
End-loss processes frol-n mirror machines"
D. E. Baldwin

Lawrence Livermore Laboratory, University of California, Livermore, California 94550

The processes leading to end loss of ions from a mirror machine are reviewed. These include breakdown

of adiabaticity, scattering and energy drag by classical collisions, and scattering by unstable fluctuations.

Described are the linear theory of those modes thought to be of significance in present and reactor-size

plasmas, and those features known of their nonlinear saturation.
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I. INTRODUCTION

Devices for the magnetic confinement of plasma are
conveniently classified as having either closed or open
magnetic lines of force. As candidates for a fusion re-
actor, each type of device possesses a different mix of
advantages and disadvantages; these have recently been
reviewed by Ribe (1975) and Post (1976). Among the
several necessary qualities is a containment time for
energetic ions that is sufficient to allow thermonuclear
reactions. Just as the fundamental mode of containment
differs for the two types of systems, so do the mechan-
isms for particle and energy loss.

In closed-line systems, the magnetic lines of force do
not leave the plasma volume, but rather are confined to
a family of nested, topologically toroidal, flux surfaces.
Plasma pressure is more or less constant along a line,
and containment is achieved because the nested set of
plasma-loaded flux surfaces is isolated from material
walls. 'The mechanisms of particle or energy loss are
those which transport these quantities between flux sur-
faces, across magnetic lines. Such devices gen-
erally make inefficient use of relatively large volumes
of'magnetic field, being limited to the range of 10lo in P,
which is the ratio of plasma-energy density to magnetic-
energy density. However, because loss is associated
with transport in space, the lifetime of an MHD-stable
equilibrium increases with physical dimensions. Fur-
thermore and most importantly, the local particle-ve-
locity distributions are essentially Mmovellian, elimina-
ting a large class of instabilities driven by non-Maxwel-
lian, distributions. 'The principal such toroidal contain-
ment device now under investigation is the Tokamak, the
current state of which has most recently been reviewed
by Furth (1975). Transitory high P can be achieved in a

torus such as Scyllac (Ribe, 1975), wherein the toroi-
dal plasma is compressed and heated by a rapidly rising
magnetic field.

Open systems, on the other hand, present an almost
complementary picture. Lines leave the plasma volume
to pass through material walls. The ion axial confine-
ment is then achieved either because the ions are mir-
ror-trapped in regions of local minima in the magnetic
field strength by the adiabatic invariance of the mag-
netic moment or, in the case of long, straight reactor
concepts, because of simple time of flight (e.g., Post
et a/. , 1973). Because the mirror effect depends on the
pitch angle of a particle with respect to the magnetic
fieM B, confinement is velocity-space selective, -imply-
ing that there will exist void regions in the velocity
space of trapped particles. The existence of the voids,
called loss cones, creates a source of free energy that
can drive a variety of instabilities (Fowler, 1968).as
discussed in Sec. V. 'The lifetime of a particle in a mir-
ror trap is limited by the time for velocity-space scat-
tering from regions where a particle is trapped to one
where it is not; therefore, no direct lifetime advantage
is to be gained from large physical dimensions.

For the energy release rate from thermonuclear reac-
tions to exceed the power input to any reactor requires
a product of density times confinement time of several
times 10" s/cm' (1,awson, 1957; see Ribe, 1975). To
ensure adequate values of this product in a mirror reac-
tor requires ion energies of order 100 keQ, implying
that ion mean-free paths must be very long, of the order
10' to 10' times the machine length. Such a reactor
would be relatively compact in size, with a length-to-ra-
dius ratio in the range 2 to 4. The magnetic field would
be efficiently used, with values of P less than but ap-
proaching unity. Many general features of these devices
have been reviewed by Fowler (1969).

The adiabatic invariant upon which mirror confineme~t
of ions is based is given, to lowest order in the ratio of
Larmor radius to magnetic scale length, by g = 2m'/B, —

where w is the component of velocity v locally perpen-
dicular to B (Northrup, 1963; Bernstein, 1971). This
and the conservation of energy, E = ~v'+ (q/m)C, where
4 is an electrostatic (ambipolar) potential which(for rea-
sons described later is positive with respect to ground)
give rise to the mirror effect: that the component of vel-
ocity parallel to B,

u =+ v 2(z —pa —(q/m)e]'",

*Work performed under the auspices of the U. S. Energy
Research and Development Administration under Contract No.
W-7405-Eng-48.

will vanish as a particle guiding center moves into a suf-
ficiently strongly increasing magnetic field. Particles
with sufficient p, will be trapped in a field having a local
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minimum along B in the intensity ~B~. The ratio of ad-
jacent maxima of

~

B
~

to the minimum value is defined
as the mirror ratio R„. From Eq. (1.1), particles are
trapped provided u vanishes inside those points where
the effective potential qC + mp, B has maxima. Under the
most common mirror machine conditions, 4 decreases
monotonically from the center to the outside of the mir-
ror trap, so as to expel ions. When 4 may be neglected,
an ion is trapped provided E& pB . Introducing the
components of velocity at the field minimum, uo, wo, the
pitch angle 8, —= tan 'w, /u, of trapped particles satisfies
cos'80&1 —R '. The cone of untrapped particles is the
loss cone. Inclusion of nonvanishing 4 introduces an en-
ergy dependence to the loss boundary. For example, if
the axial dependence of 4 is such that it decreases ap-
proximately linearly in B (a, surprisingly common oc-
currence), ions are trapped provided E & pB + (q/
m)4(B ), where 4(B )&0 is the potential where B is
maximum. 'The corresponding loss boundary at the field
minimum is hyperbolic, and the region of confined par-
ticles has uo2& w', (R —1) —2(q/m)44, where b,4 &0 is the
drop of potential from the point of maximum density to
the point of maximum B (see Fig. 1).

lons are untrapped by any process that changes E/p. to
exceed B,„; when this happens, they are lost from the
trap along the magnetic lines. 'Those processes that can
lead to changes in pitch angle are (i) nonadiabaticity of
the ion motion in the confining field, (ii) two-body col-
lisions, and (iii) diffusion in velocity space due to the
existence of electric field fluctuations (rf) within the
plasma. Provided containment is good (meaning that
changes in E, LL(, occur on a time scale long compared to
the bounce time of the ions in the trap), all of these pro-
cesses can be included in a generalized Fokker-Planck
equation that describes the slow diffusive evolution of a
distribution of trapped ions in the space of E, p, or equiv-
alently v„80.

End loss is the crucial issue for a mirror reactor. In
the following sections, each of the three contributory
mechanisms is discussed at a level which attempts to in-

UD

FIG. 1. Ion velocity space showing loss of low energy confine-
ment induced by drop in ambipolar potential to the mirror
throat A4.

troduce the important considerations and describe how
they are treated mathematically. A general review of
mirror physics is not intended, and we omit discussion
of a number of other topics. In particular, guiding-cen-
ter equilibrium and stability are assumed, and questions
relating to these nontrivial subjects are not discussed
(see e.g. , Hall and McNamara, 1975). Also, we refer
to the previously cited review (Ribe, 1975) for a dis-
cussion of the reactor prospects and requirements of a
mirror machine. Because of the free energy associated
with an ion loss cone distribution, it can drive a vari-
ety of modes of rf fluctuation. 'The topic of instabilities
in mirror machines must therefore dominate a descrip-
tion of end-loss processes in much the same way that it
forms a major part of theoretical mi. rror research.

It is useful to set the stage for a summary of this kind
by introducing a number of parameters that characterize
the operating range of a mirror machine and that pro-
vide values that are typical for present-day experiments
and foreseen possible reactor regimes.

The electron density n, is conveniently measured in
units of electron plasma frequency &u~, = (4nn, e'/nz, )'~',
the range of values extends up to 10" em '. Defining the
electron-cyclotron frequency as 0,=

~
elB/m, c, reactors

are seen to operate with r~~, /g', a 1, while present ex-
periments operate with this parameter from this range
downward. For the same density, the corresponding
ionic ratio is larger by a mass ratio I,/m, .

If V, is defined as a typical ion velocity, the average
ion Larmor radius a,. = V,./0, is typically a centimeter at
a few kilovolts energy and a few kilogauss field strength.
(Temperatures will be cited directly in such units of en-
ergy. ) Under reactor conditions of greater than 100 keV
and perhaps 20 kG field, the ion Larmor radius would be
2 to 4 cm. For reasons of stability discussed below, a
reactor is thought to have an upper limit on length and a
lower limit on radius, the estimates of which change
with time and theoretical models and are still under
study. For purposes here, it is sufficient to envision a
reactor as having a mirror-to-mirror length of perhaps
200 ion Larmor radii, and a radius of 50 radii. Present
machines -are smaller in this dimensionless length by
about a factor of 2, but are smaller in the dimensionless
radius by a factor 10 to 20.

'The vacuum mirror ratio R, , lies in the range 2 to 3,
set in part by requirements of adiabaticity apd econo-
mics. With the inclusion of the central field reduction
due to the contained diamagnetic plasma, total mirror
ratios R for reactors are anticipated to lie in the range
V to 10.

Plasma pressure is measured by I3, the ratio of the
energy density of the plasma to that of the magnetic field.
Several definitions of P are used and have importance for
different purposes. Comparison of the plasma pressure
with the vacuum magnetic field pressure, a ratio denoted
by P„„ is a common means of presenting experimental
data. 'The limiting P„which a magnetic field will hold
stably against the MHD mirror mode depends on the vel-
ocity-space pitch-angle distribution of trapped ions, but
has a practical limit of about 0.7 to 0.8 (Hall, 1972; Hall
et a/. , 1975). However, the plasma pressure measured
relative to the diamagnetically depressed local B'/8m
gives rise to a larger ratio which we denote by P„,. 'The
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netic field have been discussed for multipole and cusp
fields (Howard, 1971; Hastie et a/. , 1968) and for mir-
ror fieMs, with particular emphasis on effects of finite
plasma pressure (Rowlands and Cohen, 1975; Cohen
et al. , 1976). The mathematical description of these
jumps is very similar to the calculation of the reflection
of a wave from an under-dense medium in the %KB limit
(Heading, 1962).

'To demonstrate how the above-described changes in p,

occur, consider Newton's equations for a charged par-
ticle in a nonuniform, static, magnetic field wherein the
particle velocity is described by the variables )U, = —,zo'/
B, E = 2z', and an azimuthal angle 8 about the direction
of the local magnetic field b

be deformed to lie along the direction of most rapid de-
scent of exp(ai9), starting from s, and s, . The result-
ing integrals ending at s, and s, will either be connected
at infinity or be connected by integration through one or
more saddle points where d9/ds=O, i.e., Q=O. The lat-
ter situation prevails when s, and s, lie on opposite sides
of the minimum in B. The indefinite integrals termina-
ting at s, and s, can be performed by integration by
parts with the results combined, respectively with p, (s,)
and p, (s,) to give a quantity which is the first-order cor-
rection to the zero-order adiabatic invariant. Said dif-
ferently, the quantity

ZU 1 zU , &b

2B ViB 2B ~s
W , ~b A A A

dt B
= ——p&B + u' — + p, u (I, —2ww): M,~S (2.1) 7W

[(e„e,—e,e,) sin28 —(e,e, + e,e, ) cos29]4B

(2.2)

d8 n= -Q —e, ~ (v ~ &)e) ——b && w ~ (v ~ &)b. (2.3)

' ds'Q'
R

(2.5)

where Q' = Q(s') and u' = 0 2 [E —pB(s')]'~', and

p(s, ) —u(s, ) = —J, (,) (gv'B'~ gc', ) w'

—p, u'(I, —2w'w'): &'b'

(2.6)

The integrand in Eq. (2.6) is dominated by the rapid
phase dependence of w. Evaluation of the integral is
most easily carried out by continuation of the integrand
into the complex s plane. 'The result is integrals of the
form

$2
dsA s exp +ie s

Sy

where A(s) is a slowly varying function relative to 8(s).
Given a specific s dependence of B, the s integral can

In these equations, u'= 2(E —pB) is the: component of
velocity parallel to B; and e, and e, form with b an or-
thonormal set, I, =e,e, + e,e,. Throughout, the hat (")
denotes unit vectors. [To obtain Eq. (2.1), use must be
made of & 8=0, a point which can be significant when
integrating single-particle equations of motion in mag-.
netic fields which are known only numerically on a finite
grid. ] The particle position vector is approximately

dr/dt =v= nb+ v'2pB(e, cos8+ e, sin8) . (2.4)

Equations (2.1) through (2,3) have the structure that time
derivatives of quantities normally taken to be nonoscil-
latory are either manifestly oscillatory or of order 5,
except for Q(r) in Eq. (2.3). The time integral of these
oscillatory terms will be nonvanishing due to the slow
variation of Q along a particle (or guiding-center) orbit.
From Eq. (2.4), r changes principally due to motion par-
allel to b, the arc length of which we denote by s. Thus,
to lowest order in 5

(2.7)

is the adiabatic invariant correct to first order in 5.
The jump, &p, , resulting from the saddle-point inte-

gration contains two terms, one of single and one of dou-
ble frequency; only the former will be significant. For
symmetric, analytically simple fields (e.g. , parabolic)
having a single upper half-plane saddle point, is„near-
est the real s axis, the result of evaluating the saddle-
point integral gives

do Q(io)
(E —V B(~o))'" cos8

(2.8)

where 6, is the phase before entering the midplane re-
gion.

The magnitude of 4p. /p. is clearly of order exp( —o. 5 '),
where cv is of order unity in 5, but becomes large for
velocities nearly normal to B. The details depend on
the functional form for B(s) continued to the complex
plane. In particular, depression of the central field and
the reduced axI.al scale length introduced by finite P will
have a detrimental effect. The model of a parabolic
pressure profile in a parabolic vacuum magnetic well
very roughly introduces the factor exp( —3P,) into the
exponent of Eq. (2.8) when the equilibrium can be de-
scribed in the long, thin approximation (Cohen et al. ,
1976).

The accumulation of &JL(, on successive passes of the
midplane will be stochastic provided 8, may be treated
as a random variable. In this event, the effect of small
&p, induced by weak breakdown of adiabaticity may be
included in a generalized Fokker -Planck equation de-
scribing the diffusion of particles in p, space (Bernstein
and Bowlands, 1976). For specialized parameters, when
successive values of 8, are not random, particle orbits
in p, , 8, space can be closed, leading to the situation
where, although p, changes, particles are confined in
regions of p, space, a phenomenon termed superadia-
baticity (Jaeger et al. , 1972).

II I. EQUILIBR IUM ELECTRON PROPERTIES

In certain respects, the electrons in a mirror machine
act as a benign neutralizing fluid for the ions. Having
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such a high collision frequency, they are constrained by
a positive ambipolar potential to a particle loss rate
equal to that of the ions. Because this mode of contain-.
ment produces a distribution function which is nearly
Maxwellian except for energies above the ambipolar po-
tential, it is virtually completely stable to high-frequen-
cy instability. However, the electrons do play a central
role in the energetics picture of the confined ions.

For reasons discussed later, a mirror reactor would
be fueled by the injection of energetic neutrals. ioniza-
tion of the neutrals produces cold-electron and hoi-ion
pair& which then begin to equilibrate via the ion-elec-
tron energy transfer process. Because their confine-
ment is electrostatic, it is always the most energetic
electrons that are lost (at a rate which must be the same
as that of the ions). The combination of injection below
the average energy and escape above, plus the fact that
the lifetime of an ion-electron pair in the trap is at best
only their energy exchange time, means that the elec-
tron energy is low compared to that of the ions, with a
steady-state ratio having an upper limit of about 0.1.
This heat loss to ihe electrons is the principal classical
limit on the energy containment time of trapped ions.
The rate of energy transfer increases with decreasing
electron temperature; therefore, any additional energy
loss process through the electron channel is of direct
significance to the ion energy confinement time.

Due to their M;woveDian distributions, the electrons
could be described either by a temperature T, or by an
average energy E,= &T,. However, because of their
loss-cone distribution, the ions are most conveniently
described directly by th'eir average energy. The litera-
ture is inconsistent on this matter, it being common to
quote both an electron temperature and an average ion
energy E,.

To illustrate the energy bookkeeping for electrons,
consider the model wherein the energy input to the elec-
trons from the hot ions competes with that lost by escap-
ing electrons

\

(3.1)
Vd

where T, is the electron temperature in keV; E, is the
average energy of the non-Mmovellian ions in keV; n is
the common density; w~ is the ion-electron energy ex-
change time, nw„= 10"vMT', ~' for an ion of atomic num-.
ber M; J'„, is the net flux per unit volume of ions (and
therefore electrons) through the machine; and q is a
parameter measuring the energy (in units of T,) expen-

- ded per electron. This model assumes that the electrons
are injected with negligible energy. Because the elec-
trons are contained by the ambipolar potential C, g wil. l
be at least 4/T, plus any energy loss associated with the
iwo degrees of freedom perpendicular to B. Values such
as q = 5.5 are a typical result of loss based strictly on
classical coDisional processes. Any other energy loss
processes on the electrons, such as ionization of back-
ground gas or the injection of (colder) secondary elec-
trons from ion bombardment of the waDs, will contri
bute to a further energy drain on the electrons. It is
customary to include these effects in the definition of
g, making that a phenomenological constant. In 2XII,
under conditions of good vacuum, q=8 gave a good de-

or

ieiC -T, l (nv„r, T, /I ),
(3.2)

(Pastukhov, 1974; Ben Daniel, 1961), where C is the
maximum potential relative to grounded walls and occurs
at the point of maximum ion density. Electrons with en-
ergies E &

~

e
~
4,„/m, are electrostatically trapped and

will have distributions close to Maxwellian. Higher-en-
ergy electrons are trapped by the magnetic field pro-
vided E& pB . If we use the classical values of n~„ the
T,/E, ratio, and n7„= 6x 10'T', ~'(k'eV) in Eq. (3.2), we
obtain 4 /T, -4.7, which is essentially the typical Fok-
ker -Planck computed value.

The spatial distribution of 4 is more complicated.
With variation along B, quasineutrality holds until the
density becomes so low that the Debye length is compar-
able with the scale length; i.e., throughout the. machine
n, = n;. To the extent that the electrons are MaxweDian,
the axial dependence of the potential is then given by

4 —C (s) = -T, ln[n; (s)/n; (0)], (3.3)

which remains a rough guide over most of the ion den-
sity variation. More precise determination of the axial
distribution of the ambipolar potential must be obtained
from a better model for the electron distribution than the
simple Mmwellian (Yushmanov, 1966; Pastukhov, 1974).
This distribution is affected in part by the ion density in

scription of the electron-temperature history (Coensgen
et al. , 1974) when J„„was determined by the measured
escape rate of tr-apped ions. If the ion lifetime for scat-
tering by classical processes is used (see Sec. IV), J„,
is about n'[2.4 x 10"E',. ~' log»R ] '. From Eq. (3.1) may
be obtained the steady-state relationship E,= —,'T, = 0.1E,.
for an R = 2 classical rnachine having no electron-cool-
ing mechanism other than the loss of energetic electrons.

The ambipolar potential which contains electrons also
ejects ions with insufficient magnetic moment to allow
magnetic trapping, causing the ion loss boundary to be
modified from the strict loss cone of magnetic confine-
ment. However, because only ions with perpendicular
energies ~qC/(R„—1) are thus not confined, this effect
is usually a less important factor in the ion lifetime than
energy degradation by electron drag. Both the small-
ness of qC compared to E, and the R —1 factor for A
&2 act to reduce its importance. The low-energy hole
thus created does, however, have an important impli-
cation on the stability of the resulting ion distribution
function to ion cyclotron fluctuations, a matter dis-
cussed in Sec. V.

To determine both the magnitude of the ambipolar po-
tential and its spatial distribution, it is necessary to in-
vestigate the velocity-space behavior of the electrons.
'The average electron-electron collision rate v„exceeds
the ion —ion rate by roughly the ratio (E',m, /E', m, )'~'.
Electrons are rapidly scattered into their magnetic loss
cone, defeating magnetic containment, and the ambipo-
lar potential is set up, equating the electron and ion loss
rates. For an ion lifetime v, =n/J„„ the magnitude of
this ambipola, r potential is roughly the solution of the
tr anscendental equation

Rev. Mod. Phys. , Vol. 49, No. 2, April 'l977
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and beyond the mirror throat (Guillory and Kunkel,
1970). For example, consider the ca.se when a, low ion
density extends beyond the mirror, either because of an
external plasma or because of a density due directly to
ions' escaping from the mirror. The drop in potential
from the center to the mirror throat will then not be
C,„as given by Eq. (3.2), bui. will be better approxima-
ted by Eq. (3.3) evaluated at the mirror point s . The
confined region of electron phase space of midplane var-
iables uo, wo will be divided into two regions, shown in
Fig. 3. Region I has a hyperbolic boundary fixed by the
mirror ratio and the potential at the mirror throat 4

u', = w,'(R„—1)+ 2 (C —C ) .lel
Vl~

(3.4)

~o = ~o(Rw —1)+ 2 C'max ~

le l

Wl
(3.5)

where R„ is B(wall)/B(midplane). It is the net flux of
electrons caused by collisions across the composite
boundary formed by the greater value of u', + zo,

' as given
by Eqs. (3.4) or (3.5) which must equal the net ion loss
rate. This required equality fixed C,„originally; it is
the velocity-space refinement of Eq. (3.2). If the elec-
tron density is calculated from a distribution satisfying
these boundary conditions and the axial distribution of C

is calculated from quasi-neutrality, at low density there
will be a deviation from the Maxwellian result I Eq.
(3.3)]. For example, at the mirror point there are no
electrons from Region I of Fig. 3. If B„«1and the el-

W(

These electrons do not escape beyond the mirrors. Re-
gion II describes electrons that escape beyond the mir-
ror throat but are trapped by the remaining ambipolar
potential relative to ground. These electrons neutralize
the ion density external to the mirrors and pass freely
between this external region and the region of the mir-
ror -confined plasma. Clearly, their characteristic en-
ergy will be that of the electrons trapped between ihe
mirrors. The boundaries of this second region are given
by Eq. (3.4) and

ectron. distribution in Region II is taken as a Maxwellian
which is truncated at 4 „, then the electron density at
the mirror is proportional to

n (s ) ~expe m T,/ le I

(3.6)

The integral factor that multiplies the exponential im-
plies that, for a given ion density ratio n, (s )/n, .(0), the
drop in potential 4,„—C will be less than that given by
Eq. (3.3). Clearly, such details of the potential in the
mirror throat depend critically upon the electron dis-
tribution at high energy.

The distribution of ambipolar potential across field
lines is not nearly so clear. It is affected by particle
drifts, finite Larmor radius, cross-field transport, var-
iation of T, across B, and the mechanism of plasma in-
jection. Until a clearer picture emerges, it is probably
safest to assume that the potential distribution along
each line is determined as described above, but it is im-
portant to emphasize that at this stage this is little more
than an assumption.

We have now described part of the hot-ion energy being
transferred to the electrons. Upon escape, electrons
carry away pT, per particle in energy; assuming no
other loss processes, the ions escape with an energy be-
low the injected energy by the same amount. However,
because the plasma has a positive potential relative to
its environment, on leaving the plasma the ions gain
C in kinetic energy and the electron lose the same
amount. This has the effect of converting back to the
ions much of the energy originally lost to the electrons.
The final kinetic energy carried away per electron is
(qT, —4 ), which ideally is only of order T,. The di-
rected, escaping, ion kinetic energy can be converted
to electrical current (Post, 1969) by decelerating the
ions in externally imposed electrostatic fields (see Sec.
1V). To the extent that this process is efficient, the en-
ergy originally lost to the electrons can be regained.
The significance of the transfer process occurs within
the plasma; the average ion energy is caused to be be-
low that injected.

IV. CLASSICAL COLLISIONAL LOSSES

m max

FIG. 8. Electron velocity space. Electrons in Region I are
confined between the mirrors and those in II by the @sall sheaths.
High No electrons are not confined.

The unavoidable loss of ions is that due to scattering
from other ions, and this loss determines the ultimate
limit. of mirror confinement. The multiple weak inter-
action of ions of similar mass results in a diffusion in
velocity space. Because of their small mass, the elec-
trons affect the ions not by a scattering peg se, but
rather by a polarization friction, or drag, force. When
E,=0.1E,, the time scale for energy degradation of ions
having low atomic mass is about the same as that for 90'
deflection by ion-ion scattering. As discussed in Sec.
III, this energy ratio is the normal one for mirror con-
finement, so that ion lifetimes are also significantly af-
fected by electron drag. In fact, the loss process in
phase space of an ion injected at high energy is first to
be dragged down in energy at constant pitch angle and
then to be scattered into the loss cone by ion-ion col-
lisions. Electron-to-ion energy ratios less than this
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classical value only accentuate the dominance of electron
drag over ion scattering.

Because of the long range of the Coulomb cross sec-
tion, classical collisions at the densities and energies
of interest entail the simultaneous weak interaction of a
large number of particles. 'This many-body collision is
conveniently described by a renormalization whereby
each particle is "dressed" by a cloud of other particles
(principally electrons) that a,cts to shield the field of the
original particles over distances greater than the order
of the Debye length, AD = (T,/4mne')'t' Th. e external
magnetic fi.eld influences the collision only when the par-
ticle Larmor radius is less than the interaction distance
(i.e., for electrons when Q, &~~,); even then the effect
is weak (Baldwin and Watson, 1975). Thus, to an ac-
curacy of the reciprocal of the number of particles in a
Debye sphere, the dressed particles may be treated as
being statistically independent and interacting through
their shielded potentials (Rostoker, 1964).

To the extent that the resultant interaction is weak, the
effect of the multiple, cumulative, small-angle deflec-
tions can be described by a Fokker-Planck operator in
velocity space (Chandrasekhar, 1943):

8
Bt . . 8Vcollisions

Ev I 8

(
Aviv

)
(4 1)

where (4v/v) and (&v&v/v) are the deflections averaged
over times 7' that are short on the time scale of f and
long on the scale of a collision duration. Similarly, f is
assumed to be slowly varying on the scale of a typical

The form of Eq. (4.1) follows by a Taylor series ex-
pansion in &n from a more complete one involving trans-
ition probabilities. The neglected higher derivatives are
smaller than those retained, as discussed later. 'The re-
sulting current in velocity space has two equivalent for
forms. The first, due to Landau (1936), is

lnA = 1n(%DE/q'), (4.6)

where E in this expression is, strictly speaking, the en-
ergy in the center-of-mass. The XD appears naturally
in the theory, being the upper limit of the range of the
screened interactions. Under reactor conditions, lnA is
about 20. This number is modified slightly by refine-
ments such as allowing a species dependence to the dis-
tance of closest approach, in which case ln& becomes
c dependent in Eqs. (4.3) and (4.4). However, correc-
tions of this type usually are of the same order as terms
already neglected in formulating the scattering as a Fok-
ker-Planck equation. The coefficients of the neg1.ected
higher derivatives in Eq. (4.1) are smaller than those
retained only by the absence of a lnA factor. Physically,
those few particles suffering large angle collisions can-
not be described by a diffusive process; by neglecting
them, the Fokker —Planck description has an inherent in-
aeeura. cy of order (lnA) '.

Before reviewing solutions of the Fokker-Planck equa-
tion, ii is useful to note the time scales for the impor-
tant processes in forms which may be used for scaling
laws and even for factor-of-two estimates (Spitzer,
1962). The fastest process is that of electron-electron
collisions with an average 90' scattering time

effects upon which the net result is only weakly depen-
dent. By screening the interacting particles, the char-
acteristic logarithmic divergence of the integrated Cou-
lomb cross section has been removed. However, the
assumption of weak interactions leading to the Fokker-
Planck equation is violated at small impact parameters,
introducing a second logarithmic divergence. Strictly
speaking, such large angle scattering properly necessi-
tates a Boltzmann collision integral description (Bald-

* win, 1962; Bernstein and Ahearne, 1968). It is custom-
ary to simply cut off the cross section at the classical
distance of closest approach, in which case the argument
of the logarithm becomes the ratio of A. D to this distance
(Spitzer, 1962)

2mq' lnA
&a

, a''I —gg 1
(

Bf.(v') v„= 1.1 && 10"[T', '(keV) jn lnA], (4.7)

1 f (,)
Bf(v)

m 8V

(4.2)

where the summation is over species 0 and g =v -v'.
'The second form introduces the Rosenbluth potentials
(Rosenbluth et al. , 1957),

where n is the number of electrons/em'. Because the
ion-electron relative speed is fixed by the electrons,
the time for electron scattering from ions is essentially
the same as that for scattering from electrons. 'The cor-
responding ion-ion 90' scattering time is longer than v.„
by roughly Z ~(E3~m;/E', m, )'t', or

v „=2.5 && 10"[E' '(keV)M' '/Z~n lnA], (4.8)

( )
4mq'inA

G(y V d 8' ~v -v'
~ f,(v')

H.(v)=, (i+ )
d'v' ~v -v'

~

'f.(v'),

(4.3)

(4.4)
„MT3t '(keV)

g'n'lnA (4.9)

where M and S are the atomic and charge numbers, re-
spectively. When the electron thermal velocity is large
compared to the ion, thermal velocity, the time for ener-
gy exchange between ions and electrons is basically the
electron-ion collision time times a mass ratio, or

for which the current becomes

BH, 1 B B'G,
Bv 2 Bv BvBv

(4.5)

'The quantity lnA appearing in Eqs. (4.2) to (4.5), called
the Coulomb logarithm, represents a number of physical

Here v„ is often referred to as the electron drag time for
the ions.

Embodied in these simple fomulae are ihe important
classical scaling laws for mirror machines. From Eq.
(4.8) the nv«value increases with E',.t', suggesting a re-
quirement of high ion energy; and from Eq. (4.9), nv~
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u' = uP(R„—1) —2(q/m)C . (4.10)

The ambipolar potential appearing in Eq. (4.10) is rela-
ted to, and is often set equal to, the total potential con-
taining electrons 4, . Loss is calculated flux tube by flux
tube, and any effects of drifts are neglected. Even with
these assumptions, solution for a number of species entails
a set of coupled, nonlinear, integro-differential equations
in two dimensions plus time. The numerical techniques
employed will not be reviewed here (see Killeen et at. ,
1968, 1976); only the results will be summarized. The
series of investigations treating this problem have in-
volved a number of further approximations, the accura-
cies of which have been cross-checked in time, so that
there is now a fair level of confidence in the results.
The early treatments have been reviewed and compared

has a T', ' dependence which, when compared to Eq.
(4.8),' sets a limit T, ~ Z, /15 in order for drag not to
dominate collisions. A characteristic of all classical
scattering is that the n7 product is a function only of en-
ergy and particle quantities such as mass and charge,
but is independent of density. Properly speaking, the
product is a functional of particle distribution functions,
which have been taken to be Maxwellian in the above es-
timates. For related quantities in a mirror machine,
one would expect the electron based quantities ~„and v„
to be unchanged. However, there would be some expec-
ted alteration of w, , due to the non-Maxwellian character
of the ion distribution. It is found that for mirror dis-
tributions the absence of low-energy ions gives an aver-
age n7;, larger by a factor of 1.5 to 2.0 when measured
against the average ion energy as in Eq. (4.8).

Because the classical collisions occur on a time scale
long compared to virtually all other processes, an ac-
curate calculation of their effect is a complicated
matter, and is in the stages of continuing development.
Even in present experiments, an ion lifetime by clas-
sical scattering i.s of order 10' axial bounce periods; in
a reactor it would be 10' to 10 . In this latter case, at
least, even the particle-drift time around the machine
is shorter than the collision time. In principle then, a
proper procedure to describe scattering on the slow time
scale is to average the original velocity-space Fokker-
Planck equation over the successively faster time
scales, cyclotron motion, bounce motion, and (if re-
quired) drift motion. The original Fokker —Planck equa-
tion describes diffusion in velocity space, and the cyclo-
tron-averaged equation describes diffusion in the space
of the constants of the cyclotron motion, p, , E. Simil-
arly, averaging this equation over the rapid bounce mo-
tion further reduces the dimensionality of the problem
by restricting particle motion in the absence of collisions
to surfaces of constant J= f uds; collisions induce tran-
sition between such surfaces.

The calculations which have been carried out to date
are approximations to the spatial aspects of these gen-
eral notions. The model used almost universally is that
of a magnetic square well; i.e., B is constant with a
step rise by the mirror ratio at the mirrors (Ben Daniel
and Allis, 1961). The bounce average is then trivial, as
is the cyclotron average. The distribution depends only
on u, se, t, has a time rate of change given solely by Eqs. '

(4. 1) to (4.4), and vanishes on the loss boundary where

by Kuo-Petravic et at. (1969).
The set of coupled Fokker —Planck equations includes

an equation for the electron distribution and contributions
to the ion scattering due to the electrons. However, the
high scattering rate of the electrons and their electro-
static mode of confinement described in Sec. III assure
that their distribution will be closely Mawwellian for en-
ergies below that of the confining potential. If the elec-
tron contribution to the ion collision rate is expanded in
the ratio of electron to ion mass, the significant collis-
ional effect of electrons on ions is then through the po-
larization, or frictional, drag. Because the drag is due
to those electrons traveling slower than the ions, it is
insensitive to the non-Maxwellian features of the elec-
tron distribution and depends only on the temperature of
the electrons. The other electron-related quantity af-
fecting the ions is the ambipolar potential. This enters
in two ways: (i) the drop in potential to the mirror
throat enters the ion loss boundary, Eq. (4.10); and (ii)
becasue those electrons being lost are the most energe-
tic, the maximum drop of C to the wall determines the
loss rate of energy by the electrons. [The latter effect
gave rise to the dependence of q in Eq. (3.1) on C j.
Both the total confining potential and the axial variation
near the mirrors are sensitive functionals of the depar-
ture of the electron distribution from Maxwellian at high
energy. 'The electron distribution at high energy may be
obtained from the full electron Fokker —Planck equation
by a linearization wherein the relatively few high-energy
electrons are scattered by the more numerous low-en-
ergy ones. 'This linear equation is solved subject to the
vanishing of the distribution on the loss boundary and its
matching to a Maxwellian at energies comparable to T,.
The problem has been solved approximately by Pastukhov
(1974) for the case of a hyperbolic loss boundary. The
result of all such calculations, be they the full electron
Fokker-Planck equation or its linearized approxima-
tions, is to give the result relating [e (4,„/T, to the
ratio of electron scattering rate to ion lifetime, for which
Eq. (3.2) is an approximation. The drop in potential from
midplane to mirror throat is even more model depen-
dent; Eq. (3.6) is an example. In the past, the drop has
either been taken as C itself, or as 4 reduced by
an arbitrary amount of order 20/o to test sensitivity.

There are really two distinct reasons for carrying out
detailed Fokker-Planck solutions. 'The first is to quan-
tify the classical confinement picture for the purpose of
evaluating a mirror machine as a potential reactor. For
this purpose, the picture described above, with the elec-
tron physics modeled by Eqs. (3.1) and (3.2) involving
only heat input by the hot ions and loss by the loss of
energetic electrons giving rise to the ratio E,/E, =0.1,
represents an optimum of the classical picture. A sec-
ond application of Fokker-Planck studies is to provide
a standard for current experiments against which non-
classical behavior can be compared. In these experi-
ments, there may be (and usually are) additional energy
loss processes through the electron channel, such as
ionization of background gas or emission of secondary
electrons from walls. The result is that the electron-
to-ion energy ratio is considerably below the nominal
0.1, . sometimes by as much as another order of magni-
tude. The accompanying dominance of electron drag
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over ion-ion collisions means that the ion lifetime is re-
duced by a process that is "classical" in the sense usual-
ly used in mirror physics; i.e., it does not entail anom-
alous scattering due to electric field fluctuations. Ex-
perimentally, such situations will still bear the hallmark
which is characteristic of all classical processes: n7.

that is independent of density. Whether in such situations
one can replace Eqs. (3.1) and (3.2) with a set which cor-
rectly describes the electron temperature history in a
given experiment is an important consideration in iis
own right, but that question shouM properly be separa-
ted from thai of the ion lifetime in the presence of a re-
duced electron temperature. For comparing experiment
to classical prediction, provided the independent mea-
surements exist, the time dependence of T, should be
used as an inPut to a Fokker-Planck set describing ions
alone (Hall, 1975).

All early numerical treatments of the ion equations re-
duced the calculations to one dimension in energy by as-
suming that the pitch-angle distribution was in "lowest"
normal mode" or a "collisional distribution", i.e., that
it had the smoothest shape consistent with the require-

-ment that f vanish on the loss-cone boundary. There was
some weak justification for this assumption. The Rosen-
bluth potentials G, H in Eq. (4.3) were shown to vary in
pitch angle somewhat less rapidly than f itself (Ben Dan-
iel and Allis, 1962); and, assuming G, H to be indepen-
dent of pitch angle, the Fokker —Planck operator admits
to separable solutions. An approximate functional form
for the angular part of the collisional distribution, as-
suming separability in pitch angle and energy and neg-
lecting ambipolar potential, may be obtained by com-
bining solutions valid for low and high mirror ratios
(Holdren, 1972)

f(E, p.) = '" —1+ (2R —3) ln '" f(E), (4.11)

where f(E) is the solution to the one-dimensional energy
transport equation.

A limitation on the assumption of separability and the
reduction to one dimensionality, even for distributions
which are well spread, is that sources resulting from
injected ions must also be assumed to have the lowest
normal mode angular distribution. Because such an as-
sumption means that some particles are injected near
the loss cone and thus are poorly trapped, this treat-
ment of the source at best opens a question of proper
normalization. Recently, two-dimensional codes have
been developed to test the validity of the single normal
mode approximation for well spread distributions, to
study the effect of varying the angle of injection, . and to
study properties of angular distributions which are clear-
ly not collisional (Marx, 1970; Mirin, 1975; Killeen
et al. , 1976). For well spread distributions decaying .

freely without sources and for well spread sources, the
one- and two-dimensional codes give the same lifetimes.
For R &2 and injection angles peaked in the range 70
to 90' to the magnetic field, a 20 to 40% improvement in
confinement is found (Rensink et al. , 1975; Rensink,
1975).

Certain of the approximations described earlier have
also been avoided both by developing codes which numer-
ically performs the average over the axial bounce motion

n~(cv)E „„ (4.12)

so that Q is directly proportional to the nv product,
which classically is independent of density. Q's for non-
uniform plasmas necessitate that Eq. (4.12) be replaced
by the ratio of appropriate averages.

The form of nv would be expected to be similar to the
n7„ for ion —ion collisions given by Eq. (4.8) except for
modifications due to the non-Maxwellian nature of the

(Marx, 1970; Rensink and Cutler, 1976) and by allowing
for a drop in ambipolar potential to the mirror throat
which is less than C,„by an arbitrary chosen 20/o. The
corrections in each case are generally only a few per-
cent.

For evaluating the potential of a mirror machine as a
fusion reactor, a commonly used figure of merit is the
ratio Q of the nuclear power produced to the injected
power required. The power produced depends of course
upon the reacting species. For example, consider the
reaction giving the highest yield at the lowest ion energy,
deuterium-tritium (D-T), because this would certainly
be the first (and likely the only) fuel used in a mirror
reactor. Reactors, including alternate fuels, cross sec-
tions, energy release, power balance, etc. , were re-
viewed by Ribe (1975).

The direct nuclear products of a D-T reaction are a
14.1-MeV neutron and 3.5-MeV alpha particle

0 + T'-~'+He" + 17.6 MeV.

The reaction rate ov, where 0 is the cross section and.
v the relative velocity, rises sharply in the range of 50
to 70 keV, has a maximum just below 100 keV, and falls
as e ' for higher energy. When averaged over typical
distribution functions, the maximum (cv)Dr is about 9
&& 10 'ecm'/s, although the exact value depends upon the
detailed shape of the ion distributions.

A mirror reactor would most certainly be fueled by the
injection of energetic neutral beams (Hovingh and Moir,
1973; Hamilton and Osher, 1974). The past 10 to 15
years have seen such rapid development in this area that
feasible effective neutral currents have gone from milli-
amps to kiloamps, with the present focused current den-
sities about 0.5 A/cm' at 40 keV and the prospect of
another factor of 3 increase in energy in the next few
years. If we assume neutral injection to be the only
source of power to the plasma, for D and T injection
currents per unit volume I~ and I~ at energies ED«and
E~„„ the power injected per unit volume is

inj D Diaj + 2 Ti.nj '

Each current is related to the species density by a life-
time

Iv r = nD, r/~D, r .
If we assume equal injection energies ED i j Ep i ' Ep
and neglect the mass difference so that the lifetimes are
equal, 7~ = ~~ = w, the expression for Q becomes

nDnr7(cv)E, „„
(nD+ nr)E„„,

This is maximized at equal densities, nv=nr=n/2, giv-
ing
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(4.13)

It is also usual practice to evaluate the mass as a D —T
mean and ln&, which we will take as equalling 20 for
reactor conditions. With these conventions, differing
Fokker-Planck calculations of rs& may be compared
through the proportionality constant I(,.

+7=A x 1'0' E', i ' (keV) logR„, . (4.14)

When a Fokker-Planck code is run without the effects
of electrons, the average energy rises considerably
above the energy of injection, so that the nominal ~ em
ployed in Eq. (4.14) is quite high, about 17. When this
result for mv was used for early calculations of Q(Post,
1962), the very favorable value of 8 logR„was obtained.
Inclusion of electron drag and the ambipolar potential
greatly reduced this value (Fowler and Rankin, 1966).
The presently accepted range of v in Eq. (4.14) for injec-
tion at 90 to the magnetic field including electron effects
i.s 2.4 to 2.8 (Killeen et aL, 1975), and the average ion
energy is about equal to the injection energy. The dif-
ference between this value and the 1.'7 which would be
inferred from Eq. (4.8) is due to the loss cone distribu-
tion. The lack of low-energy ions gives a somewhat
higher value of w, and thus for nw, for a given average
energy. The presently accepted values of Q are in the
range (1.0 to 1.3) xlogR, with the variation due to op-
timization strategies such as energies and distributions
of injection.

The entire mirror reactor picture and illustrative
calculations of the Q values required for economic op-
eration were included in the reviews by Ribe (1975) and
will not be repeated here. The net result. is that a sim-
ple, thermally converted D-T mirror reactor would
not be economic due to the order-of-unity value of Q
resulting from the classical effects just described. Be-
cause of the short energy-confinement time, there re-
sults a large recirculating power which must be rein-
jected with high efficiency in order for the reactor to
produce net power; the thermal conversion fails on the
measure of the required efficiency. The concept of a
mirror machine as a reactor becomes viable only when
it is combined with both high-efficiency neutral injec-
tion and direct conversion of the energy of escaping ions
to electricity (Moir et a/. , 19'76).

distribution, the existence of the loss cone, and effects
due to electron drag. For purposes of comparison, it
has become standard practice to express n7. in terms of
the injection energy E, rather than the average energy
E, appearing in Eq. (4.8). This practice makes applica. —

tion of n~ in Eq. (4.12) straightforward; and, because of
the sensitivity to the ion distribution function, the re-
lationship of ev to E, is no more fundamental than that to
E,. In the absence of an ambipolar potential the effect
on ~7. of the mirror ratios A in the range 2 to 10 can be
shown analytically and numerically to appear as a mul-
tiplicative factor logR . The P-depressed actual mirror
ratio is significant, not the vacuum mirror ratio. (The
factor lnR' ' appears in the analysis, but this is replaced
by logR with-the near unity proportionality constant in-
cluded in the coefficient discussed below. ) The effect of
a nonvanishing ambipolar potential 4 can be estimated
by replacing R by an effective ratio

Certain features of neutral beams as a means of in-
jecting energetic ions into a magnetic well have been
mentioned earlier this section. An additional feature of
this mode of injection is that, for energies above 150
keV, overall efficiencies in the range 80 to 85% are
anticipated (Hovingh and Moir, 1973). These require
the acceleration of negative ions in order that the con-
version of the energetic ions to neutrals be efficient.
Such beams are still in the developmental stage; how-
ever, there are good reasons to believe that the cal-
culated efficiencies can b realized.

The notion of direct conversion of the end-loss ions
first entails expanding the magnetic lines, and thus the
escaping density, to a sufficiently low value that the
ions and electrons can be separated. The electrons,
whose e ner gies are low, are diver ted magnetic ally;
the ions are decelerated in a set of charged electrodes
which collects them at low kinetic energy. The high
kinetic energy of the escaping ions is thus converted to
dc power which may be used to directly power the grids
of the neutral injectors. The theoretical efficiency of
such converters can be very high for systems of many
electrodes at small voltage intervals, and experimental
efficiencies of about 85% have been achieved (Moir
et al. , 1972). In current conceptual reactor designs, it
is considered more cost effective to employ less com-
plex direct converter system operating in the 65 /o ef-
ficiency range (Carlson and Moir, 1975).

V. F LUCTUATIONS

A. Linear theory
The third source of diffusion in velocity-space is the

existence of fluctuating electric fields. While in a gen-
eral sense Coulomb collisions themselves can be con-
sidered to be due to fluctuations with wave number
P&PD, , the inverse electron Debye length, it is usual
practice to treat wave numbers above and below this
value separately. Because plasma cannot support waves
with 0& kD, , all such fluctuations are single particle
in origin. Wavelengths longer than these entail the col-
lective motion of the plasma and necessarily involve
consideration of the various waves that the plasma will
support. Qf particular importance are those wave-
lengths which are unstable due to their coupling to
sources of free energy such as non-Maxwellian energy
distributions or the pressure gradients of confined
plasmas.

The beginning of a survey of loss processes due to
fluctuations must therefore begin with a review of the
linear stability theory of mirror-contained plasma.
However, finding instability is not enough; its effect on
particle lifetime is not determined until both the non-
linear limit and its efficacy in scattering particles are
determined. These calculations, especially the non-
linear ones, can be very much complicated by various
effects of plasma nonuniformity. Accordingly, while
linear stability, at least in the electrostatic limit, may
be considered to be well in hand, the theory of the non-
linear saturation of the various modes is in a state of
relative infancy. In fact, with some notable exceptions,
there has historically been what amounts to a reluctance
to consider such problems. This attitude has its origins
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k, -=Vy = V &a y/a c + VPa g/a P (5.2)

Even though g is constant along B, Vg is not, due to
its dependence on Vn, VP. As noted above, the variation
of E, along 8 often cannot be treated in the short wave-
length limit, and plasma currents and/or charge density
must be related to the fi,elds by appropriate differentials
or nonlocal integrals along B.

Descriptions of microinstabilities stay as close to an
infinite-medium description as the physics of the situa-

in the belief that, because a mirror reactor would be
economical only in the absence of scattering in excess
of classical, the major direction of mirror microsta-
bility theory should be searching parameter space for a
stable region. While a successful result of such a
search would be highly desirable and might be realiz-
able, knowledge of the nonlinear properties is clearly
important in order to obtain a less demanding param-
eter evaluation, to interpret experiments not lying in
the favored corner of parameter space, and to devise
means of building a plasma up to the stable parameters.

The list of linear electrostatic instabilities of an in-
finite uniform plasma possessing a loss-cone distribu-
tion seems almost endless. A large number of these
were discussed by Hall et zf. (1965). Various aspects
of the nonuniformity of the plasma and/or the magnetic
field serve to reduce this list at the price of introducing
others through the free energy associated with diamag-
netic currents (Mikhailovskii, 1974; Jukes, 1968). We
will review only those modes that are thought capable of
existing in mirror machines of present or reactor sizes,
although mentioning in passing those effects that stabil-
ize some of the infinite-medium modes.

It is best to deal from the outset with space-varying
equilibrium parameters, although the relative scale
lengths often allow an eikonal description. In order to
tap the free energy of inverted ion energy distributions,
almost all modes of interest have wavelengths perpen-
dicular to the magnetic field on the scale of the ion
Larmor radius, a scale that is in turn shorter than that
of the variation of the equilibrium parameters. On the
other hand, the high mobility of electron motion parallel
to 8 forces the fluctuating potential to be nearly con-
s&ant along B, meaning that variation parallel to 8 can
occur on a length scale comparable to that of the equi-
librium. This disparity in length scales may be gain-
fully employed to reduce the dimensions of the problem
from the original three to one along the magnetic field
(Baldwin, 1974). To do so, one introduces the Clebsch
coordinates ~, p that are constant along a field line, de-
fining the magnetic field B = Vo x VP, and an arbitrary
third variable f, that is independent of o, P which in ef-
fect measures distance along 8. For example, if 8 is
a vacuum field, 8= &y, then y itself is a useful variable,
with V)t ~ Vn = VX ~ VP = 0, although in general Va ~ VP g 0.
Any function constant along B is a function of o, P alone.
In analogy to plane-wave solutions in uniform plasma,
solutions for the fluctuating electric field of the form

E,(n, P, g) = E,(o', P, P) exp[fq(o. , P)] (5.1)

are sought where [ Vg) ' »
( VVg[, [ V 1n[ E,[ )

'. This eikonal
solution perpendicular to B introduces a perpendicular
wave number

tion permits. Because the background evolves on a time
scale long compared to that of the instabilities, it is
treated as constant, and frequencies of the system are
sought taking all time-varying quantities to vary as
exp(-fat). The eikonal solution mentioned above intro-
duces an effective k (s) that is a function of distance s
along a field line, with its two components at the mid-
plane as free parameters. Determination of ~ is then
fixed by solving a one-dimensional eigenvalue equation
in s. When the wavelength along B is comparable to
the machine length, this solution is of the form of a
low-lying eigenvalue. When the parallel wavelength is
much smaller than the axial scale length, so that an
eikonal description in this dimension [-exp(if k,~ds)] is
also possible, there results a dispersion relation ob-
tained by treating the plasma as locally uniform, and it
is important to distinguish whether the mode is absolute
or convective (Briggs, 1965). Absolute instabilities are
characterized by zero or small group velocities, so that
a disturbance grows in time at a fixed point in space.
Convective instabilities have sufficiently high group vel-
ocities that time growth is observed only in a moving
frame; in a fixed frame, the wave is seen to amplify in
space. In this case, it is not so meaningful to discuss
roots of ~ with positive imaginary parts for real k~1, but
rather roots of P~, with negative imaginary parts for real
frequency. The distinction becomes important in con-
sideration of waves in finite plasmas ~ The localized
growth of an absolute instability can only be saturated
by a, nonlinear limit; for this reason, absolute instabil-
ities are considered the more severe of the two types.
A convectively unstable wave can be either reflected
or absorbed by propagating into a region of changing
parameters near a plasma boundary. Sufficient reflec-
tion leads to repeated stages of amplification as the
wave passes through the unstable region, so that again
saturation is achieved only nonlinearly. On the other
hand, if such a wave is absorbed at the boundary, its
maximum amplitude becomes a function of the plasma
size, and for sufficiently short plasmas it is limited to
low amplitude by strictly linear processes. Depending
on one's preferences, one may say that the unstable,
infinite-medium mode has thus been stabilized by the
finite geometry; however, it is important to note that
an enhanced fluctuation level will result. The extensive
literature on this subject includes a variety of tech-
niques for distinguishing between the two types (see
Briggs, 1965).

Because the electrons are substantially Maxwellian
and any instability must tap some source of free energy,
one does not anticipate instabilities in the range typical
of electron frequencies. Therefore, all waves of in-
terest have time and length scales that are long com-
pared to the electron-cyclotron period and radius, so
that the electron response normal to B may justifiably
be treated in the guiding-center approximation. Fur-
thermore, the magnetic scale lengths are sufficiently
long and the electron temperature sufficiently low that
the electron particle drifts may also be neglected. Mo-
tion parallel to B is not quite so easily dispensed with.
The mirror-machine length scaling that we shall ob-
tain later (L/a; —v'm;/m, ) implies that the electron
bounce frequency in the trap is only 0.2 to 0.3 of the
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ion-cyclotron frequency, and therefore axial bounce
motion should properly be included on the time scale of
the instabilities. However, this effect is often not cen-
tral to the existence of a mode, and a simpler descrip-
tion of the electrons is then possible.

We first obtain the linear current response of an ar-
bitrary species to an electric field when the field vari-
ation is eikonal along 8, as well as transverse. The .

result is expressed by a dyadic Q((o, k~~, k~, s) by

J=-(4ni(v) 'Q E. (5.3)

Equation (5.3) will yield a result directly comparable
to the infinite medium result (see e.g. , Baldwin e«&. ,
1969), although the ko and k~ thus introduced are to be
treated as functions of s (as discussed above) and our
formulation will include the effect of diamagnetic drifts.
The perturbed distribution f, satisfies the equation

8Qbxv ~ o =v ~ Vf + . . . ,p (5.6)

where the dots . . . represent terms such as collisions
and the equilibrium electric field acceleration, all of
which are assumed small compared to the terms ex-
plicitly given. By treating 0 as a large parameter, this
equation may be solved by perturbation, and one obtains
to first order

1f, =f,(w, u, r) +—v x b ~ Vfo(w, u, r),
Q

(5.7)

Convergence of the integral is assured by the causal re-
quirement that Im~ be taken &0, and the result for Im~
~ 0 is then obtained by analytic continuation.

In Eq. (5.5), the equilibrium distribution fo satisfies
an equation of the form

f = ——
rn

dv exp - i [~ —k ~ (r'(T ) —r)]

1 Bf If

X Ej+ —VX QXEy (5.5)

Bf, Bf, q 1 Bfo' +v ~ Vf, +Qvxb ~ ' = ——E, + —vx B,Bt ~U M C ~v

(5.4)
where B, =ckxE, /(v. Equation (5.4) may be solved by
integration along characteristics defined by the left-
hand side, that are the particle trajectories in the un-
perturbed field. If r'(w), v'(v) are defined by

r , ~v
'T 'T

=v'; =-Qbxv'; r'(0) =r; v'(0) =v,

where Q =qRo/rnc, when the eikonal assumption is in-
troduced the solution to Eq. (5.4) is

where zg, u are the components of v perpendicular and
parallel to b. The first-order contribution in Eq. (5.7)
allows for the effects of the diamagnetic drifts. Thus
in Eq. (5.5),

sy,' v'xb, af 1 af„af,'j:= s+ ~ & v' + b —g) —u
8 v' 0 M) ~ze se u

1
+ —bx Vf0 pp (5.8)

where all unprimed quantities are constants of the T in-
tegration. The contribution wBf, /Bu —uBf, /Bw vanishes
when f, is isotopic, i.e., when it is a function solely of
v = (u'+u')'i'.

From Eq. (5.5), the dyadic Q in Eq. (5.3) becomes

Q= d'vv4''i
dT eider

i+k (r' r) 1-+ .V fo + ~ fo ~ o

0 zv u M) u m 0

v'xb b Bf, Bf, 1
+((v —k ~ v') 1+ ~ V —u, ' —u ' + —bxVf0 n~ u ~M) Q

(5.9)

For mirror machines in which the plasma radius &~
is small compared to the radius of curvature of the
magnetic field R, , v', and r' in Eq. (5.9) may be com-
puted neglecting the gradient B and curvature drifts

ze' VB 1
v = bx +u'b ~ &b —.e n (5.10)

The Vf, terms in Eq. (5.9) lead to the diamagnetic cur-
rent

j„=rfbx V ~ IP/Q,

where IP is the pressure tensor. The latter drift vel-
ocity is of order v; a;/R~, and is therefore larger than
vv which is of order v,.a, /R, .

Treating the electrons in the zero Larmor radius lim
it, the electron contribution Q, is particularly easy to
evaluate. Assuming isotropy of f„, one obtains

4T(e'ui, 1
zp BK

4me'(ebb (, uBf„/Bubb
I
d'v

II

2 2

I —bb —zbx I—CO Mp~ 0,
Q, CO

(5.11)

where I is the unit dyadic.
Because the general expression for Q; involves many

components, it is convenient to determine from Max-
well's equations those that are necessary to describe
the modes considered. In the limit of P small compared
to m, /m;, ion-cyclotron modes exist for which VxE is
negligible. However, P as large as even this small val-
ue introduces certain electromagnetic effects (Callen
and Guest, 1971, 19'l3). To determine these, introducet
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(B ' c' —e')A = —ZQ . k 4 ——
A)

—eck V,
C

k ~ A=0

(5.12)

(5.13)

where ~' may be neglected compared to k'c' and Z re-
fers to summation over species. The equation for (t)

follows from the divergence of Eq. (5.12)
1 1k' ——,k ZQ k P= — k ZQ A.

GOC
(5.14)

scalar and vector potentials, E = -i[kg —((d/c)A], giving
in the Coulomb gauge the four equations

The scalar product of Eq. (5.12) with kr, using Eq. (5.15)
and (5.17), gives equation for (t) alone

~

~ ~
b .Q, .bk ((c'(d' —„, , '„(( —e, ZQ ~ e,

s, ~ kQ e,s, zQ ~ e,) B (4 IB)
k 'c'

where e, =k~. For the 0
~~

term not to dominate this
equation, &2tt must satisfy

Age (dpe

Ap~
2 2 2 k)( P when (4)» k((v,

C + (dp~

Because
2 m; (6

2 C2 HZ y 202

(5.15)

(5.16)

and k a;e 1, the measure of P is m, /m, , at which val-
ue the inductive electric field parallel to b can balance
that component of the longitudinal field. From Eq.
(5.13), kA ~ A = -k((A, and so (&u/c)k~ ~ A may be neglect-
ed compared to k' (l) in computing kA ~ E as long as k)(

When (d2~, /k2~c'&1, the e, =bxk component of Eq.
(5.12) gives

~A2 1'= k» e. ZQ e,k, Q.
C g~C

(5.17)

We first consider modes which are strictly longitudi-
nal in the limit c- ~ and eliminate A from Eqs. (5.12)
through (5.14). An examination of Eqs. (5.10) and (5.11)
reveals that (b ~ ZQ ~ b~ is of order Qf2~, , and so is dom-
inated by the electrons; whereas for ~ —Q, and ~~, —Q2, ,
all perpendicular components are of order ~2~;, so that
both ions and electrons can contribute. The scalar
product of Eq. (5.12) with b gives

b ~ Q, ~ b
[k2 2+b ~ Q ~ b]

which is the basis of neglecting k', compared to k', used
above. This same condition may be used to neglect k„ in
the computation of Q&, however, such an approximation
neglects the possibility of anisotropy-driven modes oc-
curring at higher p as the allowed k„ increases. Al-
though the ion contribution to k x b A in Eq. (5.17) is
formally of the same order as that of the electrons and
actually cancels it when k,a,. «1 and ~«G, , it tends to
be small when ~-~~,- and k,a,- ~ 1, and so it is usually
neglected. It can be shown that Eq. (5.18) remains valid
for local P = 1 and ~ = ~~, except for the addition of V'B

drifts in the denominators of Q, which act to broaden the
cu = nA; resonances (Dominguez and Berk, 1976)obtained
below.

In carrying out the orbit integrals in Eq. (5.9), it is
convenient to Fourier analyze the sinusoidal exponents
by means of the Bessel identity

el As in I( ~ g (& )et BI IA

ff
g~~ aOO

after which the angular and & integrations are trivial.
The final dispersion relation for quasi-longitudinal

ion-cyclotron frequency waves in plasmas with p & m, /
ltd ) ls

B,', c* x* etc, e,', k kxVe,*. I Z 4BBB Bf g Z Ql Bf g IB kxVfx V" J (I'B Bc/I)j

-=D((u, k„s). (5.19)

When ~-k„v„so that electron Landau damping is sig-
nificant, (d~2, on the left side' is to be replaced by

4(re', u&f„/Budv
'pn

When the parallel wavelength is of the order of the axial
scale length, so that the eikonal parallel to B is not
justified, Eq. (5.19) is to be replaced by a differential
equation along b

—+kA2D(u, kA, s)@=0,

(5.20)

where D is the right side of Eq. (5.19). When ~ is of the
order of the electron axial bounce frequency, neither of
these local descriptions is sufficient. The left side

of Eq. (5.19) must be replaced by an orbit integral over
the bounce motion, converting that equation to an inte-
gral equation. The question of the approximation of this
integral operator by the differential operator in Eq.
(5.20) has been discussed by Berk and Pearlstein (1971).
Under low-density conditions, ~~, -0„ the ion cyclotron
motion can actually couple to the electron-bounce mo-
tion. Sharp et al. (1976) have suggested such a mecha-
nism to explain the observed beam-driven instability in
Baseball II (Anderson et al. , 1975; see also Beasley
et al. , 1974). In the local eikonal forms, Eq. (5.19),
the differential equation form, Eq. (5.20), or the inte-
gral equation form, k~ is a function of position as given
by Eq. (5.2) with its two components at one point, say
the midplane, as independent parameters.

To Eq. (5.20) must be added boundary conditions at
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the ends of the machine. These will be strongly influ-
enced by low density plasma lying beyond the mirror
throat; for as long as co~,(s)& &u-Q,.(0), Eq. (5.20) con-
tinues to yield propagating waves. Because in the den-
sity range of interest i7,.(0)/co~, (0) = 0(m,'/m', ), an exter-
nal density of &0~ times the central density is suffi-
cient to allow waves to propagate out to a region where
they finally become absorbed by electron Landau damp-
ing, i.e. , where locally u= V,k, . An allowed boundary
condition on Eq. (5.20) is that of outgoing waves at the
mirror throat, with the assumed lack of reflection ac-
counting for the Landau damping. For the longest par-
allel wavelength mode inside the mirrors, an approxi-
mate eigenvalue condition may be obtained by noting
that, formally speaking, D is a small number, so that
d@/ds is small. Writing Q(s) = $0+ P, (s), with &f&, con-
stant, the equation for @, becomes approximately

Integrating and assuming an eigenfunction even about
s = 0, this becomes

, , co~~,k2D(cu, k~, s) = 0. (5.21)

This flute approximation to the eigenvalue condition has
proved very satisfactory when its results are compared
to solutions of the full differential equation Eq. (5.20)
(Baldwin et al. , 1971; Pearlstein, 1975). It has the
conceptual advantage that the eigenvalue condition is
cast in a form very similar to that which would obtain
with k =0 in an infinite medium.

The question of the assumed ion distribution function
is important. Differing model distributions possessing
empty loss cones all predict instability but yield quan-
titatively different value for growth rates, stability
boundaries, etc. Post (1967) pointed out that partial
filling of the loss cone has a strong stabilizing effect,
and this has been incorporated into several nonlinear
descriptions of these instabilities (see below). To es-
tablish the types of instabilities which might be antici-
pated, we will first describe the situation which pre-
vails when the loss cone is taken as completely empty.
Because k„ is neglected in the ion current response,
only the moment J „duf& enters the dispersion relation,
and thus only a function of u need be modeled. Two
popular examples which allow analytic integrals of the
form f af, /Bw'J2(k, w/Q, )dw' are

m

Provided the density is low at the mirror throat s, the
right-hand side may be neglected, and there results a
condition for ~ which is the appropriate line average of
the local dispersion relation

suiting from the complete 'lack of trapping of low-energy
ions. No model distributions having such a cutoff allow
analytic evaluation of the Bessel integrals.

The presence of the magnetic field introduces, for
given k~, an infinite spectrum of roots of Eq. (5.19) be-
tween multiples of the ion-cyclotron frequency. For
effective coupling, the Bessel functions must be near
their peaks, so that oscillation near yean,. requires k~a,-
~ n. The ion loss cone provides the drive for most of
these instabilities by causing some or many of these
harmonic waves to become negative ener'gy (Sturrock,
1960; Kadomtsev et al. , 1964; Hall and Heckrotte, 1966;
Hers and Gruber, 1965). These negative-energy ion
waves can be driven unstable either by coupling to posi-
tive energy waves or by electron dissipation. In prac-
tice, the search for unstable modes entails finding con-
ditions where one or the other of these mechanisms is
at work.

It is instructive to first consider plots of D(~, k,) ver-
sus w as shown in Fig. 4 for a stable, uniform Maxwel-
lian. Because of the variation of parameters and partic-
ularly of , . in a realistic geometry, such constructions
are strictly inappropriate. However, for many purposes
they remain useful and qualitatively correct when 0,. is
taken as the midplane value where dQ,./ds = 0. As might
be anticipated by the flute average form of Eq. (5.21),
this value plays much the same role as the constant val-
ue in a uniform field.

A root of Eq. (5.19) lies where each curve crosses the
line k,',c'/(~~, + k~c'). The positive slope of the curves
at these intercepts implies that these modes are posi-
tive energy. If fo, is nonm. onotonic in w, certain of the
coefficients Jd'v J'„Bf„./wow can be positive for ranges
of k~, and the associated mode then becomes negative
energy. For f„. sharply peaked at nonzero energy, in
uniform plasmas there can occur isolated sign changes
of these coefficients for narrow bands of k~. The re-
sulting coupling of adjacent positive and negative energy
modes leads to the Dory-Guest-Harris (1965) instabili-
ty. However, the variation of

~
k,

~

induced by the fanning
in a realistic machine [see Eq. (5.2)] smears the argu-
ments of the Bessel function over sufficient range to
completely stabilize all such modes that are resonant
in k, when a line average such as that appearing in Eq.
(5.21) is performed (Baldwin, 1974).

Generally, a band of coefficients will change sign,
leading to a set of stable negative-energy waves (see

f, ~ w'exp( —o.w'), (5.22) I

5 (0/0.
1

f, ~ exp{—&w') —exp( —Pw'),

with P & n. Both of these distributions have the hole at
low energy characteristic of loss-cone distributions, but
do not have the finite ambipolar cutoff at 4 /(R„—1) re-

FIG. 4. Frequency dependence of D(~, k~) for a Ma~ellian dis-
tribution; intercept with dashed line determines root.
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D. E. Baldwin: End-loss processes from mirror machines 331

Fig. 5) which can be destabilized by electron dissipa-
tion. In particular, these have been shown(Berk et al. ,
1969; Berk et al. , 1972) to be destabilized in a realistic
geometry by plasma waves outgoing from the low-den-
sity ends of the machine, with the transport of energy
away frorg the hot plasma representing the dissipation
process. The calculation begins with the differential
form Eq. (5.20); that equation is integrated to the ends
of the machine where the density is low. The calcula-
tion is made complicated by the series of singular points
where u= rnid, , but in principle it is similar to quantum-
mechanical calculations of metastable states wherein
real eigenvalues are driven complex by being coupled
to outgoing waves. However, the negative-energy char-
acter of the originally real-frequency eigenmodes gives
a positive imaginary part to the complex eigenvalues.
The intercepts of the negative-energy curves in Fig. 5
with the axis are the k„=0 roots, denoting zero axial
group velocity or, equivalently, WEB turning points.
Berk et a/. find standing waves between these turning
points. The waves are first destabilized with decreas-
ing magnetic axial scale length I-„, but then all but the
lowest mode are stabilized by an axial scale length of
the magnetic field

(5.23)

where I- is defined as the length for magnetic intensity
doubling along B.

The lowest mode, which is flute in character and oc-
curs for ~& 0&, requires a mechanism for stabilization
that is not included in Eq. (5.20). It will be appreciated
that when the finite-t' term

is large, this mode is driven to resonance; i.e., goes
to Q, (0). For roots for which 5ro=

~

~ —Q, (0)
~

is small,
effects previously neglected in obtaining Eq. (5.19) be-
come significant. In particular, Berk et af. (1972) show
than when the axial scale is sufficiently short, the tran-
sit time of an ion through the resonance region limits
the strength of the ion —wave interaction, and stability is
restored provided 6~ a Q, (a, /I- )'~' (Baldwin et al. ,
1971)~ Note that, although finite axial scale length sta-
bilizes this mode, finite I' is required to drive it to res-
onance so that the ion transit time becomes significant.

The growth rates of these negative-energy modes are
predicted to be small, with y of order 0.02Q, (0) for the
flute mode, and 2 to 4 times as large for the most un-
stable higher modes. 2XII and 2XIIB were designed to
roughly satisfy Eq. (5.23) so that these higher modes
would not be expected; and the lowest, unstabilized
mode has not been identified. Whether this mode has
been masked by the more violent instabilities described
below or is stabilized by a weak effect not included in
the theory is not clear. The stabilizing mechanism for
the drift-cone mode described in Sec. V.B also stabilizes
the flutelike negative energy mode.

As finite plasma radius is introduced by the V'a~2 in
Eq. (5.19), curves such as b in Fig. 6 develop due to
the additional term which is linear in ~ and negative for
the proper sign of k~. For a sufficiently large such
term, a positive root of k„=O disappears with the for-
mation of curves of the type c, leading to the instability

FIG. 5. Frequency dependence of D{, k) for typical loss-cone
distribution showing negative energy structure; intercepts be-
tween D& and D3 have complex roots, with the dotted curve in-
dicating the real part.

known as the drift-cyclotron loss-cone mode (DCLC)
(Post and Rosenbluth, 1966). This mode, originating
due to a coupling of the positive-energy electron drift
wave in the direction of the ion diamagnetic drift and the
negative-energy ion-cyclotron wave, has formed the
basis of considerable theoretical investigation the last
few years (Baldwin et aI, 1971; Tang et al. , 1972;
Lindgren et a/. , 1976). Although theory predicted it
would occur in all present-day experiments with broad-
band frequency and wave-number spectra, it either did
not occur, or it did so with properties quite different
from those expected from linear theory. The final reso-
lution has apparently required a description of its non-
linear properties as discussed in Sec. V.B.

The DCLC mode is also stabilized by finite P in a man-
ner similar to the flute-negative energy mode described
above, except that in this case the magnitude of the
cu', /02~:c' term in Eq. (5.19) for sufficiently large plas-
ma radius R./a, . causes the dispersion curve of Fig. 6
to revert character from type c to type b. Specifically,

FIG. 6. Detail of low-frequency dependence of D{~,k) for loss-
cone distribution with negative energy structure and various
radial density gradients; passage from "b" to "c"produces
two complex roots.
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Tang et al. (1972) find that for p & (m, /m;+ 02/a~2&)'t2,

the DCLC mode is stable for R~ /a, & 2 p 't2(m, /m, .
+ 02/~~2,.) ' '. (Throughout, R~ is to be interpreted as a
local radial density scale length, and not as an actual
plasma radius. )

Both the negative-energy mode and the drift-cone
mode can be stabilized by the addition af warm plasma.
Direct axial injection of warm plasma as a means of
stabilization has beenproposed by Post (1967) and dem-
onstrated by Baiborodov et al. (1973), loffe et al. (1975),
and Coensgen et al. (1975). The addition of a warm, un-
trapped plasma component to a hot, trapped plasma dis-
cussed above has two stabilizing effects. The cyclotron
waves can be driven to positive energy by the coeffi-
cients
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becoming negative. In addition, the nonvanishing of

fpe By„/Sw gives to the right-hand side of Eq. (5.20)
a positive term that adds to and plays the same role as
the finite-p term described above. Because hot (warm)
density and temperature of n„, Te (n, T ), the quantity
thus added to p is n T„/n„T, warm plasma densities
of only a few percent can be significant. However, too
low a ratio T /T„gives rise to another class of insta-
bility due to the double-humped nature of the resulting
distribution (Pearlstein, Rosenbluth, and Chang, 1966)
when

n„/n„(T. /T„) t'.

The limit additive to P is therefore about (T /T„)' '.
The summary of the R~/a, versus 02/m~2; at 50-keV ion
energy for various n /n„and optimized T /T~ and the
loss cone modeled by Eq. (5.22) are shown in Fig. 7
(Baldwin et al. , 1975, 1976). This generalizes the result
of Tang et al. (1972) to nonzero n /n„and includes the
effect of axia. l nonuniformity. The reduced R~/a, . at low
02/&v~2, . is the finite-tI stabilization effect described
above (Tang et al. , 1972). The effect of small amounts
of warm plasma at these high densities is pronounced.
The reason for this sensitivity at large R~/a, is that,
because unstable waves have phase velocities small
compared to velocities typical of E„, the optimum tem-
perature T„ is likewise small compared to E„.

The third mode described by Eq. (5.21) which is
thought to be relevant to realistic-geometry mirror ma-
chines is the high-frequency, convective-loss-cone
mode (HFCLC) (Rosenbluth and Post, 1965, 1966). In
terms of the dispersion diagram, Fig. 5, this mode
corresponds to the continuum of complex roots lying be-
tween D, and D,. It requires A,', 4 0 and does not require
a radial gradient. Because the growth rates are found
to be large compared to &„, and k,a,-» 1, it is possible

to describe the mode by a reduced description for the
ions obtained by neglecting the finite-P terms and the
magnetic field in describing the ion motion. Since the
mode is convective along the magnetic field, it is con-
venient to solve for kII

(5.24)

The real pazt of 0 is given principally by the electrons;
however, the ions contribute when k', ~AD,-. Twice the
imaginary part of k gives the amplification rate of the
fluctuation energy along the magnetic field. When co/
Rek~l & 3v„ the neglect of electron Landau damping im-
plic it in Eq. (5.24) is jus tif ied, and

1 (u~, /0,
(] 2 /I7 2) 1 / 2 (5.25)

where n is a cons tant dependent on the ion-distribution
function, typically taking value 0.1(R +1) '~2 for rea-
sonably well-spread distributions. Horton (1967) has
shown that finite electron temperature enters principal-
ly through dispersion rather than damping. Ratios of
T, /T, =0.1 reduce n .by about 40%. The coefficient of o.'

in ImkII is evaluated at midplane values, including the
field depression effects of finite P.

A mirror machine of sufficient length to stabilize the
negative-energy modes, given by Eq. (5.22), may still
be subject to the high-frequency fluctuations of the con-
vective mode that have been amplified several e fold-
ings. The scattering rate to be expected from this in-
stability has been calculate'd for a slab plasma (Baldwin
and Callen, 1972;Baldwin, 1975)

P1

FIG. 7. Marginally stable radial scale lengths of drift-cyclo-
tron loss-cone mode with addition of warm plasma; parame-
ters are defined in the text.

mode

exp[ —2 sgn(z —z') I;, 1m A;„dz "] sf,
Be/Bk„i, 8&/sk„I„ (5.26)
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from which one obtains the rough estimate

1 Bf, . 0.1 exp(-2 J ImA. „dz)

mode

(5.27)

(5.26)

The anisotropy can be modeled using bi-Maxwellian dis-
tributions with differing T, and T„. For small aniso-
tropy, T, —T„, instabilities are weakly growing, due to
a small number of resonant particles. Two sets of au-
thors (Rosenbluth, 1960; Sagdeev and Shafranov, 1960)
find growth rates

(5.29)

whereas Co'rdey and Hastie (1972) consider model colli-
sional distributions to find

y-Q,. exp [-tl ' log PR] (5.30)

for PR &1, where P=-8vnT, /B' When the an.isotropy is
severe, Davidson and Ogden (1975) find a mode for
which the growth was algebra, ic in p. In the extreme of
T, =0, it becomes

y- I/, (tI,/2) "'. (5.31}

Because of the nonzero value of 0 „ for weak anisotro-
py these modes are convective along the magnetic field,
and so they lead to a length restriction that is weak, at
least in the case of the resonant modes. The nonreso-

where the integral is over the length of the plasma and

7d„, is the classical electron drag time given by Eq.
(4.9). For this scattering not to dominate the drag, co~,/
0,' must be in excess of 3 or 4 and the exponent limited
by about 5. In a reactor, higher values of +~2, /02 are
precluded by the total pressure which can be held by the
magnetic field, although for the purpose of Eq. (5.27),
the P-reduced midplane value may be used. The resul-
ting limit on the axial scale length obtained from Eqs.
(5.25) and (5.27) is about 50 ion Larmor radii. A more
detailed study of the effects of this mode requires the
incorporation of a, scattering term similar to Eq. (5.26)
into the Fokker-Planck equation described in Sec. II. A
beginning in this direction has been made by Fader
(1975), but further work is required because his formu-
lation did not provide conservation of energy between
particles and waves. Low-energy (-1 keV) nonclassical
plasma lifetimes in 2XII displayed a density dependence
of their decay rates that was consistent with Eq. (5.27)
(Coensgen et a/. , 1972); however, its presence has
never been directly verified.

The electromagnetic modes thought to be a potential
problem in mirror machines form a class of Alfven-re-
lated modes that are driven unstable either by resonant
particles or by the ion isotropy in the fluid limit co/0„
» v;. In both cases, these modes are most easily de-
scribed with ~k, ~=0 and with E„=@ =0, thus avoiding
the electron'parallel conductivity. Only the k && b com-
ponent of A is nonvanishing and the general electromag-
netic wave equation [Eq. (5.12)] immediately yields the
dispersion relation

nant mode of Davidson and Ogden can be convective or
absolute, depending on the degree of anisotropy (Pearl-
stein and Watson, 1975), and its effect on mirror-con-
tained plasmas is still under study. At time of writing
this mode appears to place a restriction on the limiting
P for a mirror machine, although little is known of its
nonlinear properties. It has not been observed in 2XIIB
for P„„up to about 1.5 (Logan et a/. , 1976); however, in
that experiment the theory may not be applicable because
of the small number of Larmor radii in both radius and
axial s cale lengths.

B. Nonlinear theory

It is a common experimental observation that, though
mirror machines are susceptible to microinstability
driven by the inverted ion distribution, the saturation
level of fluctuations is considerably less than might be
expected. Typically, a confined plasma with ions in the
kilovolt range exhibits fluctuations in the range of a few
tens of volts. Although these fluctuations are sufficient
to greatly decrease particle lifetimes to a hundred or so
bounce times, the fact that they saturate at such low
levels implies that the nonlinear effect on the ions must
be effective at low amplitude. This reduces the number
of possible nonlinear mechanisms which might be con-
sidered as limits to the unstable growth. Because cal-
culated growth times are short compared to almost any
time of observation, such a plasma must always be ob-
served at a nonlinear steady state in which the govern-
ing instability has saturated.

The most frontal theoretical attack on the nonlinear
aspects of microinstability is that of particle simula-
tion. In numerical codes of this type, the equations of
motion of a large number of particles are solved in the
presence of their self-consistent fields, Because of the
large number of particles required to minimize colli-
sional effects, concessions must be made on the dimen-
sionality of the model. Farly codes followed motion in
only one dimension perpendicular to B with no variation
along B and treated initial-value problems of highly
peaked distributions. Roughly speaking, linear growth
was seen until the wave energy reached nearly the ion
kinetic energy; at this time the wave growth ceased and
the ions were seen to scatter violently in phase space
(Byers and Grewal, 1970; Byers et a/. , 1971). Similar
results have been seen when motion in two dimensions
perpendicular to B is allowed (Birdsa, ll et a/. , 1974).
Clearly, such simulations omit some physics of the ex-
periments which is vital to the saturation of the wave
growth.

In analytic approaches, as in most nonlinear plasma
physics theory, the subject divides into two parts: in
the first, a. single (or predominant) wave is assumed;
in the second, the fluctuations are assumed to exist in
the form of a spectrum of uncorrelated waves. The re-
sults of both models will probably be useful ultimately,
because in many experimental situations only a narrow
spectrum is observed when a broad spectrum would be
expected on the basis of linear theory. Presumably, an
originally broad spectrum narrows as the wave satu-
rates, and this latter case is the marginally stable one.

Conceptually, by far the simplest piece of the problem
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is to study the influence on the particles by a given wave
or spectrum, and only later to make the fields self-con-
sistent with the distribution. Because of the influence of
the containing mirror field, even the linear aspect of
this problem has its complications (Timofeev, 1973).
Eqs. (2.1) to (2.3) are amended to include a fluctuating
electric field (here we will neglect any fluctuating mag-
netic field). If the induced changes in E, p, , Q are sma, ll,
these equations may be solved by perturbation, substi-
tuting on the right-hand side only equilibrium quantities.
When the field is composed of one or more real fre-
quencies, beating occurs unless 0 = u, in which case
resonant transfer of energy develops. A particle inter-
acting with such a wave while moving along a nonuni-
form magnetic field is affected irreversibly only locally
while in resonance, and this interaction is strongest if
it occurs at a point where BQ/Bs =0. In the absence of
such resonance, a particle in the presence of a simple
wave having no variation parallel to 8 possesses a new
adiabatic invariant mhich explicitly depends on the mave
amplitudes (Aamodt, 1971; Aamodt and Byers, 1972);
there then would not be any systematic loss of particles.
If resonance does occur, there are changes in E and IU, ,
the sign of which varies with the angular phase of the
particle before entering the region of resonance. The
calculation and its results are similar to those for the
6 p, introduced by the partial breakdown of adiabaticity
in Sec. II. If upon successive passes through the res-
onant region this phase is random, the uncorrelated
Ap. , 4E will describe a diffusion in phase space. Be-
cause the phases on successive passes through reso-
nance are related by the axial bounce motion, changes
induced by weak fields are not random, and periodic
motion in b. p, may exist (Rosenbluth, 1972), leading to a.

superadiabaticity. The fluctuating potentials @ satisfy-
ing this condition have P/T, K(a, /I )'.~', w. here I. is
the axial magnetic scale length. At very strong fields,
@/T; » (a;/I, )' ', particles become trapped in the
troughs of the fluctuations, and again limited exeur-
sions in E, Ij. exist. These regimes of extended adia-
baticity have been reviewed by Timofeev (1974). The
circumstance described by Rosenbluth of good particle
containment in the presence of a weak, coherent fluc-
tuation has been observed in PR-7 (Gott et aI. , 1974);
whether this was a demonstration of superadiabaticity
is not clear. Similarly, at a, ratio I, ja, =22, the 5- to
25-Q fluctuations observed in a 13-ke& ion plasma in
2XIIB (Coensgen et a/. , 1975) lie within but near the
limit of the range that superadiabatic effects would be
s ignif icant.

A finite k, wave in a magnetized plasma has a set of
resonant velocities u = (m —nQ;)/k„Recent. ly, Smith and
Kaufman (1975) have shown that, provided the wave am-
plitude is sufficient for the trapping width 2 ~ega„(k,~;}/
m,.

~

'~' to exceed the separation in resonant velocities,
it is possible for a particle to skip diffusively in u in a
stochastic manner and so gain energy from the fluctua-
tions. However, as with most nonlinear ion dynamic ef-
fects, this process requires fluctuations a.pproaching
the average ion energy.

In considering nonlinear mechanisms of species other
than the hot ions, several authors have investigated me-
chanisms whereby electron motion might be responsible

8fo q Bf,
Bt gg t tg pB ~V

(5.32)

The average is over the uncorrelated modes; f, is given
by the linear response to Q„Eq. (5.4), and Q, evolves
according to the instantaneous form of f,. For a justifi-
cation for this approximation, see Sagdeev and Qaleev
(1969). Briefly, it requires that a state of marginal
stability exist to which the operator can drive f, with
fluctuations small enough to justify the linear treatment
of f~.

The determination of such a marginally stable state
for modes that are driven by the ion loss cone requires
a mechanism whereby the loss cone can be partially
filled in. For, if the loss cone is allowed to exist as a
void in phase space, then. there always exists a drive
for instability, and fluctuations will grow to a large lev-
el. The notion of an empty loss cone is an approxima-
tion based on the smallness of the ratio of the transit

for saturating linear growth. Such a mechanism is par-
ticularly attractive for the drift-cone mode, because in
this mode specific electron response is required to gen-
erate the instability. Baldwin et al. (1972) investigated
the mechanism of nonlinear line tying (i.e. , the influ-
ence of axial end currents to bounding walls), and
(Baldwin et al. , 1974) the possibility that electron insta. —

bilities mould induce enhanced electron crossfield
transport. Both of these effects prove insufficient. in a
quantitative comparison mith experiment. Aamodt
(1975) investigated the effect of eddying in the electron
response, specifically the contribution of the v ~ &v term
in the fluid response. This mechanism is found to limit
the unstable wave amplitude through the establishment
of convective cells. The theory generates a number of
predictions mhich can be checked experimentally; but
until they have been verified, it is not clear if or when
the mechanism he describes is actually the limiting one.

Another electron nonlinear effect is the parametric
decay of an ion cyclotron mode into lower frequency
electron drift-waves obtained from Eq. (5.19) by neglec-
ting all ion terms. An ion wave labeled by (~„k,) ca.n
decay into two such waves labeled by (&u„k,) and (&u„k,)
provided wo = i+ 2 a d ko ki+k2 can be satisfied.
Pastukhov (1975) showed that with certain constraints
such conditions could be satisfied. Liu and Aamodt
(1975) showed that, when the ion wave was nega. tive en-
ergy as with DCLC and the decay products were posi-
tive energy, the process was explosive; i.e. , all ampli-
tudes grew in time (Byers et al. , 1971). Both sets of
authors show that; the process is greatly inhibited by
azimuthal asymmetry. The mechanism is suggested as
the cause of subharmonic fluctua. tion often observed in
unstable mirror machines. Beyond this specific appli-
cation, these investigations do raise the interesting
question as to the existence of other parametric, and
particularly explosive, instabilities in mirror machines
which are driven by the nega, tive energy character of
the loss-cone distribution.

The evolution of a distribution under the action of a
spectrum of uneorrelated waves has been studied in a
few examples relevant to mirror machines. These for-
mulations begin by expressing the fluctuation-induced
rate of change of f, by a quasi. -linear approximation
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trapped ions escape at only the ion sound speed, the life-
time they obtain is of order 100 ion bounce times. 'They
extend this theory to offer an explanation for the ob-
served stabilization by injection of cold plasma of what
is thought to be tlie drift-cone mode in 2XIIB (see Coeng-
sen et al. ). Since there is then a source of particles in
the loss cone, the trapped plasma lifetime is no longer
restricted by the particle flux requirement, Eq. (5.34);
rather it is fixed by the requirement that the power flux
lost by the untrapped plasma be supplied by the trapped
component. 'This leads to the lifetime estimate

'max 'm

m R-l v; -7'„(E,/n. E„). (5.35)

FIG. 8. Typical distribution E'(zo) showing empty and partially
filled loss cones.

time of an untrapped ion out of the machirie to the time
for its becoming untrapped. The reintroduction of a fi-
nite transit time into the theory allows for the existence
in the machine of particles lying in the untrapped region
of phase spaces, i.e. , for the partial filling of the loss
cone by particles whose lifetime is an axial transit
time. For small k, modes, the significant quantity for
the instability is 5'(w) = f du f„, which for an empty loss
cone has the forms shown by the solid line in Fig. 8.
Define E, as the w'/2 average of E(w) and E„as the
equivalent energy parameter measuring the size of the
loss-cone hole in the distribution. Then a partial fil-
ling of the loss cone, such as that resulting in the dotted
curve in Fig. 8, gives rise to a density of untrapped
lons

(5.33)

where n, is the trapped ion density and + &1 is a mea-
sure of the degree to which the loss cone is filled in.
For marginal stability of the DCLC mode, the magnitude
of n as a function of R~/a; becomes small at large R~/
a;, as may be inferred from Fig. V. If the untrapped
particles have a transit time (and thus a lifetime) r„,
they represent a loss flux n„/v„per unit volume which
must be supplied by the trapped ion flux to maintain
steady state. Thus, whatever the mechanism of the fluc-
tuation level which is saturated by this partial filling of
the loss cone, the trapped ion lifetime 7, must be

The price paid for the introduction of the stream to fill
the loss cone is a reduction of the electron temperature
so that, in fact, the energy lifetime becomes dominated
by the drag time v'~, given by Eq. (4.9).

Based upon these ideas, a quasi-linear code has been
developed which takes advantage of the special proper-
ties of the 2XIIB plasma (Berk and Steward, 1975; Bald-
win et al. , 1976a). In that machine, ions are injected at
90 to the magnetic field, and the resultant flute fluctua-
tions (E„=0) and electron drag act to preserve the highly
peaked pitch angle distribution. 'The original calculation
was reduced to one velocity dimension by assuming scat-
tering and drag only in w, the component of velocity nor-
mal to B. The same calculation extended to two velocity
dimensions has confirmed the validity of the original
model. In these calculations, injected ions migrate in
velocity space under the action of diffusion due to the
fluctuating fields and electron drag. The rapid loss of
nominally untrapped plasma is allowed for by ascribing
to such particles a loss rate given by ihe inverse axial
transit time of an ion ai the energy of the ambipolar po-
tential. An important. quantity is the electron tempera-
ture, both because it fixes the drag rate and because it fixes
the ambipolar potential defining ihe energy below which
there is ahighprobability of loss. Inthe model, T, is taken
as determined by Eq. (3.1); i.e., the electrons are heated
by the hot ions and cooled by the ion flux dominated by n„/v„.
The equation governing the distribution E(w, t)
= 5 du f„(u, w, t) used is

Bp' 1 8 wE ~E
w

2
+ D(w, f) —v„„(w)E+S(w, t),

v; = v„(E~,/nE„) . (5.34) (5.36)
Galeev (1966) has considered the particular examples

of losses due to the Post-Rosenbluth convective mode
for well spread distributions of mirror ratio of order
1.5 to 2, for which E„ is approximately E«and &„ is the
transit time of a thermal ion. His resulting calculated
lifetime. was very short, as may be seen by the above
scaling law, of the order a few ion transit times. Chu
et al. (1969) apply similar considerations to the DCLC
mode with similar results.

Recently, Baldwin et al. (1976b) have applied this idea
to the saturation of the DCLC mode for distributions that
are highly peaked in pitch angle, such as those created
by neutral injection normal to B in 2XIIB (Coensgen
et al. , 1975). Because E„ is then of the order of the drop
in ambipolar potential from midplane to mirror, 3T„
and T, =0.02E„ in this machine, and because the un-

where ~~ is the electron drag time given by Eq. (4.9),
and D(w, f) is the quasilinear diffusion eoeffieient de-
scribed below. Here v„„is the loss rate modeling the
transit time loss of untrapped particles; specifically,
the model used was

fol w& wp
~W

~loss

0 for w& w~

(5.37)

where L is the plasma length, and w'„=q@/m; = 3T,/mq is
is the ion velocity characteristic of the ambipolar ener-
gy. S(w, f) is the source of particles, at high energies
due to the injected neutral beams, and at very low ener-
gy due to the plasma stream, if present. For longitudi-
nal flute fluctuations, the quasi-linear velocity diffusion
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coefficient takes the form (Davidson, 1972)

D(M, t)=,p r'0*,. f

where &(d, is the inverse autocorrelation time of the
fluctuations. The fluctuating potentials satisfy

(5.39)

where w~ is the unstable root of the dispersion relation
of the unstable modes, and n~ is a thermal source of
noise. Because unstable waves will have phase veloci-
ties of the order of the hole velocity so„, where the slope
of F(zu) is positive, it may be seen from Eq. (5.38) that
a diffusion coefficient caused by such fluctuations at 0,.
will be peaked at, zv ~so„and will fall as zv ' at large ve-
locities. Because of this preferential scattering of low
velocity ions, the diffusion coefficient in Eq. (5.36) can
balance the large loss time v„„for m &u„and so cause
the hole to fill, and still not severely cause diffusion of
ions with M»m„. 'The model is, therefore, capable of
achieving the quasi-linear steady state described earli-
er. The results of this code predict in detail the history
of the 2XIIB plasma, including buildup, beam suste-
nance, and decay after beam turn-off with and without
the stabilizing stream. Time histories of such quanti-
ties as particle densities, energies, and lifetimes, as
well as the fluctuation level and spectra, are in good
agreement with experiment (Berk et al. , 1976).

Vl. SUMMARY

The foregoing can be summarized into a fairly concise
present-day picture of end-loss processes from a mir-
ror-confined plasma and their implications for its reac-
tor potentialities.

As a single particle phenomenon, adiabaticity and its
limits for a given magnetic configuration have long been
understood. As a constraint upon vacuum magnetic
fields, these considerations do not usually place serious
limitations upon mirror machine design. The more dif-
ficult question, and an area presently being explored, is
that of the detailed shape of the magnetic field in the
presence of self-consistent high-p equilibria. The ulti-
mate loss of adiabaticity sets a limit on the pressure
that a given vacuum field can hold, although that limit
depends upon the pitch angle distribution of confined
ions. Recently it has been shown that, with increasing
P and fixed pitch angle distribution, loss of adiabaticity
always precedes breakdown of a long, thin equilibrium
due to the onset of the mirror mode (Cohen and Hall,
1976).

Microstability questions have long dominated mirror
research; the recent coalescence of theory and experi-
ment have increased confidence in the ability of the for-
mer to understand and predict machine behavior for loss
cone driven modes suchas the DCLC. The principal result
appears to be that stability of such modes for small radius
plasmas does not require a fu1l filling-in of the loss cone,
but only of the low-energy portion, so that the quantity

f ' „"du f„has not too deep a hole at low velocity. The
predicted geometric stabilization of the DCLC mode in
plasmas with radii large compared to ion Larmor radii,
as opposed to stabilization by partially filling the loss
cone, has not been demonstrated experimenta1Iy. Such
a demonstration must await the next generation of lar-
ger machines.

As currently conceived, the high-frequency convec-.
tive mode sets a limit on axial length for a mirror ma-
chine not to suffer enhanced scattering. However, the
calculated amplification of this mode is greatly dimin-
ished by partial filling of the loss cone; its role, and
even occurrence, in experiment has never been docu-
mented beyond that inferred in 2XII.

A plasma property central to the notion of mirror con-
finement is that of pressure anisotropy. Therefore, a
particularly important conclusion from the foregoing
loss-cone mode stabilization picture is that, at. least for
P„,&0.2, the existence of anisotropy is both theoretically
and experimentally compatible with operation charac-
terized by very low fluctuation level. For higher P the
agreement between theory and experiment is less clear.
~ith cold plasma stabilization, 2XIIB has demonstrated
such operation with P„,up to and exceeding unity. In this
range of P „„,WKB modified infinite medium theory pre-
dicts instability to the anisotropy driven Alfven ion cy-
clotron mode which is unaffected by cold plasma. It re-
mains to be seen whether the apparent inadequacy of the
theory is due to the comparable size of the 2XIIB plas-
ma to the instability wavelength. For the moment, this
mode must be considered a possible constraint on the
achievable P in a, mirror machine and one which is dri-
ven directly by the anisotropy.

The electrons play a pivotal role in classical ion con-
finement. The poor energy confinement of electrosta-
tically contained electrons and the consequent E,/E,.

=0.1 ratio act to limit the ion lifetime both by energy
degradation and ion loss boundary modification. [Arti-
ficially increasing the electron temperature, e.g. , by
external wave heating, would indeed reduce the energy
drag, but at the expense of a larger circulating power
and, unless the ambipolor potent. ial drop to the mirrors
could be simultaneously limited, by a de-trapping of a
larger portion of the low-energy ion distribution (Gor-
mezano et al. , 1976).] The order of unity resultant en-
ergy multiplication Q would require a reactor depending
on high technology and efficiency for economic opera-
tion and begs for an enhancement, if only by a factor 2
or 3. Such a Q-enhancement effort forms a current
thrust of the mirror-confinement program. %ghat is re-
quired is a modification of the coricept of an open-ended
minimum-B system in a way which enhances ion con-
finement while not sacrificing the essential ingredient of
a localized high-P plasma.

In conclusion, the role played by the a,mbipolar poten-
tial cannot be overstressed. The total drop to conduc-
ting walls is vital to axial electron confinement; how-
ever, it implies a large energy loss through the elec-
tron channel. Furthermore, the existence of a poten-
tial drop to the mirror throat has a deleterious effect on
ion confinement, both by the classical de-trapping of
low-energy ions and by the generation of loss-cone in-
stabilities feeding on the resultant free energy of the in-
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verted ion distribution. It seems likely that any suc-
cessful Q-enhancement scheme must successfully coun-
ter the negative features of the ambipolar potential in
ion confinement while not sacrificing good electron con-
finement. One such idea has been presented by Kelley
(1967) in a scheme employing three linked mirrors to
transfer the drop in ambipolar potential outside the
mirrors of a dominant central cell. Ideas involving to-
roidal linking of mirror machines in which ion density,
but not pressure, is constant along field lines might ac-
complish the same end (see e.g. , Cordey and Watson,
1975).
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