Phonon-phonon interactions in liquid helium*
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This is a short review of recent experimental and theoretical studies of phonon interactions in superfluid
helium. Phonon—phonon scattering in helium is strongly influenced by the conservation laws and by the
peculiarities of the phonon dispersion relation. Theory predicts that because of these factors the
spontaneous decay rate varies dramatically with phonon energy, and experiments have confirmed this
prediction. The conservation laws can also be used to show that phonon-phonon collisions are
predominantly small-angle scattering. We discuss the influence of this special property of phonon collisions
on the hydrodynamics of the phonon gas, and we consider the solutions of the hydrodynamic equations in

several situations of experimental interest.
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I. INTRODUCTION

In this article we will review recent work on phonons
and their interactions in superfluid helium-4. To appre-
ciate the reasons for the current interest in this sub-
ject, one has to look at the history of phonons. Although
the term phonon was apparently not introduced until
about 1930, the importance of quantizing the energy of
the mechanical waves in a crystal was, of course, ap-
preciated much earlier, Einstein (1907), Debye (1912),
and Born and von Karman (1912,1913) had succeeded in
developing a successful theory of the specific heat of
solids. In modern language one says that these theories
calculate the vibrational energy of a solid as the sum of
the energies of a number of noninteracting phonons. The
number #(e) of phonons of a particular type of energy ¢
is given by the Bose~Einstein distribution function:

n(e) = (/8T - 1)1, 1)

where T is the temperature of the solid. The specific
heat is then obtained as the derivative of the vibrational
energy with respect to temperature. It was realized by
Debye (1914) that although equilibrium properties such
as the specific heat can be calculated to a reasonable
accuracy by a theory in which interactions between pho-
nons are neglécted, it was essential to include these in-
teractions in order to calculate thermal conductivity.
Microscopically, a temperature gradient inside a solid
is equivalent to a gradient in the number density of pho-
nons, If phonons travel freely without scattering, any

*Work supported in part by the National Science Foundation
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temperature gradient will disappear within a time 7
equal to the time it takes a phonon to travel the distance
from the hot region to the cold. In a solid with linear
dimensions of a few centimeters 7 is of the order of 1075
sec. In fact, at room temperature a temperature gra-
dient in a typical solid disappears much more slowly
than this. Debye realized that this must be because pho-
nons are frequently scattered. Thus, phonons actually
move through a solid in a slow, diffusive way, rather
than propagating directly from one end of a solid to the
other. Debye also realized that a significant contribu-
tion to the scattering comes from the nonlinearity of the
interatomic forces, and he derived an approximate ex-
pression for the phonon scattering rate due to this
mechanism,

The theory of phonon scattering and its relation to
thermal conductivity was developed in a more rigorous
and systematic way by Peierls (1929). He calculated
the thermal conductivity using the phonon Boltzmann
equation and succeeded in explaining in a satisfactory
way the approximately exponential increase in the con-
ductivity observed in many crystals as the temperature
is lowered below room temperature. Much theoretical
work has been carried out since then to develop Peierls’
approach. This work has included more accurate cal-
culations of the scattering rates for phonons, better
schemes for solving the Boltzmann equation, and dis-
cussions of the validity of the Boltzmann equation as ap-
plied to phonon transport. For reviews of these topics
seeKlemens (1956), Callaway (1959), Carruthers (1961),
and Horie and Krumhansl (1964).

Experimental studies of phonon scattering remained in
the dark ages until comparatively recently. The tradi-
tional experimental approach was to measure the ther-
mal conductivity as a function of temperature and to try
to work backwards to obtain information about phonon
scattering rates. This is a very difficult and uncertain
procedure. The phonons in a crystal have a variety of
polarizations, energies, velocities, etc., and conse-
quently have widely differing scattering cross sections.

. It is as if one tried to determine the lifetimes of the ele-

mentary particles by using an accelerator that produced
every kind of particle, a target that contained a little
bit of everything, and a detector that had no energy,
momentum, or even time resolution!

In the last ten years the experimental situation has
improved considerably. A major advance was the intro-
duction of the heat-pulse technique (von Gutfeld and
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Nethercot, 1964, 1966; von Gutfeld, 1968). In these ex-
periments a dielectric crystal has a “generator” film of
constantan evaporated onto one surface. This can be
heated for a short time (typically 10”7 sec) by passing a
current through it. The hot film cools itself by radiating
a pulse of phonons into the interior of the crystal. On
the opposite face of the crystal is a thin film of a super-
conductor that is at a temperature close to its resistive
transition, This film acts as a detector because phonons
reaching it raise the temperature slightly and cause a
change in the film’s resistance. The heat-pulse method
represents an enormous advance over traditional ther-
mal conductivity studies as a way to study phonon inter-
actions. Phonons of different velocity can now be stud-
ied separately. In addition, by using small generator
and detector films, one can restrict attention to pho-
nons traveling in a fairly well-defined direction.

In the original heat-pulse experiments the constantan
generators probably produced phonons with a broad dis-
tribution of energies of the order of kyT; (T; =generator
temperature). The detector was also sensitive to pho-
nons having a wide range of energies. More recently,
several schemes have been developed for producing and
detecting pulses of phonons that are either monoenerget-
ic or that have an energy spectrum with a cutoff above
or below some definite threshold. These schemes have
included the generation of phonons by the relaxation of
paramagnetic spin systems, by superconducting tunnel
junctions, by optical excitation, and by selective filter-
ing of an initially broad energy spectrum. References
to much of this work may be found in the proceedings
of recent conferences at Ste., Maxime in 1972! and Not-
tingham in 1975 (see Challis et al., 1975).

While most of these techniques can be applied to the
study of phonons in any material in which phonons prop-
agate, studies in superfluid helium are particularly in-
teresting. Some of the reasons for this are the follow-
ing:

(a) Many of the techniques for generating monochro-
matic phonons that have been developed so far can be

used to produce phonons of energy up to only 20 or 30 °K.

In a dielectric solid the sound velocity is typically about
5%X10%° cmsec™!, and so a 20 °K phonon has a wavelength
of around 100 A, Thus, in the case of solids, one is re-
stricted to the study of only those phonons having wave-
lengths much larger than the lattice parameter. In
helium, on the other hand, the velocity of sound is only
2.4%x10* cmsec™!, and the entire spectrum of the pho-
nons falls in the energy range below 20 °K,

(b) Experiments in solids tend to be affected by im-
purities and defects of various kinds. Apart from a very
small amount of *He, all impurities freeze out of liquid
“He. In addition, there are no structural defects, apart
from vortices, which can usually be neglected.

(c) Helium is isotropic whereas crystals are not.

(d) The properties of excitations in helium can be
changed considerably by the application of pressure.

In this review we describe the experiments that have

IThe papers presented at this conference are collected in
J. Phys. (Paris) 33, C-4, 1972.

Rev. Mod. Phys., Vol. 49, No. 2, April 1977

Humphrey J. Maris: Phonon-phonon interactions in liquid He

been performed to study the scattering of phonons in
helium, and we give a qualitative description of the as-
sociated theory. Our subject divides neatly into two
parts. The first of these is the study of the scattering
of one phonon by another and the spontaneous decay of
phonons (Sec. II). The information obtained from this
study is then applied to the investigation of collective
effects that involve macroscopic motions of the phonon
gas (Sec. III).

Il. SCATTERING AND DECAY OF PHONONS
A. The dispersion curve

The dispersion curve for elementary excitations in
superfluid “He is shown in Fig. 1. These data were ob-
tained from neutron scattering measurements (Woods
and Cowley, 1970; Cowley and Woods, 1971). Although
the energy is actually a continuous function of the mo-
mentum, the spectrum of excitations is traditionally
divided into two parts. Excitations with momenta less
than 1 A™! are phonons, and those with momenta greater
than 1 A™! are called rotons. By 1 A1 we mean that the
momentum is ZQ, where @ is 108 cm™!,) Of particular
importance for the subsequent discussion is the form of
the dispersion curve for phonons of fairly small momen-
tum. This is presented most conveniently by plotting
the momentum dependence of the phonon phase velocity
¢(p) and the group velocity v(p) defined by

c(p)=e/p, (2)
v(p)=oe/op . (3)

One estimate of these velocities is shown in Fig. 2. This
is based on the functional form (Maris, 1973c)

- 2 1 _pz/pi]
€=c,p ':1 +vp 1 +p2/sz s (4)
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FIG. 1. Dispersion curve for elementary excitations in super-
fluid helium as measured by neutron scattering (Woods and
Cowley, 1970; Cowley and Woods, 1971).
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FIG. 2. Phase and group velocity of low-energy phonons as a
function of phonon momentum.

y=1,112 A%,

pa=0.5418 A™L
p5=0.3322 A1
c,=2.383%x10* cmsec™',

In the limit of very small momentum, both the phase and
the group velocity are equal to ¢,. This is just the sound
velocity, which can be measured in an ultrasonic ex-
periment. For higher momentum, the phase and group
velocity at first increase. In most crystalline solids the
opposite is observed, i.e., as the momentum increases,
a monotonic decrease of ¢ and v occurs. It is for this
reason that the behavior in helium is referred to as
anomalous dispersion.2'® At present there is no rigor-
ous first-principles theory of the excitation spectrum of
liquid helium. For reviews of this topic, see Feenberg
(1969, 1970), Reatto (1975), and Woods and Cowley
(1973). Recent theoretical work that is especially rele-
vant to the problem of anomalous dispersion is described
in the papers by Pines and Woo (1970), Bhatt and McMil-
lan (1974), Lin-Liu and Woo (1974), Hastings and Halley
(1975), and Aldrich, Pethick, and Pines (1976).
According to Fig. 2, the phase velocity has a maximum
at about 0.3 A™! and at this maximum the velocity is
about 4% above c,. Above the maximum, thé phase ve-
locity decreases rapidly and becomes less than ¢, when
p is greater than p,. Although there is an uncertainty of
possibly +30% in the magnitude of the dispersion at the
maximum, the qualitative features as illustrated by Fig.
2 are definitely correct. The uncertainty arises be-
cause it is very difficult to use neutron scattering to
measure the dispersion curve with good accuracy for
phonons of such low energy. (For a recent attempt, see

’Note that in optics the increase of the velocity of a photon
with increasing momentum is called normal dispersion.

3Until about 1970 it was generally assumed that the dispersion
of phonons in helium was normal. This assumption led to a
theory of phonon—phonon interactions which was radically dif-
ferent from the present theory. Much of this older work is
summarized by Khalatnikov (1965). References to theoretical
developments between 1960 and 1970 are listed in Maris
(1973c, 1973d, 1974).
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Svensson et al., 1975). Consequently, many alternative
schemes have been devised to investigate the disper-
sion. We describe these measurements in the Appendix.
It is appropriate to emphasize at this stage that Eq. (4)
has no theoretical basis and is just a convenient func-
tional form to fit the dispersion curve. Several other
forms for the dispersion curve have been proposed, and
these are also discussed in the Appendix.

B. The interaction between phonons

To understand the source of the interaction between
phonons, it helps to use a classical picture. In a liquid
the velocity of sound is

c=(B/p)”, (5)
where B is the bulk modulus, defined as
B=poP/op.

(We are ignoring subtleties about derivatives at constant
entropy or temperature.) The velocity of sound thus de-
pends upon densify because B increases with increasing
density, and also because the density appears explicitly
in the formula for the velocity. For liquid helium it is
known from the measurements by Abraham et al. (1970)
that

C
— =2,84—, 6)
dp Po (

where p, is the density of helium at zero applied pres-
sure. Consider now what happens when a liquid contains
two sound waves with wave vectors k, and k,, frequen-
cies w, and w,, and amplitudes 6p, and 6p,. The wave
k, produces a local density variation

6p, (rt) =0p, expli (&, *r — w, )],

which gives a local variation in the velocity of sound

5 [}
ci‘rt) =2.84_p£)‘L expli (k1 °r— wlt)] . . M
o

A change in velocity is equivalent to a change in refrac-
tive index. Thus, the wave k, may be considered to pro-
duce a diffraction grating. This grating has a spacing
and orientation fixed by k;, and is moving with the phase
velocity of the wave, i.e.,

w ~

] ™ ®
(151 is a unit vector in the direction of k;). The wave k,
will be scattered by this moving grating, and the most
intense scattered waves will be those with wave vectors
k, +k, (Fig. 3). In a frame of reference moving at the
same velocity as the grating, the scattering must appear
to be elastic. But in this frame, the wave k, has a Dop-
pler-shifted frequency

c, =

Wh=w,~ K, e, .
Now if the frequency of a wave with wave vector k, equal
to k, +k, is w, in the rest frame, then in the moving
frame the frequency will be

wi=w,— (k, +k,)* ¢,

=w,—-K,*¢c, —w,.
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FIG. 3. Classical interpretation of phonon—phonon scattering.

Since w; and w} must be equal, we get the scattering
conditions

(@) wy=w, +w,,
k, =k, +k, .

Similarly, by considering the other scattered wave, we
find the conditions

b) wy=w,-w,,
k, =k, -k, .

These conditions are simply the laws of conservation
of energy and momentum for phonon scattering. In (a)
phonon 2 absorbs phonon 1, producing phonon 3. Thus,

) &=eives, ©)
P; =P, +P> .

For (b) phonon 2 decays into phonons 1 and 3. Thus,
(©) €3=€,— &y,
P3 =P, —P; .

Note that, classically, the difference between these two
processes is that in (a) the moving grating does work on
the wave 1, whereas in (b) the grating absorbs energy
from the wave.

It is clear from this physical argument that the matrix
element for phonon-phonon scattering is proportional to
dc/dp. There is also a dependence on the energy of the
phonons involved and on the relative directions of their
wave vectors. Without working out the details, one can
see that the matrix element must increase with in-
creasing phonon energy. Classically, the scattering
from a grating is proportional to the square of the varia-
tion of the refractive index. Thus, in the present case,
the scattering should be proportional to

(6p,/p,)? .

For a classical sound wave this quantity is proportional
to the energy of the wave. Thus, a higher-energy phonon
will set up a diffraction grating which will scatter more
strongly.

An important point to note is that a phonon can decay
even if it is the only phonon present in the liquid. This
is because the zero-point motion is always present,
leading to spontaneous decay processes of type (b).

Higher-order interactions can also occur. Classically,

10)
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this is the result of higher-order diffraction from one
grating, or multiple scattering from two or more grat-
ings. These processes can also be divided into scatter-
ing processes, for example,

1+2-3+4,
or decay process such as

1-2+3+4.

C. The spontaneous decay of phonons

We begin with a discussion of what happens to a phonon
of energy €, which is excited in liquid helium at zero
temperature., Under these conditions there will be no
other phonons present. Thus, we can neglect scattering
and just consider the lifetime of the phonon due to the
spontaneous decay process. Then the conditions

€, =€, +€,4,
P, =Ps +P3

must be satisfied. We would like to investigate these
conditions, using the dispersion law for phonons in he-
lium, Consider what would happen if the dispersion law
were exactly linear, i.e., if

€=c,p

for all p. Then the conditions become
by=Dy+0s,
Dy =P, +P;.

These equations obviously require that p, and p, be
exactly parallel to p,. Consider now the more general
case when the velocities of the three phonons are ¢, ¢,
and c,;, and these differ from each other. Then,

C1D=CoPp+C3Py
and so

c

-cC
3751 g
3°

Cc,—C

- 2”49
by=Dy+Dy+ Do+ P
1

cl
If ¢, and ¢, are both larger than c¢,, then
D> Dy+Dy.

But this is inconsistent with the momentum equation,
since this obviously requires

DPy<Py+D,.

Hence, if ¢, and ¢, are both greater than c¢,, the phonon
1 is stable against decay into two particles. It is easy
to generalize this result to show that decay into any
number of particles is also impossible if all of these
particles have velocity greater than the velocity of par-
ticle 1. Thus for a general dispersion law when a phonon
decays, at least one of the phonons produced must have
a lower velocity than the original phonon.

For low-energy phonons (€ <5 °K), the velocity in-
creases with increasing energy. These phonons there-
fore always have a velocity greater than the velocity of
all phonons of lower energy, and hence the decay pro-
cess is possible. The differences in velocity are small,
however. Suppose, for example, that
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C(P) =cu(1 ’Pﬂ)z) s

where yp? is much less than 1, Then one can show that
the angle between p, and p, is

6, ~ (6yp2)2 (11a)
and the angle between p, and p, is
6,~ (612 )2, (11b)

For p,,p, around 0.1 A-! these angles are about 10°, and
so the product phonons are still propagating in nearly
the same direction as the original phonon. This has in-
teresting consequences for the transport properties of a
gas of phonons (see Sec. III).

For phonons of higher energy, the velocity starts to
decrease (see Fig. 2), and some of the lower-energy
phonons have a higher velocity. The decay possibilities
then become restricted, and above a certain critical
energy €. phonons become totally stable against decay.
The precise way in which this last step occurs may de-
pend to some extent on the details of the dispersion rela-
tion and has led to some confusion in the literature [for
a discussion, see Pitayevskii and Levinson (1976)]. 1t
is clear that just below the energy at which stability oc-
curs, the phonon decays only into particles with mo-
menta nearly parallel to its momentum. Thus, for de-
cay into two particles, we consider the largest value of
p, for which there exists a value of p, such that

€(p,) =€(p,) +e(p, - py).

We consider this condition for the dispersion relation
already described [Eq. (4)]. This leads to a largest
value of p, given by

p2 = 83
17 [25 +16p3 /p2]2 45 *

12)

Using the previoously estimated values of p, and pg, we
find p, =0.4215 A™!, The critical energy for stability
against decay into two phonons is thus

€(0.4215)=7.90 °K=¢®’,

Just below this energy it is possible for a phonon to de-
cay into two phonons of equal energy. Above €’ decay
into two phonons is not possible, but the phonon may
still be able to decay into three or more phonons. One
can show that stability against possible decay into #
particles is reached when

pz — 2}’l2pﬁ
17 1022 +1) +4n2p2 /pR] V2 + 02 +1) °

For n=3 ¥ =8,71 °K, for n=4 ¢ =9,12 °K, and for
large n

13)

€ mcypy =9.86 °K,

The net effect of these.results can be summarized as
follows. A low-energy phonon is unstable against decay
into any number of lower-energy particles. The decay
rate into two particles can be shown to be (Beliaev,

1958; Maris, 1974)
T(e) = Aes, 14)

where
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(u, +1)?
540 70% °C (15)
and
uOE%"—%%Q-=2 84 (16)
[o]

If € is measured in °K, the constant A has the value
7.12X10°% sec™!, Thus, at the cutoff energy €{® for de-
cay into two phonons, the lifetime is 4.6 X107!! sec and
the mean free path is about 100 A, The rates for decay
into three or more particles have not been calculated,
but presumably they go as a higher power of €. They are
therefore not important at low energies, but might be-
come significant in the range between €?’(7.90 °K) and
€!{™(9.86 °K). Figure 4 shows the estimated mean free
path for spontaneous decay.

Before discussing the experiments related to this theo-
ry, it should be mentioned that there is some theoreti-
cal controversy about the mean free path for phonons of
energy above €., On the basis of the theory we have
just described, a phonon with energy greater than el
is completely stable against decay, and we expect that
the mean free path measured experimentally will be
limited only by extraneous effects, such as scattering
from 3He impurities. Sluckin and Bowley (1974) have
performed a more elaborate calculation, however, and
obtained a finite result for the scattering rate. They
find, for example, that at around 1.5 or 2 times €’ the
decay rate has dropped less than an order of magnitude

from its value just below €{®’. Their theory is based

(cm)

MEAN FREE PATH

0.5 1 2 5 10

PHONON ENERGY (K)

FIG. 4. Phonon mean free path as a function of energy. The
dashed part of the graph is only qualitative because the decay
rate into three or more phonons is not known.
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upon the following physical picture. Phonons below €’

are able to decay. Thus they have an uncertainty in

their energy, which Sluckin and Bowley represent math-
ematically by approximating their spectral functions by.
Lorentzians. Phonons of energy above €{*’ now have
some finite probability of decay because the conserva-

tion of energy rule
€, =€, +€,

is relaxed slightly by the uncertainties in the energies
€, and €,. The dangerous step in the argument is the
assumption that the spectral functions are Lorentzians.
Bhatt and McMillan (1974) have independently performed
a calculation that is rather similar to Sluckin’s and
Bowley’s, but which allows for a general spectral func-
tion that is obtained self-consistently. They find highly
non-Lorentzian spectral functions and conclude that
there is, in fact, a critical energy above which phonons
are stable. As far as we can see, the Bhatt—-McMillan
conclusion is correct, but further theoretical study
would be worthwhile.

The existence of stable phonons with energies above
€!”) has been confirmed by a series of elegant experi-
ments carried out by groups at Bell Laboratories and at
Nottingham University. In these experiments phonons of
a definite energy € were generated at some point in the
liquid and a detector sensitive only to phonons of this
energy was placed a few millimeters away. The number
of phonons reaching the detector was measured as a
function of €, From the theoretical results shown in
Fig. 4, one can calculate the fraction of phonons that
are expected to reach a detector a given distance away.
This fraction is shown in Fig. 5 for a propagation dis-
tance of 0.2 cm. It can be seen that a large increase in
detector signal should be observed at an energy €, some-
where between €2’, where the mean free path is 100 A,
and ef,.‘”’, where phonons are completely stable. The
precise energy at which this increase occurs is not
known definitely because the decay rates into three or
more particles have not been calculated. The initial ex-
periments gave confusing and conflicting results (Nara-

D I 1 ] ] 1
L
[ &
e P )
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pd |
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o H
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oc | !
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0 2 4 6 8 10
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FIG. 5. The fraction of phonons that travel a distance 0.2 cm
without decaying. The part of the graph between €/ and €™
is only qualitatively correct.
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FIG. 6. Critical energy above which phonons are stable as a
function of pressure (Dynes and Narayanamurti, 1975).

yanamurti, Andres, and Dynes, 1973; Lockerbie, Wyatt,
and Sherlock, 1974). However, later experiments in
which generators and detectors having better understood
characteristics were used gave clear evidence of €, and
also resolved the earlier difficulties (Dynes and Nara-
yanamurti, 1974, 1975; Wyatt, Lockerbie, and Sher-
lock, 1974). Dynes and Narayanamurti (1975) find that
€, for liquid helium at zero pressure is 9.5 °K, and that
this energy decreases with increasing pressure, as
shown in Fig. 6. The result that €, decreases with in-
creasing pressure and becomes zero implies that the
dispersion curve must vary with pressure as shown
qualitatively in Fig. 7, i.e., above some pressure
around 20 bar the dispersion is normal for all phonons.
[The discovery that the dispersion becomes normal un-
der pressure was not a new result, since it had been
indicated by the earlier specific heat measurements of
Phillips et al. (1970).] As expected, the experimental
result for the critical energy at zero pressure (9.5 °K)

= .

o P>20
O

-

g ] P=20
=z

@]

=z

2

o P=0

MOMENTUM

FIG. 7. Qualitative form of the variation of phonon velocity
with momentum for various pressures. For a pressure great-
er than about 20 bar all phonons have velocity less than the
velocity of low-energy phonons.
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does indeed lie between €’ and €{°’,

The theoretical prediction that the decay products have
momenta close to the direction of propagation of the
original phonon has also been confirmed experimentally
(Mills, Sherlock, Wyatt, 1974; and Sherlock, Mills, and
Wyatt, 1975). The experimental arrangement is shown
schematically in Fig. 8(a). A source of phonons (a
Joule-heated film) was placed behind a slit. The angular
distribution of phonons passing through the slit was mea-
sured using a detector 1 or 2 cm away. The detector
was sensitive to phonons of any energy. At a pressure
of 24 bar all phonons are stable, and so the signal at the
detector should be a measure of the angular resolution
of the apparatus. At lower pressures, decays can occur,
and a wider angular distribution is observed than at 24
bar [see Fig. 8(b)]. It is difficult to make a quantitative
comparison between theory and this experiment. How-
ever, the spreading angle observed does seem to be
roughly consistent with expectations. Consider what
happens when, for example, a phonon of energy 6 °K is
excited in the liquid. The mean free path for a phonon
of this energy is only 400 A. The two phonons produced
in the decay typically have energy roughly half the origi-
nal energy and have a much longer mean free path be-
cause of the €® dependence of the decay rate [see Eq.
(14)]. However, the mean free path is still very small
on the macroscopic scale and so further splitting pro-
cesses occur. After each splitting, the mean free path
is longer and the angle of scattering is reduced [see Eq.

SLIT
(a) \ .
A
../_._'. GENERATOR
(b) PHONON

INTENSITY

ANGLE

FIG. 8. The experiment of Mills, Sherlock, and Wyatt (1974)
to study the angular spreading of phonon “showers” (a) Sche-
matic diagram of the apparatus. (b) Phonon intensity as a
function of angular position of the detector. Solid line shows
data at 24 bar pressure, and dotted line is for zero applied
pressure.
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(11)]. We show this schematically in Fig. 9. In this
figure each decay product has been assumed to decay
after one mean free path. The angles between the pho-
nons produced in each decay step have been calculated
using the dispersion curve?® and should be fairly realist-
ic. In the experiment those secondary phonons that are
products of decays occurring immediately in front of the
generator cannot be. distinguished by the detector from
primary phonons which have propagated directly from
the generator without decay. Thus, the increase in the
angular width observed at the detector must be caused
by phonons which have undergone a decay process a sig-
nificant distance from the generator [at point A in Fig.
8(a), for example]. It can be seen from Fig. 9 that by
the time phonons have reached a distance of 0.5 mm
from the generator the energy has been reduced to 1 °K
or less. For a 1°K phonon decaying into two 0.5 °K
phonons, the decay angle is 4°. This is comparable to
the increase in angular spread that is observed.

The above discussion ignores interactions between
different decay products of one primary phonon and also
neglects interactions between the large number of pri-
mary phonons generated in each pulse. It is not clear
at the moment whether these approximations are valid
under the experimental conditions of Mills ef al. It
seems to be difficult to devise a simple experiment
which will study decay angles in a more qualitative way.

Note added in proof. The spreading of a phonon beam
in helium at a finite temperature has been considered
very recently by B. D. Laikhtman and A. V. Lomakin
(Pis’'ma Zh. Eksp. Teor. Fiz. 23, 624 (1976) [Sov.
Phys.-JETP Lett. 23, 572 (1976)]).

D. Scattering of phonons by phonons

The group of experiments described in the last section
all involve the study of what happens when one phonon is
excited into liquid helium, and this phonon decays.
Throughout our discussion we assumed implicitly that
any other phonons in the liquid had an insignificant ef-
fect. It turns out that if the liquid is at a temperature
below about 0.1 °K, the number of phonons thermally
excited is so small that this assumption is reasonable.
We now describe a different class of experiments,

S~
| 1 1 1
10° 1074 1072
DISTANCE FROM GENERATOR (cm)

FIG. 9. The decay of a 6 °K phonon.
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namely, those in which scattering occurs. The simplest
process is one in which two phonons collide and one pho-
non is produced. Thus,

€, +€, =€,4,

P, +P2 =P3.

The most complete study of scattering would involve an
investigation of the cross section ¢ as a function of p,
and p,. This sort of experiment would require two
monoenergetic sources of phonons, together with a sui-
table detector system. The experiments actually per-
formed so far have been much less ambitious. A phonon
generator produces a monoenergetic beam which propa-
gates through liquid at a temperature T'. The incident
beam is scattered by the thermal phonons in the liquid
and the attenuation length is measured. This gives a
value of the scattering cross section averaged over the
whole distribution of momenta of the thermal phonons.
Despite this averaging, interesting results have been
obtained. Quantitative experiments have been performed
so far only for an incident beam of very low energy (€,
<0.05 °K).* For these phonons we may assume that the
energy of all the thermal phonons is much larger; thus

€2 >>€1 bl
Py by
Then

E356(1)1 +p2)

d€
~E€ +—
®,) op, D1
=€, +V,°D, .
Thus, the conservation of energy condition becomes
€,=V,'D, .

But the velocity of a low-energy phonon is very close to
€y, and so

CoP1 =V, Py . @an)

Thus the component of the group velocity of phonon 2 in
the direction of p, has to be equal to the velocity of
sound ¢,. Now, if v, is larger than c,, there will always
be some angle 6, between p, and p, such that Eq. (17) is
satisfied. However, if v, is less than ¢,, there is no
solution for 6,. Thus, the conditions of conservation of
energy and momentum have the effect that a low-energy
phonon can be absorbed only by high-energy phonons
that have a higher velocity. The scattering rate should
therefore be proportional to the number of these fast
phonons and to the average scattering cross section. As
discussed in Sec. II.B, the scattering cross section is
proportional to phonon energy.

For the dispersion curve we have been using [Eq. (4)],
all phonons of energy up to a critical momentum p, have

“The discussion given is valid for phonons of low energy, but
not too low! We consider here the scattering of a low-energy
phonon by high-energy phonons when complications arising
from interactions between the high-energy phonons can be ig-
nored. This is a good approximation if €;> %#/7 (T=mean colli-
sion time for a high-energy phonon).
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velocity greater than ¢,. This momentum is given by
52 - 6p§p§
© " [(5pE- P3P +36pIPEI"2 +50F - b3 -

For the values of p, and p, given previously, p, comes
out to be 0,3769 A™!, and the energy of a phonon of this
momentum is

€,=7.10°K.

(18)

19)

Note that this cutoff energy is not the same as the energy
6‘02’ involved in the decay of a phonon at zero tempera-
ture.® This was pointed out by Dynes and Narayana-
murti (1975). In general, &, is less than € but the dif-
ference between the two cutoffs depends to some extent
on the precise form assumed for the dispersion relation.
Thus, for example, Jickle and Kehr (1971) considered
the dispersion relation

€ =c,p (1 +vp*—0p*)
and found that
p2=3y/50.

Dynes and Narayanamurti (1975) showed that for the
same dispersion relation the momentum p?’ corre-
sponding to the energy €’ is given by

p®=dy/5
and so
e(cz)/é'-cz (%)1/2 .

Thus, this dispersion relation leads to a slightly larger
difference between €2’ and €, than the dispersion rela-
tion (4) that we have been using.

At temperatures below 0.5 °K, essentially all thermal
phonons will have momenta less than A. The number of
fast phonons is then simply the total number of phonons,
which is proportional to T3, The average energy of
these fast phonons is of the order of 25T, and so the
average scattering cross section is also proportional to
T. Thus, the total scattering rate for a low-energy
phonon should be proportional to T, Roach et al. (1970,
1972) have measured the scattering of low-energy pho-
nons as a function of temperature and pressure (see
Fig. 10). At zero pressure they find an attenuation of
the phonons which is proportional to T*, as expected
from the above argument. At higher pressures the scat-
tering decreases and varies more slowly with tempera-
ture. This was first explained by Jickle and Kehr
(1971), As pressure is increased, the dispersion curve
is modified as shown in Fig. 7, and €, decreases. When
&, is comparable to BzT, not all of the thermal phonons
are fast phonons and the scattering is decreased. The
situation is particularly simple when

E,<k,T.

The number of fast phonons is then proportional to T,
and their average energy is independent of temperature.
Thus, the attenuation of low-energy phonons should vary
as T, as is observed experimentally at P =19 bar
around T =0.5 °K, for example. Above 20 bar the dis-

5Wya.’ct et al. (1974) have incorrectly assumed that the two cut-
offs are equal.
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FIG. 10. Attenuation of low-energy phonons as a function of
temperature at zero pressure and at 19 bar. The phonon fre- |
quency is 105 MHz corresponding to an energy of 0.005 °K.
These data are measurements of Roach et al. (1970, 1972).

persion curve is completely normal; there are no fast
thermal phonons; and there should be no scattering of
low-energy phonons by the three-phonon process. The
experimental results confirm this.

I1l. COLLECTIVE EFFECTS AND HYDRODYNAMICS

At a nonzero temperature helium contains a gas of
thermally excited phonons, which have many properties
similar to those of ordinary gases. It is this gas that is
the normal fluid of the well-known two-fluid model of
superfluid helium [for a discussion, see Wilks (1967)].
The equilibrium properties of the gas may be calculated
using conventional results from the theory of the sta-
tistical mechanics of ideal gases. To calculate the
transport properties, however, requires a kinetic theo-
ry in which the details of the collisions between phonons
are correctly taken into account. It turns out that be-
cause phonon collisions are predominantly of small an-
gle, the gas has several interesting and unique transport
properties., We now discuss these,

A. Viscosity of the phonon gas
The viscosity of an ordinary gas of particles is

n=3nmvA , (20)

where 7 is the number density, 7 the mass, v the mean
particle velocity, and A the mean free path. This for-
mula also applies to a phonon gas in helium if we re-
place nm by the normal fluid density p,, v by the mean
phonon velocity, and A by the phonon mean free path.
Thus,

N =%5PCA . (21)
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The number of phonons per unit volume at a tempera-

ture T is :
n=81¢ (3)(kRgT/hc)? (22)

where £(3)=1.202. This assumes that all phonons have
the same velocity c. Note that the typical wavelength of
a phonon is

A~hc/kgT ,

and so there is roughly one phonon per volume A%, The
normal fluid density is (Wilks 1967)

_167° (k TY

Pr=T45 s @3)
implying that the average “mass” of a phonon is
2n* kT kT
™= g5c@) ot - o807 (24)

i.e., roughly the average energy divided by c2.

The problem that remains is to calculate the mean
free path A. The appropriate mean free path to be used
for the viscosity is the mean free path for large-angle
scattering. However, we have already noted that there
are no large-angle scattering processes involving only
three phonons. Hence it is necessary to build up large-
angle collisions out of many small-angle collisions.
Thus, if 7y and 7, are the small- and large-angle scat-
tering times, respectively,

T, =NT,, (25)

where N is the number of small-angle scatterings nec-
essary to produce the effect of one large-angle scatter-
ing. N is some function of the collision angle . We now
determine this function.

For a gas in which small-angle collisions are occur-
ring very rapidly, we may assume that phonons with mo-
menta of different magnitude, but lying in the same di-
rection, will always be in equilibrium. Thus the state
of the gas can be specified by giving the total number

- n(6, ¢) of phonons having a given direction of p. An

equivalent description can be made through the introduc-
tion of an effective temperature T'(6, ¢), which again de-
pends on the direction 6, ¢ of p. Thus, the number of
phonons with momentum p and energy €, is

1
"= exp[E,,/kBT(G, d))] -1-

Consider now a phonon gas which is in a homogeneous
state, i.e., T(6, ¢) is independent of position. After a
long time compared to 7,, the gas will reach complete
equilibrium and T will be a constant value independent
of 6 and ¢. We would like to construct an equation for
the time variation of T(6, ¢). To do this, we note that
the effect of small-angle collisions is to make the direc-
tion of the momentum of a phonon undergo a sort of
random walk. Hence, we expect that the equation of mo-
tion of T'(0, ¢) may be similar to the equation governing
diffusion on the surface of a sphere, i.e.,

(26)

2. 9) _ pve1(6, 9)+ BT (0, §) 4+, @)

where
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1 9 ) 1 92
2 3 — e
V= 5Sing ¢ <Sm939>+ Sin0 0¢? ° (28)
Equation (27) has the appearance of a simple power

series in V2, One might expect that this series is an ex-
pansion in the parameter

av,
where « is the collision angle.
A=0(a?),

B=0(a%).

Thus we guess
(29)
(30)

This is consistent with the idea of diffusion, since the
ordinary first-order diffusion coefficient is proportional
to the square of the random-walk step length.® How-
ever, if we continue with this view, we are led to an in-
consistency. Suppose that at time =0

T(6, ¢)=T,+a, P, (0), (31)

where T, and a, are independent of 6 and ¢, and p,(9) is
a Legendre polynomial and @, is small. Then at later
times, Eq. (27) has the solution

T(6, ¢)=T,+a,P,(8)e” it (32)
where

A=Al +1)+BI2(L 412 - - - (33)
If we set =1,

T (6, §) =T, +a,(3/4n)2 cosf e (2A*aB+ "It (34)

In the situation that we are considering, T varies with 6
as shown schematically in Fig, 11(a). At ¢ =0 there are
more phonons traveling in the positive z direction than
in the negative z direction, and the phonon gas therefore
has a net momentum, Collisions do not change the total
momentum and so this momentum should persist as time
develops. This is inconsistent with Eq. (34), which im-
plies that the momentum disappears in a time of the
order of (2A +4B++-+)"!, To resolve the problem we
have to assume that

2A +4B ++++=0,

This means that Eq. (29) must be incorrect and that A
actually contains no term of O(a?). As a result, we
must have to an accuracy of O(a?):

A=-2B,

(a) 1= (b) =2 (c) -6
FIG. 11. Polar plots of the phonon temperature.
®In his calculation of the viscosity Matveev (1973) arrives by
a different method at the result that would be obtained by be-

lieving the guess (29). For the reasons given below it appears
that his result must be incorrect.
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and so
A =B[=21+1) +12( +1)P] 4+ -+
=B(l-1)I(l+1)(1+2)+0O(ab).

The reason for this difficulty can be understood more
directly by considering the decay of a single phonon p;.
The directions of the momenta p,, p, of the phonons pro-
duced in the decay are random within some solid angle.
However, because of conservation of momentum, there
is complete correlation between p, and p;, and this
means that the process is more complicated than simple
angular diffusion (Maris, 1973¢). A detailed discussion
of this process has been given very recently by Gure-
vich and Laikhtman (1975), who call it “superdiffusion.”

The rapid increase of A; with increasing ! predicted
by Eq. (35) has a simple explanation. 2, is the rate at
which collisions relax a temperature distribution of the
type given by Eq. (31). As [ increases, the maxima and
minima in 7'(6) move closer together (see Fig. 11) and
the phonons have to diffuse a much shorter distance in
order to make the temperature uniform, Detailed cal-
culations of A, at various temperatures have been made
by Maris (1973a, 1974) and by Benin (1975). Results at
0.25 °K are shown in Fig. 12, These results were ob-
tained by direct numerical solution of the phonon Boltz-
mann equation and do not rely on a power series expan-
sion like Eq. (27). For large [ it is found that A, tends to
a constant value. This happens because as [ increases,
the maxima and minima in P,(6) get so close together
that one small-angle collision is able to take a phonon
from a “hot” direction to a “cold” one. Then the tem-
perature distribution relaxes back to equilibrium in a
time of the order of 7, and so

(35)

lim A, =75, (36)
]—>o0
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FIG. 12. Relaxation rates of the phonon gas at 0.25 °K.
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For [=2 the temperature of the phonons is slowly
varying with direction, being a maximum near ¢=0 and
7, and a minimum at 7/2 [see Fig. 11(b)]. Thus, one
expects that the effective large-angle scattering rate
71! is proportional to X,, and this idea can be shown to
be correct by a more detailed calculation (Maris,
1973b, ¢; Benin 1975). Now

A, =6A +36B + O(a®)

=24B + 0(c®), (37)

and so T, is proportional to @~* (o =collision angle).
Thus, the number N of small-angle collisions needed to
make up one large-scale scattering event is of the order
of @”*, The viscosity mean free path calculated in this
way is shown in Fig. 13 together with theé experimental
results of Whitworth (1958). The agreement between
theory and experiment is very good. Jickle and Kehr
(1974) have described how the viscosity mean free path
is expected to vary with pressure, but no experimental
results are available yet.

This calculation has assumed that repeated three-pho-
non collisions make the largest contribution to the effec-
tive large-angle scattering rate. This is not a priori
obvious, since four-phonon collisions, although they
occur at a much slower rate, are not restricted to being
of small angle and, thus, might be important. An esti-
mate of the relative importance of three- and four-
phonon processes has been made by Gurevich and
Laikhtman (1975). They show that the assumption we
have made is valid, at least for helium under no applied
pressure. The situation under preésure is more com-
plicated because four—phonbn pr'ocesses become rela-
tively more important, since the three-phonon collision
angle decreases. ‘ ’

B. Waves in the phonon gas

To be able to consider time-dependent phenomena such
as the propagation of waves we need to derive an equa-
tion of motion for the phonon gas. At the microscopic

0.5 T T T T
£
RS
< 02
=
& 0.1
w
w
T oos
Z
<€
=
0.02 1 ] 1 1 1
0.4 05 0.6
TEMPERATURE (K)

FIG. 13. Viscosity mean free path. The solid circles are the
experimental results of Whitworth (1958). The theoretical
curve is from Maris (1973c).
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level, of course, the equation of motion is the phonon
Boltzmann equation

on, on
= - Vn —t
at vp p+< at )coll ’

where 7, is the phonon distribution function, v, is the
group velocity of a phonon with momentum p, and (8%2,/
8t).,y is the contribution to the rate of change of #, aris-
ing from collisions between phonons. While in principle
the Boltzmann equation does provide a means to calcu-
late the rate of change of the state of a gas, it is usually
more convenient to work with simpler equations, even
if these are of restricted validity. As an example, con-
sider the propagation of a low-frequency sound wave in a
gas of atoms obeying Fermi-Dirac statistics. For a
low-frequency disturbance of the gas, the collisions be-
tween the atoms are so frequent that the gas is always
in local equilibrium, This means that the distribution
function for the atom at position r and time ¢ is given by

1
exp{le,—p*V(r,t)- p(r, )] /kgT(r, H)f +1 7
(39)

(38)

ny(r,t)=

where i
w(r, t) =local chemical potential ,
V(r, t) =local drift velocity,

T(r,t) =local temperature.

Thus the distribution is completely determined by the
five hydrodynamic variables u, V, and 7. A hydro-
dynamic description of this type is valid when

QT <1, (40)

where Q is the frequency of the disturbance and 7 is the
collision time.

The hydrodynamic variables and the equations they
satisfy are intimately connected with conservation laws.
For each 'microscopic quantity, which is conserved in
collisions between the elementary units of the system,
there is a hydrodynamic variable. In the above example,
collisions between gas atoms conserve energy, momen-
tum (three components), and the number of atoms.

Since there are five conserved quantities, there are five
hydrodynamic variables. We would now like to derive a
hydrodynamic theory for the phonon gas in liquid helium.
The first problem is to decide on the list of conserved
q\i‘antities. Energy and momentum are conserved, but
the total number of particles is clearly not conserved in
a three-phonon process. Thus, there are only four
rigorously conserved quantities. However, phonon colli-
sions have the additional special property that they are
all of small angle, Thus, in a loose way, one can say
that “direction” is an approximately conserved quantity,
and so there should somehow be extra hydrodynamic
variables associated with this. The difficulty is to for-
mulate this quantitatively. If the collisions were actually
all of zero angle, the number of phonons traveling in
each direction in space would be conserved. Then, since
there are an infinite number of directions in space,

there would be an infinite number of conserved quanti-
ties, an infinite number of hydrodynamical variables,
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etc. A hydrodynamical theory with infinitely many pa-
rameters would be of similar complexity to the Boltz-
mann equation itself, and so would not be very useful.
One can get around these problems and construct a

useful hydrodynamic theory for phonons in helium in the
following way. Suppose we are interested in a theory to
describe waves in the phonon gas that have oscillation
periods much larger than the small-angle collision time
Ty« Then

QT <1,

where @ is the wave frequency. Then we can make the
same approximation that was made in calculating the
viscosity; i.e., we can assume that the frequent small-
angle collisions keep phonons with momenta in the same
direction in equilibrium with each other. Thus, the gas
can again be described by giving the “temperatire”
T (6, ¢,r) of phonons having a given direction of momen-
tum at each point r in the liquid. The Boltzmann equa-
tion now becomes

8T (6, ¢, 1) _

2 DT) - (v(6, 9)) - VT (6, 6,7)+(

‘aT(G; ¢: r)
ot coll !

(41)

where (v(6, ¢)) is the average group velocity of phonons
with momenta in the direction 6, ¢. For simplicity, let -
us consider what happens when T isindependentof ¢, and
VT is in the z direction (i.e., T is independent of x and
9). Then Eq. (41) becomes

aT(6,z) - COS@aTéZ’Z) +<8T(9,z)>w”' 42) '

at at

We now expand T'(6,z) in terms of Legendre polynomials:

T(0,2)=T,+Q_ a;(2)Pi(6). (43)
1

T, is the average temperature of the gas. But

l+1 !
cos QP,(B) = 27-!7 P, +1(9) + _ZT:I Pl—l (9)
and so we obtain an equation of motion for a,(z) in the

form

9a,(z) =_<U>[ l 0a;_,(z) N 1+1 8a,+1(z)]
ot 20-1 3z 21 +3 9z
da,
* <_a_t_>coll. (44)
But from Eq. (32),
0a;\
(37>coll - _Alal ’ (45)

where A, is given by Eq. (33).

We have thus obtained a set of equations for the hydro-
dynamic variables {q;}. Because A; increases rapidly
as [ increases, the {a,} for large I are heavily damped
and will always be small. This means that if we are
interested in solving Eq. (44) for a wave of frequency £,
we need only worry about values of ! for which

NSQ. (46)
As an example of this, one can consider the limiting

case of very small £ such that
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N>R 4n)

for all [=2. Then we need only retain a, and @, and so
Eq. (44) reduces to

oa {(v) da

_—Qat =-="3 ——laz , 48)
Y )

G- g 4

These equations have a simple physical interpretation.
The energy density E is proportional to the phonon tem-
perature averaged over all angles 6, ¢. From Eq. (43)
it can be seen that this is proportional to ¢,. In a simi-
lar way the energy flux in the z direction, @,, is pro-
portional to a,. Thus, Egs. (48) and (49) become

OE 0Q,
o =—const oz (50)
9Q), a oT
= -—const———az . (51)

The first of these is just the condition for conservation
of energy, i.e., the condition that the local rate of in-
crease of the energy density be the divergence of the
energy flux. The second equation says that the rate of
change of the energy flux is proportional to the tempera-
ture gradient. At first sight, this is rather surprising,
since in normal materials (i.e., nonsuperfluid) the ener-
gy flux itself is proportional to the temperature gradient
(Fourier’s law). In a thermal superfluid there is a dif-
ferent relation between temperature gradient and energy
flux because the field equations must have the conse-
quence that no temperature gradients can exist in bulk
liquid in the steady state.

Now consider a wave of the form

a, =a§o)ei(Kz-Qt). (52)
Then
Q=(WK/V/3 . (53)

Thus, the velocity of very-low-frequency waves in the
phonon gas is

¢, (0) = W) /V3 . (54)

These waves are called second sound, and this result
for the velocity was first derived by Landau (1941),
Second sound is conventionally viewed as “essentially an
entropy or temperature wave” (Wilks, 1967, p. 50).
Thus one imagines that at some time a spatially periodic
temperature variation is set up [Fig. 14(a)]. The phonon
gas accelerates, causing a heat flux that at some later
time makes the temperature uniform [Fig. 14(b)]. How-
ever, although there is now no temperature gradient,
the heat continues to flow. Eventually, a temperature
distribution is set up that decelerates the heat current
[Fig. 14(c)], and then the process repeats itself. An
alternative view of second sound has been given by Maris
(1976). This view stresses the similarity between sec-
ond sound and an ordinary pressure wave in a gas of
atoms. The phonon gas exerts a pressure P, and so a
bulk modulus can be defined in the usual way as

B=-VaP/aV.
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FIG. 14. Temperature and heat flux associated with a second
sound wave.

\
Then the velocity of second sound can be shown to be
given by the expression

c,(0)=(B/p, )" . (55)

This is the usual formula for the velocity of sound in a
fluid of density p,. According to this view, second sound
is a pressure wave in the phonon gas. The temperature
fluctuations associated with the wave occur because the
temperature increases when a phonon gas is compressed
at constant entropy.

To calculate the velocity of second sound for higher
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frequencies such that Eq. (47) does not hold, one has to
allow the coefficients a,,q,, ..., etc., to be nonzero. If
Eq. (52) is substituted into Eqs. (44) and (45), one ob-
tains the set of equations

€ +ix)a, =K(v)<2ll_1 a,_, + zlz++l3 a,+1), (56)
These equations must now be solved numerically. Cal-
culations of this type have been performed by Maris
(1973a, 1974) and Benin (1976). The velocity of the wave
increases as the frequency goes up, and for a real wave
frequency Q the wave number K is complex, indicating
that the wave is attenuated. Results for the velocity and
attenuation at 0.25 °K are shown in Fig. 15. The velocity
makes a very gradual increase from the low-frequency
limiting value (v)/V3 to a high-frequency limit close to
(v). One can understand this velocity increase by look-
ing at the phonon distribution function associated with
these waves. Figure 16 is a polar plot of the phonon
temperature 7T'(6) at different phases of the wave. For a
low-frequency wave | Fig. 16(a)] T(6) is slowly varying
and the oscillation involves all of the phonons. As the
frequency increases, the wave becomes more localized,
and only involves phonons with momenta lying in direc-
tions close to the direction of propagation [Fig. 16(b)].
These phonons have a greater component of velocity in
the direction of the wave propagation, and so the wave
travels faster.

The theory just described is valid only for 7,<1, At
first sight it would seem that for

Qr, =1 (67)

no collective mode should exist, since the usual condi-
tion for the existence of a collective excitation is that
there be many collisions during one period of the wave.
Benin (1976) has constructed a more general theory
which should be at least qualitatively correct for arbi-
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FIG. 16. Polar plots of the direction-dependent temperature
T(0) for (a) a 5 kHz second sound wave and (b) a 200 kHz sec-
ond sound wave (Maris, 1974). The meantemperatureis 0.25 °K.
The temperature is plotted at various phases of the oscil-
lation as indicated.

lective mode exists far into the Q7,>1 regime, and he
provides a simple explanation of this effect. Consider
again a wave propagating in the z direction. A phonon
p has a component of group velocity in the direction of

wave propagation
V,=V,*2=1,co86,. (58)

Different phonons will have different values of v, and so
will gradually get out of phase with the wave. The veloc-
ity of the wave is equal to some suitably weighted aver-
age (v,) over the v, for those phonons involved in the
wave, After a time /, a phonon with a large value of v,,
i.e.,

vz=<vz> +6Uz’ (59)
will have traveled a distance

52,’ =t6?}z

further than the wave, Thus, this phonon will become
1 rad out of phase with the wave after a time 74, such
that

A/27 =06z

where A is the wavelength of the wave, But
A 2m=(v,) /Q

and so the dephasing time is
Ty (vz>/ﬂévz .

Benin points out that the phonon will remain coupled to
the wave as long as it makes at least one collision within
the time 7,. Thus, the condition for a collective mode
to exist is
TW<Tg,
or
Q71 < (v, /Ov,. (60)

For Q7,= 1 the only phonons which participate in the
wave motion are those that have wave vectors lying
within an angle o of the z direction. The angle ¢ is
roughly equal to the scattering angle in a small-angle
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collision, and so the range of values of cos9, is very
small., Thus, the spread in 6v, for the thermal phonons
is small compared to the average value (v,), and a col-
lective mode continues to exist far into the Q7,>1 re-
gime.

Quantitative measurements of the velocity and atten-
uation of second sound as a function of frequency and
temperature have not yet been made. Most investiga-
tions of second sound at low temperature (7°<0.6 °K)
have involved the propagation of pulses having a broad
frequency spectrum. The analysis of these experiments
is very difficult [for a discussion see Maris (1974)].
Experiments with continuous waves would be very worth-
while.and should be possible. The strongest confirma-
tion of the theory at the moment has been obtained in-
directly. Very accurate measurements of the velocity
of first sound (i.e., ordinary sound) as a function of fre-
quency” have been made by Abraham et al. (1967,1969),
Roach et al. (1972a,1973), and Junker and Elbaum
(1974,1977). These show a peculiar behavior (Fig. 17).
This was explained by Maris (1973d) and Wehner (1974)
by postulating a resonant interaction between first and
second sound. The proposal was that for frequencies in
the range ©7,>1 the velocity of second sound continues
to increase and eventually becomes greater than the
velocity ¢, of first sound. This is shown qualitatively
by the dashed line in Fig. 15. The dispersion relations
of first and second sound thus have the qualitative form
shown in Fig. 18. A weak coupling between first and
second sound then causes a small correction to the first

6o ' T T i

(ppm)

Ac/c

0 1 - | -
1 10 100
FREQUENCY (MHZ)

FIG. 17.  Frequency dependence of the velocity of first sound
at 0.35°K. The solid line is a smooth curve through the ex-
perimental points.

"To be precise, these experiments measure the frequency de-
pendence of the temperature-dependent contribution to the veloc-
ity of sound! Thus the points shown in Fig. 17 are obtained by
measuring the difference between the velocity c(Q, T) at fre-
quency 2 and temperature 7' and the velocity c(,0) at the
same frequency and zero temperature. Any frequency depen-
dence of the velocity at zero temperature is not detected by
these experiments.
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FIG. 18. Qualitative form of the dispersion relations of first
and second sound. The dotted curve shows the effect on the
first sound dispersion relation of a small coupling between
first and second sound.

sound dispersion relation as shown, This interaction
increases slightly the velocity of first sound below the
resonance and decreases it above the resonance, giving
a frequency dependence to the velocity in agreement with
the experimental results. The proposal that the second
sound velocity becomes greater than ¢, has now been
confirmed by Benin (1976), using the theory he has de-
veloped for second sound propagation in the 27,>1 re-
gime. In addition, quantitative calculations of the cor-
rection to the velocity of first sound have been performed
(Maris 1972, 1973d; Meier and Beck 1973; Meier, Beck,
and Beck 1975), and these are in good agreement with
the experimental results.

Another interesting prediction of the basic theory is
that at high frequencies there should be more than one
type of second sound (Maris, 1973a, 1974). These extra
modes are obtained in a straightforward way by solving
the set of Eqs. (56). For very small real K, the only
solutions of these equations are the second sound mode
already discussed and a set of completely damped modes
having purely imaginary frequency. As the wave number
is increased, the frequency of some of the damped modes
changes from pure imaginary to complex. The real part
of the frequency then increases, and when 7, >1, there
are several modes which are “propagating modes” in the
sense that

ReQ > ImQ . (61)

These modes are propagating in the sense that they are
attenuated by only a small amount for each wavelength
that they travel. They have smaller velocity than the
conventional second sound. The various modes have
been named second second sound, third second sound,
etc., in order of decreasing velocity. The velocity and
attenuation of second second sound at 0.25 °K is shown
in Figs. 19 and 20. The attenuation of the various modes
increases rapidly as one goes to higher order. The
angular dependence of the phonon temperature oscilla-
tions is more complicated for the higher-order second
sounds. It is shown for second second sound in Fig. 21.
These higher-order waves all have a nonzero value of
a, associated with them. Thus, the phonon temperature
averaged over all angles is nonzero, and so the waves
can be generated by a heater immersed in the liquid and
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FIG. 19. Velocity of second sound as a function of temperature.
The curves are labeled by the frequency in MHz.

may be detected by a suitable bolometer. They have
not been observed experimentally yet. For a discussion
of some of the considerations relating to their possible
observation, see Maris (1974).

Another effect related to these higher-order modes
has been discussed by Saslow (1974). He has looked for
time-independent solutions of the hydrodynamic equa-
tions of the phonon gas. Thus he sets

a;=a,(0)e ¥, (62)
100
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FIG. 20. Attenuation of second sound as a function of tempera-
ture. The curves are labeled by the frequency in MHz.
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FIG. 21. Polar plot of the direction-dependent phonon tempera-
ture for a second sound wave of frequency of 50 kHz at.0.25 °K
(Maris, 1974). The temperature is plotted at various phases

of the oscillation as indicated.

There exist trivial solutions with K =0 which correspond
to a homogeneous increase in the temperature of the
liquid (a, =0 for 1#0), or to a uniform flow of phonons
(a, =0 for i#1). However, in addition there are solu-
tions with K #0 for which ¢, is nonzero. This means
that over distances of the order of K™!, it is possible to
have temperature gradients in the liquid. Saslow sug-
gests that these might be observable near a surface
where heat is entering the liquid.

A weakly interacting Bose gas has a phonon spectrum
that also exhibits anomalous dispersion. Ma (1972) has
considered the properties of transverse waves in this
phonon gas. He finds that above a critical frequency
there should be propagating modes. This should also be
true for transverse waves in liquid helium, but since
these waves have no temperature fluctuation associated
with them, they would be difficult to observe.

1IV. SUMMARY AND OUTLOOK

The experiments that we have described provide a
convincing demonstration of the application of the con-
servation laws governing phonon—phonon scattering. For
the reasons given in the Introduction, superfluid helium-
4 is in many ways an ideal material in which to study
phonon interactions, While many predictions of the
theory of phonon scattering in helium have been con-
firmed, there are still interesting experiments to per-
form. Particularly valuable would be any experiments
to test the hydrodynamic theory (Sec. III.B). The extra
second sound waves predicted by the theory have not yet
been observed, and even the dispersion relation for
ordinary second sound has been verified only indirectly
and incompletely,

The success that has been achieved in the study of
phonon-phonon scattering should stimulate renewed in-
terest in roton scattering. The matrix element for pho-
non-phonon scattering can be related by theory to ex-
perimentally known quantities; for roton-roton scatter-
ing this is not possible. However,> quantitative investi-
gations of roton-roton scattering could be analyzed to
yield the roton—roton matrix element and its momentum
dependence, etc. A knowledge of how rotons interact
could help answer the perennially awkward question,
“What is a roton?”, and might also settle recent argu-
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ments about the existence or nonexistence of two-roton
bound states [for one view of this topic, see Woods and
Cowley (1973)].

Finally, we note that these phonon scattering experi-
ments have led us to obtain quite detailed information
about the phonon dispersion for small momentum. The
development of an accurate microscopic theory of the
dispersion curve to explain these experimental results
is a very challenging problem, which will doubtless re-
ceive considerable attention during the next few years.

APPENDIX: THE DISPERSION CURVE FOR SMALL
MOMENTUM

This is a complicated topic that could almost be the
subject of a review article itself. In large part the com-
plications are historical, and so it is simplest to de-
scribe the work that has been done in roughly chronologi-
cal order. In their original paper, Landau and Khalat-
nikov (1949) determined the small-momentum spectrum
in the following way. They assumed that the whole dis-
persion curve including the roton region could be ex-

pressed by the formula

€2=A p2+A,p2+ AP+ A DE.
They then found A,,.

(63)

..,A, by imposing the conditions

(%)pw =0, 63)
e(p=p,) =4, 67)

where A and p, are the energy and momentum at the
roton minimum, and u is the roton effective mass. For
small p Eq. (63) becomes

excop( +vp ) (68)
with
co=A, (69)
Using known values for ¢,, p,, A, and u gave
¥=-2.8X10% g 2cm™2sec? (70)
=-0.311 Az, (71)

Note that there is no a priori theoretical basis for Eq.
(63). This is an important point because three of the
four fitting conditions [Eqgs. (65), (66), and (67)] relate
to the roton part of the spectrum. Thus, this procedure
really determines the details of the small-momentum
dispersion from the form of the dispersion in a totally
different momentum range. If there is no strong reason
to believe the analytic form to which the fit is made,
this is clearly a dangerous thing to do.

Landau and Khalatnikov calculated the normal fluid
viscosity using this value of y. The later experimental

. measurements of the viscosity by Whitworth (1956) were

not even in qualitative agreement with their theory. In
addition, Khalatnikov (1963) had to assume a different
value, i.e.,
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y=-0.0017 A2, (72)

to get agreement between his theory of the absorption of
sound and the experimental results of Chase and Herlin
(1953). Further problems arose when more extensive
measurements of the attenuation of sound and the tem-
perature dependence of the sound velocity were made by
Abraham ef al. (1967, 1969). Their results were not
compatible with theoretical predictions (Khalatnikov and
Chernikova, 1965, 1966) even when the magnitude of v
was treated as an adjustable parameter. To resolve
these difficulties Maris and Massey (1970) proposed that
v as defined by Eq. (68) was actually positive. This idea
soon received support from specific heat measurements
by Phillips et al. (1970). If the phonon phase velocity is
independent of momentum, the phonon contribution to the
specific heat C should be exactly proportidnal to T3,
Phillips et al, were able to detect a small deviation of

C from a T3 law. While the sign of this deviation defi-
nitely showed that the dispersion was anomalous (y>0),
these data do not give a precise value for Y. For exam-
ple, Phillips et al, treated v and c, as adjustable param-
eters and found ’

y=0.378 A, (73)

whereas in a later analysis Maris (1972) used the value
of ¢, determined independently by ultrasonics and found
a best fit with

y=0,720 Az, (74).

These values of y initially appeared to be in conflict
with the results of neutron scattering experiments by
Woods and Cowley (1970). Their data could be fit by
the expression

€=cop (1 +7yp? - 0p?) (75)
with

y=0£0,02 A2, (76)

6=0,30£0.02 A*, (77

Thus, the neutron scattering indicated normal disper-
sion. The conflict disappears when it is realized that
the specific heat experiment probes phonons of energy

1 to 2 °K, whereas the neutron data are quite inaccurate
for energies below about 9 °K. However, this compari-
son of the two experiments does show clearly that a low-
order polynomial of the form of Eq. (75) cannot describe
the spectrum over an extended range of momentum such
as from zero to 1.0 A™!, Thus one must either choose

a more complicated form for the dispersion curve, or
alternatively use different polynomial expansions for
different ranges of momentum. Equation (4), which we
have used for most of the discussion in this article,

may be regarded as an interpolation scheme between
two polynomials. For p much less than p, and pgp,

it becomes
e=cop(1+9p?) (78)
and for p much greater than p, and py
excop[(L+yp}) — vba/D3)°]. (79)

It is possible to obtain a good fit to both the specific heat
and the neutron data in this way (Maris, 1973c). Another
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approach was. adopted by Brooks and Donnelly (1973),
who showed that good agreement with experiment could
also be obtained by taking

€=cCop +a,pd+a,p* +a pi+agp® + a, b7 +ag pt. (80)
This expression, which contains more parameters,
gives in addition a good fit to the entire dispersion rela-
tion including the roton region. A fit to the spectrum
has also been made by Iachello, Rasetti, and Rasetti
(1973). :

For the Landau-Khalatnikov dispersion curve [Eq.
(63)] and the dispersion curve defined by Eq. (4) the
energy is expressed as a series containing only odd
powers of the momentum p. In the Brooks—Donnelly
series all powers up to p® are included except the qua-
dratic term. There has been considerable discussion
about which powers of p should actually be present in
the expansion. Kemoklidze and Pitaevskii (1970) and
Feenberg (1971) have shown that because of the long-
range van der Waals potential between helium atoms
there is a term in € proportional to p*. The magnitude
of this term can be calculated from first principles and
is

~T2¢p/24M3c2, (81)

where the van der Waals potential between two helium
atoms is —¢/R®, and M is the mass of an atom., This
gives a correction to the phase velocity of the form

Ac/c=a,p®
with
a,=-3.34 A3,

(82)

(83)

It is possible that this is the only contribution to the
term in p*, but this has not been proved rigorously.

The possibility of a p? term has been considered by
Molinari and Regge (1971). They claimed that a p2 term
cannot be excluded on theoretical grounds, and they were
able to get a good fit to the specific heat and neutron
scattering data by the formula

€=c,p(1 +0.5465p ~1,3529p2 +0.2595p°

+0,1860p* — 0,0522p%)12 (84)
For small p this becomes
€=cop(l +a,p+a,p2+re o) (85)
with
@, =0.2733 A, (86)
a,=-0.7138 A2, 87

Roach et al. (1972b) have looked for a p? term in € by
measuring the velocity of sound at 30 and 90 MHz with
high accuracy. They found that

|oy| < 0.01 A, (88)

in strong disagreement with the Molinari—Regge fit.
This low limit on the magnitude of a, clearly suggests
that there is no p2 term in the dispersion relation. For
further discussion of this point see Zasada and Pathria
(1972).
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Additional information about the dispersion has been
obtained from the following experiments. Note that the
result obtained for the dispersion curve in each case
depends upon the analytic form that is assumed.

(1) Normal-fluid viscosity., Measurements have been
made by Whitworth (1956), and their relation to the
dispersion curve has been considered by Maris (1973b,
c) and by Benin (1975).

(2) Ultrasonic velocity as a function of frequency and
temperature. Junker and Elbaum (1977) have analyzed
their experimental measurements and the earlier data
of Abraham et al, (1967, 1969) and Roach et al, (1972a,
1973) to obtain information about the phonon dispersion
curve.

(3) Thermal expansion. Measurements have been
made by Van Degrift (1974) and by Berthold ef al. (1976).
The thermal expansion at temperatures less than 0.5 °K
is found to show a small deviation from a 7° law. This
deviation can be analyzed to determine the phonon dis-
persion.

(4) Direct measurement of phonon velocity. Anderson
and Sabisky (1972) have used a thin-film acoustic-reso-
nance technique to measure the phase velocity for pho-
nops of energy in the range 1-3 °K. Neutron scattering
measurements have been made by Svensson, Martell,
and Woods (1975) and by Copley (1976). Measurements
of the group velocity of phonons with energies above the
stability energy €{?’ have been made by Dynes and Nara-
yanamurti (1975) using tunnel junctions.

(5) Analysis of critical energies. Jickle and Kehr
(1971) analyzed the ultrasonic attenuation measurements
of Roach et al, (1970, 1972¢) to determine the cutoff
energy €. (see discussion in Sec. II.D). They were then
able to relate this to the dispersion curve. Dynes and
Narayanamurti (1975) used tunnel junctions to determine
the critical energy at which phonons became stable at a
low temperature (around 0.1 °K). They assumed that
energy was €2, and then used their results for this
quantity, together with their group velocity measure-
ments [see (4) above], to estimate the dispersion rela-
tion. They used the simple-polynomial dispersion rela-
tion (75) and found two surprising results. At zero pres-
sure their result for y was 0.12 1082, which is much
smaller than most other estimates. Secondly, v in-
creased with increasing pressure, in contrast with the
generally accepted idea that the dispersion becomes
normal at a pressure around 20 bar. The decrease in
€?) with increasing pressure was attributed to a very
large increase in 0 (by a factor of 22 between P =0 and
P =10 bar). It is possible that the peculiar results ob-
tained for y are just a consequence of the overly simpli-
fied form for the phonon dispersion, and so an alterna-
tive analysis would be interesting.
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