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A deformed single-particle potential mode, with residual interactions, is applied to an analysis of states in
odd-mass nuclides with A~ 228, and configuration assignments are presented for many levels. The
systematics of energy level spacings throughout the actinides are studied, and the values of the nuclear
deformation parameters that are appropriate to these nuclides are discussed. Tables of occupation
probabilities and single-particle matrix elements are provided to facilitate the comparison of future
measurements with theoretical expectations.
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The heavy element region constitutes one of the fron-
tiers of nuclear research. If the study of odd-mass nu-
clides with A &228 were confined to those found in na-
ture, our task would consist of the study of the single
nuclide "U. However, the situation is now vastly differ-
ent. Almost 100 odd-mass nuclides with A & 228 are
known. The study of the systematics of these nuclides
has led to considerable advances in the understanding of
the alpha-decay process (Rasmussen, 1965), the fission
process, nuclear shapes, and the limits of nuclear sta-
bility (Hill and Wheeler, 1953; Mottelson and ¹isson,
1959; Myers and Swiatecki, 1966; Strutinsky, 1967; Bol-
sterli et al. , 1972; Brack et al. , 1972). Underlying all of
these problems are the concepts of the nuclear single-
particle state and the nuclear central potential.

The single-particle potential plays a central role in our
understanding of nuclear structure. It both generates and
is generated by the motion of nucleons in the nucleus.
Through a proper choice of the effective single-particle
potential many aspects of nuclear structure can be sim-
ply understood. I ow-lying nuclear eigenstates can often
be well described as single-particle excitations. A sys-
tematic study of these excitations determines the param-
eters of the single-particle potential. The single-parti-
cle eigenstates obtained from such a potential provide
the basic building block for the microscopic description
of more complicated nuclear eigenstates. The few-parti-
cle excitations and also the coherent modes are described
in terms of these single-particle eigenstates. In this
work, we examine the low-lying excitations in the heavy
element region and the interactions that best describe
these states.

The first triumph of the single-particle approach was
the explanation of the phenomenon of "magic numbers, "
i.e., the unusual stability of nuclei with certain numbers
of protons and neutron8. By including a one-body spin-
orbit term in a spherically symmetric single-particle
potential, Mayer (1949) and Haxel, Jensen, and Suess
(1950) were able to correlate magic numbers of protons
and neutrons with the complete filling of shells in. the
single-particle potential. This potential also explained
the spins and magnetic moments of magic and near
magic nuclides, as well as the occurrence of nuclear
isomerism. However, this model did not account for the
large observed nuclear quadrupole moments (Townes
et a/. , 1949). The large quadrupole moments led to the
postulate (Rainwater, 1950; Bohr, 1951; Bohr, 1952) of
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permanently deformed nuclides. This model mas de-
veloped by Bohr and Mottelson (1953) to provide a de-
tailed picture of nuclear structure in many regions of the
Periodic Table, most notably the rare earths and the
actinides. The concept of a permanently deformed nucle-
us is a most fruitful one for the elucidation of low-lying
states in odd-mass nuclides in the region that me consid-
er here. An interesting summary of the early history
(Rainwater, 1976), as well as the development (Bohr,
1976; Mottelson, 1976) of this picture can be found in
the Nobel laureate addresses of Rainmater, Bohr, and
Mottels on.

The single-particle states generated from an axially
symmetric spheroidal potential (Nilsson, 1955; Mosz. -
kowski, 1955; Gottfried, 1955) provided a fairly accurate
picture of level spins and level spacings in the actinides.
An improved description of the single-particle states
has been achieved with the introduction of a Woods-Saxon
potential (Woods and Saxon, 1954; Chepurnov and Nemi-
rovskii, 1963). The structure of odd-mass nuclides has
been further clarified with the consideration of two-body
interactions such as the pairing force (Bardeen et al. ,
1957a, 1957b; Bogoliubov, 1958a, 1958b; Bohr et al'. ,
1958), and particle-hole interactions (Brown and Bol-
sterli, 1959; Ar vieu and Vener oni, 1960; Bar anger,
1960; Kisslinger and Sorenseri, 1963; Bohr and Mottel-
son, 1975).

In the 1950s sophisticated. experimental techniques
mere extremely difficult to apply to the actinides. Preci-
sion measurements of alpha and electron energies mere
done using relatively lorn transmission magnetic spectro-
meters. Precise photon energies could be determined
only by diffraction techniques. Ground-state spins and
magnetic moments were determined by optical spectro-
scopy and direct measurements for long-lived nuclei.
A good survey of this situation was given by P erlman and
Rasmussen (1957). Nevertheless, sufficient data had
been obtained by 1959 (Mottelson and Nilsson, 1959) to
establish good agreement with the single-particle model
in the rare-earth region. While evidence for specific as-
signments of the single-particle states in the actinide
elements was much more indirect, Mottelson and Nils-
son (1959) and Stephens et al. (1959) assigned about 40
single-particle states in that mass region on the basis
of energy orderings and inferred spins. They were able
to. confirm half of the assignments by correlations be-
tween theoretical and observed alpha decay, beta or
electromagnetic transition rates, and/or agreement be-
tween calculated and observed magnetic moments or de-
coupling parameter s.

Semiconductor detector and multichannel analyzer de-
velopment provided enormous advances in nuclear instru-
mentation in the 1960s; and a great deal of nem data mas
obtained concerning the structure of the actinides. How-
ever, most of this information mas restricted to levels
below -600 keV.

It became apparent from the studies of Vergnes and
Sheline (1963) that reaction spectroscopy was a feasible
technique to use in investigating levels of deformed nu-
clei, and that this technique mouM yield nuclear struc-
ture information not available from radioactive decay
studies. The earliest attempt to adapt this technique to
the heavy elements was performed by Macefield and Mid-

dleton (1964). A more comprehensive study was pre-
sented the following year by Braid et al. (1965) on neu-
tron states observed in many of the lighter odd-neutron
actinides. Ellis and Schmorak (1972), in their tabulation
of the systematics of A. &229 nuclei, were able to list
120 assigned single-particle states in the heavy elements.
The vast majority of these assignments were based on
data obtained using reaction spectroscopy to populate
odd-neutron species. Our survey contains well over 200
assignments of single-particle states.

As noted above, a compar ison of experimental data with
the predictions of the deformed oscillator model was made
by Mottelson and Nilsson (1959)and by Stephens et a l.
(1959). A later review was given by Nathan and Nilsson
(1965). An extensive review of the rare-earth region of the
Periodic Table was written by Bunker and Reich (1971). In
a companion paper, these data were comprehensively ana-
lyzed by Ogle et af. (1971) for the purpose of determin-
ing the parameters of the single-particle potential in the
rare earths. In this work, we treat the actinides in much
the same spirit as the latter two surveys of the rare
earths. Much of the material discussed in this study was
covered in a preliminary form in talks at the Internation-
al Symposium on Transplutonium Elements (Erskine,
1972; Chasman, 1972). Also, much of this information
has been summarized by Hoff (1972;1975). In this sur-
vey, we have organized the information in the form of
tables, both of experimental data and of calculated ma-
trix elements.

Many excellent discussions have been published of the
single-particle model, the one-nucleon transfer reac-
tion, and residual interaction effects (¹Isson, 1955;
Moszkomski, 1957; Kerman, 1959; Nathan and ¹ilsson,
1965; Elbek and Tj6m, 1969; Bes and Sgrenson, 1969;
Kumar, 1975; Nemirovskii, 1963; Lane, 1964; Brown,
1967; Davidson, 1968; Rome, 1970; de Shalit and Fesh-
bach, 1974; Bunker and Reich, 1971; Ogle et a/. , 1971).
An exceptionally valuable text is that of Bohr and Mottel-
son (1969;1975). We shall refer to the appropriate sec-
tions of this text throughout this paper.

Our survey of the experimental literature has a cutoff
date of December 1976, although there are some refer-
ences to later data.

A. Rotational Hamiltonian

The Hamiltonian that describes this model is (Bohr,
1952; Bohr and Mottelson, 1953)

rotor intrinsic & (2.1)

I I. NUCLEAR MODEL

As the nuclear model me use here has been extensively
discussed elsemhere, me present a summary, mith rel-
evant formulas. In this model, me-assume that the acti-
nide nuclides are nonspherical in shape and have rota-
tional symmetry about an intrinsic z axis and reflection
symmetry through the intrinsic x-y plane. The model is
one of a deformed core mith rotational degrees of free-
dom and valence nucleons that move in the field of the
deformed core. At a more microscopic level, the de-
formed core must also be described in terms of the mo-
tions of individual nucleons (Bohr and Mottelson, 1975).
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with

rot or g 2g li"
K=1 K

(2.2)

++V q(r q, R g, P ). . . )
0

(2.3)

In Eq. (2.2), 8» denotes the moment of inertia of the ro-
tating core and RK is the Kth component of the core angu-
lar momentum. In Eq. (2.3) the indices n and P denote
nucleon orbitals; (P )~ is a component of the nucleon mo-
mentum; V, is the effective central nucleon potential;
and V ~ is the residual interaction between nucleons.
Both V, and V ~ may depend on position, momentum,
spin, and isospin variables.

The relevant angular momentum variables in this mod-
el are B, the core angular momentum; J, the angular mo-
mentum of the individual nucleons; and I, the total angular
momentum of the nucleus. Of these, only I is a con-
served quantity and the relation between the angular mo-
mentum variables is

I=B+J. (2.4)

(2.6)

The final term of Eq. (2.6) is called the recoil term, and

In Fig. 1, we display (as given in Nilsson, 1955) the an-
gular momentum vectors and their projections on ppace-
fixed and intrinsic axes. We shall use indices 1, 2, 3 to
denote intrinsic axes and x, y, z to denote the space-
flxed axes.

Substituting Eq. (2.4) into Eq. (2.2), one obtains

A2
II,...,= (I Z )'. (2.5)

K=1 K

As the core is symmetric about the 3 axis, the moment
of inertia about that axis vanishes and we have

it has usually been ignored in. studies of the actinides.
It can be readily absorbed into Hjgtrjggjpp and presumably
the parameters of the effective potential are adjusted to
take it into account. This term should not give rise to seri-
ous problems in the actinides, where the moments of
inertia are large and do not vary excessively. At the
edges of deformed regions, where the moments of iner-
tia are changing, this term will cause shifts in the rela-
tive single-particle energies. The effects of this term
have been treated roughly in the analysis of the rare
earths by Ogle ef al. (1971). This term has been treated
in more detail in a recent study oi the rare earths (¹el-'
sen and Bunker, 1975) and a study of the transition nu-
clides (Osnes et a/. , 1975). We do not consider this
term explicitly here.

The first term of Eq. (2.6) gives the rotational spec-
trum of the symmetric top. The second term, often
called the Coriolis interaction term (Bohr, 1952; Ker-
man, 1956), gives rise to particle —rotation interactions.

Because we assume that the 3 axis is a rotational sym-
metry axis and the x-y plane is reflection symmetric in
the intrinsic potential, the eigenstates of Hj„„j j.will
have n(Z, ) and parity as good quantum numbers. Fur-
ther, because of the time reversal symmetry of the Ham-
iltonian, all intrinsic eigenstates are doubly degenerate,
with the two degenerate states having projections+ 0 and
-0 on the 3 axis; we denote these states by X„and X „.

Taking the first term of r ptpr j~trj„sj
perturbed Hamiltonian, the eigenstates are of the form
(Bohr and Mottelson, 1953)

2I+1 l 1

(2.7)

where the functions D~„(~,)are symmetric . top eigenfunc-
tions [Bohr and Mottelson, 1969 (Appendix lA)] whose
arguments are the Euler angles ~, These eigenstates
are mixed by the Coriolis interaction term of Eq. (2;6)
(Kerman, 1956).

The main concern of this review is the nature of
odifies our perceptions of the effective

nuclear interaction through the Coriolis term. We pre-
sent here the relevant matrix elements of H„tpr and can
then focus exclusively on the intrinsic Hamiltonian. The
relevant relations are [Bohr and Mottelson, 1969 (Appen-
dix 1A)]

I'D.'„(,) =I(I+1)D.'„(~,),
I~'„((u,.) = QD „((u,.),
I DI „(u,)=MD~„(&u,.), .

I,D'„(~,.) =[(I~n)(I + n1+)]'~' D'„„(~;).

(2.Sa)

(2.sb)

(2.80)

(2.M)

One also needs J, matrix elements to calculate Coriolis
interaction effects. For systems with spherical sym-
metry, J is a good quantum number, and the analog of
Eq. (2.8d) is

z, iz, n) =[(z~ n)(z+ n+1)]'i'iz, n+1). (2.9)

FIG. 1. Angular momenta couplings in the rotational model and
their projections (Nilsson, 1955). B is the core angular mo-
mentuxn and J is the particle angular momentum.

However, the eigenstates of the nonspherically symme-
tric Hj„„j»«do not have a conserved angular momen-
tum, and the matrix elements of J, depend on the details
of these eigenstates. We have tabulated matrix elements
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of J, for all of the orbitals that are expected to be found
in the actinide nuclides, and these quantities are pre-
sented in Appendix C. Because of the core's rotational
degrees of freedom, there is a rotational band built on
each intrinsic configuration X„with an energy spectrum
that is proportional to I(/+1) in lowest order. This ro-
tational spectrum is modified for configurations with 0
= 2 by the Coriolis interaction term, as there are non-
vanishing diagonal matrix elements in this instance. For
0=2 configurations, the rotational spectrum is given as
(Bohr, 1952; Nilsson, 1955)

to the same set of experimental data.
The first extensively used single-particle potential

model for the actinides was the modified oscillator po-
tential of Nilsson and co-workers (Nilsson, 1955; Mot-
telson and Nilsson, 1959). This potential has been mod-
ified and improved (Gustafson et a/. , 1967; l,amm, 1969;
Bengtsson, 1975) in recent years. We shall discuss
this potential in some detail, since the same terminology
is used for other single-particle potentials as well. In
the first and simplest version, the modified oscillator
Hamiltonian is (Nilsson, 1955)

(2.10)
P' mH= +—(Grip +(dz z ) —K(21 ~ s+ ij, / ), (2.13)

with the decoupling parameter 8, given by

a= —(x,(, ~
~,

~
x,p.& (2.11)

with the parameters 2~ and u~~ defined in terms of the
constant h ~0= 41/A'~' MeV, as

The decoupling parameter often provides a characteris-
tic signature for Q= & configurations.

B. Intrinsic Hamiltonian

(d~ = QPO(1 + g6)

(uz = (u', (1 ——',~)',

(2.14)

(2.15)

The aim of this section is the characterization of the
intrinsic Hamiltonian. We first discuss the single-par-
ticle potentia1 and then consider the residual interac-
tl ons .

1. Single-particle Hamiltonian

In the spherical limit, the single-particle potentials
that we consider are of the general form

H. , = + V,~(~)P(p')+Sr — 1 s+ ' V,'".'„, .
P' z 1 dv (x) (1+v, ) („)

(2.12)

There are several different ways of generalizing a Ham-
iltonian of this form for nonspherical potentials. There
is some confusion in the literature on the relations be-
tween different parametrizations of the deformation of
the single-particle potential. In an attempt to clarify
these relations, we discuss this problem in Appendix A,
where all deformation parameters used in this paper
are defi-ned.

The most important deformation mode in the actinides
is the quadrupole deformation mode; however, this is
not the only deformation mode mith axial and reflection
symmetry. Other deformation modes can be introduced
inte the potential, by expansions in a series of Legendre
polynomials, or by rather different characterizations of
the nuclear surface shape, as done in studies of the
fission process (Bolsterli et a/. , 1972; Brack et a/. ,
1972). In most studies of the actinides, at stable values
of the deformation parameters, the Legendre expansion
of the potential shape is used. Because of the assumed
symmetry, only even Legendre polynomials are included.
The deformations characterized by P~(cos8) turn out to
be important in the actinideg, but are considerably
smaller than the quadrupole deformations. The evidence
for higher multipole deformation modes is weak.

Qualitatively, the various treatments of a deformed
single-particle potential give similar results in terms of
single-particle wave functions and energy level spacings.
This is because the potential parameters are adjusted

with E being the parameter describing the magnitude of
the quadrupole deformation of the single-particle poten-
tial. 'The eigenstates of this Hamiltonian are nor-
mally obtained by diagonalization with a harmon-
ic oscillator basis set—either the spherical basis
set (¹Isson, 1955) or the cylindrical oscillator basis
set (Nilsson, 1955; Rassey, 1958; Boisson and Piepen-
bring, 1971). The role of the /2 term in the modified
oscillator potential is to give a potential that is some-
what steeper than the simple oscillator.

The cylindrical oscillator basis set plays a key role in
the description of deformed single-particle eigenstates
as the cylindrical oscillator quantum numbers provide
a labeling of these states. To obtain the cylindrical sol-
utions, one transforms

1
x'=V~,mf8 x, I'„,=4~,mfa»

1z'= v'(d, m/5 z, P,, = P, .
mf5

(2.16)

(~')' = (p')'+ (z')',
cose'=z' fr', (2.17)

The eigenstates of H~ are designated by jn„A) and those
of H, by ~n,). The basis states for the diagonalization in
the cylindrical oscillator representation are labeled as
&'[Nnz A]. N, the oscillator shell number, is the sum
of t e t o oscillator q~an~um nu~~ers ~, and ~~. The
quantity A denotes the projection of single-particle orbi-
tal angular momentum on the 3 axis. Because of the
spin- orbit interaction, A is no long er the cons erv ed
quantity, rather A+8, is conserved. This conserved
projection j, is denoted by 0; m denotes parity. In the
limit of large quadrupole deformations the eigenstates
of the modified oscillator Hamiltonian are well described
by a single basis state 0"[NnzA], where N, nz, and A
are the asymptotic quantum numbers. The stretched
spherical coordinates are obtained by defining the vari-
ables (¹Isson, 1955; Moszkowski, 1955)

Rev. Mod. Phys. , VoI. 49, No. 4, October t977
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FIG. 2. Comparison of Woods-Saxon and modified oscillator
potentials: (a) neutron central potential; (b) proton central po-
tential; (c) radial dependence of the spin-orbit potential. The
sobd curve in Fig. 2(a) is a schematic Woods —Saxon v(y) dis-
cussed in Eqs. (2.18) and (2.19). In Fig. 2(b) a Coulomb term
is also included. The solid curve in Fig. 2(c) shows the radial
dependence of the spin-orbit term of the Woods-Saxon poten-
tial, and the dashed line shows the dependence used in the
modified oscillator model.

I

0.0 0.2 0.4 0.6 0.8
r/Rp

I.O I.2 4

% ith

(r) =(1+exp[(r -B )/a]) '. (2.19)

The essential differences relative to the modified oscil-

and the corresponding basis set is called the stretched
spherical basis, denoted by 0'[N'/'A]. The advantage of
this basis is that states having different values of N' are
not mixed by the first terms of the central potential, in
contrast to the situation that obtains for an unstretched
spherical basis set.

A more realistic approach to single-particle potentials
is the Woods-Saxon potential (Woods and Saxon, 1954;
Blomquist and Wahlborn, 1960; Chepurnov and Nemi. -
rovskii, 1963). The single-particle Hamiltonian H~~ in
the spherical limit is

H„s = + Vov(r)+ V~~ — 1 s+ ' Vc,„,(r) (2.18)
p' 1 dv(r) 1+~,

VfS 2m 0 A

lator potential are (1) the well is finite rather than infi-
nite; (2) the spin-orbit radial form factor is surface
peaked; (8) Coulomb forces are taken into account ex-
plicitly. In Fig. 2, we compare the two potentials. The
parameter R0 is usually taken as &0A' ', with ~0= 1.25
fm; and a, which determines the steepness of the poten-
tial, is 0.6-0.8 fm (Ehrling and Wahlborn, 1972).

Deformations are introduced into the Woods —Saxon
potential either as (Chasman, 1970; Ogle et a/. , 1971;
Ehrling and Wahlborn, 1972)

r~ [1rP+-X, P, (cos8)] (2.20a)

or (Nemirovskii and Chepurnov, 1966; Faessler and She-
line, 1966; Host, 1967; Gareev et a/. , 1967, 1971; Mnl-
ler et a/. , 1974; Brack et a/. , 1974)

Bo //0[1+ Q I3)Y', (cos8)] . (2.20b)
l
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The first of these is analogous to the treatment of defor-
mations in the modified oscillator model. The second is
specialized for the Woods-Saxon form of the potential.

There are several ways to calculate the eigenvalues of
the deformed Woods-Saxon potential. One is to use the
sphe ric al Woods -Saxon eigenfunctions as a basis set for
the deformed potential calculation (Faessler and Sheline,
1966). Another is the coupled-channel method of calcu-
lating Woods —Saxon eigenvalues (Rost, 1967). This lat-
ter technique gives accurate wave functions, including
the tail region, but it is quite time consuming. For most
purposes, e.g. , energy level spacings and transition ma-
trix elements, it is not necessary to calculate the tail of
the wave function accurately. For transfer reaction
studies the tails are important; and this approach, or the
use of Sturmian functions (Anderson et a/. , 1970; Schultz
et a/. , 1972; Bang and Gareev, 1974), is warranted. In
general, however, it is most convenient to calculate the
single-particle states of the Woods-Saxon potential using
a large harmonic oscillator basis set. The cylindrical
oscillator basis set is particularly useful for this pur-
pose. - One chooses the basis set frequencies as given in
Eqs. (2.14) and (2.15) (Damgaard et a/. , 1969; Chasman,
1970). The choice of stretched spherical oscillator
eigenfunctions would also require a basis set of the same
size as the cylindrical oscillator eigenfunctions. The use
of ordinary spherical oscillator eigenfunctions requires
a larger basis set. For deformations of the magnitude
that one encounters in the actinide region (~6,

~

~ 0.30,
~
6,

~

~ 0.10), we find that the cylindrical basis set
for neutrons should consist of at least 14 oscillator
shells and that for protons should consist of at least 13
oscillator shells. The wave functions that are obtained
from the Woods-Saxon potential agree better with exper-
imental data than those obtained from the modified os-
ci llator potential.

In the Woods-Saxon. potential that we have so far dis-
cussed, the calculated binding energy of the Os (orbital)
neutron is roughly 35 MeV. High-energy proton scatter-
ing experiments indicate, however, that the Os proton is
bound by -50 MeV (James et a/. , 1969). If one adjusts
the parameters of the Woods-Saxon well to reproduce
the Os binding energies and keep the Fermi
level at --6 MeV, one finds (Wyatt et a/. , 1960; Brown
et a/. , 1963) that the energy spacings of the eigenvalues
in the vicinity of the Fermi level are roughly twice as
large as those given by the conventional Woods-Saxon pa-
rameter choices, or as indicated by experiment. There
are two ways to look at this difficulty: (1) there is a
real momentum or energy dependence of the effective
single-particle potential that gives level compressions
in the vicinity of the Fermi level (Wyatt et a/. , 1960;
Brown et a/. , 1963) or (2) residual interaction effects
cause the level compression in the vicinity of the Fermi
level. These effects are in no way mutually exclusive.
In either event, the observed level compression can be
simply incorporated into the Woods-Saxon potential, to-
gether with physically correct Os eigenvatues, by making
the potential momentum dependent using a polynomial in
p' (Chasman, 1971). By adding a term U, (P'/m)v(x) to
the potential, it is possible to lower the Os binding ener-
gy and keep the Fermi level at =-6 MeV. This is the ef-
fective mass approximation, and it gives level spacings

in the vicinity of the Fermi level that are too large
(Brown et a/. , 1963). The counterterm —U~(P'/m)'v(r)
gives the level compression at the Fermi level required
by experiment, but it has the catastrophic feature that
infinite momentum states are infinitely bound. To re-
move this catastrophe, an additional term U, (p'/m)'v(7)
is needed. Sets of parameters V„V„V~, and V, for
proton and neutron potentials have been given (Chasman,
1971). We have incorporated this feature into our poten-
tial, and the matrix elements tabulated in this work are
obtained using wave functions calculated with this mo-
m entum-dependent Woods -Saxon s ingle-par tic le poten-
tial. In the vicinity of the Fermi level, the spacings and
wave functions are similar to those of a conventional
Woods- Saxon potential. Single-particle matrix elements
obtained with these wave functions are tabulated in Ap-
pendix C.

In Figs. 3 and 4, we show the variation of proton and
neutron eigenvalues with changes in the quadrupole de-
formation parameter. In Figs. 5-10, we display the
variation of these eigenvalues with deformations in the
P2(cos&), P4(cos8), and P6(cos6) modes over the ranges
of deformation appropriate to the actinides (Braid et a/. ,
1971; Chasman, 1972; Erskine et a/. , 1975). In these
figures there is no volume conservation correction for
the P4 and P, deformations.
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FIG. 5. Actinide neutron single-particle levels as a function of
P2, reduced range; v4 ——0.0, v6 ——0.0.

2. Residual interactions

a. I alrIng

The observed properties of the actinide levels are not
given simply by the central interaction that we have dis-
cussed above. Two-body interactions may modify level
properties substantially. The most important of the res-
idual interactions is the pairing interaction. The pairing
interaction (Bardeen et a/. , 1957a; 1957b; Bogoliubov,
1958), first used to describe superconductivity, was
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rotational states in even nuclides to appear at about this
energy. In fact, these lowest excited noncolleetive
states occur at roughly 1 MeV excitation energy (Lederer
et a/. , 1967). This difference is accounted for by the
strong ground-state correlations induced by the pairing
force. These correlations give rise to a large depression
in the energy of the ground state. Promoting a particle
which involves breaking a pair weakens these correla-
tions and the energy of the excited state is much less de-
pressed.

It is most convenient to describe two-body interactions
in the second quantized representation. In this represen-
tation the pairing force is

+ +
pairing ~ i j z ~p -j j r

i,, j)o

where the antisymmetrized matrix element G, j is

(2.21)

d '~, d'~, g,.(~,)g,.(~,) v(~„)

(2.22)

and the quantities a',.(a,.) are the usual fermion creation
(annihilation) operators. For a short-range attractive
interaction, all of the pairing matrix elements are as-
sumed to be negative (G, , ~ 0). This can be verified ex-
plicitly in the case of a delta force interaction, for which
the matrix element is proportional to the integral of the
product of the densities of the wave functions i and j. In
most calculations, the pairing force matrix elements
are taken as constant (G,, =G).

Calculations have also been carried out with noncon-
stant pairing force matrix elements (Mang, et a/. , 1965;
Griffin et al. , 1971; van Bij and Kahana, 1972; Chasman,
1972; Bes et a/. , 1972; Immele and Struble, 1973;

Glas and Mosel, 1973; Chasrnan, 1976). One such ap-
proach is to assume that the pairing matrix elements
are relatively enhanced for orbitals with similar values
of (n, )j(N) and diminished for values that differ sub
stantially, i.e., large matrix elements between orbitals
with good angular overlap (Bes, 1966; Griffin et a/. ,
1971). This sort of matrix element correlation comes
naturally from the surface delta residual interaction
(Green and Moszkowski, 1965; Immele and Struble,
1973), and can also be obtained by assuming a quadru-
pole component of the pairing force (Bes et a/. , 1972). If
one uses a conventional delta interaction, rather than. the
surface delta interaction, the radial correlations also
determine the magnitude of the matrix elements (Mang
et a/. , 1965; Glas and Mosel, 1973) and there are no

simple rules for the matrix elements. The surface delta
type of interaction can be made somewhat less schematic
using a density-dependent delta interaction (Chasman,
1976), with the interaction taking place outside of the
nuclear interior. Comparisons with the experimental
data (Chasman, 1976) indicate that this form of the pair-
ing interaction provides a much better description of the
actinides than is provided by constant pairing matrix
elements or by the conventional delta interaction.

There is a considerable literature on techniques for
obtaining solutions to the pairing Hamiltonian. The first
and simplest method of solution is the BCS method (Bar-
deen, Cooper, and Schrieffer, 1957a, b; Bogoliubov,
1958; Belyaev, 1959). The a.ccuracy of this method is
rather marginal for studies of odd-mass nuclides. The
BCS wave function is

, = J $ (U + V a' a' ) i
0), (2.23)

is the probability that the orbits K and -K are not occu-
pied by a pair. The wave function Pscs contains configu-
rations with different numbers of particles, but U~ and
V~ are chosen such that the expectation value of the num-
ber operator is the correct particle number. The dis-
tribution about the average value is of little concern in
the case of electronic superconductivity, where one is
dealing with -10 electrons. However, in the nuclear
case one is dealing with only tens of nucleons, and the
deviation of the particle number from the correct value
implies significant corrections to BCS wave functions
and energies. Also, in odd-mass systems there is (at
least) one unpaired nucleon. The orbital containing the
unpaired particle is blocked for occupation by a pair of
particles and should not be included in the BCS wave
function. This same blocking effect is equally applicable
to all other techniques for dealing with pairing forces
and plays an important role in the energy level spacing
calculations. For completeness, we note the BCS rela-
tions

(2.25)

wher e X, the Fermi level, is a Lagrange multiplier

where V~ is the joint occupation probability of the orbits
K and -K and

(2.24)
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chosen to give a wave function with the correct average
particle number, and e~ is the single-particle energy.
~~, the gap parameter, is defined as

~z- Q Gz, i&i&i.
L

(2.26)

The excitation energy of an unpaired particle is given as
= [ (e x)'+ z '„]"'. (2.27)

In odd systems, we are interested in the configurations
with one unpaired particle. The effect of pairing forces
is to reduce the level spacings of orbitals relative to
those obtained from the pure single-particle potential
(Mottelson, 1959; Bakke, 1958/59; Soloviev, 1961;
Wahlborn, 1962). The reason for this compression is
that blocking a level far from the Fermi level destroys
much less of the pairing correlation than blocking a level
near the Fermi level. In even nuclides, the promotion
of a particle causes two orbitals to be blocked, and as
can be seen from Eq. (2.27), the minimum excitation is
&a+ ~I' ~

The BCS solutions are notoriously poor when the
ground-state correlations are weak. Below a critical
interaction strength, the BCS method gives only the un-
correlated solutions (V =0 or 1). This makes HCS re-
sults somewhat more suspect when the blocked level is near
the Fermi level. To get more meaningful results, we
must utilize other methods of solving the pairing prob-
lem. However, the qualitative features that we have
noted in the BCS solutions apply also when other methods
are used.

Analytic solutions of the pairing problem for constant
pairing matrix elements have been obtained by Richard-
son and Sherman (1964). This approach has not been
used in actinide studies, but has provided useful test
cases for approximate treatments of the pairing force
problem (Richardson, 1966). Exact solutions for spheri-
cal nuclides have been given using quasispin methods
(Kerman et al. , 1961).

Accurate solutions. to the pairing problem have been
obtained by the fixed particle number methods (Dietrich
et a/. , 1966; Mang et al. , 1965, 1966), and/or by project-
ing states of good particle number from BCS solutions
(Lande, 1965). Another approach is that of generator
coordinates. One uses the interaction strength as the
generator coordinate. Another accurate technique is- to
assume a semiseparable product form for the wave fune-

(a',.a+,.a ,.a,.) = [(V,)(l —N, )(V,.)(1 N, )]-~', . (2.28a)

where the angled brackets indicate ground-state expecta-
tion values and N; is a pair occupation probability. In
this approximation, the pair occupation probabilities of
levels i and j are uncorrelated in the ground-state wave
function. However, there is, in fact, a correlation. . If
we pick out those configurations in the ground-state wave
function in which level i is occupied by a pair, the occu-
patiori probability of level j will usually be reduced rela-
tive to the value of (V,.). The reason for this reduction
is that the total number of pa. rtieles in the system is
fixed, and increasing the occupation of level i means
that the occupation probability of other levels is de-
creased. Because of this correlation effect, a more ac-
curate approximation than Eq. (2.28a) is (Chasman,
1972)

(a',.a',.a,.a,.) = [(N~(1 N,.))Q, (1 ——N,;))j'~' .. (2.28b)

This approximation takes the correlation of occupation
probabilities into account. The magnitude of these cor-
relations is obtained from the exact sum rule relation

(N; N, ) = (V;) Q (V,.) —(V, )(1 —N;) .
j~i j~i

(2.29a)

Examination of numerically exact solutions of model
pairing systems, and considerations of lowest-order per-
turbation theory, show that the major part of this corre-
lation is between orbitals on opposite sides of the Fermi
level. This feature, together with Eq. (2.29a), gives
rise to the approximation (Chasman, 1972)

tion amplitudes (Chasman, 1964) and to minimize the
energy directly with respect to the parameters deter-
mining the configuration amplitudes. Other methods
have also been proposed (Giu Do Dang and Klein, 1965/
1966; Wahlborn, 1966; Sorensen, 1972). All of the
above methods give accurate solutions in odd-mass sys-
tems.

In the calculations that are presented in this work, we
have used the correlated quasiparticle method (Chasman,
1972) which gives quick and accurate solutions
to the pairing problem. This approach takes into account
the correlations, neglected in the BCS solution, between
pairs of particles that arise in the paired wave function
because of fixed particle number.

It can be easily shown that the results of the BCS
method follow from the approximation

(N. (1 N, ))= (V,)(l N,)+ ' ~ s (N,.)(1 N,.)(V,.)(1 N, )S, ,
1 1

Q G,. (N )() —S')S; $ G; (N )G —N )S~
(2 .29b)

where S, j is a particle-hole correlation enhancement
factor and is given by

obtained by substituting Eq. (2.29b) into (2.28b) and solv-
ing the set of coupled equations

S, , =[(V,.)(1 -N,.)+ (V,.)(1 -N,.)l . (2.29c)

The ground-state energy and occupation probabilities are
s(a)
8(N, &

(2.30)
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as is done in the standard BCS treatment.
The correlation effect of Eq. (2.29b) is particularly im-

portant in deformed nuclides, where the level density is
often low in the vicinity of the Fermi level. This level
density is further lowered in odd-mass systems, since
levels are blocked. In such cases, the conventional BCS
treatment often does not give any solution other than the
trivial one. In the results that we present here, the
blocking effect is taken fully into account.

The strength of the pairing interaction has often been
determined by relating the gap parameter A to odd-even
mass differences, i.e. , setting (Nilsson and Prior,
1961)

z=&M, „ (2.31)

which is an approximate relation. This relation was used
in the analysis of the rare earths (Ogle et al. , 1971).
There it was found that the pairing interaction constant
did not decrease with increasing A., as is expected (Bes
and Sorensen, 1969). Another way to determine the
overall pairing interaction strength is to calculate the
energies of seniority two (i.e., two unpaired particles)
states in the even actinides. Changes of 5 keV in 6 give
changes of -100 keV in these excitation energies. It is
best to use high spin states for this purpose, as they are
more likely to be pure configurations. We have used this
approach to estimate pairing strengths in the actinides
and find no trend of G with mass. We emphasize that the
value of C to be used in a calculation depends on the
number of levels used. In the calculations presented
here, we use 30 levels for both protons and neutrons.
We have adopted the values

G„„„„=0.135 MeV,

G neutron = 0 095 MeV (2.32)

for calculations with constant pairing matrix elements in
the actinides.

In addition to the calculations with constant pairing ma-
trix elements, we also present here the results ofpairing
calculations carried out with matrix elements obtained
from a density-dependent delta interaction. The matrix
element's used in these calculations have been tabulated
and analyzed in considerable detail (Chasman, 1976).

We compare the single-particle level spacings obtained
with the constant G and density-dependent delta interac-
tion pairing matrix elements in Sec. IV.A for both odd-
neutron and odd-protron nuclides in the actinides. In
Appendix B, we have tabulated level occupation proba-
bilities using both types of pairing matrix elements.

b. Particle-hole/Interactions

Although the pairing force plays a major role in deter-
mining the structure -of configurations in the actinides,
it is not the whole story. One must consider other inter-
action modes as well. The importance of other coherent
residual interaction modes is signaled experimentally,
in even nuclides, by the appearance of nonrotational ex-
cited states with energies below 2a and/or by enhanced
electromagnetic transition rates. Such states are called
vibrational states or phonon excitations.

There are several approaches to the problem of parti-,
cle-ho1.e interactions in even systems that take these

features more or less into account. The simplest are
the Tamm —Dancoff (Tamm, 1945; Dancoff, 1950) ap-
proximation and the random-phase approximation (RPA)
(Ferrell, 1957). The RPA takes the ground-state cor-
relations induced by the particle-hole interaction into
account to some extent and is the starting point for the
more modern treatments of particle-hole interactions.
The RPA and the improvements to it are limited in their
radius of effective convergence, as they are perturbation
expansions in the parameter (QU/E), where 0 is the num-
ber of particle-hole pairs, V is the average particle-
hole matrix element, and E is an average energy differ-
ence of the particle and hole eigenvalues.

Improvements on the RPA have been made using boson
expansion techniques in which equations of motion are
obeyed exactly to higher and higher orders in successive
approximations ( Belya ev and Z elevin sky, 1962; Maru-
mori et a/. , 1964; Sgrensen, 1967, 1968; Marshalak,
1974). The boson expansion methods are closely related
to the generator coordinate method (Hill and Wheeler,
1953; Griffin and Wheeler, 1957; Jancovici and Schiff,
1964; Brink and Weiguny, 1968; Wong, 1975) and can be
derived with this technique (Holzworth, 1972; da Pro-
videncia. , 1974).

A second approach to improving the RPA is the dia-
grammatic perturbation theory or diagrammatic Green's
function approach. This approach appears to provide a
convenient and systematic method of making higher-order
corrections to the RPA (Migdal, 1962, 1967, 1968; Mat-
tuck, 1967; Mills, 1969; Brown, 1972; Parry, 1973;
Hamamoto, 1974; Bohr and Mottelson, 1975). The dia-
grammatic calculations can be carried out either in the
time representation or in the energy representation.

Beyond the range of utility of the perturbation schemes,
it appears that the best hope is to take the ground-state
correlations into account as well as possible and generate
excited states from the correlated ground state.

The problem of particle-hole correlations is further
complicated by the presence of pairing forces. This
problem is dealt with in much the same way as the simple
particle-hole interactions. The RPA is replaced by the
quasiparticle RPA (QRPA) (Arvieu and Veneroni, 1960;
Bes, 1961; Kisslinger and Sorensen, 1963; Soloviev and
Vogel, 1967). Boson expansions are replaced by quasi-
boson expansions (Belyaev and Zelevinsky, 1962), and
the particle propagators of the Green's function method
are replaced by quasiparticle propagators (Migdal, 1962).

The particle-hole interactions that have been consid-
ered in the actinides are of the multipole —multipole type
[Elliot, 1958a, b; Belyaev, 1959; Kisslinger and Soren-
sen, 1963: Bohr and Mottelson, 1975 (Chap. 6)j. The
consideration of particle-hole interactions has been
mainly confined to the quadrupole and octupole modes
(Malov and Soloviev, 1966; Bes and Cho, 1966;Neergaard
and Vogel, 1970a, b). The A.th multipole of this intera. c-
tion is

(ilf(x) 1'&Ij)a,'a& g (0l f(x)YPll)a„'a,
p J

(2.33)

with

(2.34)
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In a series of papers, the Dubna group has treated both
quadrupole and octupole modes of the residual interaction
(Soloviev and Vogel, 1967; Gareev et al. , 1970; Komov
et al. , 1971; Ivanova et at. , 1972) together with pairing
forces in the actinides. Much of this work is summarized
in the publication of Gareev et at. (1971). In this work,
the QRPA is used to calculate phonons in the even de-
formed nuclides, and Eq. (2.33) is used to calculate pa, r-
ticle phonon mixings, taking into account matrix ele-
ments of the type

(t, n~=O~Hp „,~ j,n(=1), (2.35)

where n( indicates the number of phonons of type (A. , p, )
in the configuration. This is an oversimplification of the
problem; the correlations associated with the particle-
hole mode must be more adequately taken into account,
i.e. , one must consider backward diagrams in the time
representation.

To illustrate this point, as well as the general features
of particle-hole interactions, we consider an extension
of a schematic particle-hole model presented previously
(Chasman and Durso, 1975). The significant features
can be seen by examining energy shifts to order V' in the
residual interaction. By confining our discussion to low-
est-order effects, we can analyze the problem of parti-
cle-hole interactions in a simple way. Our goal here is
to illustrate the sources of the self-energy shift rather
than to derive any new results. The Hamiltonian we con-
sider is

H = g e~N~ —V g [(a„'as+a'Ba „)]&g (ayah+a'za y)
E' n, a 'y, 6

(2.36)

where e~ is a single-partic1. e energy and N& is the occu-
pation number of level K. In the model we consider here,
there are 0 doubly degenerate levels at the energy c
=0, 2Q doubly degenerate levels at the energy c =1,
20 doubly degenerate levels at the energy e = 2, and 0
doubly degenerate levels at the energy e = 3. We first
consider an even system with 60 particles, i.e., all or-
bitals at the energy e =0 and e = 1 are occupied and all
orbitals at the energy e = 2 and e = 3 are unoccupied. The
orbitals at e = 0 are A. -shell orbitals; thoseate = 1are B-
and C-shell orbitals; those at e =2 are D- and E-shell
orbitals; and those at e = 3 are E-shell orbitals. In this
model, each orbital has a unique partner in the residual
interaction term. Each of the Q A. -shell orbitals at e = 0
has as its partner one of the 0 B-shell orbitals at e =1;
the 0 C-shell orbitals at c =1 have as their partners the
0 D-shell orbitals at e = 2. The remaining 0 E-shell or-
bitals at e = 2 have as their residual interaction partners
the E-shell orbitals at e = 3. In order to avoid irrelevant
Hartree-Fock-type correlations, we exclude all terms
with a+aaa~a; this is indicated by the prime on the third
summation of Eq. (2. 36). In Fig. 11, we show the
various groups of orbitals; the connections for nonvan-
ishing residual interaction matrix elements are indicated
by arrows. The dashed line indicates the Fermi level for
the even system.

In lowest order, the residual interaction modifies the
ground-state wave function by admixing configurations
with two particles in the D-shell levels and two holes in

LUz B

FIG. 11. Energies of levels in schematic calculation. The lat-
eral displacements are made for clarity. The nonzero particle-
hole matrix elements are indicated by arrows. The dashed line
indicates the Fermi level.

the C-shell levels. Denoting a two-particle, two-hole
amplitude as C„and the ground-state amplitude as C„
one has in lowest order

Co(4Q —&u,) =Q' VC, ,

C,(4Q + 2 —u) o) = VC, .

In lowest order, these equations give
1

Ci 2VCo ~

u, =40 -zQ2V .1 2 2

(2.37a)

(2.37b)

(2.37c)

(2.37d)

c',(4Q+2 —~') =Q(Q —1)vc~;-2,
C~~c -2(4Q +4 —(u') = VCD

(2.38a)

(2.38b)

with the indices on the amplitudes denoting the changes
from the particle-hole vacuum. Solving for ~', we have
to order V'

(u' = 4Q + 2 —~pQ(Q —1)V

Comparing Ecis. (2.38c) and (2.37d), we note

= (do+ 2+ 20 V

(2.38c)

(2.39)

We next consider the case in which the odd particle is
added to one of the E-shell orbitals. In this instance,
the situation is reversed. Not only are all configurations
with two holes in the C shell and two particles in the D
shell available, there are additional configurations that
couple here. The new configurations are those with one
particle in the D shell, one hole in the C shell, and one
particle in the I shell. For this case, we have the am-
plitude relations

Cs (4Q + 2 —ru") = (Q')VCD2c-2s+QUC~ -~~ .
We also have, to lowest order,

CD'c-'z(4Q+4 —~")= VCz,
C~l' -i~(4Q+4 —cu") = Vcs

giving

u" = no+2 -2OV ~

(2.40a)

(2.40b)

(2.40c)

(2.41)

uo makes a convenient zero of energy.
Next, we discuss the problem of particle addition (self-

energy shift). First consider a particle added in one of
the D-shell orbitals. Because this orbital is now occu-
pied, the three-particle, two-hole amplitudes with a par-
ticle in this specific D orbital and a hole in the corres-
ponding C-shell orbital cannot be formed. Accordingly,
we have
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Cz(4Q + 3 —(u"') =Q'VCD2C -2F +QVC~-~z,

CD2C -2z(4Q + 5 —cu"') = VCz+ VC~ -jz,
(2.42a,)

(2.42 b)

In contrast to Eq. (2.39), the self-energy shift is down.
An entirely different situation obtains when we add the

odd particle to the I" shell. In this instance, relations in
lowest order are

(2.44)

where 0 ~ 0 is the separable residua. l interaction and -n
indicates the orbital that is the time-reversed partner
of n. The pairing factors that enter the calculation are
of two types:

(1) Seniority two to seniority zero transitions, i.e. ,

C~ -iz(4Q + 3 —cu"') = VCz+QVCD2C &z + (Q —1)V~ -iz-i.
(2.42c)

p
~ ~ p (2.45)

The unperturbed energies of the configurations I' and
DC 'E are degenerate, and a perturbation approach is no
longer valid. In this ca,se, the first corrections to the
energy are of order V rather than V'. With the lowest-
order correction, the energy is p

~ & p A A
(2.46)

with associated pairing factor (U„VS+UBV„) where X de-
notes a particle and 0 denotes the absence of a particle;

(2) Seniority one to seniority one transitions, i.e.,

(d = {80+3 —0V . .(2.43)

We shall pass over this sort of situation in the discussion
of self-energy corrections. Also, the introduction of
pairing forces into the Hamiltonian guarantees that this
sort of degeneracy is broken at low energies in the odd-
mass spectrum (DC 'E is a. seniority-three configura-
tion, whereas F is a seniority-one configuration).

The point of this illustration is that the same attractive
interaction can shift the single-particle states either up
[Eq. (2.39)] or down [Eq. (2.41)], depending on the rele-
vant occupation probabilities, by virtue of changes in the
correlations due to the particle addition. The self-ener-
gy shift to order V' is of magnitude QV'. This is the
leading term in the diagrammatic expansion of the self-
energy. In higher orders, one gets corrections to the
self-energy of the form (1/Q)(QV)

With this illustration in mind, we turn to the situa. tion
that is more typical of deformed nuclides. Here the
pairing interaction is the important residual interaction
and the particle-hole interaction is considered a pertur-
bation. In such a, case, we must consider the mixing of
pairing eigenstates due to the particle-hole interaction,
and the associated energy shifts. Qualitatively, there is
a resemblance to the results obtained in the absence of
pairing. To make the qualitative features transparent,
we introduce some quasiparticle-like approximations. We
assume that the occupation probability of a given level
is the same in all the pairing eigenstates that enter our
analysis, except for a particular orbital that is blocked.
This can be rationalized by assuming that the number of
levels in each shell, 0, is infinite. In the treatment
here, we also assume that the eigenvalues used for the
pairing states are simple sums of quasiparticle-like
energies which we denote as b;. We take the particle-
hole interaction as being electric in character under
time reversal, i.e.,

with pairing factor U Us, and

p ~ ~ p (2.47)

Co(Ro —&uo) = 'UQ (UAVB+ UBVA)'CA2B2

+ (Uc VD+ UDVc)'C c'D'

+(U V +U V)'C
+ (UA VB + UB VA) (UC VD+ UDVC )CABCD

+ (UA VB + UB VA) (Uz Vz + Uz Vz) CA Bzz

+ (Uc VD+ UDVc)(UzVz + Us, Vz)CcDzz

(2.48a.)

For the seniority four amplitude s, we use, e.g. ,

CA2B~( E,+ 2BA + 2h B —~o) = &(UA VB + UBVA) Co ~ (2.48b)

Eliminating the amplitudes gives the shift of coo to order
We use a script U for the interaction strength here

to avoid confusion with the occupation probabilities.
Again, we add a particle to the system, say in the D

shell. This gives the set of equations

with pairing factor -V~VH.
We note also that all residual interaction terms of the

form a'asa+„a 8 should be excluded from the perturba-
tion, as they are simply reorderings of terms in the
pairing Hamiltonian. In writing out our equations, how-
ever, we shall ignore this fact, as it simplifies the writ-
ing of equations. The errors are of the order 1/Q. Here
we label a,mplitudes with subscripts that denote the shells
of unpaired particles.

For the ground state of the even nucleus, we have the
a.mplitude relation

C'D(&+ h D
—ID') ='UQ (UAVB+ UBVA) CA B D

+ (UBVF + UBVB) CB2zBD

~+ (UAVB+ UBVA)(UBVz+ UzVz)CABzzD

+ 'UQ(Q —1)(Uc VD+ UDVc) (UAVB+ UBVA)CABCD2

+ (Uz Vz + Uz Vz)CzzcD

+ 0 0 (Uc UD —Vc V D) (UAVB+ UBVA)CABc

+ (UBVB+ UBVB)Czzc
I

+ &(Q —1)'(U, V D+ UDVc)'CC'D'

+u(Q l)[(U, U, V, V ) (U, V +U, V, )] C',2, (2.49)

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977



Chasman, Ahmad, Friedman, and Erskine: Single-particle states A & 228 847

By relating the amplitudes of the high seniority states to CD with equations similar to Eq. (2.48b), we get a relation
for

Comparing coo and co', we get the result of interest

(u' = (@2+ bD+, '
(Uc VD+ UDVc)' — (Uc UD-Vc V~)'(Uc VD+ Ug)Vc)'

2( )2 (UA 8 UBVA) (UEVF + UFVE)
+&a+ &c+&a az+ &z+ bc+ &D

fl~2(U U V V )2 ( AVE + UE VA) . (UEVF + UFVE)
h~+ h +8 —6 8~+6 +8 (2.50)

We can simplify Eq. (2.50) considerably by exploiting
the particle-hole symmetry of the model that we are us-
ing. The relevant relations are

The higher-order terms of order (1/Q)(QV)", as well as
the terms of order OV', are described by the diagram-
matic relation

V~=V~ ~

Ua= Uc = VD= Vz

Sc 6 D g@ ~

(2.51a.)

(2.51b)

(2.52a)

(2.52b) (2.56)

Making use of these relations, we note that (UcUD
—Vc VD) vanishes and UcVD+UDVc = 1, giving

(n --2')V2 2nV2~' = ~, + &D+ 2~
+

@ @ 2@ (UA VE+UEVA)'~
D A+ 8+ D

&'U (UEUF —VEVF)'= co+ 8@-
@ g p g

(2.54)

and the shift is downward, as was the case with no pair-
ing. For physically reasonable values of G, it is hard to
make any quantitative general statements based on Eq.
(2.50); rather, the specifics of the U s and V s deter-
mine the direction and magnitude of the shifts.

The shifts of order '0' that we have been discussing are
described diagramatically, in the energy representation,
by the relation

(2.55)

which is quite similar to (2.39). A general feature that
em erges from this case i s that when the particle and hole
are symmetric about the Fermi level, the self-energy
corrections are positive. One cautionary note: in quan
titative calculations, one must use the U and V values
appropriate to the specific eigenstates that are interact-
ing, rather than using ground-state occupation probabil-
ities everywhere.

To determine the self-energy shift when the unpaired
particle is put in the E shell, we can again use Eq.
(2.50), making the interchanges of indices C F and D

E. If we make this interchange, and consider the limit
of weak pairing, the largest contribution to the self-en-
ergy shift comes from the final term of Eq. (2.50) in its
interchanged form. This gives

in the energy representation where the propagators are
either particle propagators or quasiparticle propagators,
depending on the system being studied. The'matrix ele-
ments are antisymmetrized in actual calculations.

The vertical wavy line in Eq (2.56). denotes a phonon
propagator. The energy shifts that we have discussed
here can be thought of as arising from interactions of a
single particle and a phonon.

In the calculations of the Dubna group, only the terms
in Eq. (2.50) that are multiplied by (UcUD —Vc VD)' ap-
pear. The counterterms, those multiplied by (Uc VD
+UDVc)2, are not present. The decrease in correlations
due to the occupation of orbitals C and D [the effect illus-
trated in Eq. (2.39)] is neglected. We conclude that these
calculations exaggerate the downward shift of low-lying
single-particle states arising from the particle-hole in-
teraction. A second problem with these calculations is
that the exclusion principle is not taken properly into ac-

countt

in intermediate states, e.g. , the component of the
phonon having a particle in the same D-shell orbital is
not excluded. This correction is made to order V', auto-
matically, when one uses antisymmetrized matrix ele-
ments in the diagrammatic approach. The calculations
of the Dubna group nevertheless give a good qualitative
insight into which states are strongly mixed by particle-
hole residual interactions.

Some of these neglected effects were taken into account
in early calculations in the rare-earth region (Bes and
Cho, 1966). More recently calculations taking all of
these effects into account have been performed (Immele
and Struble, 1975) for rare earths. Hopefully such
calculations will soon be carried out for the
actinides.

The problem of taking the changes in occupation proba-
bilities properly into account for the excited configura-
tions is yet to be dealt with.
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III. PROPERTIES USED TO DEDUCE LEVEL
ASSIGNMENTS

A. Ground-state spin and magnetic moment

The first step in the characterization of a single-par-
ticle state is the determination of its spin and parity.
The nuclear ground-state spin can be experimentally
measured by several techniques; for example atomic
beam, optical spectroscopy, etc. (Nierenberg and Lind-
gren, 1965; Fuller and Cohen, 1969). These experi-
ments also provide the magnetic moment of the ground
state. Once the nuclear spin of the ground state is
known, an energy level diagram can usually be used to
determine its asymptotic quantum numbers, because
states of the same spin and parity seldom lie next to each
other. Further, the magnetic moment of an orbital can
be calculated from the nuclear wave function and com-
pared with the experimental value. This comparison can
then be used to choose between various possible assign-
ments. The nuclear ground-state spins and magnetic
moments thus far measured for actinides have been re-
cently summarized by Shirley and Lederer (1975) and
Ellis and Schmorak (1972). In Table I we present the
measured and calculated magnetic moments for actinide

nuclei. These calculations were performed with our
wave functions (Chasman, 1971) using g", f = 0.6 g,"- .
Our calculations reproduce the measured magnetic mo-
ments rather well. There are large discrepancies for
the neutron orbital 5/2+ [622j and the proton orbitals
1/2 —[520] and 7/2+ [623].

B. Alpha decay

Alpha decay populates several members of a rotational
band with gradually decreasing intensity. Thus & spec-
troscopy can provide level energies, rotational con-
stants, and decoupling parameters. In addition, the ~
transition probability is helpful in making single-particle
assignments.

The o. -decay reduced transition probability is the re-
ciprocal of the hindrance factor, which is defined as the
ratio of the experimental partial half-life to the theoret-
ical value. The theoretical half-life is calculated from
the spin-independent theory of Preston (1947). The hind-
rance factor is defined with respect to the I = 0 ~ wave
because an n transition from an odd-mass nucleus usual-
ly occurs by several L waves and it is difficult to deter-
mine their amplitudes.

TABLE I. Magnetic moments.

Nuclide Spin Assignment

Magnetic
moment

Exptl. Heferences

Magnetic moment
calculated value 8

v2 ——0.19 0.22
v4 ——-0.04 -0.02

0.25
0.0

229Th
233U

235U
239pu
241 pu
243Cm
245Cm

'"Cm
231 p
233 p
237 N
238Np

24'Am

24'Bk
253Es

5/2
5/2
7/2
1/2
5/2
5/2
V/2
9/2
3/2
3/2
5/2
5/2
5/2
5/2
V/2
7/2

5/2 + [633]
5/2 + [.633]
v/2 —[v43]
1/2 + [631]
5/2 + [622]
5/2 + [622]
7/2 + [624]
9/2 —[734]
1/2 —[530]
1/2 —[53O]
5/2 + [642]
5/2 + [642]
5/2 —[523]
5/2 —[523]
V/2+ [633]
7/2 + [633]

+0.45 ~ 0.04
+0.55
-0.35
+0.203 + 0.004
—0.7 18 + 0.017

o.4o'
0.5 +0.1'
O.36'
2.O1 + 0.02 ~

+3.5 +0.8
+3.14 +0.04
not measured
+1.61 +0.03
+1.61 + 0.04

+0.4~
+4.10 +0.07

a
b, c
b, c

d

g

h
. 1

j,k
I

m j n
0

+ 0.43

-0.23
+0.20
-0.03

+0.38
—0.32
+0.76

+2.51

+1.57

+3.62

+0.54 +0.59

-0.23
+0.22
-0.16

—0.23
+0.23
-0.23

+0.68
-0.34
+0.78

+0.80
—0.34
+0.78

+2.51 +2.50

+1.56 +1.57

+3.62 + 3.63

Gerstenkorn et al. (1974).
"Dorain et al. (1957).
'Van der Sluis {1956).
~Faust et al. (1965).

Edelstein (1970).
~Abraham et al. (1973).
~Abraham et al. (1970).
"Axe et al. (1961).
~Marrus et al. (1961)~

~ Hutchison and Weinstock (1960).
"Lewis et al. O970).
'Hubbs and Marrus (19»).
~Armstrong and Marrus (1966).
"Manning et al. (1956).
'Boatner et al. (1972).
~ Goodman et al. (1975).
'These values were calculated with g' = 0.6g ~' and

For these magnetic moments the sign is not known.
g~ = 0.39.
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Hindrance factors (HF) of observed transitions between
odd-A nuclei can be divided into four categories (Prior,
1959):

1. If the HF is betweenland4, the transition is called
a, favored transition (Rasmussen, 1953) and in such n
decays the unpaired nucleon remains in the same orbital
in the parent and daughter nuclei. Thus a definite identi-
fication of either state can be made if the other state
has already been characterized.

2. A HF value of 4-10 indicates strong Coriolis mixing
between the state fed by the particular + group and the
state fed by the favored o. transition, and/or mixing of
the analogous single-particle states in the parent nucleus.
Low hindrance factors are also expected for some vibra-
tional states, in particular the Km =0+phonon, coupled to
the favored band. In this case, the K value of the vibra-
tional band will be the same as that of the favored band
whereas if the source of the reduction in the hindrance
factor is Coriolis coupling, the two bands will differ in
K quantum number by unity (except for K= 1/2 bands).

3. Hindrance factors of 10-100 imply that the projec-
tions of the intrinsic spin, Z, for the two states involved
in the ~ decay are parallel.

4. Hindrance factors of &1000 suggest that the Z values
for the parent and daughter states are antiparallel.

In the present paper only favored n transitions have
been used in the characterization of single-particle
states. Rules 2-4 are used to support assignments de-
duced by other means.

The relative ~-transition probabilities to various mern
hers of a band can be calculated semiempirically as sug-
gested by Bohr et al (1955). .Their formula. is based on
the assumption that each partial L wave is divided among
the members of a band in proportion to the squares of the
appropriate Clebsch-Gordan coefficients and that the cy-
decay matrix elements remain constant for transitions to
all members of the band. For favored ~ decay, since the
unpaired nucleon does not participate in the o. -particle

P~ I)L K; K~ —Kg I;L IgK~
N ~0 2 4 (HF~) ~

(3.1)

where I'~ is the n-transitionprobability expected from the
spin-independent theory of Preston (1947) f(Ps/P) is the
hindrance factor]. The term in the angular bracket is
the Clebsch-Gordan coefficient; i and f refer to the ini-
tial and final states; (HF~), , is the hindrance factor
determined for the ~ transition of that L, in the adjacent
even-even nuclei; and N is an adjustable parameter with
value between 1 and 2. The parameter N is introduced
because the hindrance factors in even-even and odd-A
nuclei are not exactly the same. In fact, higher hind-
rance factors are expected for the favored n transitions
of odd-A nuclei because of the blocking effect (see Sec.
II.B.2.a).

It is found that the relative ~ intensities calculated
with the above equation do not agree well with observed
values (Ahmad and Milsted, 1975a). In general the cal-
culated relative ~ intensity to the K+ 1 member is too
low, and that to the K+2 member is too high. Until re-
cently this behavior was believed to be caused by the in-
teraction of the nuclear quadrupole moment with the out-
going o. waves (Chasman and Rasmussen, 1959). How-
ever, recent comprehensive calculations (Soinski et al. ,
1973) indicate that this effect alone does not reproduce
the observed relative intensities.

The relative ~-transition probabilities to members of
an unfa. vored band are given by the expression (Bohr
et a/. , 1955; Froman, 1957)

formation, K remains unchanged. Hence only transitions
K-K are allowed, but K- -K are forbidden. On the
other hand, in unfavored o. decay, the unfavored n tran-
sitions will involve K;-Kf as well as K; —-K& matrix
elements, if the latter process is allowed by angular
momentum selection rules.

The ~-transition probability I' to a member of the
favored band is given by (Bohr et al. , 1955; Froman,
1957)

(3.2)

where b~ and HF~ are adjustable parameters and their
values are determined from known n intensities. The
second term in the above equation has nonzero value only
when L, ~ K, +K&. Although experimental relative intensi-
ties are often compared with intensities calculated with
the above equation for a given K&, the calculated intensi-
ties do not vary significantly for different Kf values.
Consequently such analyses can be used only as corro-
borative evidence for assignments. already deduced from
other experimental data.

As has been pointed out by Rasmussen (1965), Eqs.
(2.1) and (3.2) are exact only in the limit of infinite nu-
clear moment of inertia or vanishing nuclear quadrupole
moment.

Alpha-decay transition probabilities have been calcu-
lated by Poggenburg et al. (1969) using Nilsson single-
particle wave functions modified by the pairing force.

The calculated intensities were normalized to the experi-
mental transition probability of the Pu ~0 group.
These intensities agree only approximately (within a fac-
tor of 10) with the measured intensities of n groups for
unfavored bands and thus are not accurate enough for the
characterization of single-particle states. However,
these numbers are helpful in deciding between possible
assignments.

G. 8eta decay

The p-decay transition probabilities ( or the closely
related log fg values) can be used to set limits on the rel-
ative spins of the initial and final states involved in a
transition. The logft values are usually calculated by
nomograms (Lederer equal. , 1967),but in cases where the
electron capture (EC) decay energy is close to the K-electron
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binding energy the nomogram fails to give the correct
log ft. For such transitions log ft values are calculated
using a procedure given by Major and Biedenharn (1954)
or Gove and Martin (1971). The reduced transition prob-
ability for first-forbidden unique (aI= 2, yes) transitions
is expressed by logf, t, where f,t = ( q~/12)ft; q» being the
neutrino energy in unit of mpc'.

In the actinides, log ft values for allowed transitions
(aI= b.K= 0 or 1; no) and those first-forbidden transitions
characterized by (bI= bK= 0 or 1; yes) lie between 5.5
and 8.6. For all other transitions, the Iogft value is greater
than 8.0. A logft value of &8.0 thus indicates that the P
transition involves a spin change of 0 or 1. Hence, if the
ground state of the parent nucleus is known, the daughter
state can have only three possible spin values, or vice
versa. This severely limits the possible single-particle
orbital assignments.

The reduced P-transition probability, which is given by
the reciprocal of the ft value, is a. product of two terms:
the single-particle term and the pairing factor I'&. Thus,

(3.3)

where I'8 is defined in Appendix B. We expect the (ft)~
value between any two given configurations to remain near-
ly constant in the actinide region. However, the ob-
served log ft values may change significantly because of
the pairing effect.

P transitions which violate selection rules (Alaga,
1955) in the asymptotic quantum numbers nz and A do not
show any systematic trend. On the other hand, transi-
tions which violate the selection rule in the principal
quantum number N usually have high log ft va, lues. For
example, allowed transitions with aM=2 have logft val-
ues a.s high as 8.6 (Porter et aI. , 1972).

In the actinide region no P' decay of an odd-mass nu-
cleus has yet been observed.

It was first pointed out by Alaga et al. (1955)that p-decay
reduced transition probabilities to members of a rota-
tional band should be proportional to the squares of their
respective Clebsch-Qordan coefficients. However, this
rule is seldom used since P transitions usually involve
more than one transition operator and more than one ang-
ular momentum value. Also, there is difficulty in the
measurement of the p intensities to members of a rota-
tional band because of the difficulty in determining the
'intensity of the low-energy intraband y transitions. The
ft values measured for actinides are given in Table II.

D. Electromagnetic transitions

The single-particle estimate of a y-ray lifetime is cal-
culated using equations given by Moszkowski (1965). In
these calculations the statistical factor "S"is usually
taken as unity. The single-particle estimate represents
an upper limit for the transition probability per second
unless there is collective enhancement of the transition
rate.

In the actinide region, the multipolarity of a transition
can be uniquely determined by measuring its absolute
conversion coefficients and comparing them with the the-
oretical values (Hager and Seltzer, 1968). For low-en-
ergy (&100 keV) transitions, the ratios of subshell con-

TABLE II. logft values for P and EC decays.

Initial state Final state

n[631] 1/2+ p[530]
p [651]
p[66oj
p [530]
p[53o]
p[4oo]
p [521]
p[4ooj
p[53o]
p[530]
p [651]

n[633j 5/2+ p[651]
p [523]
p[642]

n[743] V/2 p[642]
p [523]
pf 642]
p [523]
p [523]
p [523]
p [642]
p [633]

n[734] 9/2- p[633]
p [633]
p [5211
p [530]
p [521]

P[530] 1/23/2-
n [631]
n[V43]
n [622]
n[V43]
n [624]
n [622]
n [622]
n [631]
n [633]
n [624]
n[V52]
n [613]
n [622]
n [743]
n [624]
n [622]
n [631]
n[620]
n[ 620]
n [622]
n[V34]
n[V34]
n [6221
n[624j
n [6131
n [615]

n[622] 5/2+

n[620] 1/2+

P[642] 5/2+

p[5231 5/2

p[521] 3/2

p[633] V/2+

1/2 3/2-
3/2+
1/2+
1/2 3/2-
1/2 1/2-
1/2+
3/2-
1/2+
1/2 3/2-
1/2 1/2-
3/2+
3/2 5/2+ .

5/2-
5/2+
5/2+
5/2-
5/2+
5/2
5/2-
5/2
5/2+
7/2+
7/2+
7/2+
3/2-
1/2 3/2-
1/2-
3/2+
1/2 3/2+
7/2-
5/2+
7/2-
7/2+
5/2+
5/2+
3/2+
5/2+
7/2+
5/2
7/2+
5/2+
7/2-
7/2+
5/2+
i./2+
1/2+
1/2+
3/2+
9/2
9/2
5/2+
7/2+
7/2+
9/2+

Nuclear decay

233Th p

237U p

Crn EC

231TQ p

3~pu EC

239U p-

24'pu p
'4'pup

"'PuP-
25'Fm EC
249Cm p

233pa p

23 Np EC
239Np p-

245Am p

23~Am EC

23 Am EC

245Bk EC

25lEs

"'BkP-
249Es EC

5.9
6.5

6.3
6.5
7.3
7.7
8.0
6.2
6.2
7.7
5.6
6.8
5.7

-6.8
-6.8

6.7
6.0
5.8
6.1
6.1
5.5
7.3
6.7
5.9

~7
5.9
7.3
6.6
6.8
7.1
6.3
6.3
6.4
6.0
7.3
6.8
6.7
7.2
6.4
6.0
8.6
5.8
6.9
8.0
6.0
6.2

~5 7
6.8
6.7
7.3
6.2
7.2
6.6

~ For references see Tables V-XXXVII.

version coefficients are used for this purpose. Since an
excited state can decay to one or more members of a ro-
tational band, the spin of the parent state can be uniquely
determined from the multipolarities of the de-exciting
transitions, when the K value of the lower band is already
known from other measurements.

In actinide nuclei, the y-ray lifetimes are such that
the excited states usually decay by El, Ml, and/or E2
transitions. E1 transitions are always retarded relative
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to single-particle estimates; the retardation factors lie
in the range of 10'-10' (Asaro et a/. , 1960). The retar-
dation factors for M1 and E2 transitions are between 10
and 1000. Only a few cases of K-forbidden transitions
have been observed in odd-mass actinide nuclei. These
transitions display retardation factors of 100-1000, for
each unit of K-forbiddenness.

The observed transition rate T(X) and the reduced
transition probability B(X) are related by the following
expression (Nilsson, 1955)

8»(~+1)
X[(2X+ 1)!!]'I Kc J

(3.4)

T(M1) = (16rr/98 )[Egkc)'B(M1),
T (E1)= (16~/9m) [E„/5c]'B(E1),

(3.5a)

(3.5b)

T (E2) = (4m /7 5h )[E,/h c]'B(E2) . (3.5c)

The expressions for calculating B(X) values from transi-
tion matrix elements are given in Appendix C. The sin-
gle-particle matrix element G~ should be multiplied by a
pairing term P before it is inserted in the expression
for B(X).

In the above equation E, is the transition energy, T(A) the
gamma emission rate per second, X the transition multi-
pole order, and the term (2K+1)!!=1 '3 5 (2K+1).
For M1, E1, and E2 transitions the above equation re-
duces to

Because of the high retardation of E1 transition rates,
it has been possible to measure the lifetimes of several
E1 transitions in the actinide region. In most cases the
transition rates calculated with the E1 matrix elements
of Appendix C and the pairing factors of Appendix B
agree within a factor of 3 with the experimental transi-
tion rates. Similar results were also obtained (Perdri-
sat, 1966) using E1 matrix elements calculated with
Nilsson (1955) wave functions. However, the calculated
rates in both cases for the 2 2+[651]-2 ~ —[530]E1'
transitions in ' Pa and "Pa are 500 times larger than
the measured values.

Lifetimes of only a limited number of E2 and M2 tran-
sitions between one-quasiparticle states have been mea-
sured.

Because M1 lifetimes are so short (less than 10 "s),
no measurement of interband Ml transition probabilities
has been possible. Ho~ever, lifetimes of intraband M1

Th and U have been measured
and g» values were extracted (Hojeberg and
Malmskog, 1970; Ton et a/. , 1970). These g» values
were found to be in good agreement with values calcu-
lated using Nilsson (1955) wave functions. The g» value
can also be derived from the M1-E2 mixing ratio of in-
traband transitions, as has been done by Kroger and
Reich (1976) and Ahmad et al. (1976b).

According to Alaga et al. (1955), the ratio of the re-
duced transition probabilities, B(X), for y rays between
two bands is given by

B (&,I,—lq) i- (i,kK, (Kq -K,)II,XIqK~) +.b ( .)~s'»f (I,~-, ( Kq —K.,)-l I,&Iq Kq). . —

B(~,I,-I,') (I.,m, (K, K.,)!I.P I,'K,)+.b(-)i~.»~(J, m, (K, K. ,.) I I.,. ~I,' -K,) ~

' (3.6)

where X is the multipole order of the transition and b is
the ratio of matrix elements, G~(K,.—-Kf)/G~(K, .-K&).
In general, the agreement between experiment and
theory for Ml/E2 ratios is fairly good. On the
other hand, large deviations from the Alaga rules
are often observed for E1 y rays. Again, the y-ray
branching ratios are used only to decide between various
possible K assignments.

E. One-nucleon transfer reactions

The single-particle transfer reaction [e.g. , (d, p),
(d, f), and ( He, d) reactions] has proved to be the most
useful tool for the identification of single-particle ener-
gy levels. This utility arises from the sensitivity of the
cross sections to the single-particle wave function.

F irst-order theory

The usefulness of transfer reactions depends on the
fact that a simple, first-order theory can explain most
features of the data. In this theory the assumption is
made that the cross section is a product of two factors.
The first factor describes the reaction mechanism for
transfer of a nucleon into a single-particle orbital; the
second factor, the spectroscopic factor, is a measure
of the overlap between initial and final nuclear states.
In this approximation the differential cross section to a
given final state for an even target with spin zero can be

written as

do/d n = (2I+ 1)S,.en", (3.7)

where I is the total angular momentum of the final state,
j the total angular momentum of the transferred nucleon,
6,. the intrinsic single-particle differential cross sec-
tion, and S,. the spectroscopic factor, which contains in-
formation about internal nuclear structure. In this case
I always equals j. The advantage of factoring the cross
section in this way is that all the effects involving bom-
barding energy, scattering angle, projectile mass, etc. ,
are separated, isolating the factor S,. For a spin-zero
tar get the spectroscopic factor can be wr itten

S'=[2j(2I+1)](C")'P' (3.8)

where v denotes the specific orbital being populated, P„
is the pairing factor for that orbital in the target, and

C,. is an expansion coefficient of the deformed single-
particle wave function in terms of a spherical basis set.
These wave functions are written

(3.10)

Xk Q Ckg (3.9)

The pairing factor P„ in (3.8) describes the overlap be-

tweenn

the pairing parts of the wave functions of the tar-
get and final state. For the (d, p) reaction on an even-
even target, this factor can be written exactly as

P'„=[&y„8+1)i~„'iy.(A)&]',
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where @„indica es e st th tate in the final nucleus in which
the single-particle level h: is blocked, and @o(A) desig-
nates the wave function of the even-A nucleon target.
The overlap integral is complicated to compute, since
one needs complete wave functions for the target and for
each final state studied. A good approximation is

I I/2

9/2
CHARACTER ISTIC

SIG NATURE

OF I63Ij I/2
ROTATIONAL BAND

(3.11)a'. = f1 Q„(A))jx', ,

where the overlap factor A„ is defined in Appendix B, and
(N„(A)) is the occupation probability for level v in the
target nucleus. In the simplest approximation A„=1,
and P''= U for a (d p) reaction where U2 is the emptiness
of level I(. in the initial system.

The intrinsic single-particle differential cross section
con ins aDw ta ll the details of the transfer process other

than information about the nuclear structure o e ini i
and final states. e isThe distorted-wave Born appr oximation
(DWBA) theory is usually used to calcula, Dw. t hlulate 8 .~. Satchler
(1964) provides a thorough discussion of DWBA theory.
The codes DWUCK (Kunz, 1969) and gill, rE (Bassel et
a/. , 1962) are frequently used distorted wave codes. De-
tained agreement with experiment has never been
achieved because a vb e a variety of second-order effects, to
b discussed below, are ignore .d. A further dif-
ficulty is that the optical-model potentials needeeded are
difficult to measure, since the elastic-scattering angu-
lar distributions are relatively structureless. Never-
theless DWBA calculations are of great value since they
can usually be relied on to r epr oduce the ener gy and
angular-momentum dependence of the cross sections.
However, they cannot be trusted to give the absolute dif-
ferential cross section to better than a factor of 2 for
d, p) and (d, t) reactions and are less reliable or ole for other

transfer reactions.
Equations (3.7) and (3.8) combine to give the following

very useful expression for the differential cross section

7/2

S/2

5/2
I/2

K = I/2
ROTAT I 0 MAL

BAND
II

Eour

FIG. 12. Illustrative s&gnature for thfor the neutron orbital
1/2 + [631] in single-nucleon transfer reaction.

to an energy level with spin I =j:
d~/dn=2(c, ".)'eD ~'.

For further information on transfer reactions on de-
formed nuclei see Siemssen and Erskine 1966 Elbek
Tjgm (1969), and Braid et al. (1970),

(3.12)

2. Signature patterns in the relative differential
cross sections

The cross section for populating a level in a rotational
band is proportional to the square of only one expansion
coefficient, C, , in the wave function of that single-parti-
cle orbital. In general the coefficients C,'. are distinctive
for each orbital. Hence, the relative cross sections
for popu a ing e m1 t' th embers of a rotational band make a
unique signa usi nature or fingerprint for that state see Eq.
(3.12)j. A schematic example of these signatures is pre-
sented in Fig. 12. Figure 13, taken from Braid et al.

FIG. 13. Catalog of signa, —

tures. The experimental sig-
nature as measured at 140
with 12 MeV deuterons is the
upper figure in each group.
The middle member of the
group is the signature calcula-
ted with the Woods-Saxon wave
functions (Host, 1967). The
lower member is the signature
calculated with modified oscil-
lator wave functions (Nilsson,
1955). The DWBA code JULIE

was used for both calculated
differential cross sections.
The number in each figure is
the total cross section (calcu-
lated or measured) in (pb/sr).
All bar graphs are normalized
to a total cross section of unity
for convenience in comparing
relative cross sections to
members of each band.
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(1970), compares the signatures calculated for 12 single-
particle states using modified oscillator (Nilsson, 1955)
and Woods-Saxon (Rost, 1967) wave functions, as well
as those signatures experimentally observed with the
(d, p) and (d, t) reactions on various actinide targets. As
can be seen, the major features of the signatures are
reproduced by the calculations, but there are minor dis-
crepancies. However, for many of these states the sig-
natures, especially when previously verified by experi-
ment, serve to identify a group of levels as being part
of the rotational band of a specific single-particle state.

3. Angular-momentum dependence of the angular
distributions

Most studies of transfer reactions on heavy elements
have been performed with beams from tandem Van de
Graaff accelerators with the projectile energies for deu-
terons 12-16 MeV, and for 'He or 4He, 24-30 MeV. At
these energies the transfer process is strongly dominated
by Coulomb effects. The angular distributions tend to
peak near 90 and show no forward oscillatory structure
which would be useful to measure the orbital angular mo-
mentum transfer E. Macefield and Middleton (1964) have
measured complete angular distributions for (d, p) reac-
tions on "U. In some circumstances the overall shape
provides a clue to the l value of the transfer. For exam-
ple, for (d, P) and (d, f) reactions at 12 MeV, the cross
section at backward angles is larger for high
transfer than for small l transfer. In practice there are
exceptions, presumably caused by second-order effects.
Figure 14 illustrates an example of this type of ( depen-
dence. It is taken from Braid et al. (1970) and shows the
ratio of the "~U(d, P)'35U cross sections at 90' and 140'
for angular momentum transfer E. This ratio does not
change greatly with excitation energy. However, as is
also shown, the same ratios for the '"U(d, t)23'U reaction
are not strongly l dependent, and change appreciably with
excitation energy, making these ratios much less useful
for the assignment of states.

2.5

4. I-value determination from the cross-section ratio of
different reactions

Another technique which has been used to establish l
values is to observe the same levels with two reactions
having a different dependence on / value. The reaction
with the larger momentum mismatch between entrance
and exit channels tends to emphasize levels with high l
transfer. For neutron transfer the (d, t), ('He, o.) combi-
nation works well, as shown in the study of high spin
states in '4~pu by Elze and Huizenga (1971). A combina-
tion of limited use for proton transfers are the (n, t) and
( He, d) reactions (Elze and Huizenga, 1970b; Erskine
et al. , 1975).

In this survey we have used the data on the angular mo-
mentum dependence of the levels only as a means of veri-
fying as signments based on other evid enc e.

5. Distinguishing particle and hole states

The ratio of (d, p) to (d, t) cross sections leading to the
same level serves as a useful guide to the particle or
hole character of a single-particle state (Braid et al. ,
1970). Under the assumption that the intrinsic single-
particle cross section 8,. has the same j dependence
for (d, P) and (d, f) reactions, the ratio of (d, P) to (d, t)
cross sections is proportional to [1—(V„(A —1))]/
Q„(A+1)), where' is the nucleon number of the odd-A
product: nucleus. For a particle state this ratio is large
and for a hole state it is small.

6. Corrections to the first-order theory

There are a number of effects not included in the sim-
ple theory discussed above which complicate the trans-
fer process to the extent that really good agreement be-
tween theory and data is difficult to achieve. The calcu-
lations which have been performed to date usually treat
the various effects separately. Obviously a proper cal-
culation which included all of these effects on a consis-
tent basis would be very difficult and would need to be
per formed for every case. For tunately in most
cases these second-order effects do not obscure the
main features of the transfer reactions predicted by Eq.
(3.12). Some of the neglected effects follow.

2.0

b

o l.5
I-

O
Ch

b I.O
S",=[2/(2I+1)] P a CQ (3.13)

a. Coriolj mixing

Coriolis mixing among the various single-particle states
(see Sec. II) may considerably change the signature of
an orbital. The expression for a mixed spectroscopic
factor is (Siemssen and Erskine, 1966)

00 I i I l I

2 4 6

VALUE

I l I i I

2 4 6

where the mixing coefficients a,. are usually obtained
from a fit to the measured level energies. Signatures
calculated with Eg. (3.13) generally give improved agree-
ment with the data (Erskine, 1965).

6. Coupled-channel effects
FIG. 14. Calculated values of ratio of differential cross sec-
tions at 90 to that at 140', as a function of angular momentum
transfer, E. Values are for 4U(d, P) 3 U and 6U(d, g) 5U reac-
tions vrith 12 MeV deuterons.

Inelastic excitation of the target (or residual nucleus)
by the beam projectile (or emitted particle) is an impor-
tant feature of the reaction mechanism. Population of
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weakly excited levels in the residual nucleus frequently
occurs by means of multistep proc ess es in whic h the
'target or residual nucleus is excited to an intermediate
state during the transfer process. In some situations
this indirect transfer amplitude may exceed that of the
direct transfer. The multistep contributions are usually
weak and therefore the main features of the signatures
of orbitals do not change from one nucleus to the next.
There may be instances in which the multistep contribu-
tions are large, but do not vary from one nucleus to
another. It is difficult to distinguish between these two
possibilities. Multistep transfer has been discussed in
some detail by Tamura et al. (1970), by Ascuitto et al.
(1972), and by Glendenning (1975).

c. Uncertaintiesin the taIIs of the nuclear ~ave funcitons

At the bombarding energies used in the typical trans-
fer reaction experiments on actinide nuclei, transfer
occurs mostly in the region 2-8 fm beyond the nuclear
surface (Erskine, 1972). Since only a small part of the
single-particle wave function lies beyond the nuclear
surface, very careful calculations ar e needed to accu-
rately compute the nuclear wave function at the radius
where the reaction occurs, and such calculations are
not usually available. One procedure for obtaining good
wave functions is to solve the general coupled-channel
eigenvalue problem (Rost, 1967; Tamura, 1971). Anoth-
er procedure, which involves the use of Sturmian func-
tions, has been given by Anderson et al. (1970) and by
Schulz et af. (1972).

d. Particle-hole/Interactfon

The pres enc e of coherent par ticle —hole modes, parti-
cularly the quadrupole or octupole modes, causes the
mixing of single-particle states (see Secs. II.B.2.b and
III.F), which changes the observed differential cross
sections. This effect is minimal for the ground state
and increases with excitation energy. In the calculations
of Gareev et al. (1971) the ground states of a variety of
actinides show admixtures which range from 2lo to 25/o.
At higher excitation energies the admixing becomes
very large.

It is very difficult at present to make quantitative com-
parison of these calculations with the data. However, the
fact that the cross-section signatures of many single-
particle states can be recognized up to excitation ener-
gies of 1 MeV suggests that the calculations of Gareev
et al. (1971) tend to overemphasize the degree of phonon-
quasipartic le mixing.

F. Vibrational states

In deformed actinide nuclei there are really no pure
single-particle states. Calculations, such as those of
Gareev et al. (1971), indicate that phonon admixtures in
the single-particle states vary from a few percent to
over 90/g.

Schematically we define a single-particle wave function
as

(3.14)

and a particle-plus-phonon wave function as

(3.15)
u, l

where
~
0) denotes the particle hole vacuum. The states

discussed in Sec. II.B.2.b were of the form

+=bg„+v'1 —O' P,„, (3.16)

with b = 1, i.e., primarily single-particles states. In
this section we discuss briefly those states for which
(1 —b') = 1. Such states we denote as vibrational. There
is no sharp demarcation between these two categories.

The vibrational states that have been identified in the
odd-mass actinides are given in Table III. The identifi-
cation of these states was made either through decay
scheme studies or through nuclear reactions that pre-
ferentially excite the collective states. Studies of radio-
active decay provide spin-parity, logft value, rotational
constant and gamma-decay pattern of the state. Assign-
ments to vibrational states based on radioactive decay
studies are made only when no reasonable single-parti-
cle orbital assignments are possible near the observed
excitation energies.

Coulomb excitation preferentially populates collective
states because of the enhanced B(&2) and B(E3) values.
Only one odd-A nucleus, "U, has been studied in detail
by Coulomb excitation (Stephens et al. , 1968). Recently,
the (d, d') reaction has been utilized to investigate the
collective states of odd-mass nuclei. The (d, d') reaction
preferentially excites the octupole bands. So far deute-
ron inelastic scattering experiments have been per-
formed with targets of '~'Cf (Yates et al. , 1975b), "U,
"'U, '"Np, and "'Pu (Thompson et a/. , 1976). In these
studies octupole bands corresponding to the Am =0-,
1-, 2-, and 3- excitations of even-even nuclei have
been identified. The rotational constants of the vibr a-
tional bands identified are very similar to those of the
base states.

Vibrational states have also been studied by (p, f) re-
actions (Friedman et al. , 1973). These reactions pre-
fgrentially excite the 0+ phonon coupled to the ground-
state configuration of the target nucleus.

In principle, the magnitudes of particle-plus-phonon
admixtures of type P,„can be determined from measure-
ments of cross sections in reactions such as the (d, d')
and (p, t) reactions if the index j in Eq. (3.15) is the
ground state of the odd-A. system. This is done by mea-
suring the ratio of the cross section to the state of inter-
est in the odd-A. nucleus and the cross section to the cor-
responding phonon state in the neighboring even-A. nucle-
us. Another approach which was used by Yates et aE.
(1975b) is to assume equal cross sections to the (K+ v) and
(K —v) bands and then assume that the (K+v) band is a
pure particle-plus-phonon state. However, both proced-
ures suffer from considerable uncertainties because of
inadequacies in the theoretical cross-section calcula-
tions.

In general, the y-de-excitation process cannot be used
to deduce the magnitudes of phonon components in the
single-particle wave functions. Although the phonon ad-
mixture enhances the probability for a y-transition of
the phonon multipolarity, it is still usually small com-
pared to transitions of lower multipolarities. Unless
lower multipole order transitions are K-forbidden or re-
tarded, it is not possible to deduce the phonon admixture
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TABLE III. Vibrational states in actinide nuclei.

Bandhead
Nucleus energy (keV) [A;b/A ] As signment Method Refer ences

233U'

235U

235N

237Np
287~
239p
'4'Am
243 Pu
245Cm
249Cf

251Es

748
444
637.9
920.7

1053
834
721
800
470
952
703.9
663.7
668
813.2

920
1063
1078
1415
889.1

5/2-
7/2+
3/2-

11/2—
7/2—
5/2+
5/2-
1/2+
1/2 '

3/2-
3/2-

13/2-
5/2-

11/2+
13/2+
15/2+
7/2+

11/2+

1.04
1.4
1.04
1.001

+ 0.06

+ 0.02
+ 0.009

1.02 +0.07

0.98 + 0.03
0.96 + 0.04
1.04 + 0.04
1.00 + 0.07
0.994y 0.004

I

0.917+ 0.004
0.97 + 0.04
0.981+ 0.006

{5/2+ [633]SO j
{7/2 —[743] 0-j
{V/2 —[V43] S2+j
{7/2 —[743]S2+}
{7/2 —[743]S0+j
{5/2 + [642] 0+j
{5/2+ [642] SO-j
{1/2 + [631]SO+}
{1/2 + [631]S0-j
{5/2 —[523]S0+j
{7/2+ [624] S2-j
{7/2 + [624]S2—j
{9/2 —[734]S2+j
{9/2 —[734]S2+j

{9/2 —[734]S1—j
{9/2 —[734] 2-j
{9/2 —[734]S3-j
{9/2- [V34] S1—j
{v/2+ [633]S2+}

(d, d')
(d, d')
Coul, (d, d')
Coul, (d, d')
Coul
(p, t)
(d, d')
(p, t)
(d, d')
(p, t)
(~, v)
Decay scheme
(d, d')

(d, d')
Decay scheme
(d, d')
(d, d')
(d, d')
(d, d')

Decay scheme

a, b
a, b
b

~Thompson et al. (1976).
bStephens et al. (1968).

Friedman et al. (1974).
Casten et al. (1976).
Ahmad et al. (1976a).

f Yates et al. (1975b).
~Ahmad et al. (1976b).
hAhmad et al. (1976c).
~This is the ratio of the rotational constant of the vibrational band to that of the base

band Ko. The errors were calculated by us, using the errors in level energies given in
original references.

This band was also identified by Davies and Hollander (1965), and the value of rotational
constant and decoupling parameter were found to be 5.043 keV and 0.48, respectively.

in the initial and final states. The phonon admixture
in the —', +[622] state at 145 keV of ' 'Cf was deduced from
the E3 admixture in the predominantly M2 transition
(Ahmad et al. , 1976b). This admixture (amplitude square
= 0.29) was found to be in excellent agreement with the
value (0.30) extracted from the (d, d') reaction cross
section (Yates et al. , 1975b). A large phonon admixture
in this ~+[622]state was predicted by Gareev et al. (1971).

G. Moment of inertia and decoupling parameter

From the known level energies of a band the rotational
constant 52/28 and the decoupling parameter a can be
determined. Rotational constants for single-particle
states in the actinide region are -6.0 keV. For bands
having strong Coriolis interaction these values may
change considerably, e.g. , the —,+[642] band in '4'Am

has 8'/28 of 2.8 keV (Ahmad, 1966). For two interacting
bands the rotational constant increases for the upper
band and decreases for the lower one.

The sign and magnitude of the decoupling parameter
can be used to characterize a K=2 band. The experimen-
tal and theoretical values of a for K= & bands are given
in Table IV.

There are sufficient data to study the systematic be-
havior of the 2+ [631].neutron orbital throughout the
actinides. The value of a for that orbital changes by a
factor of 5 as the neutron number is increased from 143

to 149. The pure single-particle values are in good
agreement with the measurements except for the nuclide

'Th. It should be noted that the value of a for this band
is rather sensitive to the magnitude of both the P~o(cosB)
and Po(cosB) deformation of the potential. The set of de-
formation parameters (v, = 0.19,v~ = -0.04, v, = -0.02)
gives a wave function with a decoupling parameter of
-0.31. The set of deformation parameters (v2 = 0.19, v4
= -0.06, v, =0.00) gives a decoupling parameter of -0.27
for this band. It is also noteworthy in this regard that
the choice (v, =0.19,v4=-0.04, v, = -0.02) gives a decou-
pling parameter of -1.50 for the proton orbital ~ —[530]
and the choice (v, =0.19,v~=-0.06, v6=0. 00) gives -1.54
for this proton orbital.

H. Effects of Coriolis interaction on level energies
and transition probabilities

The Coriolis interaction was discussed by Bohr
(1952) in his original paper on nuclear rotation,
and it was first used by Kerman (1956) to explain the

1 3anomalous level spacings of the Km = ~ —and &- bands in
"3W (see Sec. II.A and Appendix C). Clear manifesta-
tions of this interaction in the actinide region occur in
the n decays of '"U (Pilger et al. , 1957), 2"Np (Browne
and Asaro, 1973), and 24~Bk (Ahmad, 1966). In these
studies the low hindrance factors, observed for bands
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TABLE IV. Values of decoupling parameter a.

Decoupling parameter a
calculated value

State

1/2 + [631]

1/2 + [620]

1/2 —[501]

1/2 —[750]
1/2 —[530]

1/2 + [400]

Nuclide

233Th
235U
237U
239U

Pu
239Pu
'4'Pu
'4'Cm
243 Pu
'"Cn
'"crn
'4'Cm
249Cf
25'Cf
23k Th
237 U'"Vu
243 P
23k P
233P

7Np
24'Am
237N

24'Am

Exptl.

-0.145 0
—0.285 4
—0.403
—0.421
-0.469 5
—0.580 88
-0.581
-0.724

0.34
0.36
0.52
0.29
0.32
0.285 4

~0
~ 0

1
-5.6
-1.498
-1.38
-1.692
-1.8

1.08
0.7 '

+ 0.0007

+ 0.002

+ 0.05

+0.000 9
+ O.OGO 9
+ 0.005
+ 0.005
+ O.OGG 3
+ 0.000 04
+ 0.005
+ 0.001
+ 0.02
+ 0.11
+ 0.17
+ 0.10
+ 0.11
+ 0.000 8

References

g
h, i
g

h, i
3

1

k
l

g
g

0
p
q
p

P2 —0.19
v4 ——-0.04
A =232

-0.39

0.09

0.87

—1.8

1.16

-0.57 -0.70

0.21 0.29

0.81 0.76

—2.0 -2.2

0.60 0.59

0.22 0.25
-0.02 0.0
A= 238 A= 244

Von Egidy et al. (1972).
"Cline (1968).

Ahmad et aE. (1968).
Bollinger and Thomas O.972).

eAhmad et al. (1975b).
f Porter et al. (1972).
~Casten et al. (1976).
"Ahmad et al ~ (1976a).
'Braid et al. (1971).
' Browne and Asaro (1968).
"Ahmad et al (1967).

Ahmad et al. (1971).
Boyno et al. (1970).

"Browne and Asaro (1973).
'Hoekstra and Wapstra (1969).
~ Yamazaki and Hollander (1966); Lederer et al. (1966).
~Porter et al. (1974).

The errors were calculated by us, using the errors in level energies given in original
references.

t These values were calculated from the energies of only 1/2 and 3/2 members, using a
value of 5 /28=6. G keV.

other than the favored bands, were explained in terms of
Coriolis mixing. The Coriolis mixing also has strong
effects on level energies (Stephens, 1975), gamma tran-
sition probabilities (Brockmeier et a/. , 1965; Stephens
et a/. , 1968; Friedman et a/. , 1969), and nuclear reac-
tion cross sections (Erskine, 1965).

Expressions to calculate level energies and admixture
coefficients for the two band interaction are given in
Appendix C. In these calculations the bandhead energies,
the values of 5'f28 and the Coriolis matrix elements
are varied to obtain a best fit between the experimental
and calculated level energies. The values of the rotation-
al constant 5'/28 in the actinide region lie between 6.0
and 6.6, with the typical value being 6.2 keV. The Corio-

lis matrix elements determined from the fitting proced-
ures are found to be smaller than the values calculated
from single-particle wave functions including pair corre-
lation effects. Recently Ring et a/. (1974) have calcu-
lated the attenuation of Coriolis matrix elements
using the cranking model within the framework
of the Hartree-Pock-Bogoliubov theory. Also,
part of the reduction could arise from large admixtures
in the states involved (Gareev et a/. , 1971).

I. Data tables on individoal nuclides

We present the experimental data on the intrinsic
states of odd-mass actinide nuclei in Tables V-XXXVII
in the order of increasing & and Z. The data on odd-
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TABLE V. Intrinsic states of &0Th&&&.

233U ~, 5/2+ [633]
Th(d, t)

Bandhead
energy (keV) I

229
90Th)39

Empirical data used to
deduce assignmentAssigned character 5 /28 (keV) a References

5/2+ [633]

3/2+ [631]

5/2 —[752]

3/2 —[761]

1/2+ [631]A

1/2 —[501]A

5/2+ 6.0 I,p, Fav.+

, V, (d, t)3/2 + b, c( 0.1

146.4

164.5

261.7

535.5

5.8

5/2

3/2—

1/2 +

1/2—

0.3

(d, , t}

~oerstenkorn et al. (1974); I, p .
"Kroger and Reich (1976); 3U & decay.

Braid et al. (1976); Th(d, t) reaction.
Comment: There is strong Coriolis mixing between the 3/2 —[761] and 5/2 —[752] bands. Also the K7t

= 3/2 —band at 164.6 keV contains a large admixture of (3/2 + [631]SO j3~2 vibrational component.

neutron nuclei are given first, followed by data on odd-
proton nuclei. The single-particle orbital assignments
followed by no letter represent well established assign-
ments. The meanings of the notations employed in the
tables are as follows:

p, Measured magnetic moment
Measured half-life of the state

y Indicates that the y-ray intensity pattern was used to
deduce the spin arid parity of the state

y-mult Indicates that the y-ray multipolarities were
used to deduce the spin and parity of the state.
It is used only when the spin and parity of the
other state involved in the transition is known.

Fav. & Indicates that the state is populated by favored
n transition. Hence this state in the daughter has
the same single-particle configuration as the
parent ground state.

A Letter A after an orbital assignment suggests a less
certain assignment supported by some experimental
evidence

B Letter B after an orbital assignment indicates an
assignment made on the basis of systematics

I Measur ed spin

TABLE VI. Intrinsic states of &0Th&4&.

»5U ~,7/2 [743]
232 Th (d t) 232Th (3He ~ ) 230Th (d P)

Bandh cad
energy (keV) I K

23i
90Th141

Assigned
character d

Empirical data used to
deduce assignment8 2/2 g(keV) References

c. , (d, t), pile, o)

~,y, (3He, ~),(d, t)

~,V, (d, t)

~,y, (d, t), (d, p)

Fav.c. , y, ( He, c.')

5/2 + [633]

5/2 —[752]

3/2 + [631]

1/2 + [631]

7/2 —[743]

1/2 —[501]A

3/2+ f642] A

5/2- f503] A

6.0 a, , b, c

a, b, c5/2—185.7

221.4

253.0

387.8

2.8

3/2+ 3.9

1/2 + a, b, d-0.147.7
7/2—

1/2—
7.2

558 (d, t)0.8
7/2 (3He, &)5.0871

5/2876 (d, t)

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977

Vano et al. (1975); 35U m decay.
Boyno et al. (1970); 232Th(d, t).
Elze et al. (1969); 3 Th( He, o').

'Braid et al. (1965). "'Th(d P).
Comment: The 5/2 —band at 185.7 keV and 7/2 —band at 387.8 keV are strongly Coriolis-mixed, and so are the 1/2+ [631]

and 3/2+[631] bands.
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TABLE VII. Intrinsic states of 23823Th~43.

232Th(d, p) 232Th(~ ~)
Bandhead

energy (keV} I

233
&2Th~43

Assigned Empirical data used to
deduce assignment References

6.0

252.3

262.1

1/2 + 1/2 + [631]

5/2 + 5/2 + [622]

v/2 —[v43]

5/2 + 5/2 + [633]

6.6 -0.145 233Th p decay, (d, p)

(d, p), (~, V)

(d, p), (~, Y)

b, c

b, c

7/2 + 7/2 I- [624] (d, p)

335.9

539.5 1/2— 1/2 —[501]

3/2 + 3/2 +[631] (d, p), (~, V)

(d, p), (n, y)

b, c

b, c

~Hoekstra and %apstra (1969); 33Th p decay.
byon Egidy et ag (1972). 232Th(d P) 232Th(~ ~) reactj
c Kern and Due (j 974); 3 Th(yg, y) reaction.

A Indicates that the o. intensity pattern and hin-
drance factors were used to make the assign-
ment

EC, P Indicates that the state is fed by electron capture
or P decay. The number in parentheses denotes
the logft value of the transition.

(d, P), (d, t) Denote the particular reaction used to
('He, o'.), (3He, d) excite that state and indicate that the
(n, t), (d, d') observed signature of the reaction

cros s s ec tion was employed in the lev-
el assignment.

Coul Denotes Coulomb excitation indicates vibrational
component

(n, y) Denotes (n, y) reaction, indicates low spin

In Tables V-XXXVII we have compiled all data pub-
lished before 1 December 1976. In a few cases we have
also included unpublished work. We have listed only the
latest references on each nucleus; earlier references
can be found in the Table of Isotopes (l.ederer et al,
1967) and the data tables compiled by the Nuclear Data
Group at Qak Ridge.

TABLE VIII. Intrinsic states of

'"Pa ~, 3/2, 1/2 —[530]
235U( p t)

Bandhead
energy {keV) I

233
92U141

Assigned
character ' A 2/28 (keV)

Empirical data used to
deduce assignment B,el''ence s

311.9

318

502

819

1824

2070

5/2 + 5/2 + [633]

3/2 + 3/2 + [631]

V/2 5/2 — 5/2 —[V52]

1/2 + 1/2 + [631]

7/2— 7/2 [743]

5/2 (5/2+ [03@]0-)
7/2 7/2-

7/2 7/2-
7/2 7/2—

5.8 I,V, V

p (7.3),y-mult

(p, t), (d, d')

p (6.6),y-mult

(p, t), (d, d')

(d, d')

(p, t)

(p, t)

(p, t)

c,d

c,d

Dorain et al. (1957); Vander Sluis (1956); I,p .
"Albridge et aE. (1961); Bisgard et al. (1963); Pa P decay.

griedman et ag. (1974); 3 U(p, t) reaction.
Thompson et al. (j 976); 33U'{d, d ) reaction.
Comment: The 819, 1824, and 2070 keV levels are populated in the (p, t) reaction with L, = 0 transitions.

These could be (7/2 —[743]S0+) vibrational states.
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TABLE IX. Intrinsic states of 3&2U~43.

"'Pu ~, 1/2+ [631]
234U (d p) 236U (d t) 236U (3He ~ )

U(n, p), 233U(t, p) 3 U(d, d') 3 U-Coul
Bandhead

energy (keV) I K~
Assigned
character

143

h2/r8 (kev) References

~Np, 5/2 + [642]
Empirical data used to

deduce as signment

0.08

129.3

332.7

491.9
507.7
633.1

637.9

640.5
659.0
760.9
821.6
920.7

1053
1236
1255
1392
1438

7/2—

1/2 +

5/2+

5/2+

7/2 +
5/2+
5/2—

1/2 +
1/2—
1/2+
9/2-

11/2—
V/2-
7/2 +
1/2+
3/2 +
9/2+

v/2 —[v43]

1/2 + [631]

5/2+ [622]

5/2 + [633]

3/2+ [631]

7/2 + [624]
collective
5/2 —[752]

(7/2 —[743]S2+)

collective
1/2 —[501]

(&/2+ [63110+j
9/2 —[V34]

(7/2 —[743]e 2+)
(7/2 —[743] @0+)
7/2+ [613]
1/2 + [620]
3/2 + [622]
9/2 + [615]

5.1

6.0

6.0

4.9

5.4

5.9
5.1

-0.28

I,p, (d, p), (d, t},
(3He, cv }

Fav.n, (d, p), (d, t),
(3He, 0. )

~,V, (d, p), (d, t),
( He, o'), (n, y)

n, y, (d, p), (d, t),
( He, o-'), (n, y), (t, p)

~,y, (d, p), (d, t),
('He, ~), (n, V)

(n, y)
(n, V), (t, p)
Coul, (d, p), (d, t),

('He, 0-'), (n, y)
Coul, (d, p), (n, y),

(d, d')
(n, Y), (t,p)
(d, p), (d, t), (n, V)
(n, V)
Coul, (d, d')
Coul, (d, d')
Coul
(d, p), (d, t)
(d, p)
(d, p)
(d, p)

b, c, e,
f~g
g
g

b, c,g, h

g—l'

b, g
g

h, i
h, i
h
b
b
b
b

Dorain et al. (1957); Vander Sluis (1956); I,p.
"Braid et al. (1970); 2 U(d, p), 36U(d, t) reactions.
'Elze and Huizenga (1969); 36U(3He, ~) reaction.

Baranov et. al. (1963); 3~Pu 0. decay.
(1966); 23~Pu ~,y decays.

Cline, 1968; & rays in 39Pu 0. decay.
g&ickey et al. (1972). 33U(t, p) 3 U(d d') 4U(d p) 36U(d, t), and 3 U(n, p) reactions.
"Stephens et al. (1968); U Coulombic excitation.

Thompson et al. (1976); 3 U(d, d') I eaction.

TABLE X. Intrinsic states of g2Ug45.

2«Pu ~, 5/2+ {622]
236U(d; p) 238U(d, t) 238U (3He ~)

Bandh cad
energy (keV) I

237
82U|45

Assigned
character e'/28 (keV)

Empirical data used to
deduce assignment References

160.0

274
551
668
865
946

1110
1126
1259

11/2

9/2

9/2
15/2

1/2 +

5/2+

V/2—
7/2 +
3/2 +
1/2—
5/2+
1/2+
7/2 +
5/2—

1/2 + [631]

5/2 + [622]

7/2 [7431
7/2 + [624]
3/2 + [631]
1/2 [501]
5/2 + [633]
1/2 + [620]
V/2 + [613]
5/2- [V52]

-0.40 0', 7, (d;p), (d, t),
( He, ~)

Fav.~,y, v. , (d, p)
(d, t), (3He, ~)
~,y; v, (d, t), (3He, ~)
(d, p), ('He, ~)
(d, t), (3He, ~)
(d, t), ( He, ~)
(d, t), (3He, ~)
(d, p)
(d, p)
('He, ~)

a-d
a, c,d
b, d
c~d
c~d
c~d
b
b
d

Ahmad et al. (1968); 4 ~ ct' decay.
"'Braid et al. (1965); 36U(d, p) reaction.
'Boyno et al. (1970); U(d, t) reaction.
Von Egidy et al. (1970); U(3He, 0-') reaction.
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TABLE XI. Intrinsic states of &2U&47.

238U(n, y) 238U (d, p)
Bandhead

energy (keV) Assigned character 5 2/28 (keV)
Empirical data used to

deduce assignment References

0
133.7
173
688
726
746
815
853

5/2+
1/2+
7/2+
1/2+
3/2.+
1/2-
1/2-
3/2+

5/2 + [622]
1/2+ [631]
v/2+ [624]
1/2+ [62o]
3/2+ [631]
1/2- [v5o] '
1/2 —[501]
3/2 + [622]

6.1
6.8
6.2
8.8

7.0

—0.42

+0.07

(d, p), (n, V)
(d, p), (n, Y), (d, p'y), &

(d, p)
(d, p), (n, y)
(n, y)
(d, p), (n, V)
(d, p), (n, V)
(n, V)

a-c
a

a, b
b

a, b
a, b
b

Sheline et al. (1966); 3 U(d, p) reaction.
"Bo1.linger and Thomas (1972); 3 U(n, y) reaction.

Yates et al. (1975a); U(d, pp), 7.
dThe 1/2 —[750] state is sometimes labeled as 1/2 —[761].

TABLE XII. Intrinsic states of 3&4~Pu~43.

24~Cm ~,1/2+ [631]
Pu(d, t) Pu(p t)

Bandhead
energy (keV) I Assigned character

237
g4 Pug 43

a 2/28 (kev) References

= Ec "'Am, 5/2 [523]
Empirical data used to

deduce assignment

0
145.6
280.2

370.4

407.8

473.5
545
655.3
800
908.8

1014

7/2-
1/2+
5/2+

3/2+

7/2+
1/2
5/2-
1/2+
7/2+
3/2-

v/2 [v43]
1/2+ [631]
5/2 + [622]

3/2+ [631]

5/2+ [633]

7/2 + [624]
1/2 —[501]
5/2 —[V52]

fl/2 + [661]I30+)
7/2 + [613]A
3/2 —[501]B

5.3
6.2
5.8

5.8

-0.47
y-mult. , (d, t)
Fav. ~, (d, t), (p, t)
q-x ult. , EC(O.O),

(d, t)
y-mult. , EC (7.3),

(d, t)
y-mult. , EC (6.8),

(d, t)
y-mult. , EC (6.7)

(d, t)
y-mult. , EC (7.2)
(p, t)
p-mult. , EC (6.4)
{',d, t)

a, b
a—c

Ahmad et al. (1975b); Am EC decay and Cm 0, decay.
"Grotdal et al. (1973); Pu(d, t) reaction.
~Friedman et al. (1974); 23 Pu(p, t) reaction.
"Comment: The 852 keV level observed by Grotdal et al. (1973) is most likely the 5/2+ member of the 1/2+ band at 800 keV.

TABLE XIII. Intrinsic states of ~4Pu~45.

0
285.5

391.6

469.8

511.8
1017
1214
1233
1261

9/2

'4'Cm ~,5/2+ [622]
23~&p ~= 5/2+ [642]"'P (d p) "'Pu(d, d')

Bandhead
energy (keV) I

1/2+
5/2+

7/2-

1/2-

7/2+
1/2-
1/2+
7/2+
3/2+

Assigned character

1/2 + [631]
5/2 + [622]

v/2 —[v43]

1/2 [5o1]
+(1/2[661]($0 f

7/2 + [624]
1/2 —[750]B
1/2 + [620]B
7/2 + [613]B
3/2+ [622]B

238
g4 Pug 45

52/28 (1 eV)

6.3
6.4

5.0

-0.58

+0.48

References

I, p, 0'. , (d, p)
Fav. &,+-mult. , w,
p-(7.1),Ec(o.o), (d, p)

O. , y-mult. , ~,P (6.3),
EC(8.6), (d, p)

y, (d, d')

q-mult. , EC (5.8)
(d, p)
(d, p)
(d, p)
(d p)

b-e
c,f

Am, 5/2 —f 523]
Empirical. data used to

deduce assignment

Faust et aE. 1965; I,p.
"Baranov et aE. 1966; Cm ~ decay.
cGrotdal et al. 1973. 238Pu(d p) and 238Pu(d d') reactio

Ewan et al (1959); Npp decay.

Porter et al. (1972); 8Am EC decay.
Davies and Holi. ander (1965); 38NpP decay.

~Thompson et al. (1976); Pu(d, d') reaction.
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Assigned character

TABLE XIV. Intrinsic states of 94Puf4$.

245cm ~,V/2 + [624]
4 Pu(d p) Pu(d t) 4 Pu(3He 0.)

Bandhead
energy (keV) I Kx

24l94~f47

5 2/28 (keV)
Empirical data used to

deduce assignment References

161.4

175.0

570
752
770
800
844

936
967

15/2

5/2
9/2

5/2+

1/2+

7/2+

7/2-
1/2+
3/2+
7/2+
1/2—

3/2+
1/2-

5/2 + [622]

1/2 + [631]

V/2+ [624]

V/2 —[743]
1/2 + [620]A
3/2+ [631]&
V/2+ [613]~
1/2 —[5O1]

+1/2 —[750]B
3/2 + [6221&
1/2 —[5O1]

6.0 I, p, , y, (d, p), (d, t),
( He, ~)

{d,ty), ~, (d, p),
(d, t), (3He, ~)

Fav. ~,y, (d, p),
(d, t)

(d, p), (d, t), {He, ~ )
(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)

(d, p}, (d, t)
(d, p), (d, t)

a—d, g
c—e

b, f, g

c

c
c, d

Edel. stein (1970); I, p.
"Ahmad et al. (j976d); 4 Cm cv, 'y.
c Braid et al. (1972); 4 Pu(d, p) and 4 Pu(d, t) reactions.

Elze and Huizenga (1971); 4 Pu{d, t) and Pu(SHe, o'. ) reactions.

'Yates et al. (1975a); 2Pu(d, Q},&.
Friedman and Milsted (1966); 4 Cm n decay.

g Baranov and Shatinskii (1975); 4 Cm ~ decay.

TABLE XV. Intrinsic states of 94Pu~49.

24~Cm ~,9/2 —[734]
244Pu(d t) 242Pu(d p) 242pu(n p}

Bandhead
energy (keV) I Ãvr Assigned character

24394~149

@2/28 0 eV)
Empirical data used to

deduce assignment References

0
287.4
383.6
402.4
625.6
626
703.9
790.7
813.8
905.9
981.1

1044
1212.8

9/2

5/2
11/2

7/2+
5/2+
1/2+
9/2-
1/2+
7/~+
3/2-
3/2-
3/2+
1/2-
3/2+
9/2+
5/2-

7/2+ f624]
5/2 + [622]
1/2 + [631]
9/2 —[V34]
1/2 + [620]
V/2 + [613]

(7/2+ [624] S2—j3)~
1/2 —[v5o]'
3/2 + [622]
1/2 [5O1]
3/2 + [631]
9/2 + [615]
5/2 —[5O3]

6.4
6.5
6.9
4.6
7.0

8.1
6.3

6.0 (assumed)

-0.58

+0.34

5 6

+1.4

243Pu P 24~Cmo. , (d, t)
~,y-mult. , (n, y), (d, p), (d, t)
(d, 4'), &, (d, p), (d, t)
Fav. ~, (d, p), (d, t)
(d, p), (d, t), (n, V)
(d, p)
(-,7)
(d, p), (n, V)
(d, p)
(d, t)
(d, p), (d, t)
(d, p)
(d, t}

a—c
b, c
c~d
b, c

c

~ Friedman et al. (1969); PuP decay.
"Fields et al. (1971) Cm G.' decay.
'Casten et al. (1976); (d, p)(d, t), (n, p).

"Yates et al. (1975a); {d,+),7..
8 The 1/2 —[750] state is sometimes labeled as 1/2 —[761].

Assigned character

TABLE XVI. Intrinsic states of 94Pu&5~.

'44Pu(d, p)
Bandhead

energy (keV) I K&

245
94PU$5$

h /28 (keV)
Empirical data used to

deduce assignment References

220
249
309
328
578
640 ~

805

15/2 9/2-
9/2 5/2+
1/2 1/2+
9/2 V/2+
3/2 . 3/2+
3/2 1/2-

11/2 9/2+

9/2 —[V34]
5/2 + [622]B
1/2+ [620]a
V/2+ [613]A
3/2+ [622]& .

1/2 —f750]A
9/2 + [615]X

(d, p}
(d, p)
(d, p)
(d, p)
(d, p)
(d, p)
(d, p)

b
b

b
b
b
b

The energy of the 15/2 member of 9/2 —[734] band was assumed at 220 keV, from analogy to levels of 49Cf (Ahmad et al. ,
1976b). All other energies were measured relative to this energy.

"Erskine et al. (1976); 244Pu(d, p) reaction.
'The 1/2 —[750] state is sometimes labeled as 1/2 —[761].

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977



862 Chasrnan, Ahmad, Friedman, and Erskine: Single-particle states A & 228

TABLE XVII. Intrinsic states of 496Cmg4y.

44Crn (d, t)
Bandh cad

energy (keV) Assigned character

2436crn14

8 2/28 (keV) References

Ec 243Bk, 3/2 [521]
Empirical data used to

deduce assignment

0
87.4

133
530
729
798

1136

15/2

5/2

5/2+
1/2+
7/2+
7/2-
1/2-
3/2+
5/2-

5/2 + [622]
1/2 + [631]
V/2+ [624]a
v/2 —[v43]a
1/2 —[501]
3/2+ [631]a
5/2 —[503]B

I,p, (d, t)
q mule. , ~, (d, t)
(d, t)
(d, t)
(d, t)
(d, t)
(d, t)

a, b
b, c

b
b
b
b
b

Abraham et al. (1973); I,p.
"Braid et al. (1971); (d, t) reaction.
Yates et al. (1975a); y-mult. and & measurement.

TABLE XVIII. Intrinsic states of 96cm&49.

249Cf~, 9/2 [V34]
Cm(d p) Cm(d, t)

245Am ' =, 5/2+ [642]
Bandhead

energy (keV) I Assigned char aeter

24596cmf 49

e2/28 0 eV) References

EC 245Bk 3/2 —f521]
Empirical data used to

deduce assignment

0
252.9

356.0

388.2
633.7
643.5
741.0

782
908
913
980"
995

1271

9/2

3/2
5/2

7/2+
5/2+

1/2+

9/2-
3/2-
7/2-
1/2+

7/2+
3/2+
1/2-
1/2-
3/2+
5/2-

V/2 + [624]
5/2 + [622]

1/2 + [631]

9/2 —[734]
(7/2 + [62412 j
v/2 [v43]
1/2 + [620]

V/2 + [613]x
3/2 + [622]B
1/2 [501]
1/2 —[750]B
3/2 + [631]a
5/2 —[503]B

6.1
6.1

5.0
5.6
6.5
6.9

—0.72

I,p, (d, t),P (6.3)
0. , y-mult. , EC (6.9),
p-(6.5) (d, p), (d, t)

p-rnult. , &, EC (8.0),
(d, p), (d, t)

~,y-rnult. , (d, p), (d, t)
p-mult. , EC(6.9),
0. , y-mult. , (d, t)
p-mult. , EC (6.0),

(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)
(d, p), (d, t)

b-f

e-g
b, c, e

f
b, c, e

e, f
c, e

e

~Abraham et al. (1970); I,p.
"Ahxnad (1966); 249Cf ~ decay.
'Baranov et al. (1973); Cf 0.' decay.

Bunker et al. (1967); AmP decay.

'Braid et al. (1971); (d, p), (d, t) reactions.
Ahmad et al. (1976a); Bk EC decay.

~Yates et al. (1975a); & measurement.
The 1/2 —[750] state is sometimes labeled as 1/2 —[761].

TABLE XIX. Intrxnslc states of 96cmg5g .

25~cf~, 1/2 + [62O]
'"Cm(d, p), '"Cm{d, t)

Bandhead
energy (keV) I Assigned character

24796cm

e'/28 (keV)
Empirical data used to

deduce assignment References

0
227
285.0
403.6

439
506
668
687
784
958

1079
1283

9/2

11/2
3/2

5/2

9/2
5/2+
V/2+
1/2+

7/2+
1/2+
3/2+
9/2+
1/2-
1/2-
3/2+
5/2-

9/2 —[V34]
5/2 + [622]
7/2 + [624]
1/2+ [62O]

V/2 + [613]a
1/2 + [631]A
3/2+ [622]a
9/2 + [615]B
1/2 —[v50]a
1/2 —[501]A.

3/2+ [631]a
5/2 —[503]a

5.6
6.2
6.3
6.6 +0.52

I,V, (d, t), V
~,p-mult. , T, (d, p), (d, t)
Q. , y, (d, t)
Fav. ~,p-mult. ,

(d, p), (d, t)
(d;p), (d, t)
(d, t)
(d, p), (d, t)
(d, p), (d, t)
(d, p)
(d, t)
(d, t)
(d, t)

a—d
b-d
b-d

b—d
b
b
b
b
b
b
b
b

Abraham et al. (1973); I,p.
"Braid et al. (1971); (d, p), (d, t) reactions.

Chetham-Strode et al. (1968); 5 Cf 0.' decay.
Browne and Asaro (1969); 25~cf & decay.
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TABLE XX. Intrinsic states of 969cm~53.

Cm(d, p)
Bandh cad

energy (keV)

0
110
208
220
469"

9/2
1/2+
7/2+
3/2+
9/2+
1/2-

As signed character

1/2+ [620]
7/2+ [613]
3/2 + [622]A
9/2 + [615]B
1/2 —[V 50]A

249
96cm~53

I '/2e (kev)

6.8

+0.29

Empirical data used to
deduce as signment

(d, p)
(d, p)
(d, p)
(d p)
(d p)

References

Braid eg al. (1gVj); Cm(d, p)
The 1/2 —[750] state is sometimes labeled as 1/2 —[761].

TABLE XXI. Intrinsic states of 98cf~49.

25~ Fm 4,9/2 —[734]
Bandh cad

energy (keV) I Assigned character

24?98cf149

h 2/28 (keV)
Empirical data used to

deduce assiginnent References

0
383.2
480.4
678.0

7/2+
5/2+
9/2
7/2—

7/2 + [624]
5/2 + [622]
9/2 —[V34]
v/2 —[v43]

6.1
6.3
4.7
6.7

~,&-mult.
A, p-mult.
Fav. n, q-mult.
A sP

Ahmad et al. (1973a); Fm ~ decay.

TABLE XXII. Intrinsic states of 98cff5$.

253Fm ~, 1/2 + [620]
249Cf (d, d'), 9/2 —[734]
249Bk ' =,V/2+ [633]

Bandhead
energy (keV) I Assigned character

249
98cf151

h 2/28 (keV) References

-Ec '49Es, 7/2+ [633]
Empirical data used to

deduce assignment

145.0

379.5

416.6

443.0

551

668

813.2

920

1007.9

1078

1218.5
1415

9/2-

7/2+

1/2+

7/2+

13/2-
5/2-

11/2+

9/2+

13/2+

15/2+

7/2-
7/2+

9/2 —[V34]

5/2+ [622].

7/2+ [624]

1/2 + [620]

7/2+ [6»]
1/2+ [631]A

(9/2 —[724]e 2+]

(9/2 —[724]8 2+)

19/2 —[724]S1—j
9/2 + [615]

19/2 —[724] e2-)
19/2 —[724] 9-)
(9/2+ [622]e2—j'
(9/2 —[724]Sl-j.

5.7

6.1

5.5
5.6

5.5

5.4

5.9

5.7

+0.32

Fav. G. , EC(6.7),~

y-mult. , 7, EC (7.3), (d, d')

y-mult. , EC(6.2)

Fav. 0. ,p-mult.

p-mult. , EC (7.2)

(d, d')

p-mult. , EC (6.3),
(d, d')

(d, d')

q mult. , EC(6.6)

(d, d')

(d, d')

q-mult. , EC (5.5)

(d, d')

b-d

b, d

~Ahmad (1966); 9Cf ~ decay.
Ahmad et al. (1976b); 2 9Es EC decay.
Ahmad et ~l. (1967). Fm A decay.
Yates et al. (1975b); 49Cf(d, d').' I arge vibrational admixture.
In the Es EC decay the three-quasiparticle component {p[622] 7/2+; p[521] 2/2 —;n[622] 2/2+) of this particie-pius-phonon

state was identified.
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TABLE XXIII. Intrinsic states of 88Cf&53.

2'5Fm ~,7/2 + [613]
Bandh cad

energy (keV) I Assigned character

25k
88Cfl53

8 /28 (keV) References

Ec 251Es 3/2 —[521]
Empirical data used to
deduce assignment

0
106.3
177.6
370.4
434.2
544.1

1/2+
7/2+
3/2+

11/2-
9/2-
5/2+

1/2 + [62O]
7/2+ [613]
3/2+ [622]

»/2 —[725]
9/2 —[734]
5/2 + [622]

6.4
6.7
6.8

6.6

+0.285 p-mult. , EC (6.2)
Fav. G.', p-mult. , w

~,y-mult. , EC (-5.7)
~,y-mult. , &

o. , y-mult.
&,p-mult.

b
a, b
b, c
b, c
b, c

Ahmad et al. (1.970); 2 Es EC decay.
"Ahmad et al. (1971) 5 Fm n decay and y.
'Ahmad and Milsted (1975a); 55Fm cv decay.

TABLE XXIV. Intrinsic states of &8C F55.

»~Z ~ , 9/2 + [615]
Bandhead

energy (keV) I

0
241.0

7/2+
9/2+

As signed character

7/2 + [613]
9/2 + [615]

253
88C fg 55

h 2/28 (keV)

6.8
7.6

Empirical data used to
deduce assigninent

p-mult.
Fav.

References

a, b
a, b

~Asaro and Perlman (1967); ~Fm & decay.
"Ahmad et al. (1976d); Fm 0.'decay.

TABLE XXV. Intrinsic states of g00Fmg5g.

»5No ~,1/2+ [62O]
Bandh cad

energy (keV) I Assigned character

251
100 151

e2/28 0 eV)
Empirical data used to

deduce assignment References

0
190
550

9/2-
5/2+
1/2+

9/2 —[734]
5/2+ [622]B
1/2 + [620]B

a—c
b, c
b, c

~Ahmad et al. (1973a); 5 Fm G. decay.
Eskola et al. (1970); No e decay.
Dittner et al. (1971); No 0. decay.

TABLE XXVI. Intrinsic states of 38f Pa(40.

235Np ~, 5/2 + [,642]
Th ~ =, 5/2 + [633]

230Th (~ t)
Bandhead

energy (keV) I

23k
91Pa140

A2/28 0 eV)Assigned character
Empirical data used to

deduce assignment References

0
102.3

174.1
183.5
287
320.2
604

3/2 1/2-
3/2+

5/2-
5/2+
1/2+
3/2-
3/2-

1/2 —[530]
3/2 + [651]

5/2 —[523]
5/2 + [642]
1/2 + [400]A
3/2 —[532]C
3/2 —[521]B

6.2

6.3

-1.5 I,p, (~, t)
0. ,p (5.6),y-mult. ,

(m, t)
p (6.8),y-mult. , (~, t)
Fav. n, p (5.7),y-mult.
(~, t)

P (6.8)
(~, t)

b—d
b-d
c, d
b
d
b

Axe et al. (1961); I,p.
"Erskine et al. (1975); Th(&, t) reaction.
'Browne and Asaro (1973); 35Np G. decay and 3 Th p decay.

Hornshdj et al. (1975); 2 ~Th P" decay.
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TABLE XXVII. Intrinsic states of ggPaf42.

2»Np ~~, 5/2+ [642]
"'Th ~ —,1/2 + [631]
232Th(3He, d), 232Th(~, t)

Bandhead
energy (keV) I

233
94 Pa142

Empirical data used to
deduce assignmente 2/28 (kev) ReferencesAssigned character

1/2 —[530]

3/2 + [6»]

1/2+ [400] '

5/2 + [642]

I,p, P (5.9), (3He, d),
(0', t)

~,P (6.5),p-mult. ,
(3He, d), (~, t)

~,P (-7),y-mult. ,
(3He, d), (~, t)

Fav. 0'. , y-mult. , ( He, d),
(~, t)

(3He, d), (G. , t)
{3He,d), (0. , t)

1/2- 5.9

3/2+94.7

1/2+169.4

5/2+238.0
c~d

5/2 —[523]C
3/2 —[521]

5/2-
3/2-

298
670

Marrus et al. (1961); I,p.
"Hoekstra and Wapstra (1969); 33Th P decay.

Elze and Huizenga (1975); Th( He, d), 3 Th(n, t) reactions.
Browne and Asaro {1968); 37Np & decay.

'In Refs. b and c this state has been assigned to the 1/2+ [660] orbital.

TABLE XXVIII. Intrinsic states of 93Np&42.

23~Am ~, 5/2 —[523]
237Np(P t)

Bandhead
energy (keV)

235
s3Np~42 =Ec "'Pu, 5/2 + [633]

Empirical data used to
deduce assignmente 2/28 (keV)Assigned character Refer ences

5/2+
5/2-
3/2-
5/2+
5/2+

5/2 + [642]
5/2 —[523]
3/2 —[521]a

f5/2+ [642] 0+)A

0
49.0

756.4
834
260

(p, t), n
Fav. &,p-mult. , ~
EC
(p, t)
(p, t)

4.9
6.1
4.6

a—c
a, b
b

5/2
5/2

Gorman and Asaro (1971); 3~Am 0. decay and 3 Pu EC decay.
"Jager et al. {1973); 3 Pu EC decay.
'Friedman et aE. (1974); Np{p, t) reaction.

TABLE XXIX. Intrinsic states of 83Np~44.

24~Am ~, 5/2 —[523]
»'U-~ =,1/2 + [631]
237Np(d, d')

Bandhead
energy (keV)

EC 23&P„7/2
237

93Np1. 44

Empirical data used to
deduce assignmente '/28 (keV)Assigned character References

5/2 + [642]
5/2 —[523]
1/2 —[530]
1/2 + [400]
3/2- [521]

(5/2 —[522] 8 0+)
+(5/2 + [642]S0—j

5/2+
5/2-
1/2-
1/2+
3/2-
5/2—

I,p, ~, EC( 6.8)
Fav. &,p-mult. , v, EC(-6.8)
P (6.5),p-mult.
P (7.3),y-mult.
(d, d')
~,y-mult. , (d, d')

a-f
b—f
e, f

fsg
dsg

4.7
6.2
6.7
6.2
5.8
4.9

0
59.5

281.4
332.4
516
721.9

—1.69
+1.08

Hutchison and %einstock (1960); Lewis et al. (1970); I,p.
"Baranov et aE. (1964); 2+Am 0. decay.
'Hoffman and. Dropesky (1958); 37Pu EC decay.

Lederer et al. {1966); 4 Am n and y decays.' Yamazaki and Hollander (1966); 237U P decay.
f Elze and Huizenga (1970b); 3~U(~, t} and 36U(3He, d) reactions.
~Thompson et al'. (1976); 237Np(d, d') reaction.
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TABLE XXX. Intrinsic states of ~3938Np&46.

43Am ~, 5/2 —[523]
"'U ~ , 5/2 + [622]
238U(3He d) 238U (~ t)

Bandhead
energy (keV) As signed character

239
o3&p~46

A ~/28 (kev)
Empirical data used to

deduce assignment References

0
74.6

271
450

5/2+
5/2-

1/2-
3/2-

5/2 + [642]
5/2 —[523]

1/2 —[530]
3/2 —[521]

6.2
I,~,y, P (6.7), (~, t)
I av. ~,p-mult. , T,

(3He, d), (a, t)
0,', (3He, d), (~, t)
('He, d), (~, t)

b-g
b, e, f

e

Hubs and Marrus (1958); I.
"Barano~ et al. (1964); 43Am A decay.

Van. Hise and Engel. kemeir (1968); 43Am &,y decays.
Engelkemeir (1969); Am &, ce decays.

e Von Egldy et al (1975). U ( He, d), 3 U(&, t) reactions.
Lederer et al. (1966); +Am 0.', p decays.

~Blinowska et aE. (1964); U P decay.

As signed character

TABLE XXXI. Intrinsic states of 3&5~Am&44.

243Bk~,3/2 —[521]
Bandhead

energy (keV) I K7]

239
95Amg44

5 ~/28 (keV)
Empirical data used to

deduce assignment References

0
187
558

5/2-
5/2+
3/2-

5/2 —[523]
5/2 + [642]
3/2 —[521]

5.8
4.7
5.8

3~Am EC decay,
0. , y-mult.
Fav. o.', p-mult.

ab
b
b

Porter et al. (1972); 3~Am EC decay.
"Ahmad (1966); 24 Bk o.' decay.

Assigned char aeter

TABLE XXXII. Intrinsic states of &4~5Am&46.

'"Bk~, 3/2 —[521]
'4'jPu{~, t)'"P ~=, 5/2+ [622]

Bandhead
energy (keV) I K7]

24k95~148

e '/28 (keV)

4~Cm, 1/2 + [631]
Empirica, l data used to

deduce assignment References

205.9

471.8

623.1

652.1

670.2

5/2-

5/2+

3/2-

1/2-

13/2 7/2+

5/2-

9/2 7/2

5/2 —[»3]
5/2 + [642]

3/2 [»1]
1/2 + [400]

1/2 —[530]

3/2 + I 651]&

7/2 + [622]A

(5/2 —[522]R 0+)A

7/2 —[514]B

6.0
(assumed)

6.0
(assumed)

+0.7

-1.8

I, I[L, (~, t), (p, t), j-'.I (5-8)

p-mult. , {m, t)

Fa&. o.', ~-mult. , EC (7.7), (0.', t)

p-mult. , EC (8.0), (~, t)

q mult. , EC(6.2), (~, t)

p-mult. , EC (7.7)

(p, t)

a—d

b, c

b, c

b, c

b, c

Armstrong and Marrus (1966); I,p.
Porter et aE. (1974); Bk ~ decay and ~Cm EC decay.

'Erskine et al. (1975); (~, t) reaction.
dI"riedman et aE. (1974); 243Am(p, t) reaction.

Rev. Mod. Phys. , Vol. 49, No. 4, October 'f977



Chasman, Ahmad, Friedman, and Erskine: Single-particle statesA & 228

TABLE XXXIII. Intrinsic states of 4~5Am~48.

247Bk ~,3/2 —[521]
'"Pu ' =, V/2 + [624]
42Pu(3He d) 42Pu{0.' t)

Bandhead
energy (keV) I Assigned character

5/2 —[523l

243
gg Amp 48

2/2g rkeV)
Empirical data used to

deduce assignment

I,p, P {6,1},
(3He, d), (0. , t)

References

84.0

267.0

465.7

977 9/2 V/2—

5/2 + [642]

3/2 —[521]

7/2 + [633]

7/2 —[514]

7.4

p-mult. , 7,P (6.1), (3He, c

{m, t)

Fav. 0-', (3He, d), {&,t)

y-mult. , P {5.5)(3He, d), (o.', t)

(3He, d), (&, t)

b, d

Armstrong and Marrus (1966); Manning et al. (1956); I,p.
"Friedman et al. (1969); 243Pu P decay.
~Hoffman et al. (1969). 2Pu P decay.
~Elze and Huizenga (1970a); (3He, d), (&, t) reactions.

TABLE 3UCKIV. Intrinsic states of &~5Amggp.

24'Bk ~,7/2 + [633l
'4'Pu ~ =,9/2 —[734]

Bandhead
energy (keV)

327.2

5/2+

5/2

3/2-

As signed character

5/2 + [642]

5/2 —[523]

3/2 —[521]

V/2 + [633]

245
g5Amg5p

h 2/28 (keV)

, 2.8

6.0

7.6

Empirical data used to
deduce assignment

~,p-mult.

p-mult.

Fag. A, p (7.3)

References

b

Ahmad (1966); 4~Bk G. decay.
Daniels et al. (1968); Pu P decay.
Ahmad et al. (1976d) ~ 4~Bk D decay.

"Comment: There is strong Coriolis mixing bebveen the 5/2+ [642] and 7/2+ [633] bands.

TABLE XXXV. Intrinsic states of -947Bk&zp.

24'Cm(~, t)
~ Es ~,3/2 —[521]

Bandhead
energy (keV)

40.8

334.9

447.8

487

704

904

3/2-

7/2+

1/2-

7/2—

Assigned character

3/2 —[521]

v/2+ [633]

5/2 + [642]

5/2 —[523]

1/2 + [400]A

7/2 —t»4]A

247
NBki. 50

e 2/28 (keV)

6.0

5.8

6.0
(assumed)

6.0

+0.7

+0.7

Ec 247cf 7/2 + [624]
Empirical data used to

deduce assignment References

Fav. 0. , {~,t)

~, (~, t)

EC,y-mult.

EC, (~, t)

(1976c};247Cf EC decay and Es o,'decay.
Ahmad et al. (1977); 6Cm(~, t) reaction.
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As signed character

TABLE XXXVI. Intrinsic states of 97Bk& „~.

~53Es~ 7/2+ [633]
'"Cm ' =, 1/2+ [620]
"'Cm('He, d), '"Cm(~, t)

Bandhead
energy (keV) I K7r A 2/28 (keV)

Empirical data used to
deduce assignment References

8.8
377.6

389.2
569.2

621.9
643.2
750.7

1229

9/2

9/2
13/2

7/2+

3/2-
1/2+

5/2+
1/2-

5/2-
1/2-
7/2-
9/2+

7/2 + [633]

3/2 —[521]
1/2 + [4OO]A

5/2+ [642]
1/2 [53O]A

5/2 —[523]A
1/2 —[521]A '
V/2 —[514]A
9/2 + [624]A

6.2
6.6

5.7
6.0

(as sum ed)

6.0
(assumed)

1.6

+0.02

I,p, Fav. o', (3He, d),
(0. , t)
~,y, P (5.9)(3He, d), (o. , t)
P,p-mult. , (3He, d),

, t)
n, y-mult. , (~, t)
P (-7),p-mult. , ( He, d),

(A, t)
(0.', t), (3He, d), n, y

P (5.9),p-mult.
('He, d), {~,t), G. , y
(3He, d), (~, t)

c, e, f
b-d

c, e, f

e, f
e~f

Boatner et al. (1972); I,p.
bAhmad and Milsted (1975a); ~53Es ~ decay.

Erskine et al. {1975); 8( m(3He, d), Cm(0. , t) reaction.
' "Ho&tz and Hollander (1970); y ray ~ith 3Es ~ decay.

eHoff et al. (1971) 24~em P decay.
Hoff (1975); 48Cm P decay.

gAnon alous decoupling parameter.

IV. l3ISCUSSION

A. Extracted single-particle level spacings and occupation
probabilities

Within the context of the pairing force model, we can
deduct' the true single-particle level spacings from the
experimentally observed single-particle excitations.
The method we use is as follows: (1) assume a single-
particle spectrum; (2) calculate the excitation spectrum,
with blocking taken into account for each configuration;
(3) compare the calculated spectrum with the experimen-
tally determined level spacings; (4) change the single-
particle spectrum as suggested by this comparison.
Steps 2, 3, and 4 are repeated until the calculated spec-
trum agrees with the observed one. The extracted level

spacings obtained in this way do not include the effects
of particle-hole interactions on the single-particle en-
ergy level shifts. As we have shown in Sec. II.B.2.b.,
these effects are smaller than suggested by the calcula-
tions of Gareev et al. (1971).

Calculations of the extracted level spacings, with con-
stant pairing matrix elements, have been carried out for
most of the actinides (Braid et al. , 1965, 1970, 1971,
1972; Erskine et al. , 1975). These calculations give
some large and sudden shifts of the single-particle level
spacings that are not consistent with smooth changes in
the nuclear deformation. This is particularly noticeable
for the neutron orbitals that arise from j»&, in the spher-
ical limit. In Figs. 15 and 16, we present the extracted
single-particle level spacings for a representative set

TABLE ~~VII. Intrinsic states of &&Es~52.

25'Md~, v/2 [514]
250cf(~ t)

Bandhead
energy {keV) I

25k
g9E S152

Assigned character ' h /28 (keV) References

Fm 9/2 —[734]
Empirical data used to

deduce assignment

0
8.3

411
461.4

777.9
889.1

1238.9
1264.9

3/2-
7/2+
1/2-
7/2-

9/2+
11/2+
11/2+
11/2+

3/2 —[521]
V/2 + [633]
1/2 —[521]
7/2 —[»4]

9/2 + [624]A
(7/2 + [622] 2+)

(n9/2 —[724];nl/2 + [620];ps/2 —[521])
three-quasiparticle state

6.3
5.3
6.8

5.2

+1.0

~~~Es EC decay, (, t)
Ec(6.v), (~, t)
(n, t)
Fav. 0.', EC(7.7),
p-mult.

EC (8.0),p-mult.
EC (7.9),y-mult.
EC {6.0),p-muIt.
EC (6.1),p-mult.

b, c,d
b
b
b
b

Ahmad et al. (1970); Es EC decay.
~Ahmad et al. (1973b); ~ Fm EC decay.

Ahmad et al. (1976c); 2 Md ~ decay.
Ahmad et al. (1977); ~ Cf{, t) reaction.

'The 1265 keV level has not been given a definite assignment.
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l.6—

I.4—

I.2—

3/2+[622]
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~/2+ [62O~]

7/2+ [6 I 3~]

a—~

-0.2—

-0.4—

-0.6—

/
/

l.o — e/2- f734]. /

I
I0.8— I

I
7/2+ [624]

0.4— r
5/2+ [622]

~~o
0.2 —

7/2 [743] «~ / —~ ~
+ /

/

0— ~ p---w ~ ~ ~
I /2+ [63I] I

I

/
I 4

I
I +

/
/ ~k

2.0

I.8—

l.6—
4—

l. 2—

3/2+ [622]
7/2 + [6I3]
I/2 + [620]

1.0—

.6— 9/2 —[734]

7/2+ [624]

MeV .2—
5/2+ [622]

O — '/2+ [63I] =

7/2 —[743]
2

-0.8— 5/2~ [6 -.6—

-I .0—

-I.2—

-I 4—

5/2-[752
~+

S/2+ (63l]

I/2- f50 I]

I

233U
235U

I

237U
24l p

I I

245C 249C

247C 25lC )

2.0-
I I

7/2- [5I 4]~

1.8-
l.6-

I.2-
I.O—

0.8—

) 04—

0.2—

3/2- [52 I]

5/2- {,523]0- 0—

6/2+ [642]/
/

/
-0.4—

/
-0.6- I/2- [53

-02-

-0.8 — 3/2+ [65 I]

-I 0-
-!.2-

I/2+ [400]

I I

25I 241 249
Po Am

237 243 25l
Np Am Es

FIG. 16. Extracted proton single-particle energies as deter-
mined with constant pairing matrix elements. The dashed line
connects ground states.

FIG. 15. Extracted neutron single-particle energies as deter-
mined with constant pairing matrix elements. The dashed line
connects ground states.

5/2 + [633]

—I.O— 5/, —[752]

-I.Z — 3/2 + [6&I]

/, —[50I]

I

233 237

2350

I I

24 5 249 25lcfCm Cm-
247Cm24lpPu

FIG. 17. Extracted neutron single-particle energies as deter-
mined with pairing matrix elements obtained from density-
dependent delta interaction. The dashed line connects ground
states.

of odd-neutron and odd-proton actinides, as calculated
with the pairing constants of Eq. (2.32). This set in-
cludes the best studied nuclide for each odd value of N
and Z.

We have also determined the extracted single-particle
spectra for the same nuclides, using pairing matrix ele-
ments calculated with a density-dependent delta interac-
tion (Chasman, 1976). These extracted level spacings
are shown in Figs. 17 and 18. In contrast to the spacings
obtained with constant pairing matrix elements, the level
spacings obtained with this set of pairing interaction ma-
trix elements can, on the whole, be well explained in
terms of reasonable shifts in the deformation parameters
of the central potential.

In Appendix 8, we have tabulated the occupation prob-
abilities (V~)(Vz in the BCS theory) for all of the single-
particle configurations indicated in the figures, using
both types of matrix elements discussed above. The in-
teresting feature is the similarity of the two sets of oc-
cupation probabilities, with the exception of the j»» or-
bitals mentioned above.

We have explicitly taken into account the energy shifts
of the ~ +[622] and the 2 -[734] orbitals in 2'7Cm and

'Cm due to mutual interaction via the 2 phonon. The
magnitude of these shifts was estimated using experi-
mentally observed configuration mixing coeffic ients
(Yates et al. , 1975b).

The calculations of Gareev et aE. (1971) suggest sev-
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l.8—

1.6—

l.4—

I.O—

.8—

MeV

.6—

02

~/2 —[521]

0 — 5/p + [642]

—.2—

- l.O—

—.6 — s/z + [65I]
/p -[5so]

—.8—

7/z -[si4] =

I
I

I
I
I
t
I
I

5/, —[sos]

This configuration interaction is expected to cause a de-
crease in the single-neutron transfer reaction cross sec-
tion (Soloviev and Vogel, 1967). In Fig. 19, we have
plotted the sum of differential cross sections at 90 and
140' for (d, P) reactions populating levels of the &+[620]
and —,+[622] bands in 2"Pu (Grotdal et a/. , 1973), '~'Pu
(Braid et a/. , 1972), Pu (Casten et a/. , 19'76), and
2~'Pu (Erskine et a/. , 1975). These summed cross sec-
tions to members of the &+[620] band are roughly con-
stant for Pu- Pu and increase dramatically for
'~'Pu. The sum of cross sections, to the levels of the
2+[622] band is almost constant for all of the Pu iso-
topes. Since the Q value for these (d, p) reactions is es-
sentially constant, we have not corrected for reaction
mechanism effects. These results are at variance with the
calculations of Gareev et a/. (1971)and Komov et a/. (1971);
these calculations suggest a large increase in the cross sec-
tions of both the 2+[620] and —', + [622] orbital in going
from ' 'Pu to 'Pu. The variations of the extracted
single-particle level spacings in Fig. 17 also suggest
that there is a marked increase in the purity of these
two orbitals for the Pu isotopes heavier than ' 'Pu. On
this basis, we again expect the increase in (d, p) cross
sections to occur in going from 'Pu to Pu, rather than

'/2 + [400]
I

23 lp

N

I

24IA 2

243A

I

498k
25lE

FIG. 18. Extracted proton single-particle energies as deter-
mined vrith pairing matrix elements obtained from density-
dependent delta interaction. The dashed line connects ground
states.

eral other instances, as well, where anomalies in the
level spacings may be due to particle-hole interactions.
Specifically, the low extracted energies of the neutron
orbitals —,+ [620] and ~ +[622] in the light actinides (Fig.
17) are explained in terms of interactions with the con-
figurations 2+ [622]432' and 27+ [624]I32', respectively.

700

~ 600-

z 500-0
O
~ 400-
(A
V)
D

-O 300-

z 200
CL
LLJ
U
4

I 00-

~ I/2+ [620] (I/2)

„~ I/2+ [620] (9/2)

II

W2+[622] ~7/2+9/2~

0 I l l l

239 24l 245 245
Pu Pu Pu Pu

FIG. 19. Summed differential cross sections at 90 and 140 for
(d, p) reactions populating levels of the 1/2 + [620] and 3/2 + [622]
bands in 239~ 24k Pu 243~ and 245Pu

between' 'Pu and 2 'Pu. The situation in the Cm isotopes
agrees better with our expectations, but the experimen-
ta.& data are rather fragmentary because many of the rel-
evant peaks are unresolved doublets. The data of Braid
et a/. (1971) indicate that the 2+ [620] orbital is equally
pure in '~'Cm and ~ 'Cm. A measurement of the differ-
ential cross section for populating this orbital in the re-
action Cm(d, p)243Cm would be of particular interest.

The low extracted energy of the neutron orbital —,+ [631]
in the heavy actinides (Fig. 17) can be explained (Gareev
et a/. , 1971) in terms of interaction with the configura-
tion —,'+[631]I32'. Their calculations also suggest rea-
sonable explanations for the low-lying &- bands in ' 'Bk,
that are hard to characterize in terms of single-particle
states.

Qn the whole, the particle-hole interaction calculations
of the Dubna group give reasonable qualitative explana-
tions for the energy shifts when the extracted level spac-
ings obtained with the density-dependent pairing matrix
elements are anomalous, but should not be considered
quantitative.

B. Nuclear shapes

Many calculations and experiments have been done to
determine the magnitudes of the deformations appropri-
ate to actinide nuclides.

In the earliest calculations, sums of single-particle
eigenvalues without the inclusion of pairing energies
(Bohr, 1952; Hill and Wheeler, 1953; Moszkowski,
1955; Mottelson and Nilsson, 1959) or with pa, iring ener-
gies (Bhs and Szymanski, 1961) were used to estimate
the equilibrium quadrupole deformation. A condition of
self-consistency between the potential shape and the
density distribution at equilibrium was used by Kjallquist
(1958) to deduce hexadecapole deformations. Harada
(1964) used a minimization condition to estimate hexa-
decapole def ormations.

In recent years, the equilibrium def ormations of the
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actinides have been calculated using the liquid drop mod-
el with shell corrections (Strutinsky, 1967). In this pro-
cedure, the liquid drop energy is calculated as a function
of deformation for the value of Z and A. of interest. In
addition, a shell correction term which depends on the
single-particle level density at the Fermi level for each
deformation is added to the liquid drop energy. This
shell correction term is the difference between the sum
of the actual. single-particle eigenvalues and the single-
particle energy of an appropriately smoothed level den-
sity. The equilibrium deformation is determined by the
minimum in the total energy. Early calculations were
carried out with this technique, using both the modified
oscillator potential (Arsenievef al. , 1966; Nilssonet al. ,
1969) and the Woods-Saxon potential (Gareev et af. ,
1969). Recent calculations done with this method (Pauli,
1973; Mgller et a/. , 1974; Brack et al. , 1974; Seeger
and Howard, 1975), using both modified oscillator and
Woods-Saxon potentials, are in good agreement with
each other. An interesting feature of the calculation of
MPller et al. (1974) is the study of the sensitivity of the
calculated equilibrium deformation to the details of the
liquid drop model. They find that p, i.s relatively insen-
sitive to these assumptions, but P, shows variations of
-0.02. The equilibrium deformations have also been cal-
culated using a many-body interaction in a self-consist-
ent calculation (Quentin, 1973; Kolb et a/. , 1974), as
well as with wave functions that are not self-consistent
(Ko et al. , 1974).

Another way of obtaining information about the defor-
mation of the potential is by comparing the experimental
single-particle level spacings with those calculated at
various deformations. However, residual interaction ef-
fects must first be taken into account before such corn-
parisons can be made. Calculations by Chasman (1976),
discussed in Sec. IV.A, have been used to deduce defor-
mation parameters in this way.

An experimental approach to the problem is through
Coulomb excitation or inelastic scattering experiments.
Measurements of the Coulomb excitation probability
(Bemis et al. , 1973) may be related to the multipole mo-
ments of the nuclear charge distribution through the rigid
rotor relation [Bohr and Mottelson, 1975 (Chap. 4)],

nuclear surface. The mesonic x-ray experiments are
sensitive to the nuclear charge distribution in two differ-
ent ways. There is a level shift due to the extended
charge distribution and a level splitting due to the fact
that the quadrupole and hexadecapole moments of the
nuclear charge distribution destroy the spherical sym-
metry of the centr al field. In the case of the
mesonic x-ray experiments, one must also make assump-
tions about the radial density distribution of the charge,
iD order to make inferences about the deformation pa-
rameters. There are some large discrepancies between
the various "measured" deformations that are not under-
stood. A part of these discrepancies may arise from in-
adequacies in the coupled-channel analysis used to de-
rive deformation parameters, or from higher-order ef-
fects not explicitly considered.

Brack et al. (1974) have used the experimentally deter-
mined multipole moments directly as a test of their cal-
culated equilibrium deformations. The parameter ro in
the potential is adjusted to get a best overall fit to the
measured quadrupole moments. Fixing this single pa-
rameter also tests the calculated P, equilibrium deforma-
tion, if the measured hexadecapole moments are avail-
able. Brack et al. (1974) found excellent agreement be-
tween all the measured values of the quadrupole moments
and the values calculated with their wave functions. They
also found good agreement with the measured hexadeca-
pole moments, from mass 230 to mass 242. For higher
masses, the experimental errors are extremely large.
They noted that the proton density in the nuclear surface
region is increased by Coulomb repulsion effects. Ac-
cordingly the magnitudes of the deformation parameters
that they obtain are somewhat smaller than the values
obtained with the Fermi distribution used by Bemis et al.
(1973). Milner, Bemis, and McGowan (1976) have re-
cently calculated p, and P~ deformation parameters for
"'U using their measured transition moments (Bemis
et a/. , 1973) and a, radial distribution of the proton den-
sity similar in shape to that given by Chasman (1976).
They find that this modification of the radial distribution

I I I I I I

(~ 0 A) = f(2A. + 1)/16~~ Q&0 (4.1)
.26—

In practice, the analysis of these experiments is compli-
cated by competing modes of level population; e.g. , it is
sometimes hard to determine B(E4,0-4) because of the
competing process of double E2 excitation. The infor-
mation obtained in this way on the moments Q~, can in
turn be used to infer the shape of the nuclear charge
density. There is a. serious caveat here (Bemis et al. ,
1973): the shape of the radial density distribution must
be specified, since changes in the radial distribution give
large changes in the inferred deformations.

A few measurements involving light ion scattering
(Hendrie, 1973; Moss et al. , 1971) and p mesonic x-ray
shifts (Davidson et a/. , 1974) have been done in the
actinides to determine deformations. In the case of light
ion scattering, the interactions are nuclear and take
place at the nuclear surface. Coulomb effects are sec-
ondary. The results obtained in these experiments are
related to the moments of the mass distribution at the

.22—

.20—

. I8—

.l6—
-

I I I I I I I I I

232 234 236 238 240 242 244 246 248 250
Th 0 U U Pu Pu Cm Cm Cm Cf

FIG. 20. Calculated values of P & in the actinides. The solid
lines indicate the range of values of the equilibrium quadrupole
deformations obtained in recent Strutinsky-type calculations.
The diamonds indicate the values obtained by Brack et al. (1974)
using the Strutinsky prescription, which give moments in agree-
ment with the measured values of Bemis et al. (1973). The open
circles indicate deformations inferred from extracted level
spacings by Chasman (1976).
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PI I I I I I I I I I I
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ZIG. 21. Calculated values of P4 in the actinides. See caption
for Fig. 20 for details.

function reduces the calculated value of P, by -10%%uq and

P, by -15% from the values estimated with a deformed
Fermi distribution. A small increase of their radial
scale (changing r, from 1.10 fm to 1.15 fm) decreases
the inferred P, deformation parameter by roughly an ad-
ditiona. l 10/p.

In Fig. 20, we present several calculations of the equi-
librium value of P„and in Fig. 21 we present a similar
figure for the P, equilibrium deformation. The solid dia-
monds represent the values of P, obtained by Brack et al.
(1974), which are in good agreement with the measured
values of the multipole moments. The solid lines indi-
cate the range of values found in the recent Strutinsky-
type calculations (Pauli, 1973; Mg61er ef a/. , 1974;
Brack et a/. , 1974) mentioned above. The open circles
represent the values of the deformation parameters we
have inferred from the extracted single-particle level
spacings (Chasman, 1976). The various deformation pa-
rameters used in the original calculations are converted
to p, and p, with the relations of Appendix A. There is
good agreement in the overall trends of the deformation
parameters obtained in these ways. We believe that the
remaining differences between the deformation param-
eters deduced from the electric moments and those de-
duced from extracted level spacings indicate that there
are some interesting features yet to be found in the ef-
fective nuclear interaction.

There is some weak evidence for nonzero values of the
magnitudes of the P,(cos9) deformation mode in the act-
inides. The values of the decoupling parameters of the

—, + [631] neutron orbital and the ~ —[530] proton orbital
discussed in Sec. III.G suggest a possibility v, = -0.02
in the mass 230 region. The stability calculations of
Mgller et al. (1974) and the extracted level spacings of
Chasman (1976) suggest values of v, = 0.01 in the mass
250 region.

V. CONCLUSIONS AND SUMMARY

There is a remarkable parallel in the present status
of theory and experiment as regards the description of
the actinides.

The single-particle model, utilizing a deformed poten-
tial, provides an extremely good description of level or-
derings, spins, and measured single-particle matrix
elements in the region that we have surveyed. The ex-

perimental data on single-particle structure in odd-neu-
tron nuclides is quite extensive. Gur knowledge of the
single-particle structure of the odd-proton actinides,
particularly the hole states, is less extensive. Recent
improvements in accelerator beam quality and increases
in bombarding energy should make it possible to learn
about these states. Calculations of single-particle wave
functions have been carried out using a modified oscilla-
tor potential and Woods-Saxon potentials, both momen-
tum independent and momentum dependent. In spite of
the apparent large differences in these potentials, there
is a good overall agreement in the wave functions one
obtains with these potentials. For more detailed agree-
ment with the experimental data, the Woods-Saxon wave
functions are superior.

The pairing force is the most important residual inter-
action in the actinides. The effects of a pairing force
can be calculated with very high accuracy for all magni-
tudes of the interaction strength, for both constant and
nonconstant pairing matrix elements. The effect of the
pairing force is to modify the occupation probabilities of
nucleon orbitals and change the level spacings relative
to those of the simple single-particle model. These oc-
cupation probabilities are tested in one-nucleon transfer
reactions by comparing cross sections for reactions such
as the (d, j) and (d, t) reaction. We find that the pairing
interaction gives reasonably good explanations of the oc-
cupation probabilities observed in this way. We have al-
so found that the energy level spacing shifts observed in
the actinides can be explained with pairing matrix ele-
ments obtained from a density-dependent delta interac-
tion and cannot be easily under stood with constant pair ing
matrix elements. It: is possible to distinguish between
these alternatives only because of the large amount of
experimental data obtained in one-nucleon transfer
studies.

Calculations of actinide equilibrium deformations can
be carried out with the Strutinsky prescription. Such
calculations depend on both the single-particle potential
and the pairing interaction. After correcting for the dif-
ferent parametrizations of the potential deformation used
by different authors, we find that the deformations cal-
culated in this way with the Strutinsky procedure are
fairly consistent with each other. We also find that the
deformations deduced from extracted single-particle lev-
el spacings are in moderately good agreement with these
calculations. There is also good agreement between
measured quadrupole and hexadecapole moments and
those obtained from wave functions calculated at the
equilibrium deformations deduced in the Strutinsky-type
calculations. This agreement is somewhat dependent on
the value of the nuclear radius assumed for the single-
particle potential. There is little evidence for higher de-
formation modes in the actinides, but there are some
suggestions of v, & 0 in the mass 230 region and v, & 0 in
the mass 2 50 region.

Residual interactions other than the pairing force can
be treated accurately only in the regime of relatively
weak interaction strengths, and even in this regime the
calculations must be done with care. The calculations
that have so far been done for the actinides are qualita-
tive and provide only an indication of those configurations
that are strongly mixed. The experimental information
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on particle-plus-phonon admixtures in actinide single-
particle states is also quite fragmentary at present. Ad-
mixtures involving the ground-state orbital can be seen
in excited states with reactions such as (d, d ) inelastic
scattering. Other admixtures in excited states have not
been systematically studied. There is much to be done
in understanding the role of particle-hole interactions in
the actinides from both an experimental and theoretical
point of view.

Another area that merits attention is that of under-
standing the magnitudes of absolute and relative differ-
ential cross sections in one-nucleon transfer reactions.
Recent developments in the understanding of the transfer
mechanism together with the recent availability of
coupled-channel codes suggest the possibility of detailed
understanding of the transfer process in the actinides.
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APPENDIX A: RELATION BETWEEN DEFORMATION
PARAMETERS

1+ A.~P~ cosg
K=2, 4g6

(A 1)

'or the substitution

Rp Rp 1 + ~P~ cosO
X=2,4, 6

(A2)

The other parametrizations of nuclear deformations can
be related easily to one of these forms. Equating the
surfa. ces given by Eqs. (Al) and (A2) at the Woods-Saxon
half-density gives

(1++ P Yz(cost|)) = 1
(A3)

» [1+» A»P»(cosg)j

Using the Taylor series expansion of (1+ x) '~', we get

There is a considerable amount of confusion in the lit-
erature concerning the relations between different ways
of describing the nuclear deformation (Gareev et al. ,
1969; Ogle et aL , 1.971; Nilsson et a/. , 1969) to which
we have made a major contribution (Braid et al. , 1971;
Erskine et a/. , 1975). In this appendix, we discuss these
relations in extensive detail inthe hopes of clarifying the
situation.

We relate the different descriptions by equating equi-
potential surfaces at the half-density point for the
Woods-Saxon potential. We also compare these Woods-
Saxon equipotentials with the modified oscillator equipo-
tential surface. As noted in the text, deformations are
introduced in the Woods-Saxon potential either via the
substitution

1 ——g A»P»(cosg) + 8 [A+', (cosg) + 2A.,A»P, (cosg)P»(cosg) + 2A.,A.,P, (cosg)P, (cosg)+ A'»P»(cosg)j —~» A.,P', (cosg)

= 1+P, Y', (cosg) +P» Y'»(cosg) +P, Y,'(cosg) (A4)

including the terms that might be important for. the act-
inides. Equation (A4) is simplified by making use of the
relations

P»(cosg)P» (cos8) = g (K, O, K', OiK", 0)'P» (cos8)

Kov'13/4m p, = -0.5A., + 0.34A2A»+ 0.19082k.,
+ 0.07 5k.4 —0.073k.2,

with

N = 1+0.075k.'+0.0416K. —0.018K.

(A9)

(A 10)

and

Y»0(cosg) = [(2K+ I)/4mj '~'P»(cosg) .

Equating coefficients of P»(cosg), we obtain

NOE5/4m p2= -0.5A.,+0.10682+ 0.214k.,A»

+ 0.055m,' —0.134m'„

N, 49/4m p» = -0.5A»+ 0.193A2+ 0.195k.,A.

(A5)

(A6)

(A7)

'g 2 2 P

g4= A4,

'$6= A6.

(All)

Strictly speaking, the relations (A7)-(A10) hold when the
'

equipotential surface in Eq. (Al) is defined as [r'/(1
+ No) j.

The 7i coefficients of Ogle et al. (1971) are equivalent
to the X coefficients defined above. The relations are

+0.236K. A,,+0.061k. —0.087K,', (AS) The equipotential surface used by Chasman (Braid ef a&. ,
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1971; Erskine et al. , 1975) is TABLE A.1. Relation of deformation parameters.

r' exp( —', v,)sin'8+ exp( ——,' v,)cos'8

+ g v~ v'K+ ,' Px(—cos8)
E=c,6

(A 12)

The v coefficients can be directly related to the A, co-
efficients, giving

v2 ——0.19
g2

——0.234
= 0.191

Pg = 0.203

v& ——0.22
g2 ——0.269

= 0.215
p2

——0.232

v4 ——-0.04
g4 ——-0.083
e4 = -0.044
P4 ——0.067

v4 ——0.02
q4 ——-0.0415
e 4 = -0.022
P4 ——0.0453

P6 = 0.008

p, = o.oo5

A.,= (-—,v, +,—v,' ——,', v', )/N, ,

A.4
= 2.12 v~/N~,

A, = 2.55v6/N, ,

with

(A13)

v& ——0.25
r/p

——0.301
e2 ——0.239
p2 = 0.258

v4 ——0.00
q4- 0.00
F4=0.00
P 4

——0.023 P6 = 0.002

N =1+—v ——v4 2 8
j. 9 2 81 2 '

The situation is slightly more complicated with the modi-
fied oscillator deformation parameters (Nilsson et al. ,
1969). The modified oscillator equipotential surface is

A2= [—36+ 9C —3 EC~]/N2~

A.,= [2c, — 0606ec, ] /N, ,

A, = [2e, + 0.606m @~]/N, ,

N, = (1+—', c') .

(A18)

(1+—', e)' sin'8+ (1 ——3e)' cos'8

+2(&')' g ~EP~(cos8'),
A=4, 6

(A14)

In Table A. 1, we relate these sets of deformation co-
ordinates to each other for the values of the deformation
parameters'that are used in the other appendixes.

APPENDIX B: PAIR OCCUPATION PROBABILITIES
where 0' and x' are the stretched coordinates;

(~')'= ~'[I —-', cP,(cos8)], (A15)

(1 ——', c )cos'8cos 0
[1 ——',eP, (cos8)] (A16)

y'2 1+—', e'+P, (cos8)[—3e+ 'gc']

+ 2E ~P~(c os8) + 2E 6P~ (cos8)

+ 2e e, [0.303P, (cos8) —0.303P~(cos8)

0.66VP, (cos 8)] (A17)

neglecting the tea m proportional to ee, . The relations
between the A. coefficients and the e coefficients are

Substituting the relations (A15) and (A16), (A14) becomes

In Tables B.I-B.V (neutron system) and B.S-B.13
(proton system), we present values of occupation proba-
bilities (N~) (called V» in BCS theory) for different or-
bitals. The values are read across a row for
the conf iguration in which the state denoted by
X is blocked. The numbers in the first row for
each conf iguration wer e calculated with the constant
pairing matrix elements (given in Sec. II) and the values
in the second row were computed with density-dependent
pairing matrix elements (Chasman, 1976). Both sets of
calculations were done using the method of correlated
quasiparticles (Chasman, 1972). The emptiness factor
U' is given by the expression U' = 1—

The pairing factors for various one-body matrix ele-
ments between two one-quasiparticle states are given as
follows (Kisslinger and Sorensen, 1963; Soloviev, 1963;
Wahjborn, 1966)

TABLE B.l. Values of pair occupation probability, V, in 33U.

5/2 + [633] 3/2 + [631] 1/2 + [631] 5/2 —[752] 7/2 —[743] 1/2 —[501]

0.82
0.80
0.83
0.81
0.83
0.83
X
X

0.36
0.42
0.36
0.42

0.92
0.92
X
X

0.93
0.94
0.93
0.94
0.84
0.87
0.84
0.88

0.12
0.11
0.11
0.10
0.11
0.07
0.07
0.07
X
X

0.08
0.06

0.92
0.84
0.92
0.85
X
X

0.93
0.86
0.83
0.69
0.82
0.73

0.10
0.23
0.09
0.19
0.09
0.14
0.06
0.13
0.07
0.14
X
X

X
X

0.95
0.97
0.95
0.97
0.97
0.97
0.91
0.95
0.91
0.95
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TABLE B.2. Values of pair occupation probability, V, in 5'.

ate
7/2 —[743] 1/2 + [631] 5/2 + [633l 3/2 + [631] 5/2 + [622] 7/2 + [624] 5/2 —[752] 1/2 [501]

0.43
0.66
0.42
0.65
0.42
0.64
X
X

0.16
0.25
0.16
0.26
0.17
0.26

0.43
0.24
0.42
0.22
0.42
0.22
0.16
0.07
X
X

0.16
0.10
0.17
0.10

0.89
0.91
0.90
0.92
X
X

0.90
0.95
0.90
0.89
0.88
0.88
0.86
0.88

0.90
0.94
X
X

0.91
0.94
0.91
0.96
0.91
0.92
0.89
0.91
0.87
0.91

0.24
0.16
0.23
0.15
0.23
0.15
0.11
0.05
0.11
0.07
X
X

0.12
0.07

0.10
0.10
0.10
0.09
0.10
0.08
0.05
0.04
0.05
0.05
0.05
0.05
X
X

0.94
0.92
0.94
0.93
0.94
0.93
0.95
0.95
0.95
0.90
0.94
0.89
0.93
0.89

X
X

0.95
0.97
0.95
0.97
0.95
0.98
0.95
0.97
0.94
0.97
0.93
0.96

TABLE B.3. Values of pair occupation probability, V, in 3 U.

1/2+ [631] 5/2 + [622] 7/2 —[743] 7/2 + [624] 3/2 + [631] 5/2 + [633] 1/2 —[501]

0.70
G.VO

0.70
0.69
0.70
0.70
0.70
0.70
X
X

0.22
0.37
0.23
0.35

0.26
0.30
0.27
G.30
0.27
0.30
0.23
0.20
0.11
0.19
X
X

0.13
0.17

0.90
0.75
0.90
0.75
0.90
0.74
X
X

0.91
0.74
0.86
0.64
0.82
0.63

0.11
0.17
0.12
0.18
0.12
0 ~ 16
0.10
0.11
0.06
0.11
0.06
0.11
X
X

X
X

0.95
0.94
0.95
0.95
0.96
0.96
0.96
0.95
0.95
0.93
0.94
0.93

0.96
0.95
0.96
0.95
X
X

0.96
0,96
0.97
0.95
0.96
0.94
0.95
0.94

0.96
0.97
X
X

0.96
0.97
0.97
0.98
0.97
0.97
0.96
0.97
0.95
0.97

TABLE B.4. Values of pair occupation probability, V, in . Pu.

5/2 + [622] 1/2 + [631] 7/2 + [624] 7/2 —[743] 1/2 + [620] 3/2 + [622] 3/2 + [631] 7/2 + [613]

0.73
0.67
0.73
0.67
0.73
0.67
X
X

0.34
0.44
0.34
0.42
0.34
0.42
0.34
0.42

0.86
0.82
0.87
0.84
X
X

0.87
0.82
0.78
0.76
0.73
0.72
0.73
0.69
0.73
0.70

0.27
0.39
0.25
0.30
0.22
0.34
0.15
0.27
X
X

0.16
0.25
0.16
0.25
0.16
0.25

0.91
0.77
X
X

0.91
0.77
0.92
0.76
0.87
0.71
0.84
0.64
0.84
0.64
0.84
0.64

0.06
0.07
0.06
0.05
0.05
0.06
0.04
0.05
0.05
0.05
X
X

0.05
0.05
0.05
0.05

0.05
0.05
0.04
0.04
0.04
0.05
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.04
X
X

X
X

0.96
0.96
0.96
0.95
0.96
0.95
0.95
0.94
0.94
0.93
0.94
0.93
0.94
0.93

0.06
0.06
0.06
0.05
0.05
0.06
0.04
0.04
0.05
0.04
0.05
0.05
X
X

0.05
0.05
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TABLE B.5. Values of pair occupation probability, P'", in

7/2 + [624] 5/2+ [622] 1/2+ [631] 1/2+ [620] 3/2 + [6221 7/2+ [613l

0.87
0.76
0.87
0.76
0.87
0.76
X
X

0.35
0.28
0.32
0.36
0.36
0.33
0.36
0.32

0.94
0.91
0.94
0.91
X
X

0.94
0.92
0.83
0.87
0.82
0.82
0.82
0.82
0.81
0.82

0.95
0.94
X
X

0.95
0.94
0.96
0.95
0.88
0.92
0.87
0.88
0.87
0.87
0.87
0.87

0.12
0.25
0.11
0.28
0.10
0.26
0.07
0.15
X
X

0.09
0.18
0.09
0.18
0.09
0.18

X
X

0.97
0.93
0.97
0.93
0.97
0.94
0.94
0.92
0.93
G.87
0.93
0.87
0.93
0.87

0.06
0.05
0.05
0.05
0.05
0.04
0.04
0.03
0.05
0.03
X
X

0.05
0.04
0.05
0.04

0.04
0.04
0.04
0.04
0.04
0.03
0.03
0.02
0.04
0.02
0.04
0.03
0.04
0.03
X
X

0.06
0.05
0.05
0.05
0.05
0.04
0.04
0.03
0.05
0.03
0.05
0.04
X
X

0.05
0.04

TABLE B.6. Values of pair occupation probability, V, in 4 Cln.

ate 9/2 —[734] 5/2 + [622] 7/2 + [624] 1/2 + [620] 3/2 + [622] 7/2 + [613] 1/2 + [631]

0.79
0.77
0.79
0.79
0.79
0.79
X
X

0.42
0.34
0.42
0.34
0.41
0.34

0.91
0.95
X
X
0.92
0.95
0.92
0.96
0.84
0.90
0.84
0.89
0.83
0.89

0.90
0.91
0.90
0.91
X
X
0.90
0.94
0.80
0.79
0.80
0.79
0.79
0.79

0.15
0.09
0.14
0.09
0.13
0.08
0.10
0.04
X
X
0.11
0.06
0.11
0.06

0.08
0.06
0.08
0.05
0.08
0.05
0.06
0.03
0.07
0.04
0.07
0.04
X
X

0.15
0.10
0.14
0.09
0.13
0.08
0.10
0.04
0.11
0.06
X
X

0.11
0.06

X
X

0.94
G.97
0.94
0.97
0.94
0.98
0,89
0.94
0.89
0.94
0.88
0.94

TABLE B.7. Values of pair occupation probability, V, in Cln- Cf.

ate 1/2 + [620] 7/2 + [613] 3/2 + [622] 9/2 + [615] 9/2 [734] 11/2 —[725] 5/2 + [622] 1/2 [750]

0.43
0.41
0.43
0.40
X
X

0.08
0.12
0.08
0.12
0.08
0.11
0.0.8
0.09

0.23
0.23
0.22
0.21
0.06
0.08

X
X

0.07
0.09
0.06
0.08
0.06
0.07

0.17
0.16
0.17
0.14
0.05
0.06
0.05
0.07
X
X

0.05
G. 07
0.05
0.05

0.17
0.21
0.17
0.17
0.05
0.08
0.05
0.09
0.05
0.08
X
X

0.05
0.07

0.94
0.87
X
X

0.95
0.85
0.94
0.83
0.94
0.83
0.94
0.84
0.93
0.88

0.12
0.24
0.12
0.21
0.04
0.11
G. 04
0.12
0.04
0.12
0.04
0.12
X
X

X
X

0.96
0.96
0.96
0.96
0.96
0.95
0.96
0.95
0.96
0.95
0.95
G.97

0.10
0.06
0.10
0.05
0.03
0.03
0.03
0.03
0.04
0.03
0.04
0.03
0.04
0.03

Rev. Mod. Phys. , VoI. 49, No. 4, October 3977



Chasman, Ahmad, Friedman, and Erskine: Single-particle states A )228 877

TABLE B.8. Values of pair occupation probability, V, in 3 Pa.

ate 1/2 —[530] 3/2 + [651] - 5/2 —[523] 5/2 + [642] 1/2 + [400] 3/2 —[521]

0.71
0.71
X
X

0.48
0.61
0.48
0.58
0.46
0.59

X
X

0.79
0.80
0.69
0.68
0.69
0.65
0.66
0.62

0.22
0.13
0.20
0.14
0.18
0.11
X
X

0.18
0 ~ 12

0.23
0.22
0.20
0.24
X
X

0.18
0.20
0.18
0.20

0.87
0.90
0.87
O.89
0.82
0.81
0.82
0.80
0.80
0.79

0.09
0.06
0.08
0.06
0.08
0.06
0.08
0.06
X
X

TABLE B.9. Values of pair occupation probability, U, in 37Np. TABLE B.11.Values of pair occupation probability, V, in 3Am.

tate 5/2 + f 642] 5/2 —[523] 1/2 —[530] 1/2 + [400] tate 5/2 —[523] 5/2 + [642] 3/2 —[521] 7/2 + [633]

0.65
0.72
0.65
0.72
X
X

0.43
0.46

0.42
0.33
0.42
0.32
0.32
0.20
X
X

0.85
0.88
X
X

0.85
0.90
0.82
0.83

X
X

0.87
0.91
0.87
0.91
0.85
0.86

0.80
0.85
X
X

0.52
0.70
0.52
0.70

X
X

0.85
0.83
0.71
0.60
0.69
0.63

0.18
0.16
0.16
0.17
X
X

0.15
0.14

0.12
0.14
0.11
0.15
0.10
0.14
X
X

TABLE B.10. Values of pair occupation probability, V, in Am.

tate 5/2 —[523] 5/2 + [642] 3/2 —[521] 7/2 + [633] 1/2 + f400] 1/2 —[530]

0.86
0.86
0.86
0.87
0.86
0.88
X
X

0.49
0.58
0.49
0.58

0.91
0.87
0.91
0.88
X
X

0.92
0.89
0.78
0.67
0.78
0.69

0.14
0.15
O. 14
0.13
0.12
0.11
0.09
0.10
X
X

0.10
0.09

0.3.1
0.13
0.11
0.12
0.09
0.09
0.08
0.09
0.08
0.09
X
X.

X
X

0.94
0.95
0.95
0.96
0.95
0.96
0.89
0.90
0.89
0.89

0.94
0.94
X
X

0.95
0.95
0.95
0 ~ 95
0.89
0.90
0.89
0.89

P; ~
= (UqU~a V;Vf)R) ~,

where V& denotes the occupation probability of level i in
the configuration in which level f is blocked. R; z is an
overlap factor and is defined as

negative sign applies to electric transitions which are
even under time reversal.

For P transitions the pairing factor P; z is given by
(Kisslinger and Sorensen, 1963; Soloviev, 1963; Wahl-
born, 1966)

a, , = g (U.'U', +V,'V', ). P( ~
= (U, Uf)R, ~, (B3)

s&5,f
In the above equation (V,')' represents the occupation
probability of level s in the configuration in which level
i is blocked. In Eq. (Bl) the plus sign applies to matrix
elements that are odd under time reversal, such as
Coriolis and magnetic transition matrix elements. The

for p decay of odd-neutron nuclides and electron capture
decay of odd-proton nuclides, and

P', y
= (V; Vg)&i,y,

for p decay of odd-proton nuclides and EC decay of odd-
neutron nuclides.
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TABLE B.12.' Values of pair occupation probability, V~, in 4 Bk.

ate 7/2 + [633] 3/2 —[521] 5/2 + [642] 5/2 —[523] 1/2 + [400] 7/2 —[514]

0.50
0.51
0.51
0.50
0.50
0.48
0.35
0.34
X
X

0.32
0.33

0.60
0.61
0.60
0.62
0.60
0.62
X
X

0.36
0.33
0.33
0.32

0.88
0.87
0.88
0.87
X
X

0.87
0.86
0.87
0.87
0.82
0.80

0.90
0.90
X
X

0.90
0.90
0.89
0.90
0.89
0.90
0.85
0.85

X
X

0.88
0.91
0.88
0.91
0.87
0.90
0.87
0.90
0.82
0.85

0.10
0.08
0.11
0.08
0.10
0.07
0 ~ 08
0.06
0.08
0.05
X
X

The overlap factor R; z is defined here as in Eq. (B2)
but extends over both proton and neutron orbitals. In the
above equations i and f refer to the initial and final sys-
tems; V'; denotes occupation probability in the appropri-
ate even-nucleon system. The values of U, and V, can
be estimated from Tables B.l-B.13 using a configuration
in which a highly excited orbital is blocked.

For one-nucleon transfer reactions the pairing factor
P~ is defined as

1. Coriolis matrix elements

The Coriolis matrix element between states K and K
a 1 is given by (Kerman, 1956; Brockmeir et al. , 1965)

k2
l(I-K, )(I+K,)]"(K*ll j~ lK')I'»»„, (C1)

where P~ ~+, is the pairing factor. The decoupling pa-
rameter a is (Nilsson, 1955)

Psc Uz&z,

for one-particle stripping reactions; and

PE = V~R~, (B6)

a= -(x,g, l j.I x,g, ) . (C2)

In the case of' Coriolis mixing between two bands, if
we denote the energies of the unperturbed bands by E~
and EE „and the observed energies by E„and EI., then

for one-particle pickup reactions. The term R~ is the
same as given in Eq. (B2) except that only level K is ex-
cluded from the product,

In many calculations the overlap factors R; f and R&
are taken as unity. This is usually a good approximation.

TABLE B.13. Values of pair occupation probability, V, in
25k F

ate 7/2 + [633] 3/2 —[521] 5/2 + [642] 7/2 [514]

0.82
0.86
0.83
0.88
X
X

0.51
0.55

0.83
0.88
X
X

0.84
0.89
0.62
0.65

X
X

0.95
0.95
0.95
0.96
0.91
0.90

0.15
0.11
0.11
0.08
0.11
0.07
X
X

APPENDIX C: SINGLE-PARTICLE MATRIX
ELEMENTS

In Tables C.l-C.6 we list the matrix elements (j,),
(l,), (s,), (l,), (s,), (r'), (r'I",(cose)), and E1 matrix
elements calculated with our wave functions (Chasman,
1971). These values are given for three deformations
that are representative of the actinide region: v, = 0.19,
v4 0 04'& 232 j v2 0 227 v4 0 02'& 238' vg 0 25'
v4=0.0,A = 244. We have chosen the phases of our wave
functions to reproduce the signs of large (j,), (l, ) and
E1 matrix elements calculated with Nilsson (1955) wave
functions.

a»(L, H) -A» E» ~, —Ez.H

a „(I,H) E —E (G4)

a»(I, H)+ a», ,(L,H) = 1 . (G5)

In calculations involving more than two bands the secu-
lar equations are solved with a computer. Several com-
puter codes are available for such calculations, for ex-
ample, BANDMIX (Erskine, 1966).

Equations for the calculation of (j,) matrix elements
from Nilsson (1955) wave functions are given by Brock-
meir et al. (1965).

2. Matrix elements for M 1 transitions

Ml matrix elements can be calculated with the expecta-
tion values (l,) and (s,) for lAKl = 1 transitions. Mag-
netic moments and Ml matrix elements for AX=0 transi-
tions can be calculated from (l, ) and (s,). Our (l,),
(s,), (l,), and (s,) values are related to the G» and
Gss values of Browne and Femenia (1971) as follows:

G~I = 2(l, ) and G~s = 2(s, ) for zK= 0

G~1, =2(l,) and G~z ——2(s„) for lbKl =1. (C6)

The magnetic moment p in nuclea. r magnetons can be
calculated using the expression (Nilsson, 1955)

EH, I, 2 (E»+ E»ky) + [(E» E»kj) + 4+»] . (C3)

The admixture coefficients a» and a«, in the lower (L)
and higher (H) states are (Kerman, 1956)

~ = l&KI(I+1)](g& -gs)+ gsI, (C7)
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TABLE C.1. Neutron matrix elements (j ), (l+), and (s,).

Initial state

1/2 + [651]

1/2 + [640]

1/2 + [631]

1/2 + [620]

3/2 + [642]

3/2 + [631]

3/2 + [622]

5/2 + [633]

5/2 + [e22]

7/2 + [624]

7/2 + [613]

9/2 + [615]

9/2 + [604]

11/2 +[615]
11/2 +[606]
1/2 [510]

1/2 [vvo]

1/2 —[501]

Final state

1/2 + [651]
1/2 + [640]
1/2 + [631]
1/2 + [620]
3/2 + [642]
3/2 + [6S1]
3/2 + [622]
1/2 + [640]
1/2 + [631]
1/2 + [620]
3/2 + [642]
3/2 + [631]
3/2 + [622]
«/2+ [631]
1/2 + [620]
S/2 + [642]
3/2 + [631]
3/2 + [622]
1/2 + [620]
s/2 + [e42]
3/2 + [631]
3/2 + [622]
5/2 + [633]
5/2 + [622]
5/2 + [63S]
5/2 + [622]
5/2 + [633]
5/2 + [622]
V/2 + [624]
V/2 + [613]
7/2 + [624]
V/2 + [613]
9/2 + [615]
9/2 + [6O4]
9/2 + [615]
9/2 + [604]

11/2 + [615]
11/2 +[eoe]
11/2 + [615]
11/2 +[6O6]
13/2 +[606]
13/2 +[606]

1/2 [51O]
1/2 —[770]
1/2 [5O1]
1/2 [v5o]
3/2 [512]
3/2 [5O1]
3/2 [761]
3/2 [V52]
1/2 [vvo]
1/2 [501]
1/2 [750]
3/2 —[512]
s/2 [5o1]
S/2 [761]
3/2 —[752]
1/2 [501]
1/2 [750]
3/2 [512]
s/2 [5o1]
3/2 —[761]
3/2 [V52]

Q =232
v2

——0.19
v4 ———0.04

-0.16
2.81
0.16
0.83
4.83
8.s( s)
0.39

2.74
-0.39

3.33
—0.09

O. 02
2.12
0.33
4.82
0.35
0.46
4.82
2.05

-Q.27
4.56
O. 99
4.5( s)
4.42
3.00
2.46
1.15
3.53

-Q.43
1.13

—0.03
3.12
3.61

—O. 09
'0.56

-O.33
1.46
p. 18
P.72
2'. 09

—G.36

7.28
-O.15
-1.33

0.23
—0.08

7.31

—0.87
—9.2(—s)

1.37
=0.20

p. 11

& j.&

238
0.22

—0.02

—0.58
2.72
0.06
1.00
4.69

—0.03
0.57
3.36
2.56

—O. 55
sess

-0.21
0.06
2.12
O. 54
4.85
0.15
O. ev
4.67
1.98

—0.42
4.71
0.35
0.52
4.25
4.09
0.67
0.47
3.37

—0.45
2.92
0.45
1.60
3.62

-0.15

7.36
—0.13
-1.23

-3.39
6.55

-0.68
-0 ~ 81 '

—0.01

—0.20
-0.21
-0.03

244
0.25
0.0

2.06
4.04
0.03
0.37
4.47

-0.02
0.37

—1.03
2.61

—0.03
1.03
4.57

—0.08
0.70
3.29
2.39

-0.64

-0.29
0.09
2.13
0.66
4.85
0.07
0.74
4.57
1.94

-0.49
4.73
O.15
0.63
4.17
4.22
0.18
0.67
3.25

—0.41

0.70

0.61
8.v( s)

-1.82
e.o( s)
0.70
2.24

—0.01
8.4( s)
7.42
8.5( 4)

-1.12
5.8( 4)
0.01
7.41

-0.74
—0.76

2.8( s)
1.66

-0.33
1 7(—3)
s.8( s)

Q =232
v&

——0.19
v4

——-0.04

—0.55
—0.28
-0.16
—0.46

0.25
O. 14

—0.41
0.30
0.30

-0.61
-0.25
—0.65

0.17
-0.32
-0.36
-0.24
-0.24
—0.38

0.23
0.33

-0.63
—0.18
-0.26
-0.35

0.15
0.03

—0.27
-0.29
-0.08
-0.33
-0.09
-0.81
-0.22

0.25
—0.93

0.86
0.03
0.24
5.9( s)
0.15
0.24

-0.02

0.58
O. 01
0.17
0.02
5.9( s)
0.53

0.07
5.v( s)
0.20

—0.94
—0.04

(s.)
238
0.22

—0.02

-0.58
-0.30
-0.15
—0.43

0.29
0.14

-0.39
0.29
0.27

—0.65
-0.27
—0.70

O. 14
-0.31
—0.31
-0.29
—0.19
—0.32

0.29
0.28

—0.71
—0.27
-0.17
—0.26

0.25
—0.22
—0.16
-0.21

0.17
—0.80
-0.20
—0.39
—0.10

0.23
—0.94

0.57
9.e( 4)
0.16

—0.25
0.47
O. 14
0.05
2.9( 3)

—0.84
—0.45

1.9( 3)

244
0.25
0.0

-0.60
0.22
0.15
0.07

-0.29
—0.19
-0.07
—0.60
-0.32
-0.14
-0.41

0.32
0.14

—0.37
0.29
0.24

-G.67
-0.28
-0.74

0.11
—0.31
-0.27
-0.32
-O.14
—0.29

0.31
0.24

-0.76
-0.30
—0.11
—0.20

0.27
—0.26
-0.08
-0.13

0.20
-0.87

—0.21

0.22

0.91
6.1( 3)
0.18
6.6(-3)

-0.10
0.18
6.8(—3)
v.8( 3)
0.56
2.4( 3)
0.15
v.e( 3)

—1.1(—3)
0.54
O. 15
0.04
2.9(-s)
0.14

—0.97
4.v( 3)

—S.8(—3)
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TABLE C.l. (Continued)

Initial state Final state

Q =232
v&

——0.19
v4 ———0.04

(j,)
238
0.22

—G. 02

244
0.25
0.0

Q =232
v& ——Q. 19

v4 ———G. 04

(s,)
238
0.22

—0.02

244
0.25
0.0

1/2 [750]

3/2

3/2 —[5O1]

3/2 [V61]

3/2 [752]

5/2 [503]

5/2 [V52]

v/2 —[5o3]
v/2 [v43]
9/2 —[V34]

11/2 —[725]

1/2 —[750]
3/2 —[512]
3/2 —[501]
3/2 [V61]
3/2 —[V52]
5/2 —[503]
5/2 [V52]
5/2 —[503]
5/2 [V52]
5/2 —[5O3]
5/2 [V52]
5/2 —[503]
5/2 [V52]
7/2 —[503]
v/2 [v43]
7/2 —[503]
7/2 —[743]
9/2 —[734]
9/2 —[734]

11/2 [725]
13/2 [V16]

3.26
—0.14

0.06
—1.60

—2.20
0.25

—0.80
—0.18
—0.03

7.32

—Q. 09

7.16

6.81
6.21
5.29

3.25

0.69
-1.26

4.63

—0.62
3.43

—0.42
6.48
0.05

—1.49

—0.13

7.15

6.78
6.18
5.28

3.36
—V.O( 3)

v.v( 4)
—1.28

4.62
—2.39

6.6( 3)
—0.69

0.01
0.02

1.3(-4)
—1.37
—0.36

0.02
6.9( 3)
7.12
0.01
6.74
6.15
5.27

0.81
—2.4( 3)

1.9 (-3)
—0.22

0.24
—6.1(—3)

0.06
—0.02
—0.02

0.49

0.01

0.45

0.42
0.37
0.32

0 ~ 82

0.09
—0.18

0.24

0.04
0.23
9.1( 3)
0.44
2 2(-3)

-0.26

9.6( 4)

0.41
0.37
0.31

0.81
7.9(-3)
2.2(—3)

—0.18
0.26
0.19
0.01
0.03
4 2( 3)
4.6( 3)
0.50
4.V( 3)

—0.27
—0.97

4 4( 3)
5.9( 3)
0.46

—6.5( 3)
.0.41
0.36
0.30

The matrix element (l,) can be obtained from the relation (l,) = (j,)—(s,).

TABLE C.2. Neutron matrix elements (l3), (s3), (r ), (x Y2(cos8)).

Initial state Final state

&=232
v2 ——0.19
v4 ——-0.04

238
0.22

—0.02

244
0.25
0.0

232
0.19
-0.04

238
0.22

—0.02

244
0.25
0.0

(x F2(cos8))
232 238
0.19 0.22

—0.04 —0 ~ 02

244
0.25
0.0

1/2 + [651]

1/2 + [640]

1/2 + [631]

1/2 + [62O]
3/2 + [642]

3/2 + [631]

3/2 + [622]
5/2 + [633]

5/2 + [622]
7/2 + [624]

7/2 + [613]
9/2 + [615]

9/2 + [6O4]
11/2 +[615]

»/2 + [6O6]
13/2 +[606]

1/2 [510]

1/2 + [651]
1/2 + [640]
1/2 + [631]
1/2 + [620]
1/2 + [640]
1/2 + [631]
1/2 + [620]
1/2 + [631]
1/2 + [620]
1/2 + [620]
3/2 + [642]
3/2 + [631]
3/2 + [622]
3/2 + [631]
3/2 + [622]
3/2 + [622]
5/2 + [633]
5/2 + [622]
5/2 + [622]
7/2 + [624]
7/2 + [613]
7/2 + [613]
9/2 + [615]
9/2 + [604]
9/2 + [604]

11/2 +[615]
»/2 + [606]
»/2 + [6O6]
13/2 +[6O6]

1/2 [51O]
1/2 —[vvo]

0.05
0.28
0.16

-0.G9
—0.30

0.15
-0.03
-0.26
-0.15

0.15
0.27

—0.11
-0.09
—0.30

0.19
—0.045
—0.37

0.13
0.38

—0.31
-0.26

0.44
0.23

-0.44
0.50
0.36
0.025

0.08
0.30
0.15
0.11

—0.29
0.20

—0.06
—0.25
—0.13

0.19
0.29

—0.18
—0.16
—0.26

0.26
Q. 21

—0.29
P.31

—0.22
—0.35

0.3.3
p 44
0.22

—0.45
0.50

0.10
—0.22

0.15
—Q. 07

0.10
0.32
0.14

—0.13
—0.29

0.24
—0.08
—0.24
—Q. 11

0.22
0.30

—0.23
—0.19
—0.24

0.31
—0.28
—0.23

0 ~ 38
-0.35
—0.21

0.45
0.45

0.50
0.41
6.1( 3)

8.22
0.12
3.8( 3)
7.73
0.15
7.28
8.15
0.11

—0.01
7.86
0 ~ 14
7.23
7.78
0.17
7.44
7.31
0.21
7.10
6.75
0.15
6.99
8.11
0.03
6.82
7.92
6.69

—0.23

8.33
0.11
0.04
7.81
0.15
7.34
8.31
0.12
0.03
7.96
0.12
7 33
7.99
O. 15
7.53
7.57
0.18
7.10
7.11
0.21
6.73
8.23
G.04
6.81
7.88

8.65
0.08
0.08
0.03
8.43
0.09
0.07
7.90
0.13
7.42
8.47
0.11
0.07
8.08
0.10
7.44
8.18
0.14
7.65
7.79
0.15
7 ~ 17
7.33
0.15
6.64
8.36

7.86
6.87
v.4( 3)

2.58

1.95

1.00
2.29

1.69

0.79
1.26

0.73
0.14

-0.20
—1.35

—0.78
-0.90

-1.62
—1.95

0.13

2.68

2.04

1.03
2.37

1.77

0.88
1.38

0.76
0.36

—0.28
-0.73

1.31
-0.81

-1.58
1.89

3.47

2.78

2.11

1.06
2.44

1.84

0.94
1.46

0.82
0.46

—0.25
—0.56

—1.36
-0.71

—1.82
0.16
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TABLE C.2. (Continued)

Initial state Final state

232
0.19

—0.04

&s, &

238
0.22
-0.02

244
O. 25
0.0

232
0.19

—O. 04

(~'&
238
0.22

-0.02

244
0.25
0.0

&r 'Y, (cos8))
232 238
O. 19 0.22

—0.04 —0.02

244
0.25
0.0

1/2 [vvo]

1/2 —[501]

1/2 —[750]
3/2 [512]

3/2 —[501]

3/2 —[761]

3/2 [V52]
5/2 [5O3]

5/2 —[752]
7/2 —[503]

7/2 —[743]
9/2 [734]

11/2 —[725]
13/2 —[716]

1/2 [501]
1/2 —[750]
1/2 [vvo]
1/2 [501]
1/2 —[750]
1/2 —[501]
1/2 [v5o]
1/2 [v5o]
3/2 [512]
3/2 —[50j ]
3/2 [76i]
3/2 [V52]
3/2 [5O1]
3/2 [V61]
3/2 —[752]
3/2 [V61]
3/2 [V52]
3/2 [V52]
5/2 [5O3]
5/2 —[752]
5/2 [V52]
7/2 —'[503]
7/2 —[743]
7/2 [743],
9/2 [V34]

ll/2 —[725]
13/2 [V16]

0.24
-5.9(—3)

0.08
0.011
0.17

—0.43
5.V( 3)
0.31

-0.35
—0.20

0.018

0.45
0.017

0.17

—0.43
—0.017

0.24

0.29
0.34
0.39
0.44

0.07
9.6( 4)
0.16

-0.45
2.9( 3)
0.32

0.40
0.13

-0.08
O. 23
0.15
0.29

-0.45
—O. 013

0.24

0.30
0.35
0.40
0.45

0.18
6.6( 3)
O. 06
2.4( 3)
0.15

-0.46
2.9( 3)
0.31

-0.39
-0.15
-s.v( 3)

8.8( 3)
0.48

-3 1(-3)
3.5(—3)
O. 16
0.18
0.30

—0.46
6.3( 3)
0.23
0.49
3.6( 3)
0.30
0.35
0.40
0.45

0.048
0.31
9.77
0.03

—0.14
6.37

—0.01
8.71
6.70
0.03
0.17

6.37
-0.09

9.66

6.38
O. 05
9.45

9.15
8.78
8.40
8.07

9.98
—0.03
—0.14

6.36
—0.0.2

8.81

7.14
-1.46

0.17
9.10

—0.064
8.47
6.39

-0.068
9.67

9.38
9.02
8.61
8.20

0.07
0.08

10.15
2.5( 4)

-0.13
6.37

-4.8 (—3)
8.91
6.92
0.06
2.5( 4)

-0.05
6.37
4.3( 3)
0.05

10.05
-0.14

8.60
6.40
0.012
9.86
6.57
0.019
9.59
9.24
8.82
8.33

3.30

—1;18

3+71
0.058

—1.20

2.89

—1.26

2.29

1.57
0.74

—0.16
—1.08

—1.20

3.79

-0.30

2.03

2.66
-1.26

2.38

1.67
0.85

-0.051
-0 ~ 99

—1.18

3.84
0.096

-1.20

3.00

2.75
—1.24

2.45
-1.32

1.75
0.94
0.052

-0.89

~ &lz)+ &s3) = 0 for non-diagonal elements and &lz&+ (s3& = 0 for diagonal elements.

where

gc = (I/O) [g, &s,&+g, &l, &] . (C8)

For cases where I=K=A the above equations reduce to

p. = [K /(K+ 1)](gx -ga)+gRK, (C9)

g =(1/K)[g. & .&+g &l.&]. (C10)

The values of g, for free nucleons are -3.8263 for neu-
tronsand 5.5856forprotons. However, because of core
polarization effects, lower values of g, are usually used.
The most commonly used values are

g eff = 0 6 gfreeS ' S (Cl1)

G„,= (g, -g ) &s,&+ (g, -g ) &l, &, for &K= 0 (C12)

G,=(g, -g )&s,&+(g, -g )&I,&, for l&KI= I. (C13)

Thus for the odd-neutron case g,'" = -2.296, g, =0 and for
the odd-proton case g,'"= 3.351 and g, = 1. For g~, which
is roughly Z/A, a value of 0.39 (Browne and Femenia,
1971) is commonly used in the actinides. Using the above
values of g, and g~, we have calculated the magnetic mo-
ments for the single-particle states for which mag-
netic moments have been experimentally measured.
These are included in Table I of the text.

The Ml matrix elements can be calculated with the ex-
pression (Nilsson, 1955; Browne and Femenia, 1971)

G~, (Kg K~) =

Gs.(K, —-Ky)

G~|(K; K~) =

G~, (K~ —-Kg)

G~, (K~ Kg) when K; =K&
= G~,(K~- -K;)
-Gs, (K~ Kg) w en
= -G~, (Kf -K;)

(C15)

3. &r2&,(r2 Y2 (cos0)&, and E1 matrix elements

The matrix element &r'& given in Tables C.2 and C.5
can be used to calculate E'0 transition matrix elements.

The reduced transition probability B(M1) between states
K;I; and K&I& is given by

B(Ml, I; Lg) =(3/4w)go~&I, IK, (K~ —Ki)~IiII~Ky&G~, (K; —Kg)

+(-)'&'x~&I, lK; ( K, —K,.)-~I, 1I, —K,&.
x G, (K -K~) I'. (C14)

In the above equation p.o= ek/2Mc is the nuclear magneton
and the second term has nonzero value only Xor states
K, =K& ———,. Note that the (l,& and (s,& values between two
K= 2 states give the matrix element G„,( —,

' - -a), and
(l, & and &s, & give G»( —,-—', ). Also note that in our ex-
pression we have used 3/4m instead of 3/16m used by
Browne and Femenia (1971). This is because our &l, &,

&s, &, &l,&, and &s,& are one-half of their respective G„~
and G» values. Withrespect to interchange of K; and%& the
~1 matrix elements have the following properties
(Brockmeier et al. , 1965):
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TABLE C.3. Neutron matrix elements for &1 transitions.

Initial state F inal state

A =232
v2 ——0.19

v4 ———O. 04
E Xf K.

A =238
v& ——0.22

v4 ———0.02
K~ Ay K~ —Af

A =244
v2 ——0.25
v4 ——0.0

K; —Kf

1/2 + [651]

1/2 + [640]

1/2 + [631]

1/2 + [620]

3/2 + [642]

3/2 + [631]

3/2 + [622]

1/2 —f 51Q]
1/2 [vvo]
1/2 [5Pl]
1/2 fv5o]
3/2 [512]
3/2 —[501]
3/2 [V61]
3/2 [V52]
1/2 [510]
1/2 [7vo]
1/2 —f 501]
1/2 [v50]
3/2 —[512]
3/2 —[501]
3/2 —[761]
3/2 [752]
1/2 [510]
1/2 —[770]
1/2 [501]
1/2 [75O]
3/2 —[512]
3/2 —[5Ql]
3/2 —[761]
3/2 —[752]
1/2 —[510]
1/2 [vvp]
1/2 —[501]
1/2 [v5o]
3/2 f512]
3/2 [5Ql]
3/2 —f761]
3/2 [V 52]
1/2 [5lp]

[vvo]
1/2 [5O1]
1/2 —[750]
3/2 —[512]
3/2 —[5Q 1]
3/2 —f761]
3/2 [V52]
5/2 —[503]
5/2 [V52]
1/2 [510]
1/2 f7vo]
1/2 —[501]
1/2 [v5o]
3/2 —[512]
3/2 [5O1]

/2 [761]
3/2 [V52]
5/2 —[503]
5/2 —[V52]
1/2 [51p]
1/2 [vvo]
1/2 —[501]
1/2 [v5o]
3/2 —[512]
3/2 —[501]
3/2 —[761]
3/2 [V52]
5/2 —[503]
5/2 —[752]

—0.13
—0 ~ 053

0.016
—0.82
—0.039
—0.018
—0.12

—0.23
0.045

—O. 13
—0.12

0.14
—0.021

0.020

1.13
—0.073

O. 11
O. 085
2.3(—3)
0.091
5.4( 3)

O. 040
—O. 074

0.017
0.28

—0.13
0.025

—0.010

O. 024
0.097

—0.085

8.2 (—3)
—0.17
—0.098
—O. 11
—0.086

0.020
—0.10

0.24
5.v( 3)

4.2( 3)
1.09

—0.23
O. 078

—0.085
O. 016

—0.028
0.039

—0.021
—0.37

0.15
—0 ~ 020
—0.018

.0.11

—0.19
1.9( 3)
0.034
5.3( 3)

—0.020
4.8( 3)

—0.95

0.040
—0.091

0.46

0-018
—0.078
—0.080

—0.019
v. 5( 3)

—0.13

—0.036
—0.096

0.054

0.061
-0.017
0.045

—0.066
6.9 {—3)
0.25

0.021
—0.030

1.24
8.2( 3)
0.069

0.011
6.5( 3)

—0.18

—O. 033
—0.068
—0.99

0.014
-0.078

—5.9(—3)
—0.020

0.012

—0.18
—0.051
—0.078
—0.066

0,013

0.037
—6.6( 3)
—0.38

—0.021
—0.012

0.096

5.8( 3)
0.022
1.O( 3)

—0.019
—0.046

4.1( 3)
1.43
7.7(—3)

-1.3(-3)
0.040

—0.71
—0.028

0.014
-v.5( 3)

1.07
—0.020

2.0(-3)
—0.069

0.49
—0.20
—6.5( 3)
—0.033
—0.035

0.11
v.4{ 3)
7.7(—3)

—0.11
1.19
1.6{ 3)

—0.09
P.024
0.015
0.045

—0.011
0 ~ 034
Q. 017

—0.054
-9.o( 4)

0.24
—0.043
—8.2 (—3)
—0 ~ 055

1.22
—2.5( 3)

Q. 044
—0.05

0.012
4.2( 3)

—0.19
—P. ll
—0.019
-5.2(-3)
—1.05

s.2( 3)
—0.051

0.11
—8.2( 3)
—s.2( 3)

0.017
1.18

—0.15
—6.5( 3)
—0.036
—0.054

3.8( 3)

4.7(-3)
-0.073
-2.2(

0.12

—0.014
0.028
3 7(—3)

—0.38

0 ~ 09
—0.019
-8 2(-3)

0.08

—0.16
1.5{ 3)
O. 016
4.v( 3)
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TABLE C.3. (Continued)

Initial state Final state

Q =232
v2

——0.19
v4 ———0.04

E; Ef A. ; —Ey

Q =238
v2 ——0.22

v4 ———0.02
E~ . Ef. E; —Ef

~ =244
v&

——0.25
v4

——0.0
E- Ey E

5/2 + [633]

5/2 + [622]

7/2 + [624]

7/2 + [613]

9/2 + [615]

9/2 + [604]

11/2 +[615]

11/2 + [606]

13/2 +[606]

3/2 —[512]
3/2 —[501]
3/2 [V61]
3/2 [V 52]
5/2 [5O3]
5/2 [V52]
v/2 [503]
7/2 —[743]
3/2 [512]
3/2 —[501]
3/2 —[761]
3/2 [V52]
5/2 —[503]
5/2 [V52]
v/2 [5o3]
7/2 [v43]
5/2 —[503]
5/2 [V52]
v/2 [5o3]
v/2 [v43]
9/2 —[734]
5/2 —[503]
5/2 [V52]
v/2 [5o3]
7/2 —[743]
9/2 [V34]
v/2 [5o3]
v/2 [v43]
9/2 —[734]

11/2 —[725]
7/2 [503]
'7/2 —[743]
9/2 —[734]

»/2 —[V25]
9/2 —[734)

11/2 —[725]
13/2 [V 16]
9/2 [V34]

ll/2 —[725]
3/2 [V 16)

11/2 —[725]
13/2 —[716]

—0.082
0.016

—0.039

0.097
0.016

0.090
0.096

—0.024
—0.021

0.040
—0.10

—0.067
0.036

-Q.010

0.053
0.077

—0.052
—0.037

—0.087
—0.023

0.015
0.071
0.040

—0.024
-0.014

0.025
0.28
1.05

-1.76
—5.8 (-3)

0.021
-0.020
0.16
0.73

0.029
—0.031

0 22
0.060

—0.024

0.064

—0.013
—0.012
-0.16

Q. 042
—0.058

—0.052
Q. Qll

—0.023

—7.3(-3)
0.055

—0.066
—0;016

—0.058
—0.025

—0.011
7.1(—3)
0.041

-0.016
—0.039

1.7 (-3)
0.26
1.09

—1.76
8.1( 3)
1.6( 3)
0.024
0.15
0.77

—0.022
7 ~ 3(-3)

-0.038
0.20
0.029

-0.052
0.016
0.044
0.098

—0.012
4.5( 3)

—0.15
0.052

—0.013
—0.098
—0.031

2.5( 3)
-0.024

0.17
—0.045

0.041
—0.068

5.1( 4)
-0.83
-0.013
—0.016
-0.24
—0.015
-0.034

0.035
1.54

-1.5(-3)
-0.011

3.9( 3)
Q. 24
1.13

—1.76

0.13
0.80

So far no Eo transition has been observed in odd-mass
act inides.

The diagonal (x'1",) matrix elements are included in
Table C.2 and C.5 in order to further characterize the
single-particle state, and can be used to calculate nu-
clear quadrupole moments. The (~'1",) matrix element
is related to the asymptotic quantum numbers n~ and n~
as follows:

q =g 2V,'(r'1', &, . (C17)

The &1 matrix elements 6» are listed in Tables C.2
and C.6. The B(Zl) value from state K;I; to KzIz is given
by the expression (Nilsson, 1955)

(r I' ) =v'5/4w [(n +—') ——'(n + 1)], (C16a)
B(Z1)=e*(1——

) ( )—
where

(n, ) = (W-n, ) . (C16b)

x
I (I,1K, (Ky —K;) I I, 1&&K~)G»(K~ —K~)

q(-) ~+ ~(I;1K&(-SC, —K;)~r&lz, —W,)
The electric quadrupole moment of a nucleus can be

calculated with the following equation: X Gs, (K; -Ky)j'. (C18)
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TABLE C.4. Proton matrix elements (j,), &L &,'and &s,&.

Initial state

1/2 + [660]

1/2 + [651]

3/2 + [402]
3/2 + [651]
5/2 + f642]
7/2 + [633]
9/2 + [624]

11/2 +[615]

1/2 —[541]

1/2 —[530]

1/2 —[521]

1/2 [vvo]

3/2 [532]

3/2 [V61]

5/2 —[523]
5/2 —[512]
5/2 [752]
V/2 —[514]
9/2 —[505]

Final state

1/2 + [66O]
1/2 + [400]
1/2 + [651]
3/2 + [402]
3/2 + [651]

1/2 + f400]
1/2 + [651]
3/2 + f402]
3/2 + [651]

1/2 + [651]
3/2 + [402]
3/2 + [651j

5/2 + [642]
5/2 + [642]
7/2 + [633]
9/2 + [624]

11/2 + [615]
13/2 +[606]

1/2 [541]
1/2 —[530]
1/2 —[521]
1/2 —[77G]
3/2 [532]
3/2 [521]
3/2 —f761]

1/2 —[53O]
1/2 —[521]
1/2 —[770]
3/2 [532]
3/2 [521]
3/2 —f761]

1/2 —[521]
1/2 —[770]
3/2 [532]
3/2 —[521]
3/2 —[761]

1/2 [vvo]
3/2 [532]
3/2 —[521]
3/2 —[761]

5/2 —f523]
5/2 [512]
5/2 —[752]

5/2 [523]
5/2 —[512]
5/2 —[752]

5/2 [523]
5/2 —[512]
5/2 —[V52]

V/2 [514]
7/2 f514]
7/2 —[514]
9/2 —[5o5]

11/2 —[505]

A =232
Z= 92

v~
——0.19

v4 ———0.04

—5.87
1.79
1.11
0.04
6.17

1.16
—0.25
—0.65
—1.98

—0.53
—0.15
—1.12

0.36
6.42
6.20
5.70
4.89
3.60

—2.81
—3.02
—0.23

0.07
4.13
0.01
8.v( 3)

1.80
—2.42
—0.09

0.91
3.86

—0.24

—0.80
1.33
1.98

—0.91
1.47

7.29
—0.06
—0.64

7.23

4.30
-0.01

0.03

0.63
3.61

—0.56

0.45
—0.61

7.33

3.91
0.55
0.20
2.97

—0.12

&j.&

238
94

0.22
—0.02

—6.52
0.43
1.02
0.43
6.51

—0.60
6.3( 3)

—0.61
—0.40

-0.34
—0.13
—0.91

0.52
6.42
6.17
5.68
4.88
3.61

3.16
—2.72
—0.32

0.05
4.16
0.10
6.1( 4)

2.Q1
—2.34
—0.06

0.82
3.74

—0.13

—0.96
0.67
1.87

—0.86
0.74

7.51
—0.04
—0.36

7.49

4.28
0.03

—0.01

0.58
3.55

—0.25

0.23
—0.38

7.45

3.87
0.49
0.11
2.98

—0.19

244
96

0.25
0.0

—6.59
—0.02

0.87
0.34
6.56

—0.59
5.8( 3)

—0.55
—0.05

1.23
—0.03
—0.72

0.33
6.42
6.14
5.65
4.87
3.62

—3.43
—2.40
—0.42

4.8( 4)
4.15
0.22

—0.03

2.22
—2.25

0.01
0.69
3.63
0.01

—1.02
0.03
1.78

-0.83
0.02

7.60
—O. 02
-0.02

7.57

4.24
0.08

—0.06

O. 53
3.52
3.1( 3)

-6.3 (—3)
—0.03

7.48

3.88
0.47

—O. 01
3.GQ

-0.25

A =232
Z= 92

v&
——0.19

v4 ———0.04

—0.62
—0.10
—0.29

0.05
0'.51

—0.94
0.09
0.03

—0.16

—0.68
—0.02
—0.41

—0.01
0.48
0.43
0.39
0.34
0.26

0.43
-0.18
—0.09
—0.05
—0.35
—0.10

0.05

0.78
0.31

—0.06
—0.21

0.34
O. 05

0.23
0.07
0.14

-0.80
—0.04

0.56
—0.07

0.08
0.54

—0.34
-0.08

0.06.

—0.13
0.33
8.1( 3)

—3.7(—3)
—0.17

0.47

—0.31
-0.08

5.3( 3)
—0.25
—0.93

&s,&

238
94

0.22
—0.02

—0.58
—0.02
—0.33

0.05
0.53

—0.98
0.03
0.03

—0.04

—0.66
—0.03
—0.44

0.02
0.49
0.44
0 ~ 39
0.33
0.25

0.43
—0.17
—0.07
—0.05
—0.36
—0.08

0.05

0.80
0.31

-0.04
—0.19

0.36
0.04

0.21
0.03
0.13

—0.82
—0.01

0.56
—0.05

0.04
0.53

—0.35
—0.06

0.06

-0.11
0.30
0.02

—0.02
—0.11

0.49

—0.31
—0.07
—0.01
-0.23
—0.94

'244
96

0.25
0.0

—0.57
4.9(-3)

—0.36
0.03
0.54

—0.98
-5.2(-3)

0.02
5.o(—3)

—0.64
-O.03
—0.46

0.02
0.50
0.45
0.39
0.32
0.23

0.45
—0.16
—0.06
—0.05
—0.38
—0.06

0.05

0.80
0.32

—0.02
0.18
0.34
0.02

0.21
—0.01

0.12
—0.83

0.02

0.55
—0.04
—O. Q1

0.53

—0.35
—0.04

O. 06

—0.11
0.29
0.02

—0.03
—0.01

0.51

—0.29
—O. 06
—0.02
—0.21
—0.95

The matrix element (E,) can be obtained from the relation (l )= (j,)- (z,).
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TABLE C.5. Proton matrix elements (l3), (s3), (r ), and (r 2Y'~0{cosg}).

Initial state Final state

A =232
Z =92

v~
——0.19

v4
———0.04

(s, )
238
94

0.22
0.02

244
96

0.25
0.0

v&
——0.19

v4 ———0.04

6')
238
94

0.22
—0.02

244
96

0,25
0.0

A =232
Z=92

v2
——0.19

v4 ———0.04

(r'r,'{cose})
238
94

0.22
—0.02

244
96

0.25
0.0

1/2 + [660]

1/2 + [400]

1/2 + [651]
3/2 + [4O2]

3/2 + [651]
5/2 + [642]
7/2 + [633]
9/2 + [624]

11/2 +[615]
13/2 + [606]

1/2 [541]

1/2 —[530]

1/2 —[521].

1/2 —[770]
3/2 [532]

3/2 [521]

3/2 [V61]
5/2 —[523]

5/2 [512]

5/2 —[752]
v/2 [514]
9/2 —[5O5]

11/2 —[505]

1/2 + [66O]
1/2 + [400]
1/2 + [6»l
1/2 + [400]
1/2 + [651]
1/2 + [651]
3/2 + [4O2]
3/2 + [651]
3/2 + [651]
5/2 + [642]
V/2 + [633]
9/2 + [624]

ll/2 + [615]
13/2 + [606]
1/2 [541]
1/2 [53O]
1/2 [521]
1/2 [vvo]
1/2 [53O]
1/2 [521]
1/2 [vvo]
1/2 [521]
1/2 —[770]
1/2 —[770]
3/2 [532]
3/2 —[521]
3/2 —[761]
3/2 [521]
3/2 [761]
3/2 —[761]
5/2
5/2 —[512]
5/2 [V52]
5/2 [512]
5/2 —[752]
5/2 [752]
7/2 —[514]
9/2 [5O5]

11/2 [5Q5]

0.12
0.10
0.29
0.44

—0.09
0.18

—0.42
0.05
0.19
0.26
0.33
0.37
0.43
0.50

-0.07
—0.18
-0.09
-0.05

0.28
0.31

—0 ~ 06
—0.27

0.07
0.05

—0.22
—Q. 14
-0.06

0.35
0.06
0.15

—0.31
—0.12
—0.04

0.40
Q. 02
0.23

—0.37
—0.43

Q. 50

0.08
0.02
0.33
0.48

—0.02
0.16

—0.43
0.05
0.18
0.26
0.33
0.38
0.44
0.50

—0.07
0.17

—O.07
—0.05

0.30
0.31
o.o4

—0,29
0.03
0.06

—0.22
—0.14
—0.06

0.37
0.02
0.15

—0.31
—0.11
—0.04

0.42
V.8( 3)
0.22

—0.38
—0.44

0.50

0.07
4.9( 3)
0.36
0.48
5.2( 3)
0.14

-0.46
—0.04

0.18
0.26
0.33
0.39
0.45
0.50

—0.06
-0.16
—0.06
—0.05

0.30
0.32

—0.02
-0.29
-0.01

0.05
—0.20
-0.13
—0.05

0.38
—Q. Ql

0.14
-0.31
—0.11
—0.04

0.44
9.1( 3)
0.21

—0.38
—0.45

0.50

8.34
-1.06
-0.14

5.26
—0.11

7.17
5.15
0.23
8.49
8.29
7.94
7.51
7.13
6.89
7.48
0.07
0.04
0.02
7.04
0.07

—0.34
6.24
0.47
8.54
7.15
0.08

—0.07
6.47

—0.46
8.39
6.70
0.08
0.10
5.89

—0.49
8.17
6.26
5.96
6.97

8.87
—0.23
—0.11

4.97
—0.04

7.33
5 ~ 15
0.31
8.72
8.50
8.16
7.71
7.27
6.86
7.63
Q. 07
0.07

—0.03
7.14
0.07

—0.16
6.35
0.23
8.85
7.34
0.08

—0.01
6.61

—0.24
8.73
6.91
0.08
0.01
6.02

—0.28
8.50
6.44
6.00
6.97

9.05
0.01

-0.1.0
5.00

-0.02
7.49
5.21

-0.19
8.87
8.70
8.38
7.97
7.46
6.85
7.77
0.08
0.10

—0.07
7.25
0.05
0.03
6.52
6.9( 3)
9.08
7.53
0.07

—0.08
6.79
8.9( 3)
8.97
7.13
0.08

—0.07
6.20

—0.03
8.76
6.62
6.02
6.98

2.57

—0.45

2.82
—0.84

2.46
1.86
1.10
0,20

—0.75
—1.69

2.67

2.13

1.33

2.82
l.69

1.12

2.51
0.71

0.04

—0.30
—1.34
—1.64

2.91

—0.76

2.88
—0.85

2.51
1.94
1.19
0.31

-0.65
—1.62

2.71

2.25

2.90
1.76

1.20

2.62
0.79

0.08

—0.24
—1.32
—1.59

2.93

—0.75

2.90
—0.82

2.57
2.00
l.27
0.41

—0.54
—1.55

2.74

2.37

2.93
1.83

1.28

2.68
0.86

0.16

2.25
—0.18
—1.27
—1.52

The matrix element (l3) can be obtained from the expressions (l3)+ (s3) = 0 for nondiagonal elements and (l3)+ (s3)= 0 for diag-
onal elements.

TABLE C.6. El matrix elements for proton states.

Initial state Final state

A =232
Z= 92

K —Ky

v2 = Q. 19
v4 ———0.04

K Ky

v&
——0.22

v4 ———0.02
Kg Kg K —K

A =244
. Z=96
v~ ——0.25
v4

——0.0
Kc Kf K

1/2 + [66O] 1/2 [541]
1/2 [53O]
1/2 [521]

[vvo]
3/2 [532]
3/2 [521]
3/2 [761]

0.07
v.2( 3)

-0.22
-1.61

0.08
-0.08

0.87

—0.13
O. 09

—0.12
—0.74

0.07
-0.02
—0.09
—1.70

0.07
-0.05

0.95

-0.12
0.07

-0.06
-0.81

0.07
-0.05

5.3( 3)
-1.71

0.06
-0.02

0.98

—0.08
0.05

—0.02
—0.84
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TABLE C.6. (Continued)

Initial state Final state

A =232
Z= 92

v, = O. 19
v4 ———0.04

E; Ef . Eg —Ef

A =238
Z=94

v2 ——0.22
v4 ———0.02

Eg Eg Eg —Ef

A =244
Z= 96

v2
——0.25

v4
——O. 0

E E'f E; —Ef

1/2 + [400]

1/2 + [651]

3/2 + [4O2]

3/2 + [651]

5/2 + [642]

V/2 + [633]

9/2 + [624]

11/2 +[615]

13/2 + [606]

1/2 [541]
1/2 —[530]
1/2 —[521]
1/2 [vvo]
3/2 [532]
3/2 [521]
3/2 —[761]
1/2 [541]
1/2 —[530]
1/2 —[521]
1/2 [vvo]
3/2 [532]
3/2 —[521]
3/2 —[761]
1/2 —[541]
1/2 —f 530]
1/2 —[521]
1/2 [vvo]
3/2 [532]
3/2 [521]
3/2 —[761]
5/2 [523]
5/2 [512]
5/2 [V52]
1/2 [541]
1/2 [53O]
1/2 —f521]
1/2 —[770]
3/2 [532]
3/2 —[521]
3/2 [V61]
5/2 [523]
5/2 —[512]
5/2 [V52]
3/2 [532]
3/2 —[521]
3/2 —[761]
5/2 [523]
5/2 [512]

[752]
7/2 —[514]
5/2 —[523]

[512]
5/2 —[752]
7/2 —[514]
9/2 —[505]
7/2 —[514]
9/2 —[505]

»/2 [5O5]
9/2 [5O5]

»/2 [5O5]
11/2 [5O5]

p.pl
—0.13
—0.04

0.46
g.o( 3)

—0.07
—0.27
—1.44

0.72
p. 05
0.05

—0.36
0.17

—0.11
0.02
0.02

—0.16
—0.01

0.11
0.02

—0.23
0.06

—0.09
0.07

—0.08
0.17

—0.08
—0.65

0.05
p. 12

—1.60
0.05

—O. 03
1.08

—0.08
0,15

-0.56
0.01
0.20

—1.53
0.03

—0.08
0.12

—0.47
-0.02

8.6( 3)
—0.06
—0.03
—0.18
—0.03
—0.73

1.7'6

0.06
4.6{ 3)

—0.10
0.24

—0.20
—0.40

0.12
0.12

9.6( 3)
-0.06
—0.09

O. 07
4.4{ 3)

-O.07
-0.05
—1.48

0.69
0.02
0.06

-0.38
0.13

—O. 07
4.4( 3)
0.03

—0.13
—0.05

O. 06
0.05
0.21
0.04

—0.09
0.10

—0.05
0.13

-0.04
-0.68

0.06
0.05

—1.63
0.04

—0.02
1.11

—0.06
P. 11

- -0.57
0.04
0.10

—1.56
—0.02
—0.06

0.08
—0.46

0.02
0.01

—0.05
1.6( 3)

—0.17
—0.03
—0.78

1.75

0.014
0.01

—0.09
0.05

—0.29
—0.37

0 ~ 08
0.10

0.01
4.1( 4)
0.09

0.06
3.2(—3)

—1.52
0.63
8.9( 3)
0.06

—0.40
0.10

1.5( 3)
—0.01

0, 11
—0.04
—0.01
—0.07
—0.08
-0.02

0.08
0.06

—0.03
0.09

-0.01
—0.70

0.08
—0,02
—1.66

0.04
—0.02

1.13
—p. 04

0.06
-0.57

0.07
s.s( 4)

-1.58
0.02

—0.05
0.04

—0.45
0.05
8.2( 3)

—0.04
0.03

—0.15
—0.03
—0.83

1.73

1.5( 3}
—0.01

0.08
—2.8( 3}

—0.38
—0.33

0.06
0.07

In the above equation the second term is nonzero only
when E;.= Kz = &. The values of m, in this equa-
tion are h co, = 7.5 Me& for neutrons and 7.9 MeV
for protons in our calculations. For M= 244, the above
values of k~o correspond to h/Mao= 5.26&&10 "cm for
protons and 5.54&& 10 "cm' for neutrons.

APPENDIX D: ANOMALOUS CONVERSION
COE F F IC I ENTS

In the actinide region there are several E1 transitions
known, for which the E; I.» I„M„andM, experimental
conversion coefficients are larger than the theoretical
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TABLE D. l. . Anomalous F1 conversion coefficients.

Nucleus

"'I a

233P

239pu

'4'Am

"'Cm

247Cf

Initial state
(Iz ~)

Final state
(Iz ~)

5/2 3/2 + [651] 3/2 1/2 [530]

5/2 3/2 +[651] 3/2 1/2 [530]

5/2 5/2 —[523] 5/2 5/2 + [642]

5/2 5/2 [523] 7/2 5/2+[642]

3/2. 3/2 [521] 5/2 5/2 +[642]

9/2 9/2 [734] 7/2 7/2 +[624]

9/2 7/2 +[624]

9/2 9/2 —[734]
11/2 7/2 + [624]
7/2 7/2 + [624]

7/2 7/2 —[743] 5/2 5/2 +[622]

84.17

86.3

59.54

26.35

106.1

265.92

388.1

333.3

266.6
480.6

Lg
L2
L3
Mg

M2
M3
Lg
L2
L3
L1
L2
L3
Mg

M2
M3
M4
M5
L3
Mg

M2
M3
M4
M5
Lg
L2
E
Lg
L2
M)
M2
K
L
K
L
K
K
L

Transition
energy (keV) Shell

{ICC )exyt 1

(ICC)th o'

20 +3
16 +4
1.2 +0.4

23
22
1.0
5.7 + 2.4

15 +7
2.2 k2.2
1.76 +0.21
3.1.+0.3
1.1 + 0.1
1.9 + 0.3
4.6 +0.6
1.1 +0.2
1.4 +0.5
1.5 + 0.5
1.00 + 0.13
2.4 + 0.4
3.2 + 0.5
1.2 +0.2
0.8 + 0.2
1.3 +0.2
1.51 +0.18
2.86 +0.29

98 +14
148 + 11
195 +40
220 +35
122 +80

1.98 +0.35
2.3 + 0.5
1.59+0.29
1.79+0.36
2.26 + 0.45
3.43 + 0.35
4.3 +1.4

Ref.

~Asaro eI; al. (1960).
"Yamazaki and Hollander (1966).
'Ewan et ~l. (1957).
dPorter et al. (1974)
'Ahmad (1966).

Ahmad eg ~l. (1973a).
Theoretical values of ICC were taken from Hager and Seltzer (1968).

values (Hager and Seltzer, 1968), but the I., and
M, conversion coefficients are in agreement with
theory. In most of these cases the lifetimes of the y
transitions were measured and were found to be retarded
relative to single-particle estimates (Moszkowski,
1965), the retardation factOr being 10'-10'. The data. on
anomalous F.1 conversi'on coefficients in I and M shells
were reviewed by Asaro et al. (1960) who found a. corre-
lation between the anomaly factor and the y-ray retar-
dation factor. In their analysis they found a maximum
anomaly for the 84.2 keV transition in "'Pa, where the
experimental L, conversion coefficient is 21. times larger
than the theoretical value.

A theoretical explanation for anomalous M1 conversion
was first given by Church and Weneser (1956), and the
theory of anomalous E1 conversion coefficients was
developed by Nilsson and Rasmussen (1958). According

to these theories the anomalous conversion process oc-
curs due to the penetration of the electron wave function
into the nuclear volume. This introduces an additional
term in the expression for the conversion electron tran-
sition. The magnitude of this "penetration" term is gen-
erally much sma, lier than the normal" term and hence
one does not see its effect on measured conversion co-
efficients. However, when the y-transition lifetime is
retarded, the "normal" term is also retarded, which in
effect makes the contribution of the "penetration" term
to the conversion coefficient significant. Because K,
L„L„M„andM, electrons have la.rger probability
distributions at the nucleus than do the X., and M, elec-
trons, they exhibit anomalous conversion coefficients.
From their analysis Nilsson and Rasmussen (1958) con-
cluded. that anomalous F1 conversion coefficients occur
only for transitions retarded by a factor of greater than
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10'. However, if the transitions are retarded due to K-
forbiddenness they have normal conversion coefficients.
Selection rules in the asymptotic quantum numbers were
also derived for anomalous Ml and El conversion coef-'
fic ients.

Anomalies in K shell conversion coefficients have also
been observed (Ahma. d, 1966; Ahmad et a/. , 1973;
Porter et a/. , 1974). The maximum anomaly occurs for
the 266.6 keV transition in "Am, where the experiment-
al conversion coefficient is 98 times the theoretical val-
ue. The data on anomalous conversion coefficients are
summarized in Table 0.1.

So far only one case of anomalous M1 conversion co-
efficients has been reported in the actinide region
(Porter et al. , 1974). Penetration ma. trix elements for
M1 transitions between various single-particle states are
tabulated by Krpic et al. (1973).
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