figure.
It is rather interesting to note the way in which
the various curves cross one another. In Eq. (34)
for large values of p e *= changes rapidly,
A(6)/A(90) having of course the maximum slope
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for uro=c as shown by Fig. 10. On the other
hand, Fig. 12 shows that As changes most rapidly
for 0 zero and least rapidly for 6=90° It is
noticeable that the curves of Fig. 12 have,
roughly speaking, a common point of intersection
for (x+3Ax)=1.25 which is not much above
the value 1 taken by Claassen as the range of
validity of the series (35). In getting our values
of 8 and 4%, the graphical integration was used
for values of x+Ax/2 equal to 1.15 on down.
Plotting the values of 8 and v against x gives the
curves of Fig. 13. It is noticed at once that for
all values of 6 except 67.5 the slopes of the curves
for values of x between 1.0 and 1.2 are changing
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very slowly. Hence by choosing our values of g
and v plotted in Fig. 13 for x=1.1 the errors
will be very small. For §=67.5° the slope appears
to be considerable. However, using the slope as
given by the curves for this angle we are able to
get smooth 8 and ¥ curves. A good test of the
choice of 8 and v values used can be found by
comparing the series and the graphical integra-
tions for values of ur, between 3 and 8. Prac-
tically perfect agreement is found. Thus Fig. 10
is seen to be correct throughout its entire range.
There is also complete agreement between our

F. C. BLAKE
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series values and Rusterholz’ graphical values
for uro=>5.24 and 8.56. (Compare Fig. 20.) There
are, in fact, two principal reasons for not exceed-
ing x=1.1 in determining the proper values of 8
and v in our power series. First, for uro>4 the
values of e=#=H42) for values of x> 1.1 are prac-
tically negligible and although As is increasing
rapidly for values of 8 below 33.75° for values of
x>1.1 the product e#=-As is still negligible as
compared to the same product for lower values
of x. Second, Fig. 12 shows clearly that below
x=1.1 the slope of each of the several As curves
for different values of 8 is essentially constant,
whereas for larger values of x than 1.1 the slope
for certain curves is varying rapidly. We arbi-
trarily took 8=0 for 6=0 instead of using the
value —0.005 as given from Fig. 13 for the reason
that a negative value of 8 for ur, large makes 4
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negative, which is impossible. As a matter of fact
for 8=0 it is incorrect, in getting e~**-As, to
stop at x=1.1 for the reason that the values of
As for x small are exceedingly small while As for
x large is very large. The negative value —0.005,
obtained on stopping at x=1.1, is accordingly
itself wrong. By taking g8 zero for 6 zero (« being
zero here) we make the series valid for values of
ur>10 and introduce thereby only inappreciable
error in the series for values of ur below 10.
Below ur=4 the series breaks down and above
ur=8 the graphical integration breaks down for
the reason that Ax is not taken small enough.
Since Rusterholz obtained his values of a by
integration for large values of ur, it necessarily
agrees with Claassen’s values except in very
minor differences. Our curves for 8 and v differ
from Claassen’s in two respects, their shapes are
different for low values of 8, while for higher
values of 8 our values of 8 are about as much
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above his as our values of v are below his.
Claassen deemed it expedient not to use negative
values of y whereas negative values become
necessary for 6>26.5° in order to make the
graphical integration agree with the series inte-
gration for intermediate values of uro, viz., those
between 2 and 8.

Rusterholz® starts with the Debye-Compton
formula, obtained by considering the coherent
scattering of unpolarized x-rays from an element
dV of crystal powder, viz.,

I 14cos? 204V
—=Cn?|S|%p ——. (36)
I, sin 20sinf r

In this formula one recognizes at once the polari-
zation factor, the Lorentz factor for powders,
and the square of the structure factor, p being
the form or multiplicity factor n the number of
atoms per unit volume, r the distance from the
element of volume dV irradiated to the photo-
graphic film, I the reflected intensity and I, the
primary intensity.

If absorption within the body of material
irradiated is neglected formula (36) may be
written

I/Iy=f(r, 6)dV. 37

If the primary ray penetrates the distance s,
through the volume dV and the reflected ray
the distance s. then, allowing for absorption, one
must put

I/L=f(r, 6) f cnt .y, (38)

If now in the Debye-Scherrer powder method
the sample be taken as cylindrical of height &
and of cross-sectional area dw one can put for
Se#utw.dV the expression hJSe (nt4) . dw
=hA(0) provided & is small compared to the
radius of the camera and the primary beam is
parallel or not too divergent.
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If the cross section of the sample is circular of radius 7, the formula for 4 becomes
ro n2r 7”7 i 7 LIS r
A(9) =f f r“'{{ 1 —— sin? (¢—¢)} + | 1 ——sin? wl ——cos (Y — ¢)+— cos w]rdrdull (39)
o Jo ro? 7o o 7o
for by inspection of Fig. 14 it is seen that
7 LI 4
5 =y1+y==ru[{ 1 - sin? 'P} +— cos 'P]

70’ 7o
and

r? r
s,=n,[[l—'—2 sin? (¢—¢)] —-7 cos (¢l~¢)].

Now in general this integral cannot be calculated analytically. But in special cases it has been
determined either graphically or by numerical methods. By putting r=r,ro and uro=u, the integral
can be expressed as

1 27
A (0) = ’°2f f e—ml{1—n? sin? (y—¢) M [1-ry? 8in? y)—r, cos (¥—¢)+ry cos ¥] . rdrdy. (40)
0 Yo

If (see Fig. 15) P is the primary and S the secondary ray and F the position of a small crystal
from which the secondary ray is reflected, this ray cutting the circumference of the sample in the
two points MM’, then, if the cartesian coordinates of M are x, y and if the distance from the center
of the sample to the line MM’ is a, we have from geometry

x1=acos ¢+ (1—a?)isin ¢ and y,=(1—2a2)

Calling the distance FM =s, the coordinates of F being x, y we have x=x,—s sin ¢ and y =y, —s cos ¢,
giving finally the distance s,+ s traversed by the ray through the material to be

si+se=y+ (1 —x*)i+s. (41)

Integrating over all elements of surface lying on the straight line MM’ we get
+1

I(a, ¢)da, say. (42)
1

+1 M’
A(B) =1 f da f e =D go— 2
-1 M

Here it is to be remembered that in Figs. 14 and 15, ¢ =26.
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But again this integral in general cannot be
determined except by methods of approximation
so we choose As small enough that the substitu-
tion of a summation for the integration intro-
duces an error not greater than } percent, say.
Thus

I(a, ¢) = T emwita-zdben  As, 43)

The larger y, is the smaller I becomes, reaching
finally a limiting value.

Using the mass absorption coefficients given
by Jonsson for Al and Cu for copper, Ka-rays,
Rusterholzt determines the values of I for the
first ten lines of Al and for the first eight lines of
copper. Multiplying his tables for I by u; he
gives the curves uiI(a, ¢) as a function of a
from —1 to +1, which are here reproduced as
Figs. 16 and 17. Taking the areas under the
curves gives the values of A4(6)/4(90) given in
the following table, Table III.

TasLe III.
Aluminum Copper
20 26 A0)/ 26 26 A(9)/
Face (Rusterholz) (Blake) A(90)|Face (Rusterholz) (Blake) (90)
111 38°22" 38°30° 0.144 | 111 43°24' 43°22’ 0.133
200 44°36’ 44°45’  0.174 | 200 50°33" 50°31”  0.172
220 64°55" 65° 8’ 0.297 | 220 74°17' 74°13’  0.319
311 78° 0’ 78°17°  0.382 | 311 90° 9’ 90° 4’ 0.427
222 82°11" 82°30’  0.406 | 222 95°22’ 95°17’  0.469
400 98°45’ 99°10’  0.532 | 400 117°16’  117° 8’ 0.646
331 111°36’  112° 7/ 0.635 | 331 137° 2’ 136°49’ 0.802
420 116° 7/ 116°41’  0.659 | 420 145°22" 145° 6’ 0.857
422 136°44’  137°38’ 0.815 180° 180° 1.000
333} 160°47  162°59’ 0.948
511 180° 180° 1.000
6=4.047 0 =4.0438 6=3.607 a=3.6080
about, likely
likely
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Again Rusterholz takes (Fig. 18) a small
crystal surface at F, POP being the primary ray
and FM the secondary ray. In the expression for
I(a, ¢) given in (42) viz.,

M
I(a) =f e—mi(aten) g,
M

Rusterholz takes sy to be small for large values
of u; and integrates from 0 to « instead of from
M to M’ obtaining thus

I(a) =f e—mn(l-ﬂin a/sin (20—a)) ,ds, (44)
0

since from the figure we have
s1/s2=sin a/sin (20 —a).

Thus he gets

sin (260 —a) }

1
I(a)=— {—————-——
sin (20 —a)+sin

1

(45)

for cos 20<a < +1, I(a) being zero for a <cos 26.

t Rusterholz used a camera of 8 cm diameter and was
aware that the radius of the sample, for good technique,
had to be small compared to the radius of the camera. If
u/p for Al is 51.2 and p=2.7 and u/p for Cu is 50.4 and
p=8.9, ure being 5.24 for Al and 8.56 for Cu we get the
values of 7o used by Rusterholz to be 0.38 mm for Al and
0.19 mm for Cu. The larger of these values is less than 1
percent of the camera radius. Inadvertently his Tables V
and VI have A(¢) instead of A(¢)/A(x) as one of the
headings.
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In this way Rusterholz plots u1I(a, ¢) against a, reproduced here as Fig. 19. Thus, finally,

' 02 +1

Aw=" sin (20—a)

11V cos 30 Sin (20 — ) +sin a

re* ¥ sin (20—a) sin

=—] ———0da, (46)
sin (20 —a)+sin a

1Yo

since @ =cos a. Rusterholz points out that Claassen derived (46) in another way. He shows that (46)
can be integrated directly, whereas Claassen thought it could be integrated only by graphical or

numerical methods. His result is

cos? 9

cos 26+sin 6

A(0) "'{11 1 [
= T Og
K 2sin @ g

(1+sin 6)(142 sin o)]} '

(47)

This reduces to ro/p when 8 ==/2. This limiting value is, of course, a maximum value for 4(6) as

shown by Fig. 10.

Rusterholz plots 4 (26) /A (=) for three different
values of ury, viz., 5.24, 8.56 and 50 (=),
reproduced as Fig. 20. As shown by a note in
this survey (p. 183) the first two values are for
aluminum and copper but the radius of his
aluminum sample was twice what it was for
copper. His value for uro=50 differs appreciably
from that for uro= e as will be shown later. The
reader should remember that curves like those of
Fig. 20 are legitimate when changing either u or
ro provided the maximum value of 7, used is small
compared to the camera radius and provided pro
is large enough for Egs. (45) to (47) to hold.
This proviso must, of course, be critically in-
spected in any given case.

Greenwood® obtained values of A4 (6) differing
greatly from those of Claassen and Rusterholz.
The latter concludes that Greenwood has made
errors in his calculations and assigns this as the
reason why Greenwood’s values for the atomic
scattering factor for aluminum differs from the
experiments of Bearden,® and of James, Brindley
and Wood.®

Because of taking uro>50 for Ag, Pt and Au,
Rusterholz obtains values of A(6) for these
metals that lie upon the same curve when plotted
against sin 8/\. The curves for these three metals
practically superpose upon the values given by
Claassen for tungsten, except for the larger values
of sin 8/\. In Fig. 21 all the curves for the five
metals used by Rusterholz and Claassen’s curve
for tungsten are shown. Since the reciprocal of
1.539 is 0.65 all these curves must converge to
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unity for A(6) for that value of sin 8/X, since
both Claassen and Rusterholz have calculated
A(6) for copper Ka-rays only.

It will be shown later in this paper that the
changes in 4(6) as sin 6/ increases for molyb-
denum Ka-rays are very much less than for
copper rays. But it is obvious from the curves
of Fig. 20 that if 4 is taken as unity for the 111
face of aluminum, say, the change in 4 as 6
increases, keeping A constant, is 660 percent,
while for silver it is 1250 percent. Thus this 4
factor far transcends both the Debye factor and
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the atomic form factor (to be spoken of shortly)
and works in the opposite direction from each
of these. And yet up to date this factor has for
the most part been ignored by the x-ray analysts.
Fortunately for crystal structure determination,
most of the crystals studied to date have been
made using molybdenum or other rays shorter
than copper rays where the effect is less, other-
wise a good deal of crystal structure determina-
tions would have to be made over.

5. Structure factor

The next factor to take into account is the so-
called atomic structure factor usually represented
by S. Consider two interpenetrating rows of
atoms as shown in Fig. 22. The straight line

FiG. 22.

passing through the points makes the angle aq
with the primary ray and the angle a with the
secondary rays, the secondary rays emanating
from the second type of atom being dotted. If
the distance between the secondary rays emitted
by the two types of atoms be taken as ua,
then the difference in path between the secondary
rays from the two types of atoms is given as
ds—d, =ua(cos a—cos ap) =xh\, say. Since, how-
ever, the interferences from the two types of
atoms have different amplitudes we must add
the two waves, thus:

y=A,cos 2x(r/\N—1t/7)

+As cos 2xlr/N—t/r+xh). (48)

Representing these waves in the exponential
form we get

g = (A + Asetrish)ritsi=tin), (49)
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The parenthesis in this expression is called the
structure factor S. Had we been dealing with
two volume gratings instead of two line gratings
the parenthesis would have taken the form

S=A1+A’eiri(zh+vb+ﬂ)_

Again if there were not two gratings only that
interpenetrated but any number it is obvious
that S would be given by the equation

S= zArelfi(:,IH-y,k-}-z,l)' (50)

Here x,, y,, 2. is the position of the rth atom in
the unit cell and &, k, I, are whole numbers, the
so-called Miller indices. If one draws the axial
vectors a, b, ¢ then from Fig. 23 it is clear that

S= ZZ'eZti(t,h) - zz'eztl.(t'll‘f'v'k"’l’”'

F. C. BLAKE

I, = xra+yrb+zrc~

But from our knowledge of the reciprocal grating
we know that

|h| = |ha*+Ekb*+lc*|
and that
(aa*) = (bb*) = (cc*) =1

(ab*) = (bc*) =(ca*) =0
(a*b)= b*c =(c*a)=0
and these taken together give

(rrh) = xrh +yrk +zrly

whence

(51)

which is (50) where Z,, the atomic number, is substituted for the amplitude 4,.
S is in general complex and it may accordingly be evaluated in the customary manner by multi-

plication with its conjugate complex giving

I S' 2 zz 2,227l z—z )b+ vy, k+(z,—z,) ll’
r L

which must, of course, be real. Taking the real part we get
|S]2=3Z.Z, cos 2x[ (% —xs)h+ (3 —y) b+ (2 —2)1 ],

which, when written vectorially takes the form

|S|*= ¥ ¥Z,Z, cos 2x(r,—1,, h).

Now this formula for the structure factor as-
sumes that all the planetary electrons within
each atom reinforce one another in the matter
of their x-ray interferences as if they all had the
same phase. But this is far from true. Rather
we must determine these phase relations. This
has been done by Debye in the following way,
with notation after v. Laue.

6. Atomic form factor

Consider an atom supposed to scatter like a
point source. If Sy is a unit vector in the direction
of the primary radiation and S such a vector in
the direction of observation of the scattered
radiation, then if 4 is the amplitude of the inci-
dent radiation the scattered radiation at a point
P distant R from the atom in the direction S will
be proportional to (4 /R)e*t - ¢=¥Se'D) . g=ikE where

(52)

F1a. 23.
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r is the vector distance from the origin of co-
ordinates to the atom (see Fig. 24). In this
equation w is 27 times the frequency of the
x-radiation and k=27 divided by the wave-
length. Since Ris always large one can say that
R=R,—(r-S), very approximately. Introducing
a proportionality factor f, we have as the ampli-
tude at P

[fAe‘(““""o)/Ro]-e"‘[(s‘s°"". (53)

Dropping the factor e#“*~*%o /R which is common
to all progressive waves and remembering that
in any triangle of vectors formed on the two
sides Sy and S the vector S—Sy=s, the third
side, our scattered amplitude at P becomes
fAe*®". We must now sum this expression for

+1
[fe-‘m cos 8.2 sin 0d0]/41r= —-%f egikst o2 0. d(cos ) =sin ksl/ksl.
1

In this expression ksl is equal to (4xls sin ) /A =x,
say.

If now we seek the atomic form factor for an
atom we must calculate the interferences due to
the various planetary electrons in the atom by
calculating the probability that an electron finds
itself in a certain element of volume dv. Let udv

P
Y
R
7,
S S
1
%
r
0 X
Fi1G. 24.
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all #» atoms of the same kind giving the amplitude
1) fiAe*® ™. Since the intensity I is propor-
tional to the square of the amplitude we can
say that

I=A3 3 ffietk@ i, (54)
i

where r;; is the vector r;—r;. Now an atom may
exist anywhere on a zone of equal probability
on a sphere of radius 7;;=1, say (see Fig. 25),
and we must seek the average value of e %y,
This average value is [ fe™***?.dw]/ fdw,
where dw is an element of surface on the sphere.
Substituting in the numerator for dw the zonal
area 2w sin 628 and carrying out the integration
in the denominator the average value becomes

(55)

be this probability. Putting our origin at the
nucleus of the atom and considering its electron
cloud as possessing spherical symmetry, we de-
note by r the radius vector to the element of
volume dv, by S, the amplitude of the incident
radiation and by S the amplitude of the scattered
radiation. Then the third side of the vector
triangle is s=S—8,. The scattering amplitude f
is then given by the following relation

fe fe""“'”-udv, where k=2x/\.

FiG. 25.
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For \ increasing the phase difference between
the wavelets scattered by the different electrons
within the atom differ less and less until the
integral becomes unity and f equals the atomic
number. In general then we have

2

as\*1+cos? 20
p=(_) —_ feik(mr).ud', .
R 2

Calling the absolute value of the integral F we
have

(56)

f=(a./R)*[(1+cos* 26)/2]F*(u).

Here a, can be called the ‘‘radius of the elec-
tron” and is equal to €*/mc*=3X10"" cm ob-
tained from the Thomson classical formula for
scattering

I (e2 )2 1 1+4cos? 26

—_— — 57
I, R? 2 57

met
Taking the element of volume dv to be that of

a zone of latitude of width rda and of thickness
dr, we have

F(u) =21rfe"'"""u(f)r’drf'sin ada
[] 0
=4r f °°u(r)r’dr(sin ksr/ksr) (58)

on account of (55) where r is substituted for /.

Now we can identify %(r) with |¢|* where ¢
is the Schrodinger wave function. It is known
that ¢ for the hydrogen atom (having one elec-
tron), for instance, is given by

y=e""*r /(xay®)}, where an =h?/4x*me?=0.532A.

Inserting the value of % and calling r/ax=p we
have

F(u) 4fa° v g (59)
u) = e p2. dp= ,
o T P ey
where
u="Fksay=(4way/\) sin 8. (60)

Now in seeking the atomic form factor for any
sort of atom we recall that the probability of
finding the electron in a certain location is given
by the square of the Schrédinger wave function.

F. C. BLAKE

Now the energy of the hydrogen atom is given
by
E=(1/2m)(p+ 0+ %) —€/r,

Inserting the prescription p= (h/27)3/dx and
also the wave function ¢ we get

(1/2m)(h/27i) V¥ — e /r =y E.

Now from wave-mechanical theory it is known
that ¢ is everywhere finite and that E has only
certain discrete values.

Put ¢y =Ce =" in (61) and we get

(a®—2a/r)+ (87*m/h?)(E+e*/r)=0. (62)

For this Eq. (62) to be everywhere true we must
have the coefficient of 1/r equal to zero, giving

a=4r'me*/K*=1/ay and E=—2rme'/h.

But the probability that the electron of the
hydrogen atom finds itself somewhere in the
neighborhood of the hydrogen nucleus is a cer-
tainty, giving

fw’dv=fC’e—’“'-dv=l,

from which we find
C=1/(zai*)}.

Now if ® is the average value of the electro-
static potential of the hydrogen atom we have as
the expression of the energy (p.2+p,2+p.3)/2m
—ed. Making two of the p’s zero and dropping
the subscript on the third we get as the condition
for the electron belonging to the atom that
$%/2m < e®, hence the largest value possible for p
is given by p=(2me®)}. Now in phase space p
can be taken as the radius of a sphere and the
element of volume dv can be taken as the volume
of a sphere of this radius. But in wave mechanics
it is known that the smallest permissible volume
(i.e., unit cell) is %3. Since according to Pauli’s
principle there can be only one electron per cell,
we get for the number » of electrons in the
element dv,

vdy = (2/h?) - (47/3) 2med)idy,

(61)

(63)

the 2 being inserted on account of the double sign
of the electron spin. We get finally the number
of electrons per unit volume of phase space to be

v = (8x/3h%) (2med)\. (64)
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But Poisson’s equation holds for the electro-
static potential, viz., AP =4wve and inserting the
value of » given by (64) we get

A® = (3272/3)e(2me/h?) bt =k}, say. (65)

Professor Debye remarks that the method here
used corresponds exactly to the one used in deter-
mining the ionic cloud in electrolytic solutions,
with the exception that for the ionic cloud Boltz-
mann statistics are used while for the electronic
cloud here under discussion the temperature
region is one of complete degeneration.

It is convenient to transform Eq. (65) to one
of no dimensions by expressing the distance of
the electron from the nucleus in terms of a
ground length “‘a’’ given by the equation

a=(1/2%(3/32x%)}(h*/2me?),

and if the numerical values for #, m and e are
inserted we get

(66)

a=0.466/2}. 67)

Here Z is the atomic number of the element
under discussion; we see that the ‘‘electronic
ground length’ varies inversely as the cube root
of the atomic number. Correspondingly one can
measure the electrostatic potential ¢ in terms of
a fundamental or ground potential &, given by
®y=Ze/a and calling r/a=p and ¢=¢P, Pois-
son’s equation becomes

1d d¢o
—_—— (p’ _) =¢i,
ptdp dp

v=(Z/4na®) ¢}

Eq. (68) was first given by Thomas.¥
Now we have seen that the scattering factor
for a single electron is given by the expression

f*=(a./R)*[(1+cos? 26) /2] F*(u),

whence for an atom having Z planetary electrons
we have

f2=(a./R)*[(14cos® 26)/2]Z*F*(u).
Now

(68)

where
(69)

(70)

Z-Flu)y=2 f(sin ksr/ksr)-u-4nridr

=Zf(sin ksr/ksr)(r’dr/a®) o}

if v/Z is substituted for » by changing ax to a.
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Now calling ksr=ksa-r/a=ksap=up, say we get

z-Fw=Z "(sin up/up)- $¥(p)o'dp, (71)

where
u=ksa=4wa sin /X,
giving

Fu)= f (sin up/up)oMp)'dp.  (12)

Now the integration has been carried out by
Thomas¥ and by Fermi® for the Thomas-Fermi
electron distribution. It is shown plotted by
Debye® as F(u) against %, and tables for p and ¢
are given by Thomas and in a modified form by
Fermi and by Bush and Caldwell,** and for «
and F by Bewilogua.** The relations between u
and F and « and F? are shown plotted in Fig. 26.
This plot holds for all atoms for which the
Thomas-Fermi distribution of electrons is justi-
fiable. To get the atomic scattering factor for any
atom, F must be multiplied by the atomic num-
ber. Tables of the atomic scattering factors have
been given by James and Brindley* for many of
the elements, some for the Hartree® electron
distribution, others for the Thomas-Fermi dis-
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tribution. It is known that the Thomas-Fermi
distribution holds to a high degree of accuracy
for those elements whose atomic number is
greater than 23, say, and Bragg and West#
have outlined a technique for taking into account
the atomic form or scattering factor in the x-ray
examination of crystal structures. Since the
Debye-Bewilogua curve, (Fig. 26) and the James-
Brindley tablet are both based on the Thomas-
Fermi electron distribution there is necessarily
exact agreement between the curve and the table.

The curve of Fig. 26 holds for all atoms but
the reader should bear in mind that the abscissa
involves the ‘“‘atomic ground length’ a and that
this is a function of the atomic number, varying
inversely as the cube root of the atomic number.
Vallarta and Rosen® have lately calculated the
influence of relativity upon F(x) for the Thomas-
Fermi electron distribution. For practical pur-
poses of crystal analysis it is apparent from their
work that the error introduced by ignoring rela-
tivity corrections to F(ux) are wholly negligible.

7. Form or multiplicity factor

A final factor, called the multiplicity or form
factor and variously designated in the literature
by n, j, p and 2, is equal to unity for the Laue
spot and ionization spectrometer (stationary
single crystal) methods. For the rotating or oscil-
lating single crystal method and for the powder
method its value is equal to the total number of
sets of parallel atomic (crystal) planes which
contribute to the intensity of a single spot or
line due to the fact that, when oriented so as to
reflect according to Bragg's law, the reflected
rays from each set are directed to the same
point and thus superpose. In the rotating (or
oscillating) single crystal method this value is
dependent upon the orientation and angle of
oscillation of the crystal, as well as upon its
symmetry, and may be determined only by a
study of which ones, and therefore how many,
of the sets of parallel planes having ‘‘similar”
Miller indices (i.e., various sequences of a given
+h, +k, xI) will superpose reflections for a
given orientation and angle of oscillation of the
crystal. For crystals of certain lower order sym-
metries (parallel face hemihedrisms), account

1 Zeits. f. Krist. 78, 475 (1931).
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must be taken of whether or not superposed
reflections have equal intensities, since for these
cases atomic planes having ‘‘similar” Miller
indices do not always have equal structure
factors.

In the powder method (oscillating or sta-
tionary) the value of the multiplicity factor
depends only upon the symmetry of the crystals.
For each of the six divisions of crystal symmetry
it is equal to the total number of faces in the
holohedral representative of any form (hkl) in
question, except that here again for atomic
arrangements representing certain types of hemi-
hedrism, hemimorphism, or tetartohedrism dif-
ferent atomic planes (faces) of the given form
may have different values of the structure factor.
In these cases, if m different values of the struc-
ture factor exist, the value of the multiplicity
factor equals 1/m times its value for the holo-
hedral representative of the form and 7S, be-
comes > "(n/m)(Sp)%. Actually, m can equal

4

only two or four. Otherwise, i.e., if only one
structure factor exists for all sequences and
changes in sign of a given set of Miller indices,
the multiplicity factor is always equal to that
for the holohedral form.

Multiplicity factor values may be found in
such books as Niggli's Geometrische Kristallog-
raphie des Discontinuums or Wyckoff’s Structure
of Crystals, First Edition, p. 200, or Second
Edition, p. 177.

We have now described the seven factors
affecting the intensity of powder photographs,
viz., the multiplicity or form factor, #; the polari-
zation factor, (1+cos? 20)/2; the Lorentz factor,
1/sin? @ cos 6; the atomic structure factor, S; the
atomic form factor, F(x); the Debye temperature
factor, e~ and finally the absorption factor,
A(6). Putting these into a single fcrmula we can
say that the relative intensity of the coherent
(regular reflection) radiation on a diffraction
photograph by the powder method is given by

1+cos? 26 1

|SF¥|24(6). (73)

I=n
2 sin? @ cos 8

A word of explanation is needed on the notation

|SFe™|2. We have seen that instead of Z, in

(51) we must substitute Z,F, where F, is obtained

from Fig. 26. Several writers have found it
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desirable to include the ¢e~* in the atomic form
factor. It will be shown elsewhere that it is, in
general, incorrect to take S?| Fe=*|? instead of
| SFe=*|2, The error thereby introduced can in
certain cases amount to as much as twenty-five
percent or more. It must be remembered that S
is in general a complex number or revolving
vector and that it is only when the several vec-
tors involved in (51) lie along the +1 and =i
axes that S?|Fe *|? would be the same as
| SFe~|2.

If one plots the absorption factor, for certain
face-centered crystals as a function of the wave-
length, the ordinate in each case being Axxi/4 111
he gets the curves of Figs. 27, 28, 29, r,, the
radius of the sample tube, being taken in all
three figures at 0.2 mm, the customary figure
used in Mendenhall Laboratory. These curves
were calculated from the curves of Fig. 10 and
it is to be expected that the curves of Figs. 27,
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28, 29 will have to partake in part of the curva-
ture of some of the several curves of Fig. 10.
In Figs. 27, 28, 29 it is assumed that the linear
absorption coefficients as a function of the wave-
length could be taken directly from J6nsson’s
tables. Fig. 27 shows at once that for the region
of Mo Ka-rays the absorption factor can be
practically taken as independent of the wave-
length. On the other hand for Cu Ka-rays the
effect of the absorption factor makes it for the
422 face more than three times as strong as it is
for the 111 face. Fig. 28 shows that for A\=0.710A
the absorption factor already is strong it becom-
ing for face 422 more than four times as strong
as for face 111. The amount of the discontinuity
at the K-absorption limit in Fig. 28 is taken from
Jonsson. Fig. 29 shows that for Mo Ka-rays the
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absorption factor for face 422 is more than 7 to 1
compared to face 111. The K-absorption limit is to
the left of the figure, the L-absorption limits
showing at 1.0A. The curves of Figs. 27, 28, 29
stop abruptly a little beyond the last point
shown for each curve for the reason that the
next point on the curve for a wave-length avail-
able in practice would make 26>= and could
not be obtained.

Greenwood® has put the multiplicity factor,
the polarization factor, the Lorentz factor, the
temperature factor and the structure factor into
an unequivocal column and the atomic form
factor and the absorption factor into a doubtful
column, that is, a column containing those factors
that must be further tested by experiment. It
seems to us that it is possible, because of the
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work of Professor Debye and his students on
the atomic form factor, confirmed entirely by the
results of others especially those of W. L. Bragg,
R. W. James and other collaborators, to remove,
for purposes of x-ray analysis, the atomic form
factor from the doubtful column and put it into
the unequivocal column.

It is possible to combine the factors in (73)
into a smaller number by combining the Thom-
son and Lorentz factors into a single factor &
and by combining SF and ¢ into a single
factor Sy, say. Then (73) may be written in the
form

I=ndSA. (74)

III. COMPARISON WITH EXPERIMENT

Since the powder method is much more of a
precision method than any other and since it is
the only method available for studying micro-
crystalline structures like most of the alloys, it
becomes of the greatest importance both for
science and industry to determine how closely
(73) or (74) represents the experimental facts.

IV. CorRRECT PROCEDURE IN INTERPRETING THE
DENSITOMETER WORK

A few comments on the work of other experi-
menters are pertinent. Rusterholz is conscious
of the correct laws of blackening in the x-ray
region for he gives references, e.g., R. Glocker
and W. Traub, where these are elucidated.
And yet he apparently makes the mistake of
taking the areas under the Moll densitometer
peaks as proportional to the intensity. At Men-
denhall Laboratory we have compared the Moll
densitometer results with those obtained with a
photoelectric densitometer, the work of com-
parison being, of course, taken on the same film
and the same part of the film. It was necessary,
in order to get the correct answer from both
densitometers, to work thus. We plotted the
logarithm of the galvanometer readings as we
moved by uniform steps across a peak due to the
coherent radiation from a given face and then
determined the area under the peak on such a
plot, the zero line being taken as Rusterholz
and others take it, viz., the average line furnished
by the background due to coherent and to
Compton scattering. For the Moll instrument,
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taking the areas direct gave an entirely different
answer for a given face from that given by the
photoelectric instrument. However, if the loga-
rithm of equidistant ordinates under any peak
from the Moll instrument were plotted and the
area taken the result by both densitometers is
the same. This is clear for the following reasons.
(See Eq. (75) below.) Among others, Glocker and
Traub*® have studied (a) the blackening of a
photographic plate due to x-rays as a function
of the time for a given wave-length and a given
method of developing the plate; (b) the nature
of the blackening curve for different wave-length;
(c) the determination of the blackening as a
function of the product of the ray-intensity and
the time (Bunsen’s or Schwarzschild's law). The
absolute blackening is conveniently defined as
the ratio logio (Zo/I) where I, is the intensity
of the light beam transmitted by that portion
of the developed x-ray film that has not been
exposed to x-rays and I is the intensity of the
light transmitted by the portion under investi-
gation. It is customary when visual rays are used
to divide a blackening curve into three parts,
(a) the region of under-exposure where the black-
ening is almost proportional to the time, (b) that
of normal exposure time where the blackening
increases with the logarithm of the time and (c)
that of over-exposure where the blackening
scarcely increases further and finally decreases.
Friedrich and Koch* compared visual light and
x-rays and obtained the curves of Fig. 30. The
light curve has a point of inflection in it near the
origin, the part of the curve below the point of
inflection corresponding to the under-exposure
mentioned, the curve showing the so-called
“Schwellenwert.” The x-rays on the other hand
show none of this wave effect, presumably be-
cause in the x-ray region the quantum of energy
is so large that any grain of silver salt hit by it
is completely reduced to the latent image stage.
Friedrich and Koch as well as Glocker and Traub
have studied the blackening as a function of the
time of exposure. Bouwers® investigated the
blackening as a function of the time, for blacken-
ings up to values as high as 2(=S=logio (Io/])).
In agreement with Friedrich-Koch and Glocker-
Traub he found the blackening for small values
of S to be approximately linear with time. He
agrees with Busé® who found the blackening in
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the visual region could be represented with con-
siderable accuracy by the formula

S=Clog (¢t/r+1), (73)
where C and r are constants, to be determined
empirically. Both Bouwers and Busé¢ found (75)
did not hold if a developer were used containing
potassium bromide.

Fig. 31 shows Bouwers' results for a plate
placed 70, 99, and 140 cm from an x-ray tube
taking 2 m.a. x-ray current at a voltage equiva-
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lent to 11 cm parallel spark gap, point to plate,
the rays being filtered through 2 mm of alumi-
num. Busé points out that in the work of Toy®
the blackening curves taken with visual rays
more nearly agree with his work with x-rays the
larger the grain size of the photographic emul-
sion. Busé found the constant C to be a function
of the time of development and increases with it
according to the formula

Se=So(1—e), (76)

where a has the value 0.25, nearly.

Bouwers found the blackening as a function
of the intensity of the x-rays to be represented
by the Schwarschild® relation

S=£(It), ()]

where for ordinary light the exponent p is less
than unity but for x-rays it is very nearly unity,
his experiments being carried over a range of 9
to 1 for I, giving $=0.99+0.02. Glocker and
Traub found p to be 0.9840.01. Taking p=1
one may combine (76) and (77) into the formula

S=Clog (It/r+1). (18)

Bouwers also investigated the influence of
wave-length upon the blackening, finding (78)
to hold for the copper, molybdenum and plati-
num Ka-doublets, C being found independent of
\. He found the platinum rays gave a blackening
2.1 times as great as the copper rays.

If in (77) p is accurately 1 in the x-ray region
then I and ¢ are equivalent in any exposure and
this is the statement of the so called ‘‘reciprocity
law.”” Harrison® has shown that the reciprocity
law holds in the violet and ultraviolet regions
from 4500 to 2500A, he stating that ‘‘it cannot
be stated definitely whether the small variations
of p are real or not,” he getting the value 1.06
for A=2550A, for instance. While Jones and
Huse® have shown the failure of the reciprocity
law in the visual region, yet, on account of the
relatively large value of the quantum of energy
in any portion of the x-ray region, the reciprocity
law may confidently be expected to hold. The
matter deserves further investigation, however,
from the violet on down to the shortest x-ray
wave-lengths.

Bouwers also investigated the influence of x-
ray tube voltage upon the photographic blacken-
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ing, keeping the x-ray current constant. The
voltage was determined by a parallel point plate
spark gap. His results are shown plotted in Fig.
32. He finds the intensity proportional to the
square of the applied voltage up to the point
where the tube emits the rays characteristic of
the anti-cathode, and seemingly above that point
to be still proportional to the square of the
voltage, the characteristic rays for a tungsten
target beginning to be emitted at 67 kv as
shown by the change in slope in Fig. 32. Bouwers
points out that care should be used in saying
that the intensity is proportional to the square
of the applied voltage above the threshold value
of the characteristic rays because of the jumble
between white and characteristic rays and the
inability properly to estimate the losses in the
tube walls and how this loss depends on wave-
length. He also investigated the photographic
blackening of continuous x-rays and marked out
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a method for getting the distribution of energy
in the continuous x-ray spectrum by eliminating
the effects of variations of absorption with wave-
length. Dorgelo® has summarized as of the year
1925 our knowledge of photographic blackening
for both the visual and x-ray regions.

V. TEsT oF INTENSITY FORMULA

The intensity formula (73) or (74) is being
thoroughly tested in this laboratory. We have
stated that the correctness of the polarization
factor, the multiplicity factor, the structure
factor, the atomic form factor and the tempera-
ture factor is generally conceded. The correctness
of the Lorentz factor is also generally conceded

F. C. BLAKE
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but because it rises so abruptly for values of 8
larger than 80°, its slope between 80° and 90°
being definitely greater than the corresponding
complementary angle between 0° and 10° I
have wanted to test its correctness at large
angles. Fig. 33 shows the Thomson and Lorentz
factors plotted as dotted lines, the full line show-
ing them combined as ® of Eq. (74).

We have seen how the A factor increases with
6 and with X\ in such a way that it transcends all
other factors for soft x-rays except the Lorentz
factor at very large angles. These two factors

TABLE IV. Aluminum powder; \ used 0.7104; a=4.04384;

uro=0.40.

Face n ] sin 6/x L) A(6) Fe™ I(cal) I(obs.)
111 8 84443 02142 418 48561 716 100+ 100
200 10- 2473 410 48563 634 492 509
220 12 14-22-33 13497 146 48599 435 320 390
311 24 16-55-32 4101 104 491186 336 355  37.0
222 17-42-10 4283 9.4 49374 306  9.78+—>9.78

20-32-21 4946 68 49950 213 377 373
331 24 22-29-47 .5390 5.5 50.321  16.6 9.46 10.27
420 24 23- 651 5530 52 50556 153 829 10.73
422 24 25-25-11 6057 42 50985 115 501 505
B3}z 21-8-13 6425 363 S1288 96 484 477
40712 204622 6994 294 S1ST6 66 103
531 24 31-17-11 7315 263 51709 55 153 151
992 )30 31-46-53 7419 254 51772 S0 16T —
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deserve testing for large values of 6, and 4 for
increasing \. Fig. 27 shows that the influence of
A for aluminum powder using molybdenum rays
should be very small. Calculation shows it to
be only 5 percent greater for face 422 than for
face 111. Our preliminary results on aluminum
using molybdenum rays are given in Table IV.
Two different exposures were made, one of 6
hours, the other of 30 hours, and accordingly for
the short exposure face 111 was used as the com-
parison standard while for the long exposure face
311 was standard since the first three lines of the
film had a blackening in excess of 0.6 which
is the limit where the blackening as given by
(78) is no longer linear. Although the matter is
being tested further with more accurate calibra-
tion methods, nevertheless the results are suffi-
ciently trustworthy to prove that all of the seven
factors except the A factor are correct up to 45°
for 6 for aluminum, with wave-length 0.710A.
Beyond 45° the general blackening of the film
was so great it was impossible to tell whether
characteristic lines were present. The 4 factor
is included in the table but the results would be
almost as good if it were ignored hence we tried
copper rays on aluminum and obtained Table V.

TABLE V. Aluminum powder; \ used 1.539A; uro=>5.24.

A(), I(cal.)
@ A(W‘() |Fe—M|2 I(cal.) I(obs.) Aefmc.

Face n [ sin 6/\
111 8 10-15- 0 0.2142 0.786 0.148 716 100 100 100
200 6 22-22-29 2473 561 175 634 564 568 47.7
220 12 32-34-14 3497 241 280 435 547 457 280
311 24 39- 8-3¢ 4101 170 390 338 803 483 304
222 8 41-14-5 4283 155 415 306 237 230 85
400 6 49-43-5! 4946 136 .537 213 140 — 3.9
331 224 56- 34 5390 .149 626 166 557 177 132
420 24 58-20-27 5530 .158 650 153 577 259 13.0
422 24 68-48-50 6057 .246 .806 115 823 489 15.1
333&511 32 81-20-21 6425 .662 .948 95 2860 — 447

In this case the agreement is good for the first
three lines but it breaks down beyond that, the
calculated intensity being too high. Our camera
using copper rays was almost a complete circular
camera, but it is likely that line 333 (511) did
not show up because of baffles which prevented
lines having a value of 28 greater than 160° to
show. The camera will be rebuilt so as to get
face 333 without question and further tests made.
Then we tried Mo-rays on silver powder and
got Table VI. It should be stated that for the
silver film the calibration was not run at the
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TaBLE VI. Stlver powder; a, 4.0774; \ used 0.7104;
uro=0.09.

I(cal.)
I(obe.) I(obs.) A const.

100 1u3 100
5

A(0)
¢ &nd\ @ A(NJ) |Pe—M]2 I(cal)
0.212 0.074
245 .078

£

111 43.0

1160
1082

8 100

200 6 10- 317 544 479 518 516
220 12 1415 347 152 .10 721 445 311 351 329
311 24 1647 407 105 .19 573 583 322 363 303
223 8 17-33 424 05 .22 534 168 133 150 102
400 6 3023 400 69 .45 416 85 36 41 43
331 24 2218 53 57 160 352 262 84 05 121
40 24 2255 548 53 168 334 242 72 81 107
422 24 2515 602 43 190 22 181 — — 71
) s e a7 206 W w5 — — 70

same time as the intensity work hence the agree-
ment cannot be expected to be very accurate
for the first three lines, because for these S was
greater than 0.6. Accordingly we chose face 311
as a standard in preference to face 111. A com-
parison of the last two columns shows much
better agreement than that between columns 8
and 10. The result for Mo-rays on silver is the
same as for Cu-rays on aluminum—the calcu-
lated values are too high.

Work was also done on nickel powder with
Mo-rays. The results are shown in Table VII.
Again the results are the same—the calculated
values are too high.

TABLE VII. Nickel powder; \ used 1.5394; uro=21.2.

A@)/ oM I(cal.) I(obs.)

Face n ] A(90°) F* 7% I(cal) A const. Wyckoff I(obs.)
11 8 22-18 575 0.110 3534 0924 100 100 100 100

200 6 26-0 400 .146 3028 897 576 434 44.5 493
220 12 38-16 1.73 .297 2132 810 500 18.5 23.2 48.2
311 24 46-30 136 415 1769 .748 1084 288 24.8 60.0
222 8 49-18 134 456 1664 729 358 8.6 74 30.0
400 6 61-13 176 .653 1369 .657 375 6.3 - -
331 24 72-37 306 .830 1168 .607 2608 346 — 126N
420 24 78-5 470 .900 1145 590 4145 495 —_ —_

Miss Armstrong® used the ionization chamber
method on briquets of copper and iron powders,
the wave-length used being the Mo and Cu
radiations. The principal object of her experi-
ments was to determine the atomic scattering
power of iron and copper. As many others have
done she used the intensity formula as a means
of determining the atomic form factor and while
there is agreement with Debye’s F curve for
face 111 of copper using Mo-rays, the difference
rapidly becomes great with increasing sin 8/\
such that for face 620 the F value she gets
(0.150) is slightly more than half the ‘“‘correct”
value (0.290). Miss Armstrong’s values for cop-
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TaBLE VIII. (Miss Armstrong.) Copper powder; \0.7104;
S nmizatinn ch b hnd

Face =n sinf/A 3 F e~ 2™ J(cal) I(obs.) I(obs.)
111 8 0241 3085 0.480 0918 200 222 262

200 6 .278 2420 418  .894 100<—>100 118

220 12 .392 1160  .286  .800 470 60.7 TLh
311 24 461 805 236 .726 608  S5.7 658
222 8 481 743 219 711 1.1 161 190
400 6 556 516 .180 .60 66 57 67
331 24 .607 411 .165 586  17.6K_149 A17.6
420 24 620 398 157 566 156 112 13.2
422 24 681 315 135 520 98 7.1 8.4
j;;} 32 723 266 .21 470 89 1.6 9.0

per and iron are given in Table VIII. Since she
did not consider the A-factor, I have determined
the calculated intensity with- A-const. from (73)
or (74) and show it alongside of her experimental
results, face 200 being used as standard. I have
also added a second column where face 331 is
used as a standard. It is apparent from Table
VIII that the 4 factor when a briquet of powder
is used either does not enter into the intensity
formula or it enters in the opposite direction
from what it does for a cylindrical powder
sample. This would be in agreement with expec-
tation on powder briquets using a focussing
camera for in a conversation with the writer last
August Professor Debye thought absorption
could fairly be expected to be independent of 6
when the powder exceeded a certain thickness.*
This matter is now under test in Mendenhall
laboratory.

VI. ANoMALOUS DISPERSION AS REVEALED IN
THE DETERMINATION OF THE ATOMIC
SCATTERING POWER

Wyckoff* has reported the continuation of
Miss Armstrong’s work, which was done in his
laboratory, and his results are shown for nickel
in Table IX along with our own, both taken with
Cu-rays. An attempt was made to use the results
of Mazza and Nasini,” but their observed results

* The argument for this is that provided the thickness
is great enough, when a briquet is used the volume of
material irradiated may be said to be the same no matter
what the value of 9 is, for when 6 is small, with a given
width of primary beam the penetration is greater than for
large values of 6, but the surface area of material irradiated
is greater for 6 large than for  small, thus compensating
for the lesser penetration, the third dimension of the volume
irradiated being independent of 6.
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TaBLE 1X. Nickel; \ used 1.539A4; uro=21.2.

A0)/ 2 cal) I(ol

Face n 6 & AB0° F* e 2M [(cal) A const. Wyckoff I(obs.)
111 8 22-18 575 0.110 3534 0924 100 100 100 100

6 26-0 400 .146 3028 .897 576 434 44.5 493
220 12 38-16 173 207 213.2 .810 500 18.5 23.2 48.2
311 24 46-30 136 415 1769 748 1084 28.8 24.8 60.0
222 8 49-18 134 456 1664 729 358 8.6 74 300
400 61-13 1.76 .653 1369 .657 375 6.3 — —
331 24 72-37 3.08 .830 1166 .607 2608 34.6 —  128(1)
420 24 78-5 470 900 1145 .590 4145 49.5 — -

are expressed qualitatively only and for com-
parison they used a formula that is now obsolete.
Wyckoff used the ionization chamber method,
getting reflections from powdered briquets. Since
there is good agreement between columns 9 and
10 of Table IX it would appear that one can say
that this would seem to verify the statement of
Professor Debye that the A factor does not
enter into the intensity formula when large
blocks of powder are used as samples. On the
other hand, there appears to be, by visual inspec-
tion of Fig. 1 of Plate IV, Mazza and Nasini,
fair agreement between column 8 of Table IX
and their results for pure electrolytic nickel, for
it would appear that both faces 331 and 420
give reflections stronger than face 111. This is
certainly not true, however, of their Fig. 4, taken
with “‘pure com‘mercial" nickel wire, the cold
drawing evidently militating strongly as to in-
tensity against the faces having large glancing
angles.

Wyckoff worked with copper, nickel and iron
using Mo-, Cu-, Ni-, Fe-rays and concludes that
the atomic scattering power of an atom varies
with wave-length being a minimum near the
K-absorption limit of the element and attaining
a “maximum at or near its ‘resonance’ wave-
length.” What the value of the ‘‘resonance”
wave-length for nickel is, is not stated. We have
run pure nickel with Cu-rays and have inserted
our values also in Table IX as the last column.
It is seen that they are definitely higher than
Wyckoff’s values or than the calculated values
with A constant, but lower than the values
obtained by Eq. (74) (column 8). This confirms
the point of view taken in this survey (see
below) viz., that the 4 factor must be modified
or the zero line for the densitometer work must
be modified from the present experimental prac-
tice.
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That there is further evidence than that offered
by Wyckoff for the atomic scattering power being
a function of wave-length is shown in the excel-
lent work done by Bradley and Hope®® on iron.
They used Mo, Cu, Co, Fe, Cr radiations on an
iron aluminum alloy with the composition FeAl.
Their sample was in the form of a powder rod
and they corrected for absorption by Claassen’s
method. That the 4 factor is small for Mo-rays
is shown by their results, the ratio Aas0/A4 100,
with 6 changing from 6°56’ to 33°30’ being only
1.164. In Fig. 34 are plotted the results of
Bradley and Hope for iron and those of Wyckoff
for Ni. It is likely that had Wyckoff been able
to have had an anticathode with a wave-length
1.3A his curve for nickel would have been more
nearly like that of Bradley and Hope for iron,
showing a sharp rise away from the nickel ab-
sorption edge on the side of shorter wave-lengths.

We have shown that, provided (74) contains
all of the factors that enter into the intensity
formula, theory and experiment do not agree
(see Tables V, VI, VII, IX) and it becomes very
important to know upon which factor or factors
to lay the blame. In Bradley and Hope's formula
the intensity is given as follows

1+4cos? 26

I=k —————— nAF?=kn®A F?,
sin? @ cos 8

where ®=2® of (74) and F? stands for |SFe |2
of (73). They find the differences they get in F
for different wave-lengths to be independent of 6.
Consequently whether the 4 factor were more
or less would not materially change the character
of their curve (Fig. 34) whereby the atomic
scattering factor is definitely lowered across an
absorption limit.

Solving (79) for F in the notation of this paper
we get

(79

F=C(I/n®A)(1/Se™), (80)

it being assumed that for a cubic crystal there
is no difference between |SFe=*|? and S?F?e?¥.
Thus the meaning of Bradley and Hope's and
Wyckoff's reduction of F across the absorption
limit is that 4 has greatly increased and since
for large enough values of ur A varies inversely
as u it is to be expected that F will decrease, for
p is known to decrease with increasing wave-
length across the absorption limit. When Mo-
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rays are used on Mo-powder or Fe-rays on Fe-
powder it is always found that the secondary
scattering for large values of 6 is reduced, more
of the energy stays in the coherent rays at the
expense of the incoherent rays. The important
conclusion of Bradley and Hope that the lowering
of F across an absorption limit is independent of
0 seems to us to deserve further experimental
testing.

It is known from the work of Professor Debye
and his collaborators, e.g. Bewilogua,* that the
ratio of the coherent scattering to the incoherent
scattering decreases with increasing 6 for atoms
and molecules in the gaseous state and since
coherent scattering is plainly an atomic property,
with the complete lack of knowledge at present
as to the relation of ‘the coherent scattering to
the physical state of the element under considera-
tion one must first assume complete independ-
ence of these two things and this has been done
so far in this survey.

Recently Wollan® has surveyed the literature
of x-ray scattering and has discussed the atomic
form factor. The fact that Wollan® and Harvey®
have found that the atomic scattering factor for
argon and for sylvine, both with atomic number
18, is exactly the same for coherent radiation, in
agreement also with James and Brindley’s calcu-
lations based on Hartree's electron distribution
and differing from the Debye-Bewilogua curve
(Fig. 26) by ten percent at most for values of
sin /A greater than 0.5, shows that one is prob-
ably safe in taking the atomic form factor for
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gases and solids the same. Their results indicate,
moreover that the Hartree electron distribution
is safer to use than the Thomas-Fermi distribu-
tion for atoms of low atomic number (see page
43). Jauncey and Harvey®? draw attention to
the closeness of agreement of the results for
argon and sylvine.

The Lorentz factor is being studied in Menden-
hall laboratory for large values of 26, i.e., for
26>160°. Accepting for the moment as unequiv-
ocal in (73) the multiplicity, Thomson, Lorentz,
structure factor, atomic form factor and tem-
peraturet factor the results of Tables V-IX throw
doubt on the legitimacy of the A factor as
developed by Claassen and Rusterholz and as
refined in this survey. All experimenters are
agreed that the proper procedure when com-
paring reflections for different faces is to take
the zero as that due to the general blackening
or background at the position of the line in
question. This procedure must be called in ques-
tion before the 4 factor in its present form can
be made to assume the blame for the disagree-
ment between theory and experiment for the
intensity formula.

In treating the scattering of x-rays from gases,
since the earlier literature on this subject men-
tioned in Compton's X-Rays and Electrons,
Wentzel,®* Waller,* Compton® and Heisenberg®
have all treated this question theoretically, de-
riving formulas for the total scattering, consisting
of the unmodified or coherent scattering and for
the modified, incoherent or Compton scattering.
In his treatment of the problem Wentzel used
quantum mechanics. In his earlier papers Waller
used quantum and wave mechanics and later he
used Dirac’s wave equation together with Dirac’s
theory of°radiation and dispersion. Compton used
classical electrodynamics and electron theory,
and Heisenberg used wave mechanics.

Calling (Ioe*/m?%*)(1+4cos? 26) /2 the Thom-
son unit of scattering by an electron in the
direction 20 at a distance r from the electron, e,
m and ¢ having their usual significance, Compton
showed that the total scattering per atom con-

t A recent paper by Jauncey and Pennell (Phys. Rev.
43, 505 (1933)) would put the temperature factor in the
equivocal column.
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taining Z electrons is, in our notation

I=2*F*+Z(1—F?)/(14v vers 260)}, (81)

where y=#h/mc\. The first term is the coherent
scattering and the second the incoherent, its
denominator being the Breit®-Dirac® factor that
comes from the change of wave-length in the
Compton effect.

Waller and Hartree®® have worked out formu-
las showing the contributions to the total scatter-
ing by the separate electron shells of argon, the
necessary summing being done over the wave-
functions involved, thus allowing for possible
interchange phenomena among the electrons.
Herzog™ has worked out a method for measuring
the scattered x-radiation from gases and has
criticized Compton’s formula (81) as being too
rough an approximation for the incoherent scat-
tering, finding a difference as great as 25 percent
between (81) and the Waller-Hartree® formula,
which Herzog finds fits his measurements on
argon. Wollan® has shown that Barrett’s” meas-
urements on argon with X0.39A, his own with
N0.71A and Herzog's with A1.54A fit the same
total scattering curve, all in excellent agreement
with the Waller-Hartree theory.* Herzog's table
I is here repeated as Table X and shows clearly

TABLE X. Argon.

sin 6/\ Teoh. Tincoh. Ttotal
324 0 324
0.065 293.3 1.1 2944
0.130 2239 3.5 2274
0.261 115.8 7.1 122.9
0.391 73.0 9.4 824
0.522 54.0 10.8 65.1
0.653 419 119 53.8
0.783 320 129 449
1.044 16.4 14.4 30.8
1.566 4.6 16.1 20.7
2.088 2.1 16.8 18.9
2.610 1.4 17.2 18.7

that for small values of sin 8/\ the scattering is
all coherent while for very large values it is
incoherent. In the region between it is both.
Herzog determined experimentally the total scat-
tering from argon and found it was a minimum
for 260 =105° and rose again for larger values, his
last determination being for 26 =160°. It is inter-

* Wollan, Rev. Mod. Phys. 4, 238 (1932), Fig. 18.
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esting that Herzog's measurements on argon give
a total scattering curve that is practically iden-
tical with that of Scherrer and Staeger” on
mercury vapor. There is considerable evidence
that the total scattering increases for values of
20 greater than 160° and it is possible, in crystals
at least, that the coherent scattering decreases
according to Fig. 26, reaches a minimum and
increases again as 8 nears 90°. The incoherent
scattering theoretically reaches a saturation
value for large values of sin 8/A. Yet many
powder photographs that are almost complete
circles seem to indicate a definite rise in total
scattering as 26 nears 180°. Examples of this
might be said to be Mazza and Nazini's Figs. 1
and 2, Westgren and Phragmen’s Fig. 1.* In the
work of the latter the length of the film was often
15 cm with a diameter of 5.5 cm giving a half-
range, 20, of 156°. It will be worth while for
work to be done on total scattering both of gases
and crystals for values of 26 beyond 160°.

The question naturally arises, what has the
diffuse scattering of gases and crystals to do with
formula (73) or (74)? The Bragg law reflection
lines of a powder photograph are superposed on
the diffuse scattering background, both coherent
and incoherent. Because the coherent scattering
predominates over the incoherent scattering for
small values of 6 this fact militates decidedly
against the reflection intensities from faces hav-
ing small Miller indices as compared with those
having large indices. The result is that in Tables
V, VI, VII, IX, for instance, all the observed
values of I for the first few lines are recorded too
low compared to those having higher values of
6, thus accounting for the discrepancy between
theory and experiment mentioned above. But
how to correct for this? Our conclusion is that the
zero line of each densitometer peak is below the
general background zero and a different amount
for every peak depending upon its value of 8
and upon the value of X\ used. It is well known
that the incoherent scattering practically dis-
appears when atoms of large atomic number are
used as scatterers. On the other hand, when low
atomic number atoms are used the incoherent

S.~=Z[1 —f gde{(o(8)/6)—v}* (¢(E)/£)’+%vl] ,

* Westgren and Phragmen, Zeits. f. Physik 33, 777 (1925).
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scattering is very bad, especially if the wave-
length used is shortened or the voltage on the
x-ray tube is raised. One must search by cut and
try methods to find the proper zero line for each
densitometer peak. A good place to begin is to
assume even for crystals that the incoherent
scattering when corrected by the Breit-Dirac
relation is constant for large values of sin 6/\ and
then try in some way to get relative values of
the regular reflection intensity compared to the
coherent scattering for different 6's and \'s.
Making theory and experiment agree at some
place on the curve, just as Wollan brought a
4 to 2 to 1 change in \ into agreement with one
another and with theory in his Fig. 18,t one could
assume the A factor correct and find experi-
mentally the corrections needed for different 6's
and \'s. There would have to be a consistent
scheme of correction factors result or else one
would have to conclude that the A factor or
some other factor needed modification.

A series of papers by Jauncey™ and his col-
laborators has appeared upon the total diffuse
scattering of x-rays by crystals. Certainly it is
not known at present how the total scattering
changes relatively between the coherent and in-
coherent parts and also as to their sum as the
state of the crystal, e.g., single crystal, crystal
mosaic, crystal powder, is changed. In one of
his later papers Jauncey™ has worked out a
method for comparing for gases and crystals
the ‘“mass spatial scattering coefficient per unit
solid angle” in a given direction 20 away from
the primary beam. Woo™ has also been studying
the diffuse scattering from gases as well as from
crystals and it now appears that Jauncey and
Woo have reached common ground in their view-
points.

Bewilogua”™ has taken Heisenberg's formula
for the incoherent scattering from a gas and
reduced it to a form involving for incoherent scat-
tering a fundamental, characteristic or ground-
length & similar to the ground-length a that
Debye made use of for the coherent scattering.
In Bewilogua's notation Heisenberg's formula
for the incoherent scattering is given by

(82)

t Wollan, Rev. Mod. Phys. 4, 238 (1932).
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where
v="Fksa/(6xZ) =ksb, say, where b=0.175/Z%. (83)

In (82) ¢(%) is the Thomas-Fermi ¢-function, £
being equal to rZ%/a where r is one-half the
vector sum of the two position vectors entering
into the wave-function and its conjugate; £, the
upper limit on the integral, being given by the
equation (¢(£0)/£) —v=0. In Fig. 35 is plotted
the incoherent scattering, S=.S:/Z, as a function
of v, together with the Waller-Hartree theoretical
value. It is seen that there is almost complete
agreement between the two theories, the crosses
indicating Heisenberg's values as given by Be-
wilogua and the curve being the Waller-Hartree
results. One should remember that Fig. 35 like
Fig. 26 holds for all atoms but that the atomic
number is involved in the abscissas of the figure.
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One can modify Compton's formula (82) for
the total diffuse scattering in accordance with
the improvements made by Waller-Hartree and
by Heisenberg and thus get

I1=2F*4+2ZS/(1+ vers 26)?, (84)

where S is the square bracket of (82), i.e., Fig.
35, and Fis given by Fig. 26. The writer purposes
to plot (84) for all values of sin 8/\ over the
region of wave-lengths customarily available to
the x-ray analyst, e.g., 0.2A for tungsten to 8A
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for aluminum, say. In carrying this out proper
care will be used as to temperature factors in-
volved in F and S. It is hoped in this way to find
the correct zero line for the densitometer work
in using the intensity formula (73). If success
were to attend this effort it would show that the
diffuse scattering for gases and crystals is the
same. In any case it would be a contribution to
the field now being studied by Woo and by
Jauncey and his students.{

Attention should be called to the summarizing
paper of Ehrenberg and Schifer’” on atomic
form factor that has appeared since Wollan's
report, and to the recent books like Ergebnisse
der technischen Rontgenkunde, Akad. Verlagsges.,
appearing from the Leipzig school.

VII. CoNCLUSION

We have shown in this survey that the formula
for relative intensity for the Laue spot method
of analysis is

1+4cos?26 1
=n—————————

|S-F-e™[24(8), (85)

2 sin? §

in which »=1. It is presumed in this formula
that white radiation is used as a source.

For the oscillating or rotating crystal method
(85) changes to

1+4cos? 26 1
T=n— o IS F-e¥|24(8), (86)
2 sin @ cos 8

provided monochromatic (filtered )rays are used.
For this method 7 is dependent upon the angle
of oscillation and upon the crystal symmetry
(see page 190). (86) holds also for the ionization
chamber method using single crystals. It is
known that when working with single crystals
careful correction for ‘‘extinction’’ must be made.
This is not easy to do. The best practice, e.g.,

t It is possible that a critical study both of (84) and of
the recent paper by Jauncey and Pennell, Phys. Rev. 43,
505 (1933) may have to be resorted to, before theory and
experiment can be made to agree. The looked-for correction
scheme could still be inconsistent if it can be shown that
errors due to primary extinction for finely powdered metal
crystals are serious. Since these errors would work in the
opposite direction from what is found experimentally it
would mean that the true zero line is further down than
would at first be expected.



X-RAY ANALYSIS OF CRYSTAL STRUCTURES

reference 33, seems to rest on taking the atomic
form factor for atoms at rest on the Hartree
distribution (or for high atomic number on the
Thomas-Fermi distribution) as standard and
correct the measured intensity for each value of
8 to this standard. The ionization chamber
method can be successfully used in conjunction
with the powder method when the powder is in
the form of a briquet and the intensity formula
becomes

14cos? 260
| S Fe |2,

I=n (87)

2 sin? 8 cos 8

the A4 factor being taken as constant. This needs
further test, however.

For the powder method, provided the powder
is sufficiently fine ‘‘extinction’ errors become
negligible and the intensity formula becomes
(73). Definite evidence is offered that the usual
experimental procedure must be called in ques-
tion if the Claassen-Rusterholz treatment of the
A factor is correct. One can assume the 4 factor
correct and attempt thereby to get an experi-
mental testing of the theoretical formulas for
diffuse scattering from crystals both as to the
coherent and the incoherent scattering.t
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