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Recent researches have shown that it is possible to obtain information about the physical content of
non tri vial quantum field theories by semiclassical methods. This article reviews some of these
investigations. %e discuss how solutions to field equations, treated as classical, c-number nonlinear
differential equations, expose unexpected states in the quantal Hilbert space with novel quantum numbers
which arise from topological properties of the classical field configuration or from the mixing of internal
arid space-time symmetries. Also imaginary-time, c-number solutions are reviewed. It is shown that they
provide nonperturbative information about the vacuum sector of the quantum theory.
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I. INTRODUCTION

If quantum field theory is to be effective in describing
physical processes, as an emerging consensus among
theoretical physicists indicates, we must learn how to
perform accurate but approximate calculations, since,
due to their complexity, the relevant equations cannot
be solved exactly. One approximation scheme, pertur-
bation theory, has been extensively developed and is
marvelously successful in some contexts, especially in
lepton-quantum electrodynamics. Yet it is also clear
that there are phenomena which can never be seen in
the ordinary perturbative expansion. For example,
there may be no small parameter in which to expand;
or even if such a &mall parameter exists, it may be that
the phenomenon we are studying is not described by
formulas which can be expanded in that small param-
eter —such an expansion may be singular. In the last

two years new approximation techniques have been de-
veloped for calculating in quantum field theory, which
avoid some of the shortcomings of the perturbative ex-
pansion. These nonperturbative calculations have ex-
posed an unexpectedly rich particle structure in the
quantal Hilbert space; they have put into evidence novel
effects, like emergence of fermions from bosons; and
they have provided new mechanisms for spontaneous
symmetry breaking without Goldstone bosons. Although
the practical significance of all this for describing the
present experimental data is obscure, we have clearly
learned that a quantum field theory gives rise to phe-
nomena of a much richer variety than had been believed
heretofore.

This article reviews some of the relevant investiga-
tions. Since the topic is large and supports many dif-
ferent approaches, I shall mostly limit the discussion
to research done in Cambridge (U. K. and U. S. A.). In
a11 investigations, one begins with the first approxima-
tion in which quantal effects are ignored, and treats all
equations as if they were describing classical field con-
figurations, rather than quantum operator fields. Quan-
tum mechanics is regained by quantizing the classical
solution through semiclassical, %entzel-Kramers-
Brillouin (WKB) methods (Dashen, Hasslacher, and
Neveu, 1974a, b; Korepin and Faddeev, 1975). Alter-
natively, the full quantum theory can be expanded in the
Born-Oppenheimer fashion, for which the first term is
computed classically, and quantum corrections are
found in a series expansion (Goldstone and Jackiw,
1975). It is this second, systematic approximation that
will be discussed here. '

In the first approximation we treat the Heisenberg
operator field equations as c-number fieM equations and
analyze them by methods of mathematical physics.
Classical solutions may be categorized as follows: con-
stant solutions (time —and space —independent); static
solutions (time-independent but space dependent);
time- and space-dependent solutions; and lastly solu-
tions to modified field equations, where the modification
consists of replacing the time variable by an imaginary-
time variable (t- —ix, ) The quan. tal significance of the
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682 R. Jackiw: Quantum meaning of classical field theory

constant solutions is known: they are first approxima-
tions to the vacuum expectation value of the quantum
field and frequently signal spontaneous symmetry viola-
tion, i.e. , the Goldstone phenomenon. The quantal
meaning of static and time-varying solutions will be ex-
plained in Sec. II and III, first in the simple context of
models in one spatial dimension, and then for realistic
models in three spatial dimensions. It will be demon-
strated that these classical solutions signal the presence
of particle states which had not been previously seen in
perturbative analyses. The imaginary time solutions,
also analyzed in Sec. III, are evidence for quantum me-
chanical tunnelling--another nonperturbative effect.

sical stability. Classical stability may be discussed in
two different ways. First we may return to the full,
time-dependent equation (2.4) and write a time-depen-
dent solution as

—d, + U"(y, (x)) g»(x) = (»')t»(x). (2.8)

y(x, t) = y, (x) + y»(x) exp(i(u»t)

where y, is our time-independent solution and the other
term is a time-dependent perturbation, labeled by a
parameter k. Substituting this Ansa~~ into the full time-
dependent equation (2.4) and linearizing around the small
perturbation g» gives a Schr'odinger-like equation for g»

II. IVIODELS IN ONE SPATIAL DIMENSION

In order to encounter first in a simple setting the
ideas that I wish to review, let us consider a quantum
field theory of a spinless field 4 (x, t) in one spatial
dimension. The Lagrange density is assumed to be of
the form

(2 1)

For the energy to be positive definite, we take the
field potential U(C) to be non-negative

0= 5E,()p)/5p(x) = —)p" + U'()p). (2.9)

For stability it is required that the second variation

Classical stability will ensue when the eigenvalues co~

are non-negative, so that small perturbations about y,
do not grow exponentially in time. The other way of for-
mulating classical stability is a variational one. Equa-
tion (2.5) can be obtained by demanding that the energy
functional E,()'p), given in Eq. (2.6), be stationary with
respect to variations of p

(2.2a)
O'E, ()p) d'

5)p(x)5y(y) dx' (2.10)

U(4)) will in general depend on various numerical param-
eters (coupling constants). We wish to have a unique
parameter g for systematic expansions, hence we assume
that U(C) depends on g. in a scaled fashion

(2.2b)

The operator equation satisfied by 4 is

(2 8)

(The prime denotes differentiation with respect to argu-
ment. ) I shall discuss first static, c-number solutions to
this field equation, and then their quantal meaning.
Time-dependent solutions will be analyzed only briefly.

A. Static, c-number fields

evaluated at the solution y„be a non-negative differen-
tial operator. Clearly this means that all eigenfrequen-
cies of (2.10) at y= )p, must be non-negative, which
again leads to a study of (2.8). So classical stability, in
either formulation, demands that the eigenvalues of the
Schrodinger equation (2.8) be non-negative. The demand
for stability is motivated by the requirement that the
corresponding quantum state be stable.

There are some things which can be said about our
problem independently of the explicit form of U()'p),
and a very important statement is the following: The
Schrodinger equation (2.8) always has a zero-frequency
solution, called the "translation mode. " For stability
this must be the lowest mode. To prove the existence
of the translation mode, we differentiate (2.5) and ob-
tain [note that U(y) does not depend explicitly on the
position x]

Let us for the moment ignore the quantal nature of
Eq. (2.3) and seek its static solutions. The c-number
field )p(x, i) satisfies

cf—d, + U" (y,) P,'=0, (2.11)

p+ U'(q)=0 (2.4)
which shows that )p,' is a solution of Eq. (2.8) with ~o= 0.

which for static configurations )'p(x) reduces to
CC P (2.12)

)'p = U ()'p) (2.5)

The solutions which are of interest to us are delimited
by two requirements. Firstly we demand that if y,
solves (2.5), then E,()'p, ) should be finite, where E,()p)
is the energy of a static field configuration p

&.(p) = f«( (p') + &(0')j. (2.6)

The reason for this requirement is that E,(y, ) will be
identified with an approximation to the energy eigen-
value of a new state in the quantum theory, and obvious-
ly this should not be infinite. Secondly we demand clas-

Moreover, this is a normalizable solution since
J dx()p,')'( ~, because the energy is finite. An equiva-
lent way to understand the occurrence of a zero-fre-
quency mode is the following: Translation invariance
assures that if )'p, (x) is a solution of (2.5), then )p, (x+xo)
will also be a solution. Expanding the latter )'p, (x+x,)
= y, (x) + x,y,'(x) and comparing with the expansion (2.7)
)p (x, t) = )p, (x) + P» (x) exp(i ~» t) we see that )p,

' is a small fluc-
tuation and the frequency of this fluctuation is zero.

It should be clear that the above generalizes to more
than one dimension —if )p, (x) is a static solution, then
the translation mode V')p, (x) is a zero-frequency "small-
oscillation" mode. Also symmetries other than the
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R. Jackiw: Quantum meaning of classical field theory 683

translation symmetry give rise to zero-frequency
modes. If the energy functional is invariant under a
transformation p- p+ 5p, then 5p, will be a zero-fre-
quency mode.

We may now prove another general result: Only in
one spatial dimension is it possible to find stable,
static solutions of finite energy in a spinless model
governed by the simple Lagrangian (2.1).' In more than
one dimension one must necessarily deal with more
complicated models, for example models with spin.
This result becomes self-evident when it is realized
that the zero-frequency, translation mode in d dimen-
sions is d-fold degenerate (it is a p wave); on the other
hand, for the ordinary Schrodinger equation the lowest
eigenstate is nondegenerate. Hence for d& 1 there must
exist solutions to (2.8) with ~„'&0. The same conclusion
can be obtained by a scaling argument. Static field solu-
tions y, (x) in d dimensions stationarize the static ener-
gy E,(p)= fdx&2(V p)'+ U(p)j. If y, (x) is such a solution,
and y, (x) =—p, (x/a), where a is a positive parameter,
then E.,(y, ) must be stationary at a= 1. A change of inte-
gration variable shows that E,(P,) = O' 'Er(g, )+ +E„(P,),

Er(q')= J dx 2 ('7P)'&0, E~(y)= dxU(y)&0.

From

sE (p),
Ba

a virial theorem may be deduced

m' gpy' theory; U(p) =, 1—
2g

Sine —Gordon (SG) theory;
m4-

U(y)= , 1 —cos
g N.

(2.15a)

(2.15b)

Note that both theories possess discrete symmetries

y4 theory; y —-p
SG theory; P +@+2mn(mlg); n= 0, + 1, . . .

(2.16a)

(2.16b)

but the minima of the potentials, U'(y, ) = 0 [these are
constant solutions to (2.4)]

p' theory; go=em/g,

SG theory; y, = 2mn(mlg);n=0, +1, . . . ,

(2.17a)

(2.17b)

indicate that the symmetries are spontaneously broken
by the vacuum state. Thus, according to the usual pro-
cedure, we assign to the quantum field 4 the vacuum
expectation values

y' theory; (OI@IO)=m/g,

SG theory; (0
I

C 10& = 0,

(2.18a,)

(2.18b)

with the virial theorem (2.13) at d= 1: Er = E„.] To inte-
grate (2.14), we need an expression for U(q). There are
many formulas for U(p) which lead to static, stable
solutions with finite energy. I shall discuss two exam-
ples explicitly; however, our theory is independent of
the specific form of U(p)

E,(~.) =
d Er(~.).2 —d

But now it follows that

=2(2 d)E, ( )
g=1

(2.18)

y' theory; y, (x) = +(m/g) tanhm(x —xo), (2.19a)

and upon expanding U(p) about the vacuum value of y we
learn that the mass of the "mesons" in the y' theory is
2m, while in the SG theory it is m.

Position-dependent solutions to (2.14) are the follow-
ing:

so that E,(p, ) will be minimized only for 2 —d& 0, i.e. ,
d= 1.

It should be emphasized that this negative result ap-
plies only to static solutions of the simple model (2.1).
In more than one dimension, it is easy to find static,
stabl, finite-energy solutions provided the model in-
cludes Yang-Mills fields —this will be discussed in
Sec. III. The simple one-dimensional model remains
an interesting laboratory for our theoretical ideas be-
cause all the problems of developing a quantum theory
around a classical solution can be posed and answered.
Moreover, the method of quantization carries over to
higher dimensions, and will be employed in Sec. III for
the Yang-Mills models.

We return therefore to the one-dimensional Eq. (2.5),
whose first integral may be given for arbitrary U

!(W')'= U(V ). (2.14)

An integration constant does not appear in (2.14) so that
the energy will be finite. [Equation (2.14) is consistent

y' theory; E,(y, ) = —', (m'/g')

SG theory; E,(p, ) = 8(m'/g').

The stability equation (2.8) becomes

p4 theory;

d2
2 6m 2

, + 4m' —,g, (x) = (o„'p,(x)dx' cosh'mx

SG theory;

, + m' —,p„(x)= ~;g„(x)
2m

dx cosh mx

(2.20a)

(2.20b)

(2.21a)

(2.21b)

These Schrodinger equations can be completely solved.
They are L = 2 and L = 1 cases of the equation

, + I '—,l, (z) = ~:P,(~)
I.(1.+ 1)
cosh28

(2.22)

SG theory; q, (x) = +4(m!g) tan 'exp(a m (x —x,)). (2.19b)

The occurrence of the parameter x, is a consequence of
translation invariance; frequently we shall set it to
zero. The classical energy of the solution is finite

2This theorem is well known to investigators of nonlinear
field equations. An early reference which emphasizes the
relevance to particle physics is Hobart, 1963.

with very simple properties. One finds a continuous
spectrum for &u2~= 0'+ 1.2, 0' & 0 with P~(z) - exp(i'm) multi-
plied by a Jacobi polynomial of degree L in tanh z.
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(There is no reflection, only transmission. ) In addi-
tion c)~ takes the discrete values I.' —~', e=L,
I. —1, . . . , 1. For (2.21) this means that in the cp' theory
there is a zero-frequency solution p,', a second dis-
crete eigenvalue, and a continuum beginning at „'
= (2m)', in the SG theory the zero-frequency state is
again p,', and the continuum begins at ~~= m'. The
eigenvalues are non-negative; both solutions are stable.
Note that in both cases the continuum begins as p,

' where
p, is the mass of the meson.

Let us observe that the static solutions (2.19) a.re
O(g '), just as are the constant solutions (2.17). They
interpolate between the constant solutions as x ranges
from —~ to ~. Also the energy density 8 = —,(y,')'+ U(P, )
= (p,')' is localized at x =x,. We shall call solutions that
have a localized energy density for all time "solitons. " '

The soliton, though arising in a classical field theory,
looks very much like a classical particle. Its energy
density is localized at a point, its total energy is finite,
and it is stable. Moreover, because the field equations are
Lorentz invariant, once we have the solution y, (x), we
also have the boosted solution q, (x —g!i!Vl —v') for
arbitrary v, ~v ~& 1. The soliton can move in space.

This then completes our discussion of static solutions
in the simple examples. We now turn to the question of
the quantal significance of such solutions.

4 (x, t) = y, + 4 (x, f) (2.23)

and conventional perturbation theory may be used to cal-
culate amplitudes of O'. Note that po (when nonvanish-
ing) is O(g '); it is the lowest-order (in g) approximation
to (0

~

4
~
0). Multi-meson amplitudes involving 4 are of

higher order in g.
The above description of the quantum theory was, un-

3The nomenclature, advocated by T. D. Lee, is a borrowing
from the literature of applied mathematics and engineering.
In those disciplines, however, "soliton" is used in a more
restrictive sense. For a review of the older mathematical-
engineering researches see Scott, Chu, and McLaughhn,
3.973; Whitham, 1974..

B. Quantum meaning of static, c-numbet fields

In order to fit the static e-number solutions into a
quantum theory, we shall posit postulates about the Hil-
bert space of states, and we shall verify self-consis-
tently the validity of the postulates. Also a systematic
expansion scheme will emerge, with which one can com-
pute quantal amplitudes to arbitrary accuracy.

We postulate'the existence of a vacuum state ~0&,
which in our examples is degenerate. A particle space
is built on one of the vacua —there is no tunnelling,
hence we need not concern ourselves with the Hilbert
space built upon the other vacua. There are of course
"meson" states. The one-meson state

~

0& describes a.

stable, spinless boson with momentum k and mass p. ,
and there are also multi-meson states ~k, , k„.. .&. We
call this the "vacuum" sector and calculations in the
vacuum sector are performed in the standard way: The
quantum field 4 is shifted by the constant solution p,
(m/g in the y' theory, 0 in the SG theory)

til recently, traditional, but it is incomplete since it
does not take into account the static c;-number solutions
(Goldstone and Jackiw, 1975). In order that these solu-
tions be properly included, we further postulate that, in
addition to the meson states, there exist other particle
states, the quantum soliton states. The one-soliton
states ~P& are momentum and energy eigenstates

a (P& = Z(P) (P&,

E(P) = VP2+ M2 (2.24)

and we further postulate that, for small g, the quantum
soliton is very heavy; specifically the soliton's mass M
is taken to be

ill = o(g-'). (2.25)

u, . . . y, ~c ~P;u„. . . , u„&, =O(g"'"'-') (2.26)

[Here and subsequently, it is understood that the field
operator when written without argument is evaluated at.

In addition there are of course one-soliton, multi-meson
states ~P; iz, , 0„.. .&, where P is the total momentum,
and the k,. are the asymptotic meson momenta. Also
multi-soliton states exist, but we shall not be discus-
sing them. We postulate that the soliton is absolutely
stable against decay into mesons; this means that all
matrix elements of the form

(soliton, meson state
~

44'. . .
~

no-soliton, meson state)

vanish identically. This sector of the Hilbert space is
called the "soliton" sector.

Next it must be decided whether there is only one type
of soliton, or whether there is a variety. To settle this
we look at the variety of available static, c-number
solutions with the same energy, which, as will be pres-
ently demonstrated, are relevant to the soliton sector,
(just as the constant, c-number solutions are relevant
to the vacuum sector) Alwa. ys there is a variety cor-
responding to the symmetries of the problem. In the
exa, mples considered, this is the variety labeled by x,
arising from translational symmetry, as well as the
variety of the sign of the solution corresponding to the
field reflection symmetry; moreover, in the SG theory
there is the variety of the inverse tangent's multiple
branches, arising from the discrete field translation
symmetry. Such symmetry-related varieties are of no
consequence for distinguishing different types of solitons.
If, however, there is a further va riety to the classical
solution, then we postulate that there are as many dif-
ferent types of solitons as there are varieties of static,
c-number solutions with the same energy. Thus in the

theory, there is only one soliton; in the SG theory
there are two, corresponding to the a variety of the ex-
ponential. We may call them soliton and anti- soliton; in
what follows we shall concentrate on the soliton sector,
corresponding to +, with the understanding that there is
also an anti-soliton sector which does not communicate
with the soliton sector.

The last set of postulates sets the magnitudes of ma-
trix elements of the quantum field 4 in the soliton sec-
tor. We shall show self-consistently the following to be
true:

Rev. Mod. Phys. , Vol. 49, No. 3, July 1977



R. Jackiw: QUantum meaning of classical field theory 685

the origin, viz. &4» =—&4 (0)&.] The subscript C denotes
the connected part, where only the mesons are discon-
nected. Thus according to the above

&P'
~

+ ~» = O(g '),
&p'(c (p;t&=o(g'),
&P'; 0'

~

(I) IP; 0& = (2)()5(g' —Q}&P' (I) ~p&+ &P'; fp' C ~P; A»c,

&p', t'~C ~p;t&, =O(g'}. (2.27}

To show that our postulates can be verified self-con-
sistently, we begin by considering the one-soliton ma-
trix element of 4. We know that -the quantum field satis-
fies the operator equation

f(P' P) = — dx exp[i(p' —P)x](t) (x), (2.33)

—[P' —P]'= [P—' —P]'. Also c"'P'„P,= E(P)P' E—(P')P
=M[P' P—]. So f(P', P) =f(P' P—), to leading order in g.
As a consequence we may, to leading order, replace
(2.31) by

(- [P' —P]'+ 2m9f(p' P)—

dP" dP'"
=2 d P —P P' —P P -P . 2 32

(27) )'

In terms of a Fourier-transformed function @(x), de-
fined by

d
C (x, t) = —V(c (x, t)) = 2m'c (x, t) 2g2e '(x, t).

Equation (2.32) reads

@"(x) = -2m'@(x)+ 2g'y'(x) = V'(y(x) }. (2.34)

(2.28)

(For definiteness we discuss the cp" theory, but the
method is general) Let us take matrix elements of this
equation between soliton states

$[E(P') —E(P)] —[P' —P]2+ 2m2] f(P', P)

=2g'&P'(4'~P&=2p. 'g &P'I4I~&&~~~~~'&&~'~C IP&,

(2.29)

where the field form factor f has been defined by

&P'
~

(I ~P& =f(P', P). (2.30)

As a consequence of the soliton's stability, only states
in the one-soliton sector contribute to the completeness
sum in (2.29).

Equation (2.29) is exact; we now analyze to lowest or-
der in g. The left-hand side is O(g ), since according
to our postulate that is the magnitude of f, and the re-
maining factors are O(go). On the right-hand side the
factor g' requires that only terms of O(g ') be kept in
the sum. But these can arise only from one-soliton
intermediate states. Hence to O(g ') we may replace
(2.29) by an integral equation for f
([E(P') —E(P)]' —[P' P)'+ 2m']f(p'-, P)

dP"dP"'
2g 2

(2m)'
f(Pl Pll)f (Pll pell)f (Pill P) (2.31)

Upon comparing the g-behavior of both sides of the equa-
tion one concludes that f(P', P) is, indeed, self-consis-
tently O(g ). In fact the equation may be simplified,
and solved completely to O(g ').

The further simplifications are effected when it is re-
called. that E(P') —E(P) = v'P'2+ M' —v'P'+ M~. Since by
hypothesis M is O(g ') the energy difference when
expanded in powers of g is O(g') and may be
dropped in a lowest-order O(g '} calculation. The
physical meaning is that the soliton is very heavy
for weak coupling. Therefore to leading order it
does not move, and its energy is just its rest ma, ss, M.
Next, observe that the function f(P', P) depends only on
the difference P'-P, to leading order in g. To see this,
recal' that Lorentz invariance insures that f can be
only a function of the Lorentz scalars (P'„P„)'and-
y""P„p,'. To leading order (P'„-P„)'=[E(P')—E(P)]'

This is the static classical equation. As we know, its
solution is

Q(x) = y, (x) =+(m/g) tanhm(x —x,). (2.35)

Therefore we have determined for the p4 theory the
matrix element of the quantum field between one-soliton
states:
y' theory; (y" ~e~y')= f dx e px((t'y- )t(m)/ )Xteoh x

SG theory; &P'
~

C ~p& = dx exp[i(p' —P)x](4m/g) tan 'e "

+ higher powers ing (2.38b)
t

This is the matrix element between soliton states; there is
also a matrix element between anti-soliton states with a
negative exponential; see (2.19b). There is no transi-
tion matrix element between the soliton and anti-soliton
states.

Consequently a first result has been obtained: a, clas-
sical, static solution can be fitted into the quantum theo-
ry provided we allow for new states —the soliton states.
Then, in an expansion in powers of g, the Fourier trans-
form of the classical solution is the first approximation
to the field form factor &P'

~

(j) ~P& which is O(g ).
The next thing that has to be checked is whether the

soliton's mass is, as postulated, of order g '; indeed
we have to determine what the mass is. Let us compute
the energy

&P' ~H ~P& =E(P)(2)T)t)(p' P), —

=(l"
~ I de)t(x, l) ~P),

=(2~)n(P' P)&P~X~P&, (2.37a)

where the Hamiltonian density K is given by

+ higher powers in g
(The plus sign is taken in analogy with the vacuum sec-
tor, &0~ C

~

0&=m/g+ higher orders ing. The minus sign
is relevant to a parallel Hilbert space of identical struc-
ture. Also the arbitrary origin, xo, is physically unin-
teresting; it gives only an arbitrary phase to &P'

l
4

which we henceforth set to zero. ) A similar calculation
for the SG theory also determines the field matrix ele-
ment:
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~=-.C"+-.(@")'+U(c).

E(P) =&P IseIP) = ~z'+M'. (2.37c)

We expand E(P) in powers of g. The first two
terms are M+P'/2M. So M =&PI —,4'+ —,(4 ')'+ U(4) IP),
where only the dominant, , O(g ') terms are kept. Let us
begin with the e»Luation «&PI ~"IP)=+&PI@'I~)&~I4'IP).
We need to compute this matrix element to order g ',
therefore only the one-soliton states need be taken into
account in the intermediate state sum. However, there
is a time derivative which is equivalent to the energy
difference. But to leading order; the energy difference
between soliton states is zero, because to leading order
the energy is just the mass M. So &P 4'IP) may be
dropped to O(g '). Next consider &P

I
(C ')'IP)

Again since we are computing
this quantity to order g, we need to keep only single-
so»ton states &P

I

(c")'I» = fdP'/(2~)&P
I

~' IP')&P'
I

4 ' IP)
= fdP'/(2m)(P' P)'-&PI O'IP')&P'I 4 IP). Substituting into
this the expression for &P

I
4'IP') in terms of @(x), Eqs.

(2.30) and (2.33), and carrying out all the integrations,
~.. ne obtains (P

I
(4")'IP)= fdx(@'(x))' Fin. ally taking ma-

trix elements of U(4) and keeping only the single-soli-
ton states in the intermediate states, which is all that is
L~eeded to O(g '), one arrives at a formula for M in
terms of Q(x):M= fdx[2(@')'+ U(@)]. Since Q has been
shown to coincide with p„we obtain:

M=E, (p, )=M,

~ f(P" P'")f, (P-'" P). -
Upon introducing the Fourier transform

f„(P' P) = dx-exp[i(P' —P)x]@(k; x)

and using (2.33), we recognize that (2.40) is

(2.40)

(2.4l)

expression for &P'I 4 IP;A) ==f~(P', P) is needed. The
exact equation for that quantity is (in the p' theory)

QE(P') —E„(P)]'—[P' P—]'+ 2m'] f (P', P) = 2g &P'
I

4
I
P)

(2.39)

Here E~(P) is the energy of the one-soliton, one-meson
state; I' is the total momentum; k is the meson momen-
tum. To lowest order we take E,(P) to be M, + ~„. In
saturating the right-hand side we keep the no-meson
and the one-meson states „ thus encountering the follow-
ing matrix elements: &P'

I

4 IP), &P' IHIP;k) and
&P'; O'

I
4 IP; k). The first is known to lowest order; the

second is being calculated; the third we decompose into
a connected and disconnected piece, as in (2.27). To the
order we are computing only the disconnected piece is
kept. Also we take f~(P', P) to be, in lowest order, a
function of I"—I', the total momentum difference. With
these simplifications (2.39) becomes

'f (P' —P) =([P' P]' —2—'jf (P' P)—
dI' "dI '"

+6 ' — f(P' P")

4m'y' theory; Mo=— (2.38a)

m'
SG theory; M, = 8 (2.38b) (2.42a)

We have thereby verified the self-consistency of the
postulate (2.25) that the mass of the soliton is of order
g '. Also we find that M coincides with the classical
energy in lowest order. Of course, there are correc-
tions of higher order in@.

The above calculations show that to lowest order in
the coupling constant our postulates about the soliton
sector are consistent. Various quantal objects can be
computed; they are related to corresponding classical
quantities. Moreover, we see that some quantum struc-
tures in the soliton sector (the field form factor, the
soliton mass) are proportional to inverse powers of
g—they are singular at g= 0 and cannot be seen in ordi-
nary perturbation theory. Nevertheless these irregular
contributions can be isolated and completely calculated
by the methods here developed. Moreover, corrections
of higher order in g can be systematically computed.

We now give an example of such higher computations;
we calculate everything to next order in g. As we shall
see, an important quantum consistency condition emer-
ges which establishes the Poincare covariance of our
method.

To evaluate first-order corrections we may still keep
E(P) independent of P, since the kinematical dependence
enters in O(g'), two orders beyond the lowest O(g ').
However, in the saturation by intermediate states we
must keep the one-soliton one-meson state IP; k); an

Since @(x)= p, (x) in lowest order, (2.42a) becomes the
Schrodinger equation (2.8):

(2.42b)

Now we have a clear physical interpretation for the
solutions of this equation. The continuum solutions,
which begin at ~= &k'+ p. ', where p. is the meson mass,
are interpreted as meson —soliton scattering states. If
there are discrete states, other than the zero-frequency
state (as in y' theory), they are excited states of the
soliton. The zero-frequency solution of (2.42) is not
associated with any state. For later convenience let us
set Q(k;x) equal to (I/u 2~~)g~(x) for all states with the
exception of the zero-frequency state. The normalized
zero-frequency state is p,'(x)/&M„since M, = fdx{y,'}'

Is it consistent to exclude the zero-frequency mode;
i.e., are the physical states complete even though we
are excluding one of the functions which contribute to a
set of mathematically complete functions'? Note also
that (2.42) does not determine the normalization of
P~(x). To settle both these points, we consider matrix
elements of the canonical commutator between one-soli-
ton states

&P'
I
[4 (x, o), ~(y, o)] IP) = gn(x -y)(2 )6(P P).

(2.43)
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Upon saturating with no-meson states and one-meson
states, the contribution of the one-meson states can be
shown to be

y4 theory„L = 2,

SG theory; L = l.
(2.45a)

(2,45b)

iZ ~a dz exp [—i{P'—P)z]

x —~ ~ +x yI. (2.44a)

The prime on the sum indicates that the zero-frequency
state is excluded. If we take the P„'s to be properly
continuum normalized, then the sum can be evaluated
by completeness. A delta function does not emerge,
since the zero-frequency mode is excluded; rather we
get

r
i5(x —y)(2m)5(P' —P) —i

J
dz exp[ —i(P' —P)z]

Note that phase shift is independent of g.
With the one-meson matrix element determined, the

first-order correction to the energy and soliton field
form factor can be computed. Returning to (2.29) and
retaining the one-meson states in the saturation of the
right-hand side, we find that the equation satisfied by
g(x) is

@"(x) = V'(P)+ —,'-G(x, x)V"'(@)

G(x, y) = g P„*(x) P„(y). (2.46)

Similarly, keeping the one-meson intermediate states in
(2.37) gives

y'(x —z) cp'(y —z)
v'Mo V Mo

(2.44b) (2.47a)

Next the no-meson contribution is evaluated„here are
encountered contributions of the form

(P' f4(x, o) fP"&(P"
f C(&, 0) fP)

dQ 1f

= 2 [E(P") —E(P)](P'
f

4 (x, 0)
f

P")(P'
f

4 (y, 0) P).(2~)

dz exp[ —i(P' P)z]y,'{x —z)—p,'(y —z). {2.44d)

Thus when M' =Mo, (2.44d) cancels the second term in
(2.44b), and the canonical commutation relation, the
hallmark of quantum mechanics, is regained.

By this exercise we have learned three things. First,
the properly normalized matrix element is (P'

f
4

f
P; k)

= fdx exp[i(P' —P)x][P„(x)jv 2m~ ) where P~(x) is a nor-
malized solution of the Schrodinger equation, hence
O(go), consistent with the postulates (2.26) and (2.27).
Second, the zero-frequency solution is not a state of the
theory, rather it describes the first correction to the
motion of the soliton. Third, to the order computed, the
theory is Poincare invariant since the rest mass coin-
cides with the kinetic mass.

From the scattering solutions of (2.42) the meson-
soliton S matrix can be found. For the p4 and SG theo-
ries there is no reflection, only transmission. The
transmission amplitude T is a pure phase by unitarity:

T = exp[2i5(a)]

tan5(a) = —g tan-' +-Le
nm 2

(2.44c)

The matrix elements in the right-hand side of (2.44c)
are each O(g '); consequently we must retain E(P")
—E(P) to order g', since we are computing the commu-
tator which is O(g ). The energy difference is taken to
be (P"' —P')/21'', where we have put a prime to dis-
tinguish the mass that occurs in the kinetic term from
the rest mass; we shall prove that in fact M'=MD. Eval-
uating the relevant integrals gives the no-meson contri-
bution to O(g ):

To order g, there is no kinetic energy —that arises in
O(g'). Also according to (2.46) @=y, +5@ where 5Q is
O(go). But 5&] does not contribute to E,(Q) since E,(@) is
stationary at @= p, . Thus

Al=M +—
2 ~

(2.47b)

The soliton's mass, through O(g'), is the classical en-
ergy plus half the sum of the small fluctuation frequen-
cies —a completely reasonable, quantum mechanical
formula. [Here again we see the need for non-negative
eigenvalues in the Schr'odinger equation (2.42): If ~'„
&0 then the soliton's mass becomes complex —it is an
unstable particle. ]

The equations (2.46) and (2.47) have to be renormal-
ized. Firstly the (infinite) vacuum energy has to be re-
moved from —,Z~~„. Moreover, the mass parameter in
the theory m, has to be renormalized just as in the
vacuum sector. (These are the only infinites of spin-
less theories in one spatial dimension without derivative
coupiings. ) The mass formulas have been renormalized
and evaluated (Dashen, Hasslacher, and Neveu, 1974b;
1975). The results are:

4m' 3 1p~ theory; M = —
2

—m — — + O(g'),3 g 'll 2 3

m' m
SG theory; M=8, ——+O(g').

(2.48a)

(2.48b)

4The study of a field theory through the equations satisfied
by matrix elements of the quantum field between states of a
very massive particle was pioneered in the context of nuclear
physics by Kerrnan and Klein, 1963. The method was applied .
to the present problem by Goldstone and Jackiw, 1975. More
recent developments are by Klein and Krejs, 1975, 1976;
Klein, 1976; and Jacobs, 1976a.

Here m is the renormalized mass parameter.
It is of course possible, with increasing tedium of

computation, to extend the above method to the next,
indeed to arbitrary order in g2.4 Such computations
have been performed; they provide an important verifi-
cation of the consistency of our postulates about the soli-
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ton sector (Jacobs, 1976a). I shall not review them
here, since there is available an alternate approach,
described in the following subsection, which gives a
diagrammatic depiction of the series in g.

We turn next to the question of the soliton's stability:
if it is heavy, why does it not. decay into ordinary me-
sons? Stability is usually associated with an absolutely
conserved quantum number. To see the existence of a
conservation law in our models, observe that

is a conserved current, not because it arises by No-
ether's theorem from a symmetry of the theory, but
rather because it is trivially conserved, since it is a
divergence of an antisymmetric tensor. The charge as-
sociated with this current is

is, by which classical solution should we shift? The
second problem is that if we shift by a c-number which
depends on x, then there will be great difficulty in im-
plernenting translation invarianee because the mcmen-
tum operator P commutes with the c-number solution.
So, in order to maintain translation covarianee, 4 would
have to transform in some very complicated way.

The problem that we are facing is that we have a theo-
ry with a symmetry. The symmetry is translational
invariance. But our classical solution is not symmetric;
a translation transforms it into another solution, To
overcome this problem and to develop a quantum theory
around the-classical solution, the procedure is to take
the whole class of classical solutions parametrized by
x, and to promote x, in p, {x—x,), to a quantum variable
X(t). This new quantum variable is called a. "collective
coordinate. " Therefore we write

N = dxJo= dx4 O'
I — C (2.50)

C (x, &) = q,(x -X(&))+C(x -X(f), t). (2.51)

In the vacuum sector the field tends to the same value
as x -+~, and N vanishes. In the soliton sector, the
field, tends to different values, N is nonzero, and its
conservation renders the soliton stable. (In higher di-
mensions, an antisymmetric tensor, whose divergence
is a conserved current, can be constructed with the help
of the spin degrees of freedom. ) Such currents and con-
servation laws are called "topological. ,

" since they arise
from topological properties of field configurations and
not directly from symmetries of the theory (Skyrme,
1961).

IIt should be remarked that there exist localized,
finite-energy solutions whose stability arises not from
topological quantum numbers but from an ordinary, No-
ether conservation law. These solutions are necessarily
time-dependent; I shall not discuss them here (Fried-
berg, Lee, and Sirlin, 1976).]

A final remark about the soliton: Observe that in the
y' example p, (x) is an odd function of x, hence f(P' —P)
={P' C P) will change sign when P' and P a', re inter-
changed. But by crossing symmetry an analytic contin-
uation of f(P' —P) should also describe the matrix ele-
ment (P'PI 4 0). Antisymmetry of this matrix element
indicates that the solitons in the g' theory are fermions
(Goldstone and Jackiw, 1975). This truly remarkable
result —the emergence of fermions in a theory containing
only Bose fields —will be encountered again when we study
realistic three -dimensional models.

C. Quantization about static, c-number fields

Having established the existence of the soliton sector
and demonstrated the feasibility of a systematic coupling
constant expansion, it is appropriate to develop a dia-
grammatic perturbation theory, analogous to that in the
vacuum sector. The approach there is to write 4 = yp
+ 4; that is, the quantum field 4 is shifted by p„ the
constant, O(g ') solution to the field equations, and per-
turbation theory is developed in terms of the new field

We would like to do something similar with the posi-
tion-dependent solution. However, there are several
problems. First, p depends not only on x but also on
x„ the ehoiee of the origin. Thus there are many clas-
sical solutions, pararnetrized by xp and the question

This can be viewed as a canonical transformation from
the original set of variables 4 to a new set of variables
~, 4. Since 4 is a quantum field, it has an infinite num-

A

ber of quantum degrees of freedom; 4 also has an in-
finite number of quantum degrees of freedom, and
y, (x —X(f)) has one quantum degree of freedom in X(i).
In order not to increase the number of quantum degrees
of freedom we should set a subsidiary condition, and we
take it to be

dx y,'(x) C (x, t) = 0.

P(t)+ dxC'(x, t)ii(x, t)

{2.53)

M = dg cp'g

As before we have to put a subsidiary condition on the
canonical momenta so as not to increase the degrees of
freedom

dx y,'(x)II (x, t) = 0. (2.54)

This condition is very convenient because e,' is a small
oscillation associated with the zero-frequency mode
which does not correspond to a physical state. So the
subsidiary condition insures that the quantum field
4(x, f) does not contain the unphysical zero-frequency
mode.

To complete the specification of the canonical trans-
formation we need to exhibit the transf ormation for the
conjugate momenta. The canonical momentum conjugate

0

to 4 is H = 5/54 = 4. The transformation conjugate to
(2.51) involves a momentum P(t), conjugate to X(f), and
a field momentum II(x, f), conjugate to 4(x, t). The
transformation is complicated:

11(x, f) = 11(x —X(f), f)
1 p,'(x -X(t))
2 1Vlo+ t
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'[11(x I) 4( t)]=6(x — )—
0

(2.55)

The physical interpretation of P(t) is that it is the to-
tal field momentum, which in terms of the old variables
is —fdxII(x, t)4 (x, t). Upon expressing this in new vari-
ables and evaluating the integral with the help of the
orthogonality relations (2.52) and (2.54), we find P(t).
(Since the total momentum is a constant of motion, we
may drop the time dependence. )

Finally we exhibit the Hamiltonian in terms of the new
variables, which in old variables reads

H = dx1-,'ll'(x, t)+ —.'(4'(x, t))'+ U(4 (x, t))]. (2.56)

Substituting (2.51) for 4', (2.53) for II, and shifting the
variable of integration from x to x+X, so that all fieMs
become evaluated at x rather than x -~, yields

H = M 0+ P /2M O+ H(II, 4 )— dx(y,")'

(2.57a)

P(t) = —P+ dx4'(x, t)II(x, t),
1

1+ t Mo, (2.57b)

H (11,4; I) = dx(—' ll'(x, t) + —'(4 ' (x, t))'+ U(4 (x, t), p, (x))]

U(4, q, ) = U(4+ p, ) —4 U'(q, ) —U(q, ).
(2.57c)

(2.57d)

[The shift of integration of variable x -x+K involves a
shift of a c-number by a q-number. Hence one must
take into account the noncommutativity of ~ with P. The
last term in (2.57a) arises from this quantum effect
(Tomboulis, 1975).] Note that H is independent of X',
hence commutes with P, which may be diagonalized and
taken to be a c-number. The orders of magnitude in g
are MO=0(g '),P, II, 4 =O(g'), (/M, = O(g). Therefore
for a pertuj. .bative expansion, H may be separated in the
following way:

To verify that the above defines a canonical transforma-
tion, recall that the original variables satisfy z[II(x, t),
4 ( y, 3)) = 5(x —y). This formula is regained, provided the
nonvanishing comxnutators of the new variables are taken
to be'

z[P(&),W(z)] = 1

B =Mo+HoyHI,

H, = — dx II'+ 4' '+ U" q, C' =0 g'.
Here HI II Mp Hp is the interaction part .

When HI is ignored, Ho can be diagonalized in terms
of the solutions of our Schrodinger equation (2.42), and
in this approximation 4 can be written in terms of (me-
son) creation and annihilation operators.

4 (x, t) = Q (a~/„(x) exp( —z(ut)
"l 2(d&

+ a~tg, *(x)exp(iso, t)) (2.59)

(The zero-frequency mode is not included in the sum
since 4 is orthogonal to it.) Substituting this expansion
for 4 in Ho we regain (2.47b). The soliton states are
labeled by P, the eigenvalue of momentum conjugate to
~(t), which is also the total momentum. One easily
verifies that the field form factor is given to lowest or-
der by the Fourier transform of p„and other matrix
elements of 4 follow the postulate (2.26).

It is clear that a systematic perturbation series can
now be developed, with M, +Ho the unperturbed part and
HI the perturbation. The perturbation theory is exactly
the same as the one discussed in the previous subsec-
tion, but now it can be represented by familiar graphical
methods. Various computations to high orders ing have
been performed (Gervais, Jevicki, and Sakita, 1975;
Jacobs, 1976a; Gervais and Jevicki, 1976a; de Vega,
1976).

Although the collective coordinate method for canon-
ical quantization in the soliton sector has been presented
for the simple example in one spatial dimension, it of
course car ries over to the three -dimensional theory as
well. Moreover, collective coordinates have to be intro-
duced for all degeneracies of the problem, and the
corresponding zero-frequency modes have to be re-
moved by subsidiary conditions like (2.52) and (2.54).
The soliton states will then be labeled by eigenvalues of
the momenta conjugate to the collective coordinate,
which commute with the Hamiltonian, if they generate
symmetry transformations. For example, in a model
vith charged fields 4, 4, or in a real basis 4„4„if
there is a classical solution p, = (;&), then because of
charge conservation one can obtain another solution by
a charge rotation

J

Collective coordinates are vridely used in many-body physics;
an early application to the polaron problem is by Bogoliubov
and Tyablikov, 1949; and to meson physics by I'ais, 1957.
For the soliton they were first discussed by Gervais and Sa-
kita, 1975; Callan and Gross, 1975; Korepin and Faddeev,
1975. These authors used a functional integral for the formu-
lation; however, the functional integral obscures problems of
quantum operator ordering. The correct formalism, de-
veloped through operator canonical transformations, was given
by Christ and Lee, 1975; Tomboulis, 1975. For more recent
developments see Creutz, 1975; Tomboulis and Woo, 1976a;
Gervais and Jevicki, 1976a; Korepin and Faddeev, 1975;
Jevicki, 1976; Abbot, 1977.

In this case 6 is the degeneracy parameter which de-
scribes the symmetry —charge conservation. There will
be a zero-frequency mode 6y, = ("~2) and the collective
coordinate is B(t) with conjugate momentum Q(t), which
in fact is time independent since it generates charge ro-
tations. The soliton energy eigenstates are also eigen-
states of Q; they carry charge. Since Q is conjugate
to an angular variable, it is quantized. The energy will
depend on Q in order g', and the dependence will be of
the form Q'/2 fdx(6y, )' (Rajaraman and Weinberg,
1975).

The general expansion scheme here presented may be
called a Born-Oppenheimer expansion for field theory,
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since it is very analogous to the approximate calcula-
tions of the quantal properties of molecules. In that con-
text also, the first approximation describes a particle
localized at an equilibrium point without kinetic energy,
while the second approximation exposes the harmonic
vibrational spectrum around the equilibrium. It is only
in the next and higher approximations that rotational
degrees of freedom are encountered.

l3. Time-dependent c-number fields

The previous subsections were devoted to an exhaus-
tive discussion of static solutions to classical field theo-
ry and of their quantum significance. An interpretation
was given in terms of a, new state in the theory —the
soliton —and the one-soliton sector of the Hilbert space
was analyzed. It is plausible to suppose that time-de-
pendent solutions to the classical field equations of our
examples have something to do with multi-soliton states.
As yet a complete and systematic perturbation theory
for the multi-soliton states has not been developed.
However, using semicla, ssical methods for field theory
some results have been obtained. We describe first the
types of time-dependent c-number solutions that one may
expect to find in a field theory.

There are of course the entirely trivial time-depen-
dent solutions where a static solution has been boosted.
This solution obviously continues to describe a soliton,
but now in a moving reference frame. No new physical
information can be obtained, and we need not concern
ourselves with them.

In some models with complex (charged) fields, it is
possible to find time-dependent, stable solutions with
localized energy density —soliton solutions —even though
no such static solutions exist. The time dependence is
in a phase, corresponding to nonvanishing cha. rge. It
has been shown that these solutions can also be associ-
ated with a stable quantum particle state —the stability
arjses not from topological properties of the field con-
figuration, but from ordinary charge conservation.
These very interesting nontopological solitons may have
something to do with the observed particles; but they
are outside the scope of this review and will not be dis-
cussed (Friedberg, Lee, and Sirlin, 1976).

The types of time-dependent solutions which are rele-
vant to the topological solitons under review here should
have the property that as t-—~ they describe several
widely separated static solutions, moving towards each
other. Clearly such solutions would be relevant to
multi-soliton scattering. Also interesting are periodic
solutions that could be interpreted as multi-soliton
bound states. Unfortunately, even in one spatial dimen-
sion the nonlinear, pa. rtial differential equations are
sufficiently complicated so that no general discussion of
such solutions is at present available. However, for the
SG theory it is possible to integrate the equations com-
pletely and all solutions are explicitly available. Of
necessity, I conf ine the subsequent discussion to the SG
solutions.

In the SG theory one can find the static soliton and an-
ti-soliton solution, given in Eq. (2.19b). There are also
time-dependent X soliton solutions with the following
properties. The N soliton solution depends on 2N pa-

rameters. As t- —~, the solution becomes a superposi-
tion of N one-soliton solutions and the 2N parameters
correspond to asymptotic velocities z~"' and positions
x,"'[i= I, . . . , N] of the R solitons. As f-+ ~l the solu-
tion again decomposes into a superposition of N one-sol-
iton solutions. The asymptotic final velocities are the
same as the initial ones, the asymptotic positions differ
from the initial ones by an amount that can be ascribed
to a time delay in the multi-soliton collision. By trans-
lation invariance, two constants of motion can be arbi-
trarily set to zero, and a third can also be made to
vanish if the calculation is performed in the center-of-
mq, 'ss frame, For example, the two-soliton solution de-
pends on one constant, u, the relative velocity of the two
solitons, The explicit form of the two-soliton solutions
ls:
soliton, soliton;

m x
+ sinhmyx

— tan '
g coshmynt ' (2.60a)

soliton, anti- soliton;

4m, 1 sinhmyut
g zj coshmyx

y = (1 —u') ' ~', u'& 1 .

(2.60b)

The total momentum of each solution is zero; the energy
is 2)VI,&,Pl, = Bm'Ig'. Examination of the asymptotic
forms of the two solutions shows that in both cases there
is time delay

Lt(u) = (2/mug) lnu. (2.61)

(] ~ a2) 1/2 (2.62)

The energy is 2Moy. There is no soliton, soliton bound
state.

E. Quantum meaning of time-dependent, c-number fields

Once we have in hand classical, time-dependent solu-
tions for a field theory, which is a very rare circum-
stance indeed, we can do something different from the
Born-Oppenheimer approximation scheme that we have
described in connection with the static solutions. Rath-
er, following Bohr and Wigner, we can perform WEB
approximations as in quantum mechanics.

I et us recall the WKB approximation in quantum me-
chanics with one degree of freedom. When a particle
is moving periodically with energy E in a smooth poten-
tial between two turning points q, and q„ then the WEB
quantization condition is

f

�92
C2

v'2E —2V(q) dq = (n+ ,')n = p (q-)dq,

where p(q) = 0 2E —2V(q) is the local momentum. This
is valid for large n, and the WEB approximation gives
the first t~o terms in a large n expansion of the energy.

There is another solution, the soliton, anti-soliton
bound state or "breather" which is periodic in time. It
is obtained from (2.60b) by taking u= ia, a real

4m
~ I slnmyQt

p~ = —tan
a coshmyx '
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The semiclassical, Bohr quantization condition, based
on the correspondence principle, determines the first
term, n7r. The second term &7r, follows from the details
of motion in one degree of freedom. To generalize to
many degrees of freedom we remain with the Bohr con-
dition. [It is possible to generalize the full WKB approx-
imation to many degrees of freedom (Maslow, 1970;
Gutzwiller, 1971)and even to a field theory with infinite
degrees of freedom (Dashen, Hasslacher, and Neveu,
1974a, b); I shall not be reviewing these. ]

To develop the generalization of the semiclassical
method, we first rewrite the Bohr condition as

P 9' d9'= dt p(t)q(t) = n~,

Clearly, for a field theory, with an infinite number of
degrees of freedom, the Bohr, semiclassical quantiza-
tion rule is

where the variable of integration has been changed from
q to t. Note that t, —t, is the semiperiod of the motion.
For N degrees of freedom, the generalization is

N

dt Q p, (t)q, (t ) = n7r

4=1

E
5(E) = 5(E,„)+—,

' dE'&t(E'). (2.66)

The constant of integration, the phase shift at threshold,
may be evaluated as follows. Consider the classical ac-
tion ir(E) for a solution to the equations of motion, with
energy E, which passes from an initial configuration to
a final configuration in time T. Since dir(E)/dT = -E, it
follows that

(ir(E)+ET)= r +E +T=T.dir(E) dT
(2.67a)

That is, the time of flight can be expressed as an energy
derivative. Total time delay is equal to the time of
flight in the presence of forces, less the time of flight
in the absence of forces, in the limit as T goes to infini-
ty. But the time of flight in the absence of forces is
given by (2.67a), where the term in parentheses on the
left-hand side may be written as P(E)[x&(T) —x,.], with
p(E) being the relative momentum of the particles and
x, , x& the initial, final position. Thus the total time de-
lay ls

&t(E) = lim (Ir(E)+ ET -p(E)[x~(T) -x,.]), (2.67b)
d

t2
dt dxII(x, t)(r (x, t) =nrr. (2.63a)

and the phase shift can be taken to be

25(E) = Iim(I, (E)+ET p(E)[x,(T) —x,.]). (2.66)

An equivalent formula is

t2
dt(L+ II) = Ir(E)+ ET = nrr, (2.63b)

m 8~~'&„=2~,sin- n, n=1, 2, ... , ~ (2.64)

where Ir(E) is the classical action for a periodic solu-
tion with semiperiod T and energy E. We are instructed
by (2.63) to find classical periodic solutions, ya, then
to integrate the product of the canonical momentum with
y~ over a semiperiod and equate this to n7r, thus achiev-
ing one quantization condition on the parameters of the
solution.

In the SG problem there exists a periodic solu-
tion, Eq. (2.62), depending on the parameter a.
Hence to quantize it, we integrate &@~= p~ over all
space, and then over the semiperiod —7r/2m@a ~ t
~7r/2m&a. Equating the integral to m results in a quan-
tization of the parameter a. Since the energy is also
expressed in terms of a, E= 2MO(1+ a2) 'I2, this is equi-
valent to a quantization of the energy. The result is
(Dashen, Hasslacher, and Neveu, 1975; Korepin and
Faddeev, 1975)

At threshold p(E,„)= 0 and therefore

25(E,„)= lim(ir(E, „)+E,„T). (2.69)

Next let us consider the quantization condition (2.63b).
The total number of bound states is given by n~, the
maximum value of n, which occurs for E just below E~»
since at E,„the semiperiod becomes infinite. Hence it
is true that

narr = Iim(ir(E, „)+E,„T).
Comparing (2.69) and (2.70) we find

5(E,„)= (rr/2)n

(2.70)

(2.71)

which we call the semiclassical I evinson's theorem.
[The exact I.evinson's theorem is 5(E,„) —5(~) = (m/2)na,
where the factor of & is peculiar to one-dimensional mo-
tion. ]

Therefore the semiclassical phase shift is given by
E

ti(E)= nv+ —, f d3'At(E —). ' (2.72)
Eth

Using (2.61) as well as the fact that na = 0 for the soli-
ton, soliton channel and na = Srr m 2/g 2 for the soliton, anti-
soliton channel, we find the following phase shifts
(Jackiw and Woo, 1975):

So in the quantum field theory there are soliton, anti-
soliton bound states.

Let us now perform a semiclassical analysis of scat-
tering. Wigner has shown that twice the derivative of
the phase shift in the semiclassical approximation is the
time delay

j 6 2 8

0

4m'm' 16m2 " Inx
3S g2 +

lnx
dx 21-x

(2.73a)

d5(E)/dE = 2 &t(E). (2.65) M, f" (m

Hence we can compute the phase shift by integrating the
time delay (2.61) with respect to energy (Sm3/g2)(I ~2)-1 /2 itf (I ~2)-1 I2 (2.73b)
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692 R. Jackiw: Quantum meaning of classical field theory

There are several interesting properties of the result.
Note that for weak coupling (small g), the phase shifts
are large. This means that the forces are large and that
the solitons are strongly interacting even for weak cou-
pling. In fact there are three scales of interaction for
the theory when g is small. The conventional meson—
meson interactions are weak, since they are proportion-
al to g. The meson-soliton interactions are of inter-
mediate strength —independent of g [compare (2.45)].
Finally the soliton —soliton forces are strong. Another
interesting feature of (2.73) is that crossing symmetry
is satisfied in the sense that 6„and 6,~ are related by
the crossing relation (Coleman, 1975b).

F. Quantization about time-dependent,
c-number fields

In order to calculate contributions to the bound-state
energies and phase shifts, beyond the lowest-order ones
presented in the previous subsection, a systematic
series must be constructed for expanding the quantum
theory around a time-dependent, c-number solution.
Such expansions have been found by functional WKB
methods (Dashen, Hasslacher, and Neveu, 1975) or by
time-dependent canonical transformations (Christ and
Lee, 1975). The formalism requires explicit time-de-
pendent solutions; consequently its applicability is con-
fined to the SG theory where these are available. More-
over, it is sufficiently complicated so that only the first
correction has been computed. I shall not review the
theory, beyond quoting the results of the first-order
computations which, in the end, turn out to be very sim-
ple (Dashen, Hasslacher, and Neveu, 1975; Gervais
and Jevicki, 1976b; Lee and Gavrielides, 1976): Both
the bound- state energies and the phase shif ts are given
by the same expressions as in the semiclassical limit,
provided they are expressed in terms of the first-order
soliton mass M = (Sm'/g') —(m/m), rather than the low-
est-order mass M, = (Sm'/g'). It has also been possible
to extend the WKB method to a calculation of the (expo-
nentially small) reflection coefficient in multi-soliton
scattering (Korepin, 1976).

The SG theory has continued to interest theorists, and
several exact results have been obtained. It has been
shown that the SG theory is equivalent to the massive
Thirring model (Coleman, 1975a). The fermion fields
of the Thirring model describe particles, which are

I

identified with the SG solitons, and the fermion number
current Py~g is proportional to the topological current

Thus the SG solitons also are fermions, just as
are the p' solitons. Furthermore, it has been possible
to obtain the bound-state spectrum of the solitons-fer-
mions exactly, and it is found to agree with the WEB ap-
proximation (Luther, 1976).

These exact results validate the semiclassical ap-
proach. Also they expose a fascinating duality: the
same physical reality has two equivalent descriptions,
one bosonic with fermions appearing as coherent bound
states; the other fermionic where the bosons are bound
states. Unfortunately there is no indication at the
present time that these marvelous features of the SG
theory are also to be seen in realistic, three-dimen-
sional models.

G. Effects of Fermi fields

The models discussed thus far involve only Bose
fields. We now wi. sh to summarize the new effects that
arise when Fermi fields are included. We consider the
I agrange density

4 2
2= g8„49 4 — & — . 4~ + i4'y"B + —GgC44

which leads to the operator field equations

C = -2m'4 —2g'O' —Gg4 4,
iy e,4 —Gg4+=O.

(2.75a)

(2.75b)

In the absence of the Fermi fields, this is just the p4
model, with O(g ) soliton solutions. The Fermi field
equation. (2.75b) is linear in +, whose interaction with
the Bose field is of the form g4, hence O(g') when 4 is
O(g"'). [We take G to be O(g'). ] Also the reaction of
the Fermi fields on 4 is seen from (2.75a) to be O(g).
Hence for weak coupling (small g), we may ignore the
Fermi fields in the first O(g ') approximation, solve
the pure Bose equation, and then solve the Dirac equa-
tion in the external, static, c-number Bose potential,
thus obtaining an O(g') Dirac wave function. In other
words, for the extended theory (2.74), a systematic
coupling constant expansion may be given in which the
Fermi fields enter only at the first correction to the
lowest. approximation.

Before describing the quantal significance of the c-
number Dirac wave function, let us discuss the solutions
of the Dirac equation (2.75b), where the Fermi field
operator is viewed as a c-number wave function and g4
is given by the static solution to the p' theory. Because
the potential is static, we may look for energy eigen-
functions

P(x, t) = exp(- i et) g, (x),

9
+PGmtanhmx P, (x) = eP, (x),

(2.76a)

(2.76b)

where & = y y', p = y . The equation possesses the usual
positive and negative energy solutions. These are re-
lated by a fermion-number conjugation operation, which
in a representation where & = 0' and P = 0' is given by 0'.
However, in addition to these, there is a unique, nor-
malizable, zero-energy solution

([coshmx] ~
ox—

0
(2.77)

(We have assumed G& 0; if G (0 there still is a solution,
but with a nonvanishing lower component. ) The zero-
energy solution is self-conjugate

(2.78}

We shall demonstrate that the occurrence of the zero-
energy mode in the Fermion system has profound conse-
quences for the physical interpretation of the quantum
theory. Although the solution is here exhibited in a very
specific model, in fact it is present in much more
general situations. It appears, although this has not
been proven, that any Dirac equation in a topologically
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interesting potential with a conjugation symmetry, pos-
sesses a normalizable, self-conjugate, zero-energy
solution (Jackiw and Hebbi, 1976a, 1976c; 't Hooft,
1976a,b; Jacobs, 1976b; Grossman, 1977).

The quantum theory described by the Lagrangian
(2.74) has the following structure. There is of course
the conventional vacuum sector with mesons, fermions,
and anti-fermions, there is also a soliton sector, and in
the absence of Fermi fields we have demonstrated the
existence of the one-soliton states ~P&. This sector is
modified by the presence of Fermi fields which possess
a zero-energy solution to the c-number Dirac equation.
The zero-energy mode signals quantum mechanical
degeneracy, and we postulate that as a consequence the
soiiton states are doublets ~P+&. The additional label,
+, describes a twofold degeneracy which is required by
the zero-energy fermion solution. We call the + state
"solitonxx and the —state "anti-soliton. " (This bifurcation
has no relation to any soliton multiplicity which is al-
ready present in the purely bosonic theory, as in the SG
example. We are here describing a new degeneracy,
which is a consequence of the fermions. ) It must be
stressed that we do not take the viewpoint that the soli-
tons exist independently of the fermions, which then bind
to them with zero energy. Rather we say that the soli-
ton is doubly degenerate. The difference is that the
first viewpoint would lead to four states: the original
soliton, soliton plus fermion, solitonplus anti-fermion,
soliton plus fermion and anti-fermion. - our interpreta-
tion involves only two states,

The consistency of this picture is demonstrated by the
same method as in the purely bosonic theories: we list
relevant states in the soliton sector, postulate orders of
magnitude for various field matrix elements, determine
equations for the field form factors from the operator
equations of motion (2.75), expand systematically in the
coupling constant to regain the e-number equations, and
finally normalize various solutions by quantum field
commutation and anticommutation relations. Specifi-
cally we consider the states

~]P+& solitonoranti-soliton, with energy ~P~+iVl',

~P +;k& soliton or anti-solitonplus one meson, with en-
ergy 4P +M'+ (d~,

(P x'/e'/Px;P ) —-f dx exp[1(P' P-)x]x, (x)--o(g)

(2.79d)

(P'+~4'~P+;&&=
J

dx exp[t(P' —P)x][(t)(&;x)~'&2~, ]

= o(a') (2.79e)

C (x, t) = P' (a, (t)]t„(x)+a~t(t)(t),*(x))
l2~,

4(x, t) = a(t)u, + Q (b~(t)u~(x)+ d~~(t)v~(x)). (2.82)

The boson operators satisfy

[a,(t), at, (t)] = (27] )5 (]P. —k'), (2.83a)

and create or annihilate mesons in the soliton sector.
The fermion operators satisfy

(a(t), a'(t)},= 1,

One readily verifies that, to leading order ing, (t)(x)
continues to satisfy the classical, bosonic equation and
(t)(k, x) is the normalized solution of the Schrodinger
equation with eigenvalue ~. Furthermore one finds that
u, (x) is the normalized, zero-energy solution of the Di-
rac equation (2.76b); u~(x) is a normalized positive ener-
gy solution with eigenvalue c~; v~ is the conjugate of the
normalized negative energy solution with eigenvalue

The normalization is determined by evaluating
the equal-time Fermi field anti- commutator

(P'+ ~(4'~(x, 0), 4(y, 0)},~P+&= 5(x —y)(2v)5(P' —P).
(2.80)

A compact summary of the physical picture that is be-
ing presented can be given by the following expansion of
the quantum fields. In order to account for the transla-
tional degrees of freedom, a collective position coordi-
nate is introduced, as explained in Sec. IIC.

e(x, t) = q,(x -W(t))+ C(x X(t), t),

O(x, t) = @(x —K(t), t). (2.81)

The expansion for the new fields C and 4' is [compare
(2.59)]

~P +; p+ & solitonor anti-solitonplus one fermion with
energy 0P'+ 1''+ e~

(t, (t), I,'. (t)}.= (2~)5(P —P'),
(d,(t), d,'. (t)},= (2]r )5(p —p'), (2.83b)

~P +; p —
& soliton or anti-solitonplus one anti-fermion

with energy v'P'+ M'+ q~.

The field form factors are defined

The b's create or annihilate fermions, while the d's per-
form the same task for the anti-fermions. The a opera-
tor however does not create or annihilate particles; it
merely connects the soliton with the anti-soliton

(P x~d ~P*)=f dxexp[X'(P' —P)x]P(x)=O(g')

(P /e/P )= fedxexp[(('P P)x]e (x)=o(g )' —

(2.79a)

~P+&= )P
a'[P -&= (P+&,

a(P —&=0

at [P+&= 0. (2.83c)

(2.79b)

(p'x/e/p*;pe)= fdxexp[((p p)x] ( )=O( )x'-g
(2.79c)

In the theory (2.74) fermion number is a good quantum
number, arising from the conserved number current,
J"=:t/iz~[t): which is odd under Fermi number conjuga-
tion. In the vacuum sector, the vacuum and the meson
states have zero Fermi number; the one-fermion states
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carry Fermi number +1, etc. In the soliton sector, we
must conclude that soliton and anti- soliton differ by one
unit of Fermi number, since the Fermi field matrix ele-
ment connects the two; see (2.79) and (2.81). In order
to preserve Fermi number symmetry, we must assign
Fermi number + & to the solitons, and one can easily
verify that

(J"+~ f dxJ"(P~)=+ (2w'-,)5(F -5"'). (2.84)

The existence of states with fermion number +2 in a
theory where all fundamental fields carry integer fer-
mion number is a fascinating phenomenon which, as
will be seen below, can also happen in realistic three-
dimensional models (Zackiw and Rebbi, 1976a).

III. MODELS IN THREE SPATIAL l3IMENSIGNS

m' g'
V(C.C.)=,1,O.C. ,2g 1+i

where

(3.1)

0= ]., 2q3.

The gauge symmetry

We have demonstrated that classical solutions to quan-
tum field equations contain information about the corre-
sponding quantum field theory. Moreover, a systematic
coupling-constant expansion can be given for various
physically interesting quantum objects. However, all
our examples were confined to an unphysical world with
one spatial dimension. Now we wish to discuss theories
in three spatial dimensions.

In dimension greater than one, fields with spin de-
grees of freedom have to be used in order to support
stable, static, classical solutions. It turns out that
models that are known to possess soliton solutions in
three dimensions are Yang —Mills-Higgs theories, pre-
cisely those theories which have recently become candi-
dates for a fundamental descrip tion of natural process-
es. One of the several models which can exemplify the
application of our methods is built on the SU(2) group.
I shall review only this example.

The I agrange density is
2= ——,

' F~"F,„„+,'(D"4),(D 4),——U(4, 4,),
I""=9 "4"—9"3,"+ e& A "A."

a a a abc b c~

(D~4), = 8"4,+ ec„,A~ 4„

a(0) =0,

f(0) = 0,

and

1
a(~) „ O'Y

(3.4a)

f(~),-= (3.4b)

The complete functions, known only numerically,
smoothly interpolate, without nodes, between their as-
ymptotic values. With these asymptotic forms one can
check that the total energy is finite, but due to the com-
plexity of the equations no one has as yet verified sta-
bility, although it is generally believed that the solution
is indeed stable. For a consistent expansion in terms
of a unique coupling constant, we take g to be O(e); the
solutions are O(e ').

It is useful to exhibit the classical solution in a gauge
where p, points in a fixed (rather than position-depen-
dent) direction in isospace. Upon performing a gauge
transformation so that p, lies in the third direction, the
soliton solution becomes

ao=oa

&,' = e,'zo (~), a = 1, 2

A. '= —n xV'ln1 1+n'P
28 1 n

A. Static, c-number fields

The theory (3.1) is known to possess a static solution
('t Hooft, 1974; Polyakov, 1974). Its form is

co= O

A'= e '"x,.a(x),

(3 3)

Here x is the radial unit vector; a(x) and f(x) depend
only on the radial magnitude. Notice that the index a on
p, and A.,' is an isospin index, but one" and c"' it is a
spatial index. Hence the solution mixes spatial and in-
ternal degrees of freedom. The functions a(x) and f(x)
satisfy nonlinear, coupled, differential equations which
are obtained by substituting the Ansatz (3.3) into the
complete Euler —I agrange equations of the theory. The
equations can only be solved numerically, but the as-
ymptotic properties of the solutions are given explicitly

&C'a = &abc ~b@'c~

p 1
e (3.2)

is spontaneously broken since the scalar field acquires
a vacuum expectation value [p,'=m'/g']. Consequently
the vacuum sector contains a massive, scalar particle-
the Higgs particle; a massive, charged doublet of vec-
tor mesons; and a massless vector meson —the photon.
Static solutions and the corresponding soliton sector are
discussed in three following subsections. Then two sub-
sections are devoted to various extensions of the model.
Finally, we delete all fields save the gauge fields and
discuss imaginary-time solutions and their quantal sig-
nificance in Yang-Mills theory.

w(y) = a(y)+
1
e~' (3.5a)

Here n is a fixed unit vector in the z direction and the
e, 's, a=1, 2, are two unit vectors orthogonal to x so
that

nxP (3.5b)

Note that A, is the vector potential for a magnetic mono-
pole: 8= V && A, =0/ex'. Hence the soliton is also a mag-
netic monopole with pole strength (1/e), and we recog-
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g ojcy PV1
4g

g@g V 1
~ g V Ot g~2 ear

E"=e "4' e A~
3 (3 6)

The current is trivially conserved, since *E"' is anti-
symmetric'in p. —v, Nevertheless, the total charge

N =
J~~

drJ' = s *I"= —V " B
4m '

g 4'
is nonvanishing since &' Bn6'(r) and

1N= —.
e

(3.7a)

(3.7b)

There are general topological analyses which make it
possible to predict a Priori when one may expect to find
a topologically interesting solution to a gauge theory in
three dimensions (Coleman, 1975c). Such an analysis,
when applied to the problem at hand, predicts (3.7b),
but is of no further aid in constructing the solution.

B. Quantum meaning of static, c-number fields

The classical solution (3.3) or (3.5) signals the pres-
ence of a soliton sector. To expose its properties, we
first rewrite the Lagrangian density (3.1) in the unitary
gauge, where the field operators are redefined as fol-
lows:

(ol
C, =~ 0 4 (Higgs field),

Ij
A~ = W,", a= 1, 2 (massive, charged vector meson

field),

nize the n vector as the "Dirac string" which is always
present in the vector potential for a magnetic monopole.

The gauge specification that p, should point in the third
direction in isospace —the unitary gauge —does not fix the
gauge completely, since it is still possible to make local
gauge rotations about the third axis. Further gauge
specification is achieved by requiring V' A,, = 0, a condi-
tion satisfied by (3.5). But this Coulomb condition still
allows the gauge transformations A, —A, —1!'eV'~ with
harmonic gauge functions V'0=0, and corresponding
changes in A, , a = 1, 2. (Usually this additional gauge
freedom is ignored since harmonic functions are always
singular at the origin or at infinity, and singular field
configurations usually are excluded, In the present con-
text, however, we must allow for singular field configu-
rations, since already V' x A, is singular at the origin. )
One verifies that harmonic gauge transformations on
(3.5) are equivalent to rotations of n. Hence to specify
the gauge completely we may say that the "Dirac string"
always points in the z direction, a choice already made
in Eqs. (3.5).

A topologically conserved current may also be exhi-
bited

2 2

(e„W, W;)'+ —4 ' W; W, —U(4 '). (3.8b)

According to the general approach developed in the pre-
vious section, we expect that for the above model there
exists, in addition to the usual, vacuum sector of the
Hilbert space where N is zero, a soliton sector, with
nonvanishing X, populated by heavy particles which are
also monopoles. The quantum numbers describing the
soliton-monopole states are the following. Translation
invariance of the theory insures that we obtain new
classical solutions by shifting the origin, Hence in the
quantum theory, the energy eigenstate is described by
a momentum quantum number —just as in our one-di-
mensional examples. Also because the theory (3.8) con-
serves charge (it is invariant under rotations in the two-
dimensional charge space labeled by a= 1, 2), we obtain
a new static solution by replacing e, in (3.5) with

e,'

cosine,

+ single,
0

e', —sinoe, +

cosine,

)

Therefore, as explained in subsection II.C, we need a
collective coordinate e(t), and the soliton —monopole
states become labeled by the eigenvalues of the conju-
gate momentum. that is, by the total charge Q. In the
quantum theory the monopole can move in space (the
states carry momentum) and in charge space (the stat:es
carry charge). The classical monopole gives rise in the
quantum theory to a tower of charged states —the mono-
pole becomes a dyon. tin the classical theory, spatially
moving, time-dependent solutions can be obtained by
I orentz-boosting static solutions. Similarly it has been
possible to find time-dependent solutions with nonvan-
ishing electric charge (Julia and Zee, 1975).'] Now we
come to a subtle point: If we make a spatial rotation on
the solution, (3.5), it appears that we arrive at a dif-
ferent solution, since the original equations are rota-
tionally invariant. Does this mean that we need to in-
troduce collective coordinates to describe rotations,
and that the monopole states are further labeled by the
conjugate variable which clearly would be the angular
momentum? If this were the case, one would have to
conclude that the monopoles have intrinsic spin. How-
ever, in fact the variety of solutions obtained by a rota-
tion does not lead to new quantum degrees of freedom.
The point is that a spatial rotation on (3.5) merely ro-
tates the string n, which in turn is equivalent to a gauge
transformation. But our gauge specification requires
that n always point in a fixed direction, so that to main-
tain this condition, the spatial rotation must be "undone"
by a gauge transformation, and a new solution is not
reac.hed.

These considerations lead us to postulate that the
monopole states are ~P, q) (Goldstone and Jackiw, 1976)

(photon field),

E,""=(8 5„—eA "e„)W„"—p, —v a= 1, 2,
E""=B~A" —e"A."

~, 6» —1, (3.8a)

Julia and Zee exhibit their solution in a time-independent
form with &~=f~W(x), and W(x) constant at x . This con-
stant, however, may be removed by a gauge transformation
which then renders the solution time-dependent, and conver-
gent to zero at x—~ .

Rev. Mod. Phys. , Vol. 49, No. 3, July ]977



696 R. Jackiw: QUantUm meaning of classical field theory

P iP, q) =Pi P, q),

H
~

P, q) = Z, (I )
~

P, q), Z, (P) = "M,'+ I ',
Q iP, q) =q ~P, q),

and the matrix elements of the quantum fields are, to
order e ',
(P', q'

~

C
~

P, q) = 5... dr exp[i(P' —P) r]f(v),

dr exp[i(P' —P) ~ r]

1 1+6 '8
x —~x V'ln

2e 1 —A'I

(P', q'
~

(W, + iW, ) ~P, q)
~/p

~~(~~@) (D e) U(g n )

D "4 = O]'+ —ie 7'A".e +i+@'D„+—Ge+T'~~, .
(3.13a)

(3.13b)

The multiplet of Fermi fields transforms under isospin
rotations according to

6'4 = iT'4,

[ 7, T'] = ze'"T'. (3.13c)

We assume that G is O(e'); therefore, the extended theo-
ry may be analyzed according to the program presented
in subsection II.G. The Dirac equation in the external
static fie ld (3.3) is

a —. V+ ea(v) T'(n x v.), + p G ef (y ) T'g".,'g, (r) = q p, (r),1

= 5... , dr exp[i(P'- P) r]u (~-). (3.10)

Although the small-oscillation equation has not been
solved, one may identify zero-frequency modes: there
are zero-frequency modes associated with translations;
they are the gradients of the classical solution and lead
to the P dependence of the states; also there are zero-
frequency modes associated with charge rotations 5W,
= e,blab and these lead to the q dependence of the states.
The energy acquires a dependence on P and q in order

2

M =M+ 2q2&M,

1
M = Mo+ —g m~+ O(e ),

k

(3.1 1)

(3.12)

where M, is the classical energy of the static field con-
figurations. The charge-dependent correction &M is
O(e'). It has contributions analogous to those arising
from the momentum dependence of the energy: &M
-1/I, I= Jdrp(v), p(x) = 2zo'(x)= O(e '). Also there is a
further term describing the Coulomb interaction energy

, p( )p( ') (,.)I' 4~ I r - r'
I

In spite of the rotationally nonsymmetric appearance
of the matrix elements (3.10), one verifies that the theo-
ry is in fact rotationally covariant, and the monopoles
are spinless. Therefore a completely consistent quan-
tum mechanical description of the soliton —monopole
sector is available (Tomboulis and Woo, 1976b; Hasen-
fratz and Boss, 1976; Christ, Guth, and Weinberg,
1976; Ansourian, 1976).

D. Effects of Fermi fields

The purely bosonic model (3.1) may be extended to
include couplings to Fermi fields:

C. Quantization about static, c-number fields

A systematic coupling constant expansion can be given
by the collective coordinate method described in sub-
section II.C. The procedure is entirely similar to that
in one dimension, with obvious modifications: there are
three collective position coordinates, and now there is
also a collective coordinate for the charge. The soli-
ton's mass becomes, to O(e'),

There exists a conjugation symmetry which takes posi-
tive energy solutions into negative energy solutions.

We recognize the situation he re t o be comp letely a na-
logous to that described for the one-dimensional exam-
ple, and we expect that (3.14) admits normalizable,
zero-energy solutions. Indeed such a solution has been
explicitly constructed for the case of isospinor fermions.
» a representation where

0 0 . 0 —iI
p = -i

0 0, iI 0

the form of the zero-energy wave function is

(3,15)

I' (r) = exp —e dy'(~ Gf(x') —a(y'')]. (3.16)

Here the four-component spinors refer to the spin de-
grees of freedom, while the two-component ones refer
to isospin. In the representation (3.15), the conjugation
symmetry is effected by the matrix pn'T ', and (3.16) -is

self-conjugate (Jackiw and Bebbi, 1976a).
The quantum description of the soliton-monopole sec-

tor is the extended theory follows the discussion of sub-
section II.G. The zero-energy fermion mode renders
the solitons doubly degenerate; we append a + label to
the states and the Fermi quantum field effects a transi-
tion between them (+

~

+
~

-) & 0. The transition matrix
element is given by the Fourier transform of (3.16),
gauge-transformed to the unitary gauge. (Becall that the
quantum theory for soliton-monopoles is developed in
the unitary gauge where the particle content of the mod-
el is easily identified. )

Again the soliton states carry Fermi number +2. How-
ever, they remain spinless —enough c-number solutions
to give a nontrivial representation of the rotation group
are not available. It may appear contradictory that a
Fermi, spin-& field can have a nonvanishing matrix ele-
ment between spinless states. Nevertheless this indeed
is the case —+ is a gauge-dependent operator whose
transformation properties in the soliton-monopole sec-
tor are consistent with the above results (Ansourian,
1976). (A more physical explanation is given in the next

Rev. Mod. Phys. , Vol. 49, No. 3, July 1977



R. Jackiw: Quantum meaning of classical tield theory

subsection. )
Zero-energy fermion solutions are found, not only for

isodoublet fields, but also in other examples. For iso-
vector fermions it is again possible to establish the
presence of these zero-energy modes, but the complex-
ity of the equations prevents explicit construction of the
wave functions (Jackiw and Rebbi, 1976a). Also if the
model is extended to SU(3), again zero-energy fermion
solutions exist (Jacobs, 1976b).

E. Fermions from bosons, spin from isospin

In our study of one-dimensional solitons, we en-
countered the remarkable circumstance that the soliton
particle is a fermion even though only Bose fields oc-
cur in the Lagrangian. This can also happen in realis-
tic three-dimensional systems, where the phenomenon
is even more startling since in three dimensions there
is spin(intrinsic angular momentum), which for fermions
must be half-integer valued —a requirement obviously
absent in one dimension. I shall now describe how spin
can arise from isospin, and correspondingly how fer-
mions are created out of bosons (Jackiw and Rebbi,
1976b; Hasenfratz and 't Hooft, 1976; Goldhaber, 1976).

The basic mechanism for the emergence of half-in-
teger spin in a theory where all fundamental particles
carry integer spin, has been known since the late nine-
teenth century, when it was observed that the total an-
gular momentum of a point particle with charge Q„mov-
moving in a magnetic monopole field of strength Q, con-
tains in addition to the usual orbital term a further con-
tribution of magnitude Q,Q„, which can be a, half-integer
provided Q,Q =1/2. Since we have shown that the SU(2)
Yang-Mills-Higgs theory predicts the existence of
monopoles of strength 1/e, if we introduce particles with
electric charge e/2 which bind to the monopole, the com-
posite system will then have half-integer angular mo-
mentum —it will be a fermion. (This also explains how
a, Fermi field with spin 1/2 and charge e/2 —as in the
example of the previous subsection —can have a non-
vanishing matrix element between spinless monopole
states: the additional half-integer angular momentum
resides in the monopole-fermion interaction. )

To exhibit in detail the emergence of half-integer
spin in a model with only Bose fields, we enlarge the
Yang —Mills —Higgs theory (3.1) by adding a spinless, iso-
doublet field B.' Then

4I'~'E„„+2(D —(I)) (D„C), —U((I), C) )

+ (D B) (D B) —V(B B, 4),(I),),
D B= B~B —ie((x /2)A, B,

(3.17)

For a range of values of LLt. ', A.', and h, ', the solution in
the vacuum section is y,' = m'/g', B,= 0; while in the sol-
iton-monopole sector one may decrease the energy by
a nonvanishing, position-dependent B. Thus we expect
that the following static, degenerate solution exists

A, = e, u)(r), a = 1, 2

A, = A, (r),
B = u(r)fi exp[-ia ~ c/2)],

(3.19a)

(3.19b)

(3.19c)

where R is an isorotation matrix effecting the desired
transformation. AD is a Dirac vector potential for a
monopole of strength 1/e: V x A~ = r/er ' V AD = 0.
For the Lagrangian (3.17) J is given by

J'= — dr r x (II,'VA'+ II,V(I), + (IisVB+ h. c.)}— drII, x A,

a= 1 2 3' Ili=Eo' ll (DoC, ) ..II DoB
a a & a at B (3.20a)

In the unitary gauge, only C, =—C and II, —= II do not vanish.
We. redefine the charged, massive vector fields by A,
—=W„a = 1, 2; and the massless photon field by A, —= A,
II, =—II=HE+II~. The longitudinal part II~ satisfies a con-
straint equation

V ~ II~ = —ee, (II, ~ W(, —e[iIIe~(c /2)B+ h. c.] = —ejo, a= 1, 2.

An integration by parts in (3.20a) eliminates II~, and J is
expressed by uncontrained variables in the unitary gauge

J= — dr r x 111,'(V|)„+em, „A)W,'+ IIV@

+ [11',[V+ (ie/2)v'A]B+ h. c.]
+[II, VV-'e&o] x [vx A]}

The arbitrary triplet 0. parametrizes the degeneracy and
s is a fixed, constant isospinor. The functions a and f
differ only slightly from their forms in the absence of
B; thus their asymptotic forms remain as in (3.4), while
u(r) is constant at the origin, and approaches exponen-
tially its vacuum value, zero, as x tends to infinity. One
verifies that the static solution (3.18) has finite energy,
and one presumes thai it is stable.

The static, stable finite-energy solution signals the
presence of a soliton sector. The occurrence of cy shows
that the degeneracies are now greater than in the absence
of the scalar isodoublet. Consequently the soliton states
will be labeled by momentum, charge, and a new quan-
tum number related to n. The spinorial form of this
degeneracy strongly suggests that the new quantum num-
ber is spin-angular momentum. (Recall that isospin
symmetry is spontaneously broken in the model, hence
the states cannot be isomultiplets. ) We confirm that the
soliton's spin is indeed & by calculating the angular mo-
mentum operator J and by showing that it generates ro-
tations af a (Jackiw and Rebbi, 1976b).

[When the parameters of V in (3.17) are such that B
vanishes also in the soliton sector —when no static B
configuration is stable —the solitons remain of course
spinless. However, one may then consider the states
that arise from the binding of a B particle with the spin-
less soliton. These composite systems again possess
half-integer spin (Hasenfratz and 't Hooft, 1976).]

Quantization for the soliton sector is performed in the
unitary gauge where 4, points along the third isospin
direction. Classical solutions in this gauge, obtained
from (3.18) by an isorotation, are as in (3.5)

A,'= 0, A.,' = e'"r,a(r ),

i.= i' f(~), B =u(~)exp(-ia —
)s. (3.18)

dx'II, x W,

A=O, a= 1, 2. (3.20b)
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To calculate J in the soliton-monopole sector, the
quantum fields are shifted by the classical solutions,
with all degeneracy parameters promoted to collective
coordinates, i.e., time-dependent quantum operators.
We ignore the coordinates relevant to translations and
charge rotations —their role has been amply discussed-
and concentrate on the three-parameter degeneracy of
(3.19c). To lowest order in the coupling constant, we
need keep only the classical solutions. Thus we evaluate
(3.20b) with

4 = f(x), II= 0

W, = e,zv(r), II, = 0 a = 1, 2

%= AD(r), Iiz, ——0

B = u(~)R exp[ —ia(t) {e/2)]s = RB(—~, t)

II~ = B~(r, t)R = Ilgwu, t)R . (3.21)

Here H~ is nonvanishing since B acquires time depen-
dence from its collective coordinate n (f). The other
fields, not containing collective coordinates, are time
independent and their conjugate momenta vanish. Now J
becomes

o go beyond the details of our example, it is clear
that spin will always emerge from isospin whenever
there is an isospin-degenerate, classical solution in the
field of amonopole (Huangand Stump, 1977). Letusfurther
stress that there is no doubt about the Poincare covari-
ance of this result. V/e do not add I to L to obtain a con-
served quantity; rather we discover I as a contribution
to e""f drx'O'" .This is the correct Lorentz angular
momentum expressed in terms of the symmetric energy-
momentum tensor '"". It satisfies, together with

f drx'800 and f dr@"", the Poincard algebra.
Since we are dealing with a local quantum field theory,

we expect the spin-statistics connection to hold —not on-
ly is spin created from isospin, but we believe the half-
integer spin solitons to be fermions. A nonrel. ativistie
argument can be given to support this conclusion: When
two dyons arise as Schrodinger equation bound states of
identical magnetic and eleetrieal poles, then the dyon
wave function may violate the spin-statistics theorem,
but it contains more Dirac strings than necessary.
These suprefluous strings may be removed by a gauge
transformation which introduces a new minus sign and
restores the spin-statistics theorem (Goldhaber, 1976).
We expect that this applies to the soliton bound states
discussed here.

(3.22a)

The rotation indicated by R is evaluated by comparison
with (3.18) and (3.19); if we set a(x) = —1/ex, xg(y) =0 in
those equations we recognize that (3.22a) is equal to

Z = — dr r x II~ (x, i) V + ie xB—(x, i)

dr~ Ii~s(x, t)i(o/2) f.B(x, i)+ h. c.

drills(r, I)[—r x V —i(o/2)]B(x, i)+ h. c. (3.22b)

B(~, t) =u(~)R exp[ —ia(t)(o'/2)]s

B(~, t) = -u(~)Bin(t)(o'/2) exp( —in(t)(v'/2))s

The first term in the square brackets is the orbital an-
gular momentum of B; for spherically symmetric fields,
as in (3.21), it vanishes. The remainder is exactly the
isospin generator I. When terms that we have ignored
are kept, J will of course also acquire conventional or-
bital and spin contributions. Thus we arrive at

(3.23)

The total angular momentum is composed of the conven-
tional orbital plus spin part, L; also it acquires another
contribution

For a(t) pointing in a fixed direction i we have

F. imaginary-time, c-number fieids

We have discussed constant, static and time-dependent
e-number solutions to the Euler —Lagrange equations
for field theories. There is one more type of solution
that can be considered —that is a solution to the equa-
tions of motion, which have been continued from Minkow-
ski space to Euclidean space. Such a continuation is ef-
fected by replacing t= x' by -ix' and replacing the time
component of all vector fields A' by -iA'. The equations
retain the same form as in Minkowski space, but the
metric becomes the identity. Consequently Lorentz in-
variance is replaced by O(4) invariance and no distinc-
tion need be made between upper and lower indices.

Why might one be interested in classical solutions of
this modified theory'P A superficial answer recalls that
practical computations of Feynman graphs are in fact
most frequently performed by continuing the integrals
from Minkowski space to Euclidean space. Moreover,
an operator description of Euclidean field theory can be
given, and it is known that Green's functions of that the-
ory, upon analytic continuation to Minkowski space,
reproduce the physically interesting Green's functions
(Fubini, Hanson, and Jackiw, 1973). In fact, as shall be
demonstrated below, there is a more profoundly physi-
cal place for Euclidean, classical solutions in the quan-
tum theory.

In this subsection, I shall describe the Euclidean solu-
tions. The theory is SU(2) Yang —Mills, governed by the
Euclidean Lagrange density1.2dr& = —n'(f) dru'(y )+. . .

4 (3.24)

The momentum conjugate to o ' is (a'/2) fdr&'(z), which
also is I'= 8 '. What appears to be an isorotation is in
fact a spin rotation —in a quantum theory spin has been
created from isospinf

E""= A" —8 A"+ «A A"a g + abc g g ~ (3.25)

It is convenient to exhibit the equations of motion in ma-
trix form. We define
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&a
~P

e 22

&a
EPv Egv

22
(3.26)

face, one may use the asymptotic form (3.33) for A".
Hence an equivalent expression for q is

1
q =, dQ„e""~"Tr(g '&„g)(g '&~g)(g '&„g) . (3.39)

and it follows that

Eu &vA S Av+[Av A

'The equation of motion is

&,E"+ [A„F"']= 0.

(3.27)

(3.28)

The theory is invariant under local gauge transforma-
tions; their finite form is

A~ -g 'A "g+g '~~@,

Ev v + -1Ev v+

where g is any position-dependent SU(2) matrix such
that

g = exp[i(o'/2) 6,(x)].
A field configuration A. ~ which is a pure gauge

leads to vanishing E"'.
The Euclidean action is

(3.30)

(3.31)

d'xS,

(3.32)S = ——TrF VE

For this integral to exist, we must deman that E"v van-
ish faster than x ' at infinity; however, it is not neces-
sary that A~ vanish faster thanx '. Rather it is suffi-
cient to demand

[Of course (3.39) is equivalent to (3.38) only when *S is
nonsingular; otherwise Gauss' law may not apply. ] The
integrand is exactly the invariant measure of the group,
and q is an integer. (For fields A which lead to infinite
action, q need not be an integer. ) Therefore, the inte-
ger-valued Pontryagin index is useful for categorizing
Yang —Mills field configurations. We shall also see that
it has great physical significance.

Let us now turn to the solutions of the field equation
(3.28). Since *En" always satisfies (3.35), we can find a
solution to (3.28) by demanding that E "be proportional
to *Fv'. Since *(*F")=E", the proportionality constant
must be +1, and the second-order differential equations
(3.28) can be solved by obtaining a solution to simpler,
first-order equations which require F " to be self-dual
or anti-self-dual (Belavin, Polyakov, Schwartz, and
Tyupkin, 1975)

(3.40)

[It is believed, though no one has proved this as yet, that
all finite-action solutions of the second-order equations
(3.28) are also solutions to the first-order equations
(3.40).] It is clear that the Pontryagin index becomes
proportional to the total action for solutions of (3.40); the
self-dual solutions have positive Pontryagin index g =N
&0 and are called "pseudoparticles"; for the anti-self-
dual ones, called "anti-pseudoparticles, "

g = —N &0.
In order to exhibit explicitly pseudoparticle field con-

figurations, it is useful to define the matrices 0"' and
a", which are anti-symmetric in p, —&

(3.33)A" (x) = g '&'g,

where g is nontrivial [g oI]. Therefore we seek solutions
of (3.28) which are pure gauges at infinity.

Yang-Mills field configurations may be categorized as
follows. Define the dual tensor

Oi 4

—i40

& ~i jk~k
2

1
2 j

—0 i4 (3.41)

Here *E"always satisfies

&„*F""+[A. *F"]= 0

(3.34)

(3.35)

The matrices are self-dual and anti-self-dual

g( PV OVV

(3.42)

regardless of whether A~ solves the field equations.
Next define the "Pontryagin density" *S

*S= --2'Tr*E'vE
P V ~ (3.38)

One verifies from (3.27) and (3.34) that *S is a total di-
vergence

and satisfy the following commutation relations
.[Onn &vB] nv&v8 . gvcn8 nB&vvvS&vn.

i[ovn o. v8] +n8o vS + v. o. ng + +n8+ vtl + neo. vn (3 43)

The K= 1 pseudoparticle is (Belavin, Polyakov,
Schwartz, and Tyupkin, 1975)

*S= ~.S"

S = -2 Trav ~ "[2A &qA„+ —,'A A~A ]. (3.37)

io"'2(x —x,)„—
(x -x,)'+ ~' (3.44)

Nevertheless the integral of *S over all x need not van-
ish. Indeed when we define the "Pontryagin index" q by

q= — d4x S1
Bm

(3.38)

we see that as consequence of (3.37) q may be expressed
as a surface integral at infinity. However, on that sur- Av = -i&'"2x,/(x'+ 1), (3.45a)

Here xo is an arbitrary origin, and X' is an arbitrary
scale. We say that the pseudoparticle is located at x,
and has the size X. Note that five parameters are re-
quired to specify the solution. Without loss of generality
we may take x, =0; X'=1; thus the self-dual pseudopar-
ticle is
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A' = (x'/1+ x')g '&'g,

g= (x, -ix o)/(x')'/'
(3.46a)

(3.46b)

Yet another form obtained from (3.45a) or (3.46a) by
gauge transforming with the gauge function g

' is

s" = 2)s""-x /x*(x'+ )) =)s'"s„)n(1+—,x' (3.47)

This expression, which is singular at x'=0, will be use-
ful in our discussion of N pseudoparticle configurations.
Of course the action density S and the Pontryagin density
*S are gauge invariant, hence nonsingular. [The singu-
lar part of (3.4V), —2io. ~"(x,/x'), is a pure gauge, lead-
ing to vanishing F~'.]

'The pseudoparticle has an important set of invariances
under coordinate transformations. Let us recall that in

, addition to the usual Poincard symmetries —translations
generated by P"[x~ -x~+ a"] and rotations generated by
M~"[x~ -A"x„A" A 2= g 8 ] the Yang —Mills theory also
possesses dilatation invariance, generated by D[x —e'x~],
and special conformal invariance, generated by K [x"
—[x~ —c'x'/~(c, x)], o(c, x) = 1 —2cx+ c'x']. The fifteen
generators close to form the conformal group, which is
an O(5, 1) group of invariances for tbe Yang —Mills theo-
ry. ' Under an infinitesimal transformation, 6x~ =f~(x)
= a~ y co~'x„+ ax~+ 2cx —c~x', ~~"= -~"', the gauge poten-
tial transforms according to

(3.4 5b)

(Anti-self-dual, anti-pseudoparticles are obtained by
using o ~' instead of o ~".) An alternate expression for
(3.45a), which exhibits the asymptotic form (3.33), is

with infinitesimal parameters a, one finds that the non-
invariant response of (3.45) can again be compensated by a
local gauge transformation

g = exp( —io "a„x.) . (3.51)

Since R~ together with M ~" form a O(5) subgroup of the
O(5, 1) conformal group, we conclude that the pseudopar-
ticle is O(5) invariant and one can show that is is the
most general, O(5)-invariant solution (Jackiw and Rebbi,
1976c).

The existence of this large invariance group allows for
the explicit sot.ution of many equations relevant to the
pseudoparticle. One may analyze the small oscillation
spectrum ('t Hooft, 1976b; Ore, 1977a). One can solve
Klein-Gordon and Dirac equations in the external field
of the pseudoparticle ('t Hooft, 19V6b; Jackiw and Rebbi,
1976c;Ore, 1976a; Chadha, D'Adda, DiVecchia and Nico-
demi, 1977). Even the propagator for a scalar,
spinor, or vector particle can be exhibited in closed
form (Jackiw and Rebbi, 1976c, Ore, 197Vb). The com-
putational technique makes use of a projection of the the-
ory onto a five-dimensional hypersphere; then all the
equations become free, harmonic equations on the sphere
(Adler, 1972, 1973; Fubini, 1976; Jackiw and Rebbi,
1976c). For the fermions, one finds, just as in the soli-
ton investigations, a normalizable zero-eigenvalue mode.

Pseudoparticies with N& 1 have also been found, in O(3)
symmetric alignment —the pseudoparticles are positioned
on a line (Witten, 1977)—as well as in more general con-
figurations with no restriction on the positions ('t Hooft,
1977; Jackiw, Nohl, and Rebbi, 1977). The most gen-
eral self-dual N pseudoparticle solution known at the
present time makes use of the following A.nsatz for the
gauge field (Wilczek, 1977; Corrigan and Fairlie, 197V)

(3.48) A~ = so. ~"~„lnp, (3.52)
Tbe pseudoparticle solution (3.45) is obviously nonin-

variant under translations —they shift the position —and
under dilatations —they rescale the size. Under rotations
the expressions (3.45) appear also to be noninvariant,
but the noninvariance may be compensated by a gauge
transformation: a rotation parametrized by infinitesi-
mal parameters ~ „ is compensated by the gauge trans-
formation

(3.53)

with p given by (Jackiw, Nohl, and Rebbi, 1977)
N+].

p Q ( )2

(Anti-self-dual, anti-pseudoparticles make use of o'"
in place of o "'.) In spite of the singularities present in
p and A~, the action and Pontryagin densities are non-
singular [compare (3.47)]

g = exp( —o ~'(o„,) . (3.49)
(3.54)

Thus the combined action of rotations and appropriate
gauge transformations leaves (3.45) invariant. Since the
algebra of the 0 ~" matrices follows that of the rotation
group [see (3.43)], we may say that the pseudoparticle
is O(4)-invariant. [It is easy to show that in fact (3.45)
is tbe most general, O(4)-invariant solution. ],

Under special conformal transformations, (3.45) is
noninvariant; rather it transforms, with the help. of a
gauge transformation, into a solution with shifted origin
and rescaled size. However, if one performs the infin-
itesimal transformation generated by

(3.5O)

7ror a review of the conformal group see Treiman, Jackiw,
and Gross, 1972.

and one easily finds that q =N.
The form of p, which specifies N pseudoparticles, is

seen to depend on 5(N+ 1) parameters: tbe 4-vectors x,'.
specifying the positions of the N+ 1 poles, and the resi-
dues X2, It is clear from (3.52) that A~ is insensitive to
an overall scale of p, hence the gauge potential depends
only on 5N+4 parameters. We must still determine if
gauge-invariant quantities like S and *S also exhibit a
5N+ 4 parametric dependence, or whether some of this
dependence is a gauge artifact. A lenghty analysis of the
gauge freedom in the Ansatz (3.52) yields tbe following
result. The Ansatz (3.52) is gauge invariant whenever the
N+ 1 points x,. do not lie on a circle. However when they
do lie ona circle, then there is a gauge freedom which
moves the position of the poles around the circle. Thus
for N = 1, a threefold variety of circles may be drawn
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which also describes N pseudoparticles, and the x,-'s and
X,.'s can be interpreted as positions and sizes of the
pseudoparticles ('t Hooft, 1977).

The solution (3.52) and (3.53) responds to special con-
formal transformations as follows. The correct trans-
formation of the gauge potential, (3.48), is induced by
transforming p as a scalar with scale dimension one

x' —x' = (x' —c'x')/cr(c, x)

p(x) —p(x) = [1/cr(c, x)]p(x) (3.55)

provided the gauge readjustment (3.51) is also made.
With little algebra one finds that (3.53) transforms into
itself, with a redefinition of parameters

p
p( ) Q ( )2

7;. = ~;./o(-c, x,.),
x,'. = (x; + c'x';)/a'( —c, x;) . (3.58)

It is trivial to verify that Poincard transformations and
dilatations also take (3.53) into itself; hence the solution
is closed under the action of the full conformal groups.
Consequently it is called the "conformal" solution.

The conformal solution is not the most general one.
It has been proven that the most general N pseudopar-
ticle configuration depends on 8N- 3 gauge invariant pa-
rameters (Jackiw and Bebbi, 19VVa; Schwarz, 1977;
Atiyah, Hitchin and Singer, 1977; Brown, Carlitz and
Lee, 19VV). The 8N parameters are understood to de-
scribe the position and size of each pseudoparticle (5N
parameters) and a global gauge specification for each
pseudoparticle (3N parameters). The total 8N is then
decreased by 3 since an overall global gauge trans-
formation may always be performed. Although the most
general solution has not as yet been found explicitly, an
infinitesimal deformation of the conformal solution, de-
pending on 8N- 3 parameters has been given (Jackiw
and Rebbi, 197Va, b).

The variety of further calculations that can be per-
formed (small oscillation spectrum, coupling to other
fields) have not as yet been completed. However the
zero-eigenvalue modes of the Dirac equation in the N

through the two points x, and x„and the number of pa-
rameters is reduced by four, leaving the single pseudo-
particle to depend on five parameters; this of course
coincides with the result quoted previously [see (3.44)].
For N = 2, one circle may be always drawn through the
three points x„and x„and x„and our two-pseudopar-
ticle solution depends in general on, thirteen parameters.
For N& 3, a circle cannot in general be drawn through the
N+ 1 & 4 x s, and the pseudoparticle conf igurations truly
depend on 5N+4parameters (Jackiw, Nohl, and Bebbi,
19VV). There is no obvious, simple relation between the
positions and sizes of the Npseudoparticles and the 5N+ 4
parameters that specify them. [However, it is possible
to exhibit a less general, N pseudoparticle configuration
which depends on only 5N parameters: take (3.53) and
let X~„, and x~„ tend to infinity with 1'„„/x'~„=1. This
leaves [compare (3.47) l

N

pseudoparticle conformal field have been found for iso-
spinor and isovector fermions (Grossman, 19VV; Jackiw
and Bebbi, 1977b).

To conclude this discussion of imaginary-time Yang-
Mills field configurations, we examine the energy-mo-
mentum tensor

2 gV
g, v Tr ~P, Ay'v + +(ZB++ e f3 (3.57)

G. Quantum meaning of imaginary-time, c-number fields

Unlike the real-time classical solutions, the imagin-
ary-time ones are not associated with new particle states
in a new sector of the theory. Bather they are interpret-
ed as evidence for quantum mechanical tunnelling in the
conventional sector of the Hilbert space. We have no-
ticed that our solutions carry zero (Euclidean) energy.
Hence we expect that they are relevant to the ground
state —the vacuum state —of the Yang-Mills theory.

In order to exemplify the role of imaginary-time clas-
sical solutions we begin by presenting an approximate
analysis of the ground state in various one-particle
quantum mechanical systems. Consider a particle mov-
ing in one dimension in a potential V(q) shaped as in Fig.
1. In order to obtain an approximate description of the
ground-state wave function @(q), we first determine the
classical zero-energy configuration. That of course is
just q=qo. We know therefore that 4'(q) will be sharply
peaked at q = q,. Quantum fluctuations will give it some
spread, so an accurate formula for ql(q) is a Gaussian.

Next consider a potential with two minima and a sym-
metry V(q) = V(-q), as in Fig. 2. [For definiteness we
can take an explicit analytic expression for V(q): V(q)
= (X'/2)(q' —q,')']. There are now two classical zero-en-
ergy configurations: q=+qo, and one may construct two
Gaussian wave functions g(q —qo) peaked at q=+qo, and
g(q+ qo) peaked at q = -qo. However, neither is a parity
eigenstate, so the true vacuum must be a superposition
and

+ (q) = c 4(q —qo) + c-4(q+ qo)

v(q)

FIG. l. An example of a simple potential for which semiclas-
sical methods give an accurate picture of the ground state.

However, any self-dual or anti-self-dual matrix m " has
the property that

(3.58)

Consequently e~" vanishes for all the field configurations
that we have here considered. In particular the Eucli-
dean "energy" F. = fd'x6" (x) is zero —our solutions are
zero-energy solutions for imaginary time.
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FIG. 3. An example of a potential which is periodic and of
infinite extent. Tunnelling effects lead to a band structure in
the energy spectrum.

FEG. 2. An example of a potential for which semiclassical
Inethods must be extended to give an accurate picture of the
tunnelling properties of the ground state.

therefore we must form a linear combination

Demanding that 4'(q) be a parity eigenstate fixes the ra-
tio c,/c = al. At this stage it appears that the ground
state is doubly degenerate, corresponding to the two
parity eigenvalues. But we know that tunnelling will in
fact remove the degeneracy, and one state (the antisym-
metric one) will be higher in energy than the other, by
an exponentially small amount.

Tunnelling corresponds to motion between Qo and +qo,
which is classically forbidden but quantum mechanically
allowed. But it is possible to obtain a classical solution,
even in the forbidden region, by the following trick. In
the classical equation for zero-energy motion

&q' = —V(q)

let us change time to imaginary time: t ——ix'. 'The
equation now becomes

—&q' = -V(q),
which obviously has a solution q(x'), such that q( —~) =
—qo and q(~) =+q, . [fn the explicit example, the imagi-
nary-time, zero-energy solution is q(x') = qo tanhq, Xx'. ]
'Thus an imaginary-time, zero-energy solution, which
interpolates between classically allowed zero-energy
configurations, is evidence for the existence of quantum
tunnelling (Freed, 1972; McLaughlin, 1972).

'These two examples suggest the following strategy for
obtaining an approximate, but accurate description of the
ground-state wave function of a quantum system. First
enumerate all classical zero-energy configurations.
Next construct Gaussian wave packets peaked at each zero-
energy configuration, and form linear superpositions if
necessary to respect the symmetries of the problem. Fi-
nally look for imaginary-time, zero-energy solutions to the
classical equations. If such solutions exist, and they inter-
polate in imaginary time between classically allowed
zero-energy, real-time solutions, we conclude that
there is quantum mechanical tunnelling, and the apparent
degeneracy of the ground-state wave functions is lifted.

Before examining the Yang-Mills theory, let us con-
sider a last example in particle quantum mechanics,
where the potential is periodic, Fig. 3. We now have
an infinite number of classical zero-energy configura-
tions. q=an, n=O, +1, . . . . Correspondingly there is an
infinite number of Gaussians g(q —an), each peaked at the
zero-energy configuration q= an. 'The model possesses
a symmetry: shifting q by a does not change V(q). We
demand that our states be eigenstates of the symmetry;

'The constants c„are determined by the requirement that
4(q+ a) differ at most by a phase from 4(q). We find c„
= exp(in8), and arrive at a family of states parametrized
by 9

eg(q) = +exp(in9)g(q —an) .

and the Hamiltonian density is

~t pOi
a a

~ 'leak+a 2 ajk ' (3.60)

The analysis is most readily carried out in the gauge A,'
= 0 which we adopt. [This is not a, necessary restriction;
the theory may be developed in other gauges as well
(Wadia and Yoneya, 1977),] The wave functional 4'(A)
depends on the dynamical variables of the Yang-Mills
theory —on the vector potentials A, . The Schrodinger
equation is

f ] Q2 1dr ——, ,- + —B.'r + A =E4 .A (3.61)

and scalar products of wave funciionals as well as ma-
trix elements of observables are realized by functional
integration over A, .

To implement our strategy for studying the ground-
state wave functional, we first enumerate the zero-ener-
gy, t.--number field configurations. Zero -energy requires
3C=O, hence F~"=0; the gauge potential must be a pure
gauge; in matrix rotation this is

A(r) =g -"(r)Va(r) . (3.62)

Qf course there is tunnelling between the classical zero-
energy configurations. 'This can be exposed classically
by noting the existence of imaginary-time, zero-energy
solutions. In a now familiar fashion this means that the
energy eigenvalues associated with 4~(q) depend on 8;
there is an energy band E(9) parametrized by 0. Thus
from our semiclassical considerations we arrive at a
completely accurate description of a Bloch wave in a
crystal.

The above method will now be used to analyze the vae-
uurn structure of a Yang-Mills theory. We are discuss-
ing the model in Minkowski space, and use a Schrodinger
representation for field theory. 'The I,agrange density is

(3.59)
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Here g is any unitary, position-dependent matrix. Of
course g. =I gives A=0 and K=O; but there are infinitely
many gauge copies of this configuration which also have
zero energy, and we must decide whether the gauge cop-
ies are also physically interesting. For reasons that
will be explained below, me require thai

a(r) (3.63)
y ~oO

At infinity, at least, the class of gauges which we are
studying is trivial.

In a gauge theory, it is necessary to fix the gauge so
that one avoids infinities, associated with the volume of
the gauge group, in forming scalar products and matrix
elements of observables. Without repeating details of
the well-knomn gauge-fixing procedure, let us only re-
call that it removes from the functional integral over A,
configurations of the fields mhich can be joined by a con-
tinuous gauge transformation to configurations already
coun'ted. In particular, one does not integrate over po-
tentials of the form (3.62) when g can be joined to the
identity through a one-parameter continuous family of
transformations g(r, o.):g (r, 1) =g (r); g(r, 0) = I. But it
is important to realize -that there are values of A, that
can be obtained from each other by gauge transforma-
tions which cannot be continuously joined to the identity
transformation, with (3.63) always maintained. An ex-
ample is

'Y —X 22K(T ' r
Rl ~2 y2 ~2 y2 (3.64a)

which gives origin to

A, (r) =-g-„'(r)Va, (r)

2i&
, , [o(X' —~') + 2r(o ~ r) + 2zr x (r]

(~ '+ ~')'

(3.64b)

a.(r) =
l. r, (r)j", (3.65)

with g, given by (3.64a).
'The above considerations bring us to the conclusion

that the physically relevant zero-energy configurations

and of course to vanishing energy. We postulate that val-
ues of the potentials like those of Eq. (3.64), although
gauge equivalent to A=0, should not be removed from the
integrations over the field configurations by the gauge-
fixing procedure, and indeed we shall show that physical
effects are associated with them. (Further discussion
of this postulate will be given below. )

Before proceeding, let us characterize the classes of
gauge-equivalent, but not continuously gauge-equivalent,
potentials. It is seen that a g satisfying (3.63) defines
a mapping of three-dimensional space, with all the di-
rections at ~ identified, into the group space. From the
topological point of view, the Euclidean space E' with
points at ~ identified is equivalent (homeomorphic) to a
three-dimensional sphere S', but the manifold of SU(2)
is also homeomorphic to S', so that g defines a mapping,
S'-S'. It is known that these mappings fall into homo-
topy classes (mappings belonging to different classes
cannot be continuously distorted into each other) classi-
fied by an integer n . 'The representative of the nth class
1s

comprise a denumerable set

A„(r) = g„'(r)Vg„(r), (3.66)

and we form functional Gaussians peaked around each
A„:~P„(A) = y(A. A„). However, the theory is gauge invari-
ant and we must form linear combinations to respect this
symmetry:

4 (A) = P c„g„(A) . (3.67a)

Gauge transformations can be of two kinds: firstly there
are those thai stay within a given homotopy class —these
are "small" gauge transformations which can be ignored
since by hypothesis they are treated by conventional
methods; second, the "large" gauge transformations take
A„ to A„„. Such a gauge transformation changes g„ to

g„„ in (3.67a). Requiring 4(A) to be stable against this
change fixes the coefficients in (3.67a) to be pure phases,
c„=exp(in&). Thus we arrive at a family of vacuum wave
functionals parametrized by an angle 0

4~(A) = g exp(iv6)P„(A) . (3.67b)

If we call the unitary operator which implements the
large gauge transformation 8, we find

9+, = exp(-i 9)4, . (3.68)

The connection between pseudoparticle solutions and tunnel-
ling which removes the degeneracy of the ground state is also
recognized by its absence in O.-type models of chiral symmetry
breaking. For these theories one believes that the vacuum is
degenerate and that tunnelling does not occur. Correspondingly,
one may verify that no pseudoparticle solution exists. This is
a consequence of the result in subsection II.A, where it is
shown that spinless models in three spatial dimensions, like
the 0. model, do not support Euclidean solutions.

The final step in the program is to ascertain whether
all these states are degenerate in energy, or whether
tunnelling lifts the degeneracy. Here the pseudoparticle
solution (3.45) becomes relevant. We observe that by a
gauge transformation which removes A' (remember we
are in the gauge A' = 0, hence in Euclidean space A' = 0),
we can cast the pseudoparticle into a form which vanish-
es as x'- —~, and tends to A, (r) as x'-+~. Thus the
pseudoparticle is an imaginary-time, zero-energy solu-
tion which interpolates, in imaginary time, betmeen
real-time, zero-energy configurations, and we conclude
that tunnelling takes place; the vacua are not degenerate,
rather there is an energy band E(6). The Yang-Mills
vacuum is a Bloch wave (Jackiw and Rebbi, 1976d; Cal-
lan, Dashen, and Gross, 1976)!'

We must still comment upon two points which may not
be entirely obvious. The fir st concerns the re-
quirement (3.63) imposed on the gauge functions: g(r)
should tend to the identity at infinity. If the condition
mere relaxed, we mould be considering zero-energy po-
tentials which behave as 1/x at large distances. Such po-
tentials are separated by an infinite-energy barrier from
those that we are including, and presumably there is no tun-
nelling between iwo such configurations. To demonstrate
that the energy barrier is indeed infinite, we should exhibit
a real-time solution which interpolates, as t ranges from
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94"'(A) = @'(A) (3.69)

there remains an angle in the theory. 'The point is that
the Lagrange density (3.59) is not uniquely defined; one
may always add a total divergence to it. Suppose we ac-
cept (3.69); we may, however, replace (3.59) by ('t Hooft,
1976b)

2 ' = ,'F,"F, ,+ (—1—/32v') 8*F,"F,~, . (3.70)

-~ to ~, between A=o and the pure gauge potential which
is O(1/x) at large x. We should then compute the energy
of this solution and find an infinite result. Unfortunately
such a solution is not available at the present time, but
we may present an approximate solution which puts the
phenomenon into evidence. Consider the potential
o. (t)A(r) where A(r) is a pure gauge, O(1/x) at large x,
and o. (t) is a slowly varying function with o. (—~) =0,
n(+~) = 1. This solves the equations approximately; the
energy comes entirely from E, = cvA, ; but now we see
that E,' is O(l/x') for large x, hence the total volume in-
tegral diverges.

The second point for elucidation concerns our postulate
that large gauges have observable consequences; or
equivalently that the Schrodinger equation (3.61) be
solved with the boundary condition (3.68). Is it possible
to remove the angle from the theory, and to collapse the
energy band by requiring that 48(A) be invariant under
87 'The answer is no: Even if we postulate that the
Schrodinger wave functional satisfies

W(A) —W(A) + 1. (3.74b)

Hence 0 (A) transforms according to (3.68). Therefore,
even when states are required to be invariant under
gauge transformations, the angle and the energy bands
reappear if a total divergence is added to the Lagran-
gian. There is no apparent reason to exclude such an
addition —note it is gauge invariant —and we must con-
clude that the phenomenon we have discussed is indeed
present, and is gauge invariant. Also since *I~'I",„,js
CP odd, we see that 9 is a CP-violating angle.

%hen massless fermions are added to the Yang —Mills
theory, the physical picture changes drastically —this is
not a surprise in view of the startling effects that fer-
mions have in soliton physics. The fermions give rise to
the U(1) axial-vector current

(3.75)

which would be conserved if anomalies did not intervene.
However, quantum effects embodied in the triangle graph
destroy the formal conservation law ~„J~ =- O. The quan-
tal result is (Adler, 1970; Treiman, Jackiw, and Gross,
1972).

(3.76)

where the second equality follows from (3.36) and (3.37).
Evidently a gauge-variant, but conserved current can be
defined by

For constant 8, the addition is a total divergence [see
(3.36), (3.37)];thus the energy is, asbefore, (3.60). How-
ever the momentum conjugate to A', is no longer E'„rather
it is E,'+ (1/8~')HE,'. Hence the Schrodinger equation
satisfied by 4 '(A) is

4m'

The conserved chiral charge is

(3.77a)

1- e 1,. ' 1
dr —,. —,8B,'(r) + —B,(r) e'(A) =Et'(A).

2 inA'(r) 8~' ' 2

(3.71)

Q-, = dr J'., =Q„. + 2W(A), (3.77b)

where Q, is the nonconserved, gauge-invariant fermion-
ic axial charge

Next define R new wave functional by

4 (A) = exp[ —i(9/2) W(A)]4"'(A),

where [see (3.37)]

W(A) = —,e"' dr Tr(—,'A,.&,.A„+ —,'A,.AJA, )

(3.72)
Q, = dr J', , (3.77c)

and the gauge-invariant addition, W(A), is given in
(3.73). Here Q, commutes with the Hamiltonian, but it
does not commute with large gauge transformations [see
(3.74)].

Since

1
8m' drS (3.73)

9 '@58 =Q, + 2,
i[H, 9]=o,
i[a, q, ]-0. (3.78)

x(g 's,.g)(g 's g). (3.74a)

For 3. large gauge transformation, we take g =g, and find

we see that 4(A) satisfies the original Schrodinger equa-
tion (3.61). What is the response of 4(A) to a. large gauge
transformation when 4'(A) is invariant7 The transfor-
mation law will obviously be determined by the response
of W(A). It is easy to show that W(A) transforms as

W(A) —W(A)+ 2
e"" dr Tr(g 'Bg)1

Our vacuum states diagonalize 9 [see (3.68)]; therefore
they are not invariant under chiral transformations.
Equation (3.78) demonstrates that Q, is a shift operator,
hence

exp[ —i(H'/2)Q, ] @e = '4+ e' ~ (3.79)
Since Q, commutes with the Hamiltonian, the energy
must be independent of 9 when fermions are present.
Thus coupling the Yang-Mills theory to Fermi fields
suppresses the tunnelling, the energy band collapses to a
single level, and the vacuum is degenerate ('t Hooft,
1976a; Jackiw and Rebbi, 1976d; Callan, Dashen, and
Gross, 1976).
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The degeneracy of the vacuum and its noninvariance
under chiral transformations shows that the chiral U(1)
symmetry is spontaneously broken. There is no reason
to suppose that a Goldstone boson is present (Goldstone's
theorem cannot be proven in a gauge theory). Therefore
it is plausible that the longstanding U(l) problem of
quark models has been solved (Weinberg. 1975; Pagels,
1976; 't Hooft, 1976a„b).'

H. Quantization about imaginary-time,
c-number f ields

Unlike solitons, pseudoparticles have not, as yet,
been incorporated in a canonical quantization of the field
theory. Since the classical configuration is given for
imaginary time, it is not evident what role should be
assigned to it in a real-time quantum theory. The sug-
gestion has been made that theory by described by a
functional integral, continued to Euclidean space, and
then the functional integration variables be expanded
around the stationary points of the classical, Euclidean
a,ction, i.e., around the imaginary-time, c-number solu-
tion (Polyakov, 1975). The expansion around the trivial,
vanishing solution gives ordinary perturbation theory (in
Euclidean space), and it is hoped that expansion around the
nontrivial pseudoparticle solution correctly gives other
nonperturbative contributions. It is clear that these addi-
tional terms will have a common factor e ', where I, is the
action evaluated at the classical solution. For the pseudo-
particlesI, = 8m'/e'

~ q ~; hence the q = N= 1 contribution is
multiplied by exp [—(8m'/e') ],an obviously nonperturbative
formula which is characteristic of tunnelling.

This calculational program can be successfully carried
through in various simple, nonrealistic models (Poly-
akov, 1977). However, for the problem of interest,
Yang-Mills theory in four space-time dimensions, an
obstacle arises when the first quantum correction is
computed. In order to eliminate the zero-frequency
mode associated with the scale invariance of the theory
and the scale noninvariance of the solution, a collective
dilatational variable has to be introduced, and an inte-
gration over this variable is performed —the functional
integral must be dominated by pseudoparticles of all
sizes. Unfortunately the dilatational integral is infrared
divergent, reflecting the infrared instability of the Yang-
Mills theory. Thus numerical consequences of the pseu-
doparticle effect are not as yet available.

If this divergence is ignored (or cut off), results of
calculations confirm the general considerations of the
previous subsection: chiral U(1) noninvariant amplitudes
as well as CP-violating amplitudes are nonvanishing;
tunnelling is suppressed in the presence of fer-
mions ('t Hooft, 1976a, b). (The zero-eigenvalue
fermion mode in the field of the pseudoparticle

~The relevance of the axial-vector current anomaly in
pseudoparticle dynamics has been recently understood from
algebraic geometry. It is now recognized that the anomalous
divergence equation (3.76) is a local form of the Atiyah-Singer
index theorem. This rare confluence of interest between pure
mathematics and theoretical physics has led to further inter-
esting calculations, which however are beyond the scope of
this review. For an introduction see Jackiw and Rebbi, 1977b;
Ansourian, 1977.

makes the functional integral vanish. ) Nevertheless,
quantitative assessment of these effects must wait for a
resolution of the infrared problem in Yang —Mills theory.

IV. CONC LUS ION

It is very gratifying that it has been possible to put in-
to evidence the rich nonperturbative phenomena of local
quantum field theory. We see that, in the models stu-
died, two general classes of results have been obtained.
First, associated with soliton solutions, there are sec-
tors of the Hilbert space populated by heavy, stable par-
ticles, with quantum numbers which are peculiar be-
cause they arise either from topological conservation
laws or from mixing of internal and space-time symme-
tries. Second, as a consequence of pseudoparticle solu-
tions, nonperturbative aspects of the vacuum sector of
a quantum field theory have been understood.

The theory requires further development. For the sol-
itons we must learn how to deal with multi-soliton pro-
cesses; for the Yang-Mills pseudoparticles we must un-
ravel the infrared structure of the model. In both cases
it would be most useful to develop strong-coupling appro-
ximations. Also the peculiar role of zero-eigenvalue
fermion modes should be better understood.

The utility of these ideas for physical theory is uncer-
tain. About the solitons, the most conservative viewpoint
is that the as yet undiscovered gauge theory of Nature
possesses such solutions, which correspond to some
heavy particles, whose properties we have begun to ex-
plore, but whose interest for phenomenological descrip-
tion of actual experiments is minimal. More venture-
some is the notion that some of the observed "fundamen-
tal" particles are not bound states of a few elementary
quarks, rather they are coherent bound states of the sol-
iton variety. Finally the most speculative idea makes
reference to the quarks themselves. Perhaps, as in the
sine-Gordon example, one can formulate a theory in two
equivalent ways —a "quark" model where the low-lying
states are bound states of the quarks, or a "particle"
model where the quarks emerge as super-heavy coherent
bound states. 'There is no evidence that this fascinating
duality, found in the sine-Gordon theory, actually occurs in
realistic models; nevertheless a curious, formal simil-
arity between the sine-Gordon solitons and colinear
Yang —',Mills pseudoparticles has been exposed (Dolan,
1977).

'The pseudoparticles with the attendant quantum tunnel-
ling appear to be more immediately relevant, since they
describe phenomena in the vacuum sector and offer the
possibility for a resolution of the longstanding U(l) prob-
lem and a tantalizing hint for the origin of CP violation.
More generally the occurrence of tunnelling in field the-
ory forces us to reassess models for spontaneous sym-
metry violation, since tunnelling may restore an appar-
ently broken symmetry. Also one may speculate that the
pseudoparticle can somehow provide a mechanism for
quark confinement (Polyakov, 1975, 1977; Callan, Dash-
en, and Gross, 1977). Such a dramatic physical effect
must have a simple mathematical description and per-
haps it can be found amongst the nonlinear phenomena
that have now been uncovered. More generally, it is
fascinating to observe that tunnelling does occur in
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quantum field theory, and gives rise to very weak ef-
fects which violate various symmetries.
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