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In this tutorial-style article we discuss the time-independent perturbation formalism of Brandow for
effective interactions and operators in a nonrigorous, intuitive way. The simple example of a 2X2 matrix
is used to introduce the basic concepts, for instance the notion of folded diagrams. The same example is
used subsequently in a discussion of the branch points arising from "level crossings" and the associated
convergence difficulties with the perturbation series. Numerical calculations of the effective interaction and
the effective charge are then reviewed, focussing, for. the most part, on the (1sOd) shell. Whenever

possible, simple physical models are used to illustrate the results. A fairly comprehensive summary of the
calculations to date is given, and we attempt to synthesize and draw conclusions.
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I. INTRODUCTION

Although nuclear physics has been intensively studied
for many years and reached a high level of sophistica-
tion, it still contains several unresolved fundamental
problems. One very outstanding problem is the deriva-
tion of the effective interaction between nucleons bound
in nuclei.

Indeed, the aim of nuclear theory is to describe the
properties of atomic nuclei in terms of the interactions
between the individual nucleons. This is a quantal many-
body problem which cannot be solved exactly and there-
fore must be replaced by suitable approximations or
models. These models have various degrees of resem-
blance to the original microscopic many-body problem
to be solved. The most microscopic model is the shell
model, which has been extremely successful in describ-
ing and predicting nuclear properties. We shall be con-
cerned here with the fundamental justification of this
model. One mould then wish to go on and establish con-
tact with more collective models, although the connec-
tion is knomn only in simple cases; this is, however, be-
yond the scope of the present article.

In the shell model the atomic nucleus is considered as
a system of nucleons moving in a common potential well
arising from their mutual interactions. Then, in the
simplest version of the shell model, the extreme single-
particle shell model first proposed by Mayer and Jensen
in 1949 [for a review, see the monograph by Mayer and
Jensen (1955)], all the properties of an odd-mass nucleus
are assumed to be due to the last odd particle moving in
this well, the remaining particles being paired to angu-
lar momentum zero. Not surprisingly this model is un-
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FIG. 1. Harmonic oscillator single-particle level scheme.
The filling of orbitals appropriate to ~ 0 is shown.

able to account for the wealth of nuclear data available,
and nowadays it is usual to take into account al]. particles
beyond a doubly magic core (i.e. , the core has the "mag-
ic" number of 8, 20, 28, 50, 82, or 126 neutrons and
protons) which shows exceptional stability (e.g. , Elliott
and Lane, 1957). Thus for "0—the prototype nucleus for
effective interactions —we could take "0 as a closed-
shell core and consider configurations of two neutrons in
the (1sOd) shell, as. shown in Fig. 1. Energies are mea-
sured with respect to the "0 core and single-particle en-
ergies are taken from the known energies of the "0 lev-
els, so that what is needed is a residual interaction be-
tween the two (1sOd) particles.

Now, the residual interaction that we need is an effec
tive interaction which differs from the interaction be-
tween two free nucleons (to be referred to as the nucle-
on —nucleon interaction) in several respects. Firstly, a
substantial part of the nucleon —nucleon interaction is ab-
sorbed in the common one-body potential which repre-
sents the average interaction between each individual nu-
cleon and all the other nucleons. Secondly, the effective
interaction differs from the nucleon-nucleon interaction
because of the presence of other nucleons. Clearly the
Pauli exclusion principle prevents two interacting nucle-
ons within a nucleus from scattering to states which are
already oc.cupied by other nucleons. Thirdly, the shell-
model eigenvalue problem must be solved in a finite ba
sis, and hence the effective interaction must compen-
sate for the excluded configurations. Similarly, effec-
tive operators are needed to compute other observable
quantities from the truncated shell-model wave functions.
For instance, by describing "0 in terms of a valence
neutron outside a closed "0 core, we would obtain a van-
ishing electric quadrupole (E2) moment, since the neu-
tron carries no electric charge. However, the measured
moment has the sign and the order of magnitude expected
of a single-valence proton. Thus there must be contri-
butions from other configurations —involving protons
excited out of the core. A substantial part of these con-
tributions may be taken into account by renormalizing the
E2 operator; this is generally done by associating a non-
zero effective charge with the valence neutron. (Similar
renormalization is needed for valence protons. ) For con-

venience, we shall use effective oPexatox as a common
term for the effective interaction and other effective op-
erators, when further specification is not needed.

In early shell-model calculations simple phenomeno-
logical potentials were used for the effective interaction.
All these potentials contained parameters which were de-
termined by fitting experimental level energies. Very
interesting developments were made by Talmi and his
school, who determined the matrix elements of the ef-
fective interaction in simple configurations directly from
the experimental spectra. Both these approaches were
very successful and provided useful interpretations of
nuclear states. For further details, see for instance El-
liott and Lane (1957), Talmi (1962), de-Shalit and Talmi
(1963), and Schiffer and True (1976).

The early successes of the shell model prompted ex-
tensive efforts to understand its physical origin, and in
particular to derive the one-body potential and the effec-
tive interaction from the nucleon —nucleon interaction.
This program has encountered several obstacles. One
difficulty is that the nucleon —nucleon interaction is not
well known. Ultimately one expects to be able to derive
the nucleon —nucleon interaction from meson theory.
However, there are still many uncertainties associated
with the potential models of meson theory (Brown and
Jackson, 1975), and one rather employs potentials which
are fitted to the nucleon —nucleon scattering data and the
deuteron binding energy. Unfortunately, the nucleon—
nucleon interaction cannot be uniquely determined this
way. Potentials of different forms can be constructed
which all fit the present two-nucleon data. One might
hope that the properties of complex nuclei could be used
to discriminate between different forms of the nucleon—
nucleon interaction. Thus one is back to the original
problem of deriving the shell-model potential and the ef-
fective interaction from a given nucleon —nucleon poten-
tial.

Powerful perturbation methods have been developed for
the solution of the nuclear many-body problem in the last
two decades, leaning heavily on techniques from quantum
field theory and statistical mechanics. These very gen-
eral methods are largely independent of the particular
many-body system studied and have been found valuable
in other areas of physics and chemistry. However, the
nuclear many-body problem is more complicated than
most other quantal many-body problems. This is partly
because atomic nuclei contain too many particles to be
treated exactly, but far too few particles to be treated
statistically. Thus, one must resort to an approximate
treatment where in principle all the nucleons contained
in the nucleus are explicitly considered. Another com-
plication with nuclei is that there is no natural center of
force, as for instance in atoms where the nucleus gen-
erates the dominant electrostatic potential in which the
electrons are bound. In nuclei one has in fact to derive
the one-body, shell-model potential from the forces act-
ing between the individual nucleons. The nuclear many-
body problem is further complicated by the fact that the
nucleon-nucleon interaction is very strong at short dis-
tances. Thus, as shown by Brueckner et al. (1954), one
has to sum all terms involving pairs of interacting nucle-
ons in order to obtain a mell-behaved interaction, the so-
called reaction matrix or G matrix, which can be used as
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a starting point for perturbation expansions. However,
the reaction matrix is by no means weak, so that ques-
tions of convergence become critical, as we shall see
later on.

The nuclear many-body problem was first studied for
infinite nuclear matter, which is a hypothetical nuclear
system corresponding to the interior of a heavy nucleus,
but being free of the complications introduced by the nu-
clear surface. These studies, which were pioneered by
Brueckner, Bethe, and Goldstone (Brueckner et a/. ,
1954; Brueckner, 1955; Bethe, 1956; Bethe and Gold-
stone, 1957; Goldstone, 1957), appear to have developed
a convergent expansion for the problem, namely the hole-
line expansion (Bethe, 1965; Hajaraman and Bethe, 1967;
see also Day, 1967).' As regards finite nuclei, the most
ambitious application of these ideas is due to Zabolitzky
(1974); we refer to Bethe (1971) for a review of earlier
work. Now the hole-line expansion is intended for those
parts of the nucleon-nucleon interaction, namely the ten-
sor force and short-range repulsion, which excite nucle-
ons to rather high energy. Here, by contrast, we shall
primarily be interested in low-energy correlations,
which could be characterized as surface effects.

Some ten years ago the basic perturbation-theoretic
framework for effective operators in finite nuclei was
laid down by Brandow (1966, 1967), and Kuo and Brown
(1966) carried out their pioneering calculations.

The purpose of the present paper is to give a tutorial
review of the basic formalism and the current status of
calculations of effective operators needed for the nuclear
shell model. Since nuclear many-body theory is just an
application of general quantal many-body theory, it is
often formulated in a language which may nest be appre-
ciated by the working nuclear physicist. On the other
hand, as pointed out above, the nuclear many-body theo-
ry contains features which are peculiar to atomic nuclei,
and thus its execution may be inaccessible to non-nuclear
physicists. For both reasons an elementary review of the
nuclear many-body theory of effective operators is in
order. Furthermore, this will give us an opportunity
to summarize the main features of the numerical results
obtained in the field since the work of Kuo and Brown
(1966).

There have been several reviews of the nuclear many-
body theory during the last decade (e.g. , Brandow, 1967;
Baranger, 1969; Macfarlane, 1969; Brown, 1971a; Bar-
rett and Kirson, 1973; Kuo, 1974; see also Brandow,
1975 for a critical assessment of the various formal ap-
proaches). The present review will be similar in spirit
to the one by Brandow (1967), in the sense that the
straightforward algebraic methods of time-independent
perturbation theory are used. Time-dependent perturba-
tion theory (Oberlechner et a/. , 1970; Kuo et a/. , 1971;
Johnson and Baranger, 1971; Krenciglowa and Kuo, 1975)
is probably more general and suitable for proving vari-
ous essential theorems in the many-body theory than
time-independent perturbation theory, but it is on the
other hand more indirect, as most nuclear structure cal-
culations are performed in a time-independent frame.

~Recent calculations by Pandharipande and Wiringa (1976)
have raised doubts about the validity of the hole-line expansion.

We have thus followed Brandow in avoiding burdening the
nonspecialist reader with the machinery of time-depen-
dent perturbation theory. On the other hand, the present
review is intended to be considerably more pedestrian
and less general than Brandow's. Indeed, we shall not
derive the theory rigorously, but rather illustrate it in
terms of a simple, exactly solvable matrix model. Thus
we expect that the non-specialist would be able to follow
step by step the developments made and hope that there-
by his possible phobia against many-body theory be over-
come.

In Sec. II we discuss the structure of the formal dia-
grammatic perturbation theory which is needed in the
theory of effective operators in the shell model. We
shall be concerned primarily with the calculation of the
effective residual shell-model interaction (and shall not
discuss the derivation of the average one-body shell-
model potential, which in principle can be calculated by
similar methods). Furthermore, we shall discuss briefly
the calculation of other effective operators, such as el-
ectromagnetic transition operators. Finally, some at-
tention is paid to the forrnal convergence properties of
the perturbation expansion for the effective interaction.

In Sec. III we review in a simple-minded way the main
features of the numerical results obtained for the effec-
tive interaction and for the effective electromagnetic E2
operator. Where convenient, we shall describe these
results in terms of simple schematic models.

The final section, Sec. IV, contains brief concluding re-
ma. rks. Various technical points, relating to Sec. II are
given in the Appendices A-D. At the end of each subsec-
tion we have placed a short summary of the salient
points, which may be useful to the reader.

II. FORMAL PERTURBATION THEORY

We wish to discuss in this section in a simple, intuitive
way, without rigor, the formal diagrammatic perturba-
tion theory structure which is needed in the theory of ef-
fective operators. The label perturbation theory does
not imply that only corrections of, say, first and second
order in the perturbation can be handled. Bather an ex-
act formalism has been developed which treats the per-
turbation to arbitrary orders and therefore includes all
possible physical processes. It is very helpful to assoc-
iate diagrams with the various terms of the perturbation
series. They give an immediate, precise picture of the
process under discussion and are invaluable in trying to
define the physically important processes for a given
problem. Often a particular class of diagrams involving
the perturbation to arbitrarily high order will be physi-
cally significant, so that it then becomes necessary to
make a partial summation of this infinite series to obtain
an approximate solution of the many-body problem.

This section is organized as follows. We start in Sec.
II.A by deriving a general equation for the effective
interaction (Bloch and Horowitz, 1958; Feshbach, 1962;
Lowdin, 1962; Brandow, 1967). Applying this to a simple
2 x 2 matrix problem in Sec. II.B, we are able to il-
lustrate many of the features of diagrammatic perturba-
tion theory needed subsequently. Then in Sec. II.C
we show how the effective interaction- of Sec. II.A
can be cast into a form suitable for shell-model calcula-

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977



780 P. J. Ellis and E. Osnes: Effective operators in nuclei

tions. We follow here the time-independent approach of
Brandow (1967) and refer to this work for general proofs.
As well as using an effective interaction in the shell
model, we need to replace all the other operators of in-
terest, e.g. , the electromagnetic transition operators,
by effective operators. The necessary formalism is giv-
en in Sec. II.D; we restrict our attention to the case
of a single particle beyond a nondegenerate core, since
this results in great simplifications and since this is the
case of most immediate interest. Finally in Sec. II.E
we discuss formal divergence problems (Schucan and
Weidenmuller, 1972, 1973) which arise in many cases of
interest. Here we again lean on the 2 x 2 matrix to illus-
trate both the divergence and suggested remedies.

A. Degenerate perturbation theory

We wish to calculate the bound-state properties of a
system of many interacting nucleons. We shall assume
that they interact via two-body forces, although the in-
troduction of many-body forces would cause no difficulty
in principle. Since we cannot solve the Schrodinger equa-
tion

(2 .1)

exactly, we seek approximate solutions using perturba-
tion theory techniques. We split the Hamiltonian II into
an unperturbed part IIo, for which we can obtain an exact
solution, plus a perturbation V. Explicitly,

4= gaP, (2.7)

Inserting this in the Schrodinger equation (2.1) and taking
the scalar product with 4, , we obtain, using (2.5),

(E —c,.)a,. =(4,.
l
v l4). (2.8)

Now we need to define the valence or model space (both
terms are used). They refer to the set of states 4, with
i = 1,2, . . . , d which we actually wish to work with explic-
itly in the shell model, i.e., we shall set up the energy
matrix for this set of states and diagonalize it. An ex-
ample of a valence space would be the case of two par-
ticles in the (sd) shell beyond the filled Os and OP shells
of the '60 core (see Fig. 1); this would be appropriate
for the nuclei ~ 0, F, and ' Ne. The remainder of the
complete set of states we shall include implicitly by con-
structing effective operators, e.g. , we shall construct
an effective interaction 'U which will be used in place of
V. We can now split the summation in Eq. (2.7),

a,-4,-+ a,.4,.
i=1 i=A 1

In the latter equation 8 is the antisymmetrization opera-
tor needed in first quantization, and -we have also written
the equivalent expression using second quantization crea-
tion operators a~ acting on the vacuum

l ).
We can now expand the true wave function in the com-

plete set of unperturbed states

and

H =IIO+ V, (2.2)

(2.9)

Ho= T,.+ U,-,

(2.3)

(T+U)@,=e„g, . (2 .4)

If, in some particular state i of the A-particle system,
orbitals e to f are filled, we have

Here T,- represents the kinetic energy of particle i, and

Vi,. gives the interaction between particles i and j. We
have also added and. subtracted a one-body potential U,
which is therefore arbitrary in the sense that the results
of an exact calculation will be independent of U. How-
ever, in an approximate calculation the results can be
expected to depend on U, so that a reasonable physical
choice should be made. It should also be convenient to
work with —the harmonic oscillator potential is often
used in practice; see Sec. III.

In Eq. (2.3) H, is a sum of one-body Hamiltonians, so
that we need to solve a one-body Schrodinger equation

Here we have defined our valence wave function 4~ as
that component of the true wave function which lies in the
model space; we shall take it to be normalized to unity.
This is the usual choice, although other definitions can
be used (des Cloizeaux, 1960; Schucan and Weidenmiil-
ler, 1973). The second term in Eq. (2.9) has been trans-
formed using Eq. (2.8).

It is useful and elegant to define projection operators
P and Q which respectively project into and out of the
valence space

(2 .10)

P+ Q= 1.
It is easily verified that P and Q have the usual projec-
tion operator properties P' =P, P =P, PQ =0, etc. Then
we can write Eq. (2.9) in operator notation

with

HOC, =&iC,. (2.5)

4D =PC'.

(2.11)

(2 .12)

and

e„

(2.6)

If we define a model or wave operator (Eden and Francis,
1955) 0 by

(2.13)

then clearly Eq. (2.11) gives
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Q(E) =1+[Q/(E —Ho))VQ(&).

Now, using Eq. (2.13) in Eq. (2.8), we obtain

(2.14)

0
= +&4, ~Vn~4„)a,

or equivalently

(2.16)

where we have defined an effective interaction , which
depends on the energy E and acts within the model space,
by

'0(E) = VQ(E). (2.17)

Using this relation and Eq. (2.14), we have an integral
equation

e(E) = V+ V[Q/(E —H, )]'U(E)

for the effective interaction, which shows its dependence
on the energy E.

Now Eq. (2.16) looks something like a shell-model equ-
ation, but it is not quite of the right form. Firstly, the
energy E is the total energy of the many-body system,
rather than the energy relative to closed shells which we
deal with in the shell model. Secondly, as we have re-
marked, the interaction 'U depends on the energy E which
we wish to calculate, i.e. , the energy denominator of Eg.
(2.18) is of Brillouin —Wigner form. A related point is the
occurrence of unlinked diagrams in the perturbation ser-
ies for 'U. We indicate how this difficulty can be elimin-
ated in the case of a simple example in the following
Sec. II.B.

It is worth remarking that we have recast the Schrodin-
ger equation in the form of Eqs. (2.16) and (2.18) which
will yield d true eigenvalues. We have no guarantee,
however, which eigenvalues will be obtained in an actual
calculation. Only if the true wave function has no com-
ponent in the model space, PC=0, are we in principle
unable to obtain the corresponding eigenvalue.

Equation (2.18) for the effective interaction can be re-
written in a somewhat different form which is sometimes
useful. Iterating this equation we have

and aft, to remind ourselves that the effective interac-
tion acts within the model space.

As well as using an effective interaction, we need to
replace all the other operators of interest in the shell
model, e.g. , the electromagnetic transition operators,
by effective operators. These are designed to take into
account the Q space states which are not explicitly in-
cluded in the calculations. Here we need to start with
Eq. (2.13) for the true wave function, which involves the
same undesirable features as outlined above for 'U(E).
This will be discussed further in Sec. II.D.

Summary. The Schrodinger equation has been rewrit-
ten a.s a secular equation (2.16) involving an effective in-
teraction 'U [Eqs. (2.18) and (2.21)] acting within a model
space of dimension d. Further manipulation will be re-
quired to put Eq. (2.16) into the desired form.

0 A A AP

0 B B BP (2.22)

and we specify that &B &&A. For the perturbation V we
take, in second quantization,

V =X(a~~as + a~sa~). (2.23)

Thus V has only off-diagonal matrix elements; any diag-
onal terms could obviously be incorporated into II0.

The exact solution to this problem is easily obtained by
setting the secular determinant to zero:

=0 (2.24)

giving

B. A simple 2 X 2 matrix problem

We consider here by way of illustration the case of a
simple 2 && 2 matrix; discussions of this problem in var-
ious contexts have been given by Katz (1960), Ellis and
Osnes (1973), and Schaefer (1974); see also Schucan and
Weidenmiiller (1973). We interpret this as an eigenvalue
problemfor aone-body system in which only two states,
A and B, are available. The unperturbed solutions are

1 1'U = V+ VQ QV+ VQ — QVQ QV
0 0

1 1 1
+ VQ VQV VQV QV+ ~ ~ ~,

0 0

and

(E —&~)(E —es) =X

E =-,'(e„+as+ [(as —&„)'+4X']'~').

(2.26)

(2.26)

(2 .19) If we make a power-series expansion in 2P, the lowest
eigenvalue E, is

where we have used the property Q2=Q. Now using the
result X X4

E~ =&A+ + (2.27)

1+x+ x'+ x '+. . . = (1 —x) ', (2.20)

and noting that we are dealing with operators, we easily
find

1'U= V+VQ QV

We now wish to apply perturbation theory to this prob-
lem, taking as our model space the single state A so
that no diagonalization is necessary for Eq. (2.16), i.e.,
we are concerned with nondegenerate perturbation theory.

1
PVP+PVQ — QVP. (2.21)

1. Brillouin-Wigner. perturbation theory (particle
representation)

In the latter equation we have inserted P operators fore
For our single model-space state, Eqs. (2.16) and (2.18)

become
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)l A 8
B Ig 1I A 8 I~ lf A

jk A
(b) (c)

FIG. 2. Diagrams showing the unperturbed state (a), and the
second-order perturbation contribution (b) in a particle repre-
sentation.

E=&~+ &@~I V+V v
0

+ V V V+ ~ ~ ~ I4'g, (2.28)
(d)

which is clearly standard Brillouin —Wigner perturbation
theory. If we take a particle representation so that

(2.29)

where
I ) is the true vacuum, we can represent the un-

perturbed state as in Fig. 2(a). The second-order term

I:~'~«-~a)]& l~~~~~.~'~~~~I ) (2.30)

is represented by the diagram in Fig. 2(b), where the
perturbation V is represented by the cross. In fact, this
is the only diagram which can occur, since the q opera-
tor in Eq. (2.28) requires that the intermediate state be
B. Our perturbation (2.23) can act on state A. to excite
B, and having excited B can only de-excite it to state A.

again. Thus we have

FIG. 3. Second- and fourth-order diagrams in a hole represen-
tation.

=E —&~, so that through second order we obtain the ex-
act result of Eq. (2.31) above.

The remaining diagrams in Fig. 3 (and in higher orders)
give zero contribution. This follows since the exclusion
principle is violated in intermediate states; thus in Figs.
3(b)-(e) we have two particles in state B which can ac-
commodate only one particle. Equivalently the exclusion
principle can be ignored and the diagrams can be explic-
itly shown to cancel; thus diagrams 3(b) and (c) have the
same magnitude and opposite signto diagrams 3{d)and (e).
Explicitly Fig. 3(b) involves the contraction

I~ &@~ I ~x~s~~~s~s~~~a~~ I @~)4 I

I

E = ~„+x'/(E —~,), (2.31)
and Fig. 3(d) involves the contraction

which is the exact result of Eq. (2.25). Notice that this
equation yields both eigenvalues of the problem (except-
ing the trivial case X =0, when the upper state has no
component of 4 ~).

I I I

and these clearly differ by a sign.

2. Brjllouin-Wjgner perturbation theory (hole
representation}

Now Eq. (2.28) still applies, but we choose the vacuum
state to be I4 ~) = at~

I ) and discuss particle —hole excita-
tions with respect to this vacuum. The analogue of Fig.
2(a) is now just a blank and is not shown. The analogue
of Fig. 2(b) is Fig. 3(a), and the fourth-order diagrams
which now occur are given in Figs. 3(b)—{e). [There are
no diagrams of odd order in the perturbation because it
is purely off-diagonal; see Eq. (2.23).] A little care is
needed as regards energy denominators; we can write

E —H —= &E+&~-H
=AZ+ Z (downgoing —upgoing) line energies

(2.32)

since (&„—H0) gives minus the energy relative to the va-
cuum. The denominator in Fig. 3(a) is thus &E+e„—&s

E —Ho c~ —Ho e~- Ho

zz zz

{2.33)

in Eq. (2.28). Substituting the expression for DE = E —e ~
back into itself we obtain through fourth order, neglect-
ing odd powers of V,

3. Raylejgh-Schrodinger perturbation theory {hole
representation)

~e now want to rewrite Eq. (2.28) in such a way that the
energy denominators involve only the unperturbed ener-
gies, i.e., they are of Rayleigh —Schrodinger (RS) form.
To do this we write the total energy E as the sum of the
energy shift we wish to calculate, AE, and the unper-
turbed energy, e~, as in Eg. (2.32) and use the identity

E=~ +&4 IV I, V+V ~ V ~ V
H VI4.& -&+ IV ~ VI4g&4 IV VI4.) (2.34)

0 ~A 0 A 0 ~A 0 ~A 0 ~~- Ho

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977
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The diagrams for the second quantity on the right-hand
side will be just those indicated in Fig. 3, but now with
RS denominators. Now- a diagram is said to be unlinked
if it consists of two or more pieces which are not con-
nected together by any interactions. Thus the diagrams
of Fig. 3(b) and (c) are both unlinked; further, the inter-
action matrix elements and the signs are obviously the
same for both. The energy denominators are also the
same, but let us be more general for the moment and
take an excitation energy n for just the left-hand piece
of Fig. 3(b) or 3(c) and an energy P for just the right-
hand piece. Then the sum of energy denominators for
Figs. 3(b) and (c) reads

A it

B A i&

B ii

X- —— A
ik B
———X

B l

X- —-

JIA

1 1 o+P 1
o-(~+ P)p ~(~+ P)~ o.'P(~+ P) o.'P (2.35)

FIG. 4. Diagrams needed in Bayleigh-Schrodinger perturba-
tion theory in a. particle representation. The unfolded diagram
(a) yields the two folded diagrams (b) and (c).

X2 X4E =&~+
~a (&A &a)

(2.36)

which, of course, is identical to Eg. (2.27) derived di-
rectly. Notice that it is now necessary to include the
Pauli exclusion violating diagrams 3(d) and (e), since
the cancelling diagrams, Figs. 3(b) and (c), have been
removed.

4. Rayleigh-Schrodinger perturbation theory (particle
representation}

We now wish to obtain a perturbation series with RS
denominators in a particle representation, i.e., using
the true vacuum

~
). To do this we can again use Eq.

(2,34), but now in the second term only the second-order
contribution will be nonzero, and this gives the diagram
of Fig. 2(b), with RS denominators. We are then left
with the third term which we wish to represent diagram-
matically. It looks something like Fig. 4(a), but this is
not quite right since the upper energy denominator
should be squared and since the initial state A appears
at an intermediate level. We need a new form of diagram
called a folded diagram (Brandow, 1967; see also Morita,
1963), and write this contribution as the sum of two
folded diagrams, Figs; 4(b) and (c). Here we have folded
the valence particle line A. so that the arrow. goes down-
wards, but it is not a hole line, and to indicate this a
loop is put on the line. We associate a minus sign with
each fold to obtain the signs of Eq. (2.33). Here this just

This is a simple example of the factorization theorem,
discussed further below, where a sum of energy denomin-
ators can be written more simply as a product of denom-
inators referring to the left- and right-hand pieces sep-
arately. We thus have a contribution (4 „~VQV~C „)2/n'P
[which in our case is just X~/(e„—ea)3] from the second
term of Eci. (2.34), which is exactly canceled by the third
term. Thus the unlinked diagrams are removed in this
order. They are also removed in higher orders, so
that one has a completely linked perturbation series;
this general result was first proved in the famous paper
by Goldstone (1957). The type of diagram discussed here

. is often referred to as a Goldstone or Feynman-Gold-
stone diagram. We are left with Figs. 3(a), (d), and (e)
to calculate through fourth order. The latter two dia-
grams give the negative of the unlinked contribution de-
rived above. We obtain

gives —1 for a single fold, which is the correct sign for
these diagrams, and the interactions obviously give X
as desired. The energy denominators can be found by
operating with E„—H, between the interactions, provided
that the folded line is treated as a hole line for these
purposes. For diagram 4(b) this gives

1 I 1
(&~-&a) (&~-(2&a-&~)] «~-&a) 2«~-&a)'

and the same result is obtained for Fig. 4(c). Thus the
sum gives the desired (&~—ea) . Actually this is again
a simple application of the factorization theorem which
has been used "backwards" in going from Figs. 4(a) to
4(b) and 4(c). We thus have a linked perturbation expan-
sion through fourth order, consisting of Figs. 2(b), 4(b),
and 4(c), which gives the same result, Eg. (2.36), as be-
fore. Again it can be shown (Brandow, 1967) that a linked
series is obtained in general, using these folded diagrams.

We remark that Fig. 4(a) is called the unfolded form of
Figs. 4(b) and (c). Further, in order to avoid double
counting, we must specify that the topmost interaction of
the folded diagram is the same as the topmost interaction
of the unfolded diagram.

The reader may have noted that the folded diagrams of
Fig. 4 could be produced by cutting an appropriate A hole
line in the Goldstone diagrams of Fig. 3(d) and (e) and
opening out the two pieces. Further, both forms of dia-
grarn yield the same result, so we simply have two dif-
ferent ways of representing a given contribution. This is
a special feature of our simple example; in general for
nondegenerate perturbation theory there is not a one-to-
one correspondence between the folded diagrams and the
Goldstone diagrams, although obviously the sums of such
diagrams for a given order in the perturbation must be
identical (we discuss this further for an explicit example
1n Appelldlx A) .

5. The factorization theorem

We have used the factorization theorem already and we
shall need it in more generality later on, so it is well to
give a simple algebraic proof of the general result. A
somewhat different algebraic proof by induction has been
given by Frantz and Mills (1960), while Bethe, Brandow,
and Petschek (1963) have used a time-dependent method.
Consider Fig. 5(a). The left-hand block is a schematic
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En

EO+l

Ea
E~
E)

En

Ea+i
le I+ E~

E~
E)

(b)

En

Ea+i0+ I

E~
E,

En

e + a+IE

E~
E~
E)

(d)

all orderings of the interactions of the left-hand block
(above n) with respect to the topmost interaction of the
right-hand block —Figs 5(a), (b), (c), and (d)—then
the sum of these diagrams can be simplified. The inter-
actions and signs of the diagrams are obviously the same
in all cases, so it is only necessary to consider the en-
ergy denominators. %'e obtain for the sum of the dia-
grams

FIG. 5. Schematic representation of a set of diagrams which
can be factorized.

representation of a diagram with the horizontal lines in-
dicating the levels of the interactions. The energy de-
nominators for this block considered alone are E„
E„.. .E„and give a contribution to the diagram

We now insert a nem right-hand block which may or may
not be joined to the left-hand block. The right-hand block
has two interactions and an energy denominator e; it is
inserted at level n, actually n =3 in Fig. 5. If we allow

+-.."~ E . E~ g" ~ Eq+e e g~Eq+e

The sum over j in the square brackets refers to the cases
where the topmost interaction of the right-hand block is
at level j, and the last term refers to the case in which
the interaction is above the level ~. Setting

1 E+e 1
E,- E,.e e

in Eg. (2.37) gives

(2.38)

Rewriting the second term in square brackets as

we observe that this cancels the third term of Eg. (2.38),
and since the fourth and fifth terms cancel, we have

Z= (2.39)

This is the desired result, which shows the factorization
into a product of energy denominators. [Note that if
n = n, the second and third terms of Eg. (2.38) are zero
and we obtain Eq. (2.39) directly. ] It should be obvious
that this result can be generalized to the case where the
right-hand block contains many interactions, by succes-
sive applications of the above argument. In this case e
in Eq. (2.39) becomes the product of energy denominators
for the right-hand block alone, and we shall have summed
the diagrams with all possible orderings of the interac-
tions in the left- and right-hand blocks, subject to the
restriction that the lowest interaction of the right-hand
block is fixed at level n.

Notice that if we have p, set of diagrams which take the
form of Fig. 5 turned upside down, the same factoriza-
tion arguments apply. The only difference is that the
fixed interaction at level n becomes the highest inter-
action of block e. Thus we may use the factorization the-
orem either upwards or downwards. Qf course it is not
possible to group all diagrams into classes such that the
factorization theorem is applicable. Qnly those diagrams
(or parts of a diagram) with a suitable topological struc-
ture can be treated in this manner.

6. Summation of tbe series

+le have obtained a linked perturbation series with RS
denominators using both the particle and hole represent-
ations for our 2 & 2 matrix problem. Vi7ithout explicitly
retracing our steps it should be possible to sum the ser-
ies and obtain the exact result. This we shall do here.
This subsection is not essential to the subsequent de-
velopment and may be skipped if the reader desires; it
is, however, a useful illustration and, further, it is fun.

In the hole and particle representations the diagrams
have different forms which suggest different ways of sum-
ming the series. Here we shall stay with the hole re-
presentation, leaving the particle case to a later section
and a different. context. The most straightforward way
of summing the Goldstone diagrams of Fig. 3(a), (d), (e),
and higher orders would be to obtain a general expres-
sion for the sum of all diagrams of a given order in the
perturbation V and then sum over all orders. This has
been carried out by Katz (1960), but it gets complicated.

An alternative procedure is suggested by considering
the general structure of the diagrams. Consider the ex-
ample illustrated in Fig. 6. The lowest interaction is
labe led Lp and th'e next lowe st interaction. L, . Now con-
sider the left and right pieces above I, ; we can of course
take all possible orderings of the interactions and use the
factorization theorem. Now the left-hand piece alone
looks like a diagram of lower order, &~ say, except that
it is not closed off at the bottom by the equivalent of in-
teraction Lp. Thus the left-hand piece gives a contribu-
tion 6~/2C, and similarly the right-hand piece gives 6~/
X~. Thus the contribution of this set of diagrams of the
type shown in Fig. 6 is
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All ———x
8

Ll

FIG. 7. Diagrams containing a sequence of diagonal ~~ inser-
tions. These are the lowest-order members of an infinite ser-
ies which can be exactly summed.

3(a), those of Fig. 7. The sum of all these diagrams is

(2.44)

Lo

FIG. 6. General structure of a diagram for the 2 &2 matrix
problem (hole representation).

X
X (e „—es) (2 .40)

(The reader may verify in detail that this is correct. )
The minus sign in Eq. (2.40) follows as, using the sub-
scripts 0 and 1 to indicate interactions L, and L„ the
operators a»a~a»a» must be put in the form
a~oa~a~, a„, for our left and right argument to hold. This
involves a sign change.

A little thought will convince one that, except for sec-
ond order, every diagram takes the form in Fig. 6, i.e. ,
interactions Lo and L, , and above this left and right
pieces of some lower order. Further, we can generate
eachdiagram uniquely by taking all possibilities for &~
and &~. Now if we call & the sum of the infinite set of
all Goldstone diagrams, we can generalize Eq. (2.40) to

X' ~ ~ X'
X X (t~ —ts) (2 .41)

(z ~„)(E e, ) =x'. (2.42)

This is the exact result of Eq. (2.25), as it should be,
and consequently both eigenvalues are obtained.

Before leaving the 2 &&2 problem, we feel it useful to
demonstrate again the geometric series summation, dis-
cussed previously at the end of Sec. II. A, since it is so
useful in practice. I.et us add to the perturbation V of
Eq. (2.23) a term diagonal in state H, i.e.,

V V+X~a~~a~. (2 .43)

Using for the sake of argument the hole representation,
we shall now have, in addition to the diagram of Fig.

The first term here gives the second-order contribution.
Taking this value for & and substituting in the right-hand
side, we get a new value of &. Continuing this iterative
process we shall generate all diagrams uniquely (although
not in order-by-order sequence). To use this as a prac-
tical method of solving Eq. (2.41) we obviously need con-
vergence. However, regardless of the convergence of
this particular method of solution, Eq. (2.41) is clearly
formally correct. If we add in the unperturbed ener gy
and set E=&„+~as before, a little algebra leads to the
result

and using Eq. (2.20) we easily obtain

X2 X
1 — B (2.45)—6~ —X~

Thus we have just replaced e~ by &~+X~. The same re-
placement is obtained in higher-order (in X) diagrams,
such as Figs. 3(d) and (e), when diagonal xs insertions
are allowed and the diagrams are summed using the fac-
torization theorem [cf. the arguments leading to Eq.
(2.41)]. Of course this simple result is to be expected,
since we could equally well have incorporated the X~
term of Eq. (2.43) in the unperturbed Hamiltonian H, .
Then the replacement E~ &~+X~ for the unperturbed
energies of Eq. (2.22) is trivial.

Summa~. We have used a 2 && 2 matrix problem to il-
lustrate the transformation from Brillouin —Wigner (Sec.
II.B.2) to Rayleigh —Schrodinger (Sec. II.B.3) perturba-
tion theory, using the techniques of Brandow (1967).
Folded diagrams were shown to arise in Sec. II.B.4 if the
true vacuum was used and a completely linked expansion
with HS denominators was desired. The factorization
theorem, which plays a central role, was proved in Sec.
D.B.5 [Eq. (2.39) referring to Fig. 5].

E = (O' D ~
H, + V+ V[@/(E'- H,)]V+ ~ ~ ~

~

0 ~), (2.46)

we wish to represent the various contributions by means
of diagrams, as in the previous gec. II.B. Here we have
a two-body interaction as well as a one-body interaction,
and we write the perturbation in second quantization

C. Shell-model effective interaction

We now wish to indicate how the difficulties associated
with Eq. (2.16) can be removed, bearing in mind the dis-
cussion of Sec. II.B. The formalism is completely gen-
eral, but it is well to keep a definite example in mind,
and we use the case of "Q. Here our unperturbed states
consist of two particles in the (1s0d) shell outside an "0
core, which we take as the vacuum (see Fig. 1). It is
convenient to take the valence states to have degenerate
unperturbed energies e,„. [This is not an essential re-
striction, since the degeneracy breaking terms can be
incorporated in the perturbation, and later these may be
summed as in the example at the end of Sec. II.B.6 so as
to achieve nondegenerate energies (Brandow, 1967). We
give an example of this in Appendix B.] We can then work
with a model wave function 4'~ which diagonalizes both
(Ho+'U) and 'U. Now taking Eqs. (2.16) and (2.18) in the
form
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&= —2 &~j I+i2I~f&~'~'. ~~~» —p &jI+I "&~'~» (2 47)
ijkl jk

where our antisymmetrized two-body matrix elements
are

(ij
I V,2 IM&=—(f(l)j(2) I V„ I u(l)E(2) —k(2)l(l)&. (2.48)

Representing the two-body interaction by a dashed line,
we can draw a diagram such as Fig. 8(a). Here the first

interaction excites two particles from the states n, P in
the filled shells of the "0 core to unoccupied states a, b

(either valence or empty shells, see Fig. 1). The second
interaction then returns the particles to the original
state. Vfe thus have a two-particle two-hole intermedi-
ate state, and this is a pure core excitation as the val-
ence particles, represented by the noninteracting lines
do not participate. Explicitly, this diagram is given by
the second-order term

a&

(2 .49)

E =Z, +E„=e,+&,+e„+&„, (2 .50)

where E, is the true energy of the "0 core (in the ab-
sence of valence particles), and the valence energy E, is
the remainder. These core and valence energies are fur-
ther split into unperturbed parts E and shifts 4. In our
case e„=2e,~. Now as in Eg. (2.33) let us expand out b.,
from all denominators and &, from those denominators
where the intermediate state involves a core excited
part with no valence excitation, i.e., we have just the
two (sd) valence lines at this level. Taking the lowest
order in this expansion, we get a contribution from the
diagrams of Fig. 8(e) of the form

1
(E„+~„—&„')(A„+E„+&, —E'„—E,')

OK.Ott'.

(s, —6,')(+„+E „+~, —~„' —~,') (6„+6 „—6 „')

where we imply that both possible contractions between
pairs of creation and annihilation operators are to be
taken and the shifts & are defined in Eq. (2.50) below. In
Fig. 8(d) we have a pure valence excitation, where we
start with two particles in the (1sOd) shell, one or more
of these particles is excited in the intermediate state (be-
cause of the Q operator), and finally the particles return
to the (1sOd) shell.

We can represent all the contributions to '0 in this fash-
' ion, and we summarize in Appendix C diagram rules

which ensure tha't each independent process is counted
correctly (these are designed for the final form of the ef-
fective interaction). In Appendix D we evaluate in some
detail a pure valence diagram. Note that the one-body
part of Eq. (2.47) should not be forgotten, even though
many of the diagrams we actually draw will have only
two-body interactions. %e shall represent the one-body
term by a dotted line and a cross as in the previous Sec.
II.B.

In addition to the pure core and pure valence diagrams,
we have the mixed diagrams such as (b) and (e) of Fig. 8;
we show two diagrams for each of (b) and (c) which differ
only in the orderings of the interactions, since we shall
obviously wish to use the factorization theorem.

Now we write our total energy

Here we have indicated the factorization explicitly. %e
have used the notation M, for the two matrix elements of
the perturbation which enter the core part of'the diagram,
and e,' for the intermediate state excitation energy of the
core part alone. Similarly a subscript v refers to the
valence part of the diagram alone. Notice that, consis-
tent with the rule above, &„has been removed from the
energy denominator of the second term at the level indi-
cated by the horizontal arrow in Fig. 8(c). Obviously this
is essential for factorization. Now expanding ~, out of
Fig. 8(d) will give a term

(2.52)

and the appropriate part of A, will exactly cancel (2.51).
Similarly Fig. 8(b) gives a contribution

(2.53)

which is canceled by a contribution from Fig. 8(a) of the
form

(2.54)

It may occur to the reader that we have not dealt with
the case in which the valence particles remain unexcited

(d)

OK. SK.
(A„+&„—e„')' (&, —e,') ' (2.51)

FIG. 8. Illustration of (a) pure core, (b) and (c) mixed, and (d)
pure valence diagrams which arise in the perturbation series of
Eq. (2.46~.
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FIG. 9. A diagram which
gives a contribution can-
celling part of Figs. 8(a)
and 8(b). See text.

~C ' 2
3 v 0

where 5R„ is now (4'~
~
VI%~). Further expanding b.„out

of Fig. 8(a) to second order gives

(2.55)

C ~2
(g el)3 w

' (2.56)

However, we must also expand out of-the diagram of Fig.
9, which will give

(2.57)

The factor of two arises since there are two energy de-
nominators in Fig. 9. Taking the appropriate part of &„,
we observe that the contributions (2.55), (2.56), and
(2.57) cancel.

Such arguments were generalized, using the full power
of the factorization theorem, by Brandow (1967), who
showed that all the mixed core-valence diagrams cancel.
We are left with two types of diagrams. Firstly we have
the pure core diagrams of the type indicated. in Fig. 8(a)
(denominators now independent of &, and b, „), which give
the energy of the ' Q ground state; the presence of the
noninteraeting valence lines is irrelevant. Secondly, we
have pure valence diagrams [a sample occurs in Fig.
8(d)] with denominators involving A„but not &,; these di-
agrams give the energy of "0 relative to "Q.

In the case of the core diagrams only, with &, expanded
out of the denominators, Goldstone (195V) showed that all
unlinked diagrams cancel, so that one obtains a purely
linked expansion with Hayleigh- Schrodinger denomina-
tors. Brandow (196V) demonstrated the same result us-
ing the methods we have followed here. We refer to Day
(196V) for an excellent introductory discussion of the
nondegenerate problem and to Rajaraman and Bethe
(196V) and Bethe (19V1) for more advanced treatments.

Since the core energy is independent of the valence par-
ticle states, we can write

throughout the first diagram of Fig. 8(b), i.e., in which
the two upgoing lines represent initial, final, and inter-
mediate states which are all 4 . [Note: consider replac-
ing the single lowest valence interaction in this diagram,
which can give (4~~ V~4'~), by multiple interactions cor-
responding to all the terms of Eq. (2.46). The sum of this
infinite set of diagrams will be diagonal, so that we only
need to consider the case 4~ =0 ~.] This gives a contri-
bution of the form

~„(z„)= v+ v v+ ~ ~, (2.59)

Vli ~I Vli ~[
V )l V'1l

V

where only pure valence diagrams are allowed. In the
first of Eqs. (2.59) H, „operating on 4D gives just the val-
ence unperturbed energy, and in the second equation Hp
operating on intermediate states gives the sum of particle
minus hole energies. Equations (2.59) were independent-
ly derived by Day (1964).

It is worth commenting on the way exclusion principle
effects have been treated to allow the separation of core
and valence parts. Consider Fig. 10(a); this violates the
exclusion principle, since the particle states in the core
part of the diagram are the same as the valence particle
states. The diagrams shown in Figs 10(b), (c), and (d)
compensate for this violation, i.e. , the sum of diagrams
(a)—(d) is zero. Now we have included diagram (a) in the
core energy E„w hereas diagrams(b) and (c) are placed
in the one-body part of the effective interaction 'U„and
diagram (d) is included in the two-body part. Thus we
have a whole series of diagrams in the effective inter-
action which arise from the Pauli blocking effect of the
additional valence particles.

Now the Bloch —Horowitz equations (2.59) represent a
giant step forward and could be used as they stand; they
have, however, drawbacks. For instance, the interac-
tion we need depends on the energy E„ that we wish to
calculate. Further, we would have to include in the two-
body interaction unlinked valence diagrams, such as Fig.
11(c), which look like "products of single particle ener-
gies." By now we should expect these undesirable effects
to cancel when we expand out &„ from the denominators,
and from the discussion of Sec. II.B.4 we would expect
folded diagrams to arise since we are using a particle
representation. Things are just a little more compli-
cated, as we will have several model space states in gen-
eral, so that we will need matrix multiplications at the
folds.

We need to expand out the energy shift in the manner of
Eq. (2.33). This can be rewritten as a Taylor series,
giving, for a single denominator,

U =A,f+'U„. (2 .58)

Then Eqs. (2.16) and (2.46) become the Bloch —Horowitz
(1958) equations for the relative shell-model energies E„
in which we are interested, i.e.,

V

(d)

with

FIG. 10. A set of diagrams which compensate amongst them-
selves for violations of the Pauli exclusion principle, i.e. , the
sum of the four diagrams is zero.

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977



788 P. J. Ellis and E. Osnes: Effective operators in nuclei

(2.60)

Clearly we could equally well apply the Taylor series expansion to &„(E„),which contains many denominators.
We get

i y& ge ~ of&n

(2.61)

It is easy to check that the matrix multiplication over the
unperturbed valence states gives the correct result, by
operating on 4 D and using V„(E„)4D=b, „C'D. Now we can
use this whole expression (2.61) for '0„(E„)and substitute
repeatedly in the right-hand side at each point where
'U„(E„) occurs, just as we did in Sec. II.B. The result
may be written in the form due to des Cloizeaux (1960)
and Brandow (1967):

lence-particle case and, in particular, Fig. 11(c) shows
two unlinked diagrams —the energy denominators can ob-
viously be factorized. Noir consider the n=1 case in Eq.
(2.62); we obtain t see also expression (2.66) below]

(2 .62)

Here matrix multiplication over the unperturbed valence
states is to be understood —this allows us to use just the
unperturbed basis 4 in setting up the matrix of the effec-
tive interaction, which can then be diagonalized to obtain

We have dropped the argument E„from 'U„because
the result is now formally independent of the shift ~„we
wish to calculate, i.e., only Rayleigh —Schrodinger de-
nominators are involved. Further, Brandow(1967) shows
that unlinked diagrams are eliminated. Let us verify this
in a simple case and examine the structure of Eq. (2.62),
which is less formidable than- it appears.

Firstly. the n =0 terms of Eq. (2.62) have no folds and
give the series

x ~ ~ 0

~.—&o

(2.64)

The product of the second-order terms in the square
brackets gives, among others, the diagrams of Fig. 12(a)
and (b), which have one fold and are drawn in unfolded
form. Remembering that we have a minus sign in Eq.
(2.64) (a minus sign associated with each fold), it should
be clear that Fig. 12(a) exactly cancels the two diagrams
of Fig. 11(c). Thus these unlinked diagrams are removed
and, as we have remarked, this is a general result. We
do, of course, have new diagrams such as Fig. 12(b),
which we have rewritten in folded form in Fig. 12(c)—

V+V V+V V V+ ~ ~ ~ .
E —IIo IIo

(2 .63)

Typical diagrams are given in Fig. 11 for the two va-, .
jk

jk jk
Ik

lk

(b)

jk jk jk

Ik
ji ~I +

jk jk Jk jk

FIG. 11. Illustration of diagrams contributing to the two-body
effective interaction, (a) and (b), and of unlinked diagrams (c),
which do not contribote.

FIG. 12. Illustration of unlinked, folded diagram (a), which
does not contribute to the two-body effective interaction, and
linked, folded diagrams (c), which do contribute. Note that
diagram (a) cancels with Fig. 11(c), and diagram (b) is the
equivalent unfoMed form of the folded diagrams (c).
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xV( ), V —V( )
V [-V]. (2 .65)

Here we have folded twice out of the first denominator.
A typical diagram drawn in unfolded form is shown in
Fig. 13(a); the curly arrows are merely to indicate which
denominator we have folded from. The resulting two
folded diagrams are also given in Fig. 13(a). Now we
will also have a twice-folded contribution from the n =1
term of Eq. (2.62) because we fold out once the whole ef-

two diagrams since the factorization theorem has been
used "backwards. " The loop around the downgoing lines
reminds us that they are valence particle states and that
we sum over all such states corresponding to the matrix
multiplication explicitly shown in Eq. (2.61). Energy de-'
nominators may be evaluated in the standard way by op-
erating with (&„—JI,) ' between the interactions, giving
[e„+g(hole —particle) energies) '. It is essential that
downgoing folded valence lines are treated as hole lines
for this purpose, i.e. , they give a contribution +E„ to the
denominators (the reader may verify this for the example
in Fig. 12!). We also need the rule that the topmost in-
teraction in the folded diagram is the same as the top-
most interaction in the unfolded diagram, so that we do
not generate four folded diagrams from Fig. 12(b) instead
of two. Finally we should point out that the removal of
unlinked diagrams requires in general that each of the
folded lines be summed over all the valence particle
states regardless of the Pauli exclusion principle; the
discussion of Appendix A illustrates this.

It is useful to study briefly the structure of twice-
folded diagrams. The n=2 term of Eq. (2.62) will give
for instance a contribution

FIG. 14. A one-body com-
ponent of the effective inter-
action, i.e., a contribution
to the single-particle ener-
gy. Note that this diagram
is to be considered linked.

fective interaction, which itself contains folded diagrams,
i.e., in Eq. (2.64) the second term in square brackets will
contain folded diagrams starting in third order. Thus we
will have, for instance,

Q
V( ), V -V( ), V [—V], (2 .66)

where we have folded out of the first denominator a dia-
gram which is itself once folded. This yieMs diagrams
such as Fig. 13(b), where we show the unfolded form and
the resultant three folded diagrams. Clearly, in order
to know what is being folded out of what, it is necessary
to examine carefully the positioning of the topmost inter-
action of each folded block.

It is important to realize that in addition to the two-
body components of the effective interaction we shall have
one-body terms. An example is shown in Fig. 14—this
diagram is to be considered linked. The essential dif-
ference from Fig. 11(c) is that one of the particles does
not interact at all —one may, in fact, erase this nonin-
teracting line. Clearly we shall have a whole series of
diagrams where only one of the particles interacts, and
this will lead to the single-particle energy for that par-
ticle. This is a quantity which can be deduced from ex-
periment; for instance, the 0.871 MeV 1j2' state of "0
is thought to have a large component of the 1s,&, single-
particle configuration beyond the "0 ground state, so we
can take the single-particle energy as

E(17O g r 4+) @(18O g r 0+)lsg /2 2

= -130.892+ 127.620 = -3.272 MeV. (2.6V)

+ il ii

FIG. 13. Examples of twice-folded diagrams. In (a) both
pieces are folded out of the upper denominator, while in (b)
only a single piece is folded out, but this. is, itself, folded.

This procedure will be used in the calculations discussed
in Sec. IlI, so that we can focus on just the two-body part
of the interaction. (For a situation with n valence par-
ticles, one will have 1,2, 3, . . . n-body components in the
folded, linked, effective interaction, in general. Qne hopes
that, with a reasonable choice for the valence space, the
one- and two-body components will dominate; phenomen-
ological shell-model calculations seem to support this.
Some further discussion of many-body effective opera-
tors is given in Sec. III. G.)

It should be noted that the expansion of Eq. (2.62) is
asymmetric, as are the corresponding diagrams —for
instance there is no analogue of Fig. 12(c), where the
folded block is attached to the final valence lines instead
of the initial ones. Thus the effective interaction depends
on which valence state is the initial and which the final
one, i.e., U„ is no longer Hermitian, so that the eigen-
vectors are not orthogonal. This is not unphysical, since
they are simply the projection P4 of the true wave func-
tions.
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Summary. We have indicated how the difficulty, as-
sociated with Eq. (2.16) can be removed by expanding
out of the energy denominators and using the factoriza-
tion theorem. Firstly all reference to the core energy
was removed, so that we obtained the Bloch-Horowitz
equations (2.59) for the shell-model energies E„, mea-
sured with respect to the exact energy of the closed-shell
core. Only pure valence diagrams were needed. The en-
ergy dependence of the interaction was removed, leading
to folded diagrams and in the process cancelling away
all unlinked diagrams. We thus obtained a completely
linked, folded, energy-independent, non-Hermitian ef-
fective interaction, given formally by Eq. (2.62). A sum-
mary of the diagram rules is given in Appendix C.

(a)

@ =()(E)4 11(E)=1+( )VQ(R).
0

(2 .68)

Iterating the model operator 0 leads to a perturbation
expansion and we can associate wave function diagrams9

~ ' ~with the various terms. —typical examples are shown in
Fig. 15. All the terms in 0, apart from the unit operator
(which leaves 4'~ unchanged), contain a Q operator on the
left, so that at the top of the diagram either the core
particles or the valence particle or both must be excited.
The analysis of these diagrams will be indicated rather
briefly, since it follows closely the treatment of the ef-
fective interaction given in the previous subsection. .

Indeed, since the energy is (4'~
~ V ~4), one can say,

somewhat sloppily, that the only difference lies in the
presenceesence of an extra V for the effective interaction,
which takes the true wave function back to the unpertur-
bed state, 4'~, at the top of the diagram.

The diagrams of Fig. 15(a)—(d) are of similar structure
to those discussed in Fig. 8(a)—(d); note that the label
v in Fig. 15(b) indicates a valence state, so that we have
a "closed valence piece" in the diagram, i.e. , the single-

D. Effective operators

In the shell model we are interested not only in ener-
gies, but also in the matrix elements of observable oper-
ators. We shall discuss here the formalism needed for
the calculation of effective operators. (This formalism
could be used for the effective interaction, but would lead
to unnecessary complications. ) We shall have in mind the
practical example of a calculation of the effective matrix
elements of the electromagnetic E2 operator for a single
particle beyond the "0 core. In fact, we shall restrict
our discussion here to the case of a single particle be-
yond a nondegenerate core. We further assume that, as
for the (1s0d) shell, the model space contains only one
single-particle state of a given angular momentum j-
thus our model space is one- dimensional, since the
core carries zero angular momentum. This circum-
vents the difficulty, associated with the development of
effective operators, of needing to introduce orthogonal
valence space eigenvectors in order to get a completely
linked expansion (Brandow 1967)—clearly this is unnec-
essary for a one-dimensional case. Further, this is the
case. of most immediate practical interest.

First, following Brandow (1967), we discuss the per-
turbation expansion for the true wave function 4, using
Eqs. (2.13) and (2.14) which we repeat:

(c)

(e)
FIG. 15. Typical wave function diagrams. The general struc-
ture of diagrams (a)-(d) is similar to that of the effective inter-
action diagrams of Fig. 8(a)-(d).

Q„(E„)=1+( )VQ„(Z„). (2.69)

article line leaving the top of the diagram is not excited.pal" ic
hSuch "closed valence pieces" are simply diagrams whic

contribute to the single-particle energy shift &„. Now,
as in Eq. (2.50), we split the total energy E into valence
and core parts and expand out from the denominators the
core energy shift &,. We also expand out the valence en-
ergy shift 4„ in cases where the intermediate state in-
volves just a core excited part with the (sd) valence line
undisturbed. For Fig. 15(c) we can write an expression
of the same form as Eq. (2.51). (9R„will now consist of
a single matrix element and operators a~a~a creating a
two-particle one-hole state. ) Again this is canceled by
expanding out 6, from Fig. 15(d) as in Eq. (2.52). We can
also use the arguments of Eqs. (2.53) and (2.54) to show
that the diagrams of Fig. 15(b) are canceled by expanding
b. out of Fig. 15(a). In general we have the result thatV

all closed core pieces of the type encountered in &, are
removed, and also "closed valence pieces" of the type
encountered in &„are eliminated. We are left with core
wave function diagrams [such as Fig. 15(a)], valence
wave function diagrams [such as Fig. 15(d)] and products
of these [such as Fig. 15(e)]. Note that Fig. 15(e) will
not contribute to the effective interaction, since we can-
not return to the single-particle valence state by oper-
ating at the top with a single V interaction. By virtue of
the manipulations discussed above, diagrams such as
Fig. 15(e) should be understood to have the core and val-
ence parts factorized, so that we may write

4 = Q4 D
= Q„Q,4 D

with
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--X

Here 0, is the model operator which acts on the unper-
turbed core part of 4D to give the true core wave func-
tion, e.g. , for "0, in the absence of valence particles.
The additional valence diagrams (which will include
terms compensating for exclusion principle violations)
are included via 0„, so that we obtain the true wave func-
tion of "0 in our example.

Equations (2.69) are clearly the analogues of the Bloch-
Horowitz equations (2.59). Indeed, taking (4~ ~V~4'), we
obtain simply &,+&„. Here we must include in ~„cross
terms whereunlinked parts from Q„and 0, are joined
together by the final V interaction so as to produce a
valence diagram. An example is shown in Fig. 16(a),
which yields the two unfactorized contributions to
shown in Fig. 16(b) and (c). Notice, however, that the
energy denominator in diagram (c) at the level indicated
by the horizontal arrow is (e —e,) rather than (E„+e
—e,) because we have expanded out b, „and removed
"closed valence pieces, " i.e., the diagram of Fig. 17
does not occur. In the previous Sec. II.C we would in-
clude Fig. 1'7 in the Bloch-Horowitz. expansion and ob-
serve that it is removed when we fold out &„. Clearly
this is a general result for diagrams with this type of
structure, which Brandow refers to as a downward pro-
jecting core excitation. We refer to Brandow (1967,
1975) for further details and discussion of the less ob-
vious upward projecting core excitation case.

For the wave function the final step in the argument is
to remove &„from Eq. (2.69) by expanding out the denom-
inator via either Eq. (2.33) or the more complicated Eq.
(2.60), thus generating folded diagrams. This is quite
straightforward, since there are no unlinked diagrams
or matrix multiplications to worry about in our one-par-
ticle case. We simply give examples of diagrams with
0, 1, and 2 folds in Fig. 18.

Now we are ready to discuss the matrix elements of
an operator 8

+ 5,.~($),.... (2 .70)

II Ir

I I I I

FIG. 17. A diagram containing
a downward projecting core
excitation which is discussed
in the text.

(c)
FIG. 16. Mixed wave function diagram which is linked together
by a final interaction to give the contributions (b) and (c) to the
one-body effective interaction. Note that the cross represents
the one-body potential U of Eq. (2.3), and that diagram (a) is
factorized, whereas (b) and (c) are not.

FIG. 18. Examples of wave function diagrams with 0, 1, and
2 folds.

Q Q
e„&-H "~ e„&-H

xg" 1+ P —4) 7 ~ ~ ~ 'Q

e„;—Ho
"' e„;—Ho

2

(2.71)
Here e„; and e„z are the unperturbed energies of our in-
itial and final valence particles, respectively. Taking
the zeroth order terms 1 on the left and right, we ob-
tain Fig. 19(a). Here our one-body operator, 8, is in-
dicated by the dashed line and letter E. If we take the
zeroth order term on the left with the first-order dia-
gram of Fig. 18(a) on the right, we obtain Fig. 19(b). A
second-order, nonfolded diagram is shown in Fig. 19(c).
Taking the conjugate of the first-order Fig. 18(a) on the
left, together with Fig. 18(b), we obtain Fig. 19(d). (We
will also have another diagram with 8 operating on an
upgoing line —it does not matter which one if we use anti-
symmetrized matrix elements. ) Using the diagram of
Fig. 18(b) on both the left and right, we can generate
Fig. 19(e). These are just a few examples of the series
of nonfolded and folded diagrams which represent ex-
pression (2.71). Notice that the lower folds arising from
expanding out 4„& for the initial wave function must lie

Here 4,- and 4& are the initial and final true wave func-
tions, each of which can be written as a product of val-
ence and core model operators acting on the model wave-
function, according to Eq. (2.69). We have then split
the transition amplitude into a valence part, for which
the core normalization cancels out, and a core part in-
dependent of the valence normalization. It shouM be un-
derstood that included in the valence contribution will be
cross terms arising from pieces of Q„and 0, in the bra
and ket which join together in such a way that a linked
diagram is obtained (see the discussion above of Fig; 16).
These cross terms cause no problem and occur natural-
ly when one writes out the diagrams which can contribute.

As regards ($)„„we simply state that it is given by
the sum of all linked Goldstone diagrams in which the
operator 8 occurs once (see e.g. Brandow, 1967). Since
the core has angular momentum zero, it will only contri-
bute if 8 is a tensor of rank zero. As we shall be con-
sidering the electromagnetic E2 operator, a tensor of
rank two, in Sec. III, we need not concern ourselves
further with the core term.

Now let us consider the valence contribution to Eq.
(2.70) and try to represent it diagrammatically. The
numerator just involves sandwiching the operator 8 be-
tween our wave function expansion for the initial state
and the Hermitian conjugate expansion for the final state,
explicitly,
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vf Jl

v;)i

(a)

v;)i

(b)

v, l(

V IL

v;"

v, ii

form for 0„ in Ecl. (2.69) we can write

.v, „v(, '„)'v," ie, )

(2.73)

I--- E

FIG. 19. Examples of nonfolded and folded diagrams which
contribute to the matrix elements of an operator (denoted by
the letter E). These contributions arise from the numerator
of Eq. (2.70).

below the level of the operator 8. The upper folds arise
from expanding out &„& and must lie above the operator
8; they are folded upwards. Energy denominators are
given by operating between the interactions (including 8)
with (e„,. —H, ) ' up to the level of 8 and with (e„z—II,) '
above this level. Apart from these caveats we can use
the rules of Appendix C.

To complete our analysis we need to discuss the nor-
malization terms which arise in the denominator of Eq.
(2.70). We can treat the normalization

N„= &e, ~n"„n„~en) (2.72)

V;)i

in just the same way as the numerator by replacing 5 by
the unit operator —this, of course, requires that initial
and final states be the same. In this case Fig. 19(a) has
the value 1, since our states are normalized to unity.
Figure 19(b) does not arise, since the unit operator can-
not connect particle and hole states. Figure 19(c) does
occur, and we represent it as in Fig. 20(a); the horizon-
tal line here represents the unit operator. As a prac-
tical matter this simply gives us an additional energy
denominator. Figure 19(d) gives us Fig. 20(b). Proceed-
ing thus with the horizontal line notation we can enumer-
ate the diagrams.

A formal note in passing: Using the energy-dependent

Thus what is needed is the derivative of the effective in-
teraction, since that has the effect of squaring each of
the energy denominators in turn as required for the nor-
malization. One could try to write the normalization di-
agrams in terms of the "downward folded" effective in-
teraction expansion; however, it is neater to use the
procedure of Fig. 20.

Now we have separate expansions for the numerator of
Eq. (2.70) and for the norms N„, and N„.z (which are
raised to the power 2) of the denominator, and we
could stop at this point. It is desirable, however, to ob-
tain a diagram series for the whole valence term; in-
deed, for the many valence-particle case this is neces-
sary if we are to eliminate unlinked terms. To this end
we write

N ' ' =(1+8) ' ' =-1 —28+ —,'8 ~ ~ ~ vV (2.74)

(e„,.+ e„—e, —e,)' (2.76)

which is what is needed for Fig. 20(a).
Some more complicated illustrations of the diagram

series for the whole valence part of Eq. (2.70) are shown
in Fig. 22. The diagrams of Fig. 22(a) correspond to

whereby 9 is defined, and a binomial expansion has been
made (Brandow, 1967). Carrying out this expansion for
the initial and final states, we can represent the 0, 8', . . .
terms by diagrams folded once, twice, . . . into the ser-
ies of diagrams we have obtained for the numerator of
Eq. (2.70). The signs follow correctly, but the factors
of —,', —,', etc. are awkward and have to be put in explicit-
ly so they will be shown on the diagram.

Let us see how this goes. The simplest diagrams are
those of Fig. 21, which arise from the product of Fig.
19(a) with the normalization contribution to 8 of Fig.
20(a). Two diagrams arise, since we need to normalize
both the initial and the final state. The horizontal bar is
fixed at the level of the operator 8 and can be erased.
The energy denominators are given by the rule stated
above, namely, for the first diagram

1 1
X

e„,. —(e, eee —e ) e„e—(eeee, +e, —e„—e„,.))

V ik

Vf
---- Vi

---E I

2

FIG. 20. Diagrams contributing to the wave function normali-
zation. The horizontal bar indicates a squared energy denomi-
nator at that level.

pIQ. 21. Lowest-order contributions to the matrix element
of an operator which arise from the normalization of the initial
or final wave function.
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2

E. Format divergence problems

It is most natural to begin to study the perturbation
series for effective operators established in the previous
Sec. II.C and D order by order in the perturbation V.
However, Schucan and Weidenmuller (1972, 1973) have
shown that in many cases of practical interest the per-
turbation series must diverge. They commented on a
2 x 2 matrix example, which was studied further by Ellis
and Osnes (1973) and Scbaefer (19'l4). We will use this
example here in discussing the divergence problem in
simple terms', for a more general mathematical treat-
ment the reader is referred to the original papers. We
shall confine our remarks, for the most part, to the ef-
fective interaction.

We write our Hami?tonian

H =Ho+ zV, (2 .V6)

v, Ik

FIG. 22. Some diagrams which contribute to the matrix ele-
rnent of an operator due to the normalization of the initial wave
function.

folding the normalization diagram of Fig. 20(a) with Fig.
19(c). As remarked above, the horizontal bar is to be
considered fixed at the level of E. We then factorize
both upwards and downwards —all the necessary dia-
grams are shown. In Fig. 22(b) we show one member of
the "factorized set" obtained by combining the diagram
of Fig. 19(d) with, again, the normalization diagram of
Fig. 20(a). Similarly in Fig. 22(c) we show just one
member of the set obtained by folding Fig. 20(a) twice
out of Fig. 19(c), i.e. , this is a 8 term. Note the differ-
ent positioning of the folded blocks in diagrams (b) and
(c). Tbe reader will find it instructive to check the val-
ues of some of these diagrams using the rules above and
in Appendix C.

Summary. We have indicated how a folded valence-dia-
gram expansion with Hayleigh-Schrodinger denominators
may be obtained for the transition amplitude of an oper-
ator; the series is trivially linked in the one-partic1. e
case considered. In addition, for expectation values a,

pure core term is present, Eq. (2.70). This result was
achieved by first writing the wave function as a product
of valence and core parts, Eq. (2.69). Then, for the
valence part, expanding out the energy shifts ~„and tak-
ing the matrix element of the operator, the folded
series of Eq. (2.Vl) was obtained. The final step was to
take the product of this series with a binomial expansion
of tbe normalization factors [Eqs. (2.73) and (2.74)] in
the denominator, thus producing additional folded dia-
grams.

(E —&~ —X~z)(E —cs —Xsz) =X z2

which leads to

E = 2 (e~+&s+X~z+Xsz

+ (6s —6~+X~z —X~z)

x [I+4X'z2(es —c~+Xsz —X~z) 2]'~').

(2.V8)

(2.79)

We have written the expression in this form so that a
power-series expansion in z (i.e., in orders of the per-
turbation) can be made. The lower sign will be taken
while noting that the quantity (es —&„+Xsz—X~z), which
gives the difference between the diagonal elements of the
matrix (2.7V), changes sign at z~=(es —e„)/(X„—Xs).
Thus we have an expression which gives ihe lower eigen-
value for z &z~ and the upper one for z &a~. This dis-
continuity at z =a~ is a good hint of trouble to come.
The power-series expansion reads

+2~2
E, =@~+X'+ +,~ (Xs —X~)zf ~ —Es (6 ~ —Es)

, [(X, X„)'—X']z4+ ~ ~ ~ .
(E ~ —Es

(2.80)

[In the special case X„=Xs= 0 and z = 1, we regain Eq.
(2.2V) of Sec. II.B.] We can view this as an effective in-
teraction for state A in which state B is taken into ac-
count by successive orders of the perturbation. Since

where the perturbation is scaled by a parameter z. The
variation of z from 0 to I thus takes us from the unper-
turbed toth'e perturbed Hamiltonian (although we shall
not restrict z to this range in the simple 2 && 2 model).
We can thus study the effective interaction as a function
of z. We then take our 2 & 2 matrix in the form

!

(~„+x„z xz (2.V7)
Xz "+X.zj

The notation here is similar to that used in the discus-
sions of Sec. II.B; we also include diagonal matrix ele-
ments of the perturbation Xsz for state B [as in Eq.
(2.43)] and similarly for state A. We shall be interested
in the case where E~ & &~ and X~ &X~ so that the pertur-
bation pushes state B below state A. as z increases.

The eigenvalues of the matrix (2.77) are given by
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0.4 0.6 0.8 1.0 1.2

FIG. 23. Comparison of the exact eigenvalues of a 2 x 2 ma-
trix. with the results of a power-series expansion taken through
first, fifth, and seventh order. For the lower level we show,
at various points, the percentage of the unperturbed state 4»
in the exact eigenvector.

our valence space is one dimensional here, the effective
interaction just gives the eigenvalue directly. We leave
it to the reader to write out the- corresponding diagrams
through fourth order. Now choosing parameters e~ =0,
&~ =4, X~=3, X~=-3, and X=0.2, we compare in Fig.
23 the exact eigenvalues as a function of the parameter
z, with the power-series expansion (2.80) taken through
first, fifth, and seventh order. For small z we obtain
rapid convergence to the lower eigenvalue. For large z,
however, first order provides a good approximation to
the upper eigenvalue, but as we add higher-order terms
the series starts to diverge. The reason for this diver-
gence is easily seen if we allow z to become a complex
variable. The square root of Eq. (2.79) generates a pair
of branch points at z~ and s~~ ~n the complex plane, which
limit the radius of convergence of the power-series ex-
pansion to be ~zs

~

. It is easy to show that

Iz, I= ~~, —~„~[(x,-x )'+4x']-'",
and the nuinerical value of ~zs

~

for our chosen parame-
ters is indicated in Fig. 23. [Note that the discontinuity
in Eg. (2.79) mentioned above requires that the branch
cut joining zs and zg go through z~. ]

In more physical terms we can study the behavior of
the eigenvectors as a function of z. At z =0, the eigen-
vector of the lower level is just the unperturbed state
4~. As z increases, 4~ and 4~ begin to mix, and me
indicate in Fig. 23 the intensity of 4 ~ in the lower state
at various points. The intensity remains large until z
is in the region of ~zz ~, when it decreases rapidly, be-
coming very small for large z. Thus for large z the
lower state is dominantly 4~, whereas the upper state
is mainly 4 ~. The character of the eigenvectors of the
two states has therefore been exchanged in passing
through ~zz ~; in this sense a level "crossing" has taken
place. We are not able to follow the system through such
a "crossing" using order-by-order perturbation theory.
The strong mixing of the two states between ~zs

~

and the
equal admixture point z~ and then the jump to the upper
eigenvalue curve are simply too much for the perturba-
tion series to handle.

Although we have used the term "crossing, "we should
emphasize that the eigenvalues can actually cross, i.e. ,

FIG. 24. Schematic evolution
of a spectrum as the interac-
tion is switched on, i.e. , as z
increases from 0 to 1. The
dashed line in the level scheme,
shownfor ~= 1, indicates an in-
truder state whose wave func-
tion has small components with-
in the valence space.

0.5 I.O

be exactly degenerate, only for ~ complex. Obviously
this actual crossing occurs at z~ and z~, and it is only
in the no-mixing case, where the off-diagonal matrix
element X is zero, that Imz~ = 0.

Schucan and Weidenmiiller (1972, 1973) have shown that
similar ideas carry through in the general case. Here,
as we have discussed, we pick a set of approximately
degenerate valence states (P space), which we treat
explicitly, and the remaining states (Q space) we
take into account via an effective interaction. Clear-
ly to avoid very small energy denominators in the per-
turbation series, the unperturbed energies of the P
space should lie well below those of the Q space. Now
a,s we increase z of Eq. (2.76) from 0 to 1 the exact,
eigenvalues will evolve from the unperturbed states.
The situation is illustrated in Fig. 24 (taken from Weid-
enmiiller, 1974) where we show a three-dimensional P
space and assume only a single Q space state is rele-
vant for the present discussion. Now if we find that a
state originating from the Q space "crosses" (in the
above sense) a state originating from t'he P space, a
pair of branch points is obtained for complex z. These
branch points are termed biexceptional points by Schucan
and Weidenmuller. Each "crossing" that takes place will
generate a pair of biexceptional points —two pairs for
Fig. 24. The radius of convergence of the order-by-
order series for the effective interaction is given by the
distance ~zz

~

of the closest biexceptional point zz to the
origin. Thus for Fig. 24 the "crossing" at x=0.5 will de-
termine the radius of convergence. We remark in pass-
ing that the position of the biexceptional points depends
on the choice of the unperturbed Hamiltonian H, ; some
model studies have compared different choices of H,
(Anastasio et al. , 1976; Leinaas and Kuo, 1976a).

Now the determination of the branch point positions
would require that we solve the problem exactly, which
we cannot do. However, we can diagonalize our approx-
imate effective interaction and compare to the experi-
mental spectrum. If one (or more) of the known levels
is not given by the calculation, and this missing level
lies between the predicted states, we have a clear indi-
cation that a level "crossing" has taken place. For ex-
ample, in Fig. 24 the dashed level would not be repro-
duced by the calculation. Naturally it is necessary to
appeal to phenomenological considerations to check that
the missing state, often called an intruder state, is pre-
dominantly of a different structure from the valence
space states, so that its absence is not merely due to a
poor choice of the effective interaction. Such intruder
states, unfortunately, are often found to be present in
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nature, as for instance in the case of ' 0 to be dis-
cussed in Sec. III, so that the order-by-order perturba-
tion expansion inust diverge. [Note that any level "cross-
ings" that take place as we vary z in the "unphysica "
range 0 to —1 will also limit the radius of convergence
of the power- series expansion. The presence of intruder
states for negative z, often called backdoor intruders,
cannot be inferred from the experimental spectrum which
corresponds to z =+ I (Pittel et al. , 1976).]

Now we have pointed out that any level "crossings"
cause the perturbation series to diverge. However, as
a practical matter we see from Fig. 23 that the diver-
gence for z & zs

~
does not set in until we go to quite

high orders of perturbation theory, so that, say, third-
order perturbation theory would provide a reasonable
approximation here. The possibility that this might
carry over to more realistic cases has been studied by
Vincent and Pittel (1973; see also Vincent, 1976) inmod-
el calculations for "O. They find that the influence of
the formal divergence of the series on low-order per-
turbation theory is very small. This is due to the weak-
ness of the coupling between the intruder state and the
valence-space states, a condition which is met in the ex-
ample of Fig. 23. Pittel (1976) has recently estimated
the errors involved in low-order perturbation theory for
"Q when branch point singularities are present. Unfor-
tunately they are found to be quite sizeable in some cas-
es so that low-order perturbation theory may be a poor
approximation in realistic cases.

We should not lose sight of the fact that we started with
a perturbation series which is exact if considered to 'all
orders. It may be that the presence of intruder states
renders it inappropriate to carry out order-by-order
calculations in powers of z. This does not invalidate the
formalism; rather it implies that we should direct our
efforts to reordering the series into sets of diagrams
which we can sum to all orders. Hopefully we can do this
in such a way that the series becomes convergent with

llrespect to the sets that we have defined, i.e., we sha
have analytically continued the effective interaction.

We illustrate this by means of our 2 x 2 matrix ex-
ample, interpreting the states 4 „and 4~ as two-particle
states for present purposes. As before we take the sin-
gle state 4„for the valence space and wish to take the
effect of 4~ into account via perturbation theory, but
here we are looking for a sequence of partial summa-
tions rather than an order-by-order treatment. As the
first partial summation we shall take the sequence of
ladder diagrams shown in Fig. 25(a). Including also the
unperturbed energy &~, this gives

+ ——— +

X' ' X'X ~3 X'X'z4
+ --- + ~ + ~ —+ ~ ~ ~e~+Ã~g+ — +

( )2 ( )—

~'z
+X+8 +

~Z
{2.81)

In the latter equation we have summed the geometric ser-
ies just as in Eqs. (2.44) and (2.45) of Sec. II.B.6. These
ladder diagrams are the only nonfolded diagrams which
occur and their sum is represented in Fig. 25(a) by a)

box. The remaining folded diagrams will all take the
form of a main ladder part, out of which will be folded
any number of boxes which may themselves have boxes
folded out of them, w'hich may themselves have boxes
folded out of them, . . . . We enumerate these in a syste-
matic way starting with the case of any number of boxes
folded out of the main ladder part. The one- and two-
box cases are illustrated in Fig. 25(b). It is understood
here that all orderings of the interactions are to be taken
so that the factorization theorem can be used. Further,

l-iny number of interactions are allowed in the main ske-
eton, and we shall fold out of all the energy denominators
in turn. Then we can write for the sum of the unper-
turbed energy, the ladder series of Fig. 25(a), and the
folded series of Fig. 25(b)

(b)
F/G. 25. Hlustration of the rearrangement of the perturbation
series into a convergent sequence of partial summations. First
the ladder series (a), represented by a box, is summed and in
the next approximation, (b), any number of boxes are folded out
of the main ladder part.

~2 =&~+&~&+
~z'(x —~ ) ~'z'(x, —~„)' x ~

e ~ —&~ —X'sz {e~ —C~ —X'~Z)' (e „—as —X'~z) X z1 B B
(2.82)

For the next approximation we shall fold out of the main
ladder skeleton not only the diagrams of Fig. 25(a), but
also those of Fig. 25(b). In other words, we take all the
diagrams of Fig. 25 and fold them any number of times
out of the main ladder skeleton. We then have cases
where the diagram folded out of the main skeleton is

X z~
+X~z+ —&a — a

is obtained. Clearly this process can be continued, and

(2.83)

itself, folded ("second generation folds" ). It is a useful
exercise to convince oneself that the simple result
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X z—c ~+2C~z +
~Z

(2.84)

defines a sequence of successive approximations. If this
process converges to a value ~, w'e shall have solved by
iteration the equation

same result for the 2 && 2 case—just the procedure we
have been discussing! The method whidh generalizes
the approach of Eqs. (2.81)-(2.84) in the most natural
way is due to Krenciglowa and Kuo (1974)—we refer to
this as the Q-box method. They observe that Eq. (2.82)
and (2.83) can be written

This can be rewritten as

(X- ~~-X„z)(X—e, -X,z) =W'z', (2.85) X2 Xl+ nl xl ~A
n(—1)" d"x,

which is the exact eigenvalue equation (2.78), so that we
have obtained one of the true eigenvalues. Now recall
that we defined z~ = (cs —e~)/(2C~ —2Cz); this is the point
where equal admixtures of 4 ~ and &~ occur in the true
eigenvectors. Then one can show (Ellis and Osnes,
1973;Schaefer, 1974), subject to one proviso, that the
sequence of approximations converges to the lower eig-
envalue for z&z„. and the upper eigenvalue for z &z~ (at
z =z~ successive iterations oscillate and there is no con-
vergence). The situation is illustrated in Fig. 26. The
aforementioned proviso is that if our initial value of A. is
an exact eigenvalue, subsequent iterations will not
change this value. This case actually occurs, since the
denominator (z„—Ez X'sz) goes to zero at z =—', , so that
~ I goes to —~ . At one point in this region X, must the ref ore
coincide with the exact lower eigenvalue which traps the
value of X as indicated in Fig. 26. Elsewhere in this region
the upper eigenvalue is obtained. Notice that while the
order-by-order approach yields the lowest eigenvalue
for a restricted range of z, here we obtain either the
upper or lower eigenvalue (in this particular approach
we converge to the state which is mostly C~, apart. from
the "trapped point").

Now the simple 2 ~ 2 problem is essentially solved,
and we would like to turn briefly to the general case.
Principally two different methods have been proposed
for obtaining the effective interaction when intruder
states are present, and interestingly they both give the

(2 .86)

and in general

X„=X,+
"

(—1)" dX,
n 1 &! d~ n-1 A (2 .87)

If we have several states in the valence space, X be-
comes a matrix and, as we assume degenerate unper-
turbed energies, e~ becomes &~1. Comparing the above
with Eq. (2.62) of Sec. II.C, we see that this provides
an iterative method of solution of the general problem if
we identify the matrix of the effective interaction 0,
with the matrix (X —e„l). (Note that for two-valence
pa, rticles both one- and two-body diagrams must be in-
cluded in X, so they will both be present in ~„also.) The
sequence of approximations to ~„ is clear from our pre-
vious remarks. In the first approximation, X„we take
the sum of all diagrams without any folds; Kuo (1974)
and co-workers refer to A., as the Q-box. In the second
approximation, &„we also allow diagrams obtained by
folding out -of the diagrams of X, the nonfolded diagrams
(i.e. , A.,). In the next approximation, A.„we also fold
out of the diagrams of ~, some diagrams which are them-
selves folded (from the A., approximation). And so on.
The method has been tested in model calculations where
intruder states are present (Krenciglowa and Kuo, 1974;
Anastasio and Kuo, 1975). In the case of a one-dimen-

0.6 1.00.2 0 4 0.8 1.2 1.42
FIG. 26. Comparison of the exact eigenvalues of a 2 & 2 matrix with the approximations X& and X& of Eqs. (2.81) and (2.82),
which involve partial summations of the perturbation series.
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sional valence space there is a simple criterion for con-
vergence. If one of the exact solutions has an eigenstate
which contains more than 50% by intensity of the valence
state, the iteration procedure converges to that solution,
as we found for the 2 && 2 matrix. An improved method of
iteration —the AHK algorithm —has been put forward by
Anastasio, Hockert, and Kuo (1974). In the model cal-
culations carried out thus far (Anastasio et al. , 1974,
1975) convergence has always been obtained. Further,
for a d-dimensional valence space, different sets of d
eigenvalues were often obtained by starting the iteration
procedure differently. A major difficulty with the Q-box
approach in practical calculations of, say, "0 is that
we start by requiring the sum of all diagrams with no
folds (A,,). For this some approximation technique is
required, for instance Pade approximants, which brings
us to the second method of generalizing the 2 && 2 ap-
proach.

The [n, m] Pade approximant to a function

X(z) = Q a„z"
n=0

is defined by
n

[n, m]~(z) =
S (z)

c=o!

s.z'i

(2.88)

= A.(z)+ O(z"+~+') (2.89)

The Pade approximant is thus thp ratio of two polynom-
ials of degree n and rn. The coefficients of the poly-
nomials are obtained uniquely by taking s, = 1 and by
requiring that the Pade approximant reproduce the
series X(z) up to and including the power z . The Pade
approximant then differs from X(z) by terms of order
z"™Iand higher powers as indicated in Eq. (2.89). To
make contact with the 2 x 2 problem, consider the iterat-
ed solution of Eq. (2.84). This can be written in the
form of a continued fraction

X —qA+XAg + X g ~B B~+ ~A+ A~ + lX g2
X2g ~

—6z —X~z + 6~+X~z +
(2.90)

Now it can be shown that if this continued fraction is ter-
minated at the nth term, corresponding to the approx-
imation X„, the result is just the [n+ l, n] X(z) Pade ap-
proximant. In view of our previous discussion, it is
clear that the convergence properties of the Pade ap-
proximant are much better than those of the original
power series, Eq. (2.88). For more general situations
little is available by way of mathematical proofs (see
Schucan, 1975), so a number of model calculations have
been carried out to test the properties of Pade approxi-
mants. The procedure is to obtain the coefficients
a„a„.. . , a„of Eq. (2.88) by computing the perturbation
expansion for the effective interaction through nth order
(the unperturbed Hamiltonian Ho is usually not included,
so ao=0). Various Pade approximants can then be ob-
tained and used to compute approximate eigenvalues for
comparison with the exact answers. Note that in this
discussion we are concerned with, say, the two-body
effective interaction, so that all folded and nonfolded
two-body diagrams are to be included. Now in general
the valence space will have more than one state, and it
is usual to approximate the whole effective interaction
matrix at once. Thus X becomes a matrix (more correc-
tly referred to as an operator-valued function) and the
coefficients && and s,- also become matrices. The
[n+ I,n] Pade approximants have generally been selected
for study, since for large z they yield an interaction
linear in z which is the correct behavior for the Hamil-
tonian of Eq. (2.76).

Calculations with small matrices (Hofmann et al. ,
1973, 1974a, 1974b; Richert et al , 1976) hav. e shown
e'ncouraging results. The [2, 1] Pade approximant gen-
erally gives a good approximation to those eigenvalues
whose associated eigenfunctions have maximum overlap

with the valence space —this remains true when the or-
der-by-order series diverges. Singularities which are
obtained in the approximant for some values of z usually
indicate branch points associated with "level cross-
ings" —this, however, is not always the case. As a prac-
tical matter a singularity means that one of the eigen-
values is not reproduced; away from these points a
rather weak dependence on z seems to indicate reliable
results.

Turning to the large matrix calculations (Hofmann
et al. , 1976; Pittel et al. , 1976), which should be more
realistic, we find the results disappointing. Firstly the
pole structure is an unreliable indicator of "level cross-
ings. " More importantly, it is found that to obtain ac-
curate results it is necessary to go to the [3,2] or [4, 3]
approximants, which require fifth- and seventh-order
perturbation theory, respectively. This is unfortunate,
since in actual calculations of nuclei it has only been
possible to go to third order, thus restricting one to the
[2, 1] approximant. The model calculations indicate that
this does not represent any improvement over just third-
order perturbation theory. Bather similar results are
obtained if one opts for the alternative approach of taking
Pade approximants to each matrix element of the effec-
tive interaction separately or if one uses a variant of
this approach suggested by I.ee and Pittel (1975).

As regards effective operators (other than the inter-
action), it is known that the radius of convergence is the
same as for the effective interaction(Schucanand Weiden-
miiller, 1973). Fewer model studies have been carried
out, but it is found that [1,1] Pade approximants give
poor results, although a scheme based on Brillouin-
Wigner perturbation theory shows some promise (Rich-
ert et al. , 1976; I einaas and Kuo, 1976b).
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Summa y. We have pointed out that if, as the pertur-
bation is switched on, a level originating from the val-
ence space "crosses" (in the sense of exchanging the
character of the eigenvectors) a level originating from
outside the valence space, a pair of branch points is ob-
tained in the complex plane. This limits the radius of
convergence of the order-by-order perturbation series.
The point was illustrated by a 2& 2 matrix example, for
which it was shown that, even where the order-by-order
results diverged, a reordering of the perturbation
series gave convergent results. Generalizations of this
approach —the Q-box method and Pade approximants-
worked well in simple models, but the results obtained
in more realistic situations were less encouraging.

l l I. RESU I TS OF CALCULATIONS

A vast number of calculations of effective operators
in finite nuclei have been performed over the last dec-
ade. Researchers have calculated essentially all contri-
butions to the effective interaction and other effective
operators that could conveniently be calculated within
existing budgetary and computational limits. Thus it is
appropriate to pause and see what has been achieved,
and try to put the bits and pieces together into a co-
herent picture of the present state of the art.

Since, as mill become evident, no clear-cut theory of
effective operators has yet emerged, we shall emphasize
the qualitative rather than the quantitative feature-s of
the results. Furthermore, we shall be more concerned
with the physical interpretation of the results than with
their detailed derivation. Where convenient, we shall
illustrate and interpret the results in terms of simple
approximations and models. It is, in fact, amusing that
several elaborate calculations of effective operators
can be well represented by very naive models. Finally,
a main objective of our discussion will be to attempt to
assess the convergence properties of the perturbation
expansion for effective operators from the relative mag-
nitude of the various terms that have been calculated.

Since the starting point of any microscopic description
of the effective interaction and other effective operators
is the free nucleon —nucleon interaction, we shall begin
with a brief reminder of the main features of this inter-
action. As pointed out in Sec. I, the nucleon —nucleon
interaction determined from a phase-shift analysis of the
scattering data is not unique. We shall therefore not
enter into a detailed discussion of the different available
forms of the nucleon —nucleon interaction, but only dis-
cuss the features necessary for an understanding of the
physical basis for the calculation of effective operators.
This is done in Sec. III.A

As the nucleon —nucleon interaction Vy2 ls very strong
at short distances, thus producing very large two-parti-
cle matrix elements in a shell-model basis, the pertur-
bation expansion of the effective interaction and other
effective operators will diverge if summed order by or-
der in V». However, as shown in Sec. III.B, the strong
two-body correlations can be summed to infinite order
to give a well-behaved reaction matrix interaction G, in
terms of which the perturbation expansion can be ex-
pressed. This reaction matrix, which was first intro-
duced by Brueckner et al. (1954) to handle short-range

correlations in nuclear matter, is a central concept in
the many-body theory of finite nuclei. Several methods
exist to calculate G. However, in the present review we
shall not be concerned with the technical details of the
calculation of G, but rather consider G as given to us
and serving as a starting point for. the evaluation of
higher-order terms in the perturbation expansion of ef-
fective operators.

This expansion can either be evaluated order by order
in G, as discussed in Sec. III.C, or by performing partial
summations of infinite subsets of terms, as discussed
in Sec. III.D. In these discussions we shall attempt to
emphasize the main physical processes at work.

Most calculations of effective operators to date have
been performed in a harmonic oscillator single-particle
basis. There are, however, indications that the self-
consistency corrections are large, as shown in Sec.
III.E. Then, in Sec. III.F we describe attempts to assess
the convergence properties of the effective interaction
from model calculations where an "exact" effective in;
teraction is obtained by diagonalization of large ma-
trices. Although the present paper is concerned mainly
with effective operators of one- and two-body character,
we discuss in the final Sec. III.G many-body effective
operators which will, in general, arise in systems of
several particles.

A. Brief reminder on the nucleon-nucleon interaction

The perturbation expansion for effective operators in
nuclei discussed in Sec. II [see Eqs. (2.62) and (2.71)] is
expressed in terms of matrix elements of the free nu-
cleon —nucleon interaction' V» in the unperturbed shell-
model basis (generated by Ho). In order to evaluate
these matrix elements we need to know the decomposi-
tion of V into partial waves of given orbital and spin
angular momenta. We shall not discuss here the detailed
properties of V in the various partial-wave channels.
Neither shall we discuss the various alternate forms of
V which have been derived by phase-shift analyses of
nucleon —nucleon scattering data. A survey of represen-
tative phase-shift determined potentials is given in
Appendix A to Chapter X of the monograph on the nu-
cleon —nucleon interaction by Brown and Jackson (1975).
For the present discussion it will suffice to have quali-
tative knowledge of a few basic features of V, which
are illustrated by the schematic picture of the spin-
singlet (i.e. , S = 0) s-wave (i.e. , l = 0) component of V
shown in Fig. 27. At short distance (x ~ 0.4 fm, where
1 fm= 10 "m) the potential has a strong repulsive core
which is currently believed to be due to the exchange of
vector mesons. Then comes a moderately strong, in-
termediate-range attractive part with maximum strength
at =0.7 fm. This part is believed to arise from the ex-
change of two pions. However, these are mainly coupled
together to total angular momentum zero, and may thus
for simplicity be thought of as a "scalar meson" (although
no scalar meson has yet bien found in nature). The tail
of the potential is due to one-pion (pseudoscalar) ex-

In the following we shall omit the subscripts from V&2, ex.—

cept where it is necessary to distinguish it from the total per-
turbing potential V=+ V;& —Q U; of Eqs. (2.2) and (2.3).
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FIG. 27. Schematic representation of the spin-singlet s-wave
component of the nucleon-nucleon interaction as a function of
the internucleon distance x.

V(t }=—g'(e '/t ), (3.1}

which is mediated by scalar meso'ns. In Eq. (3.1) g is
the coupling constant measuring the strength of the in-
teraction between the nucleon and the mesonic field.
Furthermore, we have p. =me/8', where m is the mass
of the meson. Thus the range of the potential is inverse-
ly proportional to m, as stated above. We note in pass-
ing that the phenomenological Reid (1968) soft-core po-
tential is essentially just a superposition of Yukawa po-
tentials of different ranges and strengths.

It is worth pointing out that the spin-singlet s-wave
potential shown in Fig. 27 is quite similar to the Van
der Waals potential between molecules. However, un-
like the Van der Waals force, the nucleon-nucleon in-
teraction is spin dependent, having strong spin-orbit and
tensor components in the appropriate spin-triplet chan-
nels.

The potential shown in Fig. 27 can be further schema-
tized to a potential with an infinite hard core and a sharp
core radius, as shown in Fig. 28. This is the form as-
sumed for the much used potential of Hamada and Johns-
ton (1962). It is obvious from Fig. 28 that the unper-
turbed matrix elements of V must be infinite, since the
unperturbed wave function, @, shown by the dotted curve
is finite inside the core radius where the potential is in-
finite. Even for potentials with finite repulsive cores,
the unperturbed matrix elements will be very large and
thus make the perturbation expansion in terms of V di-
vergent.

This difficulty is however purely mathematical be-
cause unperturbed wave functions are used which totally
disregard the correlations induced between the- nucleons

change and has a range of =1.4 fm. The one-pion tail
is considered a well-established result of meson theory
and is generally built into phase-shift determined phe-
nomenological potentials. By the uncertainty principle,
the range of a given meson-exchange component of the
nucleon-nucleon interaction is inversely proportional to
the mass of the appropriate meson. We refer the reader
to the monograph by Brown and Jackson (1975) for a
complete discussion and additional references.

The most simple meson-exchange potential is the well-
known potential of Yukawa (1935),

Vs = = Vg

FIG. 28. Nucleon-nucleon potential (solid curve) with infinite
hard core. Theunperturbed wave function, Q, of relative motion
is represented by the dotted curve, whereas the perturbed
wave function, P, is represented by the dashed curve. The two
wave functions have equal logarithmic derivatives at the sepa-
ration distance d which divides the potential into a short-range
part V~ and a long-range part V, . Beyond d the perturbed wave
function approaches the unperturbed one in an oscillatory man-
ner.

by the interaction. Physically, there is a subtle balance
between the repulsive and attractive parts of the interac-
tion. The strong repulsive core serves to keep the nu-
cleons apart from each other, while the attractive part
is responsible for binding the nucleons together. Indeed,
the attractive part is just strong enough to hold a proton
and a neutron together with a few MeV binding energy in
the deuteron. Thus the corresponding energy shift

~Z=Z Z, =&@(ff a, (g)=&@(V„ U, V, ~q&

obtained from Eq. (2.8), using the normalization (P
~
g)

= 1, is a very finite quantity. This may be understood
from Fig. 28, where the exact two-nucleon wave function
g shown by the dashed curve is zero inside the infinite
hard core, and thus the product Vtt is finite. We shall
use this property in the following Sec- III.B to construct
a finite reaction matrix interaction to replace V in per-
turbation expansions for effective operators.

Summmy. We have discussed the main characteristics
of the nucleon-nucleon interaction V as derived from
meson theory and phase-shift analysis of nucleon-nu-
cleon scattering. The important point to keep in mind is
that the unperturbed matrix elements of V are either
very large or infinite due to the strong short-range re-
pulsion in V. Thus perturbation expansions of effective
operators would be meaningless if evaluated in terms of
individual matrix elements of V.

B. The Brueckner-Bethe-Goldstone reaction matrix

We remarked in the previous subsection that although
the unperturbed matrix elements (P

~
V~ @) of the nu-

cleon-nucleon interaction V are very large or infinite,
the interaction energy (P

~
V~ t/r) of two nucleons bound in

the deuteron is finite. Now, consider two interacting
nucleons bound inside the nucleus. It is convenient to
rewrite the analogue of Eq. (3.2) using the wave opera-
tor of Eqs. (2.13)—(2.14); hence

Rev. Mod. Phys. , Vol. 49, No. 4, October 1977



P. J. Ellis and E. Osnes: Effective operators in nUclei

G(cu) =—VQ»= V+ V» G(co)
(d —Ho

(3.5a)

=V+V Q" V+V Q" V Q" V+ ~"
co —Ho h) —Ho 4) —Ho

(3.5b)

we have by Eq. (3.3)

(3.6)

(3.3)

(3 4)

Here u is the total energy of the two interacting nucle-
ons, and Q is the Pauli exclusion operator which pre-
vents the nucleons from being excited to intermediate
states which are occupied by other nucleons. Thus the
interaction between the two nucleons in question is modi-
fied by the presence of the surrounding nucleons. In
more technical language we say that many-body effects
arise from the exclusion operator Q.

Now, because of the short-range nature of the strong
repulsion in V, the intermediate-state excitations Q are
dominated by two-particle excitations Q» of rather high
energy. Thus, if we replace Q by Q» in Eq. (3.4), the
corresponding matrix element (3.3) would still be finite.
Then, defining in analogy with Eq. (2.17) an operator
G by

~
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Thus the matrix elements of G in the unperturbed basis
are finite, although the individual terms in the pertur-
bation expansion (3.5b) are essentially infinite, as dis-
cussed above.

The operator G is generally referred to as the reac-
tion matrix. It was introduced by Brueckner et al.
(1954) to handle singular potentials in nuclear matter,
and subsequently refined by Bethe and Goldstone (Bethe,
1956; Bethe and Goldstone, 1957). The concept of the
G matrix originates from Watson's (1953) theory of
multiple scattering, but it is important to note that we
are here dealing with bound states rather than scatter-
ing states. Furthermore, the G matrix differs from
the scattering matrix in containing the Pauli exclusion
operator Q, which prevents particles from being excited
to states which are already occupied by other particles
in the surrounding nuclear medium. Also, G is a func-
tion of the energy variable ~, the so-called starting
energy, which depends on the energy of the interacting
pair of particles as well as on the energy of other in-
teracting particles present. Thus, as we shall see late~
on, the starting energy ~ will depend on the position of
G in a particular diagram.

The perturbation expansion (3.5b) for G can be repre-
sented diagrammatically by the series of "ladder" dia-
grams shown in Fig. 25(a). The physical interpretation
of this diagrammatic expansion is intuitively clear.
Since V is very strong in the unperturbed basis, the
particles must interact virtually with each other an arbi-
trary number of times in order to produce a finite inter-
action matrix element.

We shall now take advantage of the finiteness of G to
rewrite the perturbation expansion for effective opera-
tors in terms of G. This.can be done by grouping to-
gether diagrams which differ from each other only in the

FIG. 29. Illustration of partial summation procedure used to
replace V vertices (dashed lines) by G vertices (wavy lines).
Note that two-particle intermediate states between successive
G vertices (d) are not allowed, since they are already included
in the appropriate G (d").

number of successive V interactions between two particle
lines. The infinite sum of such ladders of V can then
be replaced by a single G interaction. Various examples
are shown in Fig. 29. In Fig. 29(a) the sequence of V
vertices &1,A.2, &3, . . . gives rise to the G vertex de-
noted by A. We have here represented G by a wavy line
to distinguish it from V which is denoted by a dashed
line. Clearly, the top vertex C1 does not contribute to
this G, since the vertex B1 comes in between the se-
quence &1,A.2,A3, . . . and C1. In fact, the vertex C1
belongs to the sequence C1,C2, C3,... producing the G
vertex C, as shown in Fig. 29(b). Note that each dia-
gram in Fig. 29(b) represents an infinite set of diagrams
of the type shown in Fig. 29(a), which are needed to
build up the G vertex A.. The remaining V vertex B1 can
also be replaced by G, by summing the diagrams shown
in Fig. 29(c). Here it is worth noting that only ladders
of V between PuvticEe lines are included in G'. By sys-
tematically carrying through this procedure of partial
summation of ladders of V, one can clearly rewrite the
perturbation expansion in terms of diagrams with G ver-
tices only. As a general rule, one may simply replace
V by G in all diagrams except the ones with successive
V vertices between particle lines, which are included
in the corresponding diagram with a single G. Thus in
the new series there are no diagrams with ladders of G
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between particle lines. For example, diagram (d) in Fig.
29 is a sum of diagrams of the form (d') which are obvi-
ously included in the corresponding diagram (d") with a
single G vertex.

The calculation of G from the nucleon-nucleon inter-
action is both cumbersome and subtle, and has a long
history of evolution. This is not the place to go into a
detailed discussion of the techniques used for calculating
G. For the present purpose it is more important to have
a physical understanding of the concept of the reaction
matrix G than to know in detail how it is evaluated. It
may, however, be instructive to consider briefly the
separation method of Moszkowski and Scott (1960), which
is probably the physically most intuitive method for cal-
culating the G matrix. The essence of this method is
illustrated in Fig. 28. It consists of dividing the poten-
tial V into a,short-range part V and a long-range part
V, . This division is made at the so-called separation
distance d, which is chosen so that the free-space (i.e. ,
Q = 1) reaction matrix due to V, is zero, or equivalently,
the logarithmic derivatives of the unperturbed and per-
turbed wave functions are equal. Now, since short dis-
tances correspond mostly to highly excited states where
Q is unity, the reaction matrix is to a good approxima-
tion due to the long-range potential V, alone, which is
well behaved and relatively weak. The separation dis-
tance d, which is in principle state dependent, is gener-
ally found to be about 1 fm. For further details on this
and other methods, the reader is referred to the nuclear
physics textbook by Brown (1971a) and review papers by
Day (1967), Baranger (1969), Dahll et al. (1969), and
Kuo (1974) and references therein.

In the following Secs. III.C —Sec. III.G. , we shall go on
to discuss the numerical results obtained for perturba-
tion calculations of effective operators, starting from a
given reaction matrix G. Most of our discussion will be
based on the results obtained using the C matrix ele-
ments calculated by Kuo and Brown (1966, 1968) and Kuo
(1967) from the potential of Hamada and Johnston (1962).
More recent and accurate calculations of the G matrix
(Sauer, 1970; Tsai, 1973; and Krenciglowa et al. ,
1976b) from an updated potential (Reid, 1968) have shown
surprisingly good agreement with the early Kuo-Brown
calculations. In these calculations the Pauli exclusion
operator Q~ was constructed in a plane-wave basis.
This choice of intermediate-state spectrum rests on the
assumption that the hole —line expansion of nuclear mat-.
ter theory is valid for finite nuclei (Krenciglowa et al. ,
1976a, 1976b). It is interesting to note that very simi-
lar results may be obtained using harmonic oscillator
intermediate states, provided that the intermediate-state
spectrum be given an upward shift with respect to the
occupied states (Barrett, 1974; Barrett and Kirson,
1975; Sandel et a/. , 1977).

In conclusion it should be pointed out that several
methods exist for calculating the reaction matrix, and
several nucleon-nucleon potentials may be used as a
starting point. On the whole, different e3,lculations ap-
pear to have given qualitatively similar results for the
reaction matrix, and, accordingly, perturbation cal-
culations of effective operators have shown little sensi-
tivity to the particular reaction matrix chosen as
input.

Summary. The concept of the reaction matrix G is
introduced via Eq. (3.5). The unperturbed matrix ele-
ments of G are finite, and thus G may be used to replace
the singular nucleon-nucleon interaction V in perturba-
tion expansions of effective operators, as shown dia-
grammatically in Fig. 29. The physical significance
of G is most readily seen in the separation method of
Moszkowski and Scott (1960), as discussed briefly.

n

G 3p-Ih 4p-2h

j(

SEpp
Ik

SEph

+
ij---X

ij

Uph

ik

+ 0 ~ 0 ~

(c)

FIG. 30. Low-order contributions to the effective interaction
between two valence nucleons. Antisymmetrized 6 vertices
(wavy lines) are employed and exchange of external lines is
implied, except where it is implicitly taken into account by the
use of antisymmetrized vertices (see Appendix C). Further, a.

dashed line with a cross denotes a (-U) vertex. In (b) it is
understood that the closed-loop and (-U) insertions are made
in any one of the four valence lines.

C. Calculation of effective operators order by order in G

We shall now discuss the results obtained for the ef-
fective interaction and electric quadrupole (E2) operator
by summing the appropriate perturbation expansions to
successive orders in the reaction matrix G. As the pur-
pose of the present review is to discuss the physical
properties and relative sizes of the various terms in the
perturbation expansions in question, we shall restrict
ourselves to nuclei for which enough terms have been
calculated to enable us to draw conclusions about the
convergence properties. More specifically, we shall
consider the effective interaction for two nucleons in the
(IsOd) shell outside a closed "0 core —restricting our
attention mainly to the ease of "0with two valence neu-
trons. Similarly, we shall discuss calculations of the
effective E2 operator for nuclei with a single nucleon in
the (1sOd) shell outside the "0 core. However, to fur-
ther illustrate and amplify our discussion we shall make
occasional reference to the corresponding calculations
for valence nucleons in the (IPOf) shell outside a closed
'Ca core.

Unless otherwise stated, the input G matrix elements
were taken from Kuo (1967) for the (IsOd) shell calcula-
tions and from Kuo and Brown (1968) for the (IpOf) shell
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calculations. Both sets were calculated from the nucle-
on —nucleon potential of Hamada and Johnston (1962) and
expressed in a harmonic oscillator basis, using an os-
cillator energy he@ = 14 MeV for the (jsOd) shell and
k~= 10.5 MeV for the (IpOf) shell. Plane-wave inter-
mediate states were employed in both cases, and the G

matrices were taken to be independent of the starting
energy.

1. Effective interaction

Following the prescription of Sec. III.B, we may re-
write the perturbation expansion for the effective inter-

action in terms of the reaction matrix G. A feW of the
lowest-order terms in the expansion for the effective in-
teraction between two valence nucleons outside a closed-
shell core are shown diagrammatically in Fig. 30. Re-
call from Sec. I and Sec. II.C that we are concerned here
only with the two-body part of the interaction, the one-
body part being taken from the experimental single-par-
ticle energies. The effective interaction shown in Fig.
30 corresponds to the following truncation of the nuclear
eigenvalue problem (where P, P„and k stand for
particle, valence-particle and hole, respectively):

2p 3p —1h 4p —2h 5p —3A

5p —3h „'

H=HO+ V H, ~~
— ' 2p„.

Ho+ ~„
(3.7)

To lowest order the effective interaction is simply
given by the C matrix itself. We shall refer to this as
the baze interaction. This term is not sufficient to re-
produce well the low-energy spectrum of "0, as pointed
out by Dawson et al. (1962) and Kuo and Brown (1966).
As shown in Fig. 31, the spectrum calculated with the
bare G of Kuo and Brown (column 2) is clearly too com-
pressed compared to the experimental spectrum (column
1) and shows too little ground-state binding energy.
(Note that the slightly revised G of Kuo (1967) was used
in the calculations quoted in Fig. 31.) Thus Kuo and
Brown (1966) went on to calculate the second-order dia-
grams shown in Fig. 30(a), including intermediate states
of 2hco oscioator excitation energy (e.g. , for G»,„using

MeV
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FIG. 31. Calculated spectra of ~ 0 for various approximations
to the effective interaction. The spectra are taken from the
folio ving references: (1) Ajzenberg-Selove, 1972; (2—4) Goode,
1974 and private communication; {5-9)Kuo and Osnes, 1974;
and {10)Kirson, 1974.

p —h states of (IsOd)- Os and(lpOf)- OP). Among the sec-
ond-order contributions, the core-polarization diagram
G,~,„, which was first considered by Bertsch (1965),
turned out to be the most important. As shown in column
3 of Fig. 31, the second-order corrections serve to open
up the spectrum, thus improving the agreement with
experiment. In this regard it is important that G3p
corrections to the diagonal matrix elements can have
either sign [see Eq. (D2) of Appendix D], unlike G4~,„which
always yields a negative contribution (and mainly serves
to push the 0', level down a little). It is seen from Fig.
31 (column 3) that negative (i.e. , attractive) contribu-
tions are obtained for the lowest T = 1,J=0 and 2 states
which have too little binding for the bare interaction,
while positive (i.e. , repulsive) contributions are obtained
for the T = 1,J= 3 and 4 states which are too strongly
bound. This effect is the desired one, and quite good
agreement with experiment is obtained.

The effect of the core-polarization term is still more
transparent in "Ca, where the average effective inter-
action lends itself to a simple parametrization. It is
well known that the binding energies of the Ca isotopes
with ~ neutrons beyond "Ca can be well described in
terms of pure (Of7&, )" configurations using effective two-
particle matrix elements which are taken as free param-
eters. For any two-body interaction we have (de-Shalit
and Talmi, 1963)

(3.8)

where [n/2] is n/2 if n is even, and (n —1)/2 if n is odd,
and o'. and p can be expressed in terms of the two-par-
ticle matrix elements of V» as follows
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2(j+ 1)V, —V,
2j+ 1

p="""(v -v)
2j+ 1

with

(3.9)

Vp

I&

Vi Vp

G3p- Ih

Vp P

(c)

Vp

V

X V2

X

V
I

V2

v, =
&j'~= o

~
v„~jv= o&,

v, = g (2m+ I)(q'z~ v„lq'z)/p (2m+ 1).
J&p J&p

(3.10)
even even

Voo = 0 r,'r', P, (cos&») =k Q,(r, ) Q, (r,), (3.11a)

where the quadrupole tensor is defined in terms of
spherical harmonics as

(3.1 lb)

There is indeed considerable evidence for a strong
quadrupole component in the effective interaction (see,

TABLE I. Empirical and calculated values of the interaction
parameters ~ and P of Eqs. (3.8) and (3.9) for the Of&~2 shell.
All parameter values are in MeV.

Parameter Empirical ~
Calculated

G G+ G3p-u

0.23 y 0.01
—3.33 6 0.12

-0.21
-0.66

0.15
-1.96

Talmi, 1962.
"Brown and Kuo, 1967.

In Eq. (3.8) it is understood that we are dealing with
identical particles and that the ground state is given by
the state with minimum seniority. It follows from Eq.
(3.9) that n is essentially the average two-particle inter-
action in the states with J& 0, whereas P is the J= 0
interaction relative to the average J& 0 interaction. By
a fit to experimental binding energies n was found to be
small and repulsive, and P large and attractive. In
Table I the empirical values of n and P are compared to
the values calculated with G and G+ G»» by Brown and
Kuo (1967). It is seen that the bare interaction fails to
give a repulsive n; i.e., the corresponding spectrum is
too compressed. On the other hand, P has the correct
sign, but is too small in magnitude, corresponding to
underbinding of the ground state. The inclusion of the
core-polarization term is seen to give desired, although
quantitatively insufficient, corrections to o'. and P.

Brown and Kuo (1967) have given a neat physical inter-
pretation of the core-polarization term. As shown in
Appendix D, the expression for the core-polarization
diagram G»»involves the summation over intermediate
particle-hole states coupled to different J" and T".
Each J" and T" excitation is mediated via the J" and
T" multipole component of the interaction. Decomposi-
tion of G»,„ into individual 8'" and T" contributions (see
Table IV) shows that the dominant contribution comes
from the J"= 2, T"=0 particle-hole exeitations. If we
neglect the exchange matrix elements and possible spin
dependence of the interaction, and adjust the radial de-
pendence, the J"= 2, T"=0 contribution corresponds to
a quadrupole-quadrupole interaction

FIG. 32. Snapshots of the core-polarization process.

for example, Mottelson, 1959, 1962). In particular,
very convincing evidence comes from the need for a
nonzero E2 effective charge for the valence -neutron in
"0, since the E2 operator picks out just the quadrupole
component of the interaction between valence and core
particles in the core-polarization diagram; see further
discussion of the effective charge below. There is also
an important J"= 4, T"=0 component in the core-polari-
zation term, but the J"= 2, T"= 0 component is the domi-
nant one.

The large quadrupole component in the core-polariza-
tion term clearly gives rise to a long-range component
in the effective interaction. The range of a given multi-
pole component of the interaction is roughly inversely
proportional to the multipole order, since the first node
of the Legendre polynomial P~(cosa») comes at an angle
&~, =X"'. Thus on the nuclear surface there will only be
appreciable interaction between nucleons Separated by
less than RX ', where R is the nuclear x'adius. Hence
we conclude that the quadrupole component of the inter-
action has fairly long range. The origin. Of the long-
range component of the core-polarization term may also
be understood from the pictorial configuration-space
representation of G»» given in Fig. 32. In Order for
two nucleons to interact via the bare interaction G, they
must be fairly close to each other. [Indeed, for many
purposes the bare G may be roughly represented by a
5-function lnteraetlon see, for exsLmple Sha~ and
Zamick (1973).] Thus two valence nucleons on opposite
sides of the core, as shown in Fig. 32(a), cannot inter-
act directly via G. However, they may interact via the
exchange of a particle-hole excitation as shown by the
series of "snapshots" of the process depicted in Fig.
32(b) —(d). First, the valence particle e, interacts —thus
being left in a state v,' —with a nearby core paxticle,
creating a particle —hole pair [Fig. 32(b)], which then
propagates over to the valence particle v, [Fig. 32(c)] in
a time interval Et =0/AE where DE is the excitation
energy. When the particle-hole pair is close enough to
v2 [Fig. 32(d)], it is annihilated via 6, leaving e, in a
state v,' [Fig. 32(e)]. Thus a long-range effective inter-
action is generated between a pair of valence particles
in the states v, and v„ leaving them in the states v,' and
v,'. There mill also be some components of pairing type
in G,~,„, since as shown in TaMe I the pairing parame-
ter P of Eq. (3.8) is increased by the inclusion of G»».
This contribution is of short range and is generated by
the higher multipole components of G»„~z.

Having observed the physically desirable ancl very
reasonable effect of the second-order core-polarization
correction G»», one may tentatively draw the conclu-
sion that all the other terms in the perturbation expan-
sion of the effective interaction must essentiaBy cancel
each other, thus leaving to a good approximation
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v G+G (3.12)

This was the view generally held for the first six or
seven years following the pioneering work of Kuo and
Brown (1966). In the remaining part of this section we
wish to check this hypothesis by considering other low-
order terms in the expansion for 'U„.

First, we note that there are other second-order dia-
grams contributing to 0„, as shown in Fig. 30(b). These
are of two types, containing either insertions of closed
loops representing the interaction with the core nucle-
ons (so-called self-energy insertions) or the corre-
sponding insertions of the negative of the one-body .
shell-model potential U, . The former type is second
order in G, whereas the latter has only one G vertex
and arises because we defined the unperturbed Hamil-
tonian Ho by adding U=ZU& to the kinetic energy, and
thus must subtract U from the two-body interaction
Z V, z to obtain the perturbing potential [see Eqs. (2.2)
and (2.3)]. Then, by introducing the G matrix as dis-
cussed in See. III.B, the perturbing potential becomes
essentially G —U. Thus we also have to consider dia-
grams with (—U) vertices. Since U is a one-body opera-
tor, there are no contributions to the tzeo-body effective
interaction with only U vertices. Clearly, at least one
G vertex is needed to link up the valence lines. Hence
the lowest-order contribution with a U vertex comes in
second order and is given by diagrams U~, and U,„ in
Fig. 30(b). Now, as we shall see in Sec. III.E, these
diagrams would cancel exactly with the corresponding
diagrams 8& and SE h with self-energy insertions if
U were defined by the Hartree —Pock (HF) or more cor-
rectly by the Brueckner —Hartree-Pock approximation.
We shall introduce the term HF insertion for the sum of
corresponding self-energy and (—U) insertions and rep-
resent it by the diagrammatic notation shown in Fig. 33
(see also Fig. 50). Then, by definition, HF insertions
are identically zero in a HF basis. However, for a dif-
ferent choice of U, such as the harmonic oscillator po-
tential, the HF insertions will in general not be zero.
In this case the HF insertions serve to modify the har-
monic oscillator single-particle orbitals by mixing in
oscillator orbitals of the same angular momentum, but with
a different number of nodes. The inclusion of HF insertions
to all orders would then restore the HF self-consistency
of the single-particle orbitals. Thus the diagrams in
Fig. 30(b) may be viewed as the lowest-order HF cor-
rections to the bare G matrix elements.

In general diagrams with HF insertions have been ig-
nored under the —more or less tacit —assumption that
the harmonic oscillator single-particle wave functions

FIG. 33. Second-order diagrams with seM-energy and {-U) in-
sertions and convention for the sum {which is zero in a HF
basis).

are sufficiently similar to the HP wave functions near
the Fermi surface. Unfortunately, there appears to be
no explicit calculation of the diagrams in Fig. 30(b) (or
Fig. 33) using the G matrix elements of Kuo and Brown.
There are, however, calculations by Ellis and Mavro-
matis (1971)using the Sussex matrix elements (Elliott
et af. , 1968), which are fairly similar to the Kuo-
Brown matrix elements. As expected, the HF correc-
tions were found to be small for the (Od, &,

)' matrix ele-
ments. However, the (Is, ~,)' matrix elements were
found to be reduced in magnitude —thus becoming less
attractive —by about I MeV. This correction is indeed
larger than any of the contributions from the core-po-
larization diagram G»„». Obviously, the reduction in
the size of the (1s, &,

)' matrix elements is due to the
fact that the HF wave function for the 1s,/, single-parti-
cle orbital extends further out than the harmonic oscil-
lator wave function. Similarly, matrix elements in-
volving the Od, /, orbital were significantly weakened.
Thus the HF corrections appear to be rather important,
at least for the more weakly bound orbitals, indicating
that the effective interaction ought to be expressed in a
HF single-particle basis, as discussed in more detail
in Sec. III.E.

In order to further examine the hypothesis (3.12) for
the effective interaction it is clearly necessary to go
beyond second order in the perturbation calculation.
The third-order diagrams were evaluated by Barrett
and Kirson (1970) for J'= O, T = 1, and by Goode (1974)
for the other 4 and T. In both calculations diagrams
with HF insertions were ignored. As shown in Table II,

TABLE II. Matrix elements (v&4=0, T=1~'VJvP=0, T=1) of the effective interaction in the
{1sOd) shell, calculated in low-order perturbation theory. All matrix elements are in MeV.

Valence orbits
1st order ~ 2nd order" 3rd order

Total
1st+ 2nd+ 3rd

d5/2
d5 /2

Sg/2

d5/a
d3/2
Sg/2

—1.24
—3.02
-2.05

-1.01
—0.73

0.04

0.52
1.10
0.15

Kuo, 1967.
Barrett and Kirson, 1970, 1972.
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v2

v3 v4
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Number operator: Z

Kuo- Brown interaction:
VI& V2 Y3~ V4 J
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Od5/2 Od3/2 0 -0.442 0,434 0 0I8 O.OIO

-0.24 I

-0.236
-O. I 46

FIG. 34. Number-conserving set {a-c)and core-polarization
diagram (d) in third order. The calculated values are taken
from Barrett and Kirson, 1970, 1972.

Barrett and Kirson found that the total third-order con-
tributions to the J=0, T= 1 matrix elements of the effec-
tive interaction were in many cases as large as the
second-order ones, but of opposite sign, thus suggesting
that the order-by-order perturbation expansion does not
give reliable results for the effective interaction. For
T = 1,44 0 the effect of the third-order diagrams is
smaller, as shown by the spectrum in column 4 of Fig.
31. However, for T = 0 there appears again to be a
strong cancellation between second- and third-order
contributions, particularly in the low-lying states,

An interesting aspect of Barrett and Kirson's work was
their investigation of possible cancellations among third-
order diagrams of similar structure. In particular, they
examined the suggestion of Brandow (1967) that certain
subsets of diagrams should cancel approximately accord-
ing to the principle of number conservation (by analogy
to charge conservation in the Ward identity i.n quantum
electrodynamics). If valid to a reasonable approxima-
tion, this idea would be extremely useful, since it would
reduce the number of higher-order diagrams which need
to be calculated. As an example, consider diagrams (a),
(b), and (c) in Fig. 34. If the middle vertex were the
number operator, these diagrams would cancel exactly,
as indicated. In physical terms these diagrams may be
thought of as a correction to the bare interaction matrix
element due to one valence particle exciting a particle-
hole pair. The interaction of the remaining valence
particle with the excited particle (a) is balanced against
the interaction with the hole in the core (b) and the re-
duction in the bare matrix element due to the probability
that one particle is no longer in a valence state (c).
Barrett and Kirson (1970) reported that the cancellation
was in fact fairly good for the J= 0, T = 1 interaction;
whereas an extended study by Ellis et al. (1972), in
which all the (IsOd) shell matrix elements and a few
(1POf) shell matrix elements of the third-order number-
conserving sets were calculated for a variety of forces,
indicated that the cancellation is not sufficiently good
to be really useful. In fact, in many cases the sum of
the number-conserving diagrams is comparable in
magnitude to the third-order core-polarization diRgrRm
(d), which is one of the largest third-order diagrams.
The poor cancellation is mainly due to the folded dia-
gram (c), which is proportional, but opposite in sign,
to the bare interaction between the valence particles.

Thus whenever the bare interaction is large, this dia-
gram I together with diagram (b)J may easily overcancel
diagram (a), which generally has the same sign as the
bare interaction.

Other large third-order diagrams are shown in Fig.
30(c). These may be viewed as corrections to the sec-
ond-order core-polarization diagram, since they mod-
ify the vertex which couples the valence particle to the
particle-hole excitation of the core. Thus they are
often referred to as vertex renormalizations. They are
almost invariably repulsive for 4=0, T= 1, and together
they more than cancel the second-order core-polariza-
tion contribution. Further discussion of these diagrams
is deferred to Sec. III.D, where we deal with partial
summations.

The third-order diagrams containing HF insertions
have not been calculated, but Comins and Hewitt (1974)
have carried out a related, although not strictly third-
order, calculation. They first sum the diagonal HF
insertions by using modified single-particle energies
essentially as discussed in Sec. II.B.6 and Appendix B.
They also include the effect of HF insertions in the in-
termediate states of the reaction matrix G. They then
calculate all third-order diagrams which are not in-
cluded in the above summation. These results are found
to be qualitatively similar to those of Barrett and Kirson
(1970). The individual diagrams are, however, reduced in
size because larger energy denominators arise from the
implicit inclusion of HF insertions.

In fourth order there are about a thousand diagrams
contributing to the effective interaction. Thus a full
fourth-order calculation, diagram by diagram, would
seem to be,intractable. However, the average fourth-
order contribution to the effective interaction has been
evaluated by Goode and Koltun (1975) using a special
diagrammatic technique in which averages of valence-
particle diagrams are expressed in terms of diagrams
of closed-shell form. The average fourth-order contri-
butions are found to be large. This is mainly due to
poor cancellation in the number-conserving sets caused
by large folded-diagram contributions. Clearly, aver-
ages cannot be large unless at least some of the indivi-
dual terms are large. Thus it is concluded that the
valence-linked expansion for the effective interaction is
poorly behaved in low order.

One way to improve the convergence properties of the
perturbation series for the effective interaction'U„might
be to remove the low-energy intermediate states from
the reaction matrix G and include them explicitly in the
perturbation calculation of ~„. Thus the two-particle
excitations of low-energy would be treated on the same
footing as the other low-energy excitations which lead
to long-range correlations, while G mould only include
the high-energy excitations associated with the short-
range correlations. This would make the bare G some-
what weaker, but would put the lost strength back into
higher orders —in terms of diagrams containing two-
particle intermediate states (of low energy) between
successive G vertices. One would thus obtain a redis-
tribution of strength over different orders which might
serve to improve the convergence properties of the ex-
pansion for '0„. This scheme, which is often referred to
as double partitioning of the Hilbert space, was suggest-
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ed by Brandow (1967) and has been strongly advocated
by Brown (1971b). Calculations in this scheme, through
third order in G, have been performed by Barrett (1974),
who evaluated his G matrix from the Hamada- Johnston
potential, but contrary to Kuo and Brown (1966, 1968;
see also Kuo, 1967) used harmonic oscillator interme-
diate states (Barrett et a/. , 1971). The convergence of
the perturbation expansion for 'U„was improved in the
double-partition approach, although the calculation was
not conclusive, as both the HF corrections discussed
above and other corrections to be discussed below were
ignored. The results obtained for the third-order vertex
corrections will be discussed in some detail in Sec. III.D.
Similar effects were obtained (Barrett, 19'72) using
the 6 matrix elements of Kuo and Brown, although
here there is a problem of double counting which has
been the subject of heated debate in the literature (e.g. ,
Barrett a,nd Kirson, 1975; Krenciglowa et al. , 1976a.,
1976b and references therein). We remark in passing
that the new matrix elements of Kuo and collaborators
(Krenciglowa et a/. , 1976a;, 1976b) are designed for
double-partition calculations, but no systematic higher-
order calculation has yet been made with these matrix
elements.

Thus far we have attempted to describe the typical
behavior of the effective interaction through the lowest
few orders of perturbation theory, and a relatively
simple picture has emerged. We have seen that quite
good agreement with experiment is obtained through
second order in t", provided that HF corrections be ig-
nored. The large second-order contributions are, how-
ever, strongly cancelled by the third-order contributions,
and thus the good agreement with experiment is destroy-
ed. Furthermore, there is no evidence that the fourth-
order contributions are small, and thus one is led to
conclude that the perturbation expansion for '0„, if not
diverging, is poorly behaved in low order. Improved
convergence properties may, however, be obtained if
a double-partition approach is used which allows sepa-
rate treatment of two-particle excitations of low and
high energies. Unfortunately, this relatively simple
picture is obscured not only by the HF corrections,
which as discussed may be large, but a1so by other cor-
rections and uncertainties which will now be discussed.

First, recall that all the higher-order terms discussed
above (except the HF corrections) were evaluated using
intermediate states of 25m excitation energy. At first
sight this truncati. on may seem reasonable, since the
next higher intermediate states —of 45 excitation en-
ergy —would have twice as large energy denominators
as the 2h(d excitations. However, the number of inter-
mediate states increases strongly with the excitation
energy. Furthermore, the 6 vertices involved may be
large because of the strong tensor-force component in
the 6 matrix, which may excite particles more than 100
MeV up in energy. Thus there is no reason to expect
that the contributions from intermediate states beyond
21~ excitation energy should be negligible. This was
confirmed by Vary et al. (1973), who showed that one
has to include intermediate states up to about 12@(d
excitation in order to obtain reasonable convergence for
the second-order core-polarization diagram 6»». For
example, for the diagonal 8= 0, T = 1 (Od», )2 matrix ele-

ment they obtained contributions of -0.710, —0.379,
—0.114, and -0.085 MeV by including intermediate states
up to 2, 6, 12, and 22h(d excitation, respectively.
[These results were obtained using the G matrix ele-
ments calculated by Sauer (1970) from the Reid soft-
core potential. ] Thus the strong attractive contribution
to +» if) from 25m partic le -hole excitations is essential ly
wiped out by higher particle-hole excitations. On the
average, the high intermediate states serve to make
G.,~ » considerably less attractive. On the other hand,
the difference between the average T = 1 and 1' = 0 inter-
actions appears to be increased, which is desirable
from an experimental point of view. High intermediate-
state contributions of similar magnitude have been ob-
tained by Sandel et aE. (1977) using the G matrix elements
calculated by Barrett et al. (1971) from the Hamada-
Johnston potential [see also Vary and Yang (1977)]. Thus
the high intermediate states appear to be important for
C»», and one might have to give up the simple hypoth-
esis (3.12) that U„ is essentially given by G+G,~,„.
Similarly, one would expect significant high interme-
diate-state contributions to other diagrams. The inclu-
sion of high intermediate states in third order would be
rather cumbersome, so one might have to design a
simple method for doing this, for instance some partial
summation similar to that used in calculating the reac-
tion matrix G. Herbert and Barrett (1975) have evaluated
third-order diagrams with intermediate states up to
4h&o excitation (in a double-partition scheme) and found
significant contributions from the 4Am intermediate
states. In view of the above it is expected that one would
have to include intermediate states of still higher ener-
gy in order to obtain convergence of the intermediate-
state summation.

The need for a second correction arises from the ne-
glect of the starting energy dependence of the 6 vertices
in the early calculations of the higher-order diagrams.
As pointed out above, the 6 matrix elements of Kuo and
Brown (1966, 1968; see also Kuo, 1967) were indepen-
dent of the starting energy u. This is an approximation
which has been removed in more recent calculations of
the G matrix (e.g. , Barrett et al. , 1971; Sauer, 1970;
Krenciglowa et a/. , 1976b). Thus one should evaluate
the higher-order diagrams using C vertices with the
proper starting energy everywhere. As an example,
consider the second-order core-polarization diagram
G», „of Fig. 30(a), which is derived in detail in Appen-
dix D. As shown in Eqs. (D5) and (D6), the lower and
pper G vert ces in G3p-in have starting energies (d

= e~, + e,. and uU = e~, + ej,+; —e~„respectively.
These differ from the energy , = e~, + e~, of the initial
particles (which trivially is the starting energy of G in
the first-order bare matrix element) and are hence said
to be off the energy shell by the amounts &~~ = eq, —e,.
and &(do = e~, —e,. In "0, ~u is 1 or 28, depending
on whether the hole is in the (Os) or (Op) shell. The
inclusion of off-energy-shell effects will make the 6
vertices smaller in magnitude, since the energy denom-
inators in 6 are increased. The detailed ~u dependence
of C is determined by the intermediate-state spectrum
used in calculating the C matrix. If the plane-wave
choice is made, the off-shell corrections are fairly
small, although not negligible (Pradhan et al. , 1972).
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Another choice which is frequently made for the inter-
mediate-state spectrum is a harmonic oscillator shifted
by a constant energy C. As we have remarked in Sec.
III.B, this gives results similar to the plane-wave case
if a suitable value of C is chosen (=35 MeV). However,
if smaller values of C are employed the energy denomin-
ators are smaller, so the off-shell corrections are
much more important (Sandel et a/. , 1977; Vary and
Yang, 1977). On a slightly different tack, we remark
here that the dependency of the second- and third-order
diagrams on the parameter C has been examined (Bar-
rett, 1974; Herbert and Barrett, 1975; Sandel et al. ,
1977; Vary and Yang, 1977). The behavior of the per-
turbation expansion appears somewhat improved for
values of C smaller than 35 MeV. In our opinion, how-
ever, none of the calculations to date offer convincing
evidence that low-order perturbation theory is adequate.
Further, we feel that plane waves are the most reason-
able choice for very high-lying states, although the
question of the optimum choice for medium excitations
remains open.

A third and more serious complication is that we do
not really know what to expect from a low-order per-
turbation calculation of the effective interaction in "0,
since the order-by-order perturbation series will ulti-
mately diverge because of the presence of so-called
intruder states. It is seen from Fig. 31 that the calcula-
tions do not reproduce all the low-lying experimental
levels shown. Phenomenological work, for instance by
Engeland (1965), Benson and Flowers (1969), Ellis and
Engeland (1970), Fortune and Headley (1974), Erikson
and Brown (1977), and Lawson et al. (1976), indicates
that the second 0' level and the third 2' level are mainly
of (sd)'P ' structure; such low-lying particle —hole
states are often referred to as deformed states. The
0', and 2', wave functions therefore have only small com-
ponents in the (sd)2 valence space, and we would not ex-
pect to reproduce these levels in our calculation. Fur-
thermore, since these (sd)'p ' states move down and
intermingle with the (sd)' states as the interaction is
switched on, they must be classified as intruder states.
This implies that the order-by-order perturbation ex-
pansion (in V strictly) must diverge, as discussed in
Sec. II.E. This could be the reason for the large third-
and fourth-order results; however, the intruder state
problem does not arise for the effective charge, and as
we shall see, the order-by-order results do not appear
to be convergent. Also, Goode and Koltun (1975) find no
evidence for convergence of the effective interaction in
'Li, where there are no intruder states. It seems rea-
sonable to conclude that the basic reason for the poor
behavior of the low-order perturbation expansion is that
the 6 matrix elements are not sufficiently weak. The
intruder state singularities are unlikely to influence
low-order calculations. strongly, although they probably
make things worse (Pittel, 1976).

As discussed in Sec. II.E, reordering of the perturba-
tion series can in principle yield a convergent expan- .

sion. A preliminary calculation in this vein was carried
out by Krenciglowa et al. (1973), who extrapolated the
sum of all the nonfolded diagrams (ignoring those with
HF insertions) from the lowest three orders, using
Pade approximants. The folded diagrams were then

evaluated from the sum of nonfolded diagrams (not all
folded contributions were included), and apparent con-
vergence was obtained. But this is clearly no longer an
order-by-order summation of the perturbation expan-
sion. From a purely practical point of view, it would be
difficult to include the effects of low-lying deformed
states via perturbation theory. It is probably most sen-
sible to think of first calculating the (sd) effective in-
teraction and then including a few low-lying deformed
states explicitly in some (as yet to be determined) fash-
ion before making very detailed comparisons with ex-
periment. This is, in principle, the philosophy followed
by Brown and collaborators in the so-called coexistence
model (see Brown and Green, 1966; Gerace and Green,
1967; Erikson and Bown, 1977). One might then argue
that in calculating the (sd)2 effective interaction one
should not include diagrams with four-particle two-hole
(4p —2h) intermediate states to avoid double counting.
However, the majority of 4P —2h states are not intruder
states, so one would probably make less error by in-
cluding diagrams with 4P —2h intermediate states.

In conclusion, the perturbation expansion for the effec-
tive interaction does not appear to give reliable results
when summed order by order in t". Although the results,
as pointed out, are not conclusive because of the neglect
of important corrections, one is eventually led to con-
sider alternate ways of summing the perturbation ex-
pansion. Various such methods will be discussed in
Sec- III.D.

where

8„= Q e~'Y„(&),
yx'otoms

(3.13)

and we have e"'= e"'.fi if
As regards the experimental situation in mass 17, the

data yield effective charges of about 0.5 for the odd neu-
tron. For the odd proton the y decay from the 0.5 MeV
1/2' level to the 5/2' ground state yields a value of
1.75 (with 8'u= 14 MeV). This large value is surely due
to the fact that the 1/2' level is bound by only 0.1 MeV,
and if one applies a simple correction for this effect,
using wave functions calculated in a Woods-Saxon poten-
tial, one obtains a value of somewhat less than 1.5. So
we need a proton effective charge of about 1.5, and a

2. Effective charge

We have pointed out previously that all the observable
operators of interest in the shell model should be re-
placed by effective operators acting in the truncated
valence space. Here we shall only discuss calculations
of the effective electric quadrupole (X2) operator for a
single particle beyond the "0 closed-shell core. The
necessary formalism has been discussed in Sec. II.D.
It is customary to express the results in terms of an
effective charge by dividing the matrix elements of the
effective operator by the corresponding proton matrix
elements of the bare operator, evaluated with harmonic
oscillator wave functions X. Thus, in the notation of Eq.
(2.70), the effective E2 charge is given by
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FIG. 35. Low-order contributions to the effective charge for a
single valence nucleon. The electric multipole operator is
r epr esented by a dashed line with a letter E.

neutron effective charge of about 0.5, and this is consis-
tent with shell-model studies in this region (see, for
example, Halbert et al. , 1971). Values of this magnitude
were obtained by Mottelson (1959), who evaluated the
distortion of the closed shells due to the odd particle
by filling particles in an anisotropic harmonic oscillator
well and equating the shape of the density distribution
with the shape of the potential. The first microscopic
perturbation calculation of the effective E2 operator
was performed by Horie and Arima (1955), who evaluated
static electric quadrupole moments for a number of
nuclei to first order in the interaction V—which was
taken to be of 5-function form.

With the above experimental values in mind, let us
turn to the calculation of the effective charge order by
order in the reaction matrix &. The diagrammatic
representation of low-order terms in the perturbation
expansion for the effective operator is given in Fig. 35.
Shown there are the zeroth-order diagram (a) represent-

0.027 -0.003 = -0.058-0.082

FIG. 36. Contributions from a number-conserving set to the
d5/2-d5/& effective charge. The calculated values are taken
from Ellis and Siegel, 1971.

ing the bare operator, the first-order core-polarization
(b) and Hartree —Fock (HF) insertion (c) diagrams, and
a few of the many second-order diagrams (d), some of
which are folded. Results are shown in Table III, where
the notation d, /2 sy/2 indicates the effective charge for a
transition between the Od, /, and 1s, /, single-particle
states and N(P) refers to neutron (proton). Consider
first the non-HF diagrams, which were evaluated through
second order in 6 by Ellis and Siegel (1971), using the
Kuo —Brown matrix elements (Kuo, 1967) and allowing
intermediate states of 2k~ excitation energy. The low-
est-order core-polarization contribution is found to be
important here, as with the effective interaction, al-
though quantitativelyinsufficient. We have discussed the
physical meaning of core polarization in the previous
Sec. III.C.1, but it is worth noting that only quadrupole
excitations of the core contribute here, in contrast to
the effective interaction. Further, the particle and hole
excited must both be protons, since the electric quadru-
pole operator only acts on protons. Since a valence pro-
ton can only excite protons via the T = 1 interaction,
whereas a valence neutron can employ both the T = 0 and
T = 1 interactions, we expect the core-polarization con-
tribution to the effective charge for neutrons to be lar-
ger than that for protons, as seen in Table III.

As regards the total second-order results for the non-
HF diagrams, we see from Table III that they are nega-
tive for protons, so there is very little evidence for con-
vergence. Part of the reason for this is that the num-
ber-conserving sets cancel poorly. An example is shown
in Fig. 36, where exact cancellation would follow if E
were the number operator. Clearly, the folded diagram
is too large for accurate cancellation, and we have re-
marked that this is often the case for the effective

TABLE III. Low-order results for the effective E2 charge in the (1sOd) shel.

Order
Transition d5/ g d5/2 3)2-S1)2

N I
0th order

1st order

2nd ol del"

Non-HF ~

HFb
Total

Non-HF ~

Total

0.28
0
0.28

0.06
-0.18
-0.12

0.11
0.08
0.19

-0.06
-0.07
-0.13

0.20
0
0.20

0.01
-0.08
-0.07

0.06
0.34
0.40

-0.16
0.11

-0.05

0th+ 1st+ 2nd Total 0.16 1.06 0.13

~Ellis and Siegel, 1971.
"Ellis and Mavromatis, 1971.
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"E

FIG. 37. Second-order vertex correction diagrams for the ef-
fective charge.

interaction too. In fact the qualitative behavior of cor-
responding diagrams for the effective charge and inter-
action is quite similar. Thus, the second-order (in G)
diagrams for the effective charge shown in Fig. 37 are
analogous to the third-order diagrams for the effective
interaction shown in Fig. 47 and give quite large contri-
butions. We might remark that the second-order dia-
gram in Fig. 37(d) has been omitted, since it is included
in the first-order core-polarization diagr'am. One could,
however, use a double-partition approach, as discussed
for the effective interaction, and exclude from the inter-
mediate states which go into the G matrix all 2h(d excita-
tions. In that case one would need to include the diagram
of Fig. 37(d) in the second-order calculations, and one
wonders whether this would improve the convergence.
The answer is probably no, since, although-it gives a sig-
nificant contribution for neutrons of about 0.06, the con-
tribution for protons is very small.

We now turn to the HF corrections. In Fig. 35 we have
shown the first-order (c) and a few of the second-order
(d) HF diagrams which arise. These were evaluated by
Ellis and Mavromatis (1971), and their total contribu-
tions in each order are shown in Table III. [Note that
the original Sussex interaction (Elliott et a/. , 1968) was
used and that some intermediate states of more than
K~ excitation energy were included —these features
should, however, not be of importance for our qualita-
tive considerations. ] We see large HF effects for pro-
tons in first order, which arise because the infinite
nature of the harmonic oscillator well serves to pull in
the wave functions of these weakly bound valence orbi-
tals too much. This results in too small a value for the
matrix element of r', which is being corrected in lowest
order by the HF insertions. In second order, many dia-
grams contribute, and the total value is usually nega-
tive. Adding non-HF and HF contributions, we find that
the second-order total is very roughly ——,

' of the first-
order total. If we assume that we have a geometric
series, this would imply that the full result is ~ of
the first-order value. This would of course be too small.
The only conclusion to be drawn from Table III is that
there is no smooth order-by-order convergence in the
perturbation expansion towards the desired values.

One might worry whether admixtures of low-lying de-
formed particle-hole states produce strong effects. In
principle, of course, the perturbation formalism in
eludes such effects, but in practice it would be very dif-
ficult to get accurate results, since the states in ques-
tion have been so strongly shifted from their unperturbed
positions. The evidence from phenomenological calcula-
tions (see Brown et al. , 1977) is that such effects are
small, although not negligible. Incidentally, Brown

et al. (1977) analyze very carefully the empirical effec-
tive charges required by the data, but the. reader is
warned that they use a Woods-Saxon basis to evaluate
the denominators of Eq. (3.13).

We would like to comment briefly on the effect of high-
lying intermediate states in the non-HF diagrams. The
first point to note is that the matrix elements of &', taken
with harmonic oscillator wave functions, are nonzero
only for single-particle states which differ by 0 or 25co
in energy. Thus the core-polarization diagrams of Fig.
35(b) only involve 2h&u excitations for an oscillator basis.
There are, however, other diagrams starting in second
order which are not zero for more than 2hu excitations.
For the two number-conserving sets of diagrams (one
set is shown in Fig. 36), such effects have. been found
by Shimizu et al. (1974) to be small. They are, however,
more significant in calculations of the effective magnetic
dipole operator.

In conclusion, theperturbation expansion for the effec-
tive charge appears to show no clear evidence of con-
vergence when summed order by order in G. Thus, just
as for the effective interaction, one is led to consider
alternate ways of summing the perturbation expansion,
as discussed in the following Sec. III.D.

Summary. We have reviewed calculations of low-order
contributions to the effective interaction and charge
appropriate to masses 18 and 17, respectively. Although
uncertainties exist, none of the calculations to date in-
dicate smooth convergence to the results expected from
the experimental energy spectra and electric quadru-
pole transition rates.

O. Calculation of effective operators by infinite partial
summations

The apparent failure of the perturbation expansions for
the effective interaction and charge to converge smoothly
to the empirical values, when summed to successive
powers in G, calls for alternate methods of summation.
These involve regrouping the series into infinite sub-
series of related diagrams which can be summed exactly
or approximately. We shall refer to such methods as
infinite Partial summations. In fact, we have already
used the idea of partial summation when we constructed
the reaction matrix G by separate summation of all two-
particle ladder diagrams in V». This is indeed a strik-
ing example of how partial summation may facilitate the
convergence of the perturbation expansion when physica1-
ly significant processes are included. In this section
we shall consider other important processes which can
be treated by partial summation.

1. Effective interaction

In Sec. III.C we demonstrated that the effective inter-
action between two valence nucleons is strongly renor-
malized by core polarization. However, in the second-
and third-order core-polarization diagrams considered
above [see Figs. 30(a) and 34(d)] the core excitations
were treated only to zeroth and first order, respective-
ly. Since one knows that particle-hole states in closed-
shell nuclei show strong collective properties, one
would probably obtain a better approximation for the
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+ ~ ~ ~ ~

FIG. 38. Diagrams summed in the TDA treatment of core
polarization. The contributions obtained by excharging the ex-
ternal valence lines are implied; see discussion of Appendix
D.

(3.14a)

or more explicitly

G, „=—Qvli&(il Ij&(jlv, (3.14b)

where we have introduced unperturbed particle-hole
intermediate states i defined by

(—c) Ii) = e, Ii), (3.16)

with e,.=(e~- e„),. Note that we have taken the valence-
particle states to be degenerate, so that the valence-

p h p hz

p, h,

core excitations by iterating the particle-hole bubble to
arbitrary order, -as shown in Fig. 38. This series of
diagrams can be expressed in terms of the two vertices
v and f defined in Fig. 39. The vertex v couples a val-
ence particle to an unperturbed core excitation (i.e.,
particle —hole pair), while the vertex f is the particle-
hole interaction which "scatters" one unperturbed core
excitation into another. Considering v and f as ma-
trices, we can readily write the diagrammatic series
of Fig. 38 in matrix notation as

1 1 1 1 1 1= V —V+ V —f —V+ V f —f ——V+ «~TDA
(3.16)

we have

(3.17)

Substituting this back into Eq. (3.14b), we obtain

G»A=- Z Vli&
i~ j &I

(3.18)

Thus in this approach, which was followed by Osnes and
Warke (1969), the total core-polarization contribution
to the effective interaction is given as the sum of the
contributions from the individual eigenstates of the core,
which are represented by the cross-hatched bubble on
the right-hand side of the equation in Fig. 38. The cal-
culation of core eigenstates in the basis of 1p-1h states
is often referred to as the Tamm-Dancoff approxima-
tion (TDA) —see, for example, Lane (1964)—hence the
subscript on the left-hand side of Eqs. (3.14) and (3.18).
It is instructive to compare the TDA result (3.18) with
the lowest-order core-polarization term, which in the
present notation takes the form

particle contribution to the energy denominator (e„—H, )
cancels out. We further emphasize that Eq. (3.14b) has
been written out in the particle —hole representation;
this corresponds to calculating diagrams in the so-
called cross channel (see, for example, Baranger, 1960;
Lane, 1964).

It follows from Eq. (3.14) that the infinite subset of
core-polarization diagrams shown in Fig. 38 can be
summed simply by means of matrix inversion (Zamick,
1969). The series canalsobe summed by iteration
(Ellis and Siegel, 1970), corresponding to explicit cal-
culation of the individual terms on the right-hand side
of Eq. (3.14a). An alternate method of calculation,
which lends itself to direct physical interpretation, can
be obtained from Eq. (3.14b) by expanding (i

I (e, +f) '
Ij)

in the basis diagonalizing (—e+f). Denoting the par-
ticle —hole eigenstates of (-e+f ) by o. , i.e. ,

(—e+f )
I
~)= ~„

I
o.)

with

p, h, p h

Gsp-xa = Z v I~) (3.19)

p h

FIG. 39. Elementary vertices for various partial summations.

Thus, if there is a strong collective state with E «&„
the TDA result can be considerably enhanced over the
lowest-order one. Clearly the TDA summation diverges
for & = 0; however, it has a finite solution for & & 0
which must be rejected on physical grounds, since it
corresponds to a 1P-lh state below the Op-Oh ground
state (i.e. , instability of the vacuum against Ip-Ih exci-
tations). Such a situation is signaled by the divergence
of the iterated solution of Eq. (3.14a).

Now, the particle-hole interaction across two oscil-
lator shells (since the particle-hole states must have
positive parity) has strong isoscalar monopole and quad-
rupole components which produce low-lying collective
T"=0, 4"=0 and T"=O,J"=2 states in TDA. For ex-
ample, in "0 these states come at 10.4 and 15-.3 MeV,
respectively, compared to an unperturbed particle-hole

Rev. Mod. Phys. , Vol. 49, No. 4, October 'f 977



P. J. Ellis and E. Osnes: Effective operators in nuclei 811

TABLE IV. Contributions from phonons of various T",J" to the core-polarization matrix
element (d5&28= 0, T= 1~'U„~d5~2J=O, T = 1) in various approximations. All energies in MeV.

J" 3P-lh TDA BPA
Screened

TDA~
Screened

RPA SCCE(B)'

Total

0
1
2
3

5
0
1
2
3
4
5

-0.0'48

0.071
-0.629

0.072
—0.213

0.089
-0.008

0.030
-0.134

0.062
-0.065

0.018

—0.755

-0.087
0.064

—1.061
0.074

-0.229
0.086

-0.007
0.026

—0.111
0.056

-0.060
0.017

-1.232

-0.409
0.068

-1.458
0.076

-0.239
0.084

-0.006
0.023

-0.106
0.054

-0.058
0.017

—1.956

-0.061
0.059

-0.822
0.075

-0.225
0 ~ 084

—0.007
0.025

-0.114
0,055

-0.062
0.017

-0.975

—0.068
0.055

—0.912
0.073

-0.229
0.078

—0.007
0.022

-0.118
0.052

—0.062
0.016

-1.098

-0.149
0.078

-0.375
0.072

-0.103
0.271

-0.007
0.023

-0.127
0.090

-0.112
0.150

—0.190

~Kuo and Osnes, 1974.
"Kirson, 1974 and private communication.

energy && = 28' of 28 MeV. In 4oCa the situation is even
more dramatic, the corresponding energies being 3.1
and 9.4 MeV versus the unperturbed 21 MeV. Thus one
would expect strong enhancement of the core polariza, —

tion in TDA compared to lowest order. By and large
the main contribution comes, Rs shown in Table IV,
from the T"= 0,J"= 2 state, which couples more strong-
ly to the valence-particle states than does the more
collective T"= 0, J"= 0 state. This is due to the fact
that the radial density distribution of the J"=0 state has
a node approximately where the valence-particle distri-
bution is peaked, so there is a cancellation between the
contributions from the interior and exterior regions.
This cancellation is less effective when the valence-
particle state has a node; in such cases there may be a
substantial contribution from the col].ective T"= 0,J"= 0
state. For other values of T",J" the effect of summing
the TDA series is fairly small, although Table IV does
show a tendency for the T"= 0 contributions to increase
and the T"= 1 contributions to decrease. This simply
reflects the attractive (repulsive) nature of the particle-
hole interaction in T"= 0(1) states. Typical core-polar-
ization matrix elements for two valence nucleons in the
(1sOd). shell are shown in Table V, while the T= 1 spec-
tra obtained with core-polarization corrections evaluated
in lowest order and in TDA are compared in columns 5
and 6 of Fig. 31.

The mechanism behind the TDA enhancement of the
core -polarization correction becomes particularly

transparent in the degenerate schematic model of Brown
and Bolsterli (1959), where a single collective state is
pushed far away from its unperturbed position and en-
dowed with all of the transition strength . The schema-
tic model (see Brown, 1971a) assumes a separable
particle-hole interaction

f=~~M)(M~

with matrix elements

(3.20a)

(3.21a)

For the noncollective states we have

ea = s „,(M ~
P)= 0 (P 4 o.). (3.2 lb)

Inserting this into Eq. (3.18) and further assuming sep-
arable v vertices

p= g iM)(M i, (3.22)

(3.20b)

Here, ~M) is to be interpreted as a multipole operator
acting on the ground-state vacuum, so that M, =(i

~

M
I 0).

If one further assumes degenerate unperturbed particle-
hole energies E& =E,„, one easily obtains for the collec-
tive state the following energy and transition amplitude
to the ground state

TABLE V. Core-polarization contributions to matrix elements (v&J=O, T=1~'U„~v2J=O, T=1)
of the effective interaction in various approximations. All matrix elements are in MeV.

Valence
orbits

Vg V2 3p-1A b TDA b RPAb
Screened Screened

TDA" BPA" SCCE(B) '

d5/ g d~g 2
—1.236 —0.755 —1.232 —1.956

d5)~ d3(2 -3.025 -0.581 -0.915 -1.239
s~g2 s~y2 -2.049 0.046 -0.441 -4.604

-0.975
-0.786
-0.159

-1.098
—0.909
-0.280

-0.190
0.167

-0.139

~Kuo, 1967.
bKuo and Osnes, 1974.
~Kirson, 1974.
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&VI'

G„„=
i

For comparison, the lowest-order contribution (3.19)
takes the form

(3.23)

we obtain for the core-polarization correction in TDA

M~
G p „-—-g2 ' ~M)(M ~.

&y~
(3.24)

(b)
Thus, in the schematic model, the TDA result for the
core polarization is enhanced over the lowest-order es-
timate by a factor

FIG. 41. Contributions to core polarization in the HPA.

Here, each energy denominator (« —f ) ' arises from a
TDA string of bubbles [see Eq. (3.14a)]. Since we take
all relative orderings of the particle-hole vertices in
different strings, the factorization theorem (see Sec.
II.B.5) can be applied, and hence the TDA strings ca,n be
treated independently of each other. Further, as seen
from Fig. 41, terms with an even or odd number of B
vertices terminate in v or v vertices, respectively.
Thus the series (3.26a) splits into two subseries which
can easily be summed to give

(3.25)TDA eh

3P 1h ~oh+ + i

Now, the sepa. rability condition (3.20) is roughly satis-
fied by the T"=0,J'= 0 particle —hole interaction of Kuo
and Brown (Sprung and Jopko, 1972). For the T"=O, J"
= 2 interaction the separability is not quite as good, but
the TDA enhancement of the core polarization obtained
in realistic calculations (Osnes et a/. , 1971; Kuo and
Osnes, 1974) is very roughly reproduced by the simple
estimate (3.25) of the schematic model.

In the TDA the particle —hole excitations are defined
relative to the unperturbed closed-shell ground state.
However, the physical ground state of a closed-shell
nucleus contains ground-state correlations or vacuum
fluctuations, as shown in Fig. 40. If we allow for
ground-state correlations of the type indicated, core .

polarization can take place via "backward-going" bub-
bles also, as shown in Fig. 41. The inclusion of such
diagrams along with the TDA ones corresponds to cal-
culating the core excitations in the random-phase ap-
proximation (RPA). This is known to increase the col-
lectivity of the low-lying particle —hole states as com-
pared to TDA, and thus we would expect further enhance-
ment of the core polarization in RPA.

Using the schematic matrix notation introduced by
Kirson (1971), it is easy to write down the RPA pertur-
bation series for the core polarization. Defining addi-
tional vertices P (which is essentially the transpose of
v) and B as shown in Fig. 39, we have

(3.26b)
e f . e ——f —&[I/(& —f )]B

This has been shown by Ellis and Siegel (1970) to be
equivalent to

(3.27)

which was used by Osnes and Warke (1969). Here
n) and & are the RPA eigenstates and eigenvalues
for a simple discussion of the RPA, the reade r is re-

ferred to the monographs by Lane (1964) and Brown
(197la)]. Equation (3.26) is less transparent than Eq.
(3.27), but can be evaluated by matrix inversion (Za-
mick, 1969) or iteration (Ellis and Siegel, 1970) without
first having to solve the RPA equations.

The form of Eq. (3.27) is analogous to that of the TDA
expression in Eq. (3.18), which can be rewritten as

i n)(n i

TDA- —~ (3.16')

where ~o.) and e are the TDA eigenstates and eigen-
values. Thus, if the core polarization is dominated by
a single collective state (as is often the case in realistic
calculations), the RPA result will be enhanced over the
TDA result if I && . In fact, further enhancement
comes from the RPA wave function in the numerator and
is due to correlations between TDA bubbles induced by
the & vertices. These features can be neatly illustrated
in an extended version of the degenerate schematic mod-
el, discussed above, in which B vertices of separable
form

1 1 1 1
+ V Q Q Q V+eeo ~f « f « f « f— ——(3.26a)

(3.28)

1 1 1 1 1 1»„—- v v+P R v+v B B vf e — —e f e f —« fe —f-—

are included. The energy of the collective state is now
given by (Brown, 1971a)

FlG. 40. Ground-state correlation diagrams contributing to the
energy of a closed-shell nucleus. Note that if the first diagram
is explicitly included, the G matrix xnust be defined in such a
way that no double counting occurs.

t

'I /2

& ~+ 2X QM) (3.29)

Gomparison with the corresponding TDA energy & of
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Eq. (3.21a) shows that the ground-state correlations
serve to lower the collective state. Furthermore, this
effect can be quite dramatic. For example, if the ener-
gy of the TDA state is &&,» the RPA state will come at
zero energy, corresponding to instability of the ground
state. As remarked above, the ground-state correla-
tions also affect the wave function of the collective
state. Thus, in RPA, the transition amplitude to the
ground state is

&ph fph

(M~+)=
&u

compared to [Z,.M', ]' ' in TDA (Brown, 1971a). Hence,
for an attractive force (X&0), the transition strength is
enhanced in RPA.

Then consider the RPA estimate of the core polariza-
tion in the schematic model. By simple algebra we ob-
tain from Eq. (3.27)

Bpp

FIG. 42. Second-order corrections to the particle-hole (a)
and ground-state correlation (b) vertices.

(3.31)

Thus the RPA result is enhanced over the lowest-order
one [see Eq. (3.24)] by a factor

(3.32)

This can be compared with the corresponding TDA re-
sult of Eq. (3.25). We have thus demonstrated that the
enhancement of the core polarization obtained in RPA for
an attractive particle-hole interaction is due partly to
correlations in the wave function (leading to increased
transition strength) andpartly to a decrease in the ener-
gy»

Again, the results of realistic calculations (Kuo and
Osnes, 1974) are in qualitative agreement with the pre-
dictions of the schematic model. In "0 collective T"
=O, J'=0 and T"=O,J"=2 particle-hole states are ob-
tained in RPA at 5.4 and 14.5 MeV, respectively, com-
pared to 10.4 and 15.3 MeV in TDA. In Ca the T"=0,
J'= 0 state has an imaginary energy in RPA —indicating
instability of the ground state —while the T"= O, J"= 2

state comes at 6.8 MeV, the corresponding energies in
TDA being 3.1 and 9.4 MeV. The contributions to the
diagonal T = 1,J = 0 (d, ~,)' matrix element from these and
other (less collective) core excitations are given in
Table IV, and comparison with the corresponding con-
tributions in lowest order and TDA shows that the en-
hancements of the T"=O,J"=0 and T"=O,J"=2 contri-
butions are in rough agreement with the schematic mod-
el. Similar enhancements are reflected in the total core-
polarization matrix elements shown in Table V. We
further see from Fig. 31 (column 7) that evaluating the
core-polarization correction in RPA leads to a dramatic
increase in the binding energies of the low-lying states
in "Q. In 'Ca the effect is still more pronounced, the
calculated ground-state energy being about -7 MeV (ex-
cluding of course the effect of the collective monopole
state, which has an imaginary energy), compared to an
experimental value of about -3 MeV.

This strong enhancement of the core polarization is
clearly not physical. This is also obvious from the cal-
culated energies of the collective isoscalar monopole
and quadrupole states. Experimentally, there are sim-
ply no such states at these low energies. From inelastic
scattering data there is, however, evidence for a broad
resonance at approximately 60-70 A '~' MeV (corre-
sponding to 24 —28 MeV in ~60 and 18—20 MeV in ~oCa)
which could be the isoscalar monopole or quadrupole
state, but most likely the quadrupole one (Satchler,
1972).' Reasonable estimates of these positions have
been obtained by introducing a phenomenological density
dependence in the particle-hole interaction (Sharp and
Zamiek, 1973, 1974). However, to our knowledge, no
density-independent realistic interaction has succeeded
in reproducing the positions of the isoscalar monopole
and quadrupole states.

In view of this, one was led to consider corrections
to the particle-hole interaction similar to those intro-
duced in Fig. 30a for the particle-particle interaction.
Various such corrections are shown in Fig. 42(a). Here
the term f „ is a core-polarization correction —but now
in the particle-hole interaction. In physical terms it
may be interpreted just as G3p /pe in Fig. 32—with the
valence particle e, replaced by a hole. However, con-
trary to G»,„, f,„ is mainly repulsive, thus making the
T"= 0 particle-hole interaction less attractive. The
effect of f,„on the TDA bubbles is illustrated in Fig. 43.
First, we note that diagram (a), which is obtained using
the bare particle —hole interaction f, is equivalent to
diagram (a'), since antisymmetrized particle —hole

' vertices are used. It is easy to see that inclusion of the
correction f „gives rise to diagrams of the form (b). ln
electron gas theory, f „is referred to as the self-
screening of the exchange term, and we shall adopt this
terminology here. We emphasize that the screening-
by the exchange of a particle-hole bubble —must take
place in the exchange term. In the direct term, bubbles
are automatically generated by diagonalization (or itera-
tion) of the bare particle —hole interaction, and thus eor-

3Experimental data for ~ 0 indicate a very broad resonance
centered at 21 MeV (Knopfle et &., 1975).
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(a)

FIG. 43. Compar ison of TDA diagram (a, a') obtained with bare
particle-holevertices, and TDA (b) and H, PA (c) diagrams ob-
tained with vertices including screening corrections to second
order.

rection terms like f'„ in Fig. 42(a) a.re not included to
avoid double counting. The other corrections shown in
Fig. 42(a) are less important than f,„(Osnes et al. , 1971)
and will not be further discussed here, except that it
should be pointed out that f» is only allowed if a doubly
partitioned Hilbert space is used, as discussed in the
previous Sec. III.C.

Corrections of the type discussed above may also be
introduced for the ground-state correlation vertex &,
as shown in Fig. 42(b). Here B,„ is analogous to f,„ for
the particle —hole interaction and serves to make B less
attractive. The effect of B» (and f,„) on the RPA is
shown diagrammatically in Fig. 43(c). As discussed in
some detail by Kirson (1971), these corrections serve
to prevent ground-state correlations from building up
in the core, thus reducing the difference between the
RPA and TDA. Furthermore, the TDA phonons will be
pushed up in energy, since f,„ is predominantly repul-
sive. Both these features are observed in realistic cal-
culations of the 21~ core excitations of interest here
(Osnes et al. , 1971; Kuo and Osnes, 1973, 1974). In
"0 the inclusion of all the second-order corrections
shown in Fig. 42 (except of course f,'„) served to increase
the energies of the T'" = 0, J"= 0 and T"= 0, J"= 2 pho-
nons from, respectively, 10.4 and 15.3 MeV to 18.5 and
20.2 MeV in TDA, and from 5.4 and 14.5 MeV to 18.1
and 20.0 MeV in RPA. Furthermore, the RPA transi-
tion strengths were reduced by factors of 2.9 and 1.1
for the monopole and quadrupole states, respectively.
In ' Ca the effect of screening was found to be spectacu-

, lar, raising the monopole state from 3.1 to 13.3 MeV in
TDA and from an imaginary energy to 12.7 MeV in RPA.
The quadrupole state was raised from 9.2 to 15.7 MeV

in TDA and from 6.8 to 15.5 MeV in RPA. Also, the
quadrupole transition strength was reduced by a factor
of 1.9 in RPA. It is interesting to note that the positions
of the monopole and quadrupole states obtained in the
screened TDA and RPA are not too far from those given
by Satchler (1972). In passing we remark that similar
screening effects have been found for the 1k~ particle—
hole states in various closed-shell nuclei by de Takacsy
(1967), Sartoris and Zamick (1967), Barrett (1968),
Dieperink et al. (1968), Kuo (1968), and Blomqvist a.nd
Kuo (1969).

Now, the effect of screening on the core polarization
of the effective inte raction is easily obtained by substi-
tuting the screened phonons into Eqs. (3.18') and (3.27)
for the TDA and RPA, respectively. As shown in Table
V, the matrix elements are strongly reduced in magni-
tude compared to the ordinary TDA and RPA. This
reduction is, as expected, mainly due to the reduced size
of the T"= O, J'= 2 contributions, as shown in Table IV.
The corresponding energy spectra for "0 are displayed
in columns 8 and 9 of Fig. 31 and show very good agree-
ment with the experimental energy spectrum —probably
too good, in view of all the contributions still left out.

The above procedure, in which the particle —hole inter-
action was corrected by screening (and other processes)
to second order, was generalized by Kirson (1971, 1974)
to include screening to arbitrary order. Thus a: renor-
malized particle —hole interaction f„was obtained by
summing the series

, 1,1 1,1 1 -1f =f+v —v+v —f —v+v —f —f —v~' o

E

f+ v'[I/(~ f„)]v, — (3.33)

1 1 1B„=B+f„—B+f„f„—B+'—
=B+f B.1 (3.34)

where the vertices f, v, and v' are all defined in Fig. 39.
Consider the iterative solution of Eq. (3.33). The first
iteration will replace f„by f on the right-hand side,
thus generating the TDA series shown in Fig. 44(a). The
next iteration will use this set of diagrams for f„on the
right-hand side, producing the additional diagrams indi-
cated in Fig. 44(b), where the particle —hole bubbles are
nested inside one another. The next iteration will nest
the bubbles one step more deeply, as shown in Fig.
44(c), and so on. This requires some care with the en-
ergy denominators, which are only schematically treated
in Eq. (3.33). It is also worth realizing that while Eq.
(3.33) explicitly shows first an interaction with the parti-
cle line (v) and then an interaction with the hole line
(v'), terms with this ordering reversed are also to be
included. This corresponds to exchange of the external
particle and hole lines.

The physical meaning of Eq. (3.33) should be clear.
One obtains the screened particle —hole interaction f„
by renormalizing the bare interaction f by the same
particle —hole excitations which are generated by the
screened interaction f„. In a similar fashion, the
ground-state correlation vertex & may be screened to
arbitrary order by
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particular, the contributions from the T"= O, J"= 2
particle —hole states are reduced in magnitude by a fac-
tor of about 2. Kirson (1971, 1974) then went on to gen-
eralize the vertex corrections v» and v» with particle-
hole intermediate states to all orders by

1 1v„=v+f v+P B,

v„'=v'+f v'+P' B. (3.35)

+ 0 ~ ~

A further generalization was obtained by replacing here
the bare particle —hole and ground-state correlation ver-
tices by the fully screened ones of Eqs. (3.33) and (3.34).
But then, inorder to obtain a completely self-consistent
treatment of the particle —hole interaction, one needs to
use the renormalized v and v' vertices of Eq. (3.35) in
evaluating the screened f„and B„vertices of Eqs. (3.33)
and (3.34). Thus one finally arrives at the self-consis-
tent coupled equations [SCCE(B)]of Kirson (1974)

1f„=f+ v„' v„,

1 1v„= v+f„v„+P„B„,C—

FIG. 44. Diagrams included in the particle —hole interaction
when it is screened to all orders.

v„'= v'+f„.v„'+ P„'

(3.36)
The reader is again warned that this is a schematic
equation. It is understood that the interaction f„here
acts between all particles and holes which lie in different
propagating particle —hole pairs (compare Fig. 41 with
Figs. 43 and 46), since Eq. (3.33) already allows for
interactions within a given propagating particle-hole
pair. Now we can obtain the fully screened TDA and
RPA core-polarization corrections from Eqs. (3.14) and
(3:26) by replacing f and B by f„and B„, and they are
found to be very similar to those obtained for the second-
order screening corrections.

The renormalization processes discussed above all
serve to modify the propagation of a particle-hole pair,
and have thus been termed pxopagatox renormalizations
by Kirson and Zamick (1970). Other important processes
which affect the core polarization of the effective inter-
action are the so-called vertex renormalizations, which
modify the coupling of a valence particle or hole to a
particle —hole pair. These processes can be quite im-
portant and were found to give rise to large third-order
diagrams [see Fig. 30(c)] as discussed in the previous
Sec. III.C. Thus Kirson and Zamick(1970) were led to re-
normalize the v vertex by the second-order corrections
v~„, v~, and vM, shown in Fig. 45 and obtained large re-
ductions of the core polarization in the ordinary RI'A. In

[In Kirson's early version (1971) of SCCE, the screen-
ing of the B vertices was not included. ] The above equa-
tions may be solved by iteration and the resulting ver-
tices used in Eq. (3.26) to evaluate the core polarization
of the effective interaction. This way all core-polariza-
tion diagrams are included which contain particle-hole
propagation, screening, and vertex renormalizations to
arbitrary order, as illustrated by the example in Fig.
46. This method has been applied to the degenerate
schematic model by Sprung and Jopko (1972), and realis-
tic calculations have been carried out for mass 18 by
Kirson (1971, 1974) and for mass 42 by Jopko and
Sprung (1973). Very small core-polarization correc-
tions were obtained (see Tables IV and V), and the re-
sulting spectra were not very different from those cal-
culated with the bare G matrix (see Fig. 31, column 10).

I'lG. 45. Second-order corrections to the v vertex of Fig. 39.
FIG. 46. Typical diagram arising in the self-consistent cou-
pled equations (3.36).
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This result is rather perplexing, since it appears to
be in strong disagreement with experiment —and hence
with the simple and physically appealing second-order
result of Kuo and Brown (1966) shown in Eq. (3.12).
Thus it is necessary to consider processes which were
neglected in the SCCE. Although, as pointed out by Kir-
son and Zamick (1970), the processes included in the
SCCE account for almost all of the third-order contribu-
tion (however, the screening corrections do not come in
until fourth order), processes with particle-particle
intermediate states were consistently left out by Kirson
to avoid double counting of excitations already included
in the G matrix. Such processes are, however, legiti-
mate in a double-partition approach, as discussed in the
previous Sec. III.C. For instance, one mould obtain an
additional second-order vertex correction v» with
particle-particle intermediate states, as shown in Fig.
45. This term is expected to have opposite sign to the
corresponding terms v» and v» with particle-hole inter-
mediate states and hence to reduce somewhat the strong
vertex corrections observed above. To get some esti-
mate of this effect, consider the lowest-order vertex
corrections to the core-polarization diagram shown in
Fig. 47. As found by Barrett (1974), the introduction of
particle —particle intermediate states [diagram (e)] in a
double-partition approach serves to reduce the sum of
diagrams (b) and (c) (with particle —hole intermediate
states) by roughly one quarter. A similar result is ob-
tained by assuming that a double-partition approach can
be applied to the matrix elements of Kuo and Brown
(Barrett, 1972). In addition, there is a contribution
from the hole —hole interaction [diagram (d)] which is
small, but also serves to reduce the vertex corrections.
Thus the second-order vertex corr'ections are reduced
by approximately one third due to particle-particle and
hole-hole intermediate states. Similarly, there are
particle-particle and hole-hole contributions to the
second-order screening corrections, as shown in Fig.
42. These were included in the calculations of Osnes
et al. (1971)and Kuo and Osnes (1974) and thus explain
why a slightly larger screening effect was obtained
there, compared to Kirson's work (1971,1974). In view
of the above, it might be interesting to include such
effects with more recent G matrices designed for a
double-partition approach, to see if the SCCE result of
Kirson is significantly changed. However, as discussed
in the previous Sec. III.C, there are further neglected
effects such as contributions from high intermediate
states, off-shell effects in the G vertices, and HF cor-
rections. As all of these effects tend to make the low-

order contributions smaller in magnitude, it is at the
present stage difficult to see how we can get enough core
polarization from partial summations to satisfy Eq.
(3.12).

In passing we mention that schemes similar to the
SCCE of Kirson have been used in Landau theory to cal-
culate the phonon-induced part of the quasiparticle inter-
action in liquid 'He (Babu and Brown, 1973) and nuclear
matter (Sjoberg, 1973). Relatively poor results were ob-
tained for liquid 'He, where "soft" phonons (spin fluctua-
tions) give rise to very large contributions so that multi-
ple phonon exchange cannot be neglected. The method
appears to be more adequate for nuclear matter, where
there are no soft modes. Further, it has been noted by
Hackman (see Sjoberg, 1973) that the SCCE is a conserv-
ing approximation in the sense that it conserves the
Pauli principle sum rule in Landau theory.

A somewhat different description of the intermediate
states has been examined by Goode and Kirson (1974;
seealso Goode, 1971).Rather than using screened TDA
phonons, they take the states obtained from a diagonali-
zation of the 2k~ 1P-1k and 2P-2h excitations of the "0
core (these states couple to the valence particles only
through their 1P-1ji components). This procedure in-
cludes the TDA diagrams, some screening diagrams,
and also some new types of diagrams. Some enhance-
ment over TDA is obtained, but the efficacy of the vertex
corrections is such that, when they are included, the
results become close to the original SCCE values ob-
tained by Kirson (1971).

Finally, a set of diagrams with 4p-2k intermediate
states has been summed by Rajewski and Kirson (1972),
following an approach similar to the SCCE used by Kir-
son (1971). Only a small (and attractive) effect was ob-
tained, which is reasonable since the correlations —es-
pecially among the four particles —responsible for
building up deformed states (see Sec. IILC. ) were not
included.

2. Effective charge

As seen in Sec. III.C, the calculation of the effective
charge is closely parallel to the calculation of the effec-
tive interaction. Thus partial summations similar to
those discussed above for the effective interaction have
been carried out for the effective charge. In fact, the
TDA and RPA summations were first carried out for the
effective charge by Siegel and Zamick (1969, 1970).

In TDA we sum the diagrams shown in Fig. 48(a).
Their contributions to the effective E2 operator of Eq.
(3.13) is easily found to be

(3.37)

Kuo —Brown -0.755

(b) ( )
0.478 0.295 -0.069 -O. I 85

Barrett DP -0.504 0.288 O. t66 -0.047 -O.IO2

FIG. 47. Core polarization with bare (a) and corrected e)-e) v

vertices. The calculated values are taken from Barrett, 1972,
1974; the Barrett DP results are quoted for a starting energy
of -3 MeV.

where n and j,k label TDA eigenstates and unperturbed
particle —hole states, respectively. Expression (3.37)
is closely similar to Eq. (3.18) for the effective interac-
tion, and a similar notation is used. In particular, the
vertices are expressed in the particle —hole channel and
the external lines should be coupled accordingly. The
results of calculations for the TDA are shown in Table
VI. %e see that both proton and neutron effective
charges are enhanced. We can understand this in the
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isoscalar and isovector parts of the operator separately,
we can relate these to the proton and neutron effective
charges by

eeff(proton )
t [eeff(7 0) + eeff(+ 1)] (3.39)

+ ~ e ~ ~

FIG. 48. TDA series for the effective charge (a) and diagraxn
contributing to the BPA series (b).

same way as for the effective interaction by separating
the contributions to the effective charge from the iso-
scalar and isovector parts of the quadrupole operator.
The isospin separation of the operator is obtained by
writing

b» ~ g ex'1', (r")
pro tons

= Q —(1 —7,(f'))r', Y,„(&f) = $,„(7 = 0)+ h „(~= 1)

h, e(V = 0) = Q Xf'Y,„(f',), — .

&e, (r= 1)= —z 2&,(f')f",~„(&;). (3.38)

TABLE VI. The effective charge for various approxilnations to
the core polarization.

Here we have used 7,= -1 and+ 1 for a proton and neu-
tron, respectively. Calculating effective charges for the

Now the isoscalar effective charge will involve quadru-
pole T"= 0 states and must therefore be enhanced over
the lowest-order values, since a collective state is
pushed down. In fact, in the schematic model it is
straightforward to show that identical enhancements
are obtained for the effective charge and the quadrupole
contribution to the effective interaction; however, this
is only roughly borne out by the actual calculations. As
regards the isovector case, the general tendency is for
the T"= 1 particle-hole states to be pushed up, as the
interaction is mainly repulsive, and further there is
little collectivity. Thus the isovector contributions are
not very different from those obtained in first order.

If we now include the diagrams with "backward-going"
bubbles, such as that shown in Fig. 48(b), we obtain the
RPA estimate of the effective charge. The results are
given in Table VI and show significant enhancement.
However, the effect is much more dramatic (and unphys-
ical) in 4'Ca because, as we have previously mentioned,
the T' = O, J"=2 collective state is unstable and drops
towards zero energy. Fortunately, the phonons can be
stabilized by screening, as discussed for the effective
interaction. Thus the results in Table VI are similar to
those obtained for the effective interaction in Table V,
namely the screened RPA is close to the screened TDA
and there is not too much difference between TDA and
the screened TDAe It is also worth pointing out that
when screening is included, very similar enhancements
are found in mass 17 and mass 41. Furthermore, the
mass 41 effective charges p roduce reasonable transition
rates in mass 42 and mass 43 nuclei when used together
with wave functions calculated with the corresponding
effective interaction (Kuo and Osnes, 1975); in masses
18 and 19 the results are not quite as good (Kuo and
Osnes, 1977).

Just as for the effective interaction, Kirson (1974)
went on to include both screening and vertex renormali-
zations to all orders in his SCCE. The results in Table
VI show values close to those obtained in first order.
The quenching obtained here is smaller than for the
effective interaction. This is partly because we only
have quadrupole states here, whereas for the effective
interaction the other multipoles add some repulsion.
Further, there is here only a single valence-particle
to core-phonon vertex which can suffer renormalization,
whereas for the effective interaction there are two such
vertices.

Approximati
ransition dg/g d5/2

N P

1st order ~

TDA
BPA
Screened TDA
Screened BPA
SeCE{B)b

0.33
0.50
0.66
0.40
0.44
0.32

1.10
1.32
1.48
1.21
1.25
1.13

~Kuo and Osnes, 1973.
"Kirson, 1974 and private coxnmunication.

d3/2-sg/
N P

0.24 1.05
0.32 1.17
0.38 1.23
0.28 1.12
0.30 1.14
0.20 1.03

Summary. %e have discussed various exact summa-
tions of infinite subsets of diagrams. Firstly, the TDA
series can be generated by using the eigenstates of the
particle-hole interaction, instead of unperturbed states
in the core-polarization diagram. This results in en-
hancement of the effective operators, due mainly to the
collective isoscalar quadrupole state which is strongly
pushed down. The RPA gives additional enhancement
and often tends to be unstable. However, by screening
the particle —hole interaction, the TDA result is essen-
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tially regained. The screened result can in turn be cut
down by a class of vertex renormalization effects; the
effective interaction is reduced to roughly the bare re-
sult, whereas the effective charge is reduced to the
first-order result.

&~
) &)P&+

p occupied
(3.40)

where the matrix elements of V» are understood to be
antisymmetrized. The first and second terms in Eq.
(3.40) give, respectively, the matrix elements of the

E. Calculations in a Hartree-Fock basis

All the calculations we have discussed so far have been
concerned with various methods of treating the pertur-
bation V, while the unperturbed Hamiltonian H, has al-
ways been chosen to be a harmonic oscillator Hamilto-
nian. This is convenient, but the choice of H, is at our
disposal. Recall from Sec. II.A that II, is defined by
adding a one-body potential U to the kinetic energy oper-
ator; the perturbation V then contains —U. Since we are
not able to carry out an exact calculation, the results we
obtain will certainly depend on the choice of H, . Intui-
tively one would expect that the best results would be
obtained, with a minimum of calculation, if Uwere chosen
to be the average potential experienced by an individual
nucleon. This is not knomn exactly, of course. At a
phenomenological level one might choose U to be a
Woods —Saxon rather than a harmonic oscillator poten-
tial —the two are compared in Fig. 49. A more funda-
mental microscopic choice for U is the Hartree —Fock
(HF) potential, with which we shall be principally con-
cerned in this section.

We define our unperturbed single-particle wave func-
tions and energies by carrying out a HF calculation in
the closed-shell system —in our example "O. This has
the advantage that it yi, elds a potential with spherical
symmetry, so that the single-particle states have a def-
inite angular momentum. Hence we are just modifying the
harmonic oscillator radial wave functions and energies.
It should be reasonable to use these results for a sys-
tem with two nucleons outside the closed shell —"Q in
the present case. Now the HF single-particle equation
reads

FIG. 50. Self-energy and (-U) insertions and convention for
the sum, which is identically zero in a HF basis.

kinetic energy operator and of the HF one-body poten-
tial which arises from the interaction with the particles
occupying the states p of the closed-shell ground state
(e.g. , p would run over the four Os and 12 OP states for
"0, c.f. Fig. 1). We can represent this one-body inter-
action by diagrams (a) and (d) of Fig. 50. Diagram (a)
will be applicable if & and P both refer to filled shells
(vertical line is then a downgoing hole line) or empty
shells (particle line), while (d) arises if one of n, P
refers to a filled sheU and the other to an empty one.
Now, since diagram (a) by definition represents the
one-body potential U, while the cross in diagram (b)
stands for —U, the sum of diagrams (a) and (b), i.e. ,
diagram (c), is identically zero. Similarly, diagram (f)
is zero. Thus, when the HF choice is made for Ho, we
can ignore any diagrams in our perturbation expansion
which have diagrams (a), (b), (d), or (e), or equivalent-
ly (c) or (f), inserted in them.

We can also view the above in terms of a partial sum-
mation. Suppose we take H, to be a harmonic oscillator
Hamiltonian, so that the insertions (c) and (f) of Fig. 50
are nonzero in general. Now take, say, the core-polari-
zation diagram and sum up these insertions to all or-
ders, thus including complicated diagrams such as that
of Fig. 51(a). This is equivalent to evaluating the core-
polarization diagram in a HF basis. The correspondence
is rather clear for the energy denominator, which is ob-
tained by summing the diagonal insertions as discussed
in Sec. II.B.6 and Appendix B. The off-diagonal inser-
tions will replace each pure harmonic oscillator wave
function by a linear combination of oscillator wave func-
tions, which diagonalizes Eq. (3.40). An expansion in
harmonic oscillator wave functions is, in fact, the usual
method of solving this equation.

0
-40

i( ---
--

FIG. 49. Comparison of Woods-Saxon and harmonic oscillator
potentials for a light nucleus such as ~6G. The radius of the
Woods —Saxon well is indicated and the zero of the oscillator
vrell is arbitrarily adjusted.

FIG. 51. Typical diagrams in an oscillator basis which are
implicitly summed when the second-order core-polarization
diagram is evaluated in a Hartree-Fock basis.
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We have not yet touched on the self-consistericy re-
quirement of Eq. (3.40), namely that the wave functions
of the filled states p which are used in setting- up the
one-body HF potential should be the same as those ob-
tained by solving the single-particle eigenvalue problem.
This self-consistency requirement is usually met by an
iterative procedure. Starting with an initial guess for
the wave functions p, the HF potential can be calculated
and the eigenvalue problem of Eq. (3.40) solved. This
yields new wave functions for the occupied states, which
yield a new HF potential, for which the eigenvalue prob-
lem can be solved again. And so on, until self-consis-
tency is achieved. From a diagrammatic point of view,
the self-consistency condition means that additional dia-
grams are being summed. Thus in Fig. 51(a) the HF
insertions all have pure oscillator wave furietions for
the filled core states [labeled p in Eq. (3.40)]. This re-
striction is removed by including diagrams of the type
shown in Fig. 51(b), Ieading to self-consistency for the
core orbitals.

We refer to standard quantum mechanics texts for a
more thoroughgoing discussion of HF theory. It is shown
there that the HF choice for the single-particle orbits is
the optimum one, in the sense that the energy of the
ground state is minimized.

There is a final point to be made, namely, that we
must replace the potential V» by a 6 matrix which is a
function of the starting energy. This involves the single-
particle energies for- which the HF choice should be
made. Thus there is an additional self-consistency re-
quirement and we need a so-called Brueckner-Hartree-
Fock calculation. This additional self -consistency re-
quirement is often ignored in calculations of effective
operators, and we shall not discuss it further here, but
simply refer to the work of Davies and Baranger (1970)
and Becker et al. (1974) on closed-shell systems.

With a HF unperturbed Hamiltonian the effective inter-
action between two valence nucleons in the (IsOd) shell
was calculated to second order by Ellis and Mavromatis
(1971), using the Sussex matrix elements (Elliott et al. ,
1968). The spectra obtained in "0 for the bare interac-
tion and the bare interaction plus core polarization, are
shown in Fig. 52. The rather strong differences from
the corresponding oscillator results may be, qualitatively.
understood by reference to Fig. 49, assuming that the
Woods-Saxon well is a reasonable approximation to the
HF potential. The region where the Woods-Saxon and
oscillator potentials are similar will be important for
those orbitals which are strongly bound (in our case the
Os and OP states), so the radial wave functions should
differ little. However, for the weakly bound M, /2 and
1s, /, valence orbitals, the finite nature of the Woods-
Saxon potential will allow the wave functions to leak
further out than in the oscillator case. A similar effect
is seen for the Od, &, valence orbital and the (lpOf) or-
bitals, although it should be understood here that we
are dealing with unbound states. The tails of the wave
functions should therefore oscillate, whereas they will
decay to zero in the HF calculation, since we expand in
a finite oscillator basis. We nevertheless hope to rep-
resent reasonably well the important interior region of
the resonant continuum wave functions. In summary,
the HF wave functions for the (lsOd) and (1POf) orbitals

2+
p+

2+
p+

p+
&+

9are Bare+3p —Ih + 3p —Ih
{2+45m) {2+450) )

OS C IL L ATOR BAS I S HARTREE —FOCK BASIS

FIG. 52. Comparison of oscillator and HF spectra for O.
Results are shown for the bare interaction and for the bare in-
teraction plus the second-order core-polarization diagram
(from Ellis and Mavromatis, 1971).

TABLE VII. Comparison of oscillator and HF effective
charges.

ransition d5/2 d5 /2
N P

/g-sg/
N I

0th order ~ Osc.
HF

Osc.
HF

0.63
0.16

1 0
1.10 0

1.48 0.31
1.19 0.14

1
1.63

1.19
1.70

Ellis and Mavromatis, 1971.
b Ellis and Osnes, 1972b.

are more spread out than their oscillator counterparts.
Thus interaction matrix elements involving these states
will be weakened, and this is reflected in the results of
Fig. 52. We may remark that the bare spectrum shows
a strong shift in the second 0' state due to a 1 MeV
change in the diagonal (1s,&,

)' matrix element. This
appears desirable as we have pointed out that it is the
third, rather than the second, experimental 0' level
which is predominantly of (sd)' structure.

On the basis of the above remarks it would be expected
that the second-order diagram with 4p-2k intermediate
states [see Fig. 30(a)] and the TDA and RPA series
would be weakened in a HF basis; this is found to be the
case (Ellis and Mavromatis, 1971; Ellis and Osnes,
1972a). Including these effects gives little change in the
results shown in Fig. 52.for the bare interaction plus
the lowest-order core-polarization term.

In Table VII we show the results for the effective
charge (Ellis and Mavromatis, 1971; Ellis and Osnes,
1972b). Since we still normalize by dividing by the pure
oscillator matrix elements [see Eq. (3.13)], the bare,
zeroth-order values for protons are just given by (x')»/
(~)«. The above remarks indicate that this ratio will
be greater than unity. The values +re quite state depen-
dent, as the Od, /, valence wave function is least affected
by the finite nature of the Woods-Saxon well. This is
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reasonable since this state is the most strongly bound
and its wave function is nodeless. The enhancement seen
here for protons seems to be needed if the effective
charge is to be boosted towards the experimental value.
The results of an RPA calculation are also shown in
Table VII; intermediate states corresponding to 2 and
4k~ excitations in an oscillator basis were included
here. Clearly, the RPA diagrams are strongly reduced
when we switch from an oscillator to a HF basis.

Thus we have seen for both the effective interaction
and the effective charge that, by changing from an oscil-
lator to a HF basis, rather large effects are obtained
which, on the whole, lead to poorer agreement with the
experimental data. At least the qualitative trends in the
calculations should be reliable. Indeed, Kohier (1974)
has pointed out that since core-polarization effects cor-
respond physically to disturbing the closed-shell core,
they will be smaller if the core is initially in a state of
equilibrium. A HF. calculation minimizes the total ener-
gy of the core, which of course corresponds to an equili-

' brium condition. A related point is the improved con-
vergence often obtained in model calculations when one
switches to a HF basis (Anastasio et al. , 1976; I einaas
and Kuo, 1976a,; Starkand and Kirson, 1976). The de-
tailed quantitative results, on the other hand, will be
sensitive to the particular HF calculation carried out,
since they depend strongly on the wave functions. The
bare results seem to be quite well established, since
they compare nicely with calculations performed with
Woods —Saxon wave functions (Kahana et al. , 1969;
Siegel, 1970). On the other hand, the size of the core-
polarization effects, discussed above, is less certain.
Thus Malta (1972) has used modified Sussex matrix ele-
ments in a HF calculation, and the results available show
a smaller reduction with respect to the pure oscillator
values. This appears to be mainly due to the occupied
orbitals of the "0core, which have larger and more
realistic radii in her calculations. Model simulations
of HF wave functions tend to confirm her results (Goodin
et al. , 1977). It seems that on switching from an oscil-
lator to a HF basis, it is reasonable to associate a re-
duction factor of 0.7 with each vertex entering the dia-
gram. This is only a rough, over-all characterization
of course; see Goodin et al. (1977) for more details.
Further study of HF effects, and indeed of the whole
question of the choice of unperturbed basis, is certainly
needed.

We have here discussed the HF choice for the spheri-
cal one-body potential. It is well known, however, that
quadrupole deformations of the single-particle potential
play an important role in nuclear structure. It would
seem important to try to include both spherical (mono-
pole) and quadrupole effects consistently ab initio.
Some interesting model calculations in this spirit have
been made (Harvey, 1975; Harvey et al. , 1976), and
applications to the actual problem at hand are in pro-
gress.

Summary. By choosing an oscillator single-particle
potential so that the wave functions of the filled shells
overlap well with those obtained in a Hartree-Fock cal-
culation, one finds that the wave functions of the valence
and empty shells extend much further out in the HF

case. This is responsible for the reduction in the mag-
nitude of the core-polarization diagram and the TDA and
RPA series when the unperturbed harmonic oscillator
Hamiltonian is replaced by a HF Hamiltonian. The bare
interaction is also weakened, while the bare proton
effective charge is increased, since the matrix element
of r' is involved.

eff D' f D (3.42)

since

ff.„I &~& = E; I 4& (3.43)

Of course, further work would be needed to extract the
purely two-body effective interaction U~ from H„f
since, for instance, one-body single-particle energy
terms will be present as well. We could also obtain,
say, an effective E2 operator by using the full eigen-
vectors and the valence space projections.

While this is apparently straightforward, there are,
in fact, disadvantages to the matrix approach. Firstly,
only a very limited number of configurations can be
treated, albeit exactly, if the size of the matrices is to
remain tractable. For instance, the prototype calcula-
tion of "0 includes, in addition to the (sd)' valence
states, all 3p-1h states of 28m unperturbed excitation
energy. There are 213 such states for J=0, and for
J'& 0 the figure is much larger. [The few states which
involve the (2sldOg) orbitals are normally ignored. ]
This is already a big calculation, so it becomes difficult
to investigate the effect of including additional configur-
ations. Perturbation theory is, in principle, more flex-
ible here in allowing the important physical processes
to be isolated without arbitrary space truncations.

A second difficulty with the matrix approach lies in
the extraction of the two-body effective interaction from
Eq. (3.42). This can be done in the case of a 0 plus
28m space (Ellis, 1975), but no completely general tech-
nique is available. I et us confine our attention to the ..simplest case, namely the prototype calculation men-
tioned above, with the assumption that the coupling be-
tween the 1p-1h states and the ~'0 closed-shell ground
state vanishes [i.e., HF insertions of the type shown in
Fig. 50(f) are zeroj. We mentioned above that the
single-particle energy terms are present in Eq. (3.42).

F. IVlatrix diagonalization methods

At first sight, it might seem that the simplest ap-
proach to effective operators wouM be to set up and dia-
gonalize a large matrix, thus solving the Schrodinger
equation exactly in a large, but truncated, Hilbert
space. An effective interaction which repIoduces d of
the large-matrix eigenvalues E,' could then be obtained
in the following way. Take, as usual, the projections

~
P~) of the large-matrix eigenvectors on the smaller

valence space. Now, as we have remarked, these will
not be orthogonal, but we can always find a second set
of vectors

~
PD) such that

&g I S.') =&4 p.*& = 5, , (3.41)

These two sets of vectors are said to be biorthogonal.
Then, the effective Hamiltonian operator is clearly
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TABLE VIII. Comparison of matrix elements (v~2J= 0, T= ll'OJv228= 0, T= I) of the effective in-
teraction derived from order-by-order perturbation calculations, TDA, and matrix diagonal-
ization. All matrix elements are in MeV.

Approximation
alence orbits

vg = d5/2 82

Non-HF 1st order ~

1st+ 2nd order ~

1st+ 2nd+ 3rd order
TDA"
Matrix diag. ~

-1.236
-1.991
-1.720
-2.469
-1.613

-3.025
-3.605
—3.065
-3.939
-2.975

HF 1st+ 2nd+ 3rd order
Matrix diag. ~

-1.376
-1.595

-2.914
-2.727

~Starkand and Kirson, 1975, 1976.
bKuo and Osnes, 1974

They can be evaluated by carrying out the analogous
calculation in "0 [I.e. , (sd) valence state plus 21'u&

2P-1h states]. This is not the whole story, however,
since Eq. (3.42) also contains contributions from un-
linked diagrams (Mavromatis, 1973; Goode, 1975).
To see that this is so, recall from the discussion of
Sec. II.C that the unlinked diagrams of Figs. 11(c) and
12(a) canceled. Now the folded diagram of Fig. 12(a)
will be included in the matrix calculation since it is
essentially the product of two diagrams, each involving
a 3P-Ih intermediate state. The nonfolded diagrams of
Fig. 11(c), on the other hand, will not be included, since
they involve a 4p-2h intermediate state and this is not
present in the matrix. Thus contributions from unlinked,
folded diagrams will be present in Eq. (3.42) and these
can be evaluated by the technique of Starkand and Kirson
(1975) and Ellis (1975). Then, at last, a linked two-body
effective interaction can be obtained.

A third and final difficulty arises from the starting
energy dependence of the 6 matrix. It is not possible to
take this properly into account with the matrix method.
It is also worth remarking that the matrix results will
include ladder diagrams, so the G matrix must be de-
fined in such a way that there is no double counting.

%e shall discuss first the results obtained for the
effective interaction in the prototype calculation outlined
above. These are exact within the truncated space, i.e.,
perturbation theory diagrams with 3p-1h. intermediate
states are' included to all orders, so they can be com-
pared with results obtained in approximate perturbation
calculations. Such comparisons were marred in the
early work (Lo Iudice et al. 1971, 1974, 1975; Goode,
1975) by the presence of unlinked diagrams. It was left
to Starkand and Kirson (1975, 1976) to obtain a fully
linked effective interaction, showing in the process that
the unlinked contributions are large —several hundred
keV in diagonal matrix elements. We quote in Table
VIII some of their. results obtained with the G matrix
elements of Kuo (196V) and a harmonic oscillator unper-
turbed Hamiltonian. Two different types of calculations
are shown. In the first, labeled non-HF, the HF inser-
tions are taken to be zero, and in the second, labeled
HF, these insertions are properly. included. To allow a
fair comparison with the matrix results, only 3p-1h
intermediate states are allowed in the perturbation
series, and ladder diagrams are included regardless

TABLE IX. Comparison of effective charges derived from
order-by-order perturbation calculations, YDA, and matrix
diagonaliz ation.

Approximation
ransltlon cE5/2-d5/2

N P
3/2-Si. /2

N P

0th order ~

0th+ 1st order ~

0th+ 1st+ 2nd order
TDAb
Matrix diag. ~

0 1
0.33 1.10
0.44 1.12
0.50 1.32
0.43 1.14

0 1
0.24 1.05
0.33 1.01
0.32 1.17
0.29 0.94

Ellis and Siegel, 1971 and unpublished work.
"Kuo and Osnes, 1973.
~Lo tudice gl; al. , 1974.

of double counting. The perturbation results through
third order are seen to be in rather good agreement with
the matrix results in the non-HF case. In. contrast, the
TDA results are much too attractive. The TDA series
is summed in the matrix method, but some vertex cor- .

rection effects are included too. These are known to be
large and repulsive (see, for example, Table X and Fig.
4V) and are mainly responsible for the difference. The
HF case shows less good agreement between third-order
and exact matrix results. It is probably fair to say that
the third-order result cannot be relied upon to be accu-
rate, even if, as here, the order-by-order series does
in fact converge (Hofmann et a/. , 1976).

For the analogous effective char ge calculation in mass
17—(sd) valence particle plus all 2h&u 2p-Ik states and
HF insertions ignored —we do not have to worry about
the complication of un1inked diagrams. We do have a
problem, however, since the results obtained by Goode
and Siegel (1970) differ from those of Lo Iudice et al.
(1974). This is probably due to approximations made in
the earlier study, so we take results from the latter
reference for Table IX. These results are reasonably
concordant with the work of Ando et al. (19VV), in which
a multiple scattering approach is used which is, in
principle, equivalent to the matrix method. Table IX
shows good agreement between second-order perturba-
tion theory and the matrix results. The TDA results are
also reasonable for neutrons, whereas the proton results
are too large. These features and the differences from
the effective interaction results can be qualitatively
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TABLE X. Comparison of important second-order effective charge diagrams with the corre-
sponding third-order effective interaction diagrams.

Class of diagrams

Effective charge
Egg / 2

—GEg / p

N P

Effective interaction"
&a,'» v = o, T = I ~u. ~ a,'~, z= o, r = I&

(in MeV)

Verte~
TDA
Ladder
Number conserving

Total

—0.038
0.081
0.056
0.012

0.111

-0.060
0.129
0.012

—0.060

0.021

0.478
-0.241
-0.185

0.118

0.170

Ellis and Siegel, 1971 and unpublished work.
Barrett and Kirson, 1970, 1972; Barrett, 1972.

understood by reference to Table X. Here we compare
second-order diagrams for the effective charge with the
corresponding third-order diagrams for the effective
interaction. The vertex;correction diagram is seen to
be relatively much bigger for the effective interaction
than for the neutron effective charge, and thus in the
former case the TDA is much too large, whereas it is
fairly reasonable in the latter. Now comparing neutron
and proton effective charges from the matrix calculation
with the first-order results, we find an increase in mag-
nitude for neutrons, whereas the proton case shows a
much smaller increase or even a reduction. From Table
X we see that this behavior arises firstly from the lad-
der diagram, which is much smaller for protons. Sec-
ondly, the number-conserving sets give a large nega-
tive value for protons. Much of this comes from the
folded diagrams which normalize the initial and final
wave functions (see Sec. II.D.). The importance of nor-
malization effects has been stressed by Qoode et a1.
(1972). Incidentally, this reference contains an interest-
ing decomposition of the matrix approach, which shows
the sequence of approximations needed to obtain the
TDA

It should be noted that the 2P-1h and 3P-2h. bases used
here will contain spurious components which involve
excitations of the center-of-mass of the whole nucleus,
as well as the intrinsic excitations that are physically
relevant. Ando eg ~E. (1977) have found that the approxi-
mate elimination of spurious states leads to a more
attractive effective interaction, although the effective
charge is little changed. Perhaps more attention should
be paid to this difficult question of spurious effects in
truncated bases, but we shall not discuss it further here.

Finally we mention that a matrix calculation has been
performed with a basis consisting of the (sd )' valence
states plus all 2A&u excitations (Watt et al. , 1974). This
enormous calculation is only possible using the power-
ful Glasgow shell-model technique. Unfortunately, there
is no known way to obtain just the linked two-body effec-
tive interaction with this technique. It is therefore diffi-
cult to know what weight to attach to the results, which
suggest that the correction to the bare effective inter-
action is somewhat overestimated by second-order per-
turbation theory. Note, however, that this is in agree-
ment with the trend shown in Table VIII.

Summary. In making comparison between perturba-
tion calculations and the "exact" results from matrix

diagonalizations, great care is needed to eliminate ex-
traneous effects, in particular, unlinked diagrams.
Third-(second-)order perturbation theory for the effec-
tive interaction (charge) often gives good results, but
its accuracy cannot be relied on. The TDA approxima-
tion is fairly reasonable for the neutron effective charge,
but is strongly cut back by vertex corrections for the
effective interaction and proton effective charge. In the
latter case normalization effects are also important.

G. Many-body effective operators

We have in this review restricted our attention to the
calculation of the two-body effective interaction and the
one-body effective charge appropriate to the nuclear
shell model. These quantities are frequently applied to
studies of nuclei involving many particles. However,
we have pointed out in Sec. II that in many-particle sys-
tems the effective operators in question will have many-
body components. Note that we are not talking here
about many-body nuclear forces. Even if we start from
a basic two-nucleon interaction, many-body effective
forces will arise from using a truncated valence space.
Examples of three-body effective forces are shown in
Fig. 53. Diagram (a) arises as one particle is excited

(b)

jmP

(c)

FIG. 53. Second-order contributions to the three-body effec-
tive interaction. Diagrams (c) and (d) are particular cases of
diagrams (a) and (b) and arise from corrections for violation
of the Pauli exclusion principle, as shown.
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by another and then de-excited by the third, whereas in
diagram (b) one particle excites a particle —hole pair
and the hole is subsequently filled as a result of the
interaction between the remaining two particles. Part
of diagrams (a) and (b) is needed to correct for viola-
tions of the Pauli exclusion principle. For example,
diagrams (c) and (d), which have the external labels
restricted as shown, serve to correct for the violation
of the exclusion principle in the two-body diagrams (c')
and (d'), respectively, where intermediate excitations are
blocked by the noninteracting third particle. (A little
thought shouM convince the reader that diagrams of type
(c) should be included regs. rdless of whether the G ma-
trix is calculated by double partition or the standard
procedure. ) In general, violation of the exclusion prin-
ciple by using n-body effective forces in an (n+ 1)-par-
ticle system is corrected for by (n+ 1)-body exclusion-
violating diagrams. This effect is in fact already pres-
ent in the two-particle system since, as shown in Fig.
63 of Appendix D, part of the much celebrated core-
polarization diagram corrects for blocking of interme-
diate states in the second-order contribution to the
single-particle energy. Now, if attractive contributions
to the effective interaction are blocked, the correspond-
ing Pauli corrections will be repulsive. This may in
part explain why it has been necessary to add repulsion
to two-body effective forces in order to obtain reason-
able results for nuclei with several valence nucleons
(Bertsch, 1968; Preedom and Wildenthal, 1972). It
should be stressed, however, that Pauli corrections
only represent a small part of the many-body diagrams;
the major part is there in its own right.

Second-order three-body diagrams have been calcu-
lated in the (OP) shell by Singh (1'974) and Dirim et al.
(1975), using, respectively, the original and modified
Sussex matrix elements, and in the (Of 7&,) shell by
Osnes (1968), Yariv (1974), and Andreozzi and Sartoris
(1976), using the Kuo —Brown matrix elements. In most
cases rather small matrix elements were found. How-
ever, in a system of n valence particles there are (", )
three-body interactions compared to (,") two-body inter-
actions, so appreciable three-body effects may still be
obtained towards the end of the valence shell. On the
other hand, rather large three-body matrix elements
have been found in various model calculations employing
highly truncated shell-model spaces (Bertsch, 1968;
Quesne, 1970; Eisenstein and Kirson, 1973; Barrett
et al. , 1975; Andreozzi and Sartoris, 1976).

Similarly, one may consider many-body contributions
to the effective charge. For two valence nucleons there
will be two-body contributions, as shown in Fig. 54. In
general these are neglected, since phenomenological
calculations indicate that the measured transition rates

FIG. 54. Lowest-order contributions to the two-body effective
charge.

can be well described by one-body effective charges.
However, explicit calculations in mass 18 by Harvey
and Khanna (1970), using a phenomenological quadru-
pole-quadrupole interaction, gave two-body effective
charges as large as 5 —20/g of the one-body values.
Since the number of pairs increases strongly as valence
particles are added, substantial two-body contributions
would be obtained for systems of several valence parti-
cles. However, Lo Iudice et al. (1974) used a diagonal-
ization technique and found a much smaller value, 1% or
less. The situation is thus unclear, but one hopes that
such effects are small; empirically this appears to be
the case.

Summary. Three-body contributions to the effective
interaction and two-body contributions to the effective
charge are considered. Calculations of these quantities
are scarce, but indicate relatively modest values.
Still, such effects may be strongly felt in systems of
many valence particles. Empirically, there seems to
be little need for explicit inclusion of many-body effects.
In most cases it is adequate to include them in an aver-
age way by small modifications in the two-body effec-
tive interaction (and perhaps the one-body effective
charge).

IV. CONCLUSIONS

We have outlined in Sec. II the linked, folded-diagram
perturbation expansion needed for the calculation of the
effective interaction and other effective operators ap-
propriate to the nuclear shell model. From a physical
point of view the folded-diagram expansion is both ap-
pealing and convenient, as it allows us to identify and
evaluate important physical processes diagrammatical-
ly. Only in the case of effective operators (other than
the effective interaction) in many-particle systems is
there left some room for improvement (see, for exam-
ple, Kirson, 1975).

In Sec. III we have discussed actual calculations of the
effective interaction between two valence nucleons in the
(lsOd) shell outside an "0 core, and also of the effective
electric quadrupole operator (or effective charge) for a
single (1sOd) nucleon beyond the "0 core. Such calcula-
tions are commonly carried out in a harmonic oscillator
basis. However, the matrix elements of the nucleon—
nucleon interaction would be enormous in an oscillator
basis because of the strong short-range repulsion. A
necessary first step is therefore to achieve reasonably
sized matrix elements by going to a G matrix, where one
allows the particles in question to interact an arbitrary
number of times. This corresponds to the summation of
ladder diagrams. In physical terms these serve to in-
duce small admixtures in the relative wave function, al-
lowing it to become very small at short distances where
the strong repulsion acts. The perturbation series must
therefore be rewritten in terms of 0 matrix interactions
in spite of the fact that this leads to additional complica-
tions, such as those associated with the energy depen-
dence of G.

The bare (i.e. , first-order) G matrix elements give a
large part of the effective interaction. However, the
core-polarization diagram, which is of second order in
G (see Fig. 30), is needed to bring the calculations into
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substantial agreement with the experimental spectrum of
"O. On the other hand, the corresponding calculations
for the effective charge (through first order in G) yield
results which are too small. It is, of course, natural
to investigate corrections of higher order in t" and to
hope that they are negligible. This hope has not been
realized, so that, at present, it is difficult to have con-
fidence in lom-order calculations. A similar conclusion
is reached when "exact" matrix diagonalization results
are compared to perturbation theory. Finally, it should
be mentioned that the presence of intruder states in the"0 spectrum means that the order-by-order series must
ultimately diverge, although it is unlikely that this math-
ematical property is the dominant feature in the low-
order results. Nevertheless, the intruder state problem
gives cause for concern, since we do not yet have tech-
niques adequate for dealing with it.

In the core-polarization diagram we consider unper-
turbed particle-hole states, although it is mell known
that particle —hole states in closed-shell nuclei show
strong collective properties. To take this into account
we allow the particle and hole to interact in the Tamm-
Dancoff or random-phase approximations, thus summing
a particular class of diagrams. This produces strong
enhancements in the calculated effective operators, but
these can be damped by including additional processes.
Two damping mechanisms are known. The first alloms
self-screening of the particle —hole interaction, together
with corrections at the vertex connecting the valence
particle to the particle-hole pair. The second mecha-
nism involves using a Hartree-Pock unperturbed basis
rather than a harmonic oscillator one. This shouM be
more realistic, since it allows the wave functions of
weakly bound and unbound orbitals to extend out further,
with the effect that the matrix elements are weakened.
Either of these damping mechanisms yields effective
interaction matrix elements which resemble the bare
oscillator values and neutron effective charges close to
the first-order results. Agreement with experiment is
therefore poor. For protons the core-polarization effects
are also strongly damped, but because of the presence of

x' in the operator, the zeroth-order values are enhanced
in a Hartree-Fock basis and this is certainly desirable.

One further complication should be mentioned. If for
the core-polarization diagram intermediate states of
rather high excitation energy are included, a signifi-
cantly less attractive effective interaction is obtained.
This arises from the strong tensor force components in
G.

At present we do not know how to fit all of the results
summarized above into a coherent picture. . Thus the
fundamental problem of calculating effective operators
for the nuclear shell model is not yet resolved. It
should not be surprising that this question is a difficult
one, given the many-body nature of the problem. Hom-
ever, it is possible to get reasonable magnitudes for
both the effective interaction and charge by adopting
ad hoc procedures based on physical intuition and preju-
dice. This should encourage us to direct further efforts
and resources to the important problem of deriving
effective operators from first principles.
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APPENDIX A. GOLDSTONE DlAGRAMS VERSUS
FOLDED DIAGRAMS

It is clear that for the nondegenerate problem one
could use either the standard Goldstone (1957) treatment
withthe unperturbed state as vacuum or the linked, folded
expa, nsion of Brandow (1967), using the true vacuum

~

). Both approaches yield a completely linked expan-
sion with Rayleigh-Schrodinger denominators. They
must be equivalent order-by-order in the perturbation,
but the correspondence is not at all obvious.

We feel an illustration is useful. Specifically, we
shall take the diagrams of Fig. 55 and shorn that the
sum of the Goldstone diagrams (a) and (h) is equal to
the sum of the folded diagrams (c) and (d). These are
not the only third-order diagrams, but they are the only
third-order diagrams with matrix elements of this
"particle-hole structure"; the equivalence must there-
fore hold for this subset of the third-order diagrams
alone. By use of the diagram rules in Appendix C or by
explicit evaluation we find for diagram (a)

JL JLp JL pJL JL
1 g (o51V»l ab)(Py I V»15y)(ab I V»l ~P)
2,~ (e + ez —e, —e,)(e„+e, —e, —'

e,)

FIG. 55. Equivalent ways of representing the energy of a
closed-shell nucleus. The Goldstone diagrams (a) and (b) are
only equal to the folded diagrams (e) and (d) in the sum. (Note
that the external legs of the folded diagrams must be summed
over the filled orbitals).

(A1)

The Greek letters are summed over occupied and the
Latin letters over unoccupied orbitals. The factor of
& follows, since we are using antisymmetrized matrix
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elements while we sum over all a, b.
Diagram (b) has the value

1 g (yb I V»l ab)(o.'P I V»ly5)(ab I V»l nP)
8 „(e„+ez —e, —e,}(e„+e, —e, —e, )

~Bra

For the folded diagram (c) we should in principle have
a number of noninteracting lines representing the occu-
pied states other than o'. and P —these have been erased,
but we must clearly return to the same pair of states
o'. , P as we started with. Now the diagram, summed over
all occupied orbitals &,P so as to obtain the total energy,
has the value

V"Jl V "J)

c Ji dJ/V
V

Jia Jib

Jl V J) V

1 g (o.'p I V» I ab) (ah I V„I y 5) (y5 I V„ I n p)8,» (e„+e, —e, —e,}(e„+e» —e, —e»)

(A&)
J)v J/V

--- X

J&V

Three factors of & are needed —one each for the ab and
y5 pairs, and the third factor because the interchange
of n and P is included by the exchange diagrams while
we sum over all o.', p. Note that we sum over all y, 5 for
the folded lines.

Diagram (d} is more complicated. We start with initial
states o.'Py (n 0 p 4y). Clearly the unlabeled final states
leaving the top of the diagram must be &Py in some or-
der. We need to count each possible permutation just
once. Consider

1 ~ (nP I V»l ab)(ab IV»l n5)(5yl V»l Py)2,» (e„+e» —e, —e»)(e + ez —e, —e»)
aPj g
(af&r)

(A4)

This corresponds to the final permutation, from left to
right, o'py and also, because of the use of antisymmet-
rized matrix elements, the permutation's pay, gyp, and
y&p. [Note that the restrictions n & p and P &y are auto-
matically included in Eq. (A4).] The remaining permu-
tations Pyn and yPn must be written separately, and
since each permutation arises twice when we sum over
ail spy with antisymmetrized matrix elements, we re-
quire an additional factor of ~. We obtain

(Py I V„l ab) (ab I V„l o'.5) (Py I V„l bc')
(e + e» —e, —e»)(e@+ e„—e, —e»)

eggs
(aft'. af A )

1 g (nP I V„Iab) (ab I V„ly&) (nP I V, ly5)4,» (e„+e» —e, —e»)(e~+ e —e, —e»)

FIG. 56. Diagrams (b), (c), and (d) show the lowest order cor-
rections to diagram (a) which remove the degeneracy of the
valence energies.

APPENOIX B. NONDEGENERATE VALENCE
ENERGIES

We have remarked in Sec. II.C that the use of degen-
erate valence energies simplifies the formalism, but
that this restriction can be removed afterwards by sum-
ming up the degeneracy-breaking terms in the perturba-
tion, as at the end of Sec. G.B.6. Here we discuss this
in more detail for the diagram of Fig. 12(b), which gave
rise to the two folded diagrams of Fig. 12(c). One of
these is shown again in Fig. 56, diagram (a), the other
is to be understood. In this diagram the labels a, b, c,
and d represent excitations out of the valence orbitals,
while v, v' and v" represent valence states. The label-
ing here is taken to refer to the angular momentum of
the state. The corresponding z components of angular
momentum are suppressed for the purposes of our sche-
matic argument. Thus the Pauli exclusion principle is
not violated when, for simplicity, we give both valence
states the same label. The valence states are degen-
erate with unperturbed single-particle energies e.

Now let us consider the degeneracy-breaking terms
in the perturbation

g„iv)(v i+ g„, fv'&(v'i

which will convert the single-particle energies e to
Of Or 6

(yAByle) e„=e+ 4„; e~ = e+ f;. (B2)

D~ = Dq~, D~ = D~+ Dq2. (A6)

(A5)

and in the last step we have interchanged dummy sum-
mation labels n and y and reordered some of the matrix
elements.

Now we observe that L)„, is the same as D„apart
from the restriction n&y —the exclusion principle is
obeyed for incoming lines of the folded diagram, but is
ignored in the Goldstone case. Now we can remove the
restrictions o'. 4y in Eq. (A4) and y4 p, y4 n in Eq. (A5)
because the contributions of the additional terms exactly
cancel. With these restrictions removed we have

To first order in these terms we shall obtain diagrams
(b), (c), and (d), each of which, in fact, represents
several diagrams. Firstly the f insertion, represented
by the cross, can occur on either of the valence lines—
this gives a factor of 2. Secondly all orderings of the
interactions consistent with the folded structure are to
be taken, i.e. , we shall factorize. In diagrams (b) and
(c) we have folded twice out of the "main" part of the
diagram (the sequence is different), while in diagram
(d) we fold out of the "main" part a piece which is itself
folded [see the discussion of Eqs. (2.65) and (2.66)] .
The unlabeled lines in diagrams (b) —(d} correspond to
those in diagram (a).
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Only the energy denominator and 4 insertions are important for the argument, some write for the sum of dia-
grams (a)—(d)

2&„.
(2e —e, —e, )(2e —e, —e~)' 2e —e, —e 2e —e, —e~ 28 —8, —e~I'

These are simply the lowest-order terms which convert the energy denominators of diagram (a) to

1 1 1 1
(2e„—e, —e~)(2e„, —e, —e„)(2e„—e, —e„) (2e„—e, —e~)(2e„+ 2e„~ —e, —e~ —e, —e~) 2e„—e, —e~ 2e, —e, —e~

The latter result follows from the factorization theorem.
If we now incorporate the degeneracy-breaking terms
(Bl) in the unperturbed Hamiltonian Ho, the first of the
two terms follows by operating with (2e„—Ho) ' between
each interaction in diagram (a) alone. The second term is
given similarly by operating on the companion diagram
shown explicitly in Fig. 12(c).

Notice that in the above discussion the energies e„„of
the outgoing lines do not enter. A consequence of this
is that even diagrams without any folds give rise to a
non-Hermitian effective interaction if the valence ener-
gies are not degenerate.

APPENDIX C. DIAGRAM RULES

We give here the diagram rules to be followed for the
linked, folded effective interaction discussed in Sec.
II.C; these are based on the work of Brandow (1967).
Simplifications of the diagram series are possible when

projecting core excitations are present; this was men-
tioned briefly in Sec. II.D, and we refer to Brandow
(1967, 1975) for further details. The present rules can
also be applied to the case of zero valence particles,
i.e. , the nondegenerate closed-shell system, in the
Goldstone hole representation (see Day, 1967). Alter-
natively one could use the folded series here; see the
discussion of Appendix A. As regards effective opera-
tors (other than the interaction), the additional rules
have been indicated in Sec. II.D.

A. General structure of the diagrams

A general nonfolded diagram will consist of a set of
lines entering the bottom of the diagram, representing

(b)

the initial valence state, a number of interactions, and
a set of lines leaving the top of the diagram which de-
note the final valence state. Apart from the case of a
single interaction between the initial and final states,
there will be one or more intermediate states which
must all lie outside the valence space.

A general folded diagram is obtained by joining togeth-
er a sequence of nonfolded diagrams. An example is
given in Fig. 57(a). Here the diagram is said to be drawn
in unfolded form. The loops are used to indicate val-
ence states between the nonfolded shaded blocks. Fig.
57(a) is redrawn in folded formin Fig. 57(b). As usual, all
dashed interaction lines must occur at different hori-
zontal levels. Further, the topmost interaction of a
given folded block must lie above the lowest interaction
of the preceding block. In addition the topmost interac-
tiori of the folded diagram must be the same as the top-
most interaction of the unfolded form of the diagram.
These are the only restrictions on the ordering of the
interactions in one shaded block with respect to the
interactions in another. A number of examples of the
folding procedure have been given in Sec. II.

Only linked diagrams need to be considered. Note that
it is not necessary for each of the shaded blocks in Fig.
57(a) to be separately linked; we only require the whole
diagram to be linked, e.g. , Fig. 58 should be included.
Within the definition of linked we include diagrams with
one or more completely noninteracting valences lines;
these noninteracting valence lines should be erased. If
all valence lines are noninteracting we are dealing with
a diagram which contributes to the energy of the nonde-
generate core, rather than the effective interaction.

Note that although we choose a standard ordering for
the labels on the incoming valence lines at the bottom of
a diagram, we must allow all permutations of the labels
on the outgoing valence lines at the top. Each of these
contributions must be counted. See, for example, Ap-
pendix D.

I& 4

FIG. 58. A diagram which
contributes to the linked,
folded series for the two-
body effective interaction.

1g F

FIG. 57. General structure of the diagrams in unfolded (a) and
folded (b) form. v) il j) v2

Rev. Mod. Phys. , Vol. 49, No. 4, October L977



P. J. Ellis and E. Osnes: Effective operators in nuclei 827

B. Evaluation of the diagrams

1. Matrix elements

Each one-body interaction -U of Eq. (2.3) contributes

(particle out
I
—U

I
particle in),

where in (out) refers to lines with arrows pointing toward (away from) the vertex.
Each two-body interaction V» gives a matrix element

(particle out left, particle out right
I V»I particle in left, particle in right).

(C 1)

(C2)

Here left and right refer to the appropriate ends of the
vertex. Each two-body matrix element is antisymme-
trized, i.e. , it contains both direct and exchange terms,
explicitly,

&~jI ~ I~f& =&f(l)j(2)
I
+ .I&(l)f(2) —&(2)f(i)& (c3)

-=-&f(l»(2) —f(»j(» &,.I
~(i)f(2) —~(2)f(l)&.

(C4)

This automatically includes exchange diagrams where a
direct matrix element is replaced by an exchange ma-
trix element at one or more vertices. These exchange
diagrams must therefore not be counted separately.
Also, me should not include separately topologically
equivalent diagrams which only differ by an interchange
of the left and right ends of one or more vertices. Thus
we need to evaluate one diagram from the set of ex-
change and topologically equivalent diagrams which can
be drawn. Equivalent diagrams are most easily identi-
fied by contracting the dashed line to a dot [Hugenholtz
(195'1)notation], since they all take the same form in
this notation. Further discussion of equivalent diagrams
is given in Sec. C of Appendix C below.

2. Summations

We refer to Fig. 57. Within each shaded block, down-
going (upgoing) lines are to be summed over all orbitals
which are (are not) filled in the unperturbed closed-shell
core. Between blocks, each of the looped, folded lines
is to be summed over all valence orbitals. In all cases
the Pauli exclusion prinoiple is to be ignored. '

3. Energy denominators

Energy denominators may be evaluated by operating
with (e„—H, ) ' between the interactions, giving

1
e„+Q (hole-particle) energies

choose a standard ordering for the products of single-
particle wave functions which make up our valence
states. . Secondly the diagram in question should be
drawn in such a way that the first, second, . . .line from
the left entering the bottom of the diagram traces through
a series of interactions and remains the first, second,
. . .line from the left on emerging at the top of the dia-
gram. Thus the diagram in Fig. 59 should be drawn
in the form (b), rather than (a). Then the sign of the
diagram ls given by

g gag p fly +tfH+AL+0 yH

wheren~p is the total number of interchanges of pairs of
labels on the valence lines leaving the top of the dia-
gram needed to achieve standard ordering (the incoming
valence lines at the bottom of the diagram are assumed
to be in standard order), rs~ is the number of folds,
n„ is the number of hole lines (in the nonfolded shaded
blocks of Fig. 57), n~ is the number of closed loops,
and n« is the number of valence hole lines at the bottom
of the diagram plus the number of folded valence hole
lines. This quantity is needed if our valence states con-
sist of a number of holes in the core, or if both parti-
cles and holes are present. (Such cases have not been
explicitly discussed, but the effective interaction for-
malism can be applied here too. )

C. Further discussion and examples

We first elaborate on the question of exchange and
topologically equivalent diagrams using the core-polari-
zation diagram as an example (see the following Appen-
dix D for a detailed evaluation of this diagram). Con-
sider diagrams (a) and (b) of Fig. 60. For the present
discussion we shall use direct matrix elements only at
each vertex, so using Eg. (C2) for the matrix elements
and Sec. B.4 for the phase, we obtain for diagram (a)

Here E„ is the unperturbed energy of the initial valence
state entering the bottom of the diagram. It is essen-
tial to treat the downgoing folded valence lines as hole
lines in evaluating the denominator.

4. Factors and phases

A factor of ~ is to be included for each equivalent
pair of lines. An equivalent pair of lines is defined to be
two lines which start at the same interaction, end at the
same interaction and go in the same direction. Notice
that two foMed lines can satisfy the equivalent pair defi-
nition.

As regards phases, it is necessary first of all to

Jl v+ v( Ij

FIG. 59. An illustration, for the purposes of the phase rule of
Appendix C (Sec. B.4), of a diagram which is drawn in nonal-
lowed form (a) and allowed form (b).
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vIi )iy4 y k I( Y4 4
TABLE CI. Illustration of the phase rule for various diagrams.

pJ Diagram Phase

Y )l y Il
I

]IY V Il
2 I

jl y
Fig. 58
Fig. 59(b)
Fig. 60(a)
Fig. 60(d)
Fig. 62(a)
Fig. 62(b)

y )L

(') (I) (g)

"2

FIG. 60 Exchange and topologieally equivalent versions of the
core-polarization diagram (not a1.1 possibilities are shown),

&B,(l)P (2)
~
V„~u, (I)H(2)) &H(] )tl, (2)

~
V„IP (I)g,(2)).

Diagram (b) gives

—&~,(I)P (2) I I'„)&(I)~,(2)) &&(I)~,(2)
/ &» )P(I)~,(2)&.

(C6)

The change in sign arises since n~ = I for diagram (a)
and 0 for diagram (b). Diagram (b) can be called an ex-
change diagram, since it differs from diagram (a) just
in the interchange of H and e, at the lower vertex, i.e. ,
we have taken the exchange matrix element here. In
similar fashion exchange diagrams (c) and (d) are obtain-
ed from diagram (a) by taking the exchange matrix ele-
ment at the upper vertex and at both vertices, respec-
tively. Clearly all these diagrams can be included by
evaluating just one of them using the antisymmetrized
matrix elements of Eq. (C3). Now consider diagrams
(e), (f), and (g) of Fig. 60, which are obtained from
diagram (a) by interchanging the left and right ends of
one or both interaction vertices, i.e. , interchanging the
labels 1 and 2 in one or both matrix elements of Eq.
(C5). These four diagrams, (a), (e), (f), and (g), are said
to be topologically equivalent, since they obviously all
have the same value and represent the same physical
process. If we count them all, a factor of & is re-
quired. Similarly Fig. 60(b) is one member of a group
of four topologically equivalent diagrams (not shown),
and the same remark applies to Figs. 60(c) and (d). In
all we have ].6 diagrams and a factor of ~. This just
corresponds to writing out all the terms when Eq. (C4)
is used for the matrix elements entering, say, diagram
(a). Obviously the simplest procedure is to select one
member of the set of exchange and topologically equiva-
lent diagrams and use Eq. (C3) or (C4) for the matrix
element at each vertex. We mentioned above that a

simple test for the equivalence of diagrams is to con-
tract the dashed interaction line to a dot. If this is done
for the diagrams of Fig. 60 they all yield Fig. 61, thus
demonstrating their equivalence.

The need for the equivalent pair rule of Sec. B.4 is
easily seen by reference to the ladder diagram, Fig.
59(b). To count each intermediate state we should
sum over state labels a&b. This can be replaced by
a sum over all a, b, as required by Sec. B.2 above, if
a factor of 2 is introduced. (The case a= b gives
zero, since antisymmetrized matrix elements are used. )
Note that the case where both a and b refer to valence
orbitals must be omitted from the summation, since the
intermediate states must lie outside the valence space.

Several examples of the application of the phase rule,
Sec. B.4, are given in Table CI; standard orderings for
our valence states have been chosen to be e,e, and v364.
Notice that the Hartree-Pock bubble insertion of Fig.
62 gives one hole line and one closed loop. It is often
worthwhile to check the phase by writing down the appro-
priate creation and annihilation operators and working
out the contractions explicitly.

APPENDIX D. EXPLICIT EVALUATION OF THE
COR E-POLAR IZATION DIAG RAM

Firstly, it is worth pointing out that part of the core-
polarization diagram arises as a correction for Pauli
exclusion principle violations. Thus in Fig. 63(a) the
presence of the noninteracting valence line causes the
one-body diagram to violate the Pauli exclusion princi-
ple. The correction for this is given by Fig. 63(b) and,
a,s we see by reference to Fig. 60(d), this is an exchange
form of the core-polarization diagram. Notice that the
labels on the final state are restricted, so this gives
only part of the total core-polarization contribution.

Turning to the evaluation of the core-polarization dia-
gram, we need to consider the contribution of all the
diagrams of Fig. 64. These diagrams differ by ex-
changes of the valence particle labels on the external
legs and, since they are not automatically included by

FIG. 61. The core polariza-
tion diagram in Hugenholtz
notation. Note that in this
notation all the diagrams
of Fig. 60 take the form
shown here.

FIG. 62. Diagrams contributing to the one- and bvo-body ef'-

fective interaction for valence holes.
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I l "2 vq il vq vy )l

P IL &2II IH Il 2 PIl
v( I)

P ji lI H

vt Jk

pj 1«

]tv&

vl Jl

(bl

FIG. 63. Illustration of the fact that the core-polarization dia-
gram, (b), corrects for, violation of the Pauli exclusion princi-
ple in diagram (a).

using antisymmetrized matrix elements, they must be
put in explicitly. In Fig. 64 the label v, implies angular
momentum j„z-component m„and isospin z-component
&, ; the label P implies angular momentum j„, z-com-
ponent nzP, and isospin z-component &P, etc. Using the
diagram rules, with v,v, and v,v4 as standard ordering,
we obtain for Fig. 64(a)

jj vg

pj I H

v
)

lt

FIG. 64. The four independent core-polarization contributions
to the effective interaction. They must all be included.

[(1+6s s )(1+5s s )] 'S'

a~omyonent s
(&~ &Z fixed)

C(j,mj,m, ; JM)C(gT&pT2' TMr) C(j,mg, m, ;JM)C(,'~,2~, ; TM— r)

X-&j,m, 7,j s ms 7 s I V„Ij,m, 7'j ssmssTH& j,m 47'~j „mss7'H I V„Ij~m, 7,j sm s 7 s»
e& —e& + e& —e&

(D1)

Here we have normalized our valence states and coupled
them to total angular momentum J, isospin T, with cor-
responding z-components M and M~. The labels J, M,
T, and M~ must be the same for our initial and final
valence states because of the invariance of the interac-
tion V» under rotations in space and also under rota-

tions in isospin space. This property of V» makes it
useful to couple the two particle states in the matrix
elements to a definite angular momentum and isospin,
as these labels are diagonal and the matrix element is
independent of the corresponding &-components We then
obtain for Eq. (Dl)

[(1+&;,.;,)(1+&s,s,)] '"
&P ~ &e

Z~, T~, J~, r2

e& —t
&

+e. —e.
3 &0 &P

(D2)

Here the states involved in the antisymmetrized twobody matrix elements are normalized according to

and

&(&.f P ~ 1(&.&.)J T' &=1+ (-1)""""~s.s,

It(i i i,i.,is,i,J„J)
e «comyonents

(&f ixed)

C(p,m,jsms, ;J,M, )C(j,m,j„mz, J,M, )

&& C(j 4m4j „mss; J~,)C(j 2m2j ~m~; J+,) C(j,m,j 2m2; OM)C(j,m,j 4m4'; JM)

= Q (—1) 2' 4' &' 2' (2J, + 1)(2J'2+ 1)(2J + 1)
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The latter step follows after some straightforward,
though tedious, Racah algebra. The summation over
the three 6-j symbols can be written as a 9-j symbol;
however, it is often more useful to keep the above form
since J~ is the result of coupling the angular momenta
of the particle jJ, and the hole j„. The analogous isospin
recoupling expression provides the corresponding label
T~. It is useful to decompose the diagram according to
the J~T" of the particle-hole pair, as we have seen in
Sec. III.

The contribution of Fig. 64(a) to the matrix element
of the effective interaction ((j,j,)JT

~

Q ~ ~
(j,j,PT) is thus

FIG. 65. Typical diagram
arising when particle-parti-
cle ladders are summed to
replace the matrix elements
of V&z by those of the reac-
tion matrix t" in the core-
polarization diagram. Jly

given by expressions (D2) and (D3). These expressions
may also be used for diagrams (b), (c), and (d) of Fig.
64 by suitable interchange of the labels. Explicitly

for diagram (b) j, j, additional phase (—1)'&"4

for diagra~ (c) j,—j, additional phase (—1)~~"2

for diagram (d) j,—j„j,—j, additional phase (—I)&'&~'+ "4.

(vp I V» I ah) (a b I V» I v,If)
e. +e- —ej —ej&iV a

(D4)

Recall from Sec. III.B that the energy denominator of the
G matrix is given by (&u —Ho) with Ho acting on the inter-
mediate two-particle state. This gives (~ —ez —e& ) inja
the present case, so in order to obtain the denominator
of expression (D4) we require

w=ej +ej

= (e~ + e,. )+ (e,„—e,. ) .

The latter form emphasizes that this value of ~ differs
from that required for the bare matrix element, namely
m = ej + ej . In similar fashion it can be shown that at

3. 2
the upper vertex

(u = (e~ + e J ) + (e,.„—e,. )

is required.

To see the origin of the extra phase needed, consider
diagram (b). Firstly we need (—1)', due to the nonstan-
dard ordering of the final valence state, and secondly we

j +j J'+-'+ —'-Tneed a phase (—l)~"~4 '"' so that v, and v4 are cou-
pled in the standard order, as in the Clebsch-Gordan
coefficients of Eq. (Dl). If j, =j,=j,=j„ then diagrams
(a), (b), (c), and (d) clearly all have the same value.

So far we have used the interaction V» but, as we have
discussed in Sec. III.B, this must be replaced by the
reaction matrix G(m). In other words each single inter-
action is generalized to allow an infinite series of lad-
der interactions, so that in the present case we shall
include diagrams of the type indicated in Fig. 65. The
replacement of the matrix elements of V» by those of
G(&u) in Eq. (D2) is complicated by the need to choose
the correct starting energy a. For the lower vertex
this can be determined by looking at the lowest two
interactions in Fig. 65, which give
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