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The fundamental role of Eckart vectors and Eckart frames is demonstrated in the theory of the vibration —rotation
Hamiltonian for a polyatomic molecule.
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INTRODUCTlON AND SUMMARY

In his famous paper, "Some Studies Concerning Rotat-
ing Axes and Polyatomic Molecules, " Carl Eckart (1935)
introduced a set of conditions for defining a system. of
rotating axes in terms of the instantaneous position vec-
tors of the nuclei in a polyatomic molecule. These con-
ditions are now part of the standard theory of polyatomic
molecules (Marganeau and Murphy, 1943; Herzburg,
1945; Nielson, 1951; Wilson, 1955; Landau and Lif-
schitz, 1958). In this same paper, Eckart also gave the
explicit construction of the rotating frame in terms of
three vectors Fy F2 F3 These three vectors —which we

will call Eckaxt vectors —appear not to be well known,
despite the fact that they play (as Eckart showed) a fun-
damental role in the definition of the rotating frame.

It is the purpose of the present paper to demonstrate
that the Eckart vectors, and the corresponding Fckaxt
frame defined by them, occupy a far more significant
place in the theory of the vibration-rotation motions of
polyatomic molecules than has previously been recog-
nized. Textbooks and modern papers (Nielson, 1951;
Lpnguet-Higgens, 1963; Hougen, 1962, 1975) devote
only a few lines of discussion to the Eckart conditions.
Yet, as we shall show, the Eckart vectors and the
Eckart frame should be considered to be basic concep-
tual constructs on which the theory of the vibration-
rotation spectra of molecules is erected (along, of
course, with our usual notions of classical and quantum
mechanics).

The development follows the traditional viewpoint
(Wilson, 1955) in assuming the validity of the Horn-
Oppenheimer approximation in separating the elec'tronic
and nuclear motions. Thus, the motions of the electrons
are regarded as defining the potential energy w'elis in
which the nuclei move. This is the basic physical pic-
ture which motivates the introduction of the equilibrium
or static molecular model which serves as the starting
point for the discussion of the vibration-rotation motions
of the nuclei in a polyatomic molecule.

It might be argued that the reconstruction of molecular
theory along such lines is a mere academic exercise, of
little practical value and offering no new results. In
order to persuade the reader that this is not the case,
we present here in the Introduction a summary of the
contents of this paper, noting, when appropriate, the
contribution of the concepts of Eckart vectors and Eckart
frames to the developments, and pointing to new results
and new approaches as they emerge.

The concept of a static molecular model is introduced
in Sec. II. Since it is on this model that the notion of the
point group of a molecule is built, it j.s important to dis-
tinguish it from the molecule in motion. The purpose of
this section is to give the problem a general setting as
well as to review the basic notions of rotations and per-
mutations as abstract operators in order to establish
notations.

It is appropriate to remark here that while our ap-
proach in this study is group theoretically oriented, no
sophisticated group theoretical concepts are actually
used. A good intuitive feeling for the meaning of rota-
tions in ordinary 3-space (see, for example Wigner,
1959) and an elementary understanding of set theoretical '

concepts and notations (we recommend Simmons, 1963)
should provide sufficient mathematical background. To
this extent, this paper is largely self-contained.

After the brief excursion into geometry given in Sec.
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70 Louck and Galbraith: Eckart vectors, Eckart frames, and polyatomic molecules

II, we come in Sec. III to the concept of a molecule in
motion —the dynamical molecular model. Here we at-
tempt to give a new perspective to Eckart's contribution
to the subject: The dependence of the notion "moving
frame" on the underlying static model and the particle
positions is presented in the way we believe Eckart
understood it.

With the notions of Eckart vectors and Eckart frames
in hand, we move naturally into the investigation. of what
motions of the molecule define the same Eckart frame.
This leads to the discovery of the manner in which the
point group of the static molecular model makes its en-
try into the molecular motions problem. The principal
new result is the discovery of a group of transforma-
tions which leave the Eckart frame invariant. Further
properties of the Eckart frame are presented in antici-
pation of its subsequent role in the molecular problem.
All of these results are new, although it might be argued
that some of the structures are implicit in the work of
Hougen (1975).

We are now led into a discussion of the internal mo-
tions problem in Sec. IV. Astonishingly, the properties
of an obvious modification of the Eckart vectors —to what
we call Eckart vectors of the second kind —reduces the
determination of symmetry coordinates to almost trivial
calculations, at least for molecules possessing a static
model of high symmetry. We illustrate the rather-ab-
struse general theory by three instructive examples.

While we believe that the structures presented in Sec.
IV are new, we are confronted here with an enormously
difficult problem of literature search. The significance
of group theory and normal coordinates in the molecular
problem was apparent1y recognized as early as 1923 and
1930 by Brester (1923) and Wigner (1930). But the num-
ber of subsequent papers determining normal coordinates
for particular molecules must run into the hundreds.
The variations of techniques are impossible to assess,
We mention only a few general references, with apolo-
gies to those authors whose contributions we would like
to acknowledge but which are unfamiliar to us: (Denni-
son, 1931; Hosenthal and Murphy, 1936; Wilson, 1939,
1941; Glocker, 1943; Qankataraykdu, 1943; Kilpatrick,
1948; Corben and Stehle, 1950; Crawford, 1953).

We now come to Sec. V, where we consider the induced
action of the abstract operators, previously defined, on
the coordinates of the molecular problem. At first
glance, these results seem more general than required.
However, they are later (Sec. VI) shown to be significant
in perturbation theory. In Sec. V, we study the action
of permutations on the molecular coordinates in rigor-
ous fashion, the basic idea stemming from the more
intuitive approach of Longuet-Higgins (1963) and Hougen
(1962, 1963, 1975). The most significant concept to
emerge from this study of permutations is a general
definition of the group of feasible operators for the so-
called rigid molecules. It is a clear understanding of
the role of the Eckart frame which makes the definition
possible and physically relevant. Applications of this
concept to the determination of intensity ratios of high-
resolution laser induced absorption spectra in SF, have
already been made (Cantrell and Galbraith, 1975), in
agreement with experiment (Aldridge et al. , 1975).

A second important and longstanding question is clari-

fied in Sec. V.D. What is the group of the classical
spherical rigid rotator. Is it 8, X8, -84, where 6, is the
group of rotation-inversions of 3-space, and 64 is the
group of rotation-inversions of 4-space~ The answer
to this question is no. Instead, it is demonstrated that
the group of the classical spherical rigid rotator is a
group of transformations of two 3-spaces which are
geometrically related. This group is designated by
63 63 the * de s ign at ing that the pr oduc t spac e A'* P ' of the
two underlying 3-spaces is not the usual Cartesian prod-
uct space, It is the geometrical relation between the two
&' spaces which accounts for the fact that the angular
momentum is the same (generators of rotations of the
two 8, 's in 8, *8, commute, but have the same &'). This
type of gr oup structure gener alize s to other space s and
has been known for some time (Louck, 1965, 1970, 1970a.;
Biedenharn, 1967, 1968).

In Sec. VI, we present the general invariance proper-
ties of the molecular Hamiltonian. While these results
have been, more or less, intuitively known for years,
they are given here the precise mathematical and global
settings required for use in the further development of
Hamiltonians which describe the level splittings of com-
plicated spherical top molecules (Hecht, 1960, 1960a;
Moret-Bailly, 1959, 1961,1965; Michelot et al. , 1974,
1974a).

I,et us remark that we have felt obliged for the sake of
clarity to note what seems to us to be important differ-
ences of interpretation between our work, that of Lon-
guet-Higgens (1963), and the very important work of
Hougen (1962, 1964, 1975). We acknowledge the con-
siderable influence of Hougen's work in clarifying our
thinking.

Finally, it should be noted that this work is restricted
to the so-called "rigid" molecules, although a few specu-
lative remarks concerning "nonrigid" molecules are
made in the concluding section.

II. THE STATIC IVIOLECULAR MODEL AND ITS
SYMMETRY GROUPS

A. The static molecular model

We begin. with a definition: The static nzolecula~ nzod-
el is a collection of N Particles (nuclei) labeled 1, 2, . . . ,
N zehich have point masses m„~„.. . , m~, located at
points specified by the position vectors a', a2, . . . , a
resPectively, whose common origin is the center of
mass, that is,

(2.1)

Thus, the picture we have of the static molecular mod-
el is the naive one of a collection of mass points con-
nected by rigid rods. We are allowed to place it on the
table in front of us, examine it, and describe it in terms
of our tastes.

There is one aspect of the model which we prefer to
leave vague —namely, those intrinsic attributes of cer-
tain classes of particles which lead us to call them
identzca/. It suffices here to remark that the equality of
masses and equality of charges are implied by the
phrase "identical particles. "

We choose to describe the particle positions by first
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locating a principal axis frame e„e„e,(a right-handed
triad of unit vectors satisfying e, 8, =&;;) and giving the
particle positions in terms of this frame

(2.2)

The frame e„e„e,is tied, once and for all time, to the
rigid configuration of particles, and the set of real num-
bers

(a,". : o. = 1, 2, . . . , N, i = 1, 2, 3) (2.3)

is fixed, once and for all time, by the equilibrium con-
figuration which one has assumed for the particular
molecule under study.

We have dwelt overlong, perhaps, on the concept of
the static molecular model in order to contrast it with
the dynamicaL molecular +yodel introduced later in Sec.
III. This distinction of models, we believe, clarifies
one's understanding of the role of the point group of
covering operations in molecular theory. We now turn
to the definition of the point group of the static molecu-
lar model, reviewing first the concepts of rotations as
abstract operators.

B. The rotation- inversion group
t

We introduce the space &' which is defined to be the
set of ail vectors in Euclidean 3-space (directed arrows
in the usual elementary sense with the customary geo-
metric rules for equivalence, addition, multiplication
by a scalar, and dot and cross products).

A rotation @ is, by definition, a linea~ ope~ato~ which
maps R' into itself, leaving the dot product invariant and
the sense of the cross product unchanged. These prop-
erties are transcribed into the mathematical statements
which follow.

+ sin 6(n X x) . (2.9)

Note in particular that

(R(rr, n) =N-. (r, n) (2.10)

obtains automatically from Eq. (2.9).
After this brief review of rotation and inversion opera-

tors as abstract operations defined on R', let us now re-
turn to the discussion of the static model.

C. The mathematical model of the static molecule

We represent the static model mathematically by the
set 6 of vectors of R'

(2.6)

At the risk of some confusion, we will use the same
notation@ for a general element of 6, as used for a gen-
eral element of S6,. Henceforth, if @ is a rotation, it
will always be so indicated explicitly; otherwise, @,-8,.

It is sometimes convenient to parametrize the rotation
operators @,. The most convenient parametrization for
use with point groups is the characterization of a rota-
tion by a unit vector n (which specifies the direction
about which the rotation takes place in the right-handed
sense) and the rotation angle &, where 0~9&m. There
is then a one-to-one correspondence between the points
of the solid sphere of radius n and the set of rotations,
when one identifies (as being the same) diametrically
opposite points on the surface of the sphere. We denote
such a parametrized rotation by $(9, n). The action of
+.(8, +) on an arbitrary vector x a R' is then given by
(Corben and Stehle, 1950)

(R(8, n) x = cos & x + (1 —'c os &) (n. x) n

S.' R3-R3, (2.4a)
(2.11a)

that is, for each x ~&', we have

x-x' =@x ZR'.
The dot and cross product properties read

(2.4b)

Sx.Sy =x y

6lx X@y =@(xXy)

(2.4c)

(2.4d)

for each pair x, y &R'.
The set of all linear operators f@) which satisfy the

rules (2.4) together with the multiplication rule

(tR'6i)x =6t'((Rx) (2.5)

8x =-x (2.6)

for each x &R'. An inversion also has the property of
preserving the dot product, but it changes the sense of
the cross product:

defines a group —the group 86, of rotations of the space
R3.

The inversion operator 8 is also defined to be the map-
ping 8: &'- R3 given by

8.=&a', a2, . . . , a".&,

8 =(b' b' . . . b"&),

(2.11b)

(2.11c )

8, = g', d', . . . , d"~ i .
8 = (8., 8„.. . , 8,},
N=n, +n~+' ' +nq.

(2.11d)

(2.12 a)

(2.12b)

(Observe that by a relabeling of particles we can always
take the first n, of the a', . . . , a to be equivalent. )

We now give the definition of the equivalence unde& 6, of
two static model vectors: a is equivalent to a" if (a)
Particle P is identical to Particle o.; (b) there exists at
least one rotation-inversion oj~exator$0~ 6, such. that
a =, a". Observe that this is a true equivalence rela-
tion (Simmons, 1963) in the strict mathematical sense.
Accordingly the set 6 is partitioned into disjoint su&-
sets of equivalent vectors called equivalence classes of
8 (Simmons, 1963). Let us denote these equivalence
classes by 8„8».. . , 8, , where

8x X8y =-&(xXy). (2. i)

The set of linear operators which map R' into itself
and preserve the dot product defines the rotation-inver-
sion group. It is the set of operators given by

D. The point group of the static model

We are now ready to define the point group of the static
molecular model Definition. : The point group G(8) is
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the subgroup of 8~ which maps each equi&valence class of
8 onto itself, that is 8 W G(8) if and only if

S [a'a' a"]-9[a'a'. a"]
= [9-"9.' "9."]=[".'"."]S(9)

8: 8,-8, ,

8: 8~-8~,
where it is to be under stood that

(2.19a)

8'-8„-8„.

(2.13)
[a.'a' a"] = [a 'a ' ' a"~ b'b' b"' d'd' d"']

(2.19b)

This definition becomes more tangible if we olde~ the
elements of the sets 8„8„.. . , 8„and consider these
ordered sets to be rom matrices:

[a'a' ~ a" ]

[b'5' .b"~]

and that S(8) has the block diagonal form

S (9) 0 0

0 S (9) 0

S(9) = (2.19c)

[d&d~ ~ d"~]

(2.14) 0 0 ''' S„(9)

Observe that the mass matrix defined by

Q ~ ~ ~ 0
The action of 8 on the sets 8„8,, . . . , 8„may now be ex-
'pressed concisely as

8: [a'a' .a" ]-[ga'ga' ga" ]
= [a'a. ' a." ]S.(8),

g [b~b~ ~ ~ ~ 5"b] [gb~gb2 . . ~ gb&y]

= [b'b' ' ' b"~]S~(9),
(2.15)

0 m 02

Q Q ~ ~ 4
N

m.I. 0 . 0

m~I~ ' ' 0

(2.20)

-8'[ga'ga' .ga~]

= [9'ga'8'ga' "9'ga~], (2.17)

9: [d'd' d"&] —[gd'gd' 81"&]

=[d'd' . 1"&]S,(8),
where S,(8),S,(9), . . . , S~(8) are square matrices of di-
mensions n„n~, . . . , n~, respectively, each of which may
be obtained from the unit matrices I, of dimension &i„
I~ of dimension n~, etc. , by some permutation of the
columns (hence, the matrices are real, orthogonal and
contain as elements only zeroes and ones).

It is convenient to define

9(a'a' "a"]=[ga'ga' ga"]. (2.18)
S

If we define the product of two elements of G(8) by the
rule

(9'8)[a.'a'. a"] =9'(9[a.'a'. a"])

0 0 . . m„j„

commutes with S(9):

S(8)kI =MS(9)

for each 9 ~ G(8).

(2.21)

E. The symmetric group of the static model

The belief that arbitrary labelings of identical par-
ticles should have no consequences for the predictions
of a physical theory leads one to the study of the sym-
metric group.

We first consider the manner in which one defines the
action of the symmetric group S~ on a quite general set
of N objects which we can take without loss of generality
to be the set 8 of static model vectors.

A permutation P of the labels 1, 2, . . . , N is defined by
then the correspondence P-' 1-n„2- n, . . . , N- a (2.22)

8-S,(9) (2.18)

is a representation of G(8) by n, X n, orthogonal matrices.
Similarly, each of the correspondences 8-S,(9), . . . , 8
-S~(9) is a, representation of G(8) by orthogonal matri-
ces. We call these matrix representations of G(8) static
model xePv"esentati ons.

It is somewhat awkward to enumerate repeatedly sets
of equations such as Eqs. (2.11)-(2.15). In the subse-
quent discussion we will therefore write such equations
as a single composite one:

where a.„e„.. . , nN is a rearrangement of 1, 2, . . . , N.
The pr oduc t P 'P of two such per mutations

P'; 1- n~, 2» n2, . . . , N- a~

P: 1-+~,2- e, . . . , N- e~

is by definition the permutation of 1, 2, . . . , N obtained
by first applying P followed by applying P'. For exam-
ple, for
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P: 1-2,2-3, 3-4, 4-1 n 2 ct tX6',: a'-a & a'- a 2 . . . a '- a (2.28a)

and

P': 1-4, 2 2, 3-1,4-3,
we have

P'P: 1-2, 2-1, 3- 3, 4-4.

(2.28b)

where P„P„.. . , P„ is a rearrangement of 1, 2, . . . , n„
etc. Each permutation operator 6' in the group

where e„a„.. . , n„ is a rearrangement of 1, 2, . . . , n„.
each +,E G(S„,) has the form

6': b~-b'~ b2-b" . . . b"~-b'~

S~ is the set of all permutations (Pj corresponding to
all ~.' rearrangements of 1, 2, . . . , Ã with this rule of
multiplication.

Each permutation PE- S~ induces a transformation + of
the set 8 given by the following rule:

] J G(S„)

has the form

(2.29a.)

(2.29b)
(2.23)

The product +'+ of two such transformations is defined
to be the rule of first transforming by 6' followed by
transforming by 6". The correspondence P-+ is a rep-
resentation of S~ by a group of transformations of the
static model vectors. We designate this group of trans-
formations by G(S~}.

For + given by Eq. (2.23), we write a ~ =6'a', a"&

=+a', . . . , a"& =6'a . Defining

and the order of the group is n, 'I n, t ~ ~ ~ n„ t .
For each

6'a „G(S„,} (2.30a)

0

the matrix S(6') appearing in Eq. (2.25a) takes the block
diagonal form

+[a~a' "a"]=[6 a~6 a' "~aN]

we obtain

(P [~1~2.. .«E] [ 1 ~2. . .«N] S ((P)

where

(2.24)

(2.25a)
0 0 S(+ )

(2.30b)

(2.25b)

in which e„ is the column matrix of length N, e„
=col[0' ' '010 ' '0], where the 1 appears in position n.
The correspondence

O'- S(6') (2.26)

is a matrix representation of G(S„), hence, of S», by
orthogonal matrices of dimension N containing only
zeroes and ones.

Let us now return to the question of identical particles
by giving the definition of the equivalence under Particle
identity of two static model vectors: a is equivalerit to
a.
"if particle p is identical to particle o.. Again this is

an equivalence relation which partitions the set 8 into
disjoint sets of equivalence classes. The elements of
one of these equivalence classes are, of course, the
position vectors which point to particles which have been
called identical. Observe that each such equivalence
class may be further partitioned into disjoint equivalence
classes with respect to 6,. Iox simplicity of presenta
tion, we will assume thxough the remainder of this papex
that the equivalence classes of 8 under Particle identity
axe the same as the equivalence classes of8 under 8, .

Under the above assumption, the group of permutation
operator s which interchange the position vectors point-
ing to identical particles is the direct product subgroup
of G(S~) given by

l [ G(S„„)= G(S„)X G(S„,) X ~ X G(S„)c:G(S„), (2.27)

where the G(S„~}, &=a, b, . . . , d, denote the groups of
permutation operators defined, respectively, on the sets
8„8„.. . , 8„. Thus, each 6', HG(S, ,) has the form

in which each S(6'~) is of the form (2.25b) (replace N by
n~). Finally, the correspondence

6'~ —S (+~) (2.31)

(2.32)

I II ~ THE DYNAMICAL MOLECULAR MODEL

We now let the static molecular model translate and
rotate about the center of mass, while at the same time
allowing the particles to move away from their rigid
body positions. It was just for the purpose of describing
motions of this type that Eckart introduced a moving
frame which has its instantaneous orientation deter-
mined by the instantaneous position vectors of the par-
ticles and the static molecular model. We will introduce
Eckart's moving frame from the outset. Although this
method of presentation is not so well motivated physical-
ly, it has the logical advantage of presenting a well-de-
fined moving frame at the beginning of the discussion,
thus obviating the need of imagining its existence (and
resolving vectors along its axes) prior to having it de-
fined.

is a matrix representation of S&~ by permutation mat i-
ces (matrices obtained from the unit matrix by permuting
its columns).

We conclude this discussion of the static molecular
model with a final observation: The Point gxouP G(8) of
the static molecular model is a subgroup of the permu-
tation group IIq G(Sn&). The correspondence between
the elements of this subgroup of permutation operators
and the elements of the point group G(8) is given by the
rule
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74 Louck and Galbraith: Eckart vectors, Eckart frames, and polyatomic molecules

A. Eckart vectors and Eckart frames
I.et the ~ instantaneous position vectors of the par-

ticles 1, 2, . . . , Nbe denoted by r' r 2 r relativ
to some fixed point 0. Following Eckart, we introduce
three vectors which are defined completely by the set of
numbers (equilibrium position vectors) (a,": o
=1, 2, . . . , N; i =1, 2, 3} given to us by the static molecu-
lar model, by the masses of the particles, and by the
instantaneous position vectors r ', r ', . . . , r":

(3.4c)

(3.4d)

where & is the symmetric matrix given by

F~ F~ F~ 'F.,

(3;4e)

lar to the plane of the static model. Then a, =O. .In this
case, the right-handed triad of unit vectors f, , f„f, is
defined by

[f,f, ) =f.F,F,1&-",
f, =f, xf, ,

F,. = g m„a,"r", s =1, 2, 3. (3.1)
~F F F F

We emphasize that the numbers a,"- appearing in this
definition are considered to be fixed (and never to be
transformed) by the static model. Observe that we can
just as well write

P m a"r~ R (3.2)

where R is the center of mass vector defined by

(3.3a)

since

m~ a,- =P. (3.3b)

We propose to call the three vectors F„F2,F3'
vecfors. The purpose in introducing these vectors has
been justified by Eckart, but it is useful to demonstrate
again their role in the more familiar Eckart conditions,
which we do below.

Still following Eckart, we next define a right-handed
triad of unit vectors f„f„f, in terms of the vectors
F„F„F,. For nonlinear and nonplanar molecules, the
definition is' '2

(f,f.f, l =Ã F.F,~& '',
where E is the symmetric (Gram) matrix given by

(3.4a)

p p p ~ p p o F

F3 pg

F P P

F3' F2 F3

'F3 (3.4b)

For planar molecules, we always choose e, perpendicu-

~Our procedure differs slightly from Eckart's since he uses
reciprocal vectors, but this distinction is unimportant,

~This method generalizes directly to the construction of n
perpendicular vectors x&, x&, . . . , x„ from n given linearly in-
dependent vectors y&, y&, . . . , y„. This method was brought to
our attention by Dr. Robert D. Cowan of the Los Alamos Scien-
tific Laboratory. Schweinler and Wigner (1970) attribute it to
Landshoff (1936). It is interesting to observe that the standard
Gram-Schmidt procedure is invariant under the group of tri-
angular transformations

y & rye y2 &2gyg ++ppy2

yn n &yi +n2y2 nnyn ~

while the method above is invariant under the group of permu-
tations in the sense that any rearrangement of order of vectors
in the given set y &, y2, . . . , y„ followed by the orthonormalization
procedure produces the same rearrangement of the perpendicu-
lar vectors (Schweinler and Wigner, 1970).

c"= g a,".f„ (3.6)

we obtain the original conditions given by Eckart:

~It seems possible that this method of introducing a moving
frame into a collection of ~ particles might have applications
to other problems. Observe that the a~& in Eq. Q.1) can be
taken to be the components of any set of N position vectors
such as initial positions, average positions, expectation values
of position operators, etc.

For linear molecules, we do not define an Eckart frame
(hence, linear molecules are excluded from this dis-
cussion).

A Gram matrix is always positive definite as long as
the vectors entering into its definition are linearly inde-
pendent. The requirement of the linear independence of
the Eckart vectors then becomes conditions on the posi-
tion vectors r under which the unit vectors f, , f„f, are
defined. (We will usually address the three-dimensional
molecular model, it being obvious how to modify the re- .

sults for the planar ease. ) We assume for molecular
motions that I" is positive definite. E ' is then also
positive definite, and & ' ' denotes the positive definite
matrix —a unique matrix —such that F '~~F '~' =E ' (Per-
lis, 1952). We shall call the triplet of vectors f„f, , f,
the Eckaxt fxame.

The Eckart frame is located at the center of mass of
the collection of particles [see the interpretation of Eq.
(3.6) given in the remarks below], and its instantaneous
orientation is determined solely by the instantaneous
position vectors (and the underlying static molecular
model). It happens, in practice, that one never actually
constructs explicitly the Eckart frame vectors in terms
of the instantaneous position vectors. What we do is
quite different. We turn the problem around and ask
what is the class of motions which define the same
Eckart frame. These then become the motions which an
observer in the Eckart frame can record. In this man-
ner, the constraints have been placed on the motions of
the particles, and we are free to consider that the
Eckart frame has an arbitrary orientation in space. We
must keep this dual perspective of the Eckart frame.
One of the purposes of this paper is to make clear the
content of the preceding remarks. '

To make the connection of the preceding results with
the Eckart conditions, we note that the vectors f„f„f,
and F~, F2, F3 satisfy

f, x F, + f2 XF2+f3X F, =0. (3.5)

Substituting the F, vectors of Eq. (3.1) into this result
and defining
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Q m„c X (r" —R) =(). (3.'7)

It is also useful to put

r" —R =c"+@~™, (3.8)

and then the Eckart conditions become

c"Xp" = (3.9)

Remarks. Some comments about the interpretation of
the preceding equations are in order. Consider Eq. (3.6)
first. By definition, the z~ectoxs c" axe constant vectors
when referred to the Eckart frame. lt is just this re-
quirement which leads us to the following picture: We
imagine at each instant of time that the principal axes
e„e„e,of Sec. II.Aare coincident with the Eckart
frame f„ f„ f„whi chis itself placed at the center of
mass position vector R. Then, indeed, the c" vectors
are constant vectors with respect to f„f„f, with com-
ponents a, , a,",a,". The interpretation of the p" in Eq.
(3.8) is then also clear —in the Eckart frame the c" are
constant vectors so that the meaning of p" is that of a
displacement of particle cv away from its equilibrium
position. Having established this significance of p" in
one frame, it retains this significance in any reference
frame. Indeed, it should be emphasized that all of the
results, Eqs. (3.1)—(3.9), have been obtained without
benefit of a laboratory frame —they are abstract vector
relations, valid as geometrical relations between vec-
tors.

Let us summarize the steps which have led us from
our intuitive conception of a (classical) molecule to the
mathematical description of it:

Step 1. In the static model, we label the particles
1, 2, . . . , N and put in the corresponding vectors
a

p
a

p ~ ~ 4 7 a
Step 2. We introduce any principal axes system what-

soever and calculate the set of numbers (a,").
Step 3. We introduce the Eckart vectors F„F2 F3 and

the Eckart frame f„f„f„which is completely defined
in terms of the static model and the instantaneous posi-
tion vectors r ', r ', . . . , r~ of the particles. (We ignore
the possibility that the instantaneous vectors might de-
fine a straight line at some instant of time. )

Step 4. We place the Eckart frame at the instantaneous
center of mass and take the static model of step 1 and
step 2 and align the principal axes system we have
chosen with the Eckart frame. In this Eekart frame, the
constant vectors c"= Q,. a,"f, define what we. c. all the
equilibrium positions of the particles. Finally, we in-
troduce the vectors p" =r" —R —c", n =1,2, . . . , ~, which
we call displacement vectors of the particles.

We call the picture which emerges from steps 1-4 a
dynamical rnolecula~ model, One will observe that there
is nothing "intrinsically small" about the displacement
vectors. One might, however, question the usefulness
of the above model unless there is some reason to be-
lieve that each particle n stays in the vicinity of the
point defined by c".

One will also observe that a dynamical molecular mod-
el is not unique. Its lack of uniqueness comes from
steps 1 and 2: Different investigators will usually label

the particles differently and choose different principal
axes systems, thus obtaining various sets of numbers
fa,".). Once one has made a. definite choice of particle
labeling and principal axes in steps 1 and 2, the dynami-
cal model is unique. 8'i&hin this model, the numbers
fa,") are neve~ to be altered. The effect of choosing dif-
ferent particle labelings and different principal axes is
discussed in Sec. III.D, after our understanding of a given
dynamical model has been increased.

There is a second set of Eckart vectors which also
plays an important role in the molecular problem. They
are the same in form as Eqs. (3.1). We simply replace
the position vectors r" by the displacement vectors p":

E,. = Pm„a,". p", i =1,2, 3. (3.10)

We may then write

F; =C;+E;,
where

(3.11a)

Since

K ~CX= ~m~a (3.11b }

f, xc, +f, xc, +f, xc, =&,

the Fckart conditions in the form (3.9) become

f, xE, +f, xE. +f, xE, =0.

(3.12)

(3.13}

B. An Invariance group of the Eckart frame

The purpose of this section is to determine certain
sets of displacement vectors compatible with the Eckart

We will subsequently see that the Eckart vectors
E„E2,E, have an. important role. in the normal coordi-
nate problem. At the moment, we use Eq. (3.13) as the
basis for making several definitions.

The term "displacement vector" for p" has been intro-
duced because of its geometrical significance as describ-
ing the instantaneous position of a particle relative to an
equilibrium position. Aside from having the form p"
=r" —c"—R, n=1, 2, . . . , K (from which follows the cen-
ter of mass condition Q m„p" =0), these displacement
vectors are also required to have the property that their
corresponding Eckart vectors satisfy the condition (3.13)
with respect to the Eck3rt frame. We now take these
properties as a formal definition: & vector ( in the set
g', p, . . . , p) is called a displacement vector compati
bte with the Eckart frame f„f, f, defined by Eq. (3.4)
if and only if (a) it has the form g" =r" —c"—R, where
c" is given by Eq. (3.6); (b) the three Eckart vectors
E; =Q„m„a,"g" satisfy f, XE, +f, XE, +f,XE, =6. We
call the set of vectors g', . . . , g") a set of displacement
vectors.

One of the most important problems in the kinematics
of molecules is the following: Find the set

$G', . . . , &5; R', .",~ 'I; - . . ; V', . . . , t "),. . .)
(3.14)

of all displacement vectors compatible with a given
Eckart frame. This problem is addressed in the following
sections, the complete answer emerging only with the
solution to the internal motions problem.
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frame f„f„f,.
Let r' r' . . . r and s', s', . . . , s" denote sets of

position vectors corresponding to two possible configura-
tions of the particles —instantaneous position vectors
which might have evolved, for example, from different
initial conditions. The position vectors relative to the
center of mass are given by

x"=r —R, @=1,2, . . . , N,
«n «n
y =s —S, o. =1, 2, . . . , ¹

(3.15a)

(3.15b)

Vfe seek relationships between the sets of vectors
y

'
y
' . . . , -y and x ' x ', . . . x which meet certain cri-

teria, which we now discuss.
It is reasonable to consider only those relations be-

tween the y" and x which leave form invariant the ki-
netic energy of the collection of particles relative to the
center of mass. This is equivalent to requiring the
equality of the quadratic forms

«n
~

«n, «m . «N. (3.16)

where this relation is to hold identically in the vectors
x" (when one is seeking to relate the y" to the x"). Fur-
thermore, since the Eckart vectors corresponding to
the position vectors s ', s 2, . . . , s are given by

F,'= m a, y (3.17}

we are led to consider solution vectors y of Eq. (3.16)
which relate to the x,x, . . . , x either through real
linear combinations' Q„zz„x" or rotation-inversions,
or both.

Motivated by the preceding considerations, we -intro-
duce the class of solution vectors to Eq. (3.16}given by

y = Q (6lx~)S
8

(3.18)

MS = SM. (3.19)

This condition requires that S has the block diagonal
form

$ Q ~ ~ ~ Qa

0 S ' ' 0
e

Q Q e ~ ~ $

in which each Sz is orthogonal. Thus, S is an element of
the direct product group

where @ is an arbitrary elergent of 6„and the ~XN
matrix S having elements S„& is a real orthogonal matrix
which commutes with the mass matrix M:

where Oz denotes the set of all n&X nz orthogonal matri-
ces:

Oz ——(Sg'. SgSq ——Iqj, (3.21b)

@.x =Q R;;(x" f, )f;, (3.22b)

P A

where f„f„f, are the Eckart frame vectors. Thus,
each orthogonal matrix & defines a new set of vectors
@x', @x', . . . , @x which stand in relation to x ',x ', . . . , x
as though we had rotated x x x2 x by @, but we are
not committed in interpretation to a rotation of the whole
space.

The viewpoint expressed above accords with our earli-
er one of the meaning we attach to the position vectors
r" and s". Note, in particular, that if the system has no
translational motion, we have s"= y + R, where y" is
given by Eq. (3.18), and 8 is the same center of mass
vector as appears in Eq. (3.15a).

In light of the interpretation given above, it is clear
that Eq. (3.18) does not represent the most general set
of solution vectors which satisfy Eq. (3.16). We can re-
place the set of position vectors (&x: P =1, 2, . . . , N3 by
the set of position vectors which follows:

(((R,x (a): o. = 1, 2, . . . , nJ, (6l, x"(b): oz = 1, 2, . . . , nj,

where the tilde denotes matrix transposition.
An important point of interpretation enters into Eq.

(3.18}. A rotation —inversion operator 6l, as generally
understood, maps each vector in the set &' into a new
vector in the set: x -Nx, each x WR . However, in in-
terpreting the meaning of the N vectors +x', @x', . . . ,
(Rx" appearing in Eq. (3.18) we are not bound to regard-
ing them as having originated geometrically from
x', x', . . . , x in consequence of a rotation-inversion@
of each and every vector in R' (identified in this context
as the set of all vectors with center of mass as origin).
A second move nati&val physical interpvetationis l.c~ ve-
gavd the vectors +x', @x', . . . , @x as nese position vec-
tors (with respect to the center of mass) zvtzich lzaz~e

evolved fv.om some initial set by motzons thxough the
underlying space &'. It is this latter viewpoint which we
adopt, extending it also to the y', y', . . . , y" of Eq. (3.18).
Thus, for each $.==6, , Eq. (3.18) is to be thought of as
defining a, new set of position vectors (they may need
further restrictions before they qualify) of the li parti-
cles —eve attach no geometrical intexpvetation to this
exP&essi on.

It is probably best to be even more explicit on this
point and define +x" in the following manner. Calculate
the matrix & representing @ on the static model basis
e„e„e,. We then have

A, , =e,. -Se, (3.22a)

Using the elements of this matrix, we define 6lx" by

ll o, =o.xo, x. . xo„, (3.21a) . ((R,x (d): o. =1,2, . . . , n,I), (3.23)

Previous considerations of n particle motions in the work
of Louck and Galbraith (1972) suggest this approach. We would
like to take this opportunity to point out the Lemma 1 given by
Louck and Galbraith (1972) is correct only for identical par-

ticless.

where (x"(&): o.'=1, 2, . . . , nz$ denote the position vectors
pointing to the identical particles of type X(& =a,b, . . . ,d),
and @,„@~,. . . , +,„are rotation-inversion operators which
may all be distinct. This generalization of Eq. (3.18)
has a bearing on the theory of nonrigid molecules as
discussed briefly in Sec. VII.
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Throughout the entirety of Sec I.I, unless indicated
explicitly to the contrary, all symbols such as @x",@p",

etc. , axe to be interpreted as neu position vectors,
neu displacement vectors, nese Eckmt vectors, etc. , in
the same unde&lying space in the sense explained above.

The solution (3.18)—(3.20) is far too general to meet
the criteria: (a) y', y', . . . , y are position vectors of
the particles 1, 2, . . . , N relative to the center of mass
S; (b) y', y', . . . , y~ define the same Eckart frame as do
the x', x', . . . , x". We seek now to impose conditions
such that criteria (a) and (b) are true.

For condition (a) to be true, it is necessary that
Q „m„y"=0. Since it follows from Eq. (3.19) that
m„S„B—m8$„&, we find

(3.24a)

hence,

(3.24b)

Let us recall that the Eckart frame defined by the
x"=r —8 ~s

(3.27)

This frame is located at the center of mass point R, and
the vectors c" in x"=c"+p are constant vectors c"
= Q; a,"f, relative to the Eckart frame. Correspondingly,
any second set of displacement vectors q', p', . . . , p of
the particles 1, 2, . . . , N which is compatible with the
Eckart frame f„f2, f, must necessarily have position
vectors relative to the 'center of mass given by

(3.28)

where it is of no consequence whether we consider the
center of mass to be at 8 or some new point S (the
Eckart frame follows the center of mass point, but the
location of the center of mass has no role in its deter-
mination). The important aspect of Eq. (3.28) is the fact
that the c" is the same vector as appears in x"=c +p".
Substituting x" =c"+p into Eq. (3.18) and comparing
with Eq. (3.28), me find that

Relation (3.24b) must hold for arbitrary x" which satisfy
Q 8 m g x = 0, and this requires

((Rc8)S s --c"
8

(3.29)

S„s——1, =1,2, . . . , N.

Since S is orthogonal, each of the rows must also have
the sum

QSs„-—1, P=1, 2, . . . , N.

0 0 s ~ ~
d

uhere each S & is a Permutation matrix of dimension nz.
Consider next the conditions imposed by requirement

(b)—the vectors y', y', . . . , y" are to define the same
Eckart frame as the x', x2, . . . , x . For this purpose,
it is convenient to write Eq. (3.2) in the matrix form

[F~F Fs] =[x'x'- ~ x"]MA (3.26a)

where M is the mass matrix, and A is the 3 X~ matrix

A = a2~

a' ~ ~ ~ a"
. 1

a' ~ ~ ~ aN
2 2

a2 ~ ~ ~ aN
3 3

(3.26b)

It now follows that S iS a permutation matrix of dimen-
sion N (a matrix which may be obtained from the NXN
unit matrix by some permutation of the columns of the
unit matrix). Furthermore, since S must also have the
form (3.20), it follows that each Sq in Eq. (3.20) is a,

permutation matrix of dimension nq.
Our first result may be summarized as follows:

necessary condition that the y', y', . . . , y defined by
Eq (3.28) be Position .vectors relative to the center of
mass of particles 1, 2, . . . , N is that the matrix S has
the form

S, 0 . 0

0 $ ~ ~ 0 05

(3.25)

$.[c 'c '. c"]S=[c 'c' c"], (3.30)

and convert it into a matrix equation relative to the
frame f„f2, f, . We leave it to the reader to verify that
the correct way to convert such a vector relation into a
matrix relation is as follows: Replace each c by its
column matrix representation in the basis f;, i.e. , c"
—col(a,",a,",a,"); replace @. by its matrix representation
R relative to the basis f~, i.e. , by the matrix R whose
element &;; in row i and column g is

R,, = f, .(Rf,. (3.31)

Note that this is the same R as occurs in Eq. (3.22b).
Thus, Eq. (3.30) becomes the matrix expression

RAS =A, (3.32a)

or equivalently,

AS =K@. (3.32b)

The Eckart vectors corresponding to the y', y', . . . , y"
are

[F,'F'F', ] = [y 'y ' .y"] MA.

Equation (3.18) may be written

[y'y' y"] =61[x'x' x"]S,
following again a convention of the type used in Eq.
(2.16). Combining Eqs. (3.34), (3.33), (3.32b), and

(3.33)

(3.34)

is a necessary condition that the y ', . . . , y of Eq. (3.18)
qualify as a set ofposition vectors zohich define the same
Echart frame f„f„j,[the frame (3.27)] as do the x ',

2 ~Nx
p ~ ~ ~

y
x ~

Equations (3.25) and (3.29) express necessary condi-
tions which must be satisfied by the y', y', . . . , y of Eq.
(3.18) in order that they are a set of position vectors
relative to the ceriter of mass which leaves invariant the
Eckart frame f„f„f, of the x', x', . . . , x". We will now

prove these conditions are also sufficient.
Let us first rewrite Eq. (3.29) in the form
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(3.26a), we obtain

[F,'F'F'] =@[F,F F ]R . (3.35)

ticles in the dynamical molecular model. The most gen-
er al tr ansf ormation of the type

The Eckart frame corresponding to the Eckart vectors
F] F2 Fg is given by

y =Z(&x )S a (3.41a)

[f,f,f,] = [F,'F,'7,']RF 'R-, (s.s6)
which preserves the center of mass and the Eckart
frame is given by

z' =~@a. (3.37)

since the Gram matrix &' of F,', F,', F,' is related to the
Gram matrix of F„F„F,by

y" =c"+p",

where

(3.41b)

This result follows from Eq. (3.35).
Using Eq. (3.35) in Eq. (3.36), we now obtain:

I f,'f,'f,'] =&[F,F,F ]1 "R-
=N[f, f.f, ) R

=If,f f,],
where the last step follows by using Eq. (3.31):

(s.ss)

q"= g {6tp")S., ~=1, 2, . . . liV,
8

(3.41 c )

Sp" =QR, , (p" ~ f)f. (3.41d)

in which & is an orthogonal matrix, S is a matrix of the
type (3.25), and R and S satisfy RA =AS.

We can now prove a second principal result.

f,'='Q (sf, )R„. Q(QB„=B;,)f,

=Z 6» A=f;. (s.s9)

Thus, the Eckart frame is invariant under the transfor-
mations (3.18) for all 6i and S which satisfy Eqs. (3.25)
and (3.29).

Observe, in fact, that the Eckart frame is invariant
under all the transformations for which there exists an
S of the general form (3.20) satisfying Eq. (3.32b), i.e. ,
there is nothing in the above proof w'hich requires S to
have the more restricted form (3.25). This latter condi-
tion comes in solely to assure that Q„~„y =0.

We may now write our transformation of position vec-
tors s', s', . . . , s in the form

N'rl''' 'ri ] =@Ip'p'' '' p"]S (3.42)

The Eckart vectors E,', E,', E,' corresponding to the q"
are thus related to the Eckart vectors E„E„E,corre-
sponding to the p" by an equation of the same form as
(3.35):

[E„'E'E']=(R[E E E ]R
from which one can now prove

f, X E,' + f2 X E2 + f3 X E~ = |) .

(3.43a.)

(s.4sb)

Theoyeyyz 2. The set of displacements q', q', . . . , g"
is compatible with the Eckart frame f„f„f„provided
the set p', p', . . . , p is.

Proof By as.sumption, p', p', . . . , p" is a set of dis-
placement vectors compatible with f„f„f, . We may write
Eq. (3.41c) in the form

~n ~n ~as —S=c +q

wher. e

(3.40a) Thus, substituting Eq. (3.43a) into Eq. (3.43b), we ob-
tain:

8"= Q (6tp )S„g,
8

where we recall also that

r"- R=e" +p".

(3.40b)

(3.40c)

g (j, X6tE,.) R,,= M .g (N,
-' f,. XE,.)R, ,

~ 2

= ~ Q (AXE;) R;~R;,

Since we have proved that r" and s" define one and the
same Eckart frame, the dynamical molecular model
corresponding to the new expression (3.40a) is clear:
Our original dynamical molecular model corresponding
to Eq. (3.40c) (the Eckart frame sits at the center of
mass R, the static molecular model is oriented in this
frame by the constant vectors c, and the p are the
displacement of the nuclei away from these equilibrium
position vectors) has been translated to the new center
of mass point S without change of orientation of the
original Echart frame, and the nuclei 1, 2, . . . , K have
been assigned a new set of displacement vectors g',

2
'g P ~ ~

Let us summarize the results thus far obtained in this
subsection with a theorem:

Theo&em Z. Let x"=c"+p", +=1,2, . . . , N, denote the
position vectors relative to the center of mass of ~ par-

=~+ (f, XE,) =0,

Theorem& 3. The set of transformations of Theorem 1
between sets of displacement vectors compatible with
a given Eckart frame is a group.

Proof. Let 2&IR z& denote the transformation

&(e..s): p"-Z (6tp')s ~ =q",
8

(3.44 a)

and let Z &(R ~ &
denote the transformation

J

where the + sign is to be used for deM =1 and the —sign
for detA =-1.

It is natural now to consider the set of transformations
between sets of displacement vectors compatible with a
given Eckart frame.
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g(e s . q"-Q (dl'q')S' ~=/"
8

(3.44b)

In Eqs. (3.44a) and (3.44b), S and S' are required also to
satisfy the conditions of Theorem 1. The product trans-
formation C&(R,s &2&@» is, by definition, the result of
first applying 2&g» followed by Z&~, .~. It is given by

all define the same Eckart frame, we call this group aug.

invariance group of the Echart frame.
The next theorem is a consequence of the definitions.

Theorem 5. The correspondence

g" = +61' Q (6ip~)S8 S'
8

8 y

(3.45)

which proves Theorem 3.
It is often convenient to write Eq. (3.40b) in the form

[q'n'' 'q"] =6t[p'p''''p ]S (3.47)

Writing p" =8&e z&p" in Eq. (3.44a), we may then also
write the transformation (3.44a) in the form

g [tT'p' ' ' 'tT ] =$[p'p' ' ' ' p"]s (s.48)

where we are again employing a convention of type
(2.15).

The next theorem reveals the true nature of the group
of transformations of Theorem 1.

Theorem 4. The group of transformations of Theorem
1 is precisely the group of transformations

~ [t 'O' .P"]=9[t 't ' p ]S(9), (3.49)

where 9 is an element of the point group G(8}, and S(9)
is the static molecular model representation of 8.

Remarks. The action of 9 on a displacement vector is
defined according to the general rule (3.41d):

= g [(N. '6i) p~](S'S)„ (s.45)
y

We next observe that AS =RA. and AS'=R'A imply A(S'S)
=(R'R)A. . Furthermore, S'S is a permutation matrix
of the required type of Theorem 1 if S and S' are. Thus,
we indeed have from Eq. (3.45) that

~ (8'.s ') (C.s ~
=~ &8'@.s 's ) ~

is an isomorphism between the point group of the sta'tic
molecular model and the invariance group of the Eckart
frame.

The physical picture corresponding to the mathemati-
cal transformations (3.49) is quite clear: If an observer
in the Eckart frame can observe the displacements
p, p 2, . . . , p of the N particles, then also he can ob-
serve the displacements 29[p'p' p"], each 9~G(8).

We have now partially solved the problem of finding
all displacements compatible with a given. Eckart frame.
What remains is to assure that the p ', p ', . . . , p~ with
which we started are compatible with the Eckart frame,
i.e., the Eckart E; vectors satisfy Eq. (3.13). Let us
restate these conditions in a form originally given also
by Eckart Let

(S.5Sa,)E, = col(E„E»E„.)
denote the column matrix representing E, on the frame
f„f„f„ i.e.,

—f ~ E. . (3.5sb)

[z, z, z,] (3.53c)

be symmetric.
The method of implementing the Eckart condition into

the motions problem is the subject of Sec. IV, where the
, internal motions problem is discussed. Rather than
entering into these detailed problems at this point, we
turn now to some other general features of the dynami-
cal molecular model.

Then, conditions (3.13}are equivalent to the requirement
that the matrix

Bp"= G . p". (3.50)

+[a'a' a,"]=[a'a' a"]S (s.51}

But since S is a matrix of the type described in Eq.
(3.25), it follows that (a) 8, is a mapping of the static
molecular model onto itself, and (b) S is the static mod-
el representation of @. These two properties prove
Theorem 4.

Since the class of all position vectors corresponding
to the class of displacement vectors which are related
by the group of transformations

where G is the matrix representing 8 on the static model
basis e„e2, e, . We have put Zb ——Z «s&&&& in stating the
result, Eq. (3.49).

Let us now give the proof of Theorem 4. The condition
RA =AS, where S is a matrix of the type described in
Eq. (3.25), is the key relation. From this matrix rela-
tion we can always reconstruct the static molecular mod-
el by defining a" =Q, a,". e,. and S.e, =Q, R,,e, Thus RA.
=AS implies the existence of an element @~6, such that

C. The effect of rotations and permutations on the
Eckart frame

We first consider the effect of an arbitrary rotation-
inversion operator + on the Eckart frame.

Theorem 6. Let @ denote a rotation-inversion of the
entire space &„ i.e. , x -@x, each x &A', and conse-
quently r"-+r", n =1, 2, . . . , N. Then

&: [f,f,f,l- +[f,f,f,) =[f,f,f,]R, (s.54)

(S.55a)

where R is the matrix representing @ on the Eckart
frame, i.e. , R, , = f, &f, .

proof. This result follows easily from Eqs. (3.4), the
property @: I';-@F;, and the fact that dot products are
irivariant under @.

A permutation &+S~ induces a transformation 6' of
the position vectors r', r', . . . , r given by the following
rule:

(Z.„:9~G(6, )] (3.52) for each
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P: 1- e), 2 n2, . . . , N- z@. (3.55b)

Since the permutations of the position vectors of identical
particles leaves the center of mass vector invariant,
the action of each such 6' on the sets of position vectors
x', x', . . . , x" relative to the center of mass, the vectors
c ', c ', . . . , c, and the displacement vectors p ', p ', . . . ,

p, where r" —8 =x = c"+ p", is given, respectively, by

+-'[c 'c 2 ~ ")= 9 '& [c 'c ' ~ c"1

(P-i[p 1p 2. . .p&] 9-1g [p 1p 2. . .p&]

(3.60b)

(3.60c)

6'[c 'c ' c~] =9[c 'c ' c"]

in consequence of

(3.61)

for each O'= II~G(S,„). Note that the implication of Eq.
(3.60b) is

«1 ~n ~2 ~a ~g
X X &~X X 2, . . . , X X

~nc'-c ~, c'-c 2, . . . , c -c &,

for each

(3.56a)

(3.56b)

(3.56c)

[c 'c ' ' ' ' c"] = [c 'c ' ' ' ' c"] (3.62)

[cf. Eq. (3.30).] Thus, the + appearing in Eqs. (3.60) is
the one corresponding to 8 in the static molecular model.
We therefore may write

+~II G(s.,) (3.56d)

The first important result on permutations is stated in
the next theorem.

Theorem 7. Each permutation operator 6'E II&G(S„)
maps the Eckart frame f„f„f, into a new Eckart frame

3

6': [f,f,f,l- [f,'f.'f,'], (3.57)

where the identity permutation operator is the only one
which maps the Eckart frame onto itself.

Proof: Each permutation operator induces the trans-
formation

6" [x 'x ' ' ' ' x"]—[x 'x ' ' ' ' x ]S (6') . (3.58)

This transformation has the form (3.18) in which @, is the
identity. By Theorems 1-4, each such transformation
of this type which preserves the Eckart frame has the
form (3.49). This is possible if and only if 6' is the iden-
tity; all other permutations must therefore transform
the Eckart frame.

The next theorem establishes the effect on the Eckart
frame of a permutation operator corresponding to a point
group operator.

Theorem 8. Let 9~G(8) denote the operator in the
point group of the static model which corresponds to 6'

(as discussed in Sec. II.E). Then

+: I.f,f,f,]-9[f,f,f, l =[f,f.f, ] G, (3.59)

The 9 ~ occurring in Eqs. (3.60)—(3.63) is a rotation of the
space R; the 9 appearing in the definition of gg defines new
vectors in the manner explained at the beginning of this sec-
tion. Nonetheless, when a g ~ meets a g from g8, it does give
the identity.

where 9~~ is a rotation-inversion of the whole space A'.
The proof follows from the definitions and Theorem 6.
Longuet-Higgins (1963) and Hougen (1962, 1963, 1975)

have put forth the thesis that the use of the symmetric
group is a more powerful tool for the analysis of the
molecular motions problem than is the use of the point
group. They appear to base this viewpoint on the fact
that one can express the action of a permutation operator
+ on the various sets of objects appearing in Eqs. (3.56)
in the following manner'.

6 '[x'x x ] =9 'g~[x'x' xv], (3.60a)

-1 g- lg (3.63)

where this is understood to be an operator identity when
operating on the objects appearing in Eqs. (3.60). It is
Eq. (3.63) which is the basis for Longuet-Higgens' and
Hougen's conclusion that the symmetric group plays the
more fundamental role. This conclusion appears tenable
to us only if one is willing to accept the notion that Eq.
(3.63) is in some sense to be regarded as the fundamen-
tal origin. of the operators Zc =86' '.

From our point of view, Longuet-Higgens and Hougen
attribute an undeserved status to the role of the sym-
metric group in the nzoleculax motions pxoblem for rea-
sons which we now enumerate:

(a) The group G(8) gets into the dynamical molecular
model quite on its o~n because an invariance group of the
Eckart frame is a idealization of tke Point gxouP by a set
of transformations between sets of displacement vectors
which are compatible with the Eckart frame.

(b) The group of permutations (6" 6'= II~G(S,~)]. and
the group of transformations (Li9.' 9=:G(8)j have but a,

single element in common —the identity. This implies
that only the transformation group (29j can enter into
the solution. to the internal motions problem —the ex-
plicit construction of all motions compatible with the
Eckart frame. To consider the (Z9} as a ' piece" of a
permutation operator is to deny the group (29j its true
status in this construction —the group f+} cannot be used
"on its own" to determ ine the inter nal motions.

We should explain that while we take the view that the
transformations (29: 9~G(8)) relate certain displace-
ments which Bn observer in the Eckart frame can re-
cord, and. hence do not insist that-one such set be ob-
tained from another by geometrical operations on the
molecule, it is nonetheless true that this latter view-
point a.s implemented in Fig. 5 —8 of Wilson (1955) does
lead to precisely the same group of relations between
displacement vectors as we have described.

D. Transf ormations between different dynamical models

In Sec. III.A, we pointed out that two different investi-
gators will, in general, assign differentlabelingschemes
and use different principal axes systems in setting up
their dynamical models of a given molecule. The pur-
pose of this section is to show quite generally how one
investigator can take another's model and transcribe the
mathematical symbols into agreemen. t with his own. .
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In the A model (our model theory), the static model is
described by vectors a', a', . . . , a, and the principal
axes system is a„a„a,. In the B model (another inves-
tigator's model), the static model is described by vec-
tors b', b', . . . , b", and the principal axes system is

To bring the B model into agreement with the A mod-
el, we perform the following actions. We first take the
& static model and br ing it into coinc idence with our s-
any matching up of identical particles with identical par-
ticles. This establishes a one-to-one mapping between
the two sets of position vectors:

b" =a'~, +=1,2, . . . , N, (3.64)

b,. =(Ra;, i =1,2, 3. (3.65)

Thus, @. is the operator whose matrix representation on
the basis a„a„a, is given by

wher~ ~» ~». . . , ~& is some rearrangement of 1, 2, . . . ,N,

In general, the preceding action will not align the princi-
pal axes system bi b2 b3 with 1 2 3 In the second
step, we determine the rotation-inversion operator @
such that

(3.69b)

where y', y', . . . , y denote position vectors relative to
the center of mass. We seek the relation between
y', y', . . . , y and x', x', . . . , x . Noting that Eq. (3.68)
implies

[G,G G, ] = [F,F F,]R, (3.70a)

we obtain from Eqs. (3.69) the relation

[y'y' y ]MB =[x'x' x ]MAR. (3.70b)

Using Eq. (3.67b) in this result and noting that S com-
mutes with ~ (because of the way it is constructed), we
obtain the desired result:

[y'y' ~ y~]=[x'x' . x"]S. (3.71a.)

To complete the transformation, we also observe that
the equilibrium position vectors d, d, . . . , d of the B
model are given by

&„=a,. Sa, =a,. b, (3.66) a'. "f. =c'&

The two relations (3.64) and (3.65) may now be used to
relate the matrix & to the matrix A:

that is,
[d'd' d"] = [c 'c' c~]S. (3.71b)

a b a"(y, ega

= Q (a, (Ra,.) a""~ a,.

(3.67a)

Thus, the displacement vectors (', P, . . . , ( in the B
model, ("=y" —d", also undergo the same transforma-
tion. S:

(3.71c)

In matrix form this result becomes

B =RA$,

where S is the permutation matrix

(3.67b)

(3.69a)

where x', x', . . . , x denote position vectors relative to
the center of mass. The Eckart vectors in the & model
are given by

S=[e„e, e, ], (3.67c)

where e, =col[0 ' ' ' 010 ' ' 0] with the 1 in position v.
We now examine dynamical model B (constructed ac-

cording to steps 3 and 4 of the rules given in Sec. III.A).
We see that our perspective of model B will be the same
as that of our model A if

g,. =(Rf, , (3.68)
A A A

where f„f„f, denote the Eckart frame of our model,
g„g„g3 denote the Eekart frame of model &, and @ is
the rotation-inversion operator appearing in Eq. (3.65).

Equations (3.65)—(3.68) are the basic equations which
allow us to transform the variables of any & theory into
those of the A theory. The explicit transformations may
'be obtained either geometrically or by using the Eckart
vectors of the two theories. We follow the latter course.

The Eckart vectors in the A model are given by

Summ«y: With the permutation matrix S determined
by Eq. (3.64) and the orthogonal matrix R determined by
Eq. (3.66), we may transform any B model theory into
our A model theory by replacing the matrix & by @AS;
the Eckart frame [g, g, g, ] by [f,f,f,]R; and the position
vectors, equilibrium vectors, and displacement vectors
by y =x"",8 =e'~, $"=p", o. =1,2, . . . , N, respectively.

Included as a special case of the preceding transfor-
mation rules is the case of a single investigator who
wishes to consider the effect on his dynamical model due
to a relabeling of the identical particles in his static
model. In this ease, he keeps the same principal axes
system throughout. This corresponds to putting +, = iden-
tity in Eqs. (3.65)-(3.70). The content of the transfor-
mation rules then has the following interpretation:

Theorem' 9. There exists a one-to-one correspondence
between the set of all dynamical models corresponding
to the permutations of the position vectors among
a, . . . , a which point to identical particles in the static
model and the set of theories in which A is fixed and the
permutations are applied to the position vectors among
the r', . . . , r" which point to identical particles in the
dynamical A model.

It is interesting to note that Theorem 9 may be con-
sidered to be a direct consequence of an invmiance pxop-
e~ty of the Eckaxt vectors:

Theo+em 20. The Eckart vectors

Rev. Mod. Phys. , Vol. 4S, No. 1, January 1976



Lauck and Galbraith: Eckart vectors, Fckart frames, and polyatomic molecules

F ~ ao! (3.72a)
mations between displacement vectors compatible with
the Eckart frame may also be written in the. split form
[cf. Eq. (3.49)]:

are invariant under the simultaneous transformations
&8[P'(&) .P"~(~)] =9[p'(~) P"&(&)]S~(8) (4.5)

a, -~a;SB„,n M 8

8
(3.72b)

(3.72c)
2 =[AB D], (4.5)

for ~=a, b, . . . , d.
The relation &A =&S of Theorem 1 also takes a split

form. We note that the 3X~ matrix A may be written

where S is an arbitrary orthogonal matrix which com-
mutes with the mass matrix M..

Proof. By direct substitution of Eqs. (3.72b) and
(3.72c) into Eq. (3.72a).

IV. THE INTERNAI COORDINATE PROBI EIVl

One could hardly justify another discussion of the nor-
mal coordinate problem were it not for the fact that the
r ole of the Eckart vector s of the second kind

m „a,". p~™

A. Reduction of the static model representation

Let us recall from Sec. 11, Eqs. (2.15), that the static
model representation of the point group has already been
split [by the mass matrix property, Eq. (2.21)] into the
study of the transformations between vectors associated
with identical particles. We now make a corresponding
split of the Eckart vectors (4.1). Let

p (a), o. = 1, 2, . . . , n,

5'(b), P =1, 2,

(4.2)

p (d), 5 = 1, 2, . . . , n„

denote the displacement vectors of the identical parti-
cles of the a type, of the ~ type, . . . , of the d type, i.e.,
the displacement vectors corresponding to the labeling
in the static model given by Eq. (2.19b). Equation (4.1)
becomes

E; =m, g,. (a)+m~ g, (b)+. +m~ 8;(d),
where we have defined

Z, (a) = Q a,". p" (a),

(4.3)

&, (b) = Ebs p'(b),
(4 4)

&;(d)=Ed 7'(d)-
/

The action of an operator ZB of the group of transfor-

seems to have gone unnoticed. Furthermore„most dis-
cussions appear not to have recognized the intrinsic
direct product structure of the problem. In this section,
we consider the normal coordinate problem from this
point of view.

where the new A in the right-hand side is 3X n, , & is
3 X&, , . . . , D is 3X&„. Thus, &A =AS for S of the form
(2.19c) now becomes the set of relations

GA =A.S,(8),
GB =BS~(9),

(4.7)

GD =DS~(8),

where G is the matrix representing 9 on the frame
e3 of the st atic mode l, or, equ ivalentl y, G is the

orthogonal matrix representing 8 on the Eckart frame
I& 2& 3'

(4.3)

The important transformation property, Eq. (3.43a.),
of the Eckart vectors now becomes

&9[~,(~) &.(~) &,(~)] = 8[&,(~) h. (~) &,(~)1 G (4.9)

for each A. =a, 6„.. . , d.
For notational convenience, we now drop the index ~

in the subsequent discussion, and write

&8[p' "p"]=9[p' "P]S(8)
GA = AS(8),

(4.10a)

(4.10b)

(4.10c)

(4.10d)

(4.11)
Multiplying Eq. (4.10b) from the left by S(8)AG = A gives

S (9)SC =Ics (9), (4.12a)

S(8)A= AG.

where

(4.12b)

Since K is a real, symmetric matrix, there exists a real,
orthogonal matrix W which brings K to diagonal form. The
form of the diagonal matrix depends on the rank of the

In these equations, p', . . . , p denote any of the sets of
displacement vectors p '(&), . . . , p~~(&); A denotes the
corresponding 3xnq mtarixA, B, . . .& or D; S(8) denotes
the corresponding Sq(8); and S„Z„S,denote the cor-
responding 8, (&), $, (~), Z, (~). Note, however, that it is
the same G which occurs for any ~.

Let us now construct a real, orthogonal matrix which
effects a partial reduction of the static model represen-
tation. Equation (4.10b) is the key relation, which we
also require in its transposed form:

Rev. IVlod. Phys. , Vol. 48, No. 1, January 1976



Louck and Galbraith: Eckart vectors, Eckart frames, and polyatomic molecules 83

io = dim& = rankA . (4.1 3b)

The 0's in the block matrix (4.13a) denote zero matrices
of the appropriate dimensions as required to "fill out"
the n X n matrix.

We will need an additional property of W which follows
from Eq. (4.13a). Writing the left-hand side in the form
(WA)(AW) and selecting the diagonal element of this
product, we easily prove

matrix A. The rank of A may be 0, 1, 2, or 3, depending
on the static configuration of the identical particles of
type X. If rankA=0, then A itself is the zero matrix.
This can happen only if a particle is located at the cen-
ter of mass. Thus, & is the 1X1 zero matrix, and we
choose W =1. For all other cases, we have

k 0
(4.13a)

0 0

where & is a diagonal matrix having nonzero elements
and having dimension given by

A,. =row(A. , A. ' ' ' A.") (4.19)

then the first i, columns of W may be constructed by the
following procedure: Let A,', A,', A,' denote any rear-
rangement of A„A„A, such that A,', . . . , A,' are linear-
ly independent. Then the first i, columns of ~ may be
taken to be

A'A' ' ' ' A'A'I I

given as follows: Equation (4.14) implies that the rows
of A span the same space as do the columns O'„S"„.. . ,
W;, (io =rankA) of W. This result and the relation

[~,&.& ) =[t 't 2 .0")A (4.18

now yield the desired proof.
Generally, the linearly independent rows of A will not

be perpendicular (see, however, the examples presented
in this section). This situ'ation is easily remedied by the
Gram-Schmidt procedure. If we denote the rows of A

by the notation

k=1
Wk, A,k =0 (4.14)

W,. =det (G;,G;) '2, (4.20a)

for i ~1+dim& and 1 =1, 2, 3. The content of Eq. (4.14)
may be summarized by the statement: The space
spanned by the rodeos of A is perpendicular to the space
spanned by the columns W~, 1+dimh ~i &n, of W.

The next step is to multiply Eq. (4.12a) from the left
by W and from the right by S'. This gives

i =1, . . . , io =rankA,

A'A'
1

G,- =det

where G; is the Gram determinant

~ - A' A'.
1

(4.20b)

WS (9)W
0 0 0 0

WS (9)W.

It is straightforward to show from this result that

S, (9) 0
WS (9)W= (4.15a)

0 S,(9)

where S,(9) is a real, orthogonal matrix (of dimension
equal to rankA) which commutes with h,

S,(9)h =hS, (9), (4.15b)

and S,(9) is a real, orthogonal matrix. Thus, we have
proved: Any orthogonal matrix zurich diagonalizes &
= AA reduces the static model representation S(9).

The reason for reducing the static model representa-
tion first can now be made clear. If we define the vec-
tors p" by

(4.16)

then combining Eq. (4.10a) and Eq. (4.15a) shows that we
have also split the space of displacement vectors with
respect to the operators Zg..

Z9[q~ 6'0] =9[@' .q'0)S, (9), (4.1 Va)

g [j'o". q "]—9[q'0". . .q "]S (9) (4.17b)

The next result establishes the role of the Eckart vec-
tors S„S„Z,of Eq. (4.10c) in the preceding reduction.
The linearly independent vectors among Z„Z2, Z, span
the carrier sPace of the rePresentation Z9 of G(S) oc-
curring in Eq. (4.17a). The proof of this statement is

A'. A' A '. A'
I i i

G, is defined to be 1, and W, is defined to be A,'/G', '.
The preceding construction also determines a set of

new Eckart vectors Z,", . . . , ZP which now carry the rep-
resentation 29 of G(8) occurring in Eq. (4.17a), i.e. ,
they are given by q' =Z,":

[W, ~ W,. ] =[A,' A,'. ]~, (4.23)

where & is an upper triangular matrix having elements
which are easily identified from Eq. (4.20a), but which
we will not note explicitly. Deleting the redundant col-
umns from Eq. (4.22) and multiplying the resulting equa-

(4.21a)

(4.21b)

where m„i is the element in row n and column i of 8'.
We call the vectors (4.21) new Eckart vectors (of the
second kind) because they are linear combinations of the
old Eckart vectors S„S„Z,.

The details of the relation between Z,", . . . , Zf and
Z„Z„Z, may be constructed. We first observe that Eq.
(4.18) may be rewritten in the form

[&,' &.'&,'] =[i 9' P "]A', " (4.22)

where 8,', g~, Z~ denotes the same rearrangement of

notes the 3Xn matrix having rows A,', A2, A,'. The rela-
tionship between W„. . . , +';, and A,', . . . , A,' is of the
form
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tion from the right by & yields the desired relation:
P». .. Zll ] [Zi. . .Zi ]+ (4 24)I iQ l Q

Finally, we can also determine the matrix S, (8) in
terms of the G occurring in Eq. (4.10d). This is accom-
plished in the following manner. The Eckart vectors Z;
are uniquely expressible in terms of the Z,", . . . , 8'o by
the relation

[Z, Z,Z, ] = [Z," .Z,",] v,

where V is the 3XiQ matrix of rank &Q given by

V=A[W, . W. ].
ZQ

Using

z8[Z, Z,Z, ] =8[Z,Z,Z, ] G

=8[a," .Z,",] vG

=@9[8," 8,-" ]S,(8)VG,

we obtain

(4.25a)

(4.25b)

[Z,Z,Z, ] =[Z," ' ' Z," ]s,(9)vG.

Comparing this' result with Eq. (4.25a) yields V =S, (8)VG,
that is,

(b) The matrix & =AA satisfies &' = aIt. . Hence
&/n(o. '& 0) is idempotent.

(c) The rank of A is 3 for each A =A, Il, . . . , D (A o 0).
Therefore, we have

S, (8) =V-'G V,
and S, (9) is irreducible and equivalent to G. Further-
more, V must be orthogonal, and & must be the 3X 3 unit
matr ix.

(d) The cases rank A =1 or rank A =2 can never occur.
If 9- G is a xeduczble rePresentation of G(8), tken
(e) S, (9) is irreducible for the case rank A =1 [S,(9) is

then 1 X 1].
(f) S, (9) may be reducible or irreducible in the cases

rank A =2 or rank A =3. It depends on the diagonal ma-
trix tz —if the elements of & are not equal, the S, (8) is
necessarily reducible.

Concerning the reduction of S,(8), one can say very
little in a general way which would differ from the stan-

dardd

projection oper ator technique s. We wish, however,
to make the following remarks: (a) Often this piece of
the problem is so small, it can be solved by inspection;
(b) if it happens that

O'G =S, (8)V, (4.26) Q &; =0 (i =1, 2, 3),
where we note again that V is 3X i, S, (9) is z, X z„and
G is 3X3. Since the rank of V is i„Eq. (4.26) possesses
a unique solution expressing the elements of S, (9) in
terms of the known elements of G and the known elements
of V.

For consistency, we must also prove that the S, (8)
obtained by solving Eq. (4.26) commutes with the diago-
nal matrix & appearing in Eq. (4.15b). One easily veri-
fies from Eqs. (4.13a) and (4.25b) that VV =&. Further-
more, upon multiplying the transpose of Eq. (4.26) with
the original equation, we also verify S, (8)& =&S,(9).

Let us summarize the results we have obtained for the
reduction of the static model representation. First we
have proved the existence of a real orthogonal matrix
which reduces the representation (not necessarily znto
ivy. educibles) Second, .we have given an explicit con-
struction of that part of the orthogonal matrix which
splits off the representation S, (8). Third, we have shown
that this split is a consequence of the fact that the Eckart
vectors already span the invariant subspace which car-
ries S, (9). Finally, we have obtained the relation of the
representation S, (8) to the representation G. Thus, we
have given all the details for splitting off the invariant
subspace

zi' =Z,", . . . , zi'o =Z," [cf. Eq. (4.17a)].

Up to this point we have said nothing about the reduci-
bility or irreducibility of the representations B-S,(8)
and B-S,(8). A number of interesting results which have
a bearing on the properties of S, (8) are easily proved,
and we state some of these without proof. If 8- G is an
iz.z.edzzcible z epxesentation of G(8), ttzen

then the one-dimensional invariant subspace spanned by
n

q = P p"fun (4.27)

U S(9)U =
1 (8) '''

(4.26)

where the dagger designates Hermitian conjugation. De-
fining vectors g" by

[n'zi' .n "]=IB'P'"p "]U', (4.29)

always splits off; and (c) sufficient conditions that the
representation 8-Sz(9) be completely reducible by a real
orthogonal similarity transformation are that S,(9) con-
tains no irreducible representation more than once and
that the ones it does contain have real characters [this
statement applies equally well to the representation
B-S,(8)].

No doubt, one could refine considerably upon our ob-
servations concerning the reduction of static model rep-
resentations of G(N). (We have, for example, made no
use of the fact that the matrices in these representations
are permutation matrices. } However, since our princi-
pal purpose was to demonstrate the role of the Eckart
vectors, we will not pursue these details further.

Let us suppose, then, that we have found a unitary
matrix' U which completely reduces the static model
representation:

r(8) 0

(a) The matrix AA is a, multiple of the 3 X 3 unit matrix

AA = cyX

where n & 0 for A + 0.

I acking a general proof that the static model. representation
is always reducible by an orthogonal matrix (which we suspect
to be true), we only assume the known result that the matrix
U is unitary.
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~g[6' 6 ]=9[0'" n ]1;(9), (4.30a)

~9Ã
"~"'."O"'"]=9[v ~"' n~~l™]1.(9), (4.30b)

we see that Eq. (4.10a) splits into a number of relations: and reduce it:

G 0 ~ ~ 01

Uo GUO= (4.37)

where ~, is the dimension of the irreducible represen-
tation 9- &, (9).

Let us denote a typical one of the relations (4.30) by

~ [~' "«-]=92'" ~-]~(9) (4.31)

This is the stage to which the complete reduction of the
static model representation brings us.

B. The direct product structure and symmetry

coordinates
To progress further with the internal coordinate prob-

lem, we must now gotothe component versionof Eq. (4.31)
We must do this carefully. Equation (4.31) means

~-„& = Z(9&8)~..(9). (4.32)

In terms of components with respect to the Eckart frame,
it becomes

0 ~ ~ 0
k 0

where k, (k, ~3) is the number of irreducibles contained
in G. Upon defining

g"=U g, o=1,2, . . . , m (4.36)

the split of Eq. (4.36) corresponding to Eq. (4.37) is
given by

v' (k)

r2 (k)

=[&(9)e G, ] (4.39a)

7 "I (k) ~"~ (k)

& =1, . . . , &0. The number &k is the dimension of Gk

(r, + +r~ =3); each w"(k) is a column matrix of length
r»; and the identification of the v" (k) with the components
of &" is given by

(&g~")'f; =Q Z G;;(f, &') f~ 8(9)
j 8

=(G[~' ".~-1 ~(9)]" (4.33)

where G is the matrix representation. of 8 on the Eckart
frame and g =col(g, g, g, ), g, = f, g . We can restore
Eq. (4.33) to a, matrix relation by making the definitions

I )tX (g $(X) f (4.34a)

Lgg" =col(Lg),"Lg("Lg E,"),
[P.. . (m] [L P. . .L (m]

(4.34b)

(4.34c)

The relation expressed by Eq. (4.33) may now be written

L[gE' g ] =G[g' g ] I'(9). (4.35)

We may write the transformation (4.35) in a more con-
ventional form by arranging the columns of the 3 Xm
matrix [P ' ' '

$ ] in a single (3m) X 1 column matrix in
which P occupies positions 1—3, P positions 4-7, etc.
It is a straightforward exercise in matrix algebra to
verify that the transformation (4.35) then takes on the
following appearance:

(1 gl

g
(X

g
CX

~"(k, )

Observe nocto that the final steP in the determination of
symmetry coordinates [coordinates transforming ac
cording to the irreducible rePresentations of G(8)] in
volves only the reduction of the direct Product of tzvo

zxxeducible xePxesentations. This reduction may nozv he
effected by the Wign er coefficients (Griffith, 1962) of
the point group G(Q).

We may summarize our method of obtaining symmetry
coordinates in three basic steps: (a) Peduce the static
model representation, utiliz ing the Eckart vector s to
accomplish part of this; (b) reduce G if it is not already
irreducible; (c) use the Wigner coefficients of the point
group G(8) to complete the reduction.

Recall that these three basic steps are to be applied
to each of the A =A. , B, . . . , D pieces of the problem.

The result of carrying out the preceding steps will be
a number of sets of coordinates

(Z; (A): p =1, 2, . . . , hq,. i =1, 2, . . . , hqq-3;

a=a, 6, . . . , d]. (4.40)

=[1"(9)e G] (4.36) . The integer k„q is the number of partners transforming
ir re due ibly:

where the notation A (3& denotes the direct product of
two matrices. The notation on the left-hand side is a
column matrix version of the convention (4.34c).

Equation (4.36) displays the "intrinsic direct product"
structure alluded to at the beginning of this section. Ob-
serve that if the representation 8- G is not already ir-
reducible, we can go one step further (it is only 3 X 3)

= 1"(9) (4.41)

z ~ (A.) ~a (X)

where I'(9) is a real, orthogonal irreducible represen-
tation of G(8) of dimension h„~. The integer hq is the
number of irreducible representations obtained from the
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reduction of the ~th piece of the problem, and, as used
consistently, ~ enumerates the pieces a, b, . . . , d of the
problem. Consequently, it must be true that

h)

h„~ =3n (4.42 a)

n~ —N.
X

The general form of each Z,". (&) is
77 g

Z,". (&) =g g C,","(&)p" (A.) f, ,
» 9»

(4.42b)

(4.43)

where the p"(&), n=1, 2, . . . , nq, are the original dis-
placements occurring in Eqs. (4.4) and (4.5). Further-
more, the coefficients C,",."(&) are the elements of a real,
orthogonal matrix (rows are enumerated by the index
pairs p.i; columns by o.2).

C. Alternative method of obtaining symmetry
coordinates from the Eckart vectors

In Sec. IV.B, we have taken. the route of reducing com-
pletely the static model representation before proceed-
ing to the reduction of the direct product. This proce-
dure obscures somewhat several interesting properties
of the Eckart vectors. For many problems the reduc-
tion of the "Eckart vector part" of the problem consti-
tutes a large piece of the symmetry coordinate problem.
%'e therefore present an alternative procedure for deal-
ing with the Eckart vectors.

In matrix form„Eq. (4.10d) may be written in either
of the following ways:

1.,[8,8,$,] = G[$,$,8,]G, (4.44a)

(4.44b)

where

8, =col($„8„$„),
g. . —f~ g, ,

(4.44c )

(4.44d)

These equations are valid despite the fact that the Z;
may not be linearly independent.

Equation (4.44b) is interesting because we know how to
reduce it partially by standard angular momentum tech-
niques: Since G is an l =1 representation of the orthogo-
nal group, G (3 6 contains l = 0, l = 1, and L = 2 irreduc ible
representations. These representations are carried by
a scalar (the trace of the matrix [8,$,8,]), a vector
(three components), and a second-rank tensor (five
components). Explicitly, these invariant subspaces are
spanned by the following symmetry coordinates:

&» = &»+~22+~-

(~1 ~2 ~3) ( 23 321 31 131 12 21) &

(K,K, K,K,K, ) = (8„+822, 8„+8„,8„-&„—&22,

+ 8„,8„+8„).

(4.45a)

(4.45b)

(4.45c)

In general, of course, the second two of these invariant
subspaces may be reducible with respect to the operators

Thus, in this second approach, one must account
not only for the possible linear dependence of the vectors
S„Z„S„butalso continue with the reduction process.
This can, of course, be done in a general way, but it is
perhaps better to carry this out for the particular cases.

One can also apply the preceding analysis to the full
Eckart vectors of Eq. (4.1). For nonplanar molecules,
the Eckart vectors E„E„E,are always linearly inde-
pendent. The invariant subspaces are spanned by the
symmetry coordinates

~»»1 22

(4 4 ~p) ( 23 32& 31 13& 12 21) t

(4.46a)

(4.46b)

(4.46c )

Quite remarkably the vector

5 = $,f, +5,f, + h, f, (4.47a)

which appears in this reduction is just

7 =f, XE, +f, XE2+f,XE, (4.47b)

D. Normal coordinates

Whether we use the method of Sec. IV.B, Sec. IV.C, or
a combination, the results of the group theoretical anal-
ysis are expressed by Eq. (4.43). We still must impose
the center of mass conditions

Q Q m, p" (A.) f, =0, . (4.48a)

for i =1,2, 3, and the Eckart conditions

g m„s, , (~) =g m, s, , (~) (4.48b)

for i& j.
The method of imposing conditions (4.48) may be out-

Note also then the requirement E; = S'
&

places the preceding
analysis of the Eckart vectors E&, E2, E3 in one-to-one corre-
spondence with the analysis of the polarizability tensor
/wilson, 1955).

which, by the Eckart conditions, is required to be the
zero vector. The natural occurrence of $ as a symmetry
coordinate gives yet added insight into the ingenuity of
Carl Eckart s choice of conditions for fixing the molec-
ular frame. '

The results given by Eqs. (4.46) are related to those
of Eqs. (4.45): When the suppressed index & is restored
to Eqs. (4.45), this relation is expressed by Eq. (4.3).

The procedure given in this section may be used to
replace part of the general procedure of Sec. IVB. The
part which it replaces is described as follows: Partition
the matrix on the right-hand side of Eq. (4.28) into two
parts —the irreducibles originating from S,(9) and the
irreducibles originating from S,(9) [cf. Eq. (4.15a)]. Then
the content of Eqs. (4.45) (after accounting for any linear
dependence of the h,. ) must agree with the results one
obtains from the sets af the type of Eq. (4.36) corre-
sponding to I,(9) G, I', (9)SG. . . where 1,(9), I 2(9), . . .
are the irreducibles contained in S,(9).
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fig h

i"(") f =2 2 &"":(")&"(&) (4.49)

lined in the following manner: We first invert Eq. (4.43)
to obtain

E. Static model XY~ with symmetry group T„
With respect to a principal axis system e„e„e„the

static model matrix A. is given by
@=1 f =1 a =[ca], (4.53a)

The idea now is to impose the six conditions to obtain
six relations among the 3N quantities Z,". (&). One then
introduces 3&- 6 independent internal symmetry coor-
dinates S", , y = 1, 2, . . . , h, i = 1, 2, . . . , h& ~ 3. Relation
(4.49} takes the form

Ay".j, =g .QC&,"S,',
y=1 5=1

(4.50)

where now a =1, 2, . . . , N. The index y enumerates the
number of irreducible representations h (repetitions
counted) which are carried by the internal symmetry
coordinates, and the index i enumerates the number of
partners h& participating in a particular irreducible
transformation. The method of going from Eq. (4.49) to
Eq. (4.50) is best illustrated by our examples given in
Secs. IV.E, IV.F, and IV.G.

If two (or more) internal symmetry coordinates
(S~, . . . , Sf&) and (S~, . . . , S~z ) carry the same irreduci-
ble representation of G(8), and if the direct product of
this irreducible representation contains the identity
representation, then these internal symmetry coordi-
nates are still not normal coordinates. To split such a
representation, one must proceed by the well known
method of diagonalizing the appropriate quadratic form
(a portion of the quadratic part of the potential energy).
The end result of such calculations i.s a set of normal
coordinates

where

0, B = -1 1 1 -1
1 1 —1 -1

(4.53b)

The X nucleus is labeled 0, and its equilibrium position
is given by the column A; the four Y nuclei are labeled
1, 2, 3, 4 and their equilibrium positions are given up to
a single constant by the columns 1, 2, 3, 4 of &, respec-
tively. The point group of the static model, G(8), is
well known to be tetrahedral &, of or'der 24.

Any operator of &~ can be written as a product formed
from the two generators (Biedenharn et al. , 1968):

9(1)=8&(n/2, e, ),
9 (2) =8%(n, (e, + e,)/v2 ) .

(4.54a)

(4.54b)

Thus, whenever the matrices representing these two
operators are reduced, we are assured that the matrices
representing the remaining elements of the group are
also reduced.

We begin with the static model representation matrices
corresponding to the group elements (4.54). These ma-
trices are written down directly by the geometrical
rules described in Sec. II.D: S, (A') = 1,

0 1 0 0 0 0 0
$q,. : y = I, 2, . . . , h; i = 1, 2, . . . , h ~ 3j . (4.51a)

The normal coordinates are transformed under the
action of LB in the following manner:

0 0 1 0
s,(1)=,s, (2)=

0 1 0 0

0 0 1 0

= r~(9) (4.51b)

(4.52)

q

where 9-r&(9) is a real, orthogonal irreducible repre-
sentation of G(8}. Finally, the displacement components
are given in terms of the normal coordinates by an ex-
pression of the form:

h

p". f, =g
y=1 f =1

This relationship alone is, of course, not invertible
since 3N components are defined by the left-hand side
and 3'- 6 components occur in the right-hand side.

The results presented in this section are, of course,
well known and have been included only for completeness
of the presentation of the symmetry coordinate methods
of Secs. IV.B and IV.C.

The presentation of Secs. IV.B and IV.C gets quite in-
tricate because of its generality and the corresponding
need to keep track of the large number of pieces into
which the problem splits. We therefore invite the read-
er to work through the nontrivial examples given in the
next three sections to convince himself of the simplicity
and power of these techniques.

~, = (p' p'+ p' P')/-2, -
&, = (-p'+I '+p ' p')/2, -
~, =(p'+p' p' P')/2. -- (4.56)

Furthermore, upon noting that Q „bP =0, i =1, 2, 3 [cf.
Eq. (4.27)], we also introduce

2 0!=1
(4.57)

which is a vector proportional to the center of mass of
the four identical Y nuclei.

The matrix TV which reduces the ~ part of the problem

, 1 0 0 0, 1 0 0 0

Our first problem is to reduce the representation
generated by the matrices (4.55). The representation
S,(k) is already reduced. To reduce the representation
generated by S,(1) and S,(2), we follow the procedure of
Eqs. (4.16)-(4.27), noting, however, that the rows of
B are already orthogonal so that it is unnecessary to use
the Gram-Schmidt procedure.

The matrix W corresponding to the reduction of the a
part of the problem is W = 1.

For the reduction of the & part of the problem, we in-
troduce the corresponding normalized Eckart vectors
[cf. Eq. (4.10c)]:
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—1 1 1 1

1 1 -1 1
(4.58)

-1 -1 1

Qne may now verify directly that rcf. Eq. (4.15a)]

is now read off directly from the coefficients of Eqs.
(4.56) and (4.57):

1 -1 1 1

Lg.
%e have now found all invariant spaces which can be

e onstructed fr om the components of the disp lac erne nt
vectors such that the operators Lg, 8+&„, are irreduci-
ble. We summarize the results below:

(a) The A, representation occurs once, originating
from the reduction of E, X E, in the ~ part of the prob-
lem. The basis is

S, (k) 0 q =g S.„/~3. (4.65a)
Ws~(k)W=

where

0 s, (k) ~
(4.59)

(4.60a)

0 0 0 0' -1

s, (k) =1,
and S, (k) =G(k) [cf. Eq. (4.26)]; G(k) is the matrix rep-
resenting 8(k) on the basis e, , e„e,:

(b) The E representation occurs once, originating from
the reduction of E, XE, in the' & part of the problem. The
basis pair is

(@„—8„)/W2, (8„+h„—28„)/v3 . (4.65b)

(c) The E, representation occurs once, originating
from the reduction of E,X E, in the & part of the problem.
The basis triplet is

G(1) = 0 0 1, G(2) = 0 1 0 (4.60b) (8„—h„)/v2, (8„—8„)/W2, (h„—8„)/W2.

(4.65c)

L,„,[Z, h, Z, ) =9(k)[Z,Z,Z, ] G(k) . (4.61)

In terms of matrices,
in either of the forms

this relation may be expressed
given by Eqs. (4.35) or (4.36):

g

I, ",
!
=G(k) 43 G(k) (4.62)

The direct product of two E, representations is re-
ducible as follows:

E XE =A.~+E+E +F' (4.63)

Thus, the reduction of the representation of &„gen-
erated by G(k) G(k) (k =1, 2) can be carried out fully by
using the Wigner coefficients (Griffith, 1962) for the
group T~ (see also the general results given insec. IV.C).
For example, to obtain the A., component, we write

q =g (E,E,ni!E,E,A, ) 8„, ,

where 8„;=8„.f, , The reduction coefficients are given
by &„,/v3, thus giving

(4.64a)

Remarkably, knowledge of the Eckart vectors and the
center of mass vector (4.57) of the Y nuclei completely
determines the reduction of the static model representa-
tion (4.55).

The irreducible representations of T„generated by
(4.60a) and (4.60b), respectively, are the ones desig-
nated by A, and E,.

We may now proceed in our development to Eq. (4.31),
noting now that the only nontrivial part of this problem is
the & part corresponding to the normalized Eckart vec-
tors themselves:

(d) The E, representation occurs three times, origi-
nating once from the 1 S G(k) of the a part of the prob-
lem, once from the reduction of G(k)

PING(k)

in the & part
of the problem, and once from the reduction of 1 S G(k)
in the & part of the problem. The respective bases trip-
lets are

components of p'. p,', p2 p3,

components of ~: ~1, '~2, ~3,' (4.65d)

(a) A, representation

(4.66 a)

(b) E representation. Denote the pair (4.65b) by r„

Then

(1/2 ~3/2i (
3 2 -1 2

-~3/2) ( q. )
3 2 -12

(4.66b)

(c) E, representation. Denote the triple (4.65c) by
Then

&, = (8„+h„)/v 2, K, = (h„+8„)/v2, &, = (S„+8„)/v 2 .

It is worth noting that E, occurs with multiplicity three,
yet the structure of the reduction process is such that
no difficulties with this multiplicity arise.

The transformation properties of the coordinates
(4.65) are examples of the general result expressed by
Eq. (4.41). They are summarized as follows:

(4.64b) L &p) )i: G (k) (4.66c)

Continuing in this manner, we reduce G(k) G(k), ob-
taining the linear combination of the 8„; which transform
irreducibly amongst themselves under the action of the

(d) E, representation. Denote any one of the triples
(4.65d) by x„x„x,. Then
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L(„) l ~2 ~

=G(y}, (4.66d)

The center of mass condition imposes the relation

Mp 0+2mq =0, (4.6 vs, )

q = p —(M/2m)g. (4.6Vb)

where I and I are the masses of X and Y particles,
respectively. Hence, we replace po and g by the single
vector

9(1)=(R(rr, e, ), 8(2) =iR(—,n, e,), 9(3) =88(n. , 8,) . (4.71)

9(1) and 9(2) alone generate the group D„while 9(3)
generates a commuting group of order two. 8(3) has
been written as a proper rotation times the inversion,
which is easily seen to be a reflection through the e, e,
plane. The irreducible representations of D, are de-
noted by A,', A,', E' and A,",A,",&", corresponding, re-
spectively, to even and odd properties under reflection.

The geometrical method of Sec. II.D yields the follow-
ing static model representation of the generator elements
9(k), k =1, 2, 3.

The Eckart conditions, Eq. (4.48b), are satisfied by
specifying

S,(k) =1,

0 1 0 001
(4.72 a)

y,- = 0, i = 1, 2, 3. (4.68) S~(1) = 1 0 0, S~(2) = 1 0 0

We are thus left with the following set of internal sym-
metry coordinates:

(4.69)

Since q' and (g, f,f,) each belongs to the &, irreducible
representation, they may enter the potential energy func-
tion coupled as g; q';r; . The +, normal coordinates
must therefore be obtained by the diagonalization of a
simple quadratic form. [See Moret-Bailly (1961) and
Shaffer (1939}for the normal coordinates. ]

F. Static model XY, with symmetry group D3h

0 0 1

1 0 0

S,(3)= 0 1 0

0 0 1

0 I
S.(1)= S,(2) =

0 1 0

S,(3) =

(4.72b)

(4.72c)

The case of trigonal bipryamidal XY, is perhaps more
illustrative of our general methods. Here we have three
sets of inequivalent particles, in the sense of equivalence
under 8, of the static model vectors [cf. Eqs. (2.11)]:
the first set consists of the single X particle whose
equilibrium position is at the origin of the principal axis
frame e„e„e„.the second set consists of the three Y
nuclei, sitting at the vertices of an equilateral triangle
in the e, e, plane; and the third set consists of the two
remaining Y nuclei having equilibrium positions on the
e, axis at distances c to either side of the e,e, plane:
Specifically, the static model matrix A is given by

~ (o) = (p' P')/~&, -
g, (b) = (p'+p' —2p ')/v6 . (4.73)

Furthermore, since Q„b,". =0 [cf. Eq. (4.27)], we know
that

(4.74)

Again our first problem is to reduce the representa-
tions (4.72). To accomplish this, we write out the Eckart
vectors for the "~ particles" and the "c particles. " %e
fir st consider the 0 particles. Since the rank of B is two
and its rows are already perpendicular, we have two
linearly independent Eckart vectors [cf. (4.21b)]:

A =[A&C],

where

A. = 0 B=
W3/2 -W3/2 0

1/2 1/2

(4.Voa)

spans a one-dimensional invariant subspace in the reduc-
tion of the b representation (4.72b). The matrix W(b)
which effects this reduction is obtained from the coeffi-
cients of the vectors (4.73) and (4.74):

C= 0 0

0 0
(4.70b)

1/v2 1/W6 1/W3

W(b) = -1/v 2 1/v6 1/v 3

0 -2/W6 1/W3

It may now be verified directly that

(4.76)

The X nucleus is labeled 0, and its equilibrium posi-
tion. is given by the column A. ; three of the Y nuclei are
labeled 1, 2, 3 and their equilibrium positions are given
up to a single constant by columns 1, 2, 3 of &, respec-
tively; and the remaining two Y nuclei are labeled 4, 5
and their equilibrium positions are given by columns 1
and 2 of matrix C.

The point group G(8) is D» of order 12. D,„ is a direct
product group generated by three operations:

W(b) S,(k)W(b) =

where

E'(1) =

0 1
Z'(2) =

-1/2 -W3/2

v3/2 —1/2

0

@'(g)
I

0

0 IA,'(0)

(4.76a)
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E'(3) =

0 1-
A,'(k) =1, k = 1, 2, 3.

(4.76b)

(4.76c)

$,(c) =(p' —p')/~2.
Again the vector [cf. Eq. (4.27)]

V(c) =(p'+ p')/~&

(4. '77a)

(4.77b)

spans an invariant subspace for the reduction of the c
repre sentat ion.

The matrix W is given by

Thus, the representation generated by S,(k) (k =1,2, 3)
has been reduced into E'+A. ,'.

We now carry out the same procedure for the c par-
ticles. Since the rank of C is one, there is only one
Eckart vector: (a) The A,' representation occurs twice, originating

once in the reduction of E' X E' in the ~ part of the prob-
lem, and originating once in the reduction of A,"XA,' =A,'
in the c part of the problem. The corresponding bases
are

g, = [$„(b)+ $„(b)]/W2, $„(c). (4.81a)

(b) The A,' representation occurs once, originating
from the reduction of E'XE' in the ~ part of the problem.
The basis is

E' is .carried by the pair

[$„(b)—$„(b)1/~2,

[$„(b)+ $„(b)1/v2 .
We have now found all the invariant spaces which can

be constructed from the components of the displacement
vectors such that the oper ator s Lg, 8 E D», are irre-
ducible. The results are summarized below:

W(c) = (4.78a)
[$„(b)—$„(b))/~2. (4.81b)

and one may verify directly that

A,"(k) 0
W(c) S,(k)W(c) =

0 A,'(k)
(4.78b)

G(1) =

—1 Oi0
I

0 1i0 G(2) =

—1/2 -W3/2'0
I

v3/2 -1/2 i 0

where A,'(k) =1, A,"(1)= A,"(3)= -1, and A,"(2)=1. Thus,
the representation generated by the S,(k) has been re-
duced into A," +A.,'.

Again, knowledge of the Eckart vectors and the three
"center of mass" vectors, Q'„, p", Q'„,p, g'„=,p"
completely determines the reduction of the static model
representation of D»,

We now proceed to the second part of the problem: the
reduction of G(k), k =1,2, 3. The matrices representing
9(k) on the basis e„e„e,are

(c) The E' representation occurs three times, once
from the reduction of G(k) in the a part of the problem,
once from the reduction of E' & E' in the ~ part of the
problem, and once from the reduction of E'XA. ,' =E' in
the c part of the problem. The corresponding bases
pairs are

0 0.p~, p2,

g = [$„(b)—$„(b)]/v2, g'= [$„(b)+ $,„(b)]/v2;

n, ( )c, n, (c). (4.Slc)

(d) The A," representation does not occur.
(e) The A," representation occurs three times, once in

the reduction of G(k) i.n the a part of the problem, once
in the reduction of A.,"XA,' =A," in the ~ part of the prob-
lem, and once in the reduction of A,"XA.

y A-2 in the c
part of the problem. The respective bases are

0 0', -1 0 0 ', 1
p'„q, (b), q, (c) . (4.Sle)

1 0l0
I

0 1IO

- (4.79) (f) The E" representation occurs twice, once in the re-
duction of E'X E' in the ~ part of the problem, and once
in the reduction of E'X A. 2

=E" in the c part of the prob-
lem. The respective bases pairs are

0 0 i-1

The representation already appears in reduced form and
is just E'+A~.

We now proceed to the last step of the reduction pro-
cess as given generally by Eqs. (4.39a). The only non-
trivial part of this reduction comes from the b part of
the problem and in.volves

E'X E' = A. ,'+ A.,'+E". (4.80)

According to Sec. IV.C, the A,' part of this reduction
must be carried by $«(b)+$»(b). We may systematical-
ly carry out the reduction using the Wigner coefficients
for D, . The results are as follows:

A,' is carried by [$«(b)+$~2(b)]/v2,

A,' is carried by [$»(b) —$»(b)]/W2,

$„(b), $., (b);

$M (c) $~2(c) ~

(4.81f)

The transformation. properties of the coordinates
(4.81}are summarized below:

L&»S —-X, L&» X S, L(»$ (4.82b)

(c) E' representation. Let g, g' denote any of the basis
pairs of Eq. (4.81c). Then

(a) A,' representation. Let g denote either of the bases
of Eq. (4.8la}. Then

(4.82a)

(b) A,' representation. Let y denote the basis coordi-
nate (4.81b). Then
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I.(, )

(0 —1 j
( -1/2

L (.) !

(( ) (-W3/2

(

~S/2) (()
-1/2) 4& j '

((' j

(4.82c }
G. Static model XY6 with symmetry group 0„

The static model is described in a principal axis sys-
tem e„e„D,by the static model matrix

A =(Aa],

where

(4.86)

g'„since the usual mixed scalar product of these coordi-
nates contains the A,' representation of D37g.

(e) A," representation. Let z denote any one of the
bases coordinates of Eq. (4.81e). Then

1 0 0 -1 0 0

A= 0, &= 0 1 0 0 -1 0 (4.8V)

&(,) z —-z, I (,) z —z, 4(,) z =-z . (4.82e) 0 0 1 0 0 -1
(f) E" representation. Let f„g, denote either of the

basis pairs of Eq. (4.81f). Then

(1 0) (&.)
0-Ij (g, j'

/2~ (&.l
(W3/2 -1/2 j

(4.82f)

(g.) (1 0)
0 -1

The center of mass of the system is proportional to
(v3 q(b)+v2q(c))+(M/m) p', where m is the Y mass,
M is the X mass, and p' the displacement of the X par-
ticle. Two linearly independent vectors which are or-
thogon. ally related to the center of mass vector are

x' = v2 q(b) —WSq(e),

~ ' = v 3 q (b ) + v 2 q (c) —(5m/M) p ' .
(4.83a)

(4.83b)

We may satisfy the center of mass condition by using
the vectors x' and x' in place of 'g(b), q(c), and pa.

The Eckart conditions of Eq. (4.48b) are more com-
plicated for this molecule. The full Eckart vectors of
Eq. (4.1) are

(E,E.E,] = (~, (b)~.(b)&.(c)l. (4.84

The requirement that the components form a symmetric
m atr ix implies

$„(b)= $„(b),
8(,(b) = Su (c),

&„(b)= ~,.(c).
(4.84b)

g, h„(c), (E, g'), (x'„x',), (x,', x,'), x'„x', (4.85)

transforming, respectively, according to A,', A,',

The construction of normal coordinates requires the
diagonalization of three quadratic forms: a 2X 2 on
coordinates f and S»(c}; a 3 X 3 on coordinates (g, ('),
(x'„x",), (x2, x22); and finally a 2 X 2 on coordinates x,' and

This means that the A.,' coordinate van. ishes and the two
E" bases coincide.

A final set of internal symmetry coordinates for trigo-
nal bj.pyramidal XY5 is

g, (k) =I

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0
S (1)= 0 0 0 1 0 0, S

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

(4.89a)

0 0 1 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0
(4.89b)

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

The Eckart vectors corresponding to the & part of the
problem are the full Eckart vectors of Eq. (4.1) (nor-
malized):

E, = (0' —p')/~2,

E, =(p'- p')/~2,

E, = (p' —p')/~&,

(4.90)

where we note that the rows of & are already perpendicu-
lar. Again, since Q„b, =0 (i =1, 2, 3), the Y. -atom cen-

Again the X nucleus is labeled by 0 and has equilibrium
position. at the origin; and the Y nuclei are labeled by 1
through 6, and their equilibrium positions are given up
to a single constant by columns 1 through 6 of B, re-
spec tive ly.

The point group G(8) is octahedral O„of order 48. It
is a direct product group consisting of 0 and the group
of order 2 containing the inversion 8 and the identity.
The generators of o„may be chosen to be

9(1)=61()I/2, e, ), 9(2) =(R()), (e, +e,)/v2), 9(3) =8,

(4.88)

where for easy enumeration of results we write the in-
version as 9(3).

The static model representation matrices are once
.more constructed from the geometrical procedure of
Sec. II.D:
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ter of mass vector
6 ~n

g P (4.91) E,(3) = (4.97)

is a one-dimensional invariant subspace with respect to
reduction of the representation generated by S,(k), k

1 2 3 0

By inspection, we observe that the symmetric com-
b inat ion of vectors give n by

O' = (p" +p')/~2,
n'=(p' +p')/~~,

n'=( p'+ p')/~2

(4.92)

span an invariant subspace perpendicular to that spanned
by the Eckart vectors of Eq. (4.90). Since this space
must contain the vector (4.91), we see that the appro-
priate basis to choose is not that of Eq. (4.92), but

6 ~n

g P

Thus, we have obtained the complete reduction of the
static model representation (W =1 for the a part of the
problem).

%e may now proceed in our development to the result
given generally by Eq. (4.36) [cf. also Sec. IVC]. We
now carry out the reduction of the following direct prod-
uct (6 part): G(k) C G(k), that is i

I,„XI', „=A„+F,+I„+I„;
A„(k) 8 G(k) = G(k);

and E,(k) IIG(k), that is,

(4.98a)

(4.96b)

(4.96c)

These reductions are carried out using the known signer
coefficients for 0„. The results are summarized below:

(' = (n' —n')H~,
5' = (n'+ ii

' —2O')/~6.

(4.93) (a) The A, ~ representation occurs once, originating
from the reduction of &,„X&,„[cf.Sec. IVC]. The basis
c oordinate is

I/W2 0

0 1/v2

-1/v2 0

0 -1/v 2

0

0 1/v6 1/2-

0 I /v6 —1/2

1/v 2 1/&6 0

0 1/v6 1/2

0 1/v 6 —1/2

-I/v2 I/WO 0

1/2 v3

—I/v 3

1/2 W3

1/2 v3

-I/FS

(4.94)

One may now verify directly that

G(k) 0 0

WSt, (k)W = 0 A, (k) (4.95)

0 0 E (k)

In this result G(1), G(2), G(3) generate the &,„represen-
tation and are the matrices representing 8(1),8(2), 8(3):

1 0 0+ 0 0 1

G(1) = 0 0 -1, G(2)= 0 —1 0

The matrix %' which reduces the & part of the problem is
now read off directly from the coefficients of Eqs.
(4.90)—(4.93).

g, = (E» + E» + E»)/v 3 . (4.99a)

g, = (E„—E„)/W2, g, = (E„—E„)/W2,

g, =(E„-E„)/v2 . (4.99c )

(d) The E,~ representation occurs once, originating
from the reduction of E,„X9',„[cf.Sec. IV.C]. The basis
triplet is

g, = (E„+E„)/W2, ~, = (E„+E„)/W2,

(, = (E„+E„)/W2. (4.99d)

(e) The E,„representation occurs three times, origi-
nating once from the a part of the problem, once from
the reduction of E~X I",„ in the & part of the problem, and
once from the reduction of A, ~X &,„ in the ~ part of the
problem. The three sets of basis triplets are [cf. Eqs.
(4.93)]

(b) The E representation occurs once, originating
from the reduction of &,„X&,„[cf.Sec. IVC]. The basis
pair is

&. = (E„—E„)/v2, (, = (E„+E„—2E„)/v6 . (4.99b)

(c) The E«representation occurs once, originating
from the reduction of E,„XE,„[cf.Sec. IVC]. The basis
triplet is

0 1 0

0 0

(4.96)

0 0 0
Pg, P2~ P3

Ol& ~2r I3 (4.99e)

X, =-(~3/+&,')/2, X, =(v3 5,' —8,)/2, ~, =P, .

0 0 —1

the A.„(k)=1 generate the identity representation A,
and E (1),E (2), E~(3) generate the representation E~:

(f) The 9',„representation occurs once, originating
from the reduction of E X E,„. The basis triplet is (cf.
Eqs. (4.93)]

z, =(p, —v3 &,')/2, z, =((', +v3 p, )/2, z, = —(', .

E,(1)=
1/2 W3/2

v 3/2 —1/2
E (2)=

1/2 -v3/2

-W3/2 -1/2

(4.99f)

The transformation properties of the coordinates
(4.99) are summarized below:
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(a) &«representation

(h') ~G ~0 .
(b) &g representation

I-()) ~

&(.) I

I-(.)!
(~.1

( 1i2 ~3&2) (~.)
1&2) k&.)

'

(1~2 -~~&2) (~.)
3 2 -12

(1 0) (g.)
(0 ii k(. i

(c) &«representation

~1

L, (, ) g, =G(k) g, , k =1,2;

(4.100a)

(4.100b)

(4.100c)

(g„g,), ((„g„g,), (x„x,x, )

(y„y„y,), (z„z„z,)
transforming, respectively, according to

g~ 2g~ 1ut 1ut and 2u

(4.103)

From the coordinates (x„x„x,) and (y„y„y,) we can
form the InvRr1Rnt

a~~i+b~&~ya+c~y~-

The &,„normal coordinates are thus obtained by diago-
QRllzlng R 81mple quadrRtlc form. The remaln1ng coor-
dinates in the set (4.103) are already normal coordi-
nates. [See Moret-Bailly (1959) for the normal coordi-
nates. ]

V. GROUPS GF COORDINATE TRANSFORMATIGNS

We are now prepared to answer fully the question:
What are the particle motions which are compatible with
the Eckart frame~ The answer is as follows: The par-
ticles may kave any set of displacements p~, p ', . . . , p
having components given by

(d) &,~ representation

((,)
= -G(k)

4,
(4.100d)

(e) E,„representation. Let y„y„y, denote any of the
basis triplets (4.99e). Then

(4.100e)

(f) ~,„representation

8 1

z — G(k) I z k:1 2

(" ("l
I.(,) l z, = G(3) z,

(4.100f)

t)fp + v 6 my =0, (4.101a)

where M and m are the masses of the X and Y nuclei,
respectively. Hence, we introduce the vector

x =v 6 mp kf q . - (4.101b)

The Eckart conditions (4.48b) are satisfied by imposing

i =1, 2, 3 . (4.102)

We obtain the set of internal symmetry coordinates:

The requirement that the center of mass of the system
be at the origin is

(5.1)
y=1 ~=1

in which the normal coordinates qy may assume arbi-
O'a'vy valQes.

This result appears somewhat paradoxical in view of
the role that the operators Zg played in the determina-
'tion of the qy. This paradox is removed when w'e realize
that the Eckart frame is' a quite general concept —it
must admit a variety of motions compatible with it, even
when there is no symmetry, i.e., G(Q) contains only the
identity. In this case, of course, the qy are determined
solely by diagonalizing the quadratic potential energy
form Even w.hen the symmetry group G(Q) contains
many elements, a wide variety of motions most be ad-
mitted by the Eckart frame, .e.g. , the set of all pure
harmonic motions.

Having arrived at the result, Eq. (5.1), whose inter-
pretation seems to diminish the role of the group G(8),
we demonstrate in this section that this is not the case,
at least for molecules possessing, a high degree of sym-
metry in the static model.

We begin by presenting a variety of transformation
properties of the Eckart frame and the normal coordi-
nates, apart from any physical problem, leaving until
Sec. VI the task of tying these properties to the actual
molecular problem.

A. A larger invariance group of the Eckart frame

Let & denote an arbitrary real, orthogonal matrix of
dimension hy. We introduce the following linear trans-
formations L„of the normal coordinates qy, . . . , qy

qy qy1 1
0

(5.2)

q Y qy
hy hy

The product I„.J~ of two transformations is defined in
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yLR'R qi

where the intermediate step follows from the definition
of the barred coordinates

hy

q,. =I q,. = A, , q, (5.3)

The coordinates qy are again normal coordinates which
describe motions within the same Eckart frame. In-
deed, transformations of this type express the fact that
the normal coordinates are determined only up to equiv-
alence by the operators Lg and the quadratic form diag-
onalization methods. Thus, the qy coordinates trans-
form according to

r—
y k{

the usual manner to be the rule of first applying LR fol-
lowed by applying LR . Thus,

(L~ Ls&,' =La (Ls&,')
h

hy h h

R,', R,.h q„= R'R,.„q„

harmonic (a, mathematical possibility, if not often a
physical situation —except as an important approxima-
tion).

In order to keep the notation reasonably unencumbered,
we will symbolize an element (5.6) of the group G(O) by
the notation L~R~, and symbolize its action on the set of
normal coordinates by I(s)Q. Thus L(~) now denotes a
collection of operators, and L(s)Q denotes a collection
of normal coordinate transform3tions.

In particular, note that &~z&&)~ denotes the h-tuple
(5.6) in which each R,. (z) is replaced by the correspond-
ing &; (9) of Eq. (4.51b). But this collection of operators
expresses the action of Lg itself on the normal coordi-
nates. Hence, we may wr ite

L«(9))Q = L9Q (5.7)

where L9Q denotes the collection of transformations
t(L{,{t~)t. Thus, the group of normal coordinate transfor
mations induced by the grouP of oPerators (L9:9 WG(8)]
is a subgroup of the normat coordinate transformations

(L{„j.:L(~](=G(O)]. . .

This is, as is well known, a very important result for
the molecular problem. We will return to this point
later.

e =8 r)(9)ft' (5.4)

01X 'X 01 XO2X ' ' XO2XO3X ' XO3,

(-k, times-[-k, times-)-k, . times-~

where O; denotes the group of transformations

(5.5)

fL, .a,. eO,.]
in which O; is the group of real, orthogonal matrices of
dimension i. The elements of the group (5.5) are the
ordered (k, +kk+k, }-tuples of transformations:

(Ls (1)v ' '1 R (k )& R ({)& r R {k )s ){ (l)s ~LR (k ))s1 1 1 2 2 2 3 3 3

(5.6)

where R,. (y) denotes an orthogonal matrix of dimension
i. Each Ls;&z) in this ordered k-tuple (h=k, +k, +k, )
acts only on its corresponding normal coordinate set
(p))', . . . , {tk&), according to the action expressed by Eq.
(5.2).

We will denote the group (5.5) by the abbreviated nota-
tion G(O), and call it a group of the internal motions.
We do not mean to imply by this designation that G(O)
is the only possible group of transformations relating
internal coordinates which are compatible with the
Eekart frame. It is one such group, and it is the group
of relevance if the motions of the particles are pure

e

q y q
—y

h hy

whenever the qf transform according to Eq. (4.51b). We
could, in fact; have replaced R in Eq. (5.2) by any non-
singular matrix. For the type of problem (the molecular
motions} under study, this extra generality is not re-
quired.

If we let &„~„and &3 denote the number of sets of
one-, two-, and three-dimensional normal coordinates,
then we see that tke follou)ing direct product group is an
invariance group of the Eckart frame:

B. Rotation-inversion and normal coordinate

transformations combined
I

In this section @. denotes a rotation-inversion of the
entire physical space R' in the sense of Theorem 6.

The first observation is the following: A xotation-
invexsion @, leaves the normal coordinates invariant.
This result is intuitively evident, and it may also be
proved mathematically. The mathematical proof follows
from three facts:

The second observation is as follows: The motions
induced by L(~) leave the Eckart frame invariant. This
is the result demonstrated in the last section.

Combining the s e two obser vations, we conc lude: The
action of the operator N, L~R~ on the coordinates
([f,f.f,];Q) is

6lL(&): ((f,f.f,); Q) —(N [f,f,f;];L(&)Q) . (5.6)

Note that we have the operator identity

SL&R) = L(RJ

over the sets of coordinates of type ([f,f,f,];Q).
jt is important to realize that while Eq. (5.9) is a cor-

rect identity on sets of coordinates ([f,f,f,];Q), it need
not be a. .correct identity (or even defined on other sets
of objects).

Because we have the relation (5.9), we can also write
@L~R~ as an ordered pair

(5.9)

((R, L(„)) (5.10)

(a) p f, is invariant under S., i.e. , (Rp" (Rf',. =p" ~ f,. ;
(b) the center of mass conditions and the Eckart condi-

tions are invariant under @.;
(c) the normal coordinates depend only on the compo-

nents p" ' f; and the invariant constraints of (b).
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with the action of this operator pair defined by Eq. (5.8).
The multiplication rule for two successive transforma-
tions then works out to be

(6i', L(R l)(@,L(R)) =(@'+,L(R R}), (5.11)
where we remind the reader that this is an identity on the
set of all coordinates (([f,f2f,];Q)]-. The symbol I(z s)
means the operator obtained by multiplying all the cor-
responding A' and R pairs in (5.6). Thus, we may re-
gard the pairs of operators (5.10) as the elements of the
direct product group

O~X G(O). (5.12)

We have introduced this direct product structure in
antic ipation of the more interesting result of the next
section.

C. Permutations of coordinates

We wish to study the effect of permutations (3.55) on
the coordinates ([f,f,f,];Q). We first consider only
those permutations 6' —9 given by Eq. (2.32).

The first observation is that 6' induces a station-inver-
sion 8,

[f,f,f,]-9[f,f,f,], (5.13)

of the Echart frame (Theorem 8).
The second observation is that 6' effects the transfor-

mation of normal coordinates given by

tity. It is also true that

QLg-t =L g-z 9

on the coordinates ([f,f,f,];Q). However, if we follow
the permutation + of Eq. (5.17) by a second permutation

9', we obtain

+'6' ([f f f ] Q)-(8'8[f f f] L "-~Q)

(5.21)

which is u&rong, since we know from Eq. (5.17) that
6'" =6"6' must have the action

+": (If,f.f,.];Q)- (9'9[f f,f.];L(g 9&-~Q) (5 22)

The conclusion must be that it is incorrect to interpret
a permutation 6' —9 as a rotation-inversion 8 of the
Echart frame and a transformation Lg &. of th-e normal
coordinates in a sense such that these operations act
independently on the tu&o parts of the coordinates. The
reason for this is intuitively clear: The permutations
6', 6", . . . know only how to change the label indices of
the p". The action of the Zg is to change p~™to q", and
if a 6" encounters directly an 'q, its action can be de-
fined only by transforming back to a p .

The way out of the dilemma is the following: We must
modify the product rule such that the relations

(5.23a)

(5.23b)

imply
6" Q-Lg-iQ (5.14) 6 6" (9 9 L(g g& &. ) (5.23c)

6 p =BRED-y p

Using Eq. (5.13), we obtain

(5.15)

This result requires proof. The action of 6' is expressed
correctly on a displacement vector p by

This rule is easily found to be the sernidi~ect Product
rule for multiplying pairs (Lomont, 1959; Biedenharn
et al. , 1968):

(9', Lg. -&.)(9, Lg-&)

6' p" f; «. 9 -ip"

= (&g-&. p") f; =Lg-& p,
" (5.16)

=(9'g, (g I gi-&. 8)I 9-i)
= (9'8, L(g 8&-&).

(5.24)

Since this action takes place on all p,", the result (5.14)
follows then. for the normal coordinates.

Combining Eqs. (5.13) and (5.14) gives the result

6' ([f,f.f,];Q)- (9[i,f,f,];L,—.Q) (5.17)

for each 6' —8.
Equation (5.17) has a close resemblance to Eq. (5.8)

when the latter is particularized to BL g.

9Lg.. ([f,f,f,); Q) - (9[f,f,f,];LgQ). (5.18)

There is, however, the curious difference of having
L &in place of Lg -in Eq. (5.17). In this second case, we
have already demonstrated —a special case of Eq. (5.9)—
that

8J g
——Lg8. (5.19)

We were then able to interpret Eq. (5.18) as the action of
a direct product pair (8, Lg).

Equation (5.17) would appear to lend itself to this same
direct product interpretation, i.e., for +—9, we may
write

(P = (9, I g &) .
It is certainly true that Eq. (5.17) establishes this iden-

That this is the correct multiplication rule follows upon
proving the operator identity

(5.25)Z(glg&-x = (8 'Zgi-&. 9)29-&.

on the set of displacement vectors p', p', . . . , p . This
proof goes as follows:

9 'Zg -& 928-&. [p'p ' ' p ]

-~[p'p' P"] ( )

=9 '9' '[p'p' p"]S(9')S(9)

=(9&) '[p'p' p ]S((9'9) ')

6' = (8, Lg-& ),
where

(5.26a)

(8, Lg- ):([f,f,f,];Q) - (8[f,f,f,];Lg- Q).

The rule for multiplying two such permutations (5.26a)

(5.26b)

=&(8'9&-' [p'p ' ' p ] . Q.E.D.

Summary. The group of permutations (+].which is
isomorphic to the group of rotation-inversion operators
(8: 9~ G(Q)] has the following action on the coordinates
([f,f,f,];Q): For 6' —8, we have
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is the semidirect product rule (5.24), the whole effect
of this rule being to put in the product 8'8 appearing in

&&-~ opposite to what occurs in the usual direct prod-
uct multiplication rule.

Hougen (19 i5) implements the action of a permutation
correctly according to Eq. (5.26b), although it appears
that he bases his result on the intuitive notion that the
two parts of (P =82& & [cf, Eq. (3.63)] act independently
on [J,f,f,] and Q. Our result shows that this is only cor-
rect when the pair (5.26a) multiplies by the semidirect
product rule.

We would insist that one learns nothing intrinsically
new by writing a permutation in the form (5.26a). This
way of writing a, permutation (rather, certain permuta-
tions) does facilitate the study of the action of these per-
mutations on the coordinates ([f,J,f,];Q).

There are, of course, many other permutation opera-
tors in the group II& G(S ~) which cannot be written in
the form (5.26a). Eventually, one must account for the
effect of all the permutation operators which relabel the
position vectors of identical particles (Wilson, 1935).

We present-now a definition which has a significant
bearing on the identical particles problem. The Eckart
frame concept is fundamental to the definition, which is
our reason for introducing it here. Definition: &n OP-
erator is said to be a feasible operator for a molecute if
it is an element of the Permutation-inversion grouP
whose action on the Eckart frame in fhe coordinates
([fz f2 f, ];Q) is a pure rotation.

The inversion operator occurring in this definition is
the inversion of the whole space &', i.e. , 8x = —x, each
x E&'.

The group of,feasible operators is easily enumerated.
This is so because it is only those 6' —8 of Eq. (2.32)
which effect rotation —inversions of the Eckart frame.
Thus, the permutation —inversions which effect a pure
rotation of the Eckart frame are those 6' and 8+' belong-
ing to the following sets:

+~ ((8, I 8-z ):8 ~ G (8 ) and det G = I].,

8(P'e ((88, 1 8-z):8 C G(Q) and detG = —I] . (5.27)

One easily verifies, using the product rule (5.24), that
these operators form a group.

If G(8) =T„, the group of feasible operators is iso-
morphic to &„, and is the group introduced by Hougen
(Hougen, 1971, 1975) for methane.

If G(6) =0„, the group of feasible operators is iso-
morphic to 0„. Quite generally the group of feasible
operators is isomorphic to G(8).

Remarks. It has been principally Longuet-Higgens
and Hougen who have promoted the concept of "feasible
operators. " It is here, we feel, that they have made an
important contribution. Clearly, the notion of feasible
operators has definitive implications for accommodating
the Pauli principle and, hence, for the calculation of
statistical weights (as already shown by these authors).
Neither of these authors seems, however, to have intro-
duced a formal definition for this concept.

D. Transformations of the laboratory and Eckart frames

Up to this point, we have not introduced a laboratory
frame. However, a basic concept in the molecular prob-

lem is the intuitive notion that to zero-order approxima-
tion the energy of the molecule can be written as the sum
of its rotational kinetic energy and its internal vibra-
tional energy, the latter being that calculated by an ob-
server in the Eckart frame. (We ignore the translational
energy of the center of mass). It is this concept which
motivates developing the equations of motion, that is,
the writing out of the Hamiltonian, in terms of physical
quantities which are expressed relative to the Eckart
frame. Since the Eckart frame is noninertial, we must
now account for such kinematical terms in the Hamil-
tonian as the Coriolis interaction. The only simple
means we have of accomplishing this is to introduce a
laboratory frame (the assumed inertial frame). This
provides the vehicle for describing the motion of the
Eckart frame, hence, the origin of kinematical inter-
actions as seen by an observer in the Eckart frame.

This section is quite difficult, despite the seemingly
uncomplicated title. Let us try to understand why this
is true. It stems from rather intricate points of detail
which must be kept straight at each level of the develop-
ment. The reason so many details creep into the analy-
sis is that we are dealing with a situation in which two
spaces play a role. However, the spaces are not inde-
pendent of one another —for example, if we rotate one,
we must rotate the other. Rather delicate questions of
group isomorphisms versus group anti-isomorphisms
arise which require careful treatment. The action of
operators on spaces must be carefully defined if one is
to understand the group structures which arise.

It may be helpful to outline the contents of this sec-
tion. We first introduce the two spaces involved, devel-
oping notational conventions for each. Essential features
of each space are developed independently. Then the
geometrical relation between the spaces is introduced
and its significance analyzed. The rest of the section is
devoted to the construction of the abstract group struc-
tures which preserve the geometrical relation between
the spaces.

We introduce the notation ~„&„~,for a triad of right-
handed unit vectors whose orientation is fixed with re-
spect to the laboratory. We call this triad the laboratory
frame.

We now have two frames [f,f2f, ] and [t,l, t, ] to keep
track of. The situation is, in fact, a bit more intricate
than this. We have two sPaces to keeP track of. We
first discuss these two spaces separately, ignoring any
connection between them.

We have, first, the space R' with basis [t,t2l, ] in which
f„f„f, appear as vectors In R', .the frame [f,f,g, ] is
attached to the molecule, and all internal motions are
referred to it in the manner previously described. In
order to keep straight what vectors are basis vectors of
&' and what quantities are vectors in &', we introduce
the notation

(5.28a)

where the square bracket [/] =[I,&,t,] symbolizes the
basis vectors and (f) = (fi, f„f,) symbolizes the Eckart
triad of vectors in &'. For the purpose of this discus-
sion, we also regard all vectors referring to the mole-
cule to be expressed in the form
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(5.28b)

so that what happens to such a vector under @ is inferred
from x-6lx = Q, x, (@f,). Hence, we may omit all such
x and other "internal" coordinates from the set (5.28a).

The vectors f, may, of course, be expressed in terms
of the basis vectors of R'.

([i;j ' f;)[»';), (5.29)

where we place a square bracket around a single vector
to emphasize its role as basis vector. Equations (5.28b}
and (5.29) may be combined if one wishes to express a
vector x==R' in terms of the basis of &'. However, for
the reason given following Eq. (5.28b), it is convenient
to adopt the convention of writing vectors x~ &' in the
form (5.28b) unless otherwise noted.

The basis vectors [l] of R' are to be regarded as at-
tached to the laboratory, and objects in the laboratory
undergo no transformations under a rotation-inversion
6l: R'-R'. Thus, using the symbolism of Eq. (5.28),
we may express the action of @ on the space &' by

([i1, (f))- ([l ], (Nf)). (5.30)

This same action may be expressed in matrix form by
defining a matrix C with elements

C;; =[&;1'f, . (5.31)

The transformation (5.30} then becomes

S. C RC, (5.32a)

where R is the matrix representing @, on the basis [l ],
x.e.,

R,, =[i,. ] e,[i,.j. (5.32b)

c =[f,f,f,),
where

f, =

col�

([&,] ' f;, [~,] ' f;, [~,] ' f; ) .

(5.33a)

(5.33b)

The product of two rotation-inversions of A~, @ fol-
lowed by @', is given by the usual rule:

([I j, (f))-([l ), (+'(6lf))& (5.34a)

Correspondingly, the matrix transformation (5.32a) is

Observe also that the columns of C are the matrices rep-
resenting the vectors f„f2, f, on the basis [l], i.e. ,

scribing the positions X of objects external to the mole-
cule:

x=gx,. &, (5.35)

We may then describe S' by the set of vectors

([fl, (i)), (5.36)

where [f] is the basis, and (l ) is a triad of vectors for
describing everything (of relevance) in the external
world. What happens to vectors in the external world
under a rotation-inversion 8 of S is to be inferred from
X -SX = Q,.X';(8l, ), so that again we may omit external
vectors from the set (5.36).

As in the case of Eq. (5.29), we may also express the
vectors l; in terms of the basis [f ] of the space S':

(5.37)

We have introduced a large dot to designate the dot prod-
uct of vectors in S . While this distinction of dot prod-
ucts in A' and S is formal, it serves to emphasize that
we are dealing with two spaces. The dot product of two
vectors x, y E&' may then be calculated from Eq.
(5.28b),

(5.38a)x y = xp.

while the dot product for two vectors X, Y&S' is ob-
tained from Eq. (5.35):

XY= (5.38b)
i

The basis vectors [f] of S' are attached to the mole-
cule, and they undergo no transformation under a rota-
tion-inversion 8: S' -S'. Thus, using the symbolism of
Eqs. (5.35) and (5.36), we may express the action of 8
on the space S' by

8: ([f], (&)) -([fj, (8&)). (5.39)

This same action may be expressed in matrix form by
defining a matrix C' with elements

C;, =[f,) ~ i, , (5.40)

The transformation (5.39) then becomes

8 C'-SC', (5.41)

where S is the matrix representing 8 on the basis [f],
6l'6l: C —R'(RC) = (R'R)C.

Thus, we have an isomorphism

(5.34b)
x.e.,

S;, = [f;j ~ 8[f,]. (5.42)

(5.34c)

between the group of rotation-inversions of &' and the
group of orthogonal matrices (R], where the latter is
realized as transformations of the matrix C.

In the molecular problem, we must also keep track of
the world external to the molecule as seen by an. ob-
server in the Eckart frame. For this observer, using
basis [f]=[f f f ], the vectors (l ) = (l„l„ l, ) appear
simply as vectors in the external world —the space we
will call S'. Thus, the vectors [f] are a basis of S'. The
vectors (l ) appear as a sort of "Eckart frame" for de-

Observe also that the columns of C' are the matrices
repre se nting l„l„l, on the basis [f ], i.e.,

C' =[i,l, l,],
where

f,. = col([f, ] ~ l, , [f,] ~ i, , [f,] ~ l,.) .

(5.43a)

(5.43b)

The product of two rotation-inversions of S', 8 followed
by 8', is given by the standard rule:

8'8: ([f],(~))-([f],(S'(8&))} (5.44a)

Correspondingly, the matrix transformation (5.41) is
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s's: c'-s'(sc') = (s's)c'.
Thus, we have an isomorphism

(5.44b)

(5.44c)

between the group of rotation-inversions of S' and the
group of orthogonal matrices (Sj, where the latter is
realized as transformations of the matrix C'.

The preceding analysis treats the spaces &' and S' as
distinct entities. Let us now note, however, that the
spaces A' and S' are related to one another by a very
particular rule, namely,

[I;j f, = [f,] ~ l, (5.45a)

for all i, j =1, 2, 3. Let us explain this relation further.
[l,], [l,], [l,] are any arbitrary orthonormal basis vec-
tors of R'; [f,], [f,], [f,] are any arbitrary orthonormal
basis vectors of S' (draw two pictures, one depicting R'
with its basis [l,], [l,], [l,], the other depicting S with
its basis [f,], [f,], [f,]). We may think of f„f„f, as an
arbitrary, but given, triad of orthogonal vectors in the
space A'; then the vectors l„l„ l, are definite vectors
of S' given by

l; = Q ([l, j f, )[f,] .
j

Conversely, we may think of l„l„ l, as an arbitrary,
but given, triad of vectors in the space S'; then the vec-
tors f„f„f, are definite vectors of R' given by

(5.45b)

f;= Q([f ] I;)[l,j. (5.45c)

Thus, Eq. (5.45a) establishes a one-to-one correspond-
ence between triads of vectors f„f„f, eR' and triads
of vectors l „l„ l, ~S'.

One method of enumerating the set (f„f„f,j of all tri-
ads of unit perpendicular vectors of R' is to pick a par-
ticular triad f;f;f; and consider the set

f(Rf„(Rf;,S.f;:(R H 8,' j, (5.46)

where 6,' denotes the group of rotation-inversions of R'.
The set (5.46) then contains all triads f„f„f, . Similar-
ly, we may enumerate the set (l„l„ l,j of all triads of
unit perpendicular vectors of S' by

(S l;, S l,', S l;:S &8~3j, (5.47)

where 8, denotes the group of rotation-inversions of S',
and l y l 2 &

l 3 is a pavticula«xiad of S' .
The geometrical relation (5.45a) between the spaces R'

and S' may now be expressed more vividly as

[I;].6lf; = [f ] ~ Sl;, (5.48)

for each i, j = 1, 2, 3 and each 6l &8,' (or each 8&8~). In
this relation, it is sufficient to consider that either (R or
S runs over the elements of its respective group. This
is true because if we consider S as given, then S is
uniquely determined —we will call it S ~. Conversely, if
we consider S as given, then (R is uniquely determined-
we will call it (R~.

Equation (5.48) then expresses the set of all allowed
relations between the spaces R' and S'. From what has
been said above, it is also clear that it establishes a
one-to-one correspondence

[l,] 6f, =[f,] ~ Sl, , (5.50)

for each i, j =1, 2, 3 and each (R~8,' (or each 8E8f). We
A A

now regard, however, f„f„f, and the corresponding
l y l 2 l, as given, but arbitrary. The i mpoxtant point to
remember is that each distinct choice off„f„f, (or
l„ l„l,) determines o, different corresPondence (R S.

Let us now discuss further the properties of the cor-
respondence (5.49). It is essential in deducing the spe-
cific mapping that the vectors f, and l; be kept fixed
[f; and l; in E.q. (5.48)]. Let us illustrate this point
with an example. In R', we take f, =[l,.],j =.1, 2, 3 so
that l; = [f,], i =1, 2, 3, in S'. A rotation (R of m/2 about

[l,] then corresponds to a rotation of n/2 about —[f,] in
S'. On the other hand, if we choose f, =[l,],f, =[l,], f,
= [l, ] in R', and, hence, l, = [f,], l, = [f,], l, = [f,] in S„
the rotation (R of v/2 about [l,] is described in S' as a
rotation of v/2 about —[f,]. Thus, in order that the map-
mapping +.—S be unambiguous, one must make all such
correspondences relative to a fixed set of f„f„f, (or

We may illustrate, by example, that the correspon-
dence (5.49) is an anti-isomorphism. Choose again f,
= [i .] in R' (l, = [f,] in S'). If we follow (R = m/2 about [l,]
by Q, ' = m/2 about [l,], the result is (R'(R = 2m/3 about

([l,]—[l,]+[l,])/~3. In the correspondence, we have (R—S = m/2 about —[f,], (R' S' = n/2 about —[f,], and
(R'(R corresponds to 2m/3 about —([f,]—[f,]+[f,])/~3,
which is the product SS', not S'S. The general proof
that we have an anti-isomorphism is given below.

It is also useful to express Eq. (5.50) in matrix form:
The left-hand side becomes

[l;] e.f,. =(Rc);, , (5.51a,)

where R is the matrix representing 61 on the basis [l],
and C is the matrix representing [f,f,f,].on the basis
[l ], i.e.,

c, =[l ] f;.
The right-hand side of Eq. (5.50) becomes

(5.51b)

[f,] ~ st, = (sc), , = (cs).. . (5.51c)

where S is the matrix representing S on the basis [f].
Thus, Eq. (5.50) expresses the identity

QC =CS . (5.52)

We can now prove that the correspondence established
by Eq. (5.50) is an anti-isomorphism. Let us suppose
that (R and (R' are given so that we are solving Eq. (5.50)
for S. We must prove that the two equations

[f,j ~ S.l;=[I,] 6lf„ (5.53a)

(5.49)

between the elements of 6,' and the elements of 8, . We
prove below that this correspondence is an anti-isomorph-
ism of groups.

The geometrical content of Eq. (5.48) is clear: An op-
eration that appears as a "forward rotation" of the Eck-
art vectors (f ) in the space R' appears as a "backward
rotation" of (l ) in the space S'.

We will now drop the cumbersome superscripts in Eq.
(5.48) and write it simply as
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ff, ] ~ 8. l;=[I;] 6'f,
imply

[f, l ~ 8 g 8s l, = [l;] (R '(Rf
~ .

(5.53b)

(5.53c)
(R =rotation of 6 about n.

Then

(5.58a.)

correspondence S,- 8@ in terms of the parameters n, 0.
Let f„f„f,be specified. Let

To show this, we proceed in the following manner, start-
ing from Eq. (5.53b):

Sa(ss l )= Q([i ] @A)Sa[f,]

8@——rotation of 8 about -N,
where

~= g (fi.] f, )(~ [l;])[f,].

(5.58b)

(5.58c)

= g (a'c),,(s ),„[f,]

= Q (R'CS );„[f„]= Q(R'RC);, [f,]

= Q(fl l @'@f,)[f,]

Thus, we have proved that

S-Sg and@, '-g@,

imply

(5.55a)

where CS„=CA is a consequence of Eq. (5.52). Since we
also have

[f,] ~ S~,,l,. =[i,] 6I @j,,

if follows from Eq. (5.53c) that

(5.54)

Note, in particular, that f„f„f, enter explicitly into
the determination of N, and hence, of 3+.

At the opening of this section, we pointed out that the
introduction of a laboratory frame is necessary for
understanding the origin of kinematical interactions in
a Hamiltonian expressed in coordinates relative to the
Eckart frame. It is clear that the group of operators
(8) must have a significant role in this problem. How-
ever, the groups (8] and ((R) are not entirely independent
because they are intrinsically related in our problem
through Eq. (5.50). This does not imply that we need to
consider only one of the groups, i.e., one of the spaces
R' or S'. It means we must keep track of both and con-
sider simultaneously the effect of the rotation-inver-
sions S of R' and the rotation-inversions 8 of S'. This
we now do, after introducing some notation.

We introduce the Cartesian product space R'XS' which
is the set of ordered pairs of vectors

(AS, ' —Sg,@. (5.55b) j(x, X):xWll', XCS'$. (5.59)

Since the correspondence set up by Eq. (5.50) is one-to-
one onto, this rule of associating rotation-inversions of

with rotation-inversions of S' is an anti-isomorph-
ism.

It is an intrinsic property of the geometrical relation
of Eq. (5.50) that the correspondence is an anti-isomorph-
ism: If we insist that the rotation —inversions (6I] of A
and rotation —inversions (8] of S' multiply by the usual
rules, then we have no choice —the correspondence set
up by (5.50) multiplies backwards.

Let us now give the explicit relation between the cor-
respondences resulting from different choices of the vec-
tors f„f„f,. Let

(5.56a)

be the anti-isomorphism which is established by

Through the formalism introduced by Eqs. (5.28) and
(5.36), we replace the set (5.59) by

([I],(f)):(f) is a triad of perpendicular
unit vectors j.n B'

([f],(l)): (l) is a triad of perpendicular
unit vectors in S

(5.60a)

We are interested only in a subspace of RSXS', namely,
the subspace such that

[i,]f,=[f,] ~ l„. (5.60b)

for i, j = 1, 2, 3, where f„f„f, (or l„l„ l, ) run now over
all triads. We denote this subspace of R'X S' by the no-
tation

[l l'@f; =[f,] ~ gs. l . (5.56b) R'+&'. (5.60c)

Remark The basis . vectors [l] and [f] appearing in the
definition of R'+ S' may be arbitrarily selected, and we
do not distinguish between spaces corresponding to differ-
ent choices of bases.

We next consider mappings of &'*S' onto itself. With
each (R&6,' (the group of rotation —inversions of R'), we
associate the following transformation of the space B'~ S':

(5.61)(RB +S R +S

where the action of (R on an a~bit a~y element of R'+ S'
is defined by

~. ([ll (f))- ([l], (@f))

(ffl, (I))—([f], (8~+&)),

(5.57b)
(5.61a)

A more explicit relation may be given for the 8s in the

We wish to determine the anti-isomorphism which is
established by the vectors f,', f,',f,', i.e.,

fi;] 6f,'=ff, ] ~ 8'i: (5.57a)

Let the vectors f,' be related to the f, by (.Ro, i.e.,f].
=S.,f, Then the l,' are related to the l; appearing in
Eq. (5.56b) by l', =8+ l;, where (Ro-8+ is the correspon-
dence (5.56a) determined by Eq. (5.56b). Using these re-
sults and Eqs. (5.56b) and (5.57a), it is straightforward
to prove that the anti-isomorphism established by Eg.
(5.57a) is
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where

(5.61b)

is the anti-isomorphism determined by

[l ]'6tf; =I.f, ] ~ Se. l'. (5.61c)

It is now of utmost importance to make explicit the fact
that the anti-isomoxphism (5.61c) depends on the initial
set of vectors (f), and this is the reason fox attaching
f to the sg'mbol Se.

Observe that by its very. definition (R maps R'+S' onto
itself. Hence, R preserves the geometrical relation be-
tween the spaces R' and S'.

Suppose we now follow the transformation @ by a sec-
ond transformation O'. We have

(5.62b)

(5.62a)
([fJ, (I'))-([f], (Se. I')),

where f,'=Af, and l', = S e l, But, from Eq. (5.57b), we
have

sider the spaces R' and S' as superposed. We depict
the space A with its fixed basis frame [I,], [ l J, [ I J

on one sheet of paper, and we depict the space S' with
its fixed basis frame [f,], [f,], ff, J on a, second sheet
of paper. We do not align the bases of the two spaces
in any particular way with respect to one another. It
is only the relationship of triads of vectors $f„f„f,}
to the basis of A' and of triads of vectors [l„t„ l,} to
the basis of S' as determined by [ l,.] f, = [f,J ~ l,. which
is important, and which is preserved by the transform-
ation (8 of R3 + S~.

One might now imagine that we are through, since we
have seemingly accounted for the relation between the
two spaces A' and S', and found a group of transform-
ations which preserve R'*S'. This is, however, not the
case. We can turn the correspondence (5.50) around and
solve for (R in terms of S (as already pointed out). We
will show that this does lead to new transformations of
the space R' *S'. We only summarize the relevant
properties of the anti-isomorphism, since the results
parallel those already given for the 8@.

Let

Thus, the transformation 4 followed by (A.
' is given by

([t J, (f))-([lJ, (&'&f))
(5.63a)

be the anti-isomorphism which is established by

(5.64a)

(5.64b)

since

(I.f], (l))-([f J, (S'N. e. t)),

(5.63b)

for i, j =1, 2, 3, each 8&83, and for a definite selection
of /„ I„l, |=S'. Then the anti-isomorphism

(5.65a)
Thus, the transformation 6I follou ed by R' is the same
as the transformation (R" =(8'. .

It is tempting to associate a pair of operators with the
transformation (5.61a) such as ((R, Sfe). However, since
it must be possible to choose the initial element
([I],(f )); ([f ], (I)) of the space A'*S' arbitrarily, there
is no consistent way of associating a single pair with the
trans fo r mation.

The reader may find it helpful to verify geometrically
the preceding multiplication rule in some simple ex-
ampl. es. An il.lustrative example is the following:
Choose f, =[l,. ] in A' an. d, hence, I,. = [f, J in S', for the
initial set of Eq. (5.6la). Suppose we now rotate A' by
6I= v/2 about [t,]; then the corresponding rotation of
S' is given by S~&p„——a/2 about —[f,]. Thus, the action
of (A. on the chosen initial element of R' *S is to give a
new element of R' ~S',

which is established by

(5.65b)

for i, j =1, 2, 3, each 8&8~3 and l'; =S,l, , hence, f,'
=(R~ f, is

(5.65c)

8 = rotation of 6 about ~,
then

(5.66a)

(R~ =rotation of 6 about —n,

where

(5.66b)

n = g([f, ] ~ l„.)(p, [f,]) (5.66c)

The ana. logs of Eqs. (5.58) are easily obtained by in-
verting Eq. (5.58c): If

This element becomes the initial element for the next
rotation (R' of R' +S'. We choose ' to be a rot3, tion of
A' given by (R' = v/2 about [ l, ]; then the corresponding
rotation of S' is given by S ~. ——&/2 about [f,]. Thus,
the action of iR' on the element of R' *S' produced by
R is the new element

in which l„ l» L, are regarded Bs specified.
With each 8~8„we now associate the following trans-

formation of the space A'*S'.
8: R3*S3 R3 +S3, (5.67a)

where the action of 8 on an arbitrary element of R' *S'
is defined by

([ I J, (f)) —([ l ], (&s f))
(5.67b)

(If], (l))-([f],(S l))

It should be noted that in drawing pictures correspond-
ing to the above operations roe do not in any sense con-

where

(5.67c)
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is the anti-isomorphism determined by Eq. (5.64b). If
we follow 8 by a second transformation 8', then we ver-
ify that the transformation is that for 8" =8'S.

We now come to one of the principal results of this
lengthy section: 5'ox each tR&8,' and fox each SE 8„I e have the opexatox identity

[6I, S] =&RS —S61=0 (5.68)

R' *S'—I C: CC =I'I. (5.69)

Proof. Given any element of R'*S', we define the
matrix C by C,, = [ j,. ] f, = [fz]~ l; . Conversely, given
any orthogonal matrix C, we define the vectors f„f„f,
aR' by f, =Q,. C, , [ l,.] and the vectors l„ l„ l, &S' by
l,. =Q,. C, , [f,]. Then the point ([ l], (f)); ([f];(l)) is an
element of A' *S '.

The fact that the space A' + S' can be represented by
the set of orthogonal matrices means that we can trans-
cribe all the previous transformations of the abstract
space into transformations on an orthogonal matrix,
without loss of content.

The transformation (5.61) becomes

C-~C (5.70)

for each @&83, and each orthogonal C, where A is the
matrix representing (R on the basis [ l ].

The transformation (5.67) becomes

on the space &' + S .
This important result may be proved in several ways.

We choose a method which presents much of the previous
abstract transformation theory in a useful matrix form.

We first observe that the space A' *S' is in one-to-one
correspondence with the set of orthogonal. matrices:

themselves to many interpretations, and it would have
been nontrivial to start with Eq. (5.73c) and arrive at
the interpretation we have given it (although we now
know how to do this).

E,. Transformations of R' +S' induced by ZB

((c:q)), (5.74)

where C is an arbitrary orthogonal matrix representing
an element of the space R' *S', and Q denotes the col-
lection of normal. coordinates.

We have previously dedu'ced the action of Zg on the
normal. coordinates:

&9'. Q- I-9Q (5.75)

It is somewhat less obvious what the action of Z~ is on
C. From initial considerations, because C, , = [l,. J f„,
one would be inclined to think that ZB induces no trans-
formation of C. This conclusion seems to follow from
the fact that R9 leaves the Eckart frame vectors f, in-
variant, and it seems to do nothing to the basis vectors
[ l J of R'. The second inference must, however, be
carefully examined. We have emphasized in Sec. III.B
that the 8 tag on 8 does not designate a rotation-in-
version of the space A', and it does not necessarily fol-
low that 8 does nothing to C.

To determine the action of 2g on C, we examine the
action of &q on the totaI. angular momentum of the par-
ticles:

The coordinates which describe the motions of the par
ticles in a polyatomic molecule are now taken to be

S. C- CS (5.71) j= sz~x XV (5.76)

SIR C —(RC)S =RCS '

first 8, followed by (R is the transformation
(5.72a)

for each 8 &8„and each orthogonal matrix C, where S
ls the matrix representing S on the basis [f] .

The fact that S and 8 commute is now apparent: First
4,, followed by 8, is the transformation

Under the action of Zg, we have-

Z9. x"-Q(9x )S 8(9),

v"= dx "/dt —Q(9v )S„a(9)

(5.77a)

(5.77b)

6IS: C R(CS) =RCS. (5.72b)
It follows that

We denote the group of rotation-inversion transforma-
tions which maps the space R'+ S' onto itself by the
notation

(5.73a)

49 . j -Bj =g(j 'f, )G, ,f; if detG=1,

j ——9j = —P (j ' f, )G;,f; if detG = —l.

(5.78)

(6I, S): e. ~8,', Se8,',
where the action on C is given by

((R, S): C- RCS.

(5.73b)

(5.73c)

In its action on C, an element of this group may be rep-
resented by an ordered pair

Since we are not bound to interpreting 9 as a rotation
of A', we insist that the action of Zc on j be such as to
pr es erve the angular momentum j, i.e., that j and 8 j
(or —9j ) are one and the same vector as seen from the
laboratory frame. This can be the case if and only if
Zg induces a transformation of the laboratory frame de-
termined by

The product of two such transformations is that of a
direct product.

The emergence of such a simple matrix transforma-
tion property of the space A' + S' is quite satisfying. It
suggests, perhaps, that much of the abstract analysis
of this section could be done away with. Vfe do not be-
lieve this to be the case. Matrix transformations lend

&, : [l, ] —[l', ],
where

[l,] j =[l'; J 9j, detG=1,

[l,. ] j = —[l',. J
.9j, detG= —l.

Thus, we obtain

(5.79a)

(5.79b)
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[l', ] =detGB [l, ] =(detG)g (CGC), , [i„]. (5.79c) and the components in question are

The action of Zg on C is now determined from

~B [I, ] .f, - [I', ] f";,
that is,

ZB . C —(detG)CG.

(5.80a)

(5.80b)

The nature of the space A' +S is such that if we change
the basis of the space A', we must also change the basis of
the space S'. Since the transformation (5.79a) is a change
of basis, 2& must also induce a change of basis of S3
given by

J =f ~ j. (6.lb)

Z„Z„Z„(Q),fP] .

A. Transformations of angular momentum

(6.2)

Let us next examine the transformation properties of j
and the J, . The total angular momentum of the system
of particles is given by

Note that both j and f, are . vectors in the space R'. Thus,
the physical quantities on which the Hamiltonian is de-
fined are certain scalar and pseudoscalar parameters
and the dynamical variables

~B [f, ] - [f:],
where

[I';] f;=[f;]~ i;
Using Eq. (5.79c), we now calculate

[f', ] =detGQG, , [f, ],

(5.81a)

(5.81b)

(5.82)

j=Pm x Xv (6.3)
cx= j.

where x', x', . . . , x are the position vectors of the parti-
cles relative tothe center of mass andthe v', v, . . . ,v are
the corresponding velocities. Under a rotation-inversion
(8 of the space A', we have

(5.88)ZB. C- (detG)CG,
which agrees with Eq. (5.80b).

We have now proved that Zg is a mapping of the space
A' *8' into itself, and that this mapping corresponds 'to

a change of basis of the space. If we represent an ele-
ment of A3 *S~ by C, then C is mapped into (detG)CG.
The action of ZB on the coordinates (5.74) is thus ex-
pressed by

8.: j -Sj if (R is a rotation

j-j &f (8=8.
(6.4)

Under the action of Z, we have from Sec. V.E that

EB. j- (detG)Bj

Under a permutation 6' of identical particles, we have

(6.5)

29 .'(C; Q) —((detG) CG; LBQ).

VI. INVARIANCE PROPERTIES OF THE

HAM I LTON IAN OF A POLYATOMIC MOLECULE

(5.84) (6.6)=(detG) Q J,G;,f, .
i,j

On the other hand, the Eckart frame vectors behave
in the following manner:

In Sec. V, we have discussed various groups of opera-
tors which have an action on the coordinates which are
usually used to characterize the motions of the nuclei in
a polyatomic molecule. %'e still must relate these
groups to the description of the molecular motions.
This is accomplished by determining the properties
which the Hamiltonian of the physical system possesses
with respect to these groups.

We wish to do this in a general way without going
through a detailed development of the Hamiltonian, using
only general principles. We begin by examining the
physical quantities which enter into the Hamiltonian,
where the physical quantities are to be referred to the
Eckart frame.

The Hamiltonian is made up of a potential energy term
and a kinetic energy term. The potential energy V(Q) is
assumed to depend (in a given electronic configuration)
only on the normal coordinates. The kinetic energy
term is more complicated, but will be seen. to be com-
prised of functions of the normal coordinates fQj, the
conjugate momenta fP], and the components of the total an
gular momentum j of the system (Wilson, 1955). These
components are to be calculated relative to the Eckart
frame. We ha, ve

6I: f, —Rf; if 6t is a. rotation

f;- f(—if @=8 .
(6 7)

For each 6' —9 of the static molecular model, we have

6'. f, - 9f, , 9 E- 8,', (6.8)

(P: J,—(Bf,) ~ j = g G~;J, , (6.10a)

or, equivalently,

6' J, ~-G (6,10b)

where-we recall that if 9 is described in the static model
as a rotation of 6t about n =Q;n, e, , the definition of
B&8t is that 9 is a rotation of 6 about n =g,n; f, ~B'.
In addition, we know that the operators 2 leave the
Eckart frame invariant.

Using the above information, we may now deduce the
following properties of the J,: For each (RW8,', we have

J,-- J, if (R is a rotation

J;——J; if $=8.
For each 6' —9, we have

(6.1a) where we note that the matrix representing 8&8,' on the
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Eckart frame is the same as the matrix G representing
8 on the principal axes of the static model. For each
2&, 9&9(Q), we have

29'. J;—(detG) Q G,) J', ,

or, equivalently,

J, —(detG)G J2 (6.11b)

(6.12a.)

where the components j, and J, are the same as those
oc cur ring in Eq. (6.1a):

(6.12b)

(6.12c)

The transformation properties of the J, under 8&6,
are now easily obtained:

S:J, —[f,] ~ SJ= Q S;yJq, (6.13a)

or, equivalently,

J i-8 J (6.13b)

It is noteworthy that the group of matrix transforma-
tions on the components J„J„J,effected by the (29t
[cf. Eqs. (6.11)] is a subgroup of the group of matrix
transformations effected by the (S] [cf. Eq. (6.13)].

It is also noteworthy that the action of a permutation
6' —9 on the components J„J„J,is identical to that of
(detG)29-& [compare Eqs. (6.10b) and (6.11b)]. This
result implied that the action of any element p of the
group of feasible operators on J„J„J,is precisely that
of the corresPonding 29,. This corresponding 29-~
is determined as follows: The static model establishes
the one-to-one correspondence 6' —9 between certain
elements of the permutation group and the 9&G(6). If
detG =+1, then& =6' and the 9 in g8, & is the 9 corre-

Note that the matrix (detG)G is always proper, orthog-
onal.

The determination of the transformation properties of
the t,. under 8 ~6~ is somewhat more delicate. Fi:rst
of all, in our definition (5.36) of the space S, we delib-
erately did not include "molecular vectors" in this space
for the simple reason that such vectors do not undergo
transformations under 8, which by design describes
rotation-inversions of the external world as seen by an
observer in the Eckart frame. This observer, however,
knows that he is in a noninertial reference frame and
that the rotations of the external w'orld which he ob-
serves are, in fact, due to his own motion with respect
to the inertial frame. He takes this into account by con-
sidering that the angular momentum j is a vector be-
longing to the external world, i.e. , that the angular mo-
mentum j is given in his space by the vector J defined by

sponding to (P; if detG =-1, then' =86', and the 9 in
2-~ is the 9 corresponding to 6'.

B. Invariance group of the full Hamiltonian

Vfe are now prepared to discuss the invariance proper-
ties of the Hamiltonian of a polyatomic molecule. We
present this discussion from two points of view, the
first one following, more or less, traditional concepts
regarding the role of the point group, and the second one
following, more or less, new concepts regarding the
role of the group of feasible operators (Longuet-Higgens,
1963; Hougen, 1975).

A result common to each viewpoint follows from prop-
erty (6.9) and the fact that the normal coordinate, hence,
also the conjugate momenta, are invariants under each
8,~8t: Any Hamiltonian built out of the physical quan
tities J„J„J„IQ't,(P) is automatically invariant under
each rotation (R of the space R'. The Hamiltonian must,
of course, also be invariant under the inversion of A~.
This implies either that the Hamiltonian is quadratic in
the J; or that terms linear in J, are multiplied by quan-
tities which are pseudoscalars under 8&8,'. lt is the
latter situation which prevails. These results imply that
the rotation-inversions of the space R' play no role in
the subsequent discussions of the invariance properties
of the Hamiltonian.

The traditional viewpoint (Wilson, 1955) holds tha't the
Hamiltonian must be invariant with respect to the group
of operators (Z9j. The basis for this principle is clear:
These operators generate internal motions of the parti-
cles which are compatible with the Eckart frame, and
the Hamiltonian which describes these motions must
accordingly be invariant —it is the largest group pos-
sessing this property which can be derived from a group
which preserves the geometry of the static model.

The second viewpoint (Longuet-Higgens, 1963; Hougen,
1975) holds that the Hamiltonian must be invariant under
the elements of the group of feasible operators. How-
ever, since the action of a feasible operator F on the set
of normal coordinates, the conjugate momenta, and an-
gular momenta given by (6.2) is expressed by a 2&-&, it
follows that the two viewpoints coincide insofar as the
invariance properties of the Hamiltonian are concerned
This should come as no surprise in view of Eq (5.14). .
The "rotational part" of a feasible operator is "wiped
out, " not only in its action on a normal coordinate [8,'
scalars], but also in its action on the 8,' pseudoscalars
J~, J~,J3.

We have now proved the result: The invariance group
of the Hamiltonian of a polyatomic molecule is the direct
Product grouP 8,' X (29].

We hasten to note that while invariance under the group
of feasible operators and the group (29t imply the sa.me
properties for the Hamiltonian, this does not mean that
there is no distinction in the consequences of these in-
variances. This is so because the action on coordinates
of operators taken from these two groups is distinct.
Let us develop these properties explicitly.

C. Transformation of coordinates

The coordinates of the molecular problem are the
quantities in the set
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OC; Q)), (6.14) (6I', g ', I („.)) ((R, I, L(s)) = (6I'8, 8 '8, I („.R)) . (6.21)

where C is an arbitrary orthogonal matrix representing
an element of the space R'* S', and Q denotes the set of
normal coordinates.

The action of a permutation 6' —g on the coordinates
(6.14) is obtained from Eq. (5.17):

i)" (O'Q)- (O'C*'Lg-~Q) (6.15a)

yak, eve G' is the matrix xePxesenting &~6,' on the basis
[I]. For 8&8,' we have

8: (C; Q) —(-C; Q) . (6.15b)

These two results allow us to write out the action on the
coordinates of any element of the group of feasible op-
erators. Observe that it is intrinsic to the definition of
a permutation that the 9 occurring in (P = (9, Lg-~) [cf.
Eq. (5.20)] is an element of 8,'.

The action of Zg on the coordinates (C; Q) was deter-
mined in Sec. V.E:

&g' (C; Q) —((detG)CG; LgQ) . (6.16)

In the quantum mechanical description of the molecule,
the wave functions describing a. given state of energy will
undergo different types of transformations under the
induced action of operators drawn from the group of
feasible operators and those drawn from the group (gg).
We will develop the details of these transformations in
a subsequent paper, but the principal result may already
be anticipated: The group of feasible operators has
little to do with the molecular motions problem —it is
the key concept in implementing the Pauli principle.

What is the role of the group (6.19) in the molecular
problem'2 The answer is to be found in perturbation
theory. One expects the Hamiltonian H to be approxi-
mated to zero order by an Ifp which is a pure rotational
part plus a. pure harmonic motion part (Casimir, 1931).
If the rotator is spherical, then the grouf(6. .19b} with
elements (6.19a) is the invariance group of the Hamil
tonian Hp.

Suppose further that the molecule is in a mode of ex-
citation such that the principal perturbing term is
(Jahn, 1935, 1939)

H~ = r(J, L, +Z~L, +J3L~), (6.22)

8 ~ * 8t, Qd 03 X G '(0), (6.23)

where the new symbols have the following meaning:
G'(0) includes all products in the direct product group
given by Eq. (5.5), except the 0, which is the invariance
group of the 3-dimens ional oscillator which carries the
angular momentum (L„L„L,); the symbol 8f Qd 0, des-
ignates the so-called diagonal subgroup of 8, X 0,—it is
the group consisting of the pairs (S. , Ls), where the sub-
script S is the matrix representing 8 on the basis [f ].
The corresponding transformation properties of the
angular mome nta occurring in H, are

where (L„I.„L,) are the components of angular momen-
tum carried by a triply degenerate mode of oscillation.
Then the invariance group of Hp+IJ, ls the following
subgroup of the group (6.19b):

D. Larger symmetries and symmetry breaking J2 I- S J2 (6.24a. )

In Sec. V.D, we introduced a group of transformations
63 ~8, on the space A' +8'. The action of an element of
the group on C was that of a direct product group: L2 - S L, (6.24b)

((R, g): C- RCS. (6.17) L,,

$s): Q —L(R)Q. (6.16)

We may consider the ordered triplet of operators

(61, 8, I.(„)) (6.19a)

In Sec. V.A, we also introduced the group of transfor-
mations G(0) with elements L(s) whose a.ction on the
normal coordinates is symbolized by

Thus, H, is invariant.
I.et us now examine the relation of the invariance group

83 X (Zg) of the full Hamiltonian to the group (6.19b}.
The elements of 8,' X (gg) are the ordered pairs

((R, Zg) . (6.25a. )

The action of this element on (C;Q) is [cf. Eq. (6.16)]

to be an element of the direct product group (6I, gg): (C; Q)- (RCS' (9); LgQ), (6.25b)

8,'*8f X G(o), (6.19b)

(6I, 8, L(„)): (C; Q) - (R CS; L(„)Q), (6.20)

where we recall that A is the matrix representing S on
the basis [I], and S is the matrix representing 6 on the
basis [f ]. (The 1R) subscript on L has nothing to do
with the matrix R representing (R.)

One readily proves that the product rule first
(6I, S, L(z)) followed by (6I', I', L(z~)) defines the direct
product multiplication

where we recall that G(0) is itself a direct product group
G(0)=Q;0;. The action of the group element (6.19a,) on
the coordinates (C; Q) is defined by

where we have written

S'(9) = (detG)G. (6.25c)

Comparing this result with Eq. (6.20), we see that as
matrix transformations on the coordinates (C;Q), the
tv ansformations (6,25b} are a subgrouP of the matrix
transformation on (C;Q) given by (6.20). This result
should not be too astonishing in view of the fact that the
group of (passive) transformations $29) on the basis
of R'* S' is isomorphic to a group of (active) transfor-
mations on the vectors of &'*S'.

l,et us introduce the following notations: G(Q) denotes
the subgroup of transformations, G(Q) K G(0), on the
normal coordinates given by Q -LgQ, each 9 + G(8)
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[cf. Eq. (5.7)]. G~ denotes the subgroup of active trans-
formations, G~c 6~ of R' *g' such that 6'(8) H G~ has the
action

6'(8) C —CS'(8),

where

S'(8) = (detG)G.

(6.26a)

(6.26b)

Then the invariance group of the full Hamiltoniah can be
taken to be

8,'*O'XG(Q)

with elements

(6.27a)

(6I, 6 '(8), I.8) . (6.27b)

The action of an operator (6.27b) on the coordinates
(C;Q) is given by Eq. (6.20); it coincides with the action
of @ and ~. By design it transforms the Hamiltonian
H in the same manner as do + and Cg .

We also note that the group of permutations 6' —9
(hence, the group of feasible operators} also draws its
operators from the set (6.20), since

6' = (8, Z, L8-a), (6.26)

where E E8, is the identity operator.
From the viewpoint of perturbation theory, the struc-

ture

8,' * G~ X G(Q ) C: 6,' *8~ X G(O) (6.29)

Vl I. CONCLUDlNG REMARKS

This brings us to the conclusion of what has been es-
sentially a classical discussion of the vibration-rotation
aspects of polyatomic molecules. However, the invari-
ance properties of the quantum mechanical Hamiltonian
are the same. Furthermore, since we know how the co-
ordinates transform under the various groups, we also
know how to define (Wigner, 1959}the induced action on

defines completely the general structure of the poly-
atomic molecule Hamiltonian. The problem is con-
veniently phrased in a language which suggests alterna-
tive algebraic methods (Biedenharn and Gamba. , 1972;
Louck, 1974; de Vries and van Zanten, 1974) of solu-
tion: The zero-order Hamiltonian is invariant under
8,'*8~ X G(O); the most general interaction occurring in
the full Hamiltonian must be a tensor operator with re-
spect to the group 8,'*6~3X G(O) and an invariant with re-
spect to the subgroup 6,'*G~X G(Q). [Quite naturally
subgroup structures which lie between the two extremes
of Eq. (6.29} are also of interest. ]

In the quantum mechanical case the theory of i~reduci-
ble tensor oPeratows (Wigner, 1940; Bacah, 1942; Bose,
1957; Edmonds, 1957; Fano and Racah, 1959; Bieden-
harn and van Dam, 1965) of the orthogonal groups 8, and
e„and the couplings of such operators, are therefore
essential ingredients of the theory of many (Wilson,
1934}polyatomic molecules (Hecht, 1960, 1960a; Moret-
Bailly, 1959, 1961,1965; Michelot et al. , 1974, 1974a;
Griffith, 1962).

It is particularly appropriate to note here CarlEckart's
contribution to the theory of tensqr operators (Eckart,
1930).

wave functions. We thus have available the full appara-
tus for studying the quantum mechanical problem from
the viewpoint of the group transformations themselves.

This procedure leads to new insights into the anoma-
lous commutation rules (van Vleck, 1951) of the angular
momenta components ~„~„~,as well as to a better
understanding of the angular momentum coupling rules
for molecular angular momenta, the modifications of the
Racah —Wigner tensor calculus, the transformation prop-
erties of wave functions, and the calculation of statistical
weights (Wilson, 1935; Longuet-Higgens, 1963; Bunker
and Papousek, 1969; Hougen, 1971; Oka-, 1973; Hougen,
1975). We plan to carry out this study in a paper to be
published elsewhere.

Finally, we would like to make some admittedly specu-
lative remarks concerning nonrigid molecules (Longuet-
Higgens, 1963). It is fairly clear from the generaliza-
tions of the transformations (3.18) along the lines indi-
cated by Eq. (3.23) that the theory we have presented has
a generalization to nonrigid molecules.

It appears that such a theory would involve the use of
several Eckart frames; certain "local" Eckart fi ames
would be defined from the position vectors of those nuclei
which seem to comprise "rigid molecular substructures";
yet another "principal" Eckart frame would be defined on
the position vectors of the center of mass vectors of the
"rigid molecular parts" of the composite molecule. In-
teractions between the various Eckart frames would pro-
vide the mechanism for torsional interactions, etc.

We are not certain that a meaningful physical theory of
the above type can be built, but it seems worth consider-
ing. It could provide a rigorous basis for the highly de-
scriptive ideas of Longuet-Higgens (1963).
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