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The development of the theory of the interaction of electromagnetic radiation with atoms and molecules is
outlined. A fully classical analysis of absorption and emission is formulated in which particlular attention
is paid to questions of detailed balance and to the sum rules obeyed by the susceptibility. Collision
broadening is introduced through time-dependent dipole moment correlation functions, and brief
discussions of interruption broadening and various frequency modulation models are given. The
corresponding quantum mechanical analysis is presented with emphasis on the points in common with the
classical approach. The importance of correspondence principles in bridging the gap between classical and

quantum mechanical theories is stressed.
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INTRODUCTION AND MOTIVATION

A little over a year before the advent of the true quan-
tum mechanics one of us (Van Vleck, 1924) published
Parts I and II of a series of articles entitled “The Ab-
sorption of Radiation by Multiply Periodic Orbits and
Its Relation to the Correspondence Principle and the
Rayleigh-Jeans Law,” henceforth referred to as l.c.!
Part I was entitled “Some Extensions of the Correspon-
dence Principle,” and Part II gave the details of the
“Calculation of Absorption by Multiply Periodic Orbits.”
Part III was to be concerned with the equilibrium be-
ween absorption and emission under the Rayleigh-Jeans
law. It was never written up for publication because in

*Work supported in part by the National Science Foundation.
part I of I.c. is reprinted in the van der Waerden (1967)
historical compendium on the Sources of Quantum Mechanics.
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1925 the author was busy writing his book Quantum
Principles and Line Spectva (Van Vleck, 1926) and of
course the advent of quantum mechanics presented in-
numerable research problems more timely than a purely
classical investigation. The idea occurred to him to use
the 50th anniversary of Parts I and II as the date for
publishing a paper which would start with Part III and
might even bear its title. Although hedid not succeed in
meeting the deadline, it still provided a partial motivation
for collaborating on the present article. We use the
term “partial” because even the classical portion (Part
I) of the present paper goes considerably beyond what
the senior author had in mind in 1924, as he was then
thinking only in terms of absorption with infinitely sharp
lines—no collision broadening or damping.

The presentation and calculations of Part I, which now
follows, are entirely in terms of classical mechanics,
and to some extent “old quantum theory.” To some
readers this may seem like a purely archival project,
in which skeletons are taken from the family closet that
are the victims of quantum mechanics. However, this
is not really the case, although there are some reminis-
cences that may interest historians of science. In our
opinion one has a better understanding of quantum mech-
anics, and an appreciation of its elegance, if one ex-
amines analogs in the earlier world of Fourier series
and orbits. We are pleased to see this view taken by
Ridinger (1976) in an article commending Tomonaga’s
book on quantum mechanics (1962) because it starts,
unlike most modern texts, by first developing a back-
ground in the old quantum theory. Many of the problems
relating to linebreadth become clearer and simpler if
first examined in the framework of classical mechanics.
We might mention in particular, that in the appendix of
the Born and Jordan (1930) book on the matrix form of
quantum mechanics, a purely classical calculation is
still given of the absorption.?

In concluding this introduction we should stress that

2The calculation by Born and Jordan had been published earlier
in a journal article (1925). Using a method only slightly differ-
ent from that in 7.c. they obtained a similar formula for the
absorption.
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the present paper does not pretend to be a comprehen-
sive review of the subject of absorption, emission, and
linebreadths, with references to hundreds of articles.

A review of this type with emphasis on the effects of
collisions on optical spectra in gases has been published
by Breene (1951), while Poole and Farach (1971) have
reviewed line broadening and relaxation in the context
of magnetic resonance and Mdssbauer work.

l. CLASSICAL THEORY

A. The absorption of radiation by (undisturbed) multiply
periodic orbits

The title of this present section is the same as that of
Part II of l.c. except for the insertion in parentheses of
the word “undisturbed.” This addition is to make it
clear that the discussion and calculations of the present
section, like all of /.c., is for motions not interrupted
by collisions or impacts, whereas this restriction does
not apply after Sec. D.

In the dozen or so years between the advent of the Bohr
atom and of quantum mechanics, in other words, the era
of the old quantum theory, theoretical atomic calcula-
tions centered on multiply periodic motions. One doesn’t
encounter them often in the recent literature, but they
are the classical analog of the Heisenberg system of
representation, and involve the same kinds of series as
often used by astronomers in celestial mechanics. For
a detailed exposition thereof see, for instance, books by
Born (1925) and Van Vleck (1926). Multiply periodic
motions are characterized by a set of angle and action
variables, and the multiple Fourier expansions related
thereto, which have the form

x= E Z Z leTszexp[z(lel+Tzw2+TSWS)J,
Ty =-® Tg= - Tg=—

1)

for, say, the x coordinate.®* As in l.c., we assume that
the system is one with three degrees of freedom associ-
ated with the motion of a particle of mass m and charge
e, but the extension to more general systems with dif-
ferent degrees of freedom is an obvious procedure not
involving any particular difficulties. The w’s entering
in (1) are called angle variables, and are three of the
six canonical variables; the others are the conjugate
action variables J, J,, and J,;. The unperturbed Hamil-
tonian function, 3¢, is a function only of the J’s so that
we can write

=W, J,,J,,d5). (2)

We use the notation W; rather than E for the energy
constant, both to avoid confusion with the electric field
E, and because this was the nomenclature generally
used in the 1920’s. In the absence of such a field, Ham-~
ilton’s equations are simply

di&:o’

a7 (3a)

3A discussion of action-angle variables can be found in the
books by Born (1925), Van Vleck (1926), and Goldstein (1950).

Rev. Mod. Phys., Vol. 49, No. 4, October 1977

J. H. Van Vleck and D. L. Huber: Absorption, emission and linebreadths

aw,
dt = wk 5 (3b)
where
ow _
W, = o, , (B=1,2,3), (3c)

so that the w,’s are linear functions, w,= w,t+€,, of the
time. It is convenient to use in place of (1) the abbrevi-
ated notation

x= Z x expliw f+i€,), 4)
T

where 7 represents the set of three integers 7,, 7,, 7,
and

Wr=T,W), + ToW, + TyWy, (5a)
along with
€, =T €, + To€y+ T€,. (5b)

The reader should be careful not to confuse the w, with
the (angular) frequency w of the applied field. In the old
quantum theory the J’s were the quantities which were
equated to integral multiples of 7z, so that

J,=n,7 . (6)

Equation (4), as it stands, is valid only if there is
no applied field. Perturbations by the latter make the
w’s cease to be linear functions of time, and the argu-
ment of the exponent in (4) must be replaced by (7w,
+TW,+ Tw,). Also, the coefficients x, of the exponents
are in (4) no longer constant in time, but are still the
same functions of the J’s as in the absence of the field.
How the perturbations of the J’s and w’s are calculated
by adding to the Hamiltonian a term caused by the ap-
plied field is explained in l.c. and will not be repeated
here. By employing the results of [.c. [combining Egs.
(32), (35), and (37) of l.c. and differentiating with re-
spect to time], one finds that the rate at which a state
having given initial values of J, J,, and J, absorbs
energy in a radiation field of density u(w) is given by
the expression

dw ,; 4n2e? d
e BE N S 1wl d S, )
dat == k

+f(w7'a _w)]u(w)} ’ (7)

where 7= 0 means the summation is over only non-nega-
tive values of the combination overtone (5), and

ldrl®= 1o+ | yel?+ |20 (8)

The functions f(w;,+w) are defined by

Flx,x )=/lim sinf (x — x,)¢]
»7'0 i

Se w(x —x,)

=0(x — x,) - 9)

Here 6(x — x,) denotes the Dirac 6 function with the prop-
erty [~ f(x)8(x - x,)dx = f(x,). Equation (7) is also es-
sentially the same (except for notational differences)

as Eq. (38) of [.c. or as Eq. (24) on p. 419 of Born and
Jordan’s Elementare Quantenmechanik (1930) except
that in both these cases the integration over w has been
carried out.
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It should be stressed in making comparison with /.c.
that we have used somewhat different notation to con-
form to modern usage. In 1924 there was no Dirac 7
to reduce the number of factors of 2n. We now use angu-
lar rather than true frequencies, and J,, w,, w,, w are,
respectively, the same as J,/27, 2mw,, 27w,, and 27w
of l.c. Also, both for convenience and in conformity with
present practice, we use exponential rather than cosine
series, so that a typical pair of terms in the multiple
Fourier expansion is x,exp(w, i +1€,) + x¥exp(—iw t —i€,)
compared with x;cos(27w,t+€,) of l.c. The condition
that x be real requires that x, =x*,, and the time aver-
age of x® for a given state J,J,,J, is

x%=2 3 |xl?,

T=0

(10)

since the only terms which do not vanish on averaging
the square of (4) over all phases (epoch angles) €, are
the cross terms connecting 7 and —7. In the presence
of the field, Eq. (7) is no longer exact, but is adequate
for our purposes as it is to be understood that all the
quantities appearing in (7) are to be computed in the
absence of the field; in other words, Eq. (7) already
involves a factor of # «EZ?, and any higher orders of E
can be disregarded. In l.c. we used p to denote the den-
sity of radiant energy, but in the present paper we will
use u for this density, as we wish to use p to denote the
density of atoms in J space, or more generally in phase
space.

We now assume that the distribution in J space con-
forms to classical statistical mechanics, so that the
number of atoms or molecules in an element dJ,dJ ,dJ
is pydJ dJddJ ,, with

p;=NCe Vs/kT (11)

where N is the number of atoms or molecules per unit
volume, and

1/c=fff e V'R T 4 aJ Al .

In general the Boltzmann distribution relates to density
in phase space whose dimensionality is twice the num-
ber of degrees of freedom, so that basically we ought to
consider the volume element dJ ,dJ ,dJ ,dw,dw dw,. How-
ever, the w coordinates have already been averaged
over in obtaining Eq. (7), and they are not involved in
the Boltzmann exponent. We can therefore take the
rate of absorption by the ensemble to be

aw, aw ;
N<dt >abs =ffpr dt dJ1szdsz

where dW,/dt is given by (7). The ensemble average,
which we denote by (....), is not to be confused with
the time average for a single state, which we denote by
a bar as in Eq. (10). When (7) is substituted in (12) a
partial integration with respect to the J’s suggests it-
self, as it gets rid of having to take the derivative of
the & function. This procedure works rather neatly,

as thanks to the relation '

(12)

Wy W

oW
—L +T
@ T2 %7, " 737,

=T +
Tt ad,

[cf. Egs. (3) and (5)] the expression (12) is transformed

Rev. Mod. Phys., Vol. 49, No. 4, October 1977

941
into
aw. 4m2e?
“y _ . .
N< dt >abs 3kT fff 1;) plwfld'rl
X[f(wry w) +f(w-r, —'O))]
xu(w)d dd ,dJ 5, (13)

provided we can neglect the terms at the limits in the
partial integration. This is allowable for all systems
for which classical Boltzmann statistics have a meaning.
One limit usually corresponds to an infinitely high energy
and vanishing Boltzmann factor, and the other to the
vanishing of other factors (i.e., the amplitude for an
oscillator or the frequency for a rotator). Of course
Boltzmann statistics cannot be applied to a real Ruther-
ford atom, as it would make electrons condense infin-
itely near to the nucleus. Also, we make our calculation
for the electric rather than the magnetic moment, since
consistent Boltzmann statistics gives zero magnetic mo-
ment because of the Bohr-van Leeuwen theorem [for de-
tails and references see p. 94 ff of Van Vleck (1932)].
One could, however, use classical ad Zoc models like
that of Langevin in connection with the present formal-
ism.

B. Equilibrium of multiply periodic orbits under the
Rayleigh-Jeans law

One must now integrate expression (13) over the fre-
quency distribution of the impressed electric field. Be-
cause of the d-function property of the factor f(w,, w),
we find that the rate of absorption is

aw 4m2e?
ZJ = '
N< ai ). = 36T fff TEZO wild,lzu(wr)p,zulszng‘.

(14)

[The term f(w,, — w)makes no contribution as w, and w
are both positive. |

According to electromagnetic theory, an electron
radiates energy at a rate (2/3¢*)e?y? and so the rate of
spontaneous radiation is

dw 4e*
N<"'#>emis = 3_6,3 fff 1;) wﬁ.ldrlzp_,dchﬂsz,;.
(15)
Comparing (14) and (15) we see that there is perfect

"balance between absorption and emission, provided the

radiation energy density is given by the Rayleigh-Jeans
law

. \
u(w) = o7, (16)

This result is valid for any multiply periodic system,
and furthermore it applies term by term, i.e., to each
combination overtone separately. Furthermore by going
back to the calculations of l.c. [cf. Egqs. (11), (44), and
(45) and remarks on pp. 336, 363] one finds that for the
absorption and emission associated with a given combin-
ation overtone the changes in J,,J,,J, are in the ratio
T,:T,:T3, S0 that not only do the books balance energetic-
ally, but also there is no orbital distortion, i.e., ab-
sorption and emission change the shape in the same way.
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The results presented in the preceding paragraph are
essentially what the senior author had in mind for Part
III of l.c. At this juncture we should mention that cal-
culations of a nature closely related thereto were pub-
lished by Niessen (1924), and by Born and Jordan (1924).
Instead of integrating over phase space and making a
partial integration as we do in going from (12) to (13),
these authors both used basically Fokker—Planck fluc-
tuation theory, but the essential points are that they still
had to make, as they did, the calculation of absorption
by a multiply periodic orbit and use statistical distri-
butions in extrapolating to quantum theory. The classi-
cal balance between absorption and emission under the
Rayleigh—Jeans law is implicit in their work, but not
explicitly noted. Instead, in the twilight days of the old
quantum theory before quantum mechanics, they were
anxious to obtain equilibrium under the Planck radiation
formula. This can be achieved if —p/kT is replaced by
(b, — Ps)/iw,s as these authors did on the grounds that in
quantum theory difference quotients replace differences.
On the other hand they assumed that the amplitude fac-
tors entered in the same way as classically, or, more
precisely cancelled out in comparing absorption and
emission in the same way as in classical theory. Fifty
years later, a hybrid calculation is less appealing than
one which is purely classical. Granted that the Rayleigh—
Jeans law has its ultraviolet catastrophe (infinite radia-
tion energy density), still there is a certain elegance to
the balance between absorption and emission in a con-
sistently classical framework.

C. The statistical and nonstatistical formulations of the
correspondence principle for absorption

In working on the present article the following alter-
native formulation of the correspondence principle for
absorption was revealed which is somewhat different
from the form presented in I.c. The Einstein (1917) A
and B coefficients connecting two states » and s satisfy
the relation

‘w2 el
Brs =Bsr=ﬁ?:: Ars ) (173-)
where
Tw,=W,-W,>0. (1)
Likewise the Planck radiation formula is
7 w3 Tw —t
u(w) = %g l:exp 'ﬁ - 1} (18)

Let us suppose that the upper state » differs from s by
T,y Tsy T3, respectively in the values of the quantum num-
bers associated with J,,J,,J,. In the early days, before
1924, the correspondence principle was applied only to
spontaneous emission, and as a result it was required
that asymptotically for large quantum numbers

W, s~ W, (192)
4e? w?i
A, g~ |d P == 19b)
rs 303 | TI ﬁwT ’ (

by analogy with Eq. (15). The excess of ordinary, i.e.,
positive absorption over induced emission (also called
negative absorption) for a given transition is
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fn262

ﬁwrsBsr[ Ps— pr]u(w,s) ~ LT w%’ |dT|2pJu(wT) . (20)

4

3kRT
The asymptotic value indicated by the arrow is a conse-
quence of (11), (17), (19), and the fact that

Py =Ps—~ (dp.l/dWJ)hjwr s
= —(o,/kT) 1w, . (21)

The right side of (20) agrees exactly with the corres-
ponding factor in (13), and this fact shows that corres-
pondence principle considerations apply just as well to
absorption as to emission and are mutually consistent.
One could equally well start with absorption as with
emission. This result seems almost trivial nowadays,
inasmuch as classical is generally a limiting case of
quantum mechanics. Still it is interesting that in the
partial integration that took (12) into (13), and also in
(20), one has dp/dW in place of —p/kT if one assumes
a nonequilibrium distribution in which the density of
states is an arbitrary function of the energy W. If dp/
dW >0 one would have a classical net negative absorp-
tion. Usually one associates laser action entirely with
quantum mechanics, and inverted populations. However,
even in classical theory one can have similar behavior
if the derivative dp/dW is positive.

The form of the correspondence principle which we
have presented is to be contrasted with the original ver-
sion in Il.c. which, because of (17) and (19), took the
form

ﬁw'rsBsr “(wrs) - ﬁwstBstu(wst)

—~

4n%e? & B
3 kZ:lTkg‘j;[wTIdleu(wT)], (22)

where the states 7, s, ¢t are identified with J, + 7,7,

Iyt Tl , Ju+ 7.0, withd,Jd,,J;, and with J, = 7,7,

Jdy = T,0l,d, — 7T,0i, respectively. The right-hand side of
(22) does indeed agree with the corresponding part of
(7) when we use the 6-function property of f [Eq. (9)]. It
should be remarked that (7) and also the right-hand side
of (22) contain terms in du/dw inasmuch as du(w,)/8J,

= (du/dw,)éw,/8J,. On the other hand the absorption in-
volved in (13) or the right-hand side of (20) is directly
proportional to the radiation energy density ». In (22)
one compares the classical absorption with the excess
of the positive absorption from a given state over the
negative absorption going down from it, whereas (20) is
concerned with the excess of the positive over negative
absorption for one given transition. The form (20) of
the correspondence principle for absorption involves
statistical considerations, and the density of states, as
evidenced by a factor involving the temperature, where-
as this is not true of the form (22), which is consequent-
ly nonstatistical.

In concluding the present section it is rather amusing
for one of us to recall the circumstances which led him
to discover the correspondence principle for absorption.
In 1924 he mentioned to Gregory Breit, then at the Uni-
versity of Minnesota, that he could not understand how
there could be any classical analog of negative absorp-
tion. Breit replied that classically there could be fluc-
tuations up and fluctuations down. This Van Vleck took
to mean that there could be classical analogs of the
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transitions s—{ and s -7 on the right side of (22), so

he made the classical calculations with multiply periodic
orbits that led to (7) and (22). However, Breit had in
mind only the fact that depending on the phase relations,
a light wave can receive work from a system, rather
than doing work thereon. There was no acknowledgment
to Breit in l.c., although there is in the preliminary note
in J. Opt. Soc. America (Vol. 9, p. 27, 1924) because,
as Van Vleck remembers it, Breit overmodestly objected
that the phase considerations were nothing as explicit
as what Van Vleck construed Breit’s remark to mean.

It is interesting in this connection to quote from a paper
recently published (1975) by R. H. Stuewer, a historian
of science, on the theoretical ideas of G. N. Lewis, the
physical chemist. Lewis was very skeptical about stim-
ulated emission. In an effort to dispel this skepticism
Einstein wrote to Lewis “The sign in front of the ab-
sorbed radiation depends on the phase of the oscillator,
and is therefore just as probably positive as negative.”
This is precisely the gist of Breit’s remarks that led
Van Vleck to produce [.c.

D. The Kramers-Kronig relation and the f-sum rule

There are two important relations which must be
satisfied by an expression for the absorption coefficient
if it is correct. These relations are usually expressed
as integrals involving the imaginary part of the com-
plex susceptibility which connects the polarization P(w)
and the field E (w) = E,exp(iwt) according to the formula
P(w)/E(w)=x(w)=x'(w) +ix”(w). The rate of absorption
of energy, the absorption coefficient B(w), and y”(w)
are connected by the relations

aw.
N<7tL>abs =B(w)u(w), (23a)
B(w)=4mwy" (w) . (23b)

The so-called Kramers-~Kronig relation relevant for
our purposes is

T f_: xuciw“) dw=x'(0), (24)

where x’(0) is the static susceptibility. We follow the
customary modern usage in taking the limits of inte-
gration in (24) and later equations to be from = to + e,
This is a purely formal procedure. One usually com-
putes the absorption only for positive values of w, as
we did in obtaining Eq. (14). We could instead integrate
from O to « and insert an extra factor 2 on the left side
of (24), inasmuch as x” is an odd function of w. It
should be noted that when the integral extends from —
to «, both the f terms in (13) make equal contribu-
tions.

There are also Kramers—-Kronig relations which are
more general than (24) and which express x’(w) (w#0)
as an integral involving x”(w) and also x”(w) in terms
of x'(w), but we will not make use of these other formu-
las. The Kramers—Kronig relations can be derived
(Kramers, 1927) on the basis of very general function
theory arguments, involving the absence of singularities
in the complex plane, which would make the effects of
a disturbance felt before it exists. However, we will
not give the general proof, and instead proceed to show
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that (24) is satisfied for an undisturbed multiply periodic
orbit.

On expressing x” in terms of (dW,/dt),,s by means of
(23) and then utilizing (13) along with the 6 function prop-
erty of the f factors [Eq. (9)] one finds that

1f x"(w) SkT fffzzld o, dd dJ dd, .

(25)

We must now compute the static susceptibility, x’(0),
which is given by

-e—> f f f %pEdd T 4T Jdw dw,dw, , (26)

where p¥ is the density in the presence of the static
field E, which is different from p;, which denotes the
density when E=0. As we are throughout interested
only in linear response, we can take ’

B exE
Py =P eXP 2T )’

_p1<1+exE) )

We assume that the polarization vanishes in the absence
of a field (no ferroelectric effects) and so the integral in
(26) vanishes when E =0.* Thus Eq. (26) becomes

xO==2 [ [ [Fp,ararar,,

where x* means the average over the w’s (equivalent to
a time average) for a state of given J,,J,,J;. When we
use (8), (10) and the fact the system is isotropic, we
see that (28) is equivalent to (25), and so the Kramers—
Kronig relation (24) is satisfied.®

The reader should not form the impression from (28)
that x’(0) is necessarily inversely proportional to T, as
in Curie’s law. For example, in the case of the harmon-
ic oscillator the integral in (28) is, except for a constant
factor, the same as the mean potential energy 3£7T, and
then x’(0) is independent of T. The general validity of
expression (28) in classical mechanics is discussed in
greater detail on p. 37 of Van Vleck’s Electric and Mag-
netic Susceptibilities (1932), where the equivalent of (28)
is called a “generalized Langevin—-Debye formula.”
The other important general relation besides the
Kramers—-Kronig one is the so-called f-sum rule, which
states that

X'(O)z— -

(21)

(28)

© o, Nne?
f wy " (w)dw= prvanll

00

(29)

for a particle of change e and mass m. To prove that
this formula is valid we first express wx” in terms of
(AW ;/dt) s by means of (23) and obtain an explicit form-
ula for (dW,/dt),,, by substituting (7) and (12). The in-
tegrations over w can immediately be performed because

4From this assumption it also follows that the normalization
of the density is unaffected by the field to first order in E.

5In this analysis we have identified x’(0) with the isothermal
susceptibility. The validity of this proc¢edure, ordinarily well
warranted, is discussed in Sec. II.C.
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of the 5-function property of the f factors [Eq. (9)]. One thus obtains

P e 3 9
f WX"(‘*’)d‘*’:T ff[ Z Z 2Tk¥]—{wrldrlz}p.rdJldJ2dJ3'
"~ k=1 T=0 3

At this stage it is appropriate to say something about
Poisson brackets. The Poisson bracket of any two func-
tions a, b, of a set of canonical variables satisfying Ham-
ilton’s equations is commonly written as {a, b} and is
defined classically as

o (e 20 va 9

{a, 0} k=1<aqk p, Py, th> '
The corresponding definition in quantum mechanics, as
most readers know, is (ab —ba)/ifi; that the quantum-
mechanical definition goes asymptotically into the clas-
sical one was first demonstrated by Dirac (1926) as well
as having been discovered independently by Slater, who
withheld publication because of the appearance of Dirac’s
paper. The beautiful property of the Poisson brackets
is that their values are independent of which set of can-
onical variables one chooses to use in the denominators
of (31) provided only that they relate to the same dynam-
ical system at the same instant of time. The proof of
the invariance of the choice of variables is not given in
textbooks as often as it should be. For a good reference
see Goldstein’s Classical Mechanics (1950), p. 250.

Because of the invariance property derived in the pre-
ceding paragraph it follows immediately that if q,,..., p;

and @,,..., P, are two sets of canonical variables evalu-~
ated at the same value of the time, one has

{Qh’ Pz} =0y,
{Qk’ Ql}:{Pk! Pl}= 0,

inasmuch as (31) is obviously satisfied for the choice
4,=@Q,,...,ps=P;. [One should be cautioned that (32) is
not valid if the numerator and denominator in (31) are
evaluated at different values of the time. ]

The ordinary Cartesian coordinates x, vy,z,p,,0,, P,
as well as the angle and action variables, are canonical
sets. Consequently the relations (32) are fulfilled if we
take Q;=w; and P;=J;. The multiple Fourier expansion
of x is given by (1) and the corresponding expression
for p, is

(31)

(32a)
(32b)

p=m Z W, %, €XPLi(T W, + T, + Tw,) |, (33)
T
where w, is a function of J,,J,,J,; [Eq. (3)]. To satisfy
(32) it is required that all terms in the multiple Fourier
expansion of the Poisson bracket vanish except for the
constant term {Q,, P,} which results from the multiplica-
tion of x, into p .,y etc., and it is only this term in
which we are interested for present purposes. So by
use of (1) and (33) in (32) one has

-3 (2x 2 84?.&)
{x,p,}—; <8wk aJ, —aJk ow, )

5

k=1 T=0

9
2/7!«7',2 aJk {wrl lez} =1. (34)

There are also similar expressions for {y,p,} and {z, p_}.
So, using (34) and the definition (8) of |d.[|* we see that
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(30)

the right-hand side of (30) is merely (nez/m)fffp,

XdJ ,dJ,dJ;=Nmne?/m. Consequently (29) is proved. It is
not necessary that there be a Boltzmann distribution
such as in (11). Instead all the atoms could be in the
same state J,,J,,J,;. In other words the f-sum rule is
nonstatistical in nature (except for averaging over the
phases involved in the w’s).

A few remarks, mainly of a historical nature, may
now be made about the f-sum rule. Since the asymp-
totic relation (22) is valid for arbitrary u(w), we can
take u(w)=1, and if we then sum over all states 7,
connected by dipole transitions to the given state s, then
(22) becomes

4122 9
ZhwrsBsr— Z ;ZwstBst"T i‘rk oJ {ledTIZ}
7 t k=1 k
272e? ,
= (35)

Here we have inserted on the right side the value which
it acquires because of (8) and the Poisson bracket rela-
tion (34). It is natural to propose that this value also
applies in quantum theory, so that the asymptotic arrow
in (35) is replaced by an equality sign. Then both in-
classical and in quantum theory, the absorption in a
radiation field of uniform unit spectral density (a purely
formal concept) is 272¢?/m, quite irrespective of the
state the atom is in, or the nature of its dynamics, pro-
vided only that they are Hamiltonian and there are three
degrees of freedom (as in l.c.).®

The proposal that the left side of (35) have the value 2m%e®/m
was made independently by Kuhn and by Thomas in 1925. In
their paper on dispersion, written slightly earlier, Kramers
and Heisenberg (1925) used a notation equivalent to writing the
left-hand side of (35) as 2n%e?m™2 7, f;, where the summation
over i includes both 7 and ¢. The letter f was used in the same
fashion by Reiche and Thomas (1925), and the Kuhn—-Thomas
proposal was that Ei f;=1. This relation is the equivalent of
the diagonal part of the familiar formula (gp — pq)/i#% =1 of ma-
trix quantum algebra, but of course the language was unknown
in 1925, The Kuhn paper is appropriately printed as the last
article in the first half, “Towards Quantum Mechanics,” of the
van der Waerden (1967) quantum-historical compendium, while
Part II, “Matrix Mechanics,” appropriately opens with the
Heisenberg (1925) paper which Kronig calls “the turning point”
and which van der Waerden (1967) characterizes as the dis-
covery of a “small path that led from the darkness towards the
light of a new physics.” The reason for the term “f-sum rule”
is a purely historical one, arising from the use of the letter f
in the early papers, as we have mentioned, and is not a happy
or informative choice of terminology. It should be mentioned
in this connection that Kuhn suggested that the expression given
on the left-hand side of (35) has the value 27%e%/m, not be-
cause of the correspondence principle argument indicated
schematically in Eq. (85), but instead because this particular
value made the Kramers dispersion formula reduce to the

8If unit energy density is relative to the true rather thanthe
angular frequency distribution me?/m occurs in place of 2r%e?/m.
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classical Thomson formula if the frequency of the impressed
light is high compared to the frequencies associated with
atomic binding. This is a more physical argument based on the
idea that with high frequencies quantum discreteness is unim-
portant. It is sometimes stated in the literature (e.g., Heisen-
berg, 1925) that Thomas also was led to the f-sum rule by the
same dispersion argument as Kuhn’s, but instead Thomas used
the more immediate type of correspondence principle analysis
schematized in Eq. (35). A year before the papers of Thomas
and Kuhn, one of us showed (p. 359 of 7.c.) that the right side
of (35) had the value 2n%e%/m,” something not previously noted,
and in a footnote suggested that the left or quantum side might
also have this value, but dismissed the suggestion as “tempting
but probably futile.” The grounds for this dismissal sound to-
day rather naive, viz. disagreement with some questionable x-
ray data and especially the surmisal that there would then re-
sult a nonzero probability of transition to nonexistent states.
Actually there is an additive constant in all the B’s which can-
cels out of the difference on the left side of (35) and which is
determined by the boundary condition that there be vanishing
of the transition probability to nonexistent states. This type

of boundary condition was used in the pre-quantum mechanical
papers of Goudsmit and Kronig, Russell, and Sommerfeld and
Honl, who developed sum rules for calculating relative inten-
sities in Zeeman and multiplet components, but for the most
part their papers had not appeared when [.c. was written. Van
Vleck was led to an incorrect value of this constant by employ-
ing even for small quantum numbers a relation between clas-
sical and quantum amplitudes only warranted asymptotically
[Eq. (10) of 7.c.].

E. The method of correlation functions and the Wiener-
Khintchine formula

We now turnfrom the study of multiply periodic orbits
described by angle and action variables to a modern
method of attack, based on correlation functions and
the Wiener—Khintchine formula.

By the correlation function associated with a time-
dependent quantity we mean the average (f(¢)f(#')) taken
over an ensemble of atoms so that all differences in
phase and state are ironed out. (Alternatively we could
average over ¢ with fixed ¢’ —¢, if all atoms over a
very long time interval have the same average history—
essentially the ergodic hypothesis.) The Wiener-Khint-
chine formula states that the “power spectral density”
®(w,f) of f(t) associated with a frequency w is 1/7 times
the Fourier transform of the correlation function, i.e.,

"Van Vleck did not use Poisson brackets to establish the rela-
tion (34) basic to the proof, but instead used a rather cum-
bersome variational method given in Appendix I of his 1926
book, but quoted in advance in I.c. He derived the Lagrange
bracket relation 2, 8/94, (2mw,|d,|?) =1 rather than the
Poisson one (34), but either approach works equally well. With
the Poisson approach the factor 3 in the denominator of (7) is
canceled out by summing over k2. The Lagrange brackets differ
from the Poisson ones in that the summation over the canonical
variables is in the numerator rather than in the denominator.
For a description of the relation between Lagrange and Poisson
brackets see Goldstein (1950). Van Vleck in his Quantum Pvin-
ciples and Line Spectva, written in 1925, treated canonical
transformations by means of Lagrange rather than Poisson
brackets, as at the time it was not realized that, in quantum
mechanics, Poisson brackets would be the more useful of the
two alternatives.
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e =2 [ Gaene s ~2aq . (36)

What is meant by “power spectral density” is clear if
we write down the further relation

[ et naw= . (37)

Thus ®(w,f) tells us what the power spectrum of f(¢) is
like on the average. We use the term power because it
refers to expenditure of energy per unit time if we re-
gard ff(t)zdt as energy, but in this connection it is to
be understood that we use “power” and “energy” in a
purely heuristic sense, so that we can visualize the re-
sults in terms of, say, ac currents, but the dimensions
of f(1)?> and f(t)*t need not be those of power and energy
in the literal sense. A word should be said about the
meaning of the notation (-++) in (36). As in Sec. I.A it
denotes an average over an ensemble, so that

(...):cf... f("')e”W/dex...dpz,

if one is calculating in phase space or
(++)=C f e j( .. )e"WJ/deJldJZdJ3 ,

if one is using angle and action variables and has al-
ready averaged over the arbitrary epoch or phase angles
associated with the angle variables w,,w,,w,. With
either procedure the constant of proportionality C is, of
course, determined by the requirement that the number
of molecules per unit volume is N.

The Wiener-Khintchine theorem is remarkable in two
respects. In the first place, it has a simplicity ideally
adapted to statistical systems. Unless otherwise stated
it will be assumed that (f(£)f(¢')) is a real function of
only the argument ¢’ —¢. It is furthermore (until one
passes to quantum mechanics) an even function of ¢ - ¢,
as there is nothing to distinguish between (f(¢)f(¢')) and
{f(t')f(t)). It is'the richness of the physical content of
the assumption that (f(¢£)f(¢')) depends only on ¢’ — ¢{ that
gives the Wiener—-Khintchine theorem its usefulness and
vitality.

The other reason the theorem is remarkable is that
it was not derived until 1930, when it appeared in a
rather abstract mathematical paper of Wiener’s not
particularly concerned with physics. Subsequently, it
was discovered independently by Khintchine in 1934.
When one thinks of all the complicated abstract mathe-
matics and physics that was developed by 1930 it is hard
to believe that this beautifully simple theorem had not
been discovered earlier (just as the so called Plancherel
theorem we mention later was used by the elder Lord
Rayleigh, without the niceties of rigor, in 1889, some
twenty years before Placherel’s 1910 paper (see
Kemble, 1937). .

The proof of the Wiener—Khintchine theorem is exceedingly
simple, and at the same time sheds light on its meaning. The
Fourier integral description of f(#)

o)== f gt do , (38)

where
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1 « ;
W) =—=— te tdr . (39)
g == [ s
An immediate consequence of (38) and (39) is the well known
Plancherel relation

f swta= [ gt Pao=2 fo lgw) 2w .

The proof of (40) except perhaps for questions of rigor consists
in writing down f(t)? as a product of two integrals of the type
(38), and integrating over a long period of time. This has the
effect of introducing a 6 function, 6(w’ — w’’), in the double in-
tegral, which thus becomes a single integral given by the right
side of (40). Evidently 2|g(w)|?dw is the “energy” associated
with f(¢) in the frequency interval w, w+ dw, since we must
consider both +w and —w (or alternatively the factor 2 associ-
ated with the cross product of terms in +w and —w [cf. Eq.
(10)]). To establish the Wiener-Khintchine relation (36) we
must show that

(40)

2|g(W)|*=2T® (w0, 1) (41)

assuming f(¢) vanishes for |¢|>T. Now from (39) we have
v1 T rT ; -
(g(w)g(w)*>=—f f (B ety e~y diay’
2r JgJr

1 2T/ ~2T-ty .
o [ [ Ot
2m Jo ~(2T-t9)

Here we have changed variables from ¢,¢’ to ¢y =t —¢' and ¢;=¢

+ ¢ and utilized the fact that (f(#)f(#')) is an even function only
of t —-t’, which is the crux of any argument based on the Wiener—
Khintchine relation. We now assume the {f(0)f(#;)) converges to
zero as f;—~+<. [If f(¢) has a “dc” component so that f_mf(t)dt
= 0 this component can be subtracted out and f(¢) redefined.

The dc component would correspond to a “delta” function at
w=0 in the integral (36).] Because of the convergence of
{f(0)f(t1)) to zero, the limits of integration on #; can be treated
as +%°, since T can be made arbitrarily large. When the limits
in the integration over #; are changed to i+« we have exactly

the desired relation:

20g@H =2 [ " orenetar,
 =2TRW,f).

With the Wiener-Khintchine theorem all our relations
ragarding emission and absorption can be derived very
simply, provided we utilize the fact that for a well be-
haved function the Fourier integral expansion of df/dt
is the same as that of f except for a factor iw, or in
other words

27102
NAW /ath,, = s

T mRT

o ft (5. (0D,(t")) cos(wt - €)cos(wt’ ~ €)dt’ .
t—=0

Now, as already noted (. (¢)p,(¢')) is on the average an
even, real function of only the argument ¢’ —¢. Any
term involving exp[iw(t’+ ¢)] rather than exp[iw(t’ —¢)]
will average to zero if the ensemble has a random dis-
tribution of phases. The limit of integration, f- 6, can
be replaced by —« since all correlation is lost after a
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® (w,df/dt) = W?®(w,f) .

Thus since an electron radiates energy at the rate (2/
3c3)e®?, its radiated power spectrum can be expressed
equally well as

(42)

aw 2eN@ (w, p,)w?
N<—E = —‘_"—x—‘can,:zp , (43)
or as

N<— cLL_V> _ 2e2N(P(;o,x)w“ . (44)
dt emis c

(The factor 3 in the denominator has disappeared be-
cause there are x, y,z components.)

We must now calculate the rate of absorption of radia-
tion. To do this we rely heavily on Liouville’s theorem.
The rate of absorption in a field E,cos(wi — €) at a given
time ¢ is

NCaW/dt)s =2 [+ [ 500" - pax. . .ap,

x E,cos(wt —€), (45)

where p? is the instantaneous density in phase space
dx...dp,, and € is some phase angle. The value of p?
is not the same as the value p for £ =0, because the
medium is unpolarized, i.e., (p,)=0 unless there is a
field E. This fact permits us to write p? - p in place of
pZ in (45). What we can do is to trace the field back to
a much earlier time ¢ — ¢ before the field is applied, at
which point pf had the value pf =p=NCexp(-W/kT),
where W(x,,...,p,,) is the “inner energy” exclusive of
the applied field.

The systems occupying an element of volume 4T
=dx,...dp,, at time ¢t - 6 are carried over into an ele-
ment dI'' =dx. . .dp, at time {, and because of Liouville’s
theorem dI'=dTI’. Hence the proper value of p¥ —p to
use in (45) is

p? —p=NC{exp[-W(xy, ..., P.0)/ kT
D)/ RT]}.

Now the rate at which the applied field changes W is
(e/m)p,()E cos(wt — €) and so to first order in E

—exp[-W(x, ...

P —=p=aplt, 9):@33 ft byt )cos(wt’ —e)dt’ . (46)
mkT 4 _g

In virtue of (46), expression (45) becomes

*mszf' .. f [[—te DD (t")cos(wt — €)cos(wt’ - e)dt’} pdx...dp,,

(47)

r

sufficiently long time interval according to the assump-
tions underlying the Wiener~Khintchine formula.
Furthermore E cos(wt — €) is connected with the radiant
energy density u(w) by the relation E2/87 =4u(w), but
the factor 4+ goes out when we allow for the fact that
there is also work done by the y and 2z components of the
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radiation field, and so, using (36), we have

‘211282
N{AW /A1) aos = Tm? Nu(w)®(w, p,), (48)
or equivalently, because of (42) and the fact that .
=mdx/dt,
2,2 2
NC@W /at),, = 2m2e* Nu(w)® (w, x)w . (49)

kT

From comparison of (48) with (43), or equally well, of
(49) with (44) it follows immediately that there is equili-
brium between absorption and emission if the energy
density has the Rayleigh~Jeans value (16).

The Kramer-Kronig relation and the f-sum rule also
follow immediately. To prove the Kramers—Kronig re-
lation (24) we simply take f=x in (36) and express the
integrand in (37) in terms of x”/w by combining (23)
and (49), noting that a factor of 2 arises because the
region of integration is half as big in (37) as in (24). To
prove the f-sum rule we take f=p, and express the inte-
grand in (37) in terms of x”w by means of (23) and
(48). One thus finds that the integral on the left side of
(29) is Ne*n[(p2/kT]; the bracketed factor is simply
1/m by equipartition and so (29) is established.

The simplicity and power of the correlation function
method cannot be overestimated, especially in the his-
torical context. Planck thought the proof of the balance
between absorption and emission under the Rayleigh—
Jeans law just for a harmonic oscillator or two-dimen-
sional rotator of sufficient importance to warrant in-
clusion in the editions of his Warmestrahlung published
in the 1920’s even though these dynamical systems were
highly simplified and idealized ones. When in 1924 one
of us found that the balance held generally in multiply
periodic systems, we hoped that it might be referred to
in future editions of Planck’s book, which never appeared
for a variety of reasons, perhaps most notably the quan-
tum mechanical revolution. The calculation of absorption
by multiply periodic orbits (the most general undistur-
bed relevant classical dynamical system) was a some-
what laborious one as made by applying perturbation
theory with angle and action variables as in l.c. One
can, however, also obtain our final formula (13) simply
by using (49) and assuming x to be described by a multi-
ple Fourier series of the type given in Eq. (1). To see
this we note that in (x(¢)x(¢’)) the only terms that don’t
drop out in averaging over all phases are the cross
terms between a given 7 and ~7 [cf. Eq. (10)]. Thus (36)
becomes

Cw,0)=2 Y |xl2fw,, 0)+fw, -0)], (50)
T=0
where f(w,, w) is a 6 function as in Eq. (9). The extra
factor % found in (13) but not in (49) is because of the
definition (8).

However the greatest service of all provided by the
correlation function approach is that it frees us from
the assumption that the system be undisturbed. All the
analysis in Sec. I.A-I.D applied only to undamped sys-
tems with infinitely sharp lines. The proofsinthepres-
ent section of the equilibrium under the Rayleigh—Jeans
law, the Kramers-Kronig relation, and the f-sum rule
apply even when the system is disturbed by collisions,
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provided there are no sudden discontinuities. However,
the traditional models in which velocities and positions

. are discontinuous at collisions can cause trouble, as we

shall see in the next section, though even the troubles
can be enlightening.

F. Line shape with traditional collision-interrupted
models

The method of correlation functions which we have pre-
sented is so general that it does not tell us specifically
what is going on unless we adopt some sort of a definite
model. In this respect it is a little reminiscent of ther-
modynamics. We therefore examine the situation when
the atoms or molecules are interrupted by collisions so
that the lines are not infinitely sharp. We will assume
that at a collision there is no correlation (“hangover”)
with what has been going on before. We use the term
traditional to indicate we are not at present talking about
an “FM” type of collision theory in which the frequency
is changed at collision but not the phase. Instead we as-
sume, as in the traditional impact theories, that there
is no persistence in phase. Consequently, instead of
t — 6 being an arbitrarily large negative time, as in the
uninterrupted model, we need run the time back to values
of 6 distributed according to the usual random law that
the probability that a collision last occured at a time in
the interval —6, —6+d@ is given by ye™ %406, where 1/y
is the mean duration of the interval between collisions.
Consequently, since all correlation is destroyed by the
collision, and since (f(¢)f(#')) is still an even function of
t' —¢, we must use in place of (36)

(P(w,f):;z; fw ye'Vede_[: SRS Neos[w@ =) ]dEt —1¢) .

(51)

If we now assume that f=x and that x is given by a multi-
ple Fourier series x=) . x,exp(iw,f+i€,) then, as usual
the only terms that persist on averaging over all phases
are those resulting from multiplication of x, into x_..
Since )

cosa cosb = 3 [cos(a —b) + cos(a +b)], (52a)

- “
f eemmbwe=zazg, (52b)

0
we find that (P‘(w, x) is still given by expression (50) pro-
vided we define f(w,, w) not as a delta function, as pre-
viously, but instead as

Aw

T(w, - w)?+ Aw?] ’ (53)

(Aw=7v).

flw, w)=

If we assume the Fourier coefficients of p, differ from
those of x by a factor of imw, as in Eq. (33), then ®(w, p,)
differs from @ (w, x) only by the extra factor m*w? inside
the summation in (50). From (23) it follows that the ex-
pression for the absorptive part of the susceptibility is

INC® S | P wn @) 4@y, =],

54
kT TZ0 ( )

X” (w) =
provided we use (49), i.e., work with the correlation in
x. On the other hand if we employ (48), i.e., work with
the correlations in the momentum p,, we find
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X" (w) =?}§ D W2k, P f(wqy w) +f (W, —w)],

(55)
where both cases f(w,, tw) are given by (53). The two
expressions (54) and (55) are not the same except in the
resonance region(w,+ w)—~ 0 or in the limit Aw -0, i.e.,
infinitely sharp lines. Then (54) and (55) are the same
and in the narrow linewidth limit reduce to the expres-
sion previously derived for uninterrupted systems.
What is the cause for the discrepancy? It is that be-
cause of the assumption of infinitely sharp collisions,
x is not a well behaved function. A valid multiple Four-
ier series for p, cannot be obtained by term differenta-
tion of the series for x, as in (33). Instead at each col-
lision the coordinate x changes abruptly and the momen-
tum p, is infinite.

Since
fw Awdw —
Lo (Wxw )2+ Aw? ~

one finds that (54) satisfies the Kramers-Kronig rela-
tion (24), and that (55) satisfies the f-sum rule (29).

But the reverse is not true (unless Aw—0). In fact it is
clear from physical considerations that (55) cannot be
correct at low frequencies since according to (55) the
absorption approaches a constant value and the suscep-
tibility has a singularity, whereas actually the absorp-
tion should be proportional to w?, and the susceptibility
to w. On the other hand (54) behaves improperly at high
frequencies, as the resulting f-sum integral (29) diver-
ges.

It is clear that one cannot obtain an expression for the
line shape which is of Lorentzian form, and which is a
good approximation for the whole frequency spectrum.
To be sure there is balance between absorption and
emission under the Rayleigh—Jeans law if one consis-
tently uses the same kind of correlation function in both
cases [i.e., mates (54) with (44) if one considers the
correlation in x, and (55) with (43) if one considers that
in pr

It is futile to inquire whether (54) or (55) is basically
correct, since neither is completely. However, (54) is
probably a good approximation from low frequencies up
to the resonance region, and at high frequencies no
formula of the Lorentzian (rather than, say, Gaussian)
type can possibly be right, as f: X" (w)w"dw should be
finite for any value of #» (unless one uses a physically
incorrect model in which the intermolecular approach
has an infinitely sharp boundary). Van Vleck and Weiss-
kopf (1947) (also Van Vleck and Margenau, 1949) appear
to give the impression that (54) was the ultimate Lorent-
zian-type answer which was generally correct. Instead
it is well known that in the high-frequency region one
should use the so-called statistical theory of broadening,
where the intermolecular fields are treated as static
(see Sec. 1.G).

There is a nice physical distinction between (54) and
(55). The result (55) is what one obtains with the impact
model, and assumes the frequency of radiation is so
high that it does not affect the Boltzmann distribution, or
do any substantial work at collisions because during a
collision one averages over a large number of phases of
the radiation. In this case, which we call (a), the Boltz-
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mann equilibrium must be restored at collisions by for-
ces other than the applied field. On the other hand, one
obtains (54) in the case, which we call (b) when the vari-
ation of the field is sufficiently slow so that the Boltz-
mann factor includes the instantaneous value of the po-
tential energy —~exE associated with the field, and is thus
maintained because of this field.

To prove the validity of the statements made in the previous
paragraph‘we go back to the basic formula (45) for the work
being done by the applied field. Various atoms or molecules
differ in the value of the time ¢ — 6 when the last collision oc~
curred, so that we have in place of (45)

N(dW/dt)abs=f—}ff J; Ej cos(wt —€)F(t,0)edodx* + dp,.

(56)
With situation (a) we take
F(t,0)=p,(t)Ap(,0), (57)

where Ap(t,0) is given by the right side of (46) and -0 is the
time when the last collision occurred. In case (b) there are
two effects or corrections to (57) which must be considered.
One is that right after the collision, the value of the density is
p® =p expleEx/kT], so that now, to first order in E

0B(t,0) — p=Ap(t,0)+ peE(t — 0)x(t — 0)/ET .

The other correction is for the impulsive work at collision,
which is equal to eEx6p, where 6p is the change in density cor-
responding to adjustment to the equilibrium value of the field,
i.e.,

3p(t,0)=peEW)xt)/kT — (0%, 0) —p) ,

where pZ(¢,0) is evaluated just before the collision at time ¢.
There are v collisions per second, and so the effect of the two
corrections is to make the proper value of F(t,0) to be used in
(56).

eE () x(¢)
T

F(t,0)=(0F(t,0) — p)p(8)+ my (p oE(t,0)+ p) x(t) .

(58)

The evaluation of the integral in the bracketed factor of (56) is

now an elementary, though slightly tedious process. Since ex-
pression (56) is already of order E we can use for x and p their
unperturbed values, viz.

- iw,t+ i€
x= E Xe€T T,
T
= ; iwrt+ie
px—mz TWe X" T TET
T

The products of the trigonometric factors can be reduced out by
relations similar to those given in (52a). Only the resulting
Fourier terms, which are independent of ¢ and which hence de-
pend only on 6, need be retained when account is taken of the
randomness of phases. [Viz. different atoms are exposed to
random values of the phase € of the electric field, and in the
multiple Fourier series for x and p, the phases €, are given by
€,Ty+ €Ty + €373, Where the €; are random; cf. Eq. (5). It is also
obvious from physical considerations that there can be no terms
involving the absolute time in the final result.] The terms pro-
portional to ¥? in (56) when (58) is used can be converted into
terms linear in v by partial integration, and expression (56) is
thus reduced to a sum of integrals of the form (52b). One thus
finds that one does indeed obtain (54) or (55) depending on
whether one employs (58) or (57). )

We should also mention that (54) can be obtained by a
method due to Karplus and Schwinger (1948). They make
a quantum-mechanical density matrix calcultion, but the
adaption to the classical case is immediate and so we
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will not reproduce it here. Their method has the ad-
vantage that it is not necessary to assume “hard” colli-
sions which completely restore the density to its equilib-
rium value each time. It is only necessary that it tend
toward this value. Their analysis is based on a consid-
eration of the imaginary part of the polarization rather
than the direct calculation of the absorption. It is sim-
pler to use the correlation based on x rather than p,, but
it is physically rather informative to see how the impul-
sive work and adjustments at collision are involved,; they
do not show up explicitly when one works with x instead
of p,.

Another illustration of the limitations of the Lorentz-
ian approximation is provided by our previous calcula-
tion (1966) of the absorption by an oscillator which is
coupled to a continuum of oscillators through a bilinear
interaction. The exactexpression for the susceptibility
was found to have the form

e? Im G (w)
m [w} — w*+ReG(w) P+ [ImG(w) [ ’

X" (W)= (59)
where ImG(w) and ReG(w) are odd and even functions of
the frequency, respectively. The “linewidth” ImG(w) had
the property of vanishing when |w| fell outside the band-
width of modes coupling to the primary oscillator.. Near
resonance (56) reduces to the Lorentzian form

Y
2mw, (@, - w)?+7?

Xn(w):

with @y~ w,+ReG(w,)/2w, and v~ Im G (w,)/2w,. How-
ever, at low frequencies, w<w,, we have

e? ImG(w)

X @)= [E+ ReGOIT

so that the frequency dependence of x”(w) as w -0 is
determined by that of Im G(w), which in turn reflects the
low-frequency limit of the density of states of the per-
turbing oscillators as well as any variation with fre-
quency in the coupling constant. It is interesting to note
that if we take ReG(w)=0, ImG(w)~ w, Eq. (59) gives
exactly the same dependence of the susceptibility on fre-
quency as does the venerable damped harmonic oscilla-
tor mXx+bx +ax=eE. It then becomes identical with a
formula derived by Gross (1955a) by a somewhat differ-
ent method based on a Brownian motion analysis. His
model assumes that collisions can change velocities but
not positions, and so does not encounter the difficulties
mentioned at the beginning of the present section.

G. Line broadening by frequency modulation

The interruption model of collision broadening discus-
sed in the preceding section is appropriate for character-
izing collisions which restore the system to thermal
equilibrium. As such it is a model which is better suited
to describing the relaxation of rotating dipoles than har-
monic oscillators, since in the latter case it requires in
general a complete change in position of a harmonically
bound particle (like a pendulum suddenly being switched
from one side to the other) whereas the reorientation of
a dipole at collision is a much less drastic readjustment.®

8This difficulty has been stressed by Gross (1955a).

Rev. Mod. Phys., Vol. 49, No. 4, October 1977

949

A class of models which are useful in simulating the ef-
fects of collisions on those systems where the harmonic
oscillator is the appropriate classical analog employ a
stochastic modulation of the oscillator frequency.

In discussing the frequency modulation (FM) models it
is convenient to work with the function n=p+imwyx and
its complex conjugate n*. In the absence of perturba-
tions 7 satisfies the equation.

dn _ iwen . (60)

dt
The effect of collisions is simulated by adding to the
right side of (60) a term Swy(¢)n, where dw,(¢) is a ran-
dom function. With 6w, included the solution to the
counterpart of (60) is given by

t
7(t) =n(0)exp[iwyt+1 f dw,(t)dt’]. (61)
0

The calculation of the absorption line shape is carried
out by relating ®(w, x) to the Fourier transform of
(x(0)x(¢)) and then expressing x(¢) as a combination of
7(¢) and n(¢#)*. In such a procedure it is understood that
the bracket (- +) refers to an average over the fluctua-
tions in dw, as well as a thermal average. The resulting
expression for the power spectrum has the form (50)
with the function f(w,, w) given by

J(w,, w)=-21? [: dte’“@om g (1), (62)
where
t
o) = exp[t[ dw, (¢ )alt]>5 , (83)

in which the symbol (- ) refers explicitly to the av-
erage over the fluctuations in the frequency.

In all of the FM models, the line shape is related to
the Fourier transform of the function ¢(¢). As discussed
by Kubo (1961) the differences in the various models re-
late to assumptions about the time dependence of the
fluctuations. We will develop in some detail models in-
corporating Gaussian and Poisson modulation, as these
are the most useful in interpreting atomic spectra. The
Gaussian model corresponds to keeping the first non-
vanishing term in the expansion of In¢(¢) in powers of
dw,. We have

Ino()=— % f' dt'ft At (5w, (') 5w (")) g+ + - »

with the assumption (8wy(t’))s=0. The line shape is seen
to depend on the correlation of the fluctuations in the
frequency. With no preferred point intime (6w (¢')6w,(t")) s
will be a function of ¢” —#' so that we have
t
o =exp [~ [ - 1)RG)ar,], (64)
o

where R(t,) = (6wy(0)6 wy(¢,))s. The variation of f(w,, w)
depends on the difference frequency |w— w,| relative to
the decay rate of the fluctuations. A simple and useful
approximation is to take R(f) = (dw?)sexp[-Af|. As discus-
sed in this journal by Anderson and Weiss (1953), the
line shape assumes qualitatively different forms in the
two limits {w = wy|<Xand |w—-wy|> X K |w—w,|<2
we have
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o) =exp[-r[¢t]], (65)

where y=(0w?)s/A. Using (65), we obtain a Lorentzian
form for f(w,, w) with the width equal to yv. With Gaussian
modulation the Lorentzian form is seen to correspond to
the rapid modulation limit (Bloembergen, Purcell, and
Pound, 1946). On the other hand, if |w—wi|> X, we
have the static limit where ’

o(t) = exp[— 3 (bwd) 5t2] , (86)

which leads to a Gaussian line shape with root mean
square width (bw2)¥?.

Equation (64) for ¢(¢) is an exact result if the fluctua-
tions have a Gaussian distribution. It is frequently a
good approximation in situations where the oscillator is
continually under the influence of a large number of weak
perturbers, as, for example, occurs in the case of sharp
line optical transitions in solids where the fluctuations
in the frequency are caused by the Raman scatter-
ing of phonons. '

The model of Poisson modulation is appropriate to a
situation where the modulation occurs as a sequence of
irregular pulses of short duration. As such it is a suit-
able model for describing pressure broadening in gases,
where the random collisions between atoms generate the
fluctuations in the frequency. We assume there are N,
independent perturbers in a box of volume V and that the
kth perturber causes a frequency fluctuation dw, if it is
within a distance a of the oscillator; otherwise it has no
effect. The function ¢(¢) is then given by

¢(t):,ﬁ <exp[i [t 6(.(),!(t’)dt':]>(S
:IIiI’: {1 -+<exp[i[t 6wk(t')dt’] _1>5 } )
:exp[f <exp[i[t6wk(t’)dt’1—1>é+0 (l"}—aiﬂ )

k=1

= exp[NU <exp[i [t 5wk(t’)dt'}—1>6] )

assuming all perturbers are identical. The connection
between (67) and the Poisson distribution becomes ap-
parent if we consider a related problem (Kubo, 1961).
Let v(r;)=1 if the jth perturber is with a volume v(=a®)
of the oscillator and O otherwise. We define a function
S by means of the equation

N
S= Z v(r;)

j=1

(87)

from which it is seen that S takes on the values 0,1,...,
N. The average value of exp(iSSw,t) is given by

N
(e'S Swoty - H (e v(ry) Swoty Z P(n)e”'é‘“ot ,
i=1 n

where P(z) is the probability there are » molecules in

v. If we neglect correlations between perturbers, P(n)

is given by the Poisson distribution

e_;ﬁﬂ
n!

Pr)=

’

where Z#=N,v/V. As a consequence we have
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('S 8Wot) = e—ﬁ‘exp(h—eiawot) ,

= expE\T,, ‘2/ (e?dwot 1)] (68)
which is seen to be of the same form as (67).

As with the Gaussian modulation we can identify two
limiting cases of (67). In the statistical limit the per-
turbers are assumed to be stationary. We express 0w,
in the form 4(r), where h(») is the fluctuation in fre-
quency induced by a perturber a distance » from the os-
cillator. We then have

; i : 1 fw 2 in(n) ¢
Nar' | =1) = = i -1).
<exp[z[ dw, (¢ )dt] 1>5 v 4mr%dy (e )
(69)

In the opposite limit it is assumed that the duration of
the collision is small in comparison with the reciprocal
of the frequency fluctuation. The integral fotéwo(t’)dt' is
approximated by a phase shift which depends on the im-
pact parameter and the relative velocity of the perturber.
The resulting expression for ¢(¢) is obtained by averag-
ing over velocities and impact parameters and takes the
form (Anderson, 1952)

() = exp| — | ¢ |7mo + 7ot ], (70)

where % is the average speed, o is the optical cross sec-
tion, and 6 is a parameter related to the average of the
sine of the phase shift. Equation (70) leads to a Lorentz-
ian line shape centered about w,+70 with a width equal
to nuo.

In connection with FM modulation there are three com-
ments which we want to make. First, the examples of
Gaussian and Poisson modulation by no means exhaust
the list of physically relevant stochastic models. For
instance, there can be situations where the oscillator
frequency fluctuates between a number of discrete values,
a situation sometimes referred to as Markovian modula-
tion (Anderson, 1954). Second, it is important to note
that the Lorentzian line shape can arise in a variety of
ways and that information on the deviation of a line
shape from the Lorentzian form can often provide in-
sight into the dynamics of the modulation. Finally, it
is obvious that the FM broadening is not limited to har-
monic oscillators but can be a linewidth mechanism for
systems characterized by multiply periodic orbits.

H. The rigid rotator as an illustrative example

The two simplest dynamical systems to examine in
connection with linebreadths, etc. are the harmonic os-
cillator and the rigid rotator. The former was studied
in detail by Van Vleck and Margenau (1949), and anyway
it is clear how it is a simple case of the foregoing gen-
eral analysis. However, it is less obvious how the Debye
formula for the rigid rotator fits into the general for-
malism for multiply periodic systems and the f-sum
rule.

The well known formula of Debye is

NulwAw

3RT (W2 + Aw?) 7 (71)

X/l(w) -

where u is the dipole moment of a rigid molecule buffe-
ted by collisions.
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To obtain (71) it is clear in the first place that we
must use formula (54) rather than (55), as the Debye
formula pertains to low frequencies, where x”(w) must
contain, as previously discussed, a proportionality fac-
tor w rather than 1/w. For a simple rotating dipole
there is but a single value of w,, which we denote by w,.
To obtain the Debye formula, one must make the addi-
tional assumption that w, is small compared to w for all
states with an appreciable Boltzmann factor. This is
possible if the moment of inertia, I, is sufficiently
large, for the energy J2/21 has the average value kT,
and so the prevalent values of w,=dW/dJ are on the
order of (kT/I)*?. When w, < w we can consider expres-
sion (53) to be simply Aw/7(w?+ Aw?), independent of the
value of J. Since we are dealing with a rotator rather
than a particle, ex; and » in (54) are replaced by u,,
and I. Furthermore because of the isotropy and per-
manence of the dipole moment, one has on account of
Eq. (10)

pE= 200 P o P T )

= 6‘ “’ 1x 12
a relation likewise independent of J. So (54) indeed re-
duces to (71).

It is clear that the Debye formula cannot hold as soon
as w, becomes comparable with w for appreciably in-
habited states, as then the resonance will begin to mani-
fest itself over a range of values of the angular momen-
tum. Another type of approximation is appropriate when
the states for which w, and {w| are comparable are well
populated, and at the same time the linewidth is fairly
narrow. To display this approximation, we first observe
that, for the rotator, the explicit form of (54) is

TN p2wfy 2T exp[ =J2/2IRT [ f(w,, w) + f(w,, —w))dJ
6kT [, 2Jexp[—J?/21kT |dJ ’

' (72)

’

X/I(w) —

since for the present problem with two degrees of free-
dom the triple integral in the thermal average is re-
placed by a double integral fow .o defJ +++dJ,. The lat-
ter reduces to +++2JdJ as long as the integrand is
isotropic. We now assume, contrary to the Debye case,
that the variation of the f function is more drastic than
that of the rest of the integrand. Then only the first or
second f term need be considered, depending on whether
w is positive or negative. Since w,=dW/dJ =J/I the
variable of integration can immediately be changed from
J to w,. The integral in the numerator of (72) is evalu-
ated by treating the factor multiplying f as having the
value appropriate to resonance. The integral in the de-
nominator is elementary, and so (72) becomes

TN w®

— e~ Iw?/2RT R
6£°T2|w|

X" (w) = (73)
Expression (73) satisfies both the Kramers—Kronig re-
lation and the f-sum rule, which for the present model
takes the form

w 9 2
f wy"(w)dw = A?:}m

The factor 2/3 occurs in (74) but not in (29) because the
rotating dipole has only two degrees of freedom, rather

(74)
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than three as in the particle model previously used. The
occurrence of u2/I in place of e¢2/m is also a consequence
of using a dipole rather than a particle model. It is not
surprising that (73) yields both the Kramers-Kronig re-
lation and the f-sum rule, as the linebreadth has drop-
ped out completely from (73) and we showed in Sec. 1.D
that both of these relations are always valid when the
absorption lines are treated as infinitely sharp.

The Debye formula (71) also applies as a limiting case
even if one uses-a more general model of a rigid rotating
molecule with three unequal moments of inertia. The
description of the motion can be quite complicated, as
there are in general two different frequencies in the
multiple Fourier expansion analogous to (1) and in gen-
eral there are harmonics, so that one no longer has the
simplification 7=x1. However, as long as all the w, as-
sociated with appreciable amplitudes are small com-
pared to w, our derivation of (71) is still applicable in-
asmuch as 275 ;= o(|terl®+ [ty [P+ |1, ) = p% With the
asymmetrical top model there is no simple formula for
the absorption coefficient analogous to (73) for frequen-
cies comparable to w, when the lines are narrow. The
reason is that the system is not a simple unifrequentic
one. However, the f-sum rule is valid and takes the
form?

hed r 2 2 2
f wx"(@)dw =" [&.J_u@],

3 1, "1, I, (75)

where u, 1, ; are the components of the dipole mo-
ment along the principal axes of inertia l,,I,,1,.

Il. QUANTUM MECHANICAL THEORY

A. Quantum theory of emission and,absorption of
radiation

Beginning in 1925, the development of quantum mech-
anics quickly led to a quantum theory of the absorption
and emission of electromagnetic radiation. In 1927 Dirac
published a paper with the title of this section where he
presented a theory of the interaction of an atom with a
quantized electromagnetic field, which reproduced Ein-
stein’s laws for the absorption and emission of radiation.
A few months prior to this paper Dirac (1926) and Slater
(1927)° published articles, written in 1926, in which they
calculated absorption by what may be called a semiclas-
sical model, in which the atom or molecule is handled
quantum-mechanically, but with the external field trea-
ted as a time-dependent classical variable, so that the

9To derive (75) it is most convenient to take as the variables
of integration the Eulerian angles and the three momentoids
Ijwy,Iywy,I3ws, rather than the three momenta conjugate to
these angles (cf. p. 35 of Van Vleck, 1932). By using momen-
toids one readily establishes that each squared term in the
kinetic energy 3 (f;w}+ Lw}+ I;w}) has the value 327, and so the
proof of (75) follows essentially the same procedure as used to
establish the f-sum rule in the Cartesian case in the paragraphs
following Eq. (49).

104 “note added in proof” in Slater’s paper reads, “Dirac,
Proc. R. Soc. 112, 661 (1926), in a paper the author had not
seen when the present note was sent in, treats absorption by a
similar method. Since he does not discuss spontaneous radia-
tion and since the discussion seemed somewhat fuller than his,
it seemed better not to withdraw the present paper.”
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interaction with the radiation takes the form exE(¢),
where x is.a quantum-mechanical operator. A straight-
forward perturbation calculation, tantamount to the use
of the “golden rule” formula,’ and essentially equivalent
to the procedure of Dirac and Slater, leads to the fol-
lowing expression for the net rate of absorption:

QLV_ = 2 2 2* _
N<dt >abs 41°Ne w“(w); IﬁrlxIS>l 6(hw —E,+E,)

X(P,~P,). (76)

Here (7] x|s) denotes the matrix element of the dipole
moment operator between atomic levels » and s, with
energies E, and E,, respectively. As in Part I, u(w) is
the energy density of the radiation field, while &(+-+) is
the Dirac delta function. The symbols P, and P denote
the occupation probabilities of the two levels. When the
atom is in thermal equilibrium these take the familiar
form

P,=exp[-E,/rT| / Z exp[-E /kT].

Equation (76) has a simple physical interpretation: the
net rate of absorption is given by the average over the
levels of the difference between the rate at which the
energy of the electromagnetic field is reduced by pro-
cesses where a photon is destroyed and the atom is pro-
moted from state s to state » (E,> E|) and the rate at
which it is increased by the inverse process in which a
photon is created and the transition is from » to s. As
is to be expected, (76) is in asymptotic agreement with
the classical absorption formula (14), as one sees by
noting that x®=4d? [Eq. (8)] and that P - P, approaches
the limit P 7w, /kT when fiw,,/kT is small.

The rate of spontaneous emission can be calculated
from the classical formula

aw _2Ne*(@?

N<_ dt >emis N 363 ’ (77)
using the Heisenberg matrix elements of . The result
is

aw _ 4Ne*nwi 2
N <—2—t-_>emis = T& Z P, |[(r|x| s)|Po(iw~E,+E)) .
(78)

This expression can be regarded as the quantum analog

By the “golden-rule” (Fermi’s terminology), the probability
of transition of an atom from state s to state » per unit time is
2n7i 2p,,| (¥|H'|s)|* when subject to a perturbation of the form
(¥|H'|s) exp(—iwt) where {(7|H’|s) is the Heisenberg matrix
element of the perturbing Hamiltonian exclusive of the time
factor, and p, is the density of consecutive values w at the
frequency w,, [cf., for instance, Eq. (29.12) of Schiff, 1949].
In our case we take (#|H’|s)=e({r|x|s)E, and identify 4E}/87
with one-third the radiation energy density »(w). The factor 4
appears here because of the fact that there are equal electric
and magnetic contributions to the energy and because there is
a factor of 2 involved in the mean square of a Fourier series
in exponential form [cf. Eq. (10)]. The factor 1/3 disappears
when one sums the contributions from the x, y; and z com-
ponents. When account is taken of the fact that each transition
carries an energy %w, one obtains a result in agreement
with (76) when one integrates out the 6 function in the latter.
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of the classical formula (15).
By equating (76) and (78) we see that a balance be-
tween absorption and emission is obtained if the equation
4e*nw?
4r%e?w, u(w,) (P, - P,) = —C—;iu P,
is satisfied for all pairs of levels connected by nonvan-
ishing dipole matrix elements. Thus when the atom-is
in thermal equilibrium we obtain the result

w3 -
u(w'f‘s):;Z—CLSi (Ps/Pr—l) 17

3
= By (grorsr _yy, (79)
which agrees with the Planck distribution, Eq. (18).

Rather curiously, neither Dirac in his early paper nor
Slater use (77) to obtain (78) and hence the balance be-
tween absorption and emission. Instead, Dirac did not
try to treat spontaneous emission and said “one cannot
take spontaneous emission into account without a more
elaborate theory involving the positions of the various
atoms and the interference of their individual emissions.”
Slater tried to handle spontaneous emission, but did so
the hard way—not by using the relation (77) but instead
by trying to incorporate in the wave equation the force
on an electron due to its own radiation. He was able to
obtain equilibrium only if the classical expression for
this force was transcribed into quantum theory in a high-
ly artificial way.

It was in 1927 that Dirac published his epoch-making
paper on absorption and emission. His procedure and
results can be described in either of two languages, viz.
that of what we call ethereal oscillators or that of bosons.
In the boson approach, the vacuum is treated as a carrier
of light quanta which conform to the Einstein-Bose sta-
tistics, the essence of which is that there is no “which is
which” effect, i.e., two light quanta which have different
frequency and polarization lose their individuality and
are counted only once. With the oscillator method, the
vacuum is regarded as an ensemble of oscillators whose
quantized energy levels are (apart from the “zero-point”
energy 3%w) 0, Aiw, 27w, ... with probabilities conforming
to Boltzmann statistics, whereas the boson light quanta
can only have the energy Zw. The identity of the results
with the two approaches was evident in the old quantum
theory in the original 1924 paper of Bose, and Dirac in
his 1927 paper showed it also was true in quantum mech-
anics.

We prefer the oscillator method, partly because it
avoids discussion of Bose—Einstein statistics, and part-
ly because it seems to us more physical and easier to
explain, but mainly because of the rather fascinating
thread of historical continuity in attempts to treat radia-
tion as an ensemble of oscillators. It is, however,
doubtful whether Dirac was influenced by, or even fam-
iliar with, the early work of Jeans, though he was ob-
viously acquainted with Bose statistics and Einstein’s
1917 paper on stimulated emission. We are not alone
in preferring oscillator language, for in Fermi’s classic
1932 paper on the quantum theory of radiation, which
appeared in this journal, based to a large extent on
Dirac’s work, the word boson or name Bose never ap-
pears. We use the term “ethereal oscillators” with some
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reservation because ether is one of the few words that
is taboo these days, as it is generally associated with
the outmoded idea of absolute space and time. But this
need not necessarily be the case, and our terminology
seems to us more colorful and descriptive than the term
‘“normal modes of a vacuum.” The situation may be
likened to agnostics wanting to ban any reference to the
deity, because old-fashioned fundamentalism is incom-
patible with evolution and other scientific facts. The
terminology we use is not without precedent. In his
1909 paper Jeans called his procedure a “semi-mechan-
ical model of the aether.”

The idea of treating the ether, or if you prefer, vacu-
um as an ensemble of oscillators is certainly not a new
one. It is found in Rayleigh’s 1900 article, though not
spelled out very explicitly, as the whole paper encom-
passed only two pages. He had the proper dependence
on T and w in Rayleigh—Jeans law, u#(w)=aw?T, but did
not attempt to evaluate the constant of proportionality,
which is a = (k/72%¢?) in our system of units [Eq. (18)]. He
did make an attempt in 1905, but as noted by Jeans
(1905), was wrong by a factor of 8. The energy density
is then simply the density of modes at a given frequency
multiplied by #7". Jeans obtained the Rayleigh—Jeans law
with the proper proportionality factor in 1905 and pre-
sented the analysis more fully in 1909, as did Lorentz
in 1908. At about that time it was natural to replace the
factor kT by the mean energy of a harmonic oscillator.
Then out comes the Planck radiation formula. This
Debye pointed out in a 1910 paper which may be regarded
as the radiation analog of his procedure for treating the
specific heat of solids. As a matter of fact Planck in
1901 had a similar expression for the factor replacing
kKT (and also had the correct proportionality factor), but
he used a somewhat different procedure in his paper.

In his approach, which can be regarded as the beginning
of the old quantum theory, Planck used a harmonic os-
cillator model for matter in equilibrium with the ether.

If one is interested only in the derivation of the Planck
formula with ethereal oscillators and is not concerned
with the interaction of the Planck-distributed radiation
with matter, nothing substantially new has been added
since 1910. The number of normal modes of course re-
mains the same. In quantum mechanics the oscillators
have a zero-point energy 37w not found in the old quan-
theory, but this turns out to be irrelevant, as we dis-
cuss later.

The reason that Dirac’s 1927 paper was a landmark
was that it was the first to bring to light the wonderful
results that come out of the interaction between matter
and a set of ethereal oscillators when the latter are
treated quantum mechanically. The reason for this suc-
cess is what we may call the (e + 1)/n effect, as is evi-
dent from the following. One of the most elementary re-
sults of quantum mechanics is that for a harmonic oscil-
lator the matrix element of the amplitude connecting two
states of vibrational quantum number #» and »+1 is pro-
portional to (z+1)Y2. Similarly joining » and z — 1 in- .
volves n'/2 with the same constant of proportionality.
When an atom or molecule makes a transition from a
state of higher energy to one of lower energy because of
interaction with radiation it must be counterbalanced by
a transition of an ethereal oscillator of the upward type
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n -n+1 rather than the downward variety » —» -1, inas-
much as conservation of energy requires that a decrease
in the energy of the atom must be offset by an increase
in the energy of something else. By a similar argument,
a transition of the atom from a state of lower to higher
energy must be associated with an oscillator transition
of the type » —»n —1. Since the transition probability is
proportional to the square of the amplitude, and since
the dipole factor arising from the atom itself is Hermi-
tean, it follows that the emissive and absorptive proba-
bility coefficients associated with a given pair of states
differ by a factor (), +1)/®),,, where {n),, is the sta-
tistical average for the vibrational quantum number of
the ethereal oscillator of appropriate frequency and
polarization (in the boson particle picture (»),, is the
average number of light quanta).

The extra term + 1 found in the emissive case is nat-
urally interpreted as representing spontaneous emis-
sion, inasmuch as it persists at 7' =0 where the conven-
tional energy density #(w) vanishes [cf. Eq. (79)]. The
terms proportional to (#),, are the same in both direc-
tions, corresponding to the fact that the Einstein prob-
ability coefficients are the same for absorption and in-
duced emission. For a quantum mechanical oscillator
the value of (),, is [exp(#w/kT) =1]"! and so has the
same dependence on temperature as the Planck formula
for the energy density. In this connection it is to be
noted that this density has a factor (z),, rather than
(¢)av + 3) which appears in the mean energy of a quantum
mechanical oscillator. In other words the zero-point
energy is not involved in formula (79) for u(w), so that
the radiation energy vanishes properly at T=0. (It
should, however, be noted that it is essentially the zero-
point energy that supplies the extra coupling responsible
for spontaneous emission.) If we assume that the radia-
tion energy density is that appropriate to thermal equilib-
rium (i.e., Planck’s law is valid) then the ratio of the
induced to the spontaneous emission for a given transi-
tion from a given atomic state is [exp(Zw/kT) —1] %
This is precisely the proper value, in agreement with
the Einstein relation between the A and B coefficients
|cf. Eq. (17a)] inasmuch as the spontaneous and stimula-
ted emission are in general given by A and Bu. Further-
more even if the radiation field happens to be different
from the ideal, blackbody case the relation between
spontaneous emission and absorption or induced emis-
sion will retain the proper (now nonequilibrium) value.
This happened because the spontaneous emission remains
the same while the absorption and induced emission will
be proportional to the average vibrational quantum num-
ber and hence to the energy density irregardless of the
probability distribution associated with the levels of the
ethereal oscillator.

It is almost miraculous the way spontaneous emission
comes out of the (2 +1)/n effect, and in most of the lit-
erature its basic simplicity is obscured in the mass of
general theory connected with absorption and emission.
Only the most rudimentary quantum mechanics of the
harmonic oscillator is needed. In fact Thomas (1925)
[cf. also Reiche and Thomas (1925)] had deduced the
transition probabilities for the harmonic oscillator, and
hence the (z+1)/n ratio, from the f-sum rule even be-
fore the appearance of Heisenberg’s “breakthrough”
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paper into quantum mechanics. By contrast, the semi-
classical treatment of spontaneous emission by use of
the electrodynamic expression 20%/3¢® for the rate of
radiation implicitly involves all the apparatus of elec-
trodynamic theory, retarded potentials, etc., as they
enter in connection with the derivation of this expres-
sion. Also, with this approach, as Slater found out,
there is no simple wave-mechanical transcription of the
Lorentz calculation of the force on an electron due to its
own radiation. )

One of us remembers about fifty-five years ago how
one well known American mathematical physicist told
him that the Jeans enumeration of the normal modes of
the ether should be regarded as sheer mathematical
formalism, devoid of any physical significance. On the
other hand he also recalls reading somewhere recently
how Oppenheimer was in a state of almost delirious
ecstasy after reading Dirac’s paper based on this enu-
meration be it with bosons or oscillators. It is certainly
obvious now which attitude was the right one.

One thing remains for us to do. We have shown that
the oscillator model gives the right ratio of spontaneous
emission to absorption. To complete the picture we
must show that this model gives the correct absolute
value of absorption. To do this we merely have to invoke
the semiclassical calculation of absorption. The Fourier
series used there to describe the radiation field can be
regarded as simply the sum of the displacement coor-
dinates of an ensemble of classical harmonic oscilla-
tors. The absorption contains a factor of #7" if the mean
energy of each oscillator is given the classical equipar-
tition value, but this factor becomes Zw[exp(Tw/kT) —1|7*
if the oscillators are quantized in the 1910 fashion. In
other words, in the semiclassical treatment, the cou- '
pling to the radiation field can be described by quantized
classical oscillators. Substitution of the true quantum-
mechanical ones introduces essentially the (n+1)/n ef-
fect, and if we write off the +1 term as yielding spon-
taneous emission, the residue agrees with what is ob-
tained with the semiclassical approach. Dirac (1958)
expresses this thought in somewhat different language
when he says “the two theories differ only in that the
field quantities all commute with one another in the
elementary (semiclassical) theory, and satisfy definite
commutation relations in the present (Qquantum-mech-
anical) theory, and this difference becomes unimportant
for strong fields (i.e., when we can neglect 1 in compari-
son with # in our (n+1)/n effect). Thus the two theories
must give the same absorption and emission when strong
fields are concerned. Since both theories give the rate
of absorption proportional to the intensity of the incident
beam, the agreement must hold also for weak fields in
the case of absorption. In the same way the stimulated
part of the emission in the present theory must agree
with the emission in the elementary theory.”

Fermi, and also Dirac in the various editions of his book
(though not in his- 1927 paper), used the language of the vector
potential rather than the field strength as we do. They there-
fore took the interaction with the radiation to be not exE(¢),
but rather

e
2mce

2
e
P A+A p)+m2A A

where p is the momentum operator of the electron and A is the
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vector potential operator, which is related to the electric and
magnetic field operators through the equations

1 0A
=< (80a)
H=V xA. (80b)

If only linear terms in A are retained in the interaction, then
it is readily shown that the results are the same as regards
absorption and emission as are obtained by simply taking the
perturbation proportional to the field strength as we did. The
quadratic terms are of interest primarily in scattering, a fact
nicely brought out in Fermi’s article (1932).

The method based on field strength which we employed is
somewhat simpler, at least superficially, than that utilizing
the vector potential, but lacks the latter’s elegance and com-
pleteness. In particular, introduction of the vector potential
enables one to handle the electric and magnetic fields simultan-
eously. Maxwell’s equations show that there cannot be a time-
dependent electric field without there being a magnetic one, and
vice versa. Our presentation has been on the basis that there is
only an electric field, which is tantamount to assuming that the
external magnetic forces on the electron are negligible com-
pared with the electric ones. With minor modifications, our
calculations can be adapted to the other limiting case where
the external magnetic field is more important than the electric
one, so that one is dealing with a magnetic rather than an elec-
tric susceptibility. It should be pointed out that we tacitly as-
sumed E=H in the relations connecting field strength and en-
ergy density. The procedure with the vector potential enabled
Fermi to write down an oscillator-type Hamiltonian function
for the radiation fields in which the electric field energy is the
kinetic term and the magnetic the potential term (or vice
versa—the procedure is such a formal one that there is no real
way of deciding which is which). However it is not really nec-
essary to invoke the vector potential, as it was not employed
in Jeans’ 1909 “semimechanical model of the aether,” which
had essentially this type of Hamiltonian function.

In terminating the present section it should be men-
tioned that despite its many successes, the quantum
theory of radiation is not without its Achilles heel, viz.
the infinite self-energy which results from the interac-
tion of an electron with the radiation field, be it oscilla-
tors or bosons. Such a difficulty was first pointed out by
Weisskopf and Wigner in 1930. This infinity, which must
be written off the books, like the energy of the sea of
states of negative energy of the Dirac electron, must be
regarded as one of the imperfections or mysteries of
present day physics. .

B. Correlation functions and the fluctuation-dissipation
theorem

In the equations presented in the preceding section the
symbols 7, s, ... referred to levels of the isolated atom
or molecule. However the equations are equally valid
for atoms perturbed by collisions, provided the levels
are interpreted as states of the coupled system of the
atom and its perturbers. Because the eigenstates of the
coupled system are not usually known, Eqgs. (76) and (78),
while exact, are not particularly illuminating or useful.
When collisions are important the equations for the ab-
sorption and emission are much more easily handled
when written in terms of correlation functions analogous
to those introduced in the classical calculations in Sec.
I.E. The changeover to a description involving correla-
tion functions takes several steps. We illustrate them
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using spontaneous emission as an example. Since
{rix|sy=(s|x|»)* (x is a Hermitian operator) we have

ZP k7| x| s)|?6(fiw —E, +E )—ZP x| s)s|x|7)

TS
X(Fw-E_+E).

Using the integral representation of the delta function
b=k [ emiar
21 Lo ’

we can rewrite the right-hand side of the above equation
in the form

271% f dt e vt Z P, (r| & Ert" xe T EH M | sy(s| x| 7)

come [ ate et 3 P (ol s %)

7,8

Here x(t) denotes the dipole operator in the Heisenberg
picture

x(t) = exp(i3Ct/ 7 ) xexp(—i3Ct/7 ) ,

where 3C is the Hamiltonian operator. By making useyof
the symbolic identity

3o lrxri=1

where the sum is over a complete set of states, we
finally obtain the equation

3" P, lrlxl o) oo B, + B)= 5 [ die™He(e)x(0).

7S

an

In this expression the symbol (6’) refers to the average
(0)=3" P(rlO|n),
r

=Tr(e”¥/*TQ)/Tre™ ¥/*T

where Tr signifies the trace operation.
When written in terms of correlation functions the ex-
pression for the absorption becomes

ZnNe W

N@W /1) g, = ww) | die (010 - Dx(ON)]

(81)

where (x(0)x(¢)) and (x(.t)x(O)) correspond to the terms
with P, and P,, respectively, in Eq. (76). Likewise for
the emission we have

2Ne?w*

¢t

f " dte et ax(0)y . (82)

N{(=AW /at) omis =

Although in general we cannot equate (x(¢)x(0)) and
{x(0)x(¢)) there is an important relation between the
Fourier transforms of the two correlation functions,
which is sometimes referred to as the fluctuation—dissi-
pation theorem (Callen and Welton, 1951; Kubo, 1957).
As shown in the appendix to our previous paper (1966)
we have

fw dte'“‘”(x(O)x(t))=exp[hw/kT]fmdte_i“"<x(t)x(0)) .

(83)
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With the help of (83) it is possible to express both the
absorption and the emission in terms of the Fourier
transform of the symmetrized correlation function
{x(0)x(¢) + x(t)x(0)), which we write as

() =g [ "t e (0)x(E) + x(D)x(0) . (84)

Using (83) and (84) in (81) and (82) we obtain the results
N{@W /dt) s = 47°Ne?li ~wu(w)tanh(Fw/2kT)R(w) , (85)
N{(=dW /dt)emis = AN e2w?c ™3 (e “*T + 1) 'R(w) , (86)

which lead directly to the equality between absorption
and emission when the radiation field is in thermal equi-
librium.

The use of correlation functions to characterize the ab-
sorption and emission in both the quantum and the clas-
sicalanalyses suggests an alternative statement of the
correspondence principle which we write as

3Hop(D)2%6(0) + %6, (0) %65 (£)) ~ (x(0)x(2)) , (87)

where the subscript op has been added to emphasize that
the left-hand side of (87) is a correlation function as-
sociated with the operator x, whereas on the right-hand
side x denotes the classical variable.

C. Susceptibility and sum rules

By making use of Eq. (23), which connects the absorp-
tion with the imaginary part of the susceptibility, and
the expression for (dW/di),. given in Eq. (81) we obtain
the equation

x"@) =2 [ are HOx@) - xOD ] (88)

Because of the fluctuation—dissipation theorem we can
rewrite (88) in the form

II( )_

where (R(w), the Fourier transform of the symmetrized
correlation function, is given by Eq. (84). Equations (88)
and (89) are the quantum-mechanical counterparts of the
classical expression for the susceptibility obtained in
Part 1. The derivation of y”(w) given here was based on
a calculation of the net rate of absorption from the field,
and is to be contrasted with an alternative derivation,
given in Appendix A of our earlier paper (1966). In the
latter approach an expression for the susceptibility was
obtained by calculating the first-order change in polar-
ization arising from a time-dependent externalfield.
The two derivations lead to the same expression for x”(w)
[cf. Eq. (A10) of the 1966 paper]; however, the calcula-
tion based on an analysis of the polarization gives the
real part of the susceptibility as well.

We now turn to a discussion of the sum rules for x”(w).
Of the two mentioned in Part I the easiest to establish is
the f-sum rule. From (88) we obtain the result

f wy" (w)dw

(89)

__I;I_ﬁe__z_ fm wdw [w dte™ i {x(0)x (1)) — (x()x(0))],

()-89

(90a)
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In the Heisenberg picture dx/dt=(i/%)[3¢, x]=p/m for a
particle of mass m. Thus (90) reduces to

zN me? Nmne?

| oveuo= b = ) = (90)

From (90b) it is evident that just as in the classical
theory the f-sum rule is nonstatistical in nature. Be-
cause of the fundamental commutation relations the ex-
pression appearing inside the brackets in (90b) has the
value i7Z independent of the levels involved in the thermo-
dynamic averaging.

In the analysis of the Kramers—Kronig relations pre-
sented in Part I it was tacitly assumed that the static
limit of y’(w) could be identified with the isothermal sus-
ceptibility x,. While this is the case for all practical
purposes there are so-called non-ergodic model systems
where x/(0)#yx, (Falk, 1968). As shown in the appendix
to our earlier paper [1966, Eq. (All)|, the analysis of
the induced polarization leads directly to an expression
for x’(w) which satisfies the Kramers—Kronig relations.
As a result we can express x’(w) in terms of x”(w) by
means of the integral

oy ® 7 X" (w)
X (w)ﬂﬂ -[eo dww’ ’

— (o1)
where @ denotes the principal value, and x”(w) is given
by Eq. (89).

We identify the w=0 limit of (91) with the isothermal
response to a static field. A general expression for the
low field limit of the isothermal susceptibility is ob-
tained by adding to the Hamiltonian a term —exE and cal-
culating the resulting polarization N{ex) to first order in
E. The result takes the form (Van Vleck, 1927)

e

R P T

+ D e ERET(RIX|S)P
R#=S
Ep=Eg

- ~ER/kT YER
21T R; e Er/*T [(R|X|S)| }’ (92)
Eg=Eg (Ex —Es)

provided there is no spontaneous polarization. Here Z
denotes the partition function and eX=e3},; x; is the total
dipole moment operator of the ensemble of N molecules
whose energy levels we denote by R and S. The restric-
tions on the summations, Egx=E and Ep #E g, refer to
exactly degenerate and nondegenerate levels, respec-
tively. Strictly speaking, x’(0), which is often referred
to as the isolated susceptibility, is given by the third
term in the above expression (Falk, 1968; Morita and
Katsura, 1969). However, in real systems the inter-
actions between the molecules and with stray fields will
remove virtually all of the degeneracies. When this hap-
pens in a system made up of a large number of mole-
cules the contributions from the first and second terms
in (92) are negligible in comparison with that from the
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third, so that x’(0) and x, are essentially equal.'> More-
over when x (0)#x’(0) it is not clear how x, could ever
be measured experimentally. All measurements of the
isothermal susceptibility are carried out over finite in-
tervals of time and thus involve in effect time-dependent
fields, albeit of very low frequencies.

In the approach taken in this review we treat the mole-
cules as independent subsystems (apart from perturba-
tions associated with the linewidth). In this approxima-
tion the susceptibility is equal to N times the susceptib-
ility of a single subsystem, i.e.,

Xz~ Zmz eI |x e 3 e E TG |5l 9

E, 7E
- 2kT ¢ E,/RT Iérlai!? I; } (93)
Ky

where 7 and s refer to levels of the unperturbed mole-
cule. It is interesting to note that the formal equivalence
of x, and x’(0) cannot be established from (93). It is nec-
essary to base the analysis on (92), which involves the
exact eigenstates of the coupled system of N molecules
and their perturbers.

In addition to the f-sum rule and the Kramers—Kronig
relation there is another sum rule which is connected
with the fluctuation-dissipation theorem. If we multiply
the expression for x”(w) given in Eq. (89) by coth(%Zw/2kT)
and integrate from -« to +«< we obtain the result

—2;% _[O dwcoth(Zw/2kT)x" (w) =NeXx?) , (94)

which can be regarded as a generalization of the Nyquist
relation connecting the resistivity with the fluctuations

in the current (Nyquist, 1928; Callen and Welton, 1951).13
The distinction between (94) and the static limit of (91)
appears only in the quantum-mechanical regime. In the
classical limit, 7Z— 0, coth(Zw/2kT) — (2kT/7%w), the
Kramers—-Kronig relation and the generalized Nyqulst
theorem are equivalent since

XT:NeZ <x>

’

for unpolarized classical electrons.

\

12When the system is polarized either spontaneously or by a
biasing field it is necessary to distinguish between the adiaba-
tic and isothermal susceptibilities. If the thermal relaxation
time characterizing the interaction between the molecules
and the bath, 7T, is long in comparison with the relaxation
time associated with intermolecular interactions, Ty, X’ (w)
will be equal to Xz in the region 0 <<w<1/T;. On the other
hand, in the region 1/T| <w <1/T,,x’ (w) will be approximately
the same as the adiabatic susceptibility (Gorter, 1947).

13The validity of the generalized Nyquist relation has been
studied by one of us recently (Huber, 1977) with the conclusion
that the precise statement of the relation takes the form

(—;%) f dw coth{fiw/2kT)X"’ (w) = Ne?((x?) — {2+ BT X' (0) = X7) ,

which reduces to (94) when the electrons are unpolarized and
X/ (0) =xp. :
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D. Quantum mechanical theory of the rotating dipole

In this section we apply the general theory developed
in the preceding sections to the rotating dipole. The
Hamiltonian for the unperturbed dipole is written

n2y?
21

(95)

where J is the angular momentum operator, and [ is the -

moment of inertia. The energy levels of the system are
given by

E,=(2/21)J(J+1), J=0,1,2,... (96)

and are 2J + 1-fold degenerate. The corresponding state
vectors are denoted by |JM;) with —=J <M, <J.

Before analyzing the dynamics we calculate the iso-
thermal susceptibility from Eq. (92). We take the axis
of quantization to be in the x direction and identify ex
with pcos6, where 6 is the angle between the axis of the
dipole and the x direction, and p is the dipole moment.
Because of parity and angular momentum selection rules
only matrix elements of the type (M,J +1|cosé8|JM,) are
nonvanishing. After an elementary calculation we obtain
the result (Van Vleck, 1932)

2NI
Xr= 37,52; ’ (97)
where the partition function is given by
Z=Y (2 +1)e Bs/rT, (98)
J=0

In the high-temperature limit, Z = 21kT/%? so that x,
=Nu?/3kT, the familiar classical value. In the opposite
limit, Z =1 so that x, has the limiting value 2NIu2/37%>
at zero temperature.

The calculation of the dynamic susceptibility in the
absence of perturbing interactions is also straightfor-
ward. From Egs. (84) and (89) we obtain the exact re-
sult

II( )_

ﬁZZ tanh(ﬁw/ZkT)

XZ

X[8(E;,—E; —Tiw)+6(E; ., —E; +hw)].

_E',/kT _EJ+1/kT)(EJ+1—EJ)

(99)

Equation (99) is seen to be an infinite series of delta
functions at frequencies corresponding to the energy dif-
ferences between adjacent rotational levels. In the high-
temperature limit we can approximate the sum over
angular momentum states by a corresponding integral,
i.e.,

Z (2J+1)..2f JdJ,

J=0
so that x”(w) reduces to

Nulp2w?

1w 2T
k2T2 |(JJ l ’

X" (w)= (100)
which is identical to the expression given in Eq. (73).

Equation (99) is an exact result. As a consequence
x"”{(w) satsifies the various sum rules discussed in II.C.
Thus we have
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. i ”n
x’(0)=%f X—g—"ldw,
2NIu?
= 3ﬁ2; =X (101)

The f-rule also has a simple form. From (90) we have

lN‘H du > _ (du > >

<”x (dt atr | %=/ -
By making use of the equation of motion for Koy ,dpnx/dt
= (i7)[3C, u,], and the commutation relations between J

and g, which can be expressed as (Landau and Lifshitz,
1958)

f dw wy” (w)=

Ixp=ip, (102)
we obtain the result
“ N7 /2
I dwwy"(w)=35 <T w3+ u§)> . (103)

Because of the isotropy of the thermal averages and the
fixed magnitude of the dipole moment Eq. (103) reduces
to

f dwwx"(w)—zl\rlan s

(104)

which agrees with the classical value given by Eq. (74).
In addition, we note that the generalized Nyquist relation
is equally simply in form. From Eq. (94) we have

w \ oy Np®
f dwCOth<2kT>X (w)= 3

as can be verified from (99).

As might be anticipated from the classical analysis in
Sec. I, the delta functions characterizing the suscepti-
bility of the unperturbed dipoles are broadened by “col-
lisions” with perturbers. Just as in the classical case
the effects of collisions can frequently be simulated by
stochastic models similar to thosediscussedinSec. L. F
and I.G. In the case of the dipole, a particularly simple
model of collision broadening is obtained by adding to
the Hamiltonian a time-dependent perturbation of the
form

(105)

3 (8) =d A (8) +J LA () +J JA(L), (106)
where the functions A, () satisfy the conditions

(Au)4=0, (107a)

(A;OA(E)) 4= 05 g (It =2']), (107p)

in which (-+-), denotes an average over the fluctuations.
Since the unperturbed Hamiltonian commutes with 3¢,
the perturbations bring about random reorientations of
the dipole without changing its rotational energy. Thus
the model is suitable only for characterizing elastic col-
lisions.

To obtain an approximate expressionfor x”(w) we make
use of the representation in terms of the Fourier trans-
form of the symmetrized correlation function [Eq. (89)].
The expansion of the correlation function leads to terms
of the form
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(Myd | g | T "My Y My 7 | m/ﬁ<exP[(i/ﬁ)[tsc’(t’)dt'}ux exp {_ (i/ﬁ)[‘x,(t/)dt’DA et W"IJMJ) ,

where we have made use of the property that 3¢ and 3¢’ commute in order to factor the exponential. At this point we
specialize to Gaussian modulation. In the Gaussian approximation we keep only terms up to order (3¢’)? in the ex-
pansion of the logarithm of the expression in angular brackets. We have

1n<exp[(i/;z) f t%’(t’)dt'}pxexp[—(i/h’) [ ' ZC’(t’)dt’]Z

t
=Inp,+ (/%) f At 3 (E)phy = 5 () o/ 1y

t t
—gf d[’f At [FC7 (17 )3C" (6" V) 4+ 1 TC (7)3CT (1)) 4 —2¢3C" (), 3 (E7)) 41/ 1

+3 <[t at e (), - u,$¢'(t’)>A/u,>2+-'- ,

By making use of the commutation relations between p
and J and the statistical properties of the fluctuations
displayed in Eq. (107), it can be shown that the above ex-
pression reduces to

Iny, -2 ft (t =7)g(T)dt. ‘

As a consequence, the result of averaging the correla-
tion function over the perturbations is to modulate the
unperturbed dipole moment correlation function by the
overall factor exp[—2ft(t - 7)g(1)dT]. Thus in place of
the delta functions in (099) we have the functions
1/nf(E,,, —E,;)/%,+w), which are given by

d< x"):zl_n [: dte”("_"")exp{-Z[ (t—'r)g(f)dr],

(108)

a result similar to that following from Eqs. (62) and (64)
of Sec. I1.G.

There are two features of our stochastic model which
deserve further comment. First, the modulation factor
we derive is independent of the angular momentum states
involved in the transition. Second, by working with the
symmetrized correlation function we obtain an approxi-
mate expression for xy”(w) which rigorously satisfies the
generalized Nyquist relation [Eq. (105)]. However the
Kramers—-Kronig relation (101) and the f- sum rule (104)
are only approximately satisfied.

For other attempts to treat the rigid rotators inclu-
sive of both inertial and collisional effects, the reader
is referred to a paper by Calderwood et al. (1976) and
references included therein; see also Gross (1955b).
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