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Recent work by K. G. Wilson, A. A. Migdal and others has led to a statistical mechanical treatment of
systems of interaction quarks and strings. This work is summarized here. The major topics discussed
include boson and fermion variables in statistical mechanics; descriptions of local and gauge symmetries;
exact solutions of one-dimensional problems with nearest-neighbor interactions; exact solutions of two
dimensional problems with plaquette interactions; Wilson’s model of quarks and strings; asymptotic
freedom and trapping for this model; the effect of a phase transition in this system; approximate recursion
relations of the Migdal form. Finally, all this is put together to give a partial argument for the
simultaneous existence of asymptotic freedom and trapping O, in the quark-string case. Arguments are
developed which distinguish this case from the superficially analogous example of quantum

electrodynamics.
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INTRODUCTION

This paper describes how modern renormalization
techniques may be applied to models of elementary par-
ticle phenomena in which quarks and strings are placed
upon a lattice.

We concentrate on two points: (1) how the theory may
be made consistent with the apparently contradictory
concepts of asymptotic freedom and quark trapping, and
(2) how one might begin to approach actual renormaliza-
tion calculations for these problems.

Section I describes the formulation of lattice prob-
lems in statistical physics. Some statistical variables
are described, including the standard Gaussian‘boson”
random variables and anticommuting “fermion” random
variables. The discussion of variable types is con-
tinued in Sec. II, which is essentially a description of
the relationship between symmetries and variable types.
Local and global symmetries and the roles of statistical
variables as bases for representations of the symmetry
are discussed. Finally, K. G. Wilson’s model (1974,
1975a, 1976a) of quarks and strings on a lattice is
explicitly written down.

In Sec. III renormalization group techmques are in-
troduced as a method of solving one-dimensional prob-
lems. Particular attention is given to the fermion vari-
ables, which can serve as a representation of quarks,
and to the case in which the statistical variables define
a homogeneous space for the symmetry group. Follow-
ing Migdal (1975a), we describe how the solution of the
one-dimensional problem for this case can be converted
into a solution of a two-dimensional problem with a lo-
cal (gauge) symmetry. In this section we also de-
scribe how the renormalization method can be used to
calculate Green’s functions.

Section IV describes the qualitative properties of
Wilson’s lattice model. The quarks are represented by
fermion random variables and the strings by homogene-
ous variables. This formulation can include asymptotic
freedom and the unobservability of free quarks. How-
ever, Lorentz invariance is not an automatic conse-
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quence of the theory. Instead, it can only arise because
the theory is near a critical point. The renormaliza-
tion group technique is then suggested as a natural way
of attacking and viewing these near-critical problems.
Furthermore, the simultaneous existence of asymptotic
freedom and trapped quarks is explained as a conse-
quence of the nonexistence of a phase transition in the
string variables.

Section V introduces approximation techniques for
attacking lattice problems. The potential moving meth-
od of Kadanoff (1975) and Kadanoff, Houghton, and
Yalabik (1976) is used to “derive” Migdal’s (1975a,
1975b) approximate recursion relations.

Section VI discusses the phenomenology of fixed
points with particular reference to the critical dimen-
sionalities at which phase transitions become unstable
or disappear. Finally, Section VII applies the Migdal
approximation to the quark—string model.

I. STATISTICAL SUMS AND PARTICLE PHYSICS
A. Introduction

In recent years, a whole body of knowledge has been
developed about the connection between problems in
quantum field theory and those in classical statistical
physics. A first point of contact is the similarity be-
tween the diagrammatic expansions employed in the two
areas. The mathematical similarity between these
areas was then further exploited by K. G. Wilson’s
(1970, 1971, 1972) see also Wilson and Fisher (1972) and
the review of Wilson and Kogut (19'74)] wedding of the
renormalization ideas in particle physics (Gell-Mann
and Low, 1954) with the concepts of universality and
scaling which were current in phase transition physics.
This extended view of the renormalization group then
provided a microscopic theory of phase transitions as
well as many insights into the structure of particle
theory.

Constructive field theorists have deepened our under-
standing of these heuristically derived connections by
showing how problems in “classical” (i.e., commuting-
variable) statistical physics in Euclidean space of di-
mensionality d could be connected to quantum mechanics
problems in d — 1 spatial dimensions. [See, for example,
Osterwalder and Schrader (1973a, b, 1975), Nelson
(1973), Simon (1974), and Jaffe and Glimm (1976).]
Roughly speaking, the two kinds of problems can be
linked together by comparing their Green’s functions.
One goes from one kind of problem to the other by mak-
ing an analytic continuation of one of the coordinates—
the “time” —according to

t—xit (1.1)

This “Wick rotation” of the coordinate can, in prac-
tice, usually be carried out very simply. Imagine that
the problem in statistical physics were described in
terms of field variables ¢(x) and T (x) and that the
simplest correlation function constructed from these
was the one-particle propagator

G(x,x') = (%)T (') .

Here () means some sort of statistical average, and x
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and x’ are points in a d-dimensional Euclidean space.
In the most elementary example, G(x,x’) will have a

Fourier transform with a simple pole, i.e.,
m(x-x )
G(x,x’) = f BT T (1.2)

The “momentum” integral, j dp, is an integral over a
Euclidean momentum vector. The net result is that
G(x,x') will depend upon a distance in Euclidean space

-y 1/2
r=(2 (ra -ty
-0
and will have an asymptotic form for large separations,
Gy~ e

Under the Wick rotation, x, and x{ become pure imag-
inary. Thence ¥ can become real for spacelike separa-
tions and imaginary for timelike separations. This ana-
lytic continuation of G(r) yields the typical time-ordered
Green’s functions of field theory. In particular, the cor-
relation function (1.2) gives, when.continued, the usual
propagator for a noninteracting spin-zero particle, in-
cluding the typical oscillatory structure for timelike
separations. However, in one sense, the whole continu-
ation is quite unnecessary since whenever we see a
structure like (1.2) we can simply recognize it as the
Euclidean reflection of a spin-zero particle with mass
m.

Thus it is formally possible to move back and forth
between quantum field theory and classical problems
involving statistical fields. However, the classical
statistical mechanics of fields is itself a subtle subject,
involving all kinds of potential divergences. To elimin-
ate the ultraviolet (short-distance) divergences, one
can replace the continuum problem by a lattice problem
in which the basic “fields” are only defined at the set of
lattice points

X =(x1:xz9 . ;xd) =a0(ﬂ1, Moy s ee ,nd) .

Here the #’s are integers, and the length a, is called a
lattice constant. The entire ultraviolet divergence
problem is then reduced to defining a suitable limit, a,
- 0. This limit should, for example, yield a Euclidean
rotational invariance of the statistical problem so that
the related quantum field theory can have a Lorentz in-
variant structure.

This limiting process must be rather sophisticated.
For example, the basic Green’s function G(x,x’) may be
considered to depend upon the separation vector Ax
=x —x' the lattice constant a,, and a set of coupling pa-
rameters K which appear in the Hamiltonian for the
statistical problem. Hence we write G(x,x’) as
G(Ax,ay,K). The limit a,—~ 0 is defined first of all by
keeping the coordinates x,x’, and Ax fixed. To get a
physically meaningful result, one must then vary the
coupling parameters K with the cutoff a, so as to keep
physical quantities like the mass of Eq. (1.2) fixed. The
renormalization group (Gell-Mann and Low, 1954;
Callen, 1972; Symanzik, 1971) is exactly a method of
discussing how physical parameters vary with the
change in couplings and cutoffs. Hence the renormal-
ization group is an absolutely essential ingredient in
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deriving physical information from a lattice theory.

Alternatively, one can make contact with the standard
theory of critical phenomena on a lattice by saying that
the mass m is exactly the reverse coherence length
£7!, For fixed couplings K the coherence length is a
fixed multiple M ™" of the lattice constant a¢,. Therefore
we can write

m=(a,/E)a;*=MK)a;"' . (1.3)

As a,—~ 0 with fixed couplings, m—=<. In order to get
finite masses, one must adjust the couplings K as a
function of a, so that M(K) decreases linearly with a,.
A decreasing dimensionless mass M is evidence that
the problem is coming closer and closer to a critical
point. Thus the physical limit of a lattice theory is
necessarily one in which the lattice problem shows
near-critical behavior.

B. Formulation of lattice problems in statistical physics

To describe a problem ind -1 dimensions of space
and one time dimension, define a d-dimensional hyper-
cubic lattice with the set of lattice points separated by
the distance a,. On each lattice point define a statisti-
cal variable o (x). Since there may indeed be several
variables at each point, o (x) can be considered to be a
vector of variables ¢;(x), with an internal index ¢
=1,2... . One then defines a statistical problem by
giving a meaning to statistical sums and averages.

The basic summation operation is a sum over a single
variable at a particular point in space x, which we de-
note by try(x). The full statistical sum is then written
as

Tro =[] trom (1.4)
For example, in the Ising model, each o(x) takes on
the values +1 and

trof(o) =f(1) +/(=1)
Next, one weighs the sum (1.4) with a factor
p(o) =(expA|K,c]) + Z[K] .

Here A|K,o] is an action which depends on the variables
o and a set of coupling functions or parameters K. (In
standard statistical physics this action is replaced by
minus the Hamiltonian divided by Boltzmann constant
times temperature.) For example, a nearest-neighbor
coupling problem is described by a coupling function
K(o,0’) and has

(1.5)

AlK,0] = (;} K(o(x),0(x") ,

where (xx’) is used as a notation for a sum over all
nearest-neighbor pairs on the lattice.
Finally, the partition function Z[K] is defined to give
a proper normalization to the probability function (1.5).
It is
Z[K]=Tr, et . (1.6)

The density matrix defined by Eq. (1.5) is used to de-
fine all the statistical averages. Given any function of
the statistical variables @ (¢), the average of  is de-
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fined to be
(@) =Try(0)Q (o) .

In particular, then, the basic Green’s function is de-
fined as an average (o (x)5(x’)), where G(x) is a vari-
able conjugate to o(x). In the spin-zero case, ¢(x) may
be complex, and § will then be o*; for the spin one-
half case o(x) will become a spinor y(x), and &(x) will
be

1.7

5(x) =9" (%) »

where vy, is one of the usual gamma matrices.

C. Variable types

In this paper we shall use local spinor variables
¥;(x) and ¥;(x) to represent quarks. The strings will,
however, have a slightly more complex representation
via statistical variables U;;(x,x’) with two spatial in-
dices and two internal indices. The basic set of U’s are
defined when x and x’ are nearest neighbors. In this
case, we shall say that U;;(x,x’) describes a string bit.
To handle a finite length of string one forms the ma-
trix product of a succession of connected string bits.
Thus, if x,,%,,%,,...,X, are a succession of points
such that x; and x;,, are always nearest neighbors, a
piece of string extending from x, to x, is described by
a variable

Uy (xo,xn) :U(xo’xl)U(xvxz) cee U(xn—z:xn—l)U(xn—uxn) .
(1.8a)

In this definition, matrix multiplication over the intern-
al indices of the U’s is implied. The subscript y on
U,(x0,%,) is intended as a reminder that this product
variable depends upon the path y =(x,,%,,%,, .. .,%,) fol-
lowed by the string bits in going from x, to x,.

The case x,=x, is especially important. In this case,
the piece of string is closed. This string loop is rep-
resented here by writing a capital I" instead of a small
v, to remind ourselves that the path is closed, and
taking

Ur=Uy(x9,%,) - (1.8b)

The string loop variable (1.8b) has two internal indices
like any other string variable. For a depiction of these
different variable types, see Fig. 1.

For the moment, let us put these string variables
aside and focus our attention upon the more usual vari-

LOCAL VARIABLE STRING BIT U(xz, x3)
/ (%) /
2 3

1® . *—>—e

) 3 4 .
{, <+————— STRING U, =U(xq4,%g) Ulxg,xg)
5 6
4
3 .

KSTRlNG LOOP Up

FIG. 1. Type of variables.
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ables which have but a single spatial index. The sim-

plest statistical variable is an Ising variable for which
o(x) takes on the values +1. These Ising variables may
then be fully defined by two algebraic statements. The
first is a definition of the square of the variables

[o(%)]?=1 .

The second is a definition of the basic trace operation
for a single Ising variable

trgyl=1

(1.9a)

(1.9b)
troo =0 .
In general, we can define the behavior of statistical
variables o(x) by giving:

(1) algebraic rules for adding and multiplying the
variables and,

(2) a definition of the fundamental statistical sum tr.
We shall use these algebraic rules for constructing
variables to represent bosons and fermions. In either
case, let (1) stand for the statistical variable at the
space-time point x, with internal index ¢,. For the bo-
son case, ¢ (1) is a complex number ¢(1) and the con-
jugate variable G (1) is just the complex conjugate of
¢(1), i.e., $*(1). Thus the boson variables are added
and multiplied as complex numbers. The basic trace
operation is

_ [ d(Reg)d(Imy)

try 27

Fermions have a more complex statistical represen-
tation [see Berezin (1966) and Abers and Lee (1973].
The basic objects are statistical variables (1) and ¢(1)
which have typical fermion anticommutation properties

@), v@1=13(1), 7@} =40 D), 7@} =0 . (1.10)

Therefore, for a particular position and value of the
internal indices, there are only four possible quantities
which can be formed

Ly(1),9(1), §(My1) =-p(1)9(1) .

The basic trace operation is defined by giving the trace
of these objects according to

tryl =tr,p =tr,d =0
but

(1.11a)

tr, gy = —trgp=1 . (1.11b)

Thus the only terms which contribute to Tre“™are then
products over all spatial indices and internal indices of
P(1)(1). We shall see that this rather peculiar repre-
sentation generates the standard Fermi Green’s func-
tions.

Notice that the summation operations described by
Egs. (1.11) are not representable as sums with positive
weights. For this reason, some of the standard theo-
rems of statistical mechanics will fail for the y’s.

D. Free bosons and fermions

To handle both bosons and fermiohs at one time, we
introduce the pair of variables ¢ (1) and (1) to stand
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for (1) and y(1), in the Fermi case, and ¢(1) and ¢*(1)
in the Bose. The action for a non-interacting system
may be written as

Alo)==D)o (1) +5(1)Z=(1,2)a(2) , (1.12)
where we employ the convention that one should sum
over any repeated barred index. We wish to calculate
the partition function and the set of Green’s functions

G(12+++;1/2" -+ ) =(a ()0 (2)+- - 5(2)5(1") . (1.13)

To calculate this sunﬁ, we isolate the part of the action
which depends upon the variables ¢ (1) and G (1) as

A,[o]==F(M)o (1) +F(W)n(1) +AW)o (1) (1.14)
with
n(1) =Z(1,2)o(2) (1.15)

7(1) =@z, 1)
[we take =(1,1) to be zero]. This part of the action may
be used to analyze the behavior of averages of product
terms like o (1) or (1) or ¢ (1)5(1) inside an average
such as the one defined by Eq. (1.13).
The calculation starts from the fact that we can cal-
culate the trace of A, [c] as

1lol =ie nwn@)

z =trype? - (1.16)

Here the upper sign refers to bosons, the lower to ferm-
ions. For the Fermi case, the result (1.16) is derived
by using the fact that

[eM]=[c@)]*=0
so that e*1 may be written
etitel=1-5(1)o (1) +(1)n(1)
+N(D o (1) +a()nD)n1)o(1) .

Then Eq. (1.16) follows directly from Eq. (1.11). The
calculation then proceeds by noting that

zl trome®st?lo (1) =n(1) (1.17)

1 — —

= trome* 90 (1)F (1) =n(1)7(1) +1 . (1.18)
Equation (1.17) serves as an equation of motion for o

since it says that if the index value 1 appears only once

in G(12-+-;1’2"--+) one can make the replacement

o(1)~n(1) =2(1,2)0 )

under the average (1.13). On the other hand, Eq. (1.18)
describes the modification in this replacement which is
required if a ¢ and ¢ have the same index. This mod-
ification is, then, essentially identical with a Wick con-
traction. )

When applied to G(1, 1’) these two rules give

G(1,1)=6(1,1") +2(1,1)6(1, 1) ,

which is the standard Dyson equation for the one-par-
ticle Green’s function. For the two-particle function,
we find

G(12;1'2")=G(1,1')G(2,2')+ G(1,2)G(2,1') . (1.20)

Therefore this and all higher-order Green’s functions
appear in the standard form appropriate for noninter-
acting bosons and fermions.

(1.19)
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Finally, we write the partition function. As Z(1,2) is
changed infinitesimally, the partition function changes
according to

5Inz =+G(1,2)6=(2,1) .
If we imagine that G(1,2) is a matrix in its indices so
that we can write a formal solution to Eq. (1.19) as
G=1/(1-2) ,
then the partition function obeys
5(lnZ) =6|« traceln(l — )]
Here trace is a diagonal sum over the indices of G.
This equation can then be integrated to read

InZ =xttraceln(xG) . (1.21)

E. Specific examples

To see the possible relationship between these
Green’s functions and the propagators of high-energy
physics, we shall look at two specific examples. Start
from a “scalar” example in which the fields have no
internal indices. Then a nearest-neighbor interaction
with coupling constant K can be represented by choosing

Z(x,,%,) = Z:K[é(x1 —X, —€qa,) +0(x, —X, +€oa,)] .

(1.22)
Here e, are the set of d lattice vectors
¢,=(1,0,0,...) ,
€,=(0,1,0,...) , (1.23)
€,=(0,0,1,...) .
Then Eq. (1.19) is immediately solved by Fourier
transformation, which gives
G(p) =1/[1 -z (p)] (1.24)
with
2K T e o
e
d
=2KZ cospaa, - (1.25)
a=)

In turn then the coordinate space Green’s function takes
the form
d
G(x,x") =f '(151:;3
1~ ZKEq cospya,
We wish to focus on the limit in which a,-~ 0 while
x —x’ remains fixed. In order that G not vanish in this

el (x=x")

(1.26)

limit, we require that 1 — 2dK be very small. In par-
ticular, we write
a2
1-2dK=-Ym?<«<1 . (1.27)

2d

Then the denominator in Eq. (1.26) may be expanded in
a power series in g, to give

etpr(x==") 2d d
G(x,x") = fW vl (1.28)

Except for the multiplicative factor 2da?™2, Eq. (1.28) is

almost the same as the boson propagator in field theory.

The major difference is between the Euclidean nature of
the metric in Eq. (1.28) and the Minkowski metric in
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high-energy physics. However, the difference may be
eliminated by an appropriate analytic continuation.

The second example involves ¢ (1) and §(1) with spinor
internal indices. These indices appear in matrix multi-
plication of y matrices y, with « =1,2,...,d. These
matrices obey the Euclideanversion of the standard
anticommutation relations, i.e.,

{Ya"VB}:zaq,B . (1.,29)

We then follow Wilson (1975a) and choose an interaction
which, instead of (1.22), has the structure

Z(x,,%5) = Z K[(1=8,7)0(x, =%, —Eqa,)

+(1 +€47)0(x, ~x5 +€qa,)] ,  (1.30)

and find that Eq. (1.24) holds true once more but, in-
stead of (1.25), Z(p) obeys
= (p) =2KZ [cospua, =iy sinpaay] - (1.31)
(3
Once again we focus on the possibility of having a
finite G(x,x’) in the limit ¢,—~ 0. To achieve this result,

we pick K to be very close to (2d) ™! and define a mass
m by

1-2dK=may/d . (1.32)

Thence, by the same line of reasoning as before, we
find the (almost) standard result for a spin-one-half
particle

d ip(x=x')
G(x,x') = f(zf) ___e —5p dal™?
dp et " (1.33)

G T e i)dagT

1. SYMMETRIES

In setting up a quark-string model we shall eventually
choose an action A (o) which depends upon two kinds of
variables, quark creation and annihilation variables
P(1) and y(1), and string variables U(1,2). These sta-
tistical quantities will contain internal indices reflect-
ing the basic symmetries of the problem. The quark
variables contain spinor indices, color indices, and
flavor indices, while U(1, 2) is a matrix in its color in-
dices. The color symmetry needed for this problem is
of a very special nature. It is a gauge symmetry in
which there is an independent symmetry operation at
each point in space. But, before discussing gauge sym-
metries, let us look at the simpler case of a global
symmetry in which there is a single set of symmetry
operations for the entire action.

A. Global symmetry

Consider an action A which depends on two sets of
variables ¢,(x) and 5;(x). Here o(x) and 5(x) may be iden-
tical, as in the Ising model, or different as in the case
in which ¢ and G are § and . We say that ¢ and 5 form
a basis for a representation of the symmetry group {G}
if there exists a set of matrices G* (with the different
matrices labeled by the index @) such that
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Alo,5]=A[0",5"] (2.1)

whenever the new variables ¢’ are defined as linear
combinations of the old variables by

ollx) = ZG{‘}cj (x)
T (2.2)
ARSI CHICADR

We limit ourselves to unitary representations of the
group, i.e., those which obey

S GRGY)* =5y, .
7
For example, if we take a nearest-neighbor interaction

Alol= ) K(ok), o)),

{xx?
Eq. (2.1) is equivalent to
K(o,,0,) =K(G%0,,G%03) .

Of course,” Eq. (2.1) is not sufficient to guarantee the
invariance of the final problem. We must have the
basic statistical sum Tr also be invariant under the
change of variables (2.2). This additional condition will
be met if tr_ is an invariant sum; i.e., if it obeys

tr f (o) =tr, £ (G%0) (2.3)

for all group elements G* and all possible functions f.
Then, tr  is said to be an invariant sum.

Equations (2.1) and (2.2) are the condition that the ac-
tion be invariant under group operations, while Eq. (2.3)
is the requirement that the basic sums be so invariant.
The action will certainly be invariant if A {s} is a func-
tion of scalars like

Zai () o;(x") =5(x) olx) .

Thus, for example, the conventional two-dimensional
rotation symmetry of the XY model is obtained by taking
o; (x) to be a two-component vector and by choosing the
coupling function K to depend upon the combination

o10) o, (") +0,(x) op(x") =0 (x) - (x’) .

This action will then be invariant under two-dimension-
al rotations with the rotation matrix

o= cose Sing .
—-sina cosa
The full statistical problem will be invariant if tr

takes the form

trom = fdo.ldUZW(cf +03) (2.4)

where w is any weight function.

B. Transitive representations

In this way, we can make the ¢’s a basis for a repre-
sentation of a symmetry group. Let us give a few ex-
amples. For the Ising case, ¢(x) =t1, an action which
is bilinear in the ¢’s, e.g.,
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K Y ok)ok’)

Cxx )

has two symmetry operations,
a(x)~olx)

and
(2.5)
Hence the representation has two elements G°=1 and
G =— The abstract group so represented is called
Z g

Another rather analogous case is one in which g(x)
runs over all real values between —« and «». Then

trc=f do .

If the action is even in ¢, the transformations (2.5) are
once again the basic symmetry operations. But there
is a significant difference between the two cases. In
the Ising case, the symmetry operations

ox)=—-o).

oc~G%
define all the possible variations in the basic variables.
Thus the basic Ising sum can be written as

trof(c)=2f(G°‘0)- (2.6)

If G* are the two transformations of Z,, Eq. (2.6) gives
a correct representation of the Ising sum, but certainly
not of a sum over all real numbers. Whenever Eq. (2.6)
is satisfied we say that ¢g(x) forms a homogeneous space
for the symmetry group or that ¢(x) is a transitive rep-
resentation of the symmetry. We shall find that tran-
sitive representations are particularly simple and use-
ful representations of the symmetry, since for these
representations the group theory will give all possible
information about the variation of o(x).

For the XY model described above, the g, (x) form a
transitive representation only if the weight w(o? +02) in
Eq. (2.4) is a delta function which limits the magnitude
of 02 +0Z to a particular value (say 1).

The group SU, can be represented by choosing ¢(x) to
be an n-component complex vector of unit length

D ooiwori) =1,
7
The basic symmetry is the transformation

o—=o’' =uoc,

where the » is a unitary matrix (uuT= 1) which is re-
quired to have a unit determinant. This representation
is also transitive if we choose tr; to be a proper invari-
ant sum. Thus

tr_ 1 (o) =ff(uc) .

Here the invariant sum fu can be defined in the fol-
lowing way (Murnaghan, 1938). Since « is an# by n
complex matrix it has n? different complex components.
Call the integral over the complex plane of all these
components f du. The conditions on ¢ are then inserted
as simple delta function conditions under the integral.
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Hence

f=fdu s(detu —1)6(1 —u'u). 2.7
Thisuinvariant integral obeys

ju-f(u)=ju‘f(uul) (2.8)

for any unitary », with determinant equal to 1.

We shall not make direct use of Eq. (2.7) for finding
averages over SU, transformations. Instead, we shall
simply list some averages defined by

<x>=fx(u)/f 1. (2.9)
We have

(1) =1,

<uij>=<u1-'rj> =0’

Qg ) = Cufyudy) =05 (2.10)

oty @)yy) =%6116ik ’
(w35 5, ul,) =05
1
<uu Upg Upn? =& €im €i1n +

Here €,;, is the completely antisymmetric tensor of
rank 3.

For instance («;;7 =0 can be proved as follows: j; is
invariant under the transformation u—u’ =ue*2"#/3, be-
cause of Eq. (2.8). Then (u;;) is an average over the
three cubic roots of unity, and hence it must vanish.

Later on there will be considerable use made of vari-
ous transitive representations.

C. String variables and local symmetries

For the global symmetry, the entire actionA{c} is
transformed with the aid of the same matrix G;7. In
particular, the new variables are

AC) 226% lrbj(x) )

Pi(x) =Z Gk 9, (x) .

If there is a string variable U;,(x,x’) defined for each
ordered pair of nearest neighbors xx’, it transforms
according to

U (x,x") =G*Ux,x")(G*)T.
The color symmetry assumed in high-energy physics is
a far richer symmetry than this. Under transforma-
tions, A{y,P, U} is required to be invariant even when
the transformation is different at every point in space.
Thus, if u(x) is a color transformation matrix which
depends upon the space~time point x, A is required to
be unchanged under the transformation,

PO =y’ (x) =ulx) px),
D)=’ () =) [ulx)]T,
Ule,x")=U' (x,x') =ulx) Ulx,%’) [ulx’)].

(We omit here the 7j indices.)

(2.11)
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This new kind of invariance is easily constructed.
Just let A depend upon terms like
S Uy b, 7)) =P () U e, ) 9l (2.12a)
ij
This kind of term is certainly invariant under the local
color symmetry. It represents the motion of a quark
from x’ to x, with the aid of the bit of string Uij(x,x').
Other invariant terms which involve no motion are

- 91009, 06) =906) p () (2.12b)
and

> U 6,x) Uy 67, x) (2.12¢)
ij

One additional term is needed: A term which provides
string-string interactions. Imagine that we construct a
closed path T from x, to x, to ..x, to x; and construct
the combination U, which is a product of string bits
along the path as in Eq. (1.8). Then any trace in the 3
by 3 color space of a power of U

trace(Up)? (2.124)

is also a scalar. We now construct an action from these
invariant pieces.

D. The Wilson model

Now, we can put together the pieces and write the
Wilson model (1975a, 1976a) of quarks and strings.

Each (1) and §(1) is a four-component spinor with an
additional flavor index f and a color index ¢ =1,2,3. The
color symmetry is a SU, symmetry and is an exact local
symmetry. The flavor index takes on the values f=up,
down, strange, and (perhaps) charmed. The first three
values represent the broken SU, symmetry of Gell-Mann
and Ne’eman. Thus we write J; ,(x) and ¢, ,(v). The
spinor indices are never written explicitly but repre-
sented by the y matrices of Eq. (1.29).

Each ordered pair of nearest-neighbor sites on the lat-
tice defines a string bit variable U,,(x, x’). Here ¢ and j
are color indices. They run from 1 to 3. We make
U,,(x, x’) itself a unitary matrix with unit determinant.
To limit the number of variables, we choose

Uk, x) =[Ub, x| =[U(x,x")]7*. (2.13)

For each x,x’ and j, U;;(x,x’) is a vector (with index 7)
which is a basis function for a transitive representation
of the SU,; symmetry, so that, again, the trace will be
a sum over group elements.

Now we will set up an action which includes all the
symmetries mentioned so far. This action is a sum of
two terms

A =A¢ +AU .

Here A, depends only on the string variables, while Ay
depends on both quark and string variables. Visualize
a d-dimensional simple “cubic” lattice. On this lattice
the nearest neighbors are connected by vectors +2,a,
where g, are the lattice vectors given by Eq. (1.23).
These &, enable one to construct a closed path over a
basic square (called a plaquette). The path starts at x,
proceeds to x +8,a,, then tox +(&,+8,)a, tox+&,a,,

(2.14)
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and finally returns to x. This closed path is denoted by
T'yy(x). Then, from Eq. (1.8b), one defines a product of
string bits around this path as

Ur,, =UK,x +8,a,) UK +&u00,X +8ya0+8,a,)
XU +8yag+8y a0, % +8,a,) U +8,aq,%) .
(2.15)

. The basic string—stringy coupling in the lattice can be
written in terms of these closed loop variables as

Ag= 2 JWr, ). (2.16)
: X, K,V -
This structure will be color symmetric if the coupling
function J(U) is only a function of the trace of I/ and
powers of UU. A structure of this kind was employed by
Wilspn (1975a, 1976b) as a generalization of an action
first used by Wegner (1971a) and then analyzed by-
Balian, Drouffe, and Itzykson (1974, 1975a, 1975b).
This form is

J(U) =%J trace(U+UT). 2.17)

Here J is the statistical version of the string-string
coupling constant.

The action (2.17) is the simplest color symmetric
structure which can be constructed from the U’s. No-
tice that terms like (2.12c) cannot usefully be included
because Eq. (2.13) implies that these terms are simply
unity.

Next consider Ay. We would like to make this part of
the action as close as possible to the form of the free-
fermion action (1.12). To do this we write

Ay=- Z Dig (0) s (x)

Xyi,f

+ 90 D B0 Do b, 57 Uy (6,7 (67) . (2.18)
{xx" fij

The first term simply sets the normalization of the
quark variables; the second is a nearest-neighbor sum
which describes the hopping of quarks from one site to
neighboring sites with the aid of the bit of string U and
the hopping amplitude =,. This nearest-neighbor hop-
ping amplitude is written exactly as in Eq. (1.30) as

Soslx,x") =K; (1 -y x;x ) (2.19)
0
This action maintains the basic color symmetry
(2.11). Notice that the action could contain additional
color singlet terms which could be built from the color
singlet combinations

Zd)i_f(x) i{f’(x) N (2.208.)
i

D Cuintip () Uy () Uy (6) . (2.20D)
ijk

The combination (2.20a) can be connected with a SU,

" meson multiplet of dimension 35, and an SUy singlet.

The combination (2.20b) is connected with a 56-dimen-

sional representation of SU; including the nucleons.

These physical objects do not explicitly appear in our

starting action but they should be generated by the ac-

tion of the renormalization group. As we shall see, the
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exclusion of these terms from our action in the limit
a,—~0 is closely related to the free quark behavior gen-
erated by the theory in this limit.

E. Connection with field theory

In the limit ¢,—~0, the theory just outlined should re-
duce to the field theory description of a set of Fermi
particles interacting with a gauge field. To make this
connection, we write U(x,x’) in terms of a line integral
of a vector potential A ,(x) as

U(x,x’)=exp[z‘gf dx"-A(x")] . (2.21)
Here g will turn out to be the coupling constant of the
gauge field theory. Since x and x’ will be separated by
one lattice constant, one can expand the exponential in
Eq. (2.21) in a power series in a,. When this expansion
is applied to the right-hand side of Eq. (2.16) one finds
a part of the action

A, =—Strace ZZ ah FuuFuvnguu

Hy x
with
Fuy =0, A, (&) ~09,A,x) —ig[A,x), A,(x)]. (2.22)
The standard coupling term (cf. Abers and Lee, 1973)

is then recovered if we replace the sum over x by an
integral and choose J,, as

Juy=1/2g%. (2.23)
Then A, becomes simply
1
Ag==F % [Py P (2.24)
Hv

Notice one very important point. To the statistical
mechanic, weak coupling means J—0; to the field the-
orist, weak coupling means g—0. Therefore, accord-
ing to Eq. (2.23), the field theorist and statistical me-
chanic have exactly opposite views of weak and strong
coupling.

The fermion term A, can be handled in a similar
fashion. Take the coupling in Eq. (2.19) to be of the
form

KF 2(1/2(1)(1 Ly ao/d) )

where m, is physically the mass of a particle with fla-
vor f. Then an expansion of Eq. (2.18) in g, yields

(2.25)

1 — .
Ay=—% fdxzwf [my =yulo, ~igAu)] Yy . (2.26)
° f
This is then the standard structure of a fermion term in
a gauge field theory. [See, for example, Abers and
Lee (1973).]

I1l. RENORMALIZATION THEORY: A POINT OF
VIEW AND A CALCULATIONAL METHOD

The quark—string theory involves a formulation in
which the variables (1) and U(x,x’) appear on a lattice
with lattice constant much smaller than one fermi.
Clearly this lattice is only a formulational and calcula-
tional tool. It must disappear from all the final results
of the theory.
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The renormalization theory can be viewed [see Wilson
(1976b)] as a description of how we can simultaneously
change the lattice constant and the basic action but
nonetheless leave all physical results of the theory en-
tirely unchanged. This approach, then, permits us to
visualize how it might be possible for the original lat-
tice to drop out of any physical end results of the the-
ory.

At the same time as the renormalization method pro-
vides an important insight into the formulation of the
problem, it can also provide a very useful calculational
tool. In statistical physics, a variety of problems which
do not yield to perturbation theory or any other “clas-
sical” analytic tool were attacked with considerable
success by approximate renormalization methods.

In this section, we describe the general formulation
of these methods and their particular application to one-
and two-dimensional problems.

A. Formulation

Given a set of statistical variables ¢ on a lattice with
lattice constant g, and an action A[ K,o] which depends
upon a set of coupling constants or coupling functions
K, we can, in principle, compute the partition function
and all the correlation functions via Egs. (1.4)-(1.7).
Now imagine that we have another set of variables, p,
on a lattice embedded in the original lattice (see Fig.
2). This new lattice has lattice constant xa,. We view
these new variables as providing an alternative de-
scription of the original problem.

To make the conversion from one description to the
other, we define a function T'(u,0). At the start, T is
arbitrary; in the end, we shall make very specific
choices of T to achieve calculational convenience. This
T is used to define a new effective action via

oA’ (1) zTroeT(u.oHA[K.OJ A (3.1)
We demand the one condition that the transformation
leave the partition function invariant, i.e., that
Tr“eT(""’) =1, (3.2)
Then the partition function generated by A’(u), i.e.,
Z! = TrueA’(l-l)
will be identical with the partition function generated by
Al K,o].

[ ] [ ] L[] L[]
° °
¢ o
[ ] [ ] L] [ ]
* p
[ ] L] L] L]
° °
[ ] L] L] L]

- ay —*

FIG. 2. A renormalization transform with A=2.
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The new action A’(y) will, in general, be very com-
plex. If the transformation obeys translational (Gali-
lean) invariance, A’(u) can be characterized by the
same kind of coupling functions which might appear in
a very general A[ K,o]. These coupling functions, K,
would describe two-body, three-body, ... interactions.
Thus, we can write A’(u) as A[K’, u], where K’ is the
set of new couplings generated by the transformation.

In summary the change of description ¢~y has two
effects. The lattice constant changes from a, to ra,;
the couplings change from K to K’. K we could calcu-
late the sum in Eq. (3.1), we could find out how the new
couplings K’ depend upon the old. In general, we write
this dependence as

K'=RMK]. (3.3)

Equation (3.3) defines a renormalization transforma-
tion. It is'also possible to define a composition rule
for these transforms. If R*1 represents the change
a y~\;a, and R*z describes the change a,~\,a,, then
the function R*, defined by

K’ :R)\[K] =R)\2[R>\1[K] ] s

defines a new transformation with a change in lattice
constant

ED IS
We can express this type of relation formally as the
composition rule

RN ={RN", (3.4)

This renormalization transform has several impor-
tant invariance properties. Since the partition function
is left invariant, we see that

Z|K]=zZIR*[K]]. (3.5)

Equation (3.5) is very useful for describing the “phases”
of the statistical system. The different phases of the
system are regions in the space of possible couplings
distinguished by different singularity structures in Z[K].
For example, Fig. 3 shows a piece of the coupling
space defined by an action for an Ising system [¢(x) =+1]

EZj I3 ORDER
PHASE

— 2" ORDER

Ka'nn 4.

Kan

h
FIG. 3. A simplified phase diagram for the Ising model.
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With nearest-neighbor couplings K, and next-neighbor
couplings K, together with a magnetic field 2. The

nnn?

action is then

AlK,0]=3"hol) + 3" K,,0x)0(x’)

{xx"

+ Z Ko@) o(x’).

nnn

We depict three different phases:

1. A first-order region at7 =0 and sufficiently strong
K,, and K, . In this region 8(InZ)/ak, the magnetiza-
tion, has a discontinuity atz =0.

2. A second-order line at the boundary of the first-
order region. On this line, 53(InZ)/sn? is infinite and
the “mass” M[K] goes to infinity.

3. The remainder of the space shown, where the sys-
tem is in the high-temperature phase, which is char-
acterized by having no singularities at all.

The renormalization transform (3.3) is assumed to
have the property that R*[K] is a totally nonsingular
function of K. If Eq. (3.4) is to hold the singularities
on both sides of the equation must come totally from Z.
Hence we conclude that, when K’ and K arve connected
by a venovmalization transformation, they lie in the
very same phase.

One can make much more quantitative statements too.
We assume that exp T'[u, o] is a short-ranged function
which induces correlations between . (x) and the o(x’)
lying near x. Then the range, &£, of the y~u and the
o~o correlation function must be the same. From Eq.
(1.3) we find that if m=£"' is to remain invariant, the
dimensionless mass M[K| =t /a, must obey

MIRM[K]]=aMIK]. (3.6)

Now let us follow the consequences of this point of
view. Imagine that we started with couplings K, and
constructed the couplings

Ko,=RMK,_,]

forx>1and ¢ =1,2,... . If we could arrange for the
coupling to stay in the space of K,, and K, , we might
imagine a picture of successive transformations like
those shown in Fig. 4. The flow lines shown depict how
different couplings may be connected while always flow-
ing within the same phase.

Notice how the flow lines converge on fixed points.
These points are not special parts of the phase diagram,
but are instead determined by the particular renormal-
ization transformation. Nonetheless, it is very helpful
to analyze the flow patterns with the aid of these fixed
points. To do this, turn to Fig. 5a, where we draw a
slice of Fig. 4 including all three fixed points.

The flow lines leave the critical fixed point and flow
toward the other two. As we shall see this instability
(flow away from the fixed point) is a necessary con-
comitant of a critical point characterized by an infinite
correlation length, i.e., M[K]|=0. All fixed points are
by definition places where there is scale invariance;
but this invariance is possible for M =0 and for M =cw.
The critical fixed points are those with zero mass.
Since we wish m =M/a0 to approach finite values as q,
-0, we are aiming at a theory which approaches such a

Rev. Mod. Phys., Vol. 49, No. 2, April 1977

Konp ' o FIXED
nan ® poinTs
WEAK
COUPLING
STRONG
[ coupLinG
PHASE

S
STRONG
COUPLING

(15! ORDER)

CRITICAL
LINE

FIG. 4. Structure of the fixed points for the Ising model.

zero-mass fixed point.

The discussion in this section is a very simplified
picture of the fixed point theory introduced by Wilson
[(1970); see also Wilson and Kogut (1974)] and then given
further mathematical form by Wegner (1972 and 1973).
In Sec. VI we shall further develop this discussion. For
now, however, let us turn to specific examples.

B. Example: Decimation in one dimension

All of this can be made very explicit in a one-dimen-~
sional example. [See Houghton and Kadanoff (1973) and
Nelson and Fisher (1975).] Physically, the one dimen-
sion will become time after the Wick rotation. Hence,
for the particle physicist, our “one-dimensional” ex-
ample includes no spatial variable whatsoever.

Let the x in ¢(x) be simply na,, where xn is an integer.
Let the basic action be

Alo,K]1=3 K (0 (nao), o (e + 1) ap)) . (3.7)
n
Let the new variables i (x) be defined at the points
shown in Fig. 6

CRITICAL
POINT

<+——WEAK COUPLING —|«+——STRONG COUPLING —=

oy H3 *
» *

K=0 K=
(a)
STRONG
COUPLING \
* < *
K=0 K=o
(b)

WEAK DIFFERENT

ST T COUPLING T " ™ pHASES

K=0. K=o
(c)
FIG. 5. Different phase diagrams. The stars are fixed points;

the arrowheads in the diagrams show the direction of flow of
the couplings as the lattice constant is increased.
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n = 0 ! 2 3 4 ® o VARIABLE
* * ° ¢ * ® ;. VARIABLE
o——— —@— — — —@
m = O 1 2 —— OLD COUPLINGS
— — — NEW COUPLINGS
FIG. 6. Decimation applied to a one-dimensional problem.

X, =xma,=2ma,.

Hence we have a change in lattice constant by a factor
of 2. We choose these new variables to be essentially
identical with the old ones at the same point by writing
e™ o) =TTo(u(X,) —o(X,.) (3.8)

where § is the delta function. The net result of the
transformation function (3.1) is to decimate or thin out
the statistical variables, leaving us with as many vari-
ables in the new problem as in the old. Each new vari-
able is equal to an old variable.

In one dimension the new action A’(y) is easy to cal-
culate from Eq. (3.1). The result is exactly of the near-
est-neighbor form (3.7),

A’ (@) = DK (wlmag)), p(m +1)ag))) (3.9)
m
with a new coupling function K/, which is given by
eK'(H.H’) =tr eK(u.c)+K(o, Wy (3.10)
o

Equation (3.10) then serves as an explicit construction
of the dependence of K’ upon K. This construction gives
an explicit definition of the function RZ[K]. Here the
superscript “2” indicates a change in lattice constant
by a factor of 2, while the subscript “0” indicates that
we have done the renormalization in the trivial, one-
dimensional, example.
One has found RZ[K] via Eq. (3.10); one can apply Eq.

(3.4) to find R} via

Ry ={RE} e

After that, one can rather easily find all the correlation
functions for the problem. For example consider the
correlation function

Glx —x',K,a,) ={cx)5(x’)) .

Since u(x) is o(x), this correlation function can just as
easily be calculated in terms of an average of 4’s, at
least for the case in which (x —x')/ao is an even integer.
Thence we find the identity, applicable to the decima~
tion transform

G(x -x',R2[K],2a,) =G(x —x',K,a,) .

(3.11)

The successive application of this rule gives

Glx -x',K,a,) =Gx —x",R}[K], a,) . (3.12)

C. Fermions in one dimension

A simple example of this analysis is the fermion case
for which K(y, ¥’) has the form

K@, ¥)==300 —39'd + KL =7 W' + K" (1 +7,)9,
(3.13)
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including one coupling constant, K. In this case, Eq.
(1.24) implies that

1
C(P)= T gz,
The inversion of this Fourier transform gives, for x
#x',

G(x —x")=3[sgn(l - 2K) +7, sgn(x—x’)]e'"'"“"" .
(3.14)

In Eq. (3.14) sgn is the sign function, which is plus or
minus one, depending upon the sign of its argument.
The mass m appears in the form (1.3), i.e., m =M/a,,
with the dimensionless mass being

M(K)=|In2K]|. (3.15)

Notice the singularities in (3.14) and (3.15) which ap-
pear at

K=K*=3.

At this critical point, the mass passes through zero and
the roles of holes and particles are interchanged.

The trace (3.10) is calculated in Appendix A. There
it is shown that the new coupling has the same form as
(3.13) with the parametric change

K~ K'=3%(2K)? =R%(K).

Equation (3.4) then implies that the recursion relation
for general A is given by

K~ K'=R)}K)=3(2K)*. (3.16)

Equation (3.16) implies that there are three fixed
points: a weak coupling point K*=0; a strong coupling
point K*=%; and a critical point K*=%. At these fixed
points the mass is infinite (K*=0, ) or zero (K*=%).
Hence these fixed points are—like all fixed points—
places where the theory is scale invariant. This series
of fixed points appears in the same form as shown in
Fig. 5a. Notice also the pattern of flows. As A in-
creases, K’ moves away from the fixed point at K*=3%
and toward the other two fixed points. Hence the di-
rection.of the arrows in Fig. 5a.

In general, to give a quantitative meaning to this flow
away from the fixed point, one can follow Wegner (1972,
1973) and define a variable Z(K) which is an analytic
function of K near the fixed point, vanishes at the fixed
point, and has the simple recursion relation

R[K'] =2R[ K]. 3.17)

Then y is termed a scaling index (or critical index) for
k. Notice that the scaling property (3.6) of the dimen-
sionless mass implies that

Mh)~h", (3.18a)
where the coherence length index v is given by
v=1/y. (3.18b)

In this fermion example, the Wegner variable is

h=—1n2K (3.192)
with associated index
y=1. (3.19b)
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Notice that this variable is essentially the same as the
dimensionless mass, M. The scale invariant quantity
|k/ay is the physical mass, m.

We can use the recursion relations to calculate the
Green’s functions if we happen to know them anywhere
in a given phase. For example, at small K, first-order
perturbation theory gives the nearest-neighbor Green’s
function as

Gx—x'=xa, K,a,)=(1xy)K. (3.20)

We apply the recursion formula (3.12) for the Green’s
function to the case A=| x —x'|a,. Then Eq. (3.12) reads

G(x - x', K,a,) =G(sgn(x — ¥’ A a,, RM(K), ra,). (3.21)
For K’ =R K]<< 1, we can evaluate the Green’s func-
tion on the right-hand side of (3.21) as the nearest-
neighbor result (3.20) to find

Gx—x",K,a,)=[1+sgn(x —x')y, |RMK).

If we substitute the appropriate values of A and R» we
find
Gx-x',K,a,)= }M(zKﬂx—X’Uao (3.22)

’ s %o/~ 2 . .
which is the exact Green’s function in the weak coupling
phase. Hence recursion calculations can indeed give us
Green’s functions and the values of masses.

In the end, we are interested in interacting quarks and
strings. The analysis of this section can be extended
to the case in which string variables are included in the
basic coupling in a term of the form (2.12a). Then the
basic nearest-neighbor coupling takes the form

K@, ,U)==39p -39’ ¢’
+KPUQA =y ) +KY'UT Q9,0

instead of (3.13). Here we have assumed that ¢’ =y(x’),
Yp=p(x), U=U(x,x’), and x’>x. Once again we calculate
the trace (3.9) as in Appendix A. Just as before, we
find a new coupling function of exactly the same form as
the old one, with a new coupling parameter given by Eq.
(3.16). The only difference is that the new coupling in-
vokes a new string variable which is the matrix product
of the old string variables. Thus if X and X’ are near-
est-neighbor sites on the new lattice, and x is the point
between them, the new string variable is

U'X,X")
with

U35, X7) =D UnlX, 20Uy (x, X7). (3.23)
k
Thus the one-dimensional recursion relation (3.186)

will remain valid in the presence of strings. However,
the Green’s functions will be changed by the strings. In
fact, the nearest-neighbor Green’s function (3.20) will
be proportional to an average of U(x, ') and this aver-
age will vanish. For this reason

Gx-x",K,a;))=0 for x+x’

in the presence of strings.
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D. Other examples

The Ising case has a variable o =+ 1 and a coupling of
the form

K(o,0")=K,+ Koo' . (3.24)

The basic sum (3.10) can be calculated quite easily if we
write

ek(0.9") 1 4 5o’ tanhK.

Then we find a new coupling of the form (3.24) with a
new coupling parameter K’ given by

tanhK '’ = (tanhK)2. (3.25a)

Equation (3.25a) represents the effect of changing the
lattice constant by a factor of 2. More generally, if the
change is by a factor of A, the new coupling is K(xa,)
given by

tanhK(\a,) = [ tanhK(a,)] *. (3.25b)

As A increases K(\a,) decreases. This situation is
represented by the phase diagram shown in Fig. 5b. There
are twofixed pointsat K*=0and K*=~. This phase dia~-
gram shows no critical point for any finite value of K.
There is, after all, no phase transition for the one-di-
mensional Ising model. However, as K goes to infinity
the model does show a quasicritical structure. [See
Houghton and Kadanoff (1973) and Nelson and Fisher
(1975).] For example, for large K, the recursion re-
lation (3.25b) reads

K(nag) = Kla,) = 3 Inx (3.26)
so that K is close to a fixed point, in that it is changing
only logarithmically slowly with A. Alternatively one
can look at the correlation function, which has the form

(o(x)o(x")) = (tanh k)= =1 /%
and see that the mass is given by
m =— (IntanhK)/a,=M(K)/a,.

For large K, the dimensionless mass M becomes very
small, i.e.,

M(K)=~ 2e 2K, (3.27)

But even though this mass can be small, the system
shows no phase transition and all its properties are an-
alytic functions in the region — < K<,

Most of the systems analyzed in statistical physics
show phase diagrams which bear a qualitative similari-
ty to either Fig. 5a or 5b. We could hope that the sys-
tems of interest for particle physics might fall into one
of these two classes. However, more complex situa-
tions are conceivable. For example, let

K'=1+(K-1)[1-RevI-K ™.

(3.28)

Then all points for K<1 are in a weak coupling phase
while each point for K> 1 is a fixed point. Hence each
of these K> 1 points is a separate phase. We believe
that such a possible existence of an infinite number of
different phases is characteristic of the Baxter [see
Baxter (1971 and 1972) and also Kadanoff and Wegner
(1971)] model for d=2. It is also probably the kind of
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FIG. 7. Decimation on a two-dimensional gauge lattice.

behavior shown by the XY model at d=2. This phase
diagram is shown in Fig. 5c.

E. Recursion relations for gauge symmetries at d = 2

Consider a two-dimensional problem on the square
lattice drawn in Fig. 7a. Each arrow represents a
string bit U(x, x”) labeled by the coordinates of its end
points. Each U(x,x’) is an # by # matrix which obeys

U, x)=[UG, 0] = [0, 2)] .
The gauge invariance is represented by the transform
Ux, x") = ux)U(x, 2" Yu~t(x").

Here U(x) is a matrix in the representation of the sym-
metry group. In principle, then, U and # are entirely
different kinds of # by # matrices. However, if we de-
mand that U forms a basis for a transitive representa-
tion of the symmetry, then we can always pick the set
of possible U’s to be identical with the set of trans-
formation matrices, u«.

In this case of a transitive representation, one can
find the recursion relations for a gauge interaction on
the basic plaquettes. We assume a gauge invariant ac-
tion which is of the form of a sum over squares, i.e.,

AlU) =3 IWy), (3.29)
where the string loop Uy is defined as in Eq. (1.8). For
example, the numbered square in Fig. 7a has

UT = Ul"1234 ZU(xU xz)U(ny xs)U(xsy x4)U(x4; xl)- (3-30)
If we insist that J obeys
JU)=JU™) (3.31a)

as well as the gauge invariance condition
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JU)=Jdwiu™), (3.31b)

then J(Ur) will be independent of the particular method

of tracing the path I'. In addition, the basic sum obeys
the invariance conditions

tr, f(U) =tr, f (Uu) =tr, f @U) (3.32)

for any function, f. Since U and # are exactly the same
kinds of matrices, tr,f(uU) will have exactly the same
meaning as tr, f(U).

To find a recursion relation, sum over the string bits
defined by the crosses in Fig. 7Tb. This sum will lead
us to a new problem on the lattice shown in Fig. 7c.
Since the latter has a lattice constant in the x-direction
which is twice as large as the former, we describe the
summation indicated as an x decimation. If we call the
summation variables U, , the new action is given by

eA'[”:Tr[,x eAlvl (3.34)

Notice that each summation is completely independent
of all of the others. Thus we can look at a basic pair
of squares like the one with the labeled vertices in Fig.
Tb and calculate the summation as

e’ Wlatry exp[J(Ur,, , )+IUr,, .0 (3.35)
with the Up’s defined as in Eq. (3.30).

Migdal (1975a) made two important observations re-
garding the sum (3.35). The first is that since J’'[U] is
a gauge invariant quantity, it can only depend upon the
one gauge invariant product that one can form from the
U’s in the boxes. After Upyg: is integrated out, this one
product is

UrABcc’B’A’ =Ur.
Therefore J’ must depend upon this product alone.
Without loss of generality, we may evaluate (3.33) by
setting all U’s except U,y and Ugg: equal to the unit
matrix. Thence we get a relatively simple recursion
relation

eJ'(UAB)=trUBB,e"(UABUBB’)eJ(UBB’), (3.36)

Migdal’s second observation involved the connection

‘between Eq. (3.36) and a special form of the one-di-

mensional recursion relation. Imagine a nearest-neigh-
bor problem at d =1 with the matrices U as the basic
statistical variables. Pick a coupling with the special
form

K(U,,U,)=J(U,UL) (3.37)

and a J(U) which obeys Eqgs. (3.31). For this problem,
the nearest-neighbor recursion relation Eq. (3.10) will
read

ek (W1 .Up) =try YU )T IW,U)

(3.38)

By changing the variable of integration in (3.38) ac-
cording to

U-U;'U

we can see that K’ is also of the form (3.37). There-
fore we can set U, =1 and write the nearest-neighbor
recursion relation as

e"'wl)=tru eV(UU)+IU) | (3.39)



280

But, Eq. (3.39) is identical to the gauge theory recursion
relation of Eq. (3.36)! :
We conclude that the one -dimensional recuvsion ve-
lation applies equally well to the two-dimensional gauge
case, if we specialize the one-dimensional theory lo
couplings which obey Eqs. (3.37) and (3.31). [ For work
which led up to Migdal’s and included the special case
U==%1, i.e., the symmetry group Z,, see Balian ef al.
(1974, 1975a, 1975b) and also Wegner (1971a).] Thus
we can say that a change of lattice constant in the x-di-
rection leads to a new coupling which is determined by
exactly our previous recursion function

J =R} J]. (3.40)

If we change the lattice constant in both directions we
must compose two such transforms. According to Eq.
(3.4) this composition is given by

J(hag) =R [J(a,)]. (3.41)

Equation (3.41) represents a complete formal solution
of the two-dimensional gauge problem. Since no one-
dimensional nearest-neighbor problems involving
bounded variables and couplings have a phase transition,
none of the d =2 gauge problems for compact symmetry
groups will show a phase transition. They will all have
a phase diagram like Fig. 5b.

For future reference, we list two results for the case
in which the basic symmetry group is Z,. In that case
U(x,x’) is the Ising variable U =+1 and the coupling

takes the form (3.24)
JW) =dy+ JU. (3.42)

Then, according to Eq. (3.25), the recursion relation
takes the form

J(ra,) = (tanh™)[ tanhJ (a,)| ** (3.43)
which for large J reduces to
J(\ay)=J(@,) — Inr. (3.44)

Finally, if Ur is a product of U’s which surround an
area A, the average of Uy is

(Ur) =exp(—CA) (3.45)
where the constant is
C =| In tanhJ| /a2, (3.46)

This rule that the average of U decreases exponentially
- with the area will be very important in what follows.

IV. PROPERTIES OF THE QUARK-STRING MODEL

This section is devoted to describing how the quark—
string theory can lead to two different pictures of ele-
mentary particle phenomena, both of which seem tohave
a good experimental basis. These pictures are:

1. Asymplotic Freedom. This picture arose in some
measure from the parton concept (Feynman, 1970; and
Bjorken and Paschos, 1969)inwhich the properties of
elementary particles are explained by treating them as
weakly interacting Han—Nambu (1965) quarks. It was
extended to the suggestion (Gross and Wilczek, 1973a;
Politzer, 1973) that in the high-momentum transfer
limit quark—quark interactions renormalized to zero.
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2. The infraved trap. The experimental point is the
fact that no free quarks have ever been observed. A
picture which explains this fact is that quarks are
bound, with infinite binding energy, into color singlet
combinations [see 't Hooft (1972, 1974); Gross and Wil-
czek (1973b); Weinberg (1973)).

The renormalization group point of view suggests a
way out of this dilemma presented by the apparent in-
compatibility of these two statements. How can quarks
be at once weakly interacting and unobservable? They
can be so if the qualitative nature of the couplings
change in the different energy ranges (length scales) so
that a free quark picture, which is asymptotically cor-
rect for small distances, becomes vastly wrong for
large distances. '

Thus our physical discussion will proceed in three
stages. First, the trapping will be derived in the J -0
limit. Next, the freedom will be shown to be a conse-
quence of the theory in the J - limit. Finally, we
shall argue that renormalizations can effectively con-
nect these two limiting cases if only there is no critical
fixed point for 0 sJ< o,

A. Arguments for trapping

All quark Green’s functions must be invariant under
gauge transformations. Thus, for example, the one-
quark propagator G(ifx;jf’x’) must be unchanged under
the transformation

G—~u ()G X B, ! %" ) ™ )y (4.1)

This invariance will only be possible if G is diagonal in
its color indices and in x, i.e.,

GG S%;if %" )=0; 410y ; F(f,f').

Hence this quark “propagator” in essence says that free
quarks will not propagate, but instead will just disap-
pear an instant after one tries to create them.

Similarly the gauge invariance implies that the two-
and three-quark propagators only describe the motion
of color singlet combinations in the form described,
respectively, by Eqs. (2.20a) and (2.20b). For example,
G4(123; 1°2’3’) has (for x, unequal to %] or %} or x}) a
piece which describes the propagation of the singlet
combination which has the quantum numbers of the
baryons. This piece only appears for

(4.2)

X =Xy =Xg,

(4.3)
xl, =x2, =x3, )
and has the form
G(123;1'2' 3") = €iyigaig Sipr gty ige
XE(fofafssfoiforfars % —%0)  (4.4)

In fact, the flavor indices were introduced with exactly
the purpose of allowing such baryon propagation.

It is tempting, but wrong, to assert that results like
(4.2) and (4.4) mean that free quarks are unobservable.
A separated quark-antiquark pair might be observed if
our measuring apparatus detected something different
from these Green’s functions. A more careful argument
would have to be built upon the possibility of observing
the energy carried by a free quark with some local de-
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tector even if its color was not observable. The neces-
sity for constructing this more careful argument be-
comes obvious if we notice that the same argument
which gives the vanishing of G(x,, x,.) for x, #x,, can
also be applied to electrodynamics for which G is the
electron propagator. Hence if we take the above argu-
ment really literally, we would conclude that electrons
were not observable either!

To make a more careful analysis, we consider a pro-
cess in which a quark-antiquark pair is produced at
the space~time point x,=(0, 0, 0, 0) annihilated at x
=(0,0,0,¢). In the meantime a quark is observed at the
spatial point 7 = (0, 0, 32) and an antiquark at » = (0, 0,

- %z). A heuristic picture of such a process is shown
in Fig. 8a and is redrawn on the lattice in Fig. 8b.

These pictures suggest thaf it is not impossible to
observe a separated quark and antiquark. But, is it
likely? We follow Wilson (1975a, 1976a) in showing that
for small J and K this process is so unlikely as to be
unobservable when the quarks are separated over an ap-
preciable distance in space (2) and time (¢).

Let us examine the probability for the process in
question. Each step in the path involves moving the
quark via a term K(1 —ey)U. Therefore to lowest order
in K the probability takes the form

Tr, eAUUr(K)(zz+ 2t)/ag

Prob ~ TrUeAU

(4.5)

Here Uy is the product of the U’s over the closed path
shown in Fig. 8. Since the average of each individual
U vanishes

TrU(x,x,)U(x, x’):o,

one must expand Ay in Eq. (4.5) in order to get a non-
zero result. The nonzero terms arise from structures
like tr,,UU'r which are indeed nonzero.

The first nonzero result in perturbation theory arises

QUARK
SPACE

(a) TIME

ANTI - QUARK

t
PATH OF QUARK

X2 X3 /

Xy

Xo

(by z
s, ™

/ ANNIHILATION

OF PAIR

/ *n-1 t )
CREATION OF PATH OF ANTI-QUARK
PAIR AT xo

FIG. 8. Separation of a quark—antiquark pair.
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when one takes a term in perturbation theory
Juta, 2)ute, 3 w'E, 9ut4,1)

for each and every square contained in the path of Fig.
8. Thence, for small J, we estimate the probability of

this kind of process as
Prob ~J% /a% =g~ (2t /a%) lins} . (4.6)

To interpret Eq. (4.6), remember that in the Euclidean
space the probability of a process is proportional to the

“exponential of —~AEXAf, where AE is the energy of the

process and Af is the time during which that energy is
available, We then see from Eq. (4.6) that the energy of
separating two quarks by a distance z is proportional to
the separation distance

AE ~z|Ind| /a3, .7

If the energy grows linearly with the separation distance
then clearly the quarks cannot become unbound.

Thus we have established the infinitely strong binding
of quarks in lowest-order perturbation theory. It has
arisen because (Ur), where Ur is defined as a product
over a closed loop, is of the form

In (U ~—Area of loop (4.8)

for large loops.

But, Eq. (4.8) is only known to be true in perturbation
theory. If Eq. (4.8) remains true in the exact theory
then quarks will be trapped with an infinite binding ener-
gy. If this result of perturbation theory disappears in
the exact theory quarks can become unbound. What will
happen?

Our experience in statistical mechanics indicates that
qualitative results of perturbation theory, like Eq. (4.8),
will remain true for some range of couplings J, when-
ever J is too weak to produce a phase transition. Thus,
if J is lower than some critical value J,, we might ex-
pect Eq. (4.8) to remain true so that free quarks will be
unobservable. We follow W. Bardeen and call this situa-
tion a baryon phase. In particular, in the baryon phase
for large loops of linear dimension L (see Balian etf al.,
1975a)

In (U} ~=L? (baryon phase). (4.9a)

In the opposite limit of large J one can do an expansion
in 1/J and find, to lowest order, that

In{Up) ~-L (quark phase). (4.9b)

As we shall see, in this situation, free quarks are defi-
nitely observable. More generally, one can imagine
that

In (U ~-L%*" (complex phase) (4.9¢)

where perhaps 0 depends continuously upon J.

To study the observability of quarks, we are then im-
pelled to understand the phase transitions of the system
as a function of J. [See Migdal (1975a).]

B. Asympfotic freedom

There is a host of theoretical work in which the be-
havior of elementary particles at high energy is de-



282

scribed by assuming that particles are made up of non-
interacting or weakly interacting quarks. The renor-

malization group point of view and the quark-string mod-

el provide a beautiful description of how this might oc-
cur,

In the renormalization group picture, one can have
different forms of the action to describe different energy
ranges. In particular, many renormalizations are re-
quired to move from high-energy phenomena to lower-
energy phenomena. As the renormalization proceeds,
the effective interaction can change. Let us assume that
the effective interaction which describes high-energy
phenomena includes a very strong four-string inter-
action J, This strong interaction will tend to suppress
fluctuations in U(x,x’). If U cannot fluctuate, then the
quark interaction A, is a pure two-body term. There
is no higher-order quark interaction. Hence the quarks
behave as free particles.

Wilson (1975a) has shown how to make this conceptual
framework more explicit. The string-string interaction
is

L S Jtracewr+UY). (4.10)

2 plaquettes

Ay=

For very large positive J, we would like to make the
trace as large as possible. Since Ur is a unitary matrix,
the largest possible value of the trace is achieved when
Ur equals the unit matrix. A general form of U(x,x")
which will lead to Ur=1 is

U(x,x")=u(x)u"t(x") (4.11)

for arbitrary gauge matrices u(x). When J is large, this
form of U might be expected to describe all short-ranged
correlation phenomena reasonably well. However, we
cannot expect to apply (4.11) to long-ranged correla-
tions, e.g., to closed-path Up’s in which there are a
very large number of links in the path. Accordingto (4.11),
Ur will be the unit matrix for all paths. But, in each
step of the product, there will be some error arising
from the imperfection in the approximation (4.11), If
there is no phase transition, (that is, if we are not in
the quark phase) these errors will accumulate after a
large number of steps. Thus we expect to find that there
is a characteristic distance £, and a characteristic num-
ber of steps » such that

Ur=~1 for na,<<§,

=0 for na,>§,. (4.12)

For larger distances than §;, fluctuations in Up will be
very important; for smaller distances they will be un-
important. For the small distances, we can expect to
use a theory based upon Eq. (4.11).

This theory then has as its action

A=A, =‘Z, Py () (x)

+<Z,,$f(")“(")qu(x,x’)u"(x’)wf(x’) (4.13)
f

where Z ., is given by Eq. (2.19). The sum over

U(x,x')s has been performed by setting them equal to
the special values (4.11), but a sum over all #’s, i.e.,
all gauges, and a sum over all ¥’s remain to be calcu-
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lated. Hence the remaining sums can be represented by
(4.14)

However, the remaining sums are trivial. They all
can be performed by making the gauge transformation

P(x) = P'(x) =u(x)P(x),

Try=Try.

Try Try—Tr,Try.

(4.15)

This transformation completely eliminates the u’s from
the action (4.13) and leaves one with a pure free fermion
calculation. Hence the partition function and all other
gauge invariant averages are exactly the same in the
limit J -~ in the free fermion case. In short for all
gauge invariant quantities the quarks behave as free
particles. :

What about gauge dependent quantities, e.g., G(1,1'),
which is, according to Eq. (4.13)

Tr,Trye?=Y*ly1)g(1’)
Tr, Tr ed=] :

G@1,1")= (4.16)

After the transformation (4.15), we find

Tr, Trye= Du(x)g, (2)f; (x)u' (x')
Tr, Tr yei= 1 .
(4.17)

Guf,x'f") =

The remaining trace over u vanishes unless x =x’.
Thence only the gauge invariant piece at x =x’ is left in
G, and this—once again—can be evaluated by the free
fermion theory.

The end result is that the limit J— < gives the average
over gauges of free fermion behavior.

C. Renormalization effects
So far this chapter has made two essential arguments:

(1) ¥ J is sufficiently small, i.e., J is smaller than a
critical coupling at which a phase transition occurs,
then quarks will be bound together with an infinite bind-
ing energy. Call this critical value of the coupling J*,

(2) In the limit J —=, the quarks will show almost free
particle behavior, except when they are separated by a
very large distance. The larger the value of J, the
greater the distance (measured in lattice constants) over
which free particle behavior will be seen.

In short, trapping is characteristic of a theory with
sufficiently weak couplings; freedom is characteristic
of a theory with very strong couplings J. In nature,
freedom and trapping are both observed, but in different
regions of energy, i.e., on different distance scales.

These contrasting observations can be made to agree
within the context of the very simplest renormalization
group point of view, Imagine that under successive in-
creases of lattice constant a,— ra,, J continually de-
creases, and that after many renormalizations J ap-
proaches zero. Thus, no matter how large J is initially,
a sufficient number of renormalizations will bring it
close to zero. This kind of behavior is characteristic of
systems which show no phase transition. (See Fig. 5b.)
Then, for small distance scales, we can have an action
with very large J—i.e., asymptotic freedom—while we
always remain in the baryon “phase.” There is no quark
“phase,” so unbound quarks cannot be observed.
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Hence our contrasting observations of freedom and
trapping will be consistent if there is no phase transition
in the four-dimensional system of quarks and strings,
no matter how large J might be.

These observations can be expressed graphically by
redoing Fig. 5 as in Fig. 9. In the latter, we have indi-
cated the physical nature of the different phases which
arise. The arrows on the lines show the directions of
charge of the couplings when ¢, decreases. An arrow
going toward g=0 (or J =) shows asymptotic freedom.
Only the diagram without a phase transition (9b) is con-
sistent with asymptotic freedom. In this diagram all
values of the coupling (save g=0) put the system in the
baryon phase, and therefore show quark trapping. In
the other two cases, the existence of quark trapping is a
function of coupling and only occurs for sufficiently
small J,

If the gauge theory has the same kind of recursion
equations as the Z, theory in two dimensions, then both
freedom and trapping would be possible. Equation
(3.43) implies that the phase diagram is the same as in
Fig. 9b while Eq. (3.45) shows a correlation function like
Eq. (4.92) and hence trapping. In fact, Gross and Wil-
czek (1973) and Politzer (1973) have analyzed the renor-
malization structure of the coupled quark-string theory.

" They used the continuum form described in Sec. II.LE and
concluded that at d =4 if there were not too many quark
flavors (fewer than 17) there would be no phase transi-
tion near J =, )

We shall try to follow a similar line of argument for
the lattice version of the theory.

V. APPROXIMATION METHODS FOR LATTICE
SYSTEMS

To make further progress, one needs approximation
techniques. In this section, we will describe some ap-
proximation techniques borrowed from statistical me-

CRITICAL POINT
FREEDOM
~— BARYON PHASE —*\ < QUARK PHASE —*
¥ * % (a)
g=o© g=0
J=0 J=o
QUARK PHASE
AND FREEDOM
BARYON PHASE /
* > —% (b)
g=o® g = 0
J= 0 J =0

-+—OTHER PHASES —=
-<— BARYON PHASE —»

* A ke e de de de e e de e ok ke ¥k (c)

g=0

g=®
J=0 J =o

FIG. 9. Possible structures of phases for the strihg system.
The arrows show the flow of couplings for decreasing lattice
constant. We hope case b appears in the quark—string theory.

Rev. Mod. Phys., Vol. 49, No. 2, April 1977

283

chanics.! They are all designed to produce effective
calculations of a “free energy” F[A] or partition func-
tion Z[A] defined via

—F[A]=InZ[A] =In Tre4¥.] (5.1)

In statistical applications, one finds that the approxi-
mations described here are especially useful and ac-
curate in calculations of critical indices. They have not
yet been extensively employed for correlation functions.
Hence we have no experience which would inform us
about how accurate mass calculations might be.

A. Lower bound approximations

Start from the exact recursion relation for the action
defined by

eA' (W =pAlK ]y o T(H,0)+ALK, 0] , (5.2)
Here, T (M, o) is normalized so that
TryeT(#: D=1, (5.3)

Hence the free energy or partition function defined from
A’ is identical to that defined from A, i.e.,

F[A")=F[A] . (5.4)

Unfortunately, one cannot calculate the sum in Eq.
(5.2). To circumvent this difficulty, we define an ap-
proximate calculation that we can indeed perform. We
add to the exponent in (5.2) an error term A(K,0) which
makes the sum calculable. Then we find an approxi-
mate recursion equation

A;(u.)=lnTroeT(“-")*‘[""’]eA(""’) . (5.5)

This approximate action can be described in terms of
some new coupling functions K’, which are some func-
tional of the coupling functions. This form of the ap-
proximate recursion relation is then written

K =R,[K] . (5.6)

How do we choose a good approximation of this na-
ture? More specifically, given several possible
choices of A(4,0), how can we choose the one which is
“smallest” and thus generates the smallest possible
error?

One guide comes from a variational principle—or
rather an inequality. This inequality requires the fol-
lowing conditions:

(@) TroeT(HrD*4LK,0) 45 3 sum with positive semidef-
inite weights.

(b) A(m,0) is real.

(c) The average of A is zero, i.e.,

Tr, TryeT(#+ DA 0I5(u,0) =0 . (5.7)

Under these conditions, the free energy generated from
Al is smaller than the true free energy, i.e., instead of

IThe particular style of lattice renormalization approxima-
tion which we shall describe in this chapter, the potential-
moving method, was developed by Kadanoff (1975) and Kadan-
off, Houghton, and Yalibik (1976). Earlier lattice calculations
include Niemeijer and van Leeuwen (1973 and 1974), Wilson
(1975b), Nauenberg and Nienhuis (1974, 1975), and Houghten
and Kadanoff (1973).
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Eq. (5.4) we have

FlA]<F[A’]=F[A] . (5.8)
To prove Eq. (5.8), one defines
F(A) =~1n Tr, TrOeT(u,c)M[K.o]MA(u.c) (5.9)

Then F(0) is the exact free energy, F(1) =F[A}]. By
virtue of Eq. (5.7)

dF .
a M 70 (5.10)
Also,
CE - (s = (5.11)

d

where ( ), is an average with weight exp(T + A +AA). If
the weight is positive, the second derivative is negative
and the theorem is proved.

Thus, from all possible A’s, we choose that A which
maximizes the approximately calculated free energy
and we then get the “best” possible answer. In the
meantime, the average of the squared fluctuations in A,
as defined by integrating Eq. (5.11) over A between 0
and 1, has been minimized.

The first problem is to find a A which obeys Eq. (5.7).
To do this imagine any set of local variables a;(x). For
example, a;(x) might be o(x)o(x +&,a;). The labels ¢
on a;(x) distinguish among different kinds of inequiva-
lent variables; the labels x describe equivalent vari-
ables at different positions. Then if

Al,0) =2 ci(Nas(%) (5.12)
3
where ¢;(x) is some set of coefficients independent of
K and o which obeys

S ci(x)=0 foralli, (5.13)

x
then Eq. (5.10) will certainly be satisfied because, at
A =0, the average of a;(x) is independent of x.

If we consider a;(x) to be in effect bits and pieces of
the action A[K,0], then the net effect of A(u,0) is to
add something to the action at some points and subtract
something at others. The condition (5.13) says that we
are allowed to add and subtract such couplings within
the variational constraint if we just demand that for
every bit of strength we add at one set of points we
make sure we subtract an equivalent total strength at
other points.

More simply stated: the variational principle allows
us to move potential terms from one set of bonds in the
lattice to equivalent bonds but not to increase or de-
crease the total amount of any type of bond.

This potential moving method will permit us to con-
duct approximate recursion calculations in a controllable
fashion. The basic technique is to use the potential mov-
ing to move hard-to-handle bonds into a location where
their effect may be taken into account.

B. Migdal approximation

To see this approximation technique in its simplest
form, we follow Kadanoff (1976) and consider the de-
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rivation of an approximation similar to that employed by
Migdal (1975a, 1975b). We start with variables o (x) and
nearest-neighbor bonds in the x, 3,2z, ... directions.
Thus the action is

A[K,0) =Y Ko (x),0 (x +84a5) -

The label « on K, distinguishes the different bonds in
the different directions.

Now we employ a recursion calculation in which the
new variables u(x) are defined to be exactly the same
as the old variables o(x) on a fraction 1/ of the lattice
sites; i.e.,

H(x)=0(x) forx=(An,n,n, ...)a, .
The remaining ¢’s are summation variables. (See Fig-
ure 10.)
To make the summation possible we pick a[c] to be

A(0) =) ag(x)K (0 (x),0(x +€qa,1)) (5.14)

and take a, to be exactly zero if @« =1. For the remain-
ing bonds, we choose

ag(x)=-1 (5.15a)

when o (x) and o (x +€4a,) are summation variables and
ag(x)=(r=1) (5.15b)

for the bonds which connect two p variables. The net
effect of (5.15) is to move (A — 1)K, bonds (@ =2,3,...)
from summation bonds to the bonds between two p vari-
ables.

Now the summation over ¢ is easy to perform. We
sum as before and find a new x coupling

K, =R}(X) . (5.16a)

The other bonds are the sum of the bond that was always
present and the A — 1 bonds that were moved

K, =AKy, @=2,3,.... (5.16b)

Migdal’s result now emerges if we consider the effect
of successive x,y,z,... decimations. All these decima-
tions together change the lattice constant from a, to
Aa,. Successive applications of Egs. (5.16) imply that
the x coupling constant after the change is

K, (Aa,) =A*RMK,(a,)) (5.17a)

Y —— X X X —— X @
T I I X SUMMATION
s ! ! S VARIABLES
—_——X——— X @ —— X —— X —— =
% I ! I ® oy Tpu,
Ky BONDS
@—X— X—— @ —— X —— X —— @
(a)
Ky BONDS

FIG. 10. Potential moving in the Migdal approximation depict-
ed for d=2 and A=3. Part (a), before the potential moving;
part (b), afterward.
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while all the other coupling constants obey
Ko (Aap) =M ORI Ky (@) -

Here o =2,3,4... is the index which describes the cou-
pling constant in the y,z,¢,... direction.

Equation (5.17a) is exactly the same as Migdal’s re-
sult. We shall discuss the consequences of Eq. (5.17)
below.

The recursions (5.16) and (5.17) will generate a lower
bound on the free energy for all problems with positive
semidefinite statistical weights. Unfortunately, we need
to apply them to fermion systems in which the positivity
is lost. Hence one of our main controls on the accuracy
of the approximation is lost too.

When is this kind of approximation likely to be accurate?
There are three limits in which we might expect rea-
sonable results from Egs. (5.16):

(1) As d—~ 1. It is exact at d=1 and the number of
bonds to be moved goes to zero as d— 1.

(2) For weak couplings K,(o,0’) for all «>1. Then
the errors in Z must be of order K2.

(3) For very strong couplings K(o,0’) which force
o=¢’ with a very high probability. Then the donor and
the recipient sites are likely to have very closely the
same values of ¢ and ¢’ so that the effect of the motion
is quite small.

(5.17b)

C. Migdal approximations for the gauge system

The same general scheme can be applied to the gauge
system, with interaction J(U;) on square plaquettes. A
three-dimensional version of this situation is shown in
Fig. 11. The recursion is a decimation in which the lat-
tice constant in the “1” direction changes by a factor of
A=3. The new variables U are shown on the figure.

By using the same calculational method as in the two-
dimensional case, we could do the sums if only the
couplings J,, and J,; were present. However, couplings
J,3, like those in plaquette D, prevent us from calculat-
ing the correlated summations of the neighboring vari-
ables. We therefore move all couplings like D which
link together summation variables to plaquettes like C
where they give no difficulty. The net result is a new
coupling on the plaquettes C of the form

® UNSUMMED o's
x SUMMED o's

X

X

[

]
l
1

. l - 0@»
|

o—
&

]

W X et X ]
p
p

Hab = Tg2 T23 T3p

FIG. 11. The three-dimensional Migdal recursion for a gauge
system.
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Jaup=AJypg for a#landp#1 . (5.18a)

Now we are able to do the summations. Just as in two
dimensions these sums can be calculated as a special
case of the one-dimensional nearest-neighbor recur-
sion. In direct analogy to Eq. (3.40), we find

Jhe=R)Jopl for a=lorg=1. (5.18b)

Once again, the recursions may be presumed to be ac-
curate if the couplings (5.18a) are weak, if the cou-
plings (5.18b) are strong, or if d— 2.

To derive the full consequences of this approximation,
consider the effect of successive decimations in the di-
rections 1,2,...,d upon J,g. Take the spatial indices
af to be such that @<g and g =2,3,...,d. Then Egs.
(5.18) imply the Migdal-style recursion relations

Jap(Aae) =M PRI IR 1T p(ag)]] -

(5.19)

An especially interesting example of this recursion
occurs if we take @ =1,5=d/2 +1. In that case, the re-
cursion (5.19) is a composition of two identical steps.
Each step can be described by an effective recursion

J—~J' =RMJ] =a"2"1RMJ] . (5.20)

In terms of this effective recursion function Ri‘, Eq.
(5.19) may be written as

Jccﬁ()‘ao) =R¢[R?[Jo¢8(ao)” .

But, if we view the change in lattice constant a,~ Aa, as
taking place in two steps

ao-mo-\/'x V2a,) ,

then we can consider R} to be the recursion function for
a single step. In this way, we reinterpret (5.21) as

Jaﬂ(mo) =R?[Juﬂ(ao)]

(5.21)

=AY2 RN T oslay)] (5.22)

The net result of this argument is that a particular
coupling function J , 4/,., in the gauge case obeys ex-
actly the same style of recursion as Eq. (5.17a)—which
describes the nearest-neighbor case. Thus, for these
particular couplings, the vecuvsion in the d-dimensional
gauge case is just the same as the vecuvsion in the d/2-
dimensional neavest-neighbor situation (Migdal, 1975a).
For example, the four-dimensional gauge case has
some recursions which are exactly the same (in the
Migdal approximation) as the two-dimensional nearest-
neighbor situation. Thus, if the Migdal approximation
is accurate, the four-dimensional gauge case can be
understood in terms of the much simpler problem of
nearest-neighbor interactions in two dimensions.

But the Migdal approximation s accurate when the
couplings are strong. And, it is exactly this strong-
interaction limit which is significant for discussing
whether or not the quark—string system has a phase
transition. Therefore the Migdal approach can be very
useful for determining whether the Wilson model does
in fact give both asymptotic freedom and quark trapping.

D. The Ising example (Migdal, 1975b)

To illustrate the considerations of this chapter, con-
sider a nearest-neighbor Ising model. In this case, the
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couplings K obey the one-dimensional recursion rela-
tion

K'=R}(K) ,
where, according to Eq. (3.25),
(tanhK)™ .

Therefore, from Eq. (5.17a), the x-direction coupling
for the system with nearest-neighbor interactions obeys

tanhK' =

K;(Aag) =\?"* tanh™![tanhk, (a,)]* . (5.23).
Equation (5.23) expresses the result of one recursion in
which the lattice constant increases by a factor of A.

The case d— 1 is especially interesting. In this situa-
tion, there is a fixed point for large values of K,. When
K,>1, Eq. (5.23) implies

K.(Aap) =AY [K, (ag) —1nn/2] . (5.24)
Then d—~ 1, there is a fixed point at K, = K*, where K*
goes to infinity as d— 1, in the form

2K*=1/(d-1) . (5.25)

Notice also that the recursion relation (5.24) has a
critical index

y=d-1

which goes to zero.

Clearly one dimension is a very special limit of the
Ising model. In this limit, the critical couplings go to
infinity. For d<1, the critical point disappears en-
tirely. We describe a value of the dimension at which
the critical couplings go to infinity and then the phase
transition disappears as a lower critical dimension d.
For the nearest-neighbor Ising model d F=1.

A very similar analysis can be applied to the gauge-
style coupling. In this case, for Ising variables
‘U(x,x')=+1, the basic coupling on a plaquette takes the
form (3.42). For each pair of spatial indices (a, )
there is a single coupling J 4, Which is directly analo-
gous to the K, described above.

Let us apply Eq. (5.22) to the case in which J,z is very
large. Then by using the same calculation which led
from Eq. (5.23) to Eq. (5.24), we find a recursion rela-
tion for the gauge case

(5.26)

J oLB()\ao) '—'}\d_zJocB(ao) "% ln(hd-B +A07¢ —l) . (5.27)

This recursion relation shows a lower critical dimen-
sionality dj equal to 2. Near the lower critical dimen-
sionality there is a fixed pomt at very strong values of
the coupling,

AZ'B +)x1_°‘
P I —
JaB Z(d - 2) ’ (5.28)
and a critical index
y=d-2 . (5.29)

We now make an analogy between these results for the
group Z, near d =2 and the desired results for the group
SU; at d =4. Assume for a moment that nature had one
space and one time dimension and had a “color” sym-
metry Z,. Ford=2,and strong coupling, the Migdal recur-
sion relations of the section would be reliable. They would
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show a phase transition, i.e., the structure of Fig. 9a,
for d =2 +e, with € >0. However, at € =0 there would
be no phase transition and the phase diagram would
look like Fig. 9b. Hence the theory would show both
quark trapping and asymptotic freedom. The theory,
however, would be far from trivial since a perturbation
theory in g would only work in the quark phase. Since
this phase only exists at g=0, it is very likely that the
radius of convergence of this perturbation theory would
be zero.

Two dimensions is special for a Z, gauge theory be-
cause d }=2 for this theory. According to the Migdal
approximation, this value of the lower critical dimen-
sionality is in turn derivable from the fact thatdg=1
for the Z, nearest-neighbor coupling. In fact, the gen-
eral result is that for a given representation of a given
symmetry, the lower critical dimensionality of the
gauge theory, (d¥) gauge, is related to the lower criti-
cal dimensionality of the corresponding nearest-neigh-
bor theory, (dik)glohal:

(df)gange =2 (df) global - (5.30)

Now let us turn to the consideration of the interesting
case, one in which U(x,x’) is the fundamental repre-
sentation of a particular Lie group. According to
Migdal (1975a) and to the more accurate calculations of
Brezin and Zinn-Justin (1976) and of Polyakov (1975),
the lower critical dimension for the global symmetry in
this situation is (d})a0pa1 =2 Therefore the gauge case
shows a lower critical dimensionality at d =4!

In fact, one can make a slightly (but crucially) strong-
er statement. For all the regular representations of
compact semisimple Lie groups (e.g., SU,), according
to calculational methods of Brezin and Zinn-Justin
(1976), there will be no phase transition in the d=2
nearest-neighbor case and consequently no phase tran-
sition in the d =4 gauge case. Therefore, if the string-—
string interactions dominated the quark-string inter-
action, the strings would show no phase transition. In
this case, we would indeed obtain the desired phase
diagram, i.e., Fig. 9b. We would then have a theory
containing as we wish both asymptotic freedom and
trapping. It would be near-critical (since d}=4), so it
might even be Lorentz invariant. What could be more
satisfying!

But there is more. Quantum electrodynamics can be
expressed in this same language, with a symmetry
group U,, an Abelian group. The corresponding near-
est-neighbor problem is called the XY model. For this
special case, all proofs of the non-existence (Polyakov,
1975; Brezin and Zinn-Justin, 1976) of a phase transi-
tion at d# fail. In fact, there are plausible arguments
which suggest the existence of a phase transition at d,
perhaps of the nasty nature shown by the phase diagram
9c. But this phase transition is quite desirable from
the point of view of experiment. It permits the obser-
vation of electrons and positrons and also permits the
theory to not be asymptotically free.

However, the reader should be aware that all of the
analysis of this section depends on the idea that the
strings determine their own interactions with no help
from the quarks. In the Migdal approximation, this
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idea is valid. Different couplings can be moved inde-
pendently of one another in this approximation. But, in
the real world, the quarks may enter into the string re-
cursion relations in an essential way and thereby invali-
date the reasoning outlined here. In fact, the analyses
of Gross and Wilczek (1973) and Politzer (1973) show
that as the number of flavors increases, the quarks in
fact do produce a phase transition in the string system.

VI. FIXED POINT PHENOMENOLOGY

Before analyzing the Migdal-style recursion rela-
tions, we go through a digression in which we discuss
the physical interpretation of recursion equations and
their fixed points. We are particularly interested in
surveying the meaning of a lower critical dimensional-
ity and of a marginal critical index, i.e., an index y
which.goes to zero. The basis for this section is, of
course, Wilson’s (1970) recognition of the importance of
fixed points and his concern (1975b) with marginal vari-
ables. The first explicit treatment of such variables is
in Kadanoff and Wegner (1971). The beautiful mathe-
matical formulation of fixed point behavior is largely
due to Wegner (1972 and 1973).

A. A first example

For a system with the Ising model symmetry o, - -0,
one can follow Wilson and Fisher (1972) and draw a
plot of critical indices versus dimensionality. For ex-
ample, of one looks at the critical index y, which ap-
pears in the recursion relation for the deviation of the
coupling strength from its critical value

(Kl—K*)I I)\-yl(Kl—K*) )

one can draw a picture like Fig. 12. Here the physical
quantity of interest is not really y, but instead v=1/y,
which is defined by the statement that the inverse co-

herence length (i.e., mass) behaves near critically as

£ =m~ (K, - K%’ (6.1)

Figure 12 contains a description of two different fixed
points. (There are actually many, many more). There
are the nontrivial Ising-like fixed point and the Gaus-
sian fixed point. Notice that these cross at an upper
“critical” dimensionality (namely d =4) and that the
Ising fixed point disappears at the lower “critical” di-
mensionality (d=1).

Y
3 b
2 -
GAUSSIAN FIXED POINT
NON-TRIVIAL
I \_/anso POINT
fo) 1 1 1 i - d
I 2 3 4 5
LOWER UPPER
CRITICAL CRITICAL
DIMENSION DIMENSION

FIG. 12. Critical index y,, plotted against dimensionality.
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One of the major purposes of a phenomenology of
fixed points is to explain and describe the behavior in
the neighborhood of these critical dimensionalities.

B. Wegner variables, free energy, and scaling

To form this explanation, we begin from a recursion
relation

K' =RMK]

This expresses the new coupling functions K’ as a func-
tion of the old ones K, when the lattice constant is
changed by a factor of A, i.e.,

a,—~Aa, . (6.2)

If we express the coupling functions K in terms of a set
of coupling parameters K then the basic recursion for
the parameters may be written as

K’ =RMK) . (6.3)

Once we have picked the form of the transformation
function T'(4,0) the recursion relation (6.3) is well-de-
fined. It may have one or several or a continuum of
fixed points. We pick a given fixed point K*, which
obeys

K*=RM(K# . (6.4)
We expand about this fixed point by writing K, = K} + h,,
with 2, < 1. Then, to first order inz, Eq. (6.3) may be
expanded as

h& = ;Baﬂhﬂ (6.5)
where
oR) (K)
= Zral\l) 6.6
BOLB 8h5 K=Kk ( )

Then we form the eigenvectors of Eq. (6.5) by writing
the linear combinations

hi= 2:, Usaha

which diagonalize B,g. These linear combinations then
obey

(6.7)

DY PN (6.8)

Here we have written the eigenvalue of B, as A”i. This
approach then provides a full description of all first-
order deviations from criticality and from the fixed
point. But one can go further. One can construct the
Wegner (1972) functions

hy=h;(K-K¥ ,

which have a power series expansion in the form

h, =¥ U{ahoc +;Ui2¢xﬂhccha Foeve

when U, U?, ... are chosen correctly the Wegner func-
tions obey Eq. (6.8) for all values of #,. Wegner has
described how to perform this construction. It will
work whenever the y; are incommensurate, i.e., when-
ever

Z y;m;# 0

i

(6.9)



288 Leo P. Kadanoff: Application of renormalization to quarks and strings

for any set of positive or negative integers m;.

The most significant kind of failure of Eq. (6.9) occurs
when one of the y; equals zero. But, for the moment,
let us ignore this case of a marginal variable and all
other failures of Eq. (6.9) and assume that Eq. (6.8) is
true arbitrarily far away from the critical point. This
assumption enables us to analyze the behavior of any
quantity with a simple scale dependence. Consider, for
example, an inverse coherence length or mass defined
by

£ =m=M(K)/a, - (6.10)

Express M as a function of the Wegner variables ;.
Then the scale invariance of the physical mass implies
that M(z) obeys

MM 1h ,N2h,, . ..)=AMG By, oL) (6.11)
Therefore M must obey the homogeneity requirement »
MUy, hy,y . ) =hY M,/ 02, ko /B0, . ) (6.12a)
with
6;=y;/y, - (6.12Db)

Here M is called a scaling function.

Some of the h;’s satisfy Eq. (6.12) in a very simple
way: they do not appear in this or any other quantity
describing the critical behavior. These redundant
variables may be safely ignored.

The remaining variables may be arranged into three
categories according to the sign of y;. For the three

. possible cases we say that

y; >0 relevant

if{y; =0 then k; is{marginal

;<0 irrelevant

For most purposes one can neglect the irrelevant
variables. In statistical physics they are neglected be-
cause one is interested in long-ranged correlations
which may be studied as A —~« and in this limit they
vanish. In particle physics they are set equal to zero
so that the action may have a well-defined limit as M
-0, i.e., for zero lattice constant.

If we throw away these variables, then the mass M
depends upon only a few different variables, the small
class for which ;= 0. This mass is then a universal
function of any of a few variables. This universality is
a justification for studying model problems since these
models can well be sufficient for establishing all the
important functional dependence of such quantities as
M.

N

C. Universality failure and marginal variables

The analysis of the previous section fails whenever
Eq. (6.9) fails. The most interesting case of this kind
occurs when we have a marginal variable, i.e., one
with y; =0.

This marginality may take several forms. The sim-~
plest case conceptually is the one in which the marginal
Wegner variable, %, Simply obeys
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Ahar = B (6.13)

for a whole range of values of #,,,. Then we have a
case in which the fixed point K*, the scaling function M,
and all the other critical indices y; can be continuous
functions of this one (or perhaps several) marginal var-
iables. This case is depicted in Fig. 3.4c and is real-
ized in Baxter’s d =2 solution of the 8-vertex model.
Luther and Scalapino (1976) have suggested that there
are two marginal variables of this type in the two-di-
mensional XY model.

Another kind of failure occurs when the recursion
equation takes the form

hr’nar = hmar +b .

In one sense, this equation says that there is no fixed
point. In another sense, we “almost” have a fixed
point. If, for example, A =2 then a transition through
n steps changes q, into 2"¢, and gives

h mar (znao) =h mar (ao) +bn
or (6.14)
hmar (/\ ao) = Nmar (a()) +b ].ngk N

This very slow motion away from a fixed point is char-
acteristic of the behavior at the lower critical dimen-
sionality at which the phase transition just barely dis-
appears.

Notice that Eq. (6.14) exactly describes the Ising mo-
del recursion at its lower critical dimension, i.e., Eq.
(3.26).

A third conceivable behavior is given by the recursion
relation

h'=h+bh* .

If h is small, and the basic step is 2, this equation may
be written as

(2 lao) - h(zﬂao) +b[h(2"a0)J2 .

Let h,=1(2""'a,) and assume & varies slowly with n.
Then

dn,

dn =bhn
so that
1
= 0o
or (6.15)
h«()\ao) = h(ao)

1 - h(ay)blog,x *

If br(a,) is negative, then after many iterations iZ(rag)
will very slowly approach zero. If, on the other hand,
bh(a,) is positive, after a large number of iterations
h(ra,) will get very far from zero, and we will ap-
proach an entirely different coupling structure.

This type of behavior is characteristic of a situation
in which there are two fixed points with very similar
physical behavior which approach one another. For ex-
ample, at dimensionality 4, the Gaussian fixed point
and the Ising-type fixed point become essentially iden-
tical in all of the critical indices and critical behavior.
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The variable which takes you from one of these fixed
points to the other is 2 and its slow charge reflects the
degeneracy between these two solutions. The logarithm
in Eq. (6.15) is reflected in logarithms which show up
in the thermodynamic behavior at these “upper” criti-
cal dimensionalities.

D. Stability

To see this behavior in more detail, we plot in ana-
logy to Figure 12 the second largest critical index for
a variable which is even in ¢. This plot is Fig. 13.

From this figure it follows that the nontrivial fixed
point has an extra thermodynamically relevant variable
h, at dimensionalities above four, while the Gaussian
fixed point has this extra variable at dimensionalities
below four.

To see the consequences of these extra variables, we
should turn to an examination of the standard relevant
variables. These include:

(1) 2,, which is just a constant term in the action of
the Hamiltonian and uninteresting.

(2) h,, which physically represents a deviation of the
coupling from its critical strength, i.e., is T —T, or
—(K-K*. Asa, grows to Aa, the action for the system
is pushed further and further from its critical point so
that the coherence length—which is measured in units
of a,—may remain fixed. Thus renormalization in-
creases the value of this and every other thermodynam-
ically relevant variable.

(3) 24, a relevant variable, whichis odd in the spin and
represents a symmetry breaking term like a magnetic
field. This symmetry breaking term also grows and
forces one away from the critical point as one does
successive renormalizations.

To get to the critical point, the experimentalist ad-
justs the temperature to set k, =0. Either nature—or
the experimentalist—adjusts the symmetry breaking
term to zero. Then what happens to #2,? Assume that
we are “near” a Gaussian fixed point at say d =3. As-
sume %, is small but not zero. Nonetheless k,# 0 means
we are not at the Gaussian fixed point. How can we cal-
calculate where we are? We observe the system on a
large distance scale. To describe this observation, the
theorist renormalizes with A>1. In this renormaliza-
tion 2, grows and grows and pushes the system toward

Y2
—— GAUSSIAN
UNSTABLE
I~ FIXED -—~= NON-TRIVIAL
POINTS .
o -

rd
- UNSTABLE
FIXED

POINTS

| 1 1 d
3 4 5

FIG. 13. Relative stability of two fixed points.
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the competitive fixed point which is the nontrivial fixed
point.

We conclude that in statistical systems we will natur-
ally observe only that fixed point with the fewest rele-
vant variables. These fixed points are termed the
“most stable” fixed points. For d <4 the nontrivial
fixed point is most stable. For d>4 the Gaussian fixed
point is most stable.

VII. THE MIGDAL RECURSION FORMULAE APPLIED
TO THE QUARK-STRING SYSTEM

The Migdal-style recursion formulae can be applied
quite directly to the Wilson action defined by Egs. (2.17),
(2.18), and (2.19). The pieces of this calculation are
already before us. The quarks have a nearest-neighbor
coupling and can be attacked via the method of Sec. V.B—
and especially with the aid of the recursion formula

- (5.17b). The strings have a gauge-style coupling and can

be attacked via the method of Sec. V.C —with the key
equation being (5.22) for this case.

Notice that both types of potential-moving approxima-
tion can be applied simultaneously. In the motion, the
different types of potential bonds do not interfere with
each other. Thus, in this first analysis, we can handle
the different parts of the recursion problem quite inde-
pendently of one another. [For descriptions of perturba-
tion theories on lattices see Wilson (1975a) and Baluni
and Willemsen (1976).]

A. Recursion relation for quarks

To handle the quarks, we write the quark part of the
action in the form of a sum of nearest-neighbor coupling
terms. In particular, we write the A, of Eq. (2.18) as

Aw=ZKuf(¢(x),z,b(x+éuao), Uk, x+€,a,)). (7.1)

Xy b

To fit the form (2.18), we take the _coupling function to be
K, (0,9, U)=-K%, Z @i+ V3 0%)
i
+K e S [0, -y )U, 3,
i
+ P A+y )UN,).  (1.2)

Expression (7.2) contains two coupling constants: The
hopping parameter K ., and a normalization parameter

.K°.. We arrange these in a vector
uf ng

K,, =K, K,,). (7.3)

Our starting point is a symmetrical situation in which
K,, is independent of u. To make the calculation as
symmetrical as possible we also choose K(Lf to be u in-
dependent. Then, to match Eq. (2.26), we must choose
the normalization parameter to be

Kﬁ,:l/zd. (7.4)
Thus we begin from
K“f=(1/2d,K,) . (7.5)

Now we apply a decimation in the x direction, u =1.
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The couplings in the other directions simply increase by
a factor of » as in Eq. (5.16b), i.e.,

K, =\KS,,K,,) for u>1.

u,

(7.6)

On the other hand, the new coupling in the “1” direction
is given by

eK'lf W, ', U ) trneklf(w.n,ulwqf(n,w’, Uyp)

for the particular case in which A=2. Except for an ad-
ditive constant, Kj,(,3’, U’) turns out to be exactly of
the form (7.2) with a set of new couplings

K]'.f= (K?f: (Klf)z/K‘l)f) R

and a new U which is

U”= Z (Ul)ik(UZ)kj .
kR

(7.7)

(7.8)

Thus, as we would wish, the longer string is represented
by a variable U’ which is simply the matrix product of
the variables representing its component parts.

Equation (7.7) describes the case A=2. By composing
n =log,\ transformations of the form (7.7), we find the
more general result

K;f= gﬂ K:f/(Kgf)h-l)

which represents the lattice constant in the x direction
by a factor of X.

Now imagine changing successively the lattice con-
stants in the 1,2, ..., d direction by a factor of A. Then
we would have to apply d—1 transforms of the form
(7.6) and one transform of the form (7.9). The net result
is that for all p the new coupling is

K.s= AU Kﬁf/(Kﬁf)h-l) :

73]

(7.9)

Given the starting point (7.5) we have

K/ ,=M"Y(1/2d, (2dK,)*/2d) . (7.10)

Equation (7.10) has one satisfactory feature and one
unsatisfactory feature. The new couplings are indepen-
dent of direction, as we would like. However, the
normalization term K° is no longer given by Eq. (7.4),
but instead by

K, =x*"1/2d .

We would like to recover the structure of our original
action in which K°is 1/2d. Fortunately we can very
easily redefine the size of our couplings by making the
replacement

PA) =2z (1)

This transformation changes no correlation functions

or equations of motion; it merely changes a constant
additive term in the action. Under this new “renormali-
zation” transformation all the couplings K, , change ac-
cording to

Kuf - Kufzizi .

(7.11)

Hence we pick Z,=1"“"1/2 and derive from (7.10) the
‘new coupling

K ,=(1/2d, (2dK,)*/2d).

We have now constructed the renormalization so that
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the normalization term K?L, is left invariant by the trans-
formation, the.only change being in K, which is seen to
obey the recursion relation

K (Aa,) =[2dK [a,)]*/2d . (7.12)

Equation (7.12) is our desired result, a simple recursion
relation for the hopping constant obtained from the
Migdal scheme.

B. Interpretation of the quark recursion formula

Equation (7.16) has exactly the same structure as the
one-dimensional recursion formula, (3.16)

K, (\ay) =3[2K (a,)]*.

This latter formula was derived for the special case
Ux,x’)=1, but it applies equally for arbitrary U. Hence
Eq. (7.12) is exact, as it must be, when d=1.

Our new recursion formula has two major conse-
quences: First, there is a fixed point at

K¥=1/2d. (7.13)

Secondly, at this fixed point, there is a critical index
y=1 (7.14)

just as in one dimension.

We can check these results against the solvable special
case U(x,x’)=1. In that case, the fixed point and criti-
cal index are exactly those of Eq. (7.13) and (7.14).
Hence the consequences of Eq. (7.12) are right at least
in this special limit. Since this limit is essentially the
asymptotic freedom limit, we have set up a formalism
which at least generates the known answers in that
asymptotic situation.

But this result is certainly not new to us. Consider
our discussion of the limit a;—~ 0 in Sec. II.LE. Then we
wrote

K,=(1/2d)(1 —=ma,/d) (2.25)

and considered the mass m, to be a scale invariant
quantity. Equation (2.25) has an a,—0 limit (a fixed
point) at exactly the value (7.13). The correct term
scales linearly with a,, which is the statement (7.14).

Thus we have learned that the Migdal approach gen-
erates a simple recursion formula for K, which is at
least right in the limit a,—~0. '

C. Recursion relation for the strings: One-dimensional
recursion

The gauge theory is represented in terms of matrix
variables U which form a homogeneous space for the
symmetry group in question. In particular, each
plaquette contains a coupling of the form J(U,), where
U, is the product of U’s around the square. We choose
J(U,) real and demand that J be parity independent, i.e.,

J(U,) =J(U}) . (7.15)
In addition, the symmetry requires that
J(uUcu*)=J(Uc) (7.16)

for all #» which are matrix representation of the symme-
try group. The transformation matrix « will be of ex-

actly the same type as the variables U and their product
U,. Finally, the homogeneity of the space demands that
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for any two matrices U and U’ we can constructa « which
converts U into U’ via

U'=uU. (7.17)

This gauge theory maps into a one-dimensional near-
est-neighbor theory in which K(U,, U,) has the structure

E(U,, Uy =J(U,U}).

Hence the one-dimensional recursion formula can be
written for A=2, in the form

+

PR 7w, uher wud

e )=tr e (7.18)

The most convenient way of writing Eq. (7.18) comes
from the choice of U, and U,

U, =Uj=UY?.
Then (7.18) takes the form

TU Ty 2ot wud/ ®

e =tr e (7.19)

since U is unitary.

The usual way of parametrizing U starts from the gen-
erators A, of the group representation. Theh, since U
is unitary, it may be written as

U =expif, A, = expiX . (7.20)

Here there is an implied sum over a. The parameters
6, are all real.

We are interested in analyzing Eq. (7.19) in the strong
coupling limit. In this limit, J(U) is largest for small
values of 6,. Then it is reasonable to expand J(U) in the
form

J(U):JO-Z—J'trace x2+ i trace x4 e - (7.21)

4!
¥or most of our purposes, we need not worry about the
constant term J,, while the higher-order term J, will
prove to be negligible, when J is sufficiently large.
The trace in Eq. (7.21) is, of course, a diagonal sum
over the indices of the representation matrix X.

We shall need two properties of the generators A :
their commutators which can be written in the form

[Aa’ Ab] = fabcAc (7 .22)
and the trace of their product, which we shall assume
to be

traceA, A, =0,C . (7.23)

We take C to be positive so that the Lie group is com-
pact. - Finally, since 6, is required to be small by the
condition that the coupling constant J is large, one can
replace the invariant sum over U in Eq. (7.19) by a sim-
ple integral over the 6, i.e.,

tr,~ f I1 a0.= [ ao.
a

Now the calculation is all set up. We write

(7.24)

Ur=explig,A,)=expiX .
Then Eq. (7.19) reads
exp[-3J' Co,¢,] ~fd9eXp[Y(6,</?)]
= [ a0 expla (U¥20") + 7 (V).
(7.25)
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We expand the exponent on the right-hand side of Eq.
(7.25) in a power series in ¢,and 6,. If we employ only
the coupling J and not J,, we discover —after some alge-
bra-—that :

Y6, ¢) =- {29<<%¢4+ 29a9a>

JC )
+ _4—8_¢aeb(pa’9b'fabcfa’b’c' .

The integrals in Eq. (7.25) can now be performed direct-
ly to give the result

e=Y'CVaval2~ p=(TC/2)0q0a/2 50q%a’ fabcFa’be/ 24 (7.26)

In one sense, Eq. (7.26) is a very satisfactory result.
We made the assumption that we need include only the
Gaussian term in J but not the term in J, in Eq. (7.21).
Now (7.26) shows that only bilinear terms in ¢, emerge
after the recursion. This result is then consistent in
that sense. But the quadratic form on the left-hand side
of (7.26) is diagonal and a-independent, while the right-
hand side does not seem to be diagonal. This appears
inconsistent. However, if the Lie group is compact, we
can always choose the A, so that the terms in f come to
a diagonal form

Z fabcfa' be ™ cf 6aa'
be

with C, being a positive constant independent of a. In
this way we derive the one-dimensional strong-coupling
recursion relation

gr=d G 1
2 C 12
for A=2. By doing % =log,\ such recursions, we find the

general strong-coupling recursion formula

J'=‘_{_9i(h—1)
A C 6

) : (7.27)

D. Nearest-neighbor interactions in 2 + ¢ dimensions

Equation (7.27) can be applied to describe the phase
transition behavior for a nearest-neighbor coupling of
variables which are the regular representation of the
symmetry group. However, notice that most often in
statistical physics we do not deal with this particular
representation. For example, when Brezin and Zinn-
Justin (1976) attacked the group of rotations in z-dimen-
sional Euclidean space their variables were not rotation
matrices—which is the case we just analyzed—but in-
stead n-component unit vectors.

The only regular representation of a Lie group con-
ventionally treated in statistical physics is the repre-
sentation of Ul. This Abelian group has U=e!’. Then
one can take a nearest-neighbor coupling of the form

K(U,, U,)=J(et®1o2) .

In the particular case in which J(e??) is Jcose, then the
model under consideration is called the XY or planar
model. It is equivalent to the interaction of two-com-
ponent unit vectors. In this special case, C,=0.

Let us analyze the structure of the recursions for the
nearest-neighbor case in d dimensions via the Migdal
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approximation. From Egs. (7.27) and (5.17a) one finds
that after a change in lattice constant by a factor of A
there is a new coupling in the x direction, J (xa,),
which obeys

A=
J.(nag) =xi2 (a) - S =1 (7.28)
X x C 6
Consequently, there is a fixed point at
C;, x-1
ko ZF DT -
I3 T 6C (d-2)Inx (7.29)

for d approximately equal to 2. Equation (7.28) also im-
plies a critical index

y=d-2=vt. (7.30)

Notice that as d—2, y becomes marginal. When C,>0,
i.e., when the group is non-Abelian, the recursion
equation has the structure (6.14) at two dimensions.
Then, step by step, each recursion slowly weakens the
coupling. Hence in this case there is no phase transition
at d=2. There is a phase transition for d>2. Thence
d¥ =2 for these examples of non-Abelian nearest-neigh-
bor interactions.

But, for the elementary particle application, the most
importantfactis thatatthe lower critical dimensionality
the phase transition disappears or is rather pushed to
zero temperature.

The Ul case is different. Here the group is Abelian
so that C, vanishes. Then at two dimensions the recur-
sion relation is one again marginal but is apparently of
the form (6.13). [This form has been more carefully
demonstrated by Zittartz (1976) and the correlation
functions calculated by Berezinski (1971).] Thus we
have very strong indications that at d =2 the XY problem
has a line of fixed points and shows the structure plotted
in Fig. 5c¢.2

E. Gauge interactions in 4 + ¢ dimensions

The Migdal-style analysis of the string interactions
in 4+ ¢ dimensions is precisely similar to the line of
argument we have just carried out for the nearest-
neighbor case.

The one-dimensional recursion formula (7.27) can be
written

1 A =1
]

From this formula and Eq. (5.22) we derive the Migdal-
style recursion formula for the coupling J,g, which de-
scribes gauge plaquettes in the -3 plane. This recur-
sion formula is

(7.31)

A—-1
Jap(ay) =x?7* [Jaﬂ (a,) "—%L 5 ”‘3_8)] .

(7.32)

Consequently the fixed point is given by

’See Zittartz (1976), Jose (1976), Berezinskii (1971, 1972),
Wegner (1971b), Kosterlitz and Thouless (1973), Kosterlitz
(1974), and Luther and Scalapino (1976), who discuss the two-
dimensional case. Adler (1972) suggests a rather similar pic-
ture for the Ul gauge theory at d=4.
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Ja = Cr A=l D N
“®76C d-4  Inx

(7.33)

for dimensionality near 4, while the critical index is

y=d—4. (7.34)

Now four dimensions is the lower critical dimension-
ality for this phase transition. Just as in the nearest-
neighbor situation we must distinguish between two
cases: The Abelian situation (the group Ul) in which
C; =0 and the non-Abelian case when C,>0.

The color carrying strings are representations of SU,
symmetry and fall therefore into the non-Abelian case.
For this situation, there is no phase transition at 4 =4.
Of course, this is exactly the result we would have
wanted since then the situation is described by the phase
diagram of Fig. 9b. As indicated in Sec. IV, this phase
diagram implies both asymptotic freedom and quark
trapping.

On the other hand, electromagnetism is represented
by strings which have Abelian Ul symmetry. Our line
of argument implies the existence of a whole line of
fixed points for this case, as depicted in Fig. 9c. There
are two closely related ways of forming this conclusion.
First, one can directly analyze the four-dimensional
gauge theory as was done by Polyakov (1975). Alterna-
tively, one can follow Migdal’s (1975a, 1975b) line of
argument to map the gauge problem into the XY model
and then employ perturbation theory about J =« to find
[see Zittantz (1976), Berezenski (1971), and Wegner
(1971b)] a line of fixed points. Either line of argument
leaves gaps, so that we should not consider the picture
of Fig. 9c to be necessarily meaningful. On the other
hand, one can correctly say that the lines of argument
which imply that quarks ave at once trapped and asymp -
totically free fail to go through for electrons coupled by
electromagnetism. Therefore, quantum electrody-
namics does not provide a counter argument to the line
of reasoning that we have applied to quarks.

F. An assessment

Are these conclusions about the behavior of a quark-
string system reliable? How far can we trust this kind
of application of the Migdal approximation? In my view,
some parts of the argument are quite trustworthy, while
other parts hide some very real opportunities for sub-
stantial errors.

The Migdal-style argument seems to me to be most
reliable when it is used to assess the possibility of a
phase transition for a pure system of interacting strings
at four dimensions and when these strings are describ-
able as representations of a compact, non-Abelian
group. These arguments basically describe the sign of
the p-function (i.e., the direction of the arrows in Fig.
9) near zero and infinite couplings. These signs can be
accurately calculated, I believe, for this situation.
Then if the values of the B~function at these points have
the same sign (i.e., if the arrows point in the same di-
rection) there will be an even number of fixed points in
the interval between zero and infinite coupling. I they
have opposite signs, there will be an odd number of
fixed points. We have concluded that in the non-Abelian
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situation the signs are the same. Hence there are an
even number of fixed points.

We hope that this even number is zero. We can make
some physical arguments [see Egs. (4.9)] about one kind
of phase transition which might occur, producing a
change in correlation structure from Eq. (4.9a) to Eq.
(4.9b). But, it is harder to imagine how two or four or
six phase transitions might take place. Thus we do
have some foundation for our hope that in the non-Abe-
lian case there might be no phase transition at all.

On the other hand, in the Abelian four-dimensional
case, the 8 function as defined by

9 Ind (\a,)

B(J) = ST .

vanishes at J =«. In my view, one cannot form a re-
liable conclusion about the phase transition behavior
from this fact alone.

The quarks further complicate this story. The analy-
sis of this paper has been carried out as if the quarks
did not play -an essential role in the phase transition.
They were merely probes which enabled us to observe
this transition or its absence. However, even though
this point of view is consistent with the Migdal approxi-
mation scheme, it has a rather doubtful validity. No-
tice that the quarks are also undergoing a near phase
transition as ¢,—~0. When two phase transitions occur
together, they may interfere in a very subtle and com-
plex manner. Notice, for example, that the Baxter
(1971, 1972) phase transition may be viewed as the re-
sult of the interaction between two Ising models which
are both going critical at the same time (Kadanoff and
Wegner, 1971). And the Baxter solution is much richer
and more complex than the Onsager solution of the Ising
model. Similarly, the quark-string phase transition
may be much richer than the phase transition of either
quarks or strings alone.

An additional weakness arises because the quarks are
fermions. Our potential moving argument is partially
predicted upon a “variational principle.” The “vari-
ational principle” in turn gives lower bounds on the free
energy whenever the basic probability function Tr is a
sum with positive semidefinite weights. This positivity
fails for fermion variables. The best we can say, then,
is that our error is second order in the moved potential,
but we cannot assess the sign of the error.

This problem is made even more serious because the
fermion problem does not have a “strong” interaction.
In this case one-half of our argument for the Migdal ap-
proximation—that part based upon the strength of the
interaction—is absent. Thus our argument about phase
transitions in the coupled quark-string system is far
from watertight. In fact it is wrong when there are too
many different flavors. To make the situation even
worse, we have no experience with any analogous re-
normalization calculations in any statistical mechanical
calculation involving fermions on lattices.

On the other hand, there is some calculational evi~
dence that we are moving in the right direction. In re-
cent calculations, W. Bardeen and R. B. Pearson (1976)
and also Kogut and Suskind (1975) have formulated par-
tial lattice versions of the theory outlined here. These
groups, respectively, have 2 and 1 continuum coordi-
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nates and consequently d —2 and d - 1 dimensional lat-
tices. These partial lattice theories have the advantage
that they can include chiral invariance (W =ys; $—~
—-3vs) in a convenient manner. These groups then at-
tempt calculations with a fair success in giving, re-
spectively, the leading Regge trajectories, the struc-
ture of the two-dimensional theory, and the lowest had-
ron masses.?

G. For the future

It is likely that further developments from the point of
view presented in this paper would do well to include
chiral symmetry and perhaps to allow the theory to
spontaneously break that symmetry. Thus the under-
lying Lagrangian used in this paper may well have to be
modified in some crucial respects in order to make
proper contact with the physics.

In addition some kinds of technical progress will be
necessary in order to make any kind of lattice theory
into a useful tool. At the moment, we have only a very
slight acquaintance with renormalization calculations
involving fermions. It would be very helpful if this ex-
perience were extended through approximate renormal-
ization calculations (perhaps on lattices) of such prob-
lemsas the Schwinger (1962) model, the massive Thirring
(1958) model [see Glaser (1958), Johnson (1961), Sum-
merfield (1963), and Luther (1976)], and the backward
scattering model [see Luther and Emery (1974)]. In-
deed even some experience with purely Gaussian mod-
els with a bilinear action would be useful.

Notice that most approximate renormalization cal-
culations performed to date describe thermodynamic
functions rather than correlation functions. For the
elementary particle example, the correlation functions
are crucial since these functions define both the masses
and the scattering amplitudes. It would be very useful
if the relevant approximations could be extended to the
calculation of correlation functions and the results
checked against known accurate calculations.

Kogut and Suskind have pointed the way to a worth-
while parallel development: the use of perturbation
theory about strong coupling in conjunction with series
expansion techniques. One can hope that this method
will yield expressions for many of the quantities of
physical interest.

The problems of quarks and strings are indeed more
complex than those problems which have been attacked
in statistical physics. Nonetheless, we can hope and
expect that the basic methods of modern statistical
renormalization theory can be applied to gain some
qualitative and indeed quantitative picture of the conse-
quences of a quark—string model of elementary parti-
cles.

APPENDIX A. RECURSION RELATION FOR

QUARKS IN ONE DIMENSION

We would like to calculate the trace in Eq. (3.10) for
the case in which the coupling function involves fermion

3See Bardeen and Pearson (1976), Kogut and Suskind (1974,
1975, 1976), Carrol et al. (1975), Banks et al. (1976).
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variables and is of the form (3.13). The quantity to be
calculated is

KW Sty om12TY=1/2T G0 QK [T (my;) 045 (my, )9

X X [¥"(1+y,) o+5(L+yy )¥] . (A1)

Here o, ¥, and y’ are anticommuting fermion variables,
and y, is a matrix with eigenvalues +1.

To calculate the trace (Al), we decompose the spinor
variable o into parts which are eigenvectors of v, with
eigenvalue 1. In particular, we write

o.=3(1y,)o, (A2)
Fyo=30(1£y,)
and notice, then, that the trace over ¢ can be decom-
posed into separate traces over ¢, and o_:

tr, =tr_, tr _. (A3)
Thus Eq. (Al) implies

K", 9") == 599 = 39"y’ +a, +a_, (A4)
where

a,=In tra+e'5+ 0, oK V'(14y;) o, kO, (Ley )Y (A5)
and

a.=Intr,_ "% 0= gK¥(y1)o- o () (a6)

Because the fermion variables have squares which van-
ish
»P=79%=0 (AT)

[see Eq. (1.10)], any exponential or logarithm of an ex-
pression involving these variables is very simple. In
particular, for any pair of components of the spinors

Yo ¥
ekaawﬁ=1+K$al,[)ﬂ 3 (AB)
ln(a +b$alpﬂ):1na+b/a$alpﬂ . (A9)

Thus, if the projection operation (A2) leaves only a
single component in ¢, and in ¢_, expression (A5) may
be expanded as

a+=1ntr0+ 1-5,0)[1+K9'(1+y,)0,]
X[1+K5, (L +y,)y]. (A10)
Because of (A7), this may be further simplified to
a, =1ntrc+[1 -G, 0, +KP' (1+y,) 0, +K5,(L+y,) 9
+K2P'(1+y)o, o, (1+y,)9]. (Al11)
Then Eq. (1.11) permits the evaluation of the trace in
the form
a,=In-1-K2p"(1+y,)%y
so that Eq. (AQ) implies

a,=(n—-1)+2K2y'(1+y,) . (A12)

If the projection (A2) left » independent components in
o,, the result for g, would be just the same, except that
In ~ 1 would be replaced by #»In—-1. When a, and a_ are
added together as in Eq. (A4), this trivial term cancels
out leaving
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K", 0") == 33 = 59"’
+2K2$'(1+'y1)4) +2K2$(1 —'yl)zj)’. (A13)

Eq. (A13) is the result discussed in Sec. III.C of the
text.

APPENDIX B. SOLVING THE TWO-DIMENSIONAL
GAUGE THEORY VIA A GAUGE TRANSFORM

It is instructive to find the solution of the two-dimen-
sional gauge theory by using a gauge transformation
argument. The basic goal is to reduce the two-dimen-
sional gauge problem to a nearest-neighbor problem
with the aid of a more physical argument than that em-
ployed in Sec. IIL.E.

Start with the fragment of lattice shown in Fig. 14a.
The lattice sites are labeled (z,) with n and m being
the x and y coordinates of the sites in units of the lat-
tice constant. The basic action is expressed in terms
of the variables U, . wrm [=Unr, mrs am) "] where (n,m)
and (n’,m’) are nearest-neighbor sites. In particular
it is a function of the product variables '

UI«(W,WI) =U,, m nom+1Un,ma1s nat, mel
><Un+1,m+1;ru—l,mUm+1,m;n,m’ (Bl)

In terms of these product variables, the action takes
the form

AlU] =3 J(Urln,m)). (B2)
n,m
Let U be representations of SU,, specifically unit

determinant unitary matrices. Then, in Eq. (B1), we
imply matrix multiplication over the internal indices of
the matrices. The trace is a diagonal sum over these
matrix indices. Now, imagine a calculation in which we
find the partition function

Z =Try Y (B3)

by doing an invariant sum over all these SU, matrices.
This sum is invariant under the replacement of all the
U’s according to U—~U’ with

roms ntme =U0, M) Uppe e [’ ,m )] 71 (B4)

SITE OF GAUGE
TRANSFORMS

+
) —> STRING
a VARIABLES

¢ COUPLED
C m UNIT

4\ STRING
VARIABLES

S Sy WUy Wy W WSy WO

------ COUPLING

FIG. 14. Two-dimensional gauge problem before (a) and after
(b) the choice of a special gauge.
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In Eq. (B4), u(n,m) is an n by n special unitary matrix,
and matrix multiplication over the internal indices is
understood.

For simplicity, assume that the summation in Eq.
(B2) is over m from - to « but only covers n =1 to .
Now choose a special gauge to perform the sum (B3).
Basically, we wish to choose a gauge in which the vec-
tor potential in the x direction vanishes. To do this we
take

u(l,m)=1 (B5)
where 1 stands for the unit matrix, and

ulp+1,m) =[ule,m)U,, pips1,m] "+ (B6)

Given this special choice of u, the variables in the new
gauge are very simple for all strings stretched in the
x direction. In fact, according to Eqs. (B4) and (B6)

U, =1, ) (B7)

nymyntl,m __

In this way we have “gauged away” one-half of the
original variables. If we then choose the particular
normalization

tr,1=1,
the sum (B3) may be simplified to the form
(B8)

Here the prime on Tr indicates that we sum over only
y-direction strings. According to Egs. (B1), (B2), and
(B7), this new action still takes the form (B2)

Z =Try, V',

Alv] =3 JWr e, m) (B9)

kut now the basic argument of the function J is

Ulr(n,m)=(Un,m;n,m+1Un+1,m+1:n+1.m)' (B].O)

Notice that all strings point in the y direction. Near-
est-neighbor bits of string separated by one unit in the
x direction are coupled by Eqgs. (B9) and (B10) put there
is no coupling between strings with U, .+ With differ-
ent values of their central point (m +m’)/2. Then the
summation (B8) decomposes into a group of uncorre-
lated individual sums over variables with different
(m +m’)/2 indices. The d =2 gauge problem is thereby
reduced to a set of uncoupled d =1 nearest-neighbor
problems QED.
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