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We review the possible contributions to the muon g-factor anomaly, a.„=1/2(g„—2) which are potentially
significant for a comparison between theory and experiment at present. This includes purely quantum
electrodynamic (@ED) perturbation theory effects up to eighth order; hadronic effects at fourth and sixth
order; and wee, k interaction effects. From these sources we get a total theoretical contribution 0'.„(theory)
= (1 165 920.6~12.9)X10 ', to be compared with the latest CERN experimental result (Bailey et al. ,
1975), o.„(experiment) = (1 165 895 ~ 27) )& 10
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I. I NTRODUCT ION

*Boursier de la CEE (Communaute Economique Europee»e).
For a review of previous measurements of g- 2 see the re-

view articles by Combley and Picasso (1974) and Farley
(1975).

2For a discussion of the different theoretical contributions,
where earlier references can be found, as well as for a re-
view of the comparison between theory and experiment prior
to August 1971, see Lautrup et al. (1972).

The latest published value of the anomalous magnetic
moment of the muon measured by the CEBN Muon Stor-
age Bing Collaboration (Bailey et al. , 1975) is

a =—~ (g„—2) = (1 165 895 + 27) x 10 '.
The accuracy of this measurement represents an im-
provement by an order of magnitude with respect to the
previous result. ' Since then, the CERN Muon Storage
Bing has been in operation for a certain time and a still
further improvement in accuracy is soon expected. At
this level of precision there are contributions to a„
other than those governed by the quantum electrody-
namics of muons and electrons (QED), like hadronic ef-
fects and possibly weak interaction effects, which play
an important role. '

Progress in obtaining a theoretical value for a wor-
thy of the improving experimental accuracy has been
achieved in four directions:

(i) A more accurate determination of some of the
sixth-order QED contributions has been made, either by
analytical calculations in some cases (Barbieri and He-
middi, 1975a; Levine et a/. , 1976), or by improved nu-
merical techniques in others (Calmet and Peterman,
1973; 1975b; Cvitanovic and Kinoshita, 1974; Samuel and
Chlouber, 1976).

II. QUANTUM ElECTRODYNAMIC CONTRIBUTIONS
UP TO SIXTH QRDER

The latest WQED va, lue of n (n '= 137.035987 (29);
see Olsen and Williams, 1975) leads to the following
value for the second-order Schwinger term

a "' = a "' = n/2r = (1 161 409.835 + 0.246) x 10 '. (2.1)

3For a clear exposition of asymptotic freedom, where earlier
references can be found, see Gross and Wilczek (1973) and
Politzer (1974).

(ii) It has been shown (Kinoshita, 1967; Lautrup and
de Bafael, 1974) that certain classes of Feynman dia-
grams contributing to a are governed by a simple re-
normalization group equation. As a result, it has been
possible to evaluate a large set of eighth-order con-
tributions to a with powers of In(m„/m, ) factors (Lau-
trup and de Bafael, 1974). Many of the remaining
eighth-order contributions with potentially important
In(m /m, ) factors have also been estimated numerical-
ly (Calmet and Peterman, 1975a).

(iii) Hadronic contributions to a, which take into ac-
count the new structures in the hadronic e'e annihila-
tion cross section aH(t) have also been calculated (Bai-
ley et al. , 1975; Barger et al. , 1975; Calmet et al. ,
1976). More recently, the hadronic contributions of or-
der (o./n)' have been estimated (Calmet et a/. , 1976),
partly from the experimental information on cr„(f),
partly in a model-dependent way. An estimate of the
induced contribution to a from the asymptotic behavior
of oH(~t&7. 4 GeV) based on asymptotic freedom' has
a.iso been incorporated (Calmet et a/. , 1976).

(iv) The contribution to a from weak intera. ctions of
leptons are now unambiguously calculable within the
framework of gauge theory models with spontaneous
symmetry breakdown (Bardeen et aL, 1972; Fujikawa
et al. , 1972; Primack and Quinn, 1972).

All these contributions will be reviewed in the follow-
ing sections. Section II is devoted to QED contributions
up to sixth order; Sec. 111 to the eighth-order QED con-
tributions; Sec. IV to the hadronic contributions; and
Sec. V to the weak interaction contributions. The final
results with comments upon their significance in the
comparison between theory and experiment are given
in Sec. VI.
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The error quoted here represents an improvement by an
order of magnitude with respect to the previous one.
Note that the value of a"' has changed by about, one unit
of 10 '.

The fourth-order contributions (n' contributions) are
also well-known (Lautrup et a/. , 1972). They include
the Peterman, Sommerfield term plus mass ratio cor-
rections due to vacuum polarization

2 197 ~2 3
'

~2 1 V2
a,"'= — +—+ —g(3) ——ln2 +-

]44 ]2 4 2 45

0 ~ l

e e

FIG. 2. Two of the six. graphs of class I contributing to a,6&.

In order to describe the sixth-order contributions (n'
contributions) we shall use the same notation as Lautrup
et al. (1972).

(a) Class I (Figs. 2 and 3): 12 graphs involving scat-
tering of light by light subgraphs. Their contributions
are, respectively, '

m
3 vl 36 4 Rl ~ 1+i~

~,",'= (0.368 +0.010)(njp)'
and (Samuel and Chlouber, 1976)7

(a —a,),"' = (21,32 + 0.05)(n/~)'.

(2.6)

(2 7)

where f(3) = 1.202056903 is the Biemann g function of
argument 3. From these analytic expressions we get

a,"'= (o./w)'( —0.328 478 445) = —1772.303(l) x 10 ',
(2.2)

(a, —a,) "'= (n/n)'(1 094 260.675) = 5904.074(2) x 10-'.

(2.3)

The errors in Eqs. (2.2) and (2.3) come from the un-
certainty on n '. The contribution from the mass cor-
rection term ~', (m, /m, )' in Eq. (2.2) is larger than the
uncertainty due to n '. Numerically'

In both cases, the errors come from the integration
procedure.

(b) Class II+ Class III [Figs. 4(a), (b) and 5(a), (b)j:
they include second-order electron vacuum polarization
subgraphs and fourth-order electron vacuum polariza-
tion subgraphs. These contributions are known analyti-
ca.lly (Kinoshita, 1967; Lautrup and de Ba.fael, 1968;
Barbieri and Remiddi, 1975a). Their numerical con-
tribution is

0 yy y yy: 0 094 74 (A/7J)

(a~ —a,),"„'„,= 1.944 04(o.'/~)'.

(2.8)

(2.9)

(c) Class IV+Class V+ Class VI (Figs. 6—8): three
across-type photons; two across-type photons; one
across-type photon. These graphs do not contribute to
(a —a,), and the more precise evaluation we have gives
(Levine et al. , 1976)'

In general, the n' contribution to the muon anomaly
from a heavy lepton of mass M (M»m„) (see Fig. 1)
is (Lautrup and de Rafael, 1968)

a",'v v, , = (0.915 +0.015)(a.jp)'.
Adding Eqs. (2.6), (2.8), and (2.10) we obtain the

(2.10)

(2.4)
If the anomalous e p, events observed in the e'e an-

nihilation at SLAC (Perl et al. , 1975; Feidman, 1975)
are due to the production and decay of a M M pair with
mass M= 1.8 GeV/c', then we have FIG. 3. Two of the six graphs of class I contributing to (a~

—a, )z
(6)

a (M = 1.8 GeV) = 0.4 x 10 9. (2.5)

FIG. 1. n2 contribution to the
muon anomaly from a heavy
lepton of mass M (M»m~).

4See for example Lautrup et al. (197-2).
The mass ratio m~/me is also known with an amazing pre-

cision (Casperson et al. , 1975): m~/m~=206. 76927(17)
(0.8 ppm).

6This value has been obtained as a weighted average of re-
sults given in Cabnet and Peterman (1973), Aldins et ~l. (1970),
and Chang and Levine (unpublished).

7Previously published va, lues for this contribution are (18.4
+ 1.1)(n/71. )3 [Aldins et al. (1970)] and (19.79+0.16)(m/7t)3 [cal-
met and Peterman (1975)j. The three calculations agree on
the algebraic part of the calculation. The differences are due
to the numerical integration procedure: different choice of in-
tegration variables; differences in the integratio~ subroutines
and machine time.

The result quoted in Eq. (2.10) comes from Levine et al.
(1976). It has been, obtained by combining known analytic val-
ues with numerical values for graphs not yet known analytical-
ly. See Levine et al. (1976) and references therein.
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+ ~ ~ ~

FIG. 6. One of the six graphs
of class IV contributing to

(6)
+e, XV'

G) b)
FIG. 4. {a) One of the twelve graphs of class II contributing to

(b) One of the four graphs of class III contributing to
(6)

+e, III

sixth-order contribution to the electron anomaly'

a,"' = (1.188 + 0.025)(o./z)'. (2. 11)

a"'+a'4'+a"' = (1 165 848.1 a 1.2) x 10 '. (2.13)

III. EIGHTH-ORDER QUANTUM ELECTRODYNAMIC
CONTR I BUT I ONS

The eighth-order contribution to the muon anomaly
may be potentially significant for a comparison between
theory and experiment because of the presence of pow-
ers of 1n(m„/I, ) terms which in spite of the over-all
(n/n)~ factor may lead to large numerical values. Since
in(m /m, ) terms can only appear in the difference (a
—a,)"' it will be sufficient to limit our discussion to the
class of diagrams which contribute to this difference.

Altogether, there are 469 Feynman diagrams which,
up to terms which vanish as I,/I -0, may contribute
to (a —a, ) ~B'. They all have characteristic subgraphs
of the vacuum polarization type and/or of the light by
light scattering type with electron-type loops. Of these
469 diagrams, there are 304 which are governed by a
simple renormalization group equation of the Callan-
Symanzik type (Callan, 1970; Symanzik, 1970; 1971).
They are schematically represented in Fig. 9. Let us

This, together with the second- and fourth-order con-
tributions leads to the result

a, —= a"'~a"'+a"'= (1 159652.4+0.6) && 10 ', (2.12)

to be compared with the experimental result (Wesley
and Rich, 1971)

a',"' = (1 159 656.7 a 3.5) x 10 '.
The corresponding value of the muon anomaly ob-

tained from the previous results is

gyes, + ~ n A" ~', n =0. (3.1)

Here P(o.) is the Callan-Symanzik t'unction, known in
perturbation theory up to sixth order (de Rafael and
Rosner, 1974)"

(3.2)

Equation (3.1) summarizes the constraints on the muon
anomaly due to the renormalization group property to
all orders in n." In particular, it predicts the com-
plete ln(m /m, ) structure of the eighth-order contribu-
tion to A"(I /m„o. ), which we denote A&»(m /m, ),
in ter ms of the lower -order cons tant ter ms

B; = A(„,(m /m, = 1) i = 1, 2, 3;

and the coefficients p„p„p,. More precisely,

(3.3)

B4+C4 ln- —"+D4 ln " +E4»

(3.4)

with

&4=PiBi (3.5a) .

D, = —,
' P, P, B,+ 3P', B» (3.5b)

C, = P~Bi+ 2P.B.+ 3Pi Bs ~ (3.5c)

denote by A(m /m„n) the contribution to the muon
anomaly from the class of diagrams obtained by repla-
cing all internal photon lines in a renormalized muon
vertex by dressed photon propagators with fermion lines
of the electron type only. It has been shown by Lautrup
and de Rafael (1974) that at the limit rn /m, -~ the cor-
responding asymptotic expansion of A(rn, /m„n) which
we callA" (m, /m„n) obeys, order by order in pertur-
bation theory, the differential equation

+ 0 ~

FIG. 7. One of the twenty
graphs of class V contributing

,(6)to ae, v

+ 0 ~ + 4 ~ ~

a)

FIG. 5. {a) One of the fourteen graphs of class II contributing
(GE& —ae)II . (b) One of the four graphs of class III contribu-

ting tO (a~ —~e)XII ~

~The error quoted in Eq. (2.11) is the sum of the errors in
(2.6) and (2.10). The error quoted by Levine et a2. (1976) is
calculated quadratically.

~ In fact, the eighth-order contribution to P (e) from fourth-
order vacuum polarization insertions is also known (Ca1met
and de Hafael, 1975):

1 + x2+ ~(3) 1285

The fourth- and sixth-order constraints on the muon anomaly
due to the renormalization group property were first pointed
out by Kinoshita (1967). For a discussion of various choices
of effective coupling constants relevant to the muon anomaly
problem see Barbieri and Hemiddi (1975b).
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FIG. 8. One of the twenty-
four graphs of class VI con-
tributing to a,"v', .

FIG. 10. One of the three dia-
grams with a muon loop in-
side an electron loop.

The explicit expressions for the constant terms B,-
i = 1, 2, 3 a,re [a,"', a,'~', and a,"', being the second-,
fourth- and sixth-order contributions to the electron
anomaly given in (2.1), (2.2), and (2.11)j

B,= (n /n) a "' = 1/2; (3.6a)

—(~/o )' ~&~' 25/36 = —1.02292; (3.6b)

and, from the analytic calculations of Kinoshita (1967),
Lautrup and de Rafael (1968), and Barbieri and Remid-
di (1975a.)

B,= (m/n)'a, "'+1.566 02 = 2.754 + 0.025.

Altogether, ave find that the total numerical contribution
from the In(m, /m, ) terms of the 304 diagrams repre-
sented in Fig. 9 is

(3.6c)

ln '" +D4 ln2 ~ +E4 In~ '~ — = (17.20+.27)
CV

Pg tB fR ~ 77 'IT

(3.7)

Let us next consider the remaining 165 diagrams
which may contribute to powers of In(m„/m, ) terms in
(a —a,)"'. They are schematically represented in
Figs. 10 and 11. The three diagrams in Fig. 10 cor-
respond to a special kind of mixed vacuum polarization '

insertions. Using a combination of the techniques de-
veloped by de Rafael and Rosner (1974) and Kinoshita. 's
theorem on mass singularities (1972) it can be shown
(de Rafael, unpublished) that these diagrams do not give
In(m /m, ) terms.

The eighteen diagrams in Fig. 11(a)have been evaluated
numerically by Calmet and Peterman (1975a). As ex-
pected, " they give a large contribution

a,"'[Fig. 11(a)]= (111.1 + 8.1)(n/m)' (3.8)

a~" '[Fig. 11(a)]

3—(A =6.290+.056) ln'n '52,m„
7r 3 fNg

+ "unpredicted In(m~/m, ) terms" +Cte~,

(3.9)

where A is the coefficient of {o./n)'In{m /m, ) in the
contribution to a from the diagrams in Fig. 3. A com-
parison between Eqs. (3.8) and (3.9) shows that the size
of "unpredicted In(m~/m, ) terms" +Cte is rather large.

The diagrams from Figs. 11(b), (c), (d) can give at most
In(m /rn, ) terms. They have not as yet been calculated.

A beautiful application of Kinoshita's theorem on mass
singularities (1972) shows that the six diagrams of Fig.
11(e) give no In(m /m, ) terms. The same theorem
can be applied (Lautrup, private communication), with
some care because of vertex renormalization, to the
diagrams in Fig. 11(f). Again no in(m /m, ) termsarise
from these 12 diagrams.

All the In'(m /m, ) and In'(m„/m, ) terms of the

These diagrams give rise to In'(m„/m, ), In(m~/rn, ) and
consta. nt terms. In fact, the In'(m~/rn, ) contribution can
be calculated using renormalization group techniques

p
a) (3x6) c} (8.6}

e e

(2~3 = 6)

d) {1O 6) e) {6) f) (2~6)
J'

((3+r). 2 7= 56) (7) {3x72 = 216)

The importance of this class of diagrams was first pointed
out by Lautrup (1972).

FIG. 9. The 304 diagrams governed by a simple renormaliza-
tion group equation of the Callan —Symanzik-type. There are
six classes, and the number of diagraIns in each class is in-
dicated under a typical diagram of the class.

FIG. 11. (a) One of the eighteen diagrams obtained by inserting
a single electron loop in the photon-photon scattering (with
electron loop) sixth-order graphs. (b) One of the eighteen dia-
grams obtained by inserting a single muon loop in the photon—
photon scattering (with electron loop) sixth-order graphs. (c)
and (d) Two of the 108 diagrams obtained by attaching a single
virtual photog. line to the photon —photon scattering (with elec-
tron loop) sixth-order graphs. (e) and (f) Two of the eighteen
diagrams of the following type: photon —photon scattering
graphs in which all four vertices on the single electron loop
loop involve a virtual photon.

Rev. Mod. Phys. , Vol. 49, No. 1, January 1977
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eighth-order contribution to the muon anomaly are
therefore known. The In(m~/m, ) terms are also known
except for those which may arise from the light by light
scattering corrections shownin Figs. 11(b), (c), and (d).

As a limit of error due to the lack of knowledge of
these contributions we suggest

+3 x —x 21 — =+63 (3.10)

i.e. , we have taken the value of the sixth-order con-
tribution to the muon anomaly from the diagrams in Fig.
3 [see E'q. (2.7)J times n/m for the radiative correction,
times a factor of 3 since there are three independent
classes of diagrams. The over-all eighth-order con-
tribution thus obtained is

(n/~)'(128. 3+ 8.4+ 63) = (3.7+ 2.1) x 10-'. (3.11)

For a comparison we give the results of previous edu-
cated guesses by Lautrup (1972)

(100-200)(n/m);

and by Samuel (1974)

230(o./m)4.

(3.12)

(3.13) eg

I V. HADRONIC CONTR I BUTIONS

a„(Fig. 12)=, dto„(t)
1

4m 2
dX 2

x'(1 —x)
x'+ (I x)(t/rn2, )

(4.1)

where o„(t) is the total one photon e'e a.nnihilation
cross section into hadrons. Clearly their contribution
to the anomaly is positive definite.

Three recent evaluations of the integral in Eq. (4.1)
give

(73 a 10)x 10 ' (Bailey et a/. , 1975);

(66 + 10) && 10 ' (Barger et a/. , 1975);

(70.2 + 8.0) x 10 ' (Calmet et a/. , 1976;

Narison, 1976).

(4.2a)

(4.2b)

(4.2c)

The differences between these results are due to dif-
ferent evaluations of the low-energy region as well as
to different appreciations of the background contribu-
tions and different estimates of the contribution from
the asymptotic region ( t & 7.4 GeV at present).

In Calmet et a/. (1976) and Narison (1976), the con-

FIG. 12. Hadronic vacuum
polarization correction to low-
est order contribution to a„.

The dominant hadronic corrections to the muon anom-
aly are due to hadronic vacuum polarization as shown in
Fig. 12. They have been discussed in detail elsewhere
[see, for example, Lautrup et a/. (1972)]. Here we
shall limit ourselves to a review of their most recent
numerical evaluation. Their contribution to the muon
anomaly is most conveniently expressed in the form

FIG. 13. Hadronic contributions to a~ of order (n/7r)3. (a)
Hadronic vacuum polarization corrections to diagrams with
two fermion lines p, and e. There are two diagrams of this
type. (b) Example of a correction to a fourth-order diagram
with only muon lines. Altogether, there are fourteen diagrams
in this class. (c) Improper fourth-order hadronic vacuum po-
larization corrections to the second-order @ED diagram. (d)
Internal radiative corrections to the usual hadronic vacuum
polarization correction. (e) Hadronic light by light scattering
contributions .

tribution to a~ (Fig. 12) from the asymptotic region was
obtained using a parametrization for the total hadronic
cross section as predicted by gauge theories with as-
ymptotic freedom (Gross and Wilczek, 1973; Politzer,
1974):

cr„(tl=—ra* —(3 QQ';)"(1+ii,), (4.3)

where Q,. denotes the electric charge of the relevant
constituent quark in units of e, and 5 is a numerical
factor depending on the choice of gauge group. For
SU(3)„„,&& SU(N) „„„

6 =4/(11 ——,'X). (4.4)

The parameter p,
' in Eq. (4.3) is an arbitrary mass

scale. It corresponds to the subtraction point chosen to
renormalize the theory. This expression for the as-
ymptotic cross section induces the following contribu-
tion to the muon anomaly

a,"= — —' 3 (4.5)

a,"(~t&7.4 GeV) = (0.55 + 0.05) && 10 '. (4.6)

Higher-order virtual hadronic effects have also been

where t& is the largest energy for which v„(t) is experi-
mentally known (v t& = 7.4 GeV at present), and /i(x)
= Jo dx/logx. If the mass scale p, in Eq. (4.3) is fixed in
such a way that o'~(t&) = oH"'(t&), which corresponds to p
=5.4+0.6 GeV, one obtains for SU(4)„,„„

Rev. Mod. Phys. , Vol. 49, No. 'l, January 'l977
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1a„[class (a)] = —2, dt v„(t)
2

x'(1 x)
x'+ (1 —x)(t/m', )

recently estimated (Calmet et al. , 1976; Narison,
1976). These hadronic effects give contributions of or-
der (o.'/!))' and can be cast in five classes which are
shown diagrammatically in Fig. 13. The contribution
from class (a) (two diagrams) is exactly given by the
expression

Contribution Result

Eq. (4.7);
Eq. (4.g);
Eq. (4.11);
Eq. (4.12);
Eq. (4.13);

Fig.
Fig.
Flg.
Flg.
Fig.

13(a);
13(b};
13(c);
13(d);
13(e);

2-dlRgl Rms
14-diagram s
1-diagram
3-dlRg ram s
6-diagrams

(1.10+0.14) x10 ~

(—2.07 + 0.29) x10-~
0.02 x10 ~

0.09 x10 ~

(—2.6+1.0) x10 ~

TABLE I. Contribution to the muon-g factor anomaly a~ = 2 (g„
—2) from the five classes of higher-order virtual hadronic ef-
fects represented in Fig. 13.

(4 7) Estimated total ( —3.5+1.4) x10 9

where

(e) k 'Q
dyy(1 —y) I 1 —,y(1 —y)Wig+0

(4.6)

From these expressions, it is clear that the contribu-
tion to a„ from class (a.) must be positive.

The contribution from class (b) (fourteen diagrams)
can be written in a form analogous to the well-known
fourth-order expression

1a, [class (b)] = df 0 ())lC"'(,), (4.9)

where K( )(t/m') is a. QED function which has been cal-
culated analytically, by Barbieri and Bemiddi (1975a),
as an intermediate step in the evaluation of some of the
purely QED contributions to a, . Its asymptotic be-
havior for t»m' is as follows:

—2 . —ln —,+——

+e ~ ln, . (41o)

In fact, K( '(t/m„') is negative definite throughout the
integration region in Eq. (4.9) and the contribution from
class (b) must therefore be negative.

The contribution from diagram (c) can also be written
in a closed form in terms of o'!1{t),

1
a [class (c)]= 16,16m'Q. 4 2

dt'o„(t) v„(t')
m'

x'(1 x)
[x'+ (1 —x)(t/m', )][x'+ (1 —x)(t'/m', )]

(4. 11)
which clearly exhibits the positivity property.

Numerical est!mates of these contributions [Eqs.
(4.7), (4.9), and (4.11)] have been made using the pres-
ent experimental information on the e e —hadrons
cross section. The results can be found in Table I.
There is an important cancellation between the contri-
butions from classes (a) and (b); the contribution from
class (c) is negligible.

Diagrams of classes (d) and (e) are topologically dif-
ferent from those of the other classes. They involve the
hadronic light by light scattering amplitude for which no
empirical information is available at present. One is
obliged to make a model-dependent estimate of these
contributions. For this purpose, it has been assumed
that the bulk of the hadronic effects in diagrams of the

type (d) and (e) is effectively characterized by the sum
of quarklike loop contributions of different colors and
flavors {Fritzsch and Gell-Mann, 1972). It is also as-
sumed that the effective quark masses M,- are larger
than the muon mass m so that an asymptotic expansion
in m~/M; is justified. The contribution to a from class
(d) is then governed by the low k' behavior of the vac-
uum polarization quark-loop with an internal photon
correction; k is the energy momentum of the virtual
photon attached to the external muon line. For three
colored quarks with flavors: i =u, d, s, c, . . . one gets

(4.12)

Similarly, the contribution to a„ from class (e) is gov-
erned by the low energy behavior of the virtual light by
light scattering amplitude with a quark-loop. A numeri-
cal evaluation of this contribution gives the result

CVa [class (e)] = —m„' 3g '2 (—2.5+1.0), (4.13)

where the error is due to the numerical integration pro-
cedure. Using the SU(4) flavor scheme and typical"
quark-mass values M„=—M„=0.3 GeV; M, =0.5 GeV;
and M, = 1.5 GeV, one obtains the results shown in Ta-
ble I. These results do not change significantly if new
quark flavors with higher and higher masses are added;
however, they are rather sensitive to the u and d quark
masses.

From all these calculations we consider that the best
estimate at present of the hadronic contributions is

a„(hadrons) = (66.7 + 9.4) x 10 '. (4.14)

It corresponds to the sum of Eq. (4.2c) plus the total of
Table I.

~3These are typical mass values used in quark model calcula-
tions of weak decays. For a comprehensive review see Gail-
lard (1g75).

V. WEAK INTERACTION CONTR IBUTIQNS
%ith the advent of renormalizable spontaneously bro-

ken gauge theories, it is now possible to calculate un-
ambiguously the contribution to the muon anomaly from
the weak interactions. In fact, many calculations have
already been done in various models (Bardeen et al. ,
1972; Fujikawa et al. , 1972; Prima. ck and Quinn, 1972).
It turns out that one predictive model, in the sense that
it gives finite upper and lower bounds to the muon

Rev. Mod. Phys. , Vol. 49, No. 1, January t 977



Calmet, Narison, Perrottet, and de Rafael: Anomalous magnetic moment of the muon 27
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c)
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20 40 60 80
-r

100

FIG. 14. (a) Neutrino exchange diagram contributing to a~ in
in the Salam —Weinberg model. (b) Z-boson exchange con-
tributing to a~ in the same model. (c) Higgs scalar exchange
diagram contributing to a~ in the same model.

anomaly, for any values of the parameters, is the popu-
lar Weinberg —Salam model (Weinberg, 1967; Salam,
1968). In the other models so far studied [Georgi-Gla-
show (1972), Lee —Prentki-Zumino(Lee, 1972; Prentki
and Zumino, 1972)] the contributions can be extremely
large for particular values of the parameters. In these
models, it is better to use the muon anomaly to put
bounds to some of their parameters.

We shall review in this section the results for the
models mentioned above.

(i) Weinbexg Salam-model
We have three Feynman diagrams [see Figs. 14(a),

(b), and (c)] which give the following contributions
(Bardeen et al. , 1972):

1.9 x 10 ' ~ a" ~ 8.9 x 10-'. (5.4)

If we now take into account the experimental limits on
sin'8 (Morfin, 1975)'4 and if one accepts Weinberg's
argument on the mass of the Higgs boson (Weinberg,
1975), then a' is quite negligible and the bounds on a
become

1.9 x 10-' & a & 2.3 x 10-'. (5.5)

(ii) Geoxgi —Glashom model.
We have also three Feynman diagrams [Figs. 17(a,),

(b), and (c)] which give the following contributions (Pri-
mack and Quinn, 1972):

a, [Fig. 17(a)] =—a', =
W

(5.6)

FIG. 16. The contribution a~ as a function of the ratio x= (rn„/
m~) 2 (Salam —Weinberg model).

Gm' 10a, [Fig. 14(a)] —= a', =
Bv' 2

(5.1) 8 2p'
1 —3p — ln p +1

( (1 —p) 1 —p

a„[Fig. 14(b)]=-a' = ———
( ) + —(i ——),

(5.2)
ma [Fig. 17(c)]—= a' =—

gf

(5 7)

dx
x'(2 —x)

x'+~(1 —x) '

Gm'„
a„[Fig. 14(c)]=—a,' = " 2

8m' 2

where

x'(2 —x)
x'+~(1 —x) ' (5.3)

where

(5 8)

The contribution a" +a„' can be written in terms of the
Weinberg angle only. More precisely, we have a qua-
dratic form in cos'8 . It is represented in Fig. 15.
Figure 16 shows the contribution a" as a function of x.
Altogether, a —=a' +a' + a" has the following upper and
lower bounds:

We have in this model

~n sin'P G

M

so that the contribution a" is the same as in the Wein-
berg-Salam model. The neutral heavy lepton mass m„
is related to the charged heavy lepton mass m„

~i(o~+ ')»'
6- Yp

a) b)

.2 .L .6 .8
COS2e

W

FIG. 17. (a) Neutrino exchange diagram contributing to a„ in
the Georgi —Glashow model. (b) Neutral heavy lepton exchange
diagram contributing to a~ in the same model. (c) Higgs scalar
exchange diagram contributing to a„ in the same model.

FIG. 15. The contribution a~+a„as a function of cos 0~
(Salam —Weinberg model) .

~4We have taken from Morfin (1975)

0.1 ~ sin2&
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800

600

400

GG0 a" depends only on cos'8 and u." Thus, putting

x=v 2/u'G

and with the constraint x ~ 4, we have

Lp z 6»,' 10 xaL~ = ———(1+sin'8 cos'6)
Bn' 2

(5.10)

200

I I I I I I I I I

.2 —.4 .6 .8
- cos2 P

In Fig. 19, we have plotted a as a function of cos'0,
for various values of x, that is of n. We can see that
the upper curve (x =4) provides an upper bound for the
contribution to the muon anomaly

200
aLPz & 2 3 && 10-o (5.11)

400

There is no lower bound unless some of the parameters
are fixed.

600

FIG. 18. The contribution a~~ as a function of cos2P for vari-
ous values of x= (m„/m~), at the mass m, =1.8 GeV/c . In
fact, we have quoted m„(in GeV/c2) rather than x.

10 4 gg'+z)'
(5.9)

With (see I ee, 1972)

2m 0 cosP =my++m~
y0and this allows one t,o express ao =—a", +a~ +a~ as a

function of cos'P, for various va. lues of x, at fixed
charged heavy lepton mass m, + (Fig. 18). It can be seen
that for x small the contribution a~ & 0 dominates,

0
whereas for x large, a" becomes negligible and a' &0
dominates. It is clear that nothing can be said about the
magnitude of ao so long as no constraints are imposed
on the parameters cos'P, m +, and m, .
(iii) L ee Pxentki Zumin—o model-

The contribution to the muon anomaly in this model
can be obtained from the contribution calculated in the
Salam —Weinberg model by simply redefining the cou-
pling constants (Fujikawa et al. , 1972); we get

Vl. FINAL RESULTS

Let us summarize the various theoretical contribu-
tions to the muon anomaly, discussed in the previous
sections.

QED contributions including all the second-, fourth-
and sixth-order diagrams give [see Eq. (2.13)]

a, (QED "2"+ "4"+ "6")= (1 165 848.1+1.2) x 10 '.
The error is mostly due to the numerical method of
evaluation of some of the sixth-order diagrams. The
contribution to the error from the present knowledge on
the fine structure constant is +0.2 & 10 '.

From the eighth-order contributions we get [see Eq.
(3.11)]

a (8th order) = (3.7+ 2.1) x 10 '.
All eighth-order diagrams which contribute to In'(m /
m, ) and/or ln'(m /m, ) terms have been evaluated. The
error +2.1 && 10 ' is due partly to the numerical method
of evaluation of the calcula. ted diagrams [+8.4(o.'/m) in
Eq. (3.11)]; partly to an estimated limit of error of the
uncalculated diagrams [+63(o./v)' in Eq. (3.11)].

Our estimate of the hadronic contributions is [see Eq.
(4.14)]

a (hadrons) = (66.7 + 9.4) x 10 '.
G 1

4(u'+ v')

LPz )0
lj

3- X=4

X=10

3-

5

.2 .3 4 .5 .6 .7 .8 .9
I I I I I I I I I cos26

This includes fourth- and sixth-order contributions.
The result is partly model dependent because on the one
hand we have used asymptotic freedom to evaluate the
contribution from the high-energy behavior of the e'e
—hadrons cross section; on the other hand we have used
a simple quark model to evaluate solve of the sixth-or-
der contributions.

The weak interaction contributions calculated within
the Weinberg-Salam model give lower and upper bounds
which we shall adopt as characteristic of weak contribu-
tions [see Eq. (5.5)]

a~(Weinberg-Salam) = (2.1 +0.2) x 10 '.
The total of the theoretical contributions is therefore

a = (1165920.6+12.9) x 10 '.
The compar ison be tween theor y and experiment can be

FIG. 19. The contribution a ~ as a function of cos 0 for vari-
ous values of the vacuum expectation value u. In fact, we have
quoted x= W2/Nt" rather than N.

i5Here u and v are the vacuum expectation values of Higgs
scalars in this model.
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("2"+"4"+"6" ) Q E D

("2"+"4"+"6"+"8") Q E D

QED + HADRQNS

Q E D + HADRONS +'+EAK

EXPERt MENT

50 100
1165800 +

125 150 x 10

FIG. 20. Final comparison between the theoretical contribu-
tions hand experiment.

best seen in Fig. 20. It is clear that the hadronic cor-
rections are required for an agreement between theory
and experiment.
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