What is “liquid”? Understanding the states of matter
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Liquids exist in a relatively small part of the enormous range of temperatures and pressures existing in the
universe. Nevertheless, they are of vital importance for physics and chemistry, for technology, and for life
itself. A century of effort since the pioneering work of van der Waals has led to a fairly complete basic
understanding of the static and dynamic physicochemical properties of liquids. Advances in statistical
mechanics (the fundamental formulations of Gibbs and Boltzmann, integral equations and perturbation
theories, computer simulations), in knowledge of intermolecular forces, and in experimental techniques;
have all contributed to this. Thirty years ago the very existence of liquids seemed a little mysterious; today
one can make fairly precise predictions of the solid-liquid—gas phase diagram and of the microscopic and
macroscopic static and dynamic properties of liquids. This paper is a survey, with particular emphasis on
equilibrium properties, of the theory which underlies that basic understanding, which is now at least
comparable with our understanding of the physics of solids.
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LIST OF ABBREVIATIONS USED IN TEXT

BFW Barker—Fisher—Watts (potential for argon)

BG Born—-Green (theory or equation)

BH Barker—Henderson (perturbation theory)

BH1,BH2 First-order and second-order Barker—Henderson
perturbation theory

CS Carnahan—Starling (equation of state for hard
spheres)

EXP Exponential (approximation)

GH Grundke—Henderson [parametrization of hard-

sphere y(7)]

GMSA Generalized mean spherical approximation

HNC Hyper-netted chain (theory or equation)

HNC2 An extension of the hyper-netted chain theory

HS Hard sphere

HTA High-temperature approximation of Weeks—Chand-
ler—Andersen

K Kirkwood (theory or equation)

lc Local compressibility (approximation)

LEXP Linearized exponential approximation

LHW Longuet—Higgins and Widom (equation of state)

MC Macroscopic compressibility (approximation)

me Monte Carlo (method) '

MD Molecular dynamics (method)

MSA Mean spherical approximation

OoCT Optimized cluster theory

ORPA Optimized random phase approximation

()4 Ornstein—Zernike (equation)

PY Percus—Yevick (theory or equation)

PY2 An extension of the Percus—Yevick theory

RDF Radial distribution function

RISM Reference interaction site model

SA Superposition approximation

SPT Scaled-particle theory

sSwW Square-well potential

vdW van der Waals (theory or equation of state)

AAW Verlet—Weis (parametrization of hard-sphere rad-
radial distribution function)

WCA Weeks—Chandler—Andersen (theory)

I. INTRODUCTION

The existence of matter in three different phases
(solid, liquid and gaseous phases) is a fact of every day
experience. Solids are rigid and give sharp Bragg re-
flections in a diffraction experiment, demonstrating an
ordered arrangement of atoms or molecules. Liquids
and gases are fluid; they will flow under a shear stress
however small. Further, in diffraction experiments
they give no sharp Bragg reflections but diffuse rings,
showing that there is no long-range ordered arrange-
ment of molecules. Thus, there is a clear distinction
between solid and fluid (though this is somewhat blurred
by the existence of glasses and amorphous solids). On
the other hand, there is no such qualitative distinction
between liquid and gas. Van der Waals pointed out ex-
plicitly the continuity of liquid and gaseous states. At
temperatures below the critical temperature two fluid
phases can coexist in equilibrium: the denser phase is
called liquid, and the less dense phase is called gas.
Above the critical temperature, coexistence of fluid
phases is not observed. One can pass continuously
from low-temperature gas to low-temperature liquid
by heating above the critical temperature, compress-
ing, and cooling. The difference between liquid and gas
is essentially a difference in density.

For roughly spherical molecules, and in particular
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for the actually spherical rare gases, only one kind of
disorder is possible, namely disorder of translational
motion. For molecules which are far from spherical
there is also the possibility of 7otational disorder.
This may occur in a crystal which retains translational
order (plastic crystals). On the other hand, rotational
order may persist in a temperature range where there
is translational disorder; in this case one is dealing
with “liquid crystals,” and many kinds of phases (ne-
matic, smectic, cholesteric) are observed (Stephen
and Straley, 1974).

The aim of the physics of liquids is to understand why
particular phases are stable in particular ranges of
temperature and density (phase diagrams; Fig. 1), and
to relate the stability, structure, and dynamical prop-
erties of fluid phases to the size and shape of mole-
cules, atoms, or ions and the nature of the forces be-
tween them (which in turn are determined by the elec-
tronic properties). For ordinary liquid phases we now
have excellent qualitative understanding of these ques-
tions, and in simple cases this can lead to fairly
rigorously quantitative predictions. For systems such
as liquid crystals, rigorous fundamental theory is at
an earlier stage, and we shall have relatively little to
say on this subject. A full account of current phenom-
enological and semiphenomenological theoretical ap-
proaches toliquid crystals is given by Stephen and Straley
(1974).

The interactions which determine the bulk properties
of matter are basically electromagnetic, and in fact, ~
apart from small relativistic and retardation effects,
electrostatic in character; they arise from the Cou-
lomb interactions between nuclei and electrons. Thus,
one way to attempt to predict the properties of a liquid
(or solid or gas) would be to solve, subject to appro-
priate antisymmetry conditions, the many-body Schro-
dinger equation describing the motion of the nuclei and
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FIG. 1. Phase diagram for the 6—12 fluid, as calculated by
Hansen and Verlet (1969) (solid lines), and for argon (dashed
line and circles). The comparison assumes €/k =119.8 K, o
=3.405 A.
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electrons

7o
2
O3 gt 3 =T
.in which the sums are taken over all nuclei and elec-
trons with appropriate masses m; and charges ¢;.
Needless to say this would be an exceedingly difficult
task!

Fortunately, there are a number of important sim-
plifications most of which arise from the fact that nu-
clei are much heavier than electrons. The first is the
Born-Oppenheimer (1927) approximation according to
which we can solve the electronic problem for a static
configuration of the nuclei, thus deriving a potential
energy function U depending only on the nuclear coor-
dinates, which can in turn be used to describe the nu-
clear motions. In fact, if we are prepared to deter-
mine this potential energy function experimentally (or
semiempirically) we can bypass the electronic problem
completely, though naturally we would like to confirm
at least for a simple test case (e.g., the helium-heli-
um interaction) that solving the electronic Schrdinger
equation leads to results in agreement with our experi-
mental determination.

A second simplification arises from the fact that the
forces between molecules are often much weaker than
intramolecular forces between atoms. Thus for rela-
tively rigid molecules we can often make the approxi-
mation of ignoring any coupling between intramolecular
vibrations and motions of the molecule as a whole, at
least in considering many thermodynamic and trans-
port properties (in spectroscopic studies, for exam-
ple, we can certainly see intermolecular effects on
intramolecular vibrations, and this is an important

- experimental probe). In the simplest case (rare
gases) this question does not arise. For more com-
plex molecules this approximation means that we can
treat the molecules as rigid, and consider the poten-
tial energy function U, as depending only on the posi-
tions T; of the center of mass (say) of the molecules
and their orientations &;

UN=UN61:91;"';FN)‘QN)-

(1.2)

Of course, this approximation would not be made in
studying molecules with relatively free internal rota-
tions (e.g., polymers).

A third simplification, also arising from the rela-
tively large masses of the nuclei, is that in many
cases we can describe the behavior of the molecules
by classical mechanics and classical statistical
mechanics, supplemented where necessary by quan-
tum corrections (which are discussed in Sec. III.B.5).
This procedure is certainly inadequate for helium and
hydrogen at very low temperatures, but probably ade-
quate for most other liquids.

A further simplification arises from the fact that
intermolecular potential energies are, to a first ap-
proximation, additive. Thus, the potential energy
* function Uy may be written as '

Uy= g“z(-fuﬂiifj’ﬂj)'* iz ug(Ty, Q457;,2;5T,, Q)
Gr

(1.3)

+oue,
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(1.1)
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in which the first term is a sum of pair interactions,
and the second a sum of #viplet interactions (which may
be chosen to vanish whenever ore of the molecules is
very distant from the other two). In the case of the
rare gases, it appears to be a good approximation to
neglect all terms beyond the triplet term in (1.3), and
the effects of the triplet term on thermodynamic prop-
erties can be included by perturbative techniques.
Whether this will prove to be true for all liquids re-
mains to be seen.

We shall use the grand canonical ensemble which is
most convenient for deriving theoretical results (Bax-
ter, 1971). In this ensemble the probability of finding
N molecules with coordinates in elements dg,...dgy
at q,...qy and momenta indp,...dpy at p,...py is
P(dq,...dqy)dp,...dpy) with

P=(?%V_E>exp[ﬁ(N“o_HN_)]- (1.9)
In this equation % is Planck’s constant, 8 =1/k,T, ky is
Boltzmann’s constant, T is the temperature, u, is the
chemical potential, and f the number of degrees of

‘freedom per molecule (3 for atoms in three dimen-

sions, 6 for an asymmetric rotor). The g; are gener-
alized coordinates (center of mass coordinates and
possibly angles) specifying the position and orientation
of the molecule. By dg, we mean an f-dimensional
volume element in the generalized coordinate space of
molecule 1; the p; are the momenta conjugate to the ¢;.
The Hamiltonian of the N-body system is H

Hy=Ty+Uy, (1.5)

where Ty (not to be confused with the temperature T) is
the kinetic energy, and U, the potential energy. The
normalizing factor = is the grand partition function,
given by

f exp[-BHyldg, . ..dqydp, ...dpy.
(1.6)

The relation with thermodynamics is given by (Kittel,
1958)

pV=FkpTInx, (1.7)

We will assume that the volume V is very large, to
avoid the necessity of reiterating that the limit V -« is
to be taken. Because the kinetic energy depends quad-
ratically on the momenta, the integration over the p; in
(1.6) can be performed immediately for rigid molecules

[similarly (1.4) can be integrated over momenta]. The
result is
. z”:exp[BN K]
& NI
x f ...fexp[_;su,v]df1 v dEydRy. . .dy.
(1.8)

Here d<; is the volume element in the space of rota-
tions of molecule i [cf., Kirkwood (1933b)]. For con-
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venience we will assume dQ; to be normalized so that
fdQ is 1. (Thus, for an axially symmetric molecule
with the direction of its axis specified by a polar angle
6 and azimuthal angle ¢, d$2 would be siné dé do/4r.)
The quantity u in (1.8) is equal to py+1n[(2rmkT/
n?yY”2z! ] in which Z!, is the free-rotator partition
function for one molecule (Landau and Lifschitz, 1969),
m the molecular mass, and v the dimensionality of the
space. We shall call u (as well as u,) the chemical
potential; it is referred to a zero or reference state
different from that for u,.

Using (1.7) and the momentum-integrated form of
(1.4) we see that the probability density P’ that L par-
ticular molecules lie in the elements d¥t,...dT,

..dQ; is given by

i exp| NB}L

=0 NiE

xf’g..
(1.9)

However, there are N(N —1)...(N — L+1) different sets
of molecules which can occupy the volume elements, so
that the total probability density that any L molecules
occupy these elements is given by

.fexp[_;su,,]az?m...azf,v A, . . . dy.

(L= .
n' (T, Q5

. ;?LrﬂL)

xf...]exp[-fsu,v]dfm...dm as,. ..de,
(1.10)

The functions #'X’(F,,Q,;...;F,,9Q,) and
g(F,,9,;...;T,,%,) are both called L-particle distvibu-
tion functions. For a uniform isotropic fluid, #‘* (¥, 2,)
is just the number density p or (N)/V, where (N) is the
average number of molecules (recall the normalization
of d2). Also in a uniform isotropic fluid, #‘®’(¥,,Q,;
T,,§,) will depend only on the distance r,= |F, - F,| and
the orientations of the molecules with respect to one
another and the direction of T, —F,. The pair distribu-
tion function g(1,2)=g(¥,,Q,;T,,Q,) is of particular im-
portance. The pair distribution function approaches 1
as the distance becomes large. For spherical mole-
cules g(1,2), a function of distance alone, is called the
vadial distrvibution function, and can be determined ex-
perimentally from neutron or x-ray diffraction experi-
ments. The radial distribution function determined by
neutron diffraction for argon in conditions close to its
triple point (Yarnell et al., 1973) is shown in Fig. 2.
Its Fourier transform is the static structure factor
(Chen, 1971) defined (for spherical molecules) by

.7

s(|1?|)=1+pjexp[i1?- ) g(r)dF. (1.11)

For nonspherical molecules we can define the radial
distribution function by
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FIG. 2. Radial distribution function of liquid argon at 85 K
(Yarnell et al ., 1973). Solid curve, from neutron diffraction
experiment. Circles from Monte Carlo calculation using BFW
potential of Barker ef al . (1970) with three-body and quantum
corrections. The values calculated by Verlet (1968) with the
6—12 potential are indistinguishable from the latter values on
the scale of the plot.

g5 = f 2(1,2)d2,de,. (1.12)
To avoid ambiguity in the case of nonspherical mole-
cules we have denoted the radial distribution function by
&, (indicating that g has been spherically averaged) and
the pair distribution function by g. The distinction is
unnecessary for spherical molecules.:

The function 2 which is equal to g —1 is called the net
or total corvelation function. It is customary to define
the divect correlation function ¢ by means of the Orn-
stein-Zernike (1914) equation [as generalized for rigid
nonspherical molecules by Workman and Fixman (1973)]

h(F,,Q,;T5, Q,)= (T}, Q,;T,,Q,)
+ pfh(F1 2825 -fsi Qa)c(-fz’ Qz;'-fay Qa)dF:;dQ:g'

(1.13)

From Egs. (1.4) and (1.6) we see that the average num-
ber of molecules [using angular brackets () to denote
ensemble averaging, that is averaging with the probabil-
ity density of (1.4)] is given by

(NYy=FkgT' 9In= /o u, (1.14)
and on differentiating again, that
2]
kaTﬁ (N?) — (2. (1.15)

From the definition of n‘*?,%‘® it follows that

J j w2 (F,, 9 iF,, Q)T dF,d9,d90,=(N(N - 1)), (1.16)
and

f f nO(F, Q,)dT,d2, =(N), (1.17)

whence
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[ [ 2,055, 2)

-n'V(F,, Q) ([F,, Q,)]dT,dT,dQ, ,dQ,

=(N?) —(\)2—(N).  (1.18)
But we have
1), ()
“(G5), .
(50, G,
=[(N?%) —(V)?] / AN). (1.19)

Combining this with Eq. (1.18) we find

0
ks T <3P) VeT

=1 +(N)'1fj [22(F,, Q,;F,, Q)
-n'D(F,, Q' (F,, Q,)] dF,dTF,dQ,dR,,

=14p J R sy Ry, R,)AT,A9,dR,. (1.20)
This is the well-known “compressibility equation”
which relates thermodynamic properties to g or x.
Note that this result is independent of any special as-
sumptions such as pair additivity about the potential
function. It is also valid for an oriented fluid (liquid
crystal).
The thermodynamic internal energy U; is simply the
average of the total energy H,; using (1.4) and (1.8) this

V(%%E> = i:e_xg[ls_'Nzﬁ]_{ﬁv f j exp[ —3UN(V1/v§i’Qi)] [:

uy T N=0

v Lo
=<N ~VksT ;r"V’U”>’

Here V,U, is the gradient of the function U, with re-
spect to ¥;. But (8 1nZ/6V), is just p/kpT, so this be-
comes

b - )
kgT VkB Zr, v iU

This is known as the virial expression for the pressure
since it can also be derived from the mechanical virial
theorem of Clausius. It is also called the pressure
equation. For additive pair potentials we must have

Q)=-V,F,9,;%,,Q,) (1.26)

so (1.25) becomes

PV 1 R - - < 3 T
kpT =<N"_/ka—T ;(rz =) Vi, 2457, Q)

1 - -
=(N) - m J' f ”(2)(r1, Q,;7,,9;)
X (F, = F,)* Vu(F,, Q; F,, Q)T dT,49,dQ, (1.27)

(1.25)

= - -
Vu(t;,Q;; Ty,
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becomes

}‘:exp ﬁNu]
N=0

Xf...fexp[—-BUN]{kaT/2+UN}d'f1...dFNdQI...dQN.

(1.21)

The first term in curly brackets represents the kinetic
energy. For pair additive potentials [Eq. (1.3) with
triplet and higher terms omitted)] the second term
gives N(N —1)/2 equal integrals, each of which can be
written in terms of #'®(F,;,Q,;;T;,Q,) by virtue of (1.10).
Thus, we find the result

1 - - -
Ui/(N> =kaT/2+—2—p J g5, 8, Qz)u(ru Q,;T,,Q,) dT,.

(1.22)

This is the energy equation, which provides another
route to thermodynamic properties.

We will also derive an expression for the pressure.
To do this we follow the method of Born and Green
(1947) and introduce in (1.8) a change of variables T,
=V'#%,. Then we find

i exp[BN plvy

N=0

x f .. f exp[-BU (V75,3 2,)] d8,. . .d8,dQ,. . A2y,
D, Q
(1.23)

The region of integration D is now independent of vol-
ume (it may be considered, for example, as a sphere of
unit volume centered on the origin). We can now dif-
ferentiate the logarithm of (1.23) with respect to vol-
ume, to find

—
H o=
-~

3, $,UN}d's'l. . d8ydRQ,. . .d2y

(1.24)
r
or
p? - = -
k;bT =p T ks T f f (F, =Fp) * Vu(F,, 2,575, Q)
X715y, R)dT,AQ,AR,.  (1.28)
For spherfcal potentials this is
b =p- pz‘ ru'(r) gr)dr. (1.29)
kgT 2vkgT :

For the hard-sphere potential which is + « for < d
and O otherwise, this becomes (in three dimensions)

Lol (7 2 lexploputr s
=p+ Faoy(@, (1.30)

where y(r)=g(r) exp{Bu(r)} is a continuous function.
The second form follows since exp{—Bu(r)} is a unit
step-function of (» —d), so that its derivative is a &
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function. The corresponding result in two dimensions
is
2

L= o T o @), (1.31)
Equations (1.30) and (1.31) are often written with g(d)
instead of y(d). If this is done, strictly speaking it
should be lim,, ,g(d + €) which is used. However, this
more rigorous notation is rarely used.

It is appropriate to mention here the principle of cor-
responding states, which is remarkably useful in cor-
relating the properties of fluids. The basic idea is that
if several substances have potential functions of the
same form, differing only in scale factors of energy
and length, then their properties are identical when ex-
pressed in appropriate units. A very full discussion is
given by Scott (1971); the earliest derivation from sta-
tistical mechanics was that of Pitzer (1939).

Suppose that several substances (A=1,2,..) have po-
tential functions of the same general form

UN(-I."‘Q)= E),U}?I((-f/o-hy a).’B)u oo . ),

where ¢, and o, are dimensional constants with the di-
mensions, respectively, of energy and length, and
a,,B, are dimensionless parameters [an example is the
reduced three-body parameter v* discussed in Sec. II;
see Barker et gl. (1968)]. Then one can introduce
changes of variable in the expression for the partition
function to show that, for example, pV/NkBT is a uni-
versal function of reduced density p*= (No,3/V), re-
duced temperature T*=(kzT/c,), and of the dimen-
sionless parameters «,,8,.... This will be discussed
in connection with potential energy functions in Sec. II.
A full account of the principle and its extensions is given
by Pitzer and Brewer in Lewis and Randall (1961).

After considering intermolecular forces in Sec. II, we
will discuss computer simulations (Monte Carlo and
molecular dynamics methods) in Sec. III, and show that
these methods give excellent agreement with experi-
ment provided that sufficiently realistic (and compli-
cated) potential energy functions are used (Sec. III.D.3,
II1.D.4). Since the computer simulation methods have
been validated in this way, it is often convenient to test
other theoretical methods by comparing their results
for simple model potentials with the results for the
same potentials calculated by the simulation methods.
In this way uncertainties due to the adequacy or inade-
quacy of potential functions are avoided. It is to be
emphasized that the justification for this procedure
rests on the validation of the simulation methods by
comparison with experiment and on their firm founda-
tions in the principles of statistical mechanics. With-
out the stimulus and firm knowledge provided by com-
puter simulations, the theory of liquids would have
developed very much more slowly.

Density expansions are developed in Sec. IV. Al-
though these expansions are most useful at low densi-
ties, they are instructive in the theory of liquids be-
cause many of the theories of the pair distribution
function developed in Sec. VI can be derived conve-
niently from these expansions.

Before developing these theories of the pair distribu-
tion function, the scaled-particle theory is discussed in

(1.32)
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Sec. V. This theory gives good results for the equation
of state of hard spheres. It was the first theory to give
accurate results for a dense fluid and is presently the
only convenient and accurate theory of a fluid of hard
convex molecules.

The distribution function theories are developed in
Sec. VI. Most of the work on the theory of liquids, at
least until the last decade, has been concerned with
these theories. One of these theories, the Percus—
Yevick theory, has been very useful for the hard-
sphere fluid. Unfortunately, these theories have been
less successful so far for fluids in which attractive
forces are present. We discuss methods of extending
these theories so that better results can be obtained for
fluids with attractive forces. ’

The most successful class of theories both from the
point of view of numerical accuracy and of intuitive
appeal are the perturbation theories developed in Sec.
VII. These theories, developed largely in the last
decade, explicitly demonstrate the usefulness of the
concept of the continuity of the gas and liquid states
discussed earlier. Liquids such as argon are, to a
good approximation, a gas of hard spheres moving in
a uniform background potential which results from the
nonhard-core part of this potential.

Cell or lattice theories are discussed in Sec. VIII.
Until recently, these methods were thought to be ap-
propriate to solids and inapplicable to liquids. How-
ever, recent advances indicate that this is probably not
so. This method may also provide the basis of a sys-
tematic theory of liquids and has the specific advantage
of leading to a theory of freezing (or melting). However,
the mathematical use which we make of “cells” and “lat-
tices” should not be taken as implying that such struc-
tures have real existence in liquids. The evidence
against such a view is given with great cogency in the
work of Hildebrand and his colleagues (Alder and Hilde-
brand, 1973; Hildebrand et al., 1970).

The over-all situation in the theory of liquids is that
we have a good deal of insight into the factors which
determine the structure and thermodynamic properties
of liquids. We have integral equations (Percus-Yevick,
etc.) for the distribution functions which give excellent
qualitative and fair quantitative results. We have per-
turbation theories and ultimately computer simulations
which can make precise predictions. There are possi-
bilities for improving theories such as the Percus—
Yevick theory. However, one might question whether
this has reached the point of diminishing returns for
spherical molecules in light of the additional insights
to be gained. For nonspherical molecules, electro-
lytes, liquid metals, quantum liquids, etc., much more
remains to be done. ,

This review concludes with a brief discussion of the
gas-liquid interface, and of the theory of the surface
tension of a liquid.

We have not included a discussion of the theoretical
aspects of the dynamical properties of liquids or of the
critical point region as each is a major field in itself.

Il. INTERMOLECULAR FORCES

As we have seen, the most direct way to determine
the potential energy function Uy(T,,Q,;...;Ty, Qy)



J. A. Barker and D. Henderson: What is ““liquid’’? 593

would be to solve the electronic Schrddinger equation
for all relevant values of the molecular coordinates.
For solids (at least undistorted lattices) this is not
necessarily an impossible task—it is the aim of elec-
tronic solid state theories. However, to attain the ac-
curacy required for meaningful thermodynamic calcula-
tions it is necessary to take account of electron corre-
lation effects, and this has not yet been done by com-
pletely ab initio quantum-mechanical methods. The co-
hesive forces which bind nonpolar molecular crystals
and liquids are largely intermolecular electron corre-
lation effects, and are not included, for example, in a
Hartree—-Fock calculation, whether for two molecules
or for the whole crystal. However, there are certain
approximate quantum-mechanical methods which have
been used with some success. Trickey et ql. (1973)
used the “augmented-plane-wave statistical-exchange”
method to calculate apparently reasonable binding ener-
gies and pressures for undistorted rare-gas crystals.
Similar calculations have not yet been performed for
distorted crystals (these would be required to permit
the study of phonon effects, etc. arising from zero-
point vibrations or nonzero temperature). Similar cal-
culations for liquids, with complete absence of sym-
metry, seem to be much further down the line.

With this in mind we return to Eq. (1.3), which ex-
presses the total potential as a sum of terms arising
from pairs, triplets; and so on of molecules. The pair
term can, of course, be determined from calculations
or measurements on two molecules, the triplet term
from additional calculations or measurements on three
molecules. Even the pair calculation poses difficulties
for ab initio quantum mechanics. Liu and McLean
(1974,1975) have performed large configuration inter-
action calculations on the system He + He and derived
an interatomic potential energy function which is in
really excellent agreement with the best experimental
estimates (Burgmans et ql., 1976) of this function (see
Fig. 3). From the point of view of the physical chemist
this is a milestone in the computational use of quantum
mechanics! ‘It is a little sad that we cannot proceed to
make precise calculations of the phase diagram and
properties of liquid helium, thus completing the bridge
from Schrddinger equation to phase diagram for one
substance. This is not yet possible (except at T=0;
see Sec. III.B.5) because the atomic motions in liquid
helium are highly quantum-mechanical and exchange
effects are very important below the A temperature.
Thus, liquid helium is a special problem which we
shall not discuss further; a recent review with detailed
references is given by ter Haar (1971). Nevertheless,
the work of Liu and McLean is a valuable confirmation
of present-day experimental methods for determining
potential energy functions.

Similar calculations have not yet been performed for
pairs of more complex atoms or molecules (nor for
three helium atoms). Gordon and Kim (1972) and Kim
and Gordon (1974) used an approximate quantum-me-
chanical method based on an electron-gas formulation
of the energy to calculate interaction potentials for
closed-shell atoms and ions. The results show quite
encouraging agreement with experimental estimates,
though for the present the latter must be regarded as
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FIG. 3. The helium—helium interaction potential. Solid
curve, scattering potential of Farrar and Lee (1972); dashed
curve, potential from bulk data due to Beck (1968); circles,

ab initio configuration interaction calculations of Liu and
McLean (1975).

more firmly based. Kim (1975a,b) extended, this meth-
od to three-atom interactions. However, present indi-
cations (Oxtoby and Gelbart 1976) are that the resulting
three-atom potentials are much too repulsive to be

reconciled with experimental facts on rare-gas crys-

tals.

In the short-range repulsive region, Hartree—Fock
calculations give fair results [see Gilbert and Wahl
(1967) for calculations on rare-gas pairs].

At large atomic separations, when electronic overlap
is negligible, quantum-mechanical perturbation theory
can be used to relate the interactions to properties of

"the isolated atoms. The two-atom interaction then has

the form -

ur)= - S -Tao L (2.1)
The coefficient ¢4 can be related to dipole oscillator
strengths which are known from optical data; for rare-
gas pairs the values of ¢, are known to within 1% or 2%
(Leonard and Barker, 1975; Starkschall and Gordon,
1971). Leonard (1968) examined the accuracy of ap-
proximate formulae for c¢,. The coefficient ¢, depends
on quadrupole oscillator strengths which are not so
well known (though they could fairly readily be calcu-
lated). Estimates of ¢4 are given by Gordon and Stark-
schall (1972). The leading term in the three-atom in-
teraction [corresponding to the ¢, term in (2.1)] is the
so-called Axilrod-Teller interaction (Axilrod and Tel-
ler, 1943)

us=v(1+3cosb, cosb,cosb,)/(RIRIRY), (2.2)

where R; and 6, are the sides and angles of the triangle
formed by the three atoms. The coefficient v depends
on the same dipole oscillator strengths as c¢g and val-
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ues for rare-gas triplets are also know accurately
(Leonard and Barker, 1975). Doran and Zucker (1971)
and Zucker and Doran (1976) have given estimates of
dipole —quadrupole terms in third-order perturbation
theory and of higher-order dipole terms; for detailed
discussion and references we refer to Zucker and
Doran (1976).

Konowalow and Zakheim (1972), following a sugges-
tion of Nesbet (1968), studied a number of ways of
combining repulsive interactions from Hartree-Fock
calculations with the known ¢, term, using, in addition,
data on second virial coefficients. One of their meth-
ods in particular (which they label P5) consistently
gave good agreement with experimentally determined
potentials for rare gas pairs. This is important be-
cause it demonstrates that currently practicable com-
putations combined with. minimal amounts of experi-
mental data can lead to accurate potentials.

From the theoretical point of view little is known with
certainty about shorter-ranged overlap-dependent
many-body interactions, except for the work of O’Shea
and Meath (1974) on hydrogen atoms. However, there
is very strong experimental evidence (Barker, 1976;
Klein and Koehler, 1976; Barker et ql., 1971) that
their effects on thermodynamic properties of solid and
liquid rare gases are very small, at least up to pres-
sures of about 20 kbar. Thus, if one uses accurate
two-atom potentials together with the many body inter-
actions discussed above, excellent agreement with ex-
periment for solid and liquid properties of rare gases is
obtained. For detailed discussion and references on
theoretical aspects of intermolecular forces we refer to
the review of Certain and Bruch (1972).

We now turn to a necessarily brief discussion of ex-
perimental determinations of intermolecular pair po-
tential functions, with emphasis on rare-gas interac-
tions [a wider discussion is given by Scott (1971)].
Traditional methods used gas imperfection data (second
virial coefficients) and gas transport coefficients (vis-
cosities, thermal diffusion coefficients, etc.), often
with a rather simple form for the pair potential, such
as the Lennard-Jones 6-12 potential:

u()=4e[(oc/r)2 - (6/7)¢], (2.3)

which has just two parameters to be determined from
experiment, together with the assumption that multi-
body interactions are negligible. Earlier work on these
lines is well summarized by Hirschfelder et al. (1954).
Very important information was gained from high en-
ergy molecular beam measurements of I. Amdur and
his colleagues, and from new and accurate viscosity
measurements by E. B. Smith and his colleagues. More
recently a wealth of information has been derived from
low energy molecular beam differential and total scat-
tering cross-section measurements, particularly by
Y. T. Lee, U. Buck, G. Scoles, C.J. Van Mejdeningen
and their co-workers; and from spectroscopic observa-
tions of vibrational levels of van der Waals molecules
[Freeman et al. (1974); see also the review of Ewing
(1975)]. In addition the detailed information on long-
range and three-body interactions discussed above has
become available; and solid and liquid state data have
been used in the determination of potentials (Bobetic and
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FIG. 4. The argon—argon interaction potential. Solid curve,
BFW potential of Barker et al . (1971); dashed curve, 6—12 po-
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Barker, 1970; Barker et al., 1971). Detailed references
to this work are given by Barker (1976).

As a result of all this work interatomic potentials for
homonuclear rare-gas pairs are now very accurately
known, and potentials determined from different kinds
of experimental data are in excellent agreement. This
is shown in Fig. 4 for the case of argon. For a detailed
review of the experimental data and potentials we refer
to Barker (1976).

It is clear from Fig. 4 that the two-parameter 6-12
potential is quantitatively unsatisfactory (though quali-
tatively reasonable); this is discussed further in Sec.
IOI. In Fig. 5 we show a comparison of calculated and
experimental second virial coefficients (expressed as

logy o(T/°K)
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FIG. 5. Second virial coefficient of argon plotted as devia-
tions from values calculated with 6—-12 potential. Solid curve,

- BFW potential. The other symbols represent experimental

data; for detailed references see Barker (1976).
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FIG. 6. Third virial coefficients of argon. The circles are
experimental data (Michels et al ., 1958). The dashed curve
is calculated with the BFW potential alone; the dotted curve in-
cludes also the Axilrod—Teller interactions; the dash-dotted
curve adds third-order dipole—quadrupole interactions, and
the solid curve adds fourth-order dipole interactions.

deviations from the values calculated from the 6-12po-
tential). In Fig. 6 we illustrate the importance of
many-body interactions for argon by comparing experi-
mental third virial coefficients with values calculated .
with an accurate pair potential. If no many-body inter-
actions are included the calculated values are too low
by almost a factor of 2. The Axilrod-Teller interaction
corrects most of the discrepancy, and the dipole-—-quad-
rupole and fourth-order dipole interaction make rela-
tively smaller contributions (it happens that these
latter and smaller interactions almost cancel for the
condensed phases of argon, so that it is a good approx-
imation to use the Axilrod-Teller interaction as the
only many-body interaction).

In Table I we give a comparison of the important
features of the rare-gas potentials taken from Barker
et al. (1974). With some deviation for the He—He and
to a lesser extent Ne—Ne potentials, the sZapes of the
potentials are quite remarkably similar. The principle
of corresponding states reflects this!
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For molecules possessing permanent multipole mo-
ments there is an important contribution to the inter-
molecular potential energy from interactions between
the permanent moments and also with moments induced
in other molecules as a result of their polarizability.
Values for dipole and quadrupole moments and polar-
izabilities may be deduced from dielectric and optical
measurements. A review of these topics is given by -
Buckingham and Utting (1970). Note that the polariza-
bility of the molecules introduces many-body terms in
the potential energy even if they are not otherwise
present (Barker, 1953; McDonald, 1974).

Potential functions for polyatomic molecules have not
been studied in such detail. Evans and Watts
(1975, 1976a,b) describe a relatively sophisticated ben-
zene-benzene potential. Potential functions for inter-
action of water molecules are referred to in Sec.
II.D.5. Harp and Berne (1970) used a Stockmayer type
potential (see below) to study liquid CO and N,, and
Barojas et al. (1973) used a “double Lennard-Jones
potential” for nitrogen. There is an extensive litera-
ture on the construction of intermolecular potential
energy functions from additive atom-atom potentials
which are assumed to be transferrable from one mole-
cule to another (see for example Kitaigorodsky, 1973;
Scott and Scheraga, 1966; Williams, 1967).

We mention here a number of simple model potentials
which are used in theoretical studies. Two of these are
the hard-sphere potential

uy)=+0o, r<d

=0, r=d, (2.4)
and the square-well (SW) potential
u@)=+w, v<o
=—€, 0S7<Ao
=0, =0 (2.5)

For polar molecules, two commonly used model po-
tentials are the dipolar hard-sphere potential

w1, By o) =) = (W2/73)D(1,2), (2.6)

TABLE I. “Corresponding states” comparison of potentials.

e/k 5(K) 7 (R) c¥ . ¥ (w'")*8 (w'rryxh vl AX
He? 11.0 2.96
He? 10.4 2.969 1.42 0.888 74.3 0.0082 2.29
Ne ¢ 42.0 3.102 -1.22 0.891 79.6 —-1507 0.0110 0.485
Ard 142.1 3.761 1.11 0.893 81.3 -1701 0.0249 0.154
Kr© 201.9 4,007 1.06 0.892 81.7 -1667 0.0296 0.084
Xe® 281.0 4.362 1.05 0.892 78.6 -1576 0.0361 0.052
6-12 2.00 0.891 72.0 -1512

2 Scattering potential of Farrar and Lee (1972).
b potential from bulk data, based on the work of Beck (1968).
¢ Potential from scattering and solid state data, Farrar e al. (1973).

d potential due to Barker et al. (1971).
€ Potentials due to Barker e al. (1974).
for=cy/(erl).

8 @w’’')* is the reduced second derivative at the minimum.

h (u’'’y* is the reduced third derivative at the minimum.

{ px is the reduced coefficient of the Axilrod-Teller interaction v/(er),).
i A* is the reduced de Broglie wavelength &/ (7,,Vme ).

Rev. Mod. Phys., Vol. 48, No. 4, October 1976



596 J. A. Barker and D. Henderson: What is ““liquid’’?

and the Stockmayer potential

A A 2

wlrig By, Ba) =tt00,(r) - 5-D(1,2), (2.7)
12

where [Il and [I, are unit vectors specifying the orien-

tations of the two dipoles whose magnitude is u

D(1’2)=3([11.?12)(‘:2.-{'12)— I_Il‘»ﬁz, (2'8)

T,=T,,/7,,, and uys(r) and u,_,,(r) are given by Eqgs.
(2.4) and (2.3), respectively. Triplet and higher multi-
body interactions are not present in any of these model
systems, defined by (2.4) to (2.7).

We mention the Kihara (1963) “core” potential model
for nonspherical molecules. In this model the mole-
cules are assumed to have cores which may be lines or
two-dimensional figures (e.g., a plane hexagon for ben-
zene). If p is the shortest distance between the cores
of two molecules, the potential energy is assumed to be
a function u(p) of p alone. If u(p) is the hard-sphere
potential for diameter o then the model describes hard
nonspherical molecules. If the core is a line of length
x0, the molecules are “hard spherocylinders.”

11i. COMPUTER SIMULATIONS AND EXPERIMENTS
A. Introduction

The most severe difficulties in the theory of liquids
arise because there is no obvious way of reducing the
complex many-body problem posed by the motion of the
molecules to a one-body or few-body problem, analo-
gous to the phonon analysis of motions in crystals, or
the virial series for dilute gases discussed in Sec. IV.
The most straightforward way of meeting this problem
is head-on, via a computer solution of the many-body
problem itself. Clearly this can be done in principle;
the only bothersome questions might be: How “many”
is many-body? This question has been explored very
fully by a large amount of work in the last two decades.
The answer has turned out to be that a few tens to a few
hundreds is “many” enough for almost all purposes.

By studying systems of this number of molecules one
can obtain very good estimates of the behavior of mac-
roscopic systems in almost all conditions; the most
notable exception is the neighborhood of the critical
point.

There are two important methods to be considered:
The. “Monte Carlo” (MC) method, which evaluates en-
semble averages in the sense of statistical mechanics;
and the method of molecular dynamics (MD) in which the
dynamical equations of motion of the molecules are
solved and time avevaging is used. There are advan-
tages in both of these methods. Molecular dynamics
gives, obviously, full dynamical information and can be
used to study time-dependent phenomena. On the other
hand the Monte Carlo method can yield certain thermo-
dynamic properties (in particular, though with some
difficulty, the entropy) which cannot easily be obtained
from molecular dynamics. The choice of method is
determined by the problem to be solved.

A key idea in both methods is the use of periodic
boundary conditions to enhance the ability of small sys-
tems to simulate the behavior of large systems. This
idea was introduced in the very earliest applications of
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both methods [by Metropolis ef al. (1953) for Monte
Carlo; by Alder and Wainwright (1957,1959) for molec-
ular dynamics]. The technique is to consider a certain
basic region, usually a cube, containing a certain num-
ber N of molecules; and then to imagine the whole of
space filled by periodic images of this basic unit. In
this way, one can consider configurations of an infinite
system (which must of course be periodic) while only
considering a limited number N of molecules. The
great advantage is that suvface effects, which would
otherwise be very large for small N, are avoided.
Often one uses the “nearest image distance convention”
according to which a given molecule ¢ is supposed to
interact only with that periodic image of another mole-
cule j which lies closest to 7. In fact, if the range of
the molecular interactions is less than half the edge of
the cube this includes gll interactions; it is often con-
venient to force this by truncating the potential at some
distance R,, and to take account of the long-range tail
of the interaction (if necessary) by perturbative tech-
niques.

Although cubical (or at least rectangular) periodic
volumes have almost always been used, it is by no
means clear that this is optimal. For some purposes
it might be preferable to use, for example, the do-
decahedral Wigner —Seitz cell of the face-centered
cubic lattice. Determination of the “nearest image
distance” would be more complicated, but this might
be more than outweighed by other savings, particularly
if the potentials are complicated.

It is convenient to mention here the use of “near-
neighbor tables,” based on the work of Verlet (1967).
The purpose of this is to save unnecessary labor in
calculating distances betweén molecules which are
certain to be too far apart to interact. One constructs
a table listing, for each molecule ¢, those molecules j
which are within a certain distance R,(>R,,,) of . The
distance R, is chosen so that during a number p of time -
steps or Monte Carlo steps there is negligible proba-
bility that a molecule which was initially at a distance
greater than R, from ¢ will come closer than R, toi.
Then, after constructing the table, one need only scan
through the molecules in the table to calculate energy
and forces, rather than scanning through all molecules.
After p steps one must, of course, construct the table
again. If p is relatively large this can lead to substan-
tial savings of computer time if (but only if) the num-
ber of entries in the table for molecule ¢ is much less
than the total number of molecules. Another procedure,
to be preferred for still larger numbers of molecules,
is described by Quentrec and Brot (1973).

In Sec. III.B and III.C we proceed to discuss the Monte
Carlo and molecular dynamics methods. The reader
interested only in the results should turn immediately
to Sec. III.D:

B. The Monte-Carlo method

1. The canonical ensemble

Most Monte Carlo calculations in statistical mechan-
ics have been performed using the canonical or (7,V,N)
ensemble of Gibbs in which the number of N molecules,
the volume V and the temperature 7' are fixed. It will



J. A. Barker and D. Henderson: What is ““liquid’’? 597

be convenient to describe the method in this context,
and to describe the use of other ensembles (constant
pressure, grand canonical) at a later stage.

The general term “Monte Carlo method” refers to the
use of random sampling techniques (for which a rou-
lette wheel could be used) to estimate averages or inte-
grals. In the context of statistical mechanics it refers
to a particular and very efficient “importance samp-

" ling” method introduced by Metropolis et al. (1953) in
which one generates a chain of configurations of a
many-body system in such a way that the probability of
a particular configuration, of energy U, appearing in
the chain is proportional to Y. Then the unweighted
average of any function over the config'urafions of the
chain gives an estimate of the canonical average of that
function; for example, the pressure may be estimated
by averaging the virial, the thermodynamic energy by
averaging U, and so on.

The way in which the chain of configurations is gen-
erated may be described in words as follows. Suppose
that we have generated M configurations and that the
Mth configuration is a certain configuration j with ener-
gy U;. The (M + 1)th configuration is chosen as follows.
Select a molecule at random and consider the configura-
tion 7 derived from j by moving this molecule from its
position (x,y,z) to a new position (x +u,y+v,z +w),
where «,v,w are numbers chosen randomly in the inter-
val (-6,6); let U, be the energy of the configuration 7.
Compute E = exp[ -8 wu, - U,)] and select a number »
chosen randomly in the interval (0,1). If E=r, the
(M +1)th configuration is I, otherwise it is j. Note that
if U, <U, the (M + 1)th configuration is 7 irrespective of
the value of », so that it is not really necessary to com-
pute the exponential. We have assumed tacitly that only
the Cartesian coordinates are relevant. If, for exam-
ple, molecular orientations are relevant then in gener-
ating the configuration [ from j one should also rotate
the molecule through an angle randomly chosen on the
interval (- ¥, %) about an axis which may be either com-
pletely randomly selected, or selected with equal prob-
ability as the x-, y-, or z-axis (Barker and Watts,
1969). The process is otherwise unchanged. The val-
ues of & and ¥ can be chosen to optimize convergence.

It can be shown that in a sufficiently long chain gen-
erated by these rules configurations / appear with
probability proportional to exp[-p U,], as we require
for canonical averaging. However it is clear that only
those configurations will appear which can be reached
in a finite number of steps from the initial configura- -
tion. If not all configurations can be so reached all is
not necessarily lost. For example in a hard-sphere
solid at high densities in a finite system, interchange
of molecules may be impossible; but configurations
differing by interchange of molecules are identical
and of equal weight, so correct canonical averages
would still be found [cf., Ree (1971)].

A justification for the statements made above can be
given briefly as follows [for more detailed discussions
see Ree (1971), Wood (1968a), and especially Metro-
polis et agl. (1953)]. The rules given above amount to a
specification of conditional probabilities p;, that the
(M + 1)th state is I given that the Mth state is j (because
the probabilities for the (M + 1)th state depend only on
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the Mth state the process is a Markov process). These
transition probabilities have the property (for which
they were designed) that

exp| -8 Uj]sz =eXp[—BU,]P”. (3.1)

Now it is known from the theory of Markov processes
(Feller, 1950) that the probability of occurrence of
configurations 7 (within the class of configurations
accessible from the initial configuration) approach for
very long chains unique limits w, which are determined
by the equations
;“’:Py:wt- (3.2)
These equations state that the long chain approaches
a steady state in that the probability of entering a state
is equal to the probability of being found in the state.
But (3.2) is certainly satisfied by

w,=cexp[-pU,], (3.3)

where ¢ is a constant, because if (3.3) is satisfied then
(3.2) is a consequence of (3.1), which may be recog-
nized as the “principle of microscopic reversibility.”
Thus, since the solution of (3.2) is unique it must be
given by (3.3), and this is what we wished to prove.

Note that we have not used any special assumption,
such as pair additivity, about the potential energy U;
the method as outlined is valid in the presence of
many-body forces. Choice of p;; so that (3.1) is satis-
fied is the only (but vital!) requirement. However in
the presence of three-body forces the calculation of
(U, - U,) becomes very much more time consuming.

In calculations on argon with three-body forces (Bar-
ker et al., 1971; Barker and Klein, 1973) the three-
body interactions were treated by perturbation theory,
with the average of the three-body potential evaluated
by summing over a subset of the chain (every 1000th
configuration). For short-range three-body interac-
tions the direct calculation of (U, - U,) at every step
would not pose such serious problems.

In the procedure outlined above the basic Monte
Carlo move was a displacement (translation and possi-
bly rotation) of a single molecule. While this is most
commonly used it is by no means essential. Ree (1970)
performed calculations for hard disks in which two
molecules were moved simultaneously in such a way
that the center of mass remained fixed. It would also
be possible to move qll molecules simultaneously.

* The quantities which can be evaluated by the Monte
Carlo method are those which can be expressed as ca-~
nonical averages of functions of configuration, such as
pressure, energy, radial distribution function, etc.
The radial distribution function is calculated in a dis-
crete vepresentation in which the number N, of inter-
molecular distances in the range 7; to 7,,, is evaluated.
We mention here a method due to Verlet (1968) for ex-

- tending the range over which the radial distribution

function g(») can be calculated. In general g(r) is only
determined for a limited range of », say <R ,,,. How-
ever for v >R, it is usually an excellent approxima-
tion to assume that the direct correlation function c(»)
is given by —Bu(»), where u(r) is the pair potential.

But if we know g() for »<R_,. and c(r) for »>R_,
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then the Ornstein—-Zernike equation can be solved to
give g(r) for »>R_,.. This method was tested by Verlet
and found to give excellent results.

One can also evaluate some quantities, such as the
specific heat C,, which can be expressed as variances
or covariances of functions of configuration, though
these quantities are found with less accuracy because
of the inherent difficulties of determiﬁing variances and
covariances by sampling a distribution. However it is
not possible to determine directly by the canonical
Monte Carlo method the free energy A or entropy S. In
fact exp[-BA] is the normalizing factor for the proba-
bilities w;, and the nature of the process of Metropolis
et al. (1953) makes it impossible to determine this.

On the other hand one can evaluate derivatives of the
free energy either with respect to thermodynamic vari-
ables such as V and T or with respect to parameters
which appear in the potential energy function U des-
cribing the system, since these derivatives can be ex-
pressed as canonical averages. Thus, if the potential
energy function U(T,)) depends on the parameter X as
well as on the configuration of the system (represented
by the shorthand symbol T describing positions and
orientations of all molecules) then we have

%:-kBT ;X[lnf---feXp[—BU]d?]

= [ o [ S expl-pulat / [+ [ expl-puaz

- (P& M>g’ (3.4)

in which (), means canonical averaging for the system
with potential energy U(¥,1). Hence, by performing
Monte Carlo calculations for a number of values of A
one can evaluate 84 /9 for a range of values of A; by
integrating numerically the results, free energy dif-
ferences can be evaluated, according to the equation

AQ) A= L ' <B—LL(§L)> . (3.5)

9
Perhaps the most familiar example of this is the case
where X is the volume V, introduced into the potential
energy by the “scaling” transformation discussed in
Sec. I. In this case (3.5) becomes the thermodynamic
relation

Vi
A(V) -A(V))= - f pav, (3.6)
Vo
with the pressure given by the virial expression,
pV - -
NRLT =1 - <Z: T, ~(aU/8r,.)v> / (vNEpT), (3.7

where v is the dimensionality of the system. These re-
sults have been used to calculate the free energy of
dense fluid systems by integrating from low densities
(large volumes), where the free energy is known, to
high densities. Results have been obtained in this way
for hard disks and spheres (Alder ef al., 1968; Hoover
and Ree, 1968) and for the 6-12 fluid (Hansen and Ver-
let, 1969). It should be noted that these integrations
must be carried out along paths which are veversible
in the thermodynamic sense, in order that the deriva-
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tive be uniquely defined. This created special diffi-
culties in the study of the 6-12 liquid made by Hansen
and Verlet, since an isothermal path from low (gas)
density to high (liquid) density had to pass through den-
sity ranges in which one-phase states were metastable
and unstable with respect to two-phase states. To
avoid this difficulty, Hansen and Verlet imposed con-
straints limiting the possible fluctuations in the number
of molecules in subvolumes of their system, thus pre-
venting phase separation. Because the subvolumes
themselves contained a relatively large number of
molecules these constraints were expected to have little
effect on thermodynamic functions.

A rather similar idea was used to calculate the free
energy of hard-sphere and hard-disk solids (Hoover
and Ree, 1968) and of the 6--12 solid (Hansen and Ver-
let, 1969). In these cases the systems studied were
“single-occupancy” models in which the volume was
divided into cells each constrained to hold exactly one
molecule. These systems behave reversibly as volume
is increased so that the free energy difference between
systems at solidlike densities and very low densities
can be calculated from (3.6) and (3.7). However at very
low densities the free energy can be calculated exactly.
Furthermore, at solidlike densities the cell constraints
have no effect (they are automatically satisfied). Thus,
in this way the free energy of the solid phase can be
determined. But knowing the free energy and pressure
for solid, liquid and gaseous phases one can proceed
by thermodynamics to construct the phase diagram;
we shall return to this in Sec. III.D.

Hansen and Pollock (1975) calculated the free energy
of the 6-12 solid by integrating (3.6) from a high den-
sity at which the harmonic approximation becomes
valid, and confirmed the results of Hansen and Verlet
(1969).

Another familiar result is found if we choose the
parameter A to be temperature 7'. In this case (3.5)
can be cast in the form

A(T)/T, - A(T)/Ty= - fT T‘<U>T(dT/T2), (3.8)

which will be recognized as an integrated form of the
Gibbs~-Helmholtz equation

A=E-TS=E+T(®A/5T). - (3.9)

Using (3.8) one can calculate, by performing Monte
Carlo simulations at a series of temperatures, the
temperature variation of the free energy, and if the
free energy is known at one temperature (e.g., near
T =0) the absolute free energy can be determined. For
example, at sufficiently low temperatures the free en-
ergy of the 6—12 solid can be determined by standard
methods of lattice dynamics (Klein and Koehler, 1976),
since the motions become essentially harmonic. By
using these results together with (3.8) the free energy
could be calculated at all temperatures. This proced-
ure, which was proposed by Hoover and Ree (1968),
provides an alternative to the procedure of Hansen and
Verlet (1969) discussed above, but has not so far been
implemented.

Another possibility for calculating the free energy of
a liquid is to use both (3.6) and (3.8), by integrating
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with (3.6) from low density to high density at a high
temperature (sufficiently above the critical tempera-
ture to avoid two-phase and critical regions); and then
to integrate using (3.8) down to a low temperature (at
constant volume). In this way one makes use of van der
Waals’ “continuity of gaseous and liquid states”! This
method was used by Lee ef gl. (1973) to calculate the
free energy of clusters of 6-12 molecules, but has not
so far been implemented for bulk fluids. In fact by
combined use of (3.6) and (3.8).one could calculate free
energy changes along any reversible path in the (7,V)
plane.

The usefulness of (3.5) is by no means confined to the
case where X is a thermodynamic variable such as V or
T. One can, in a very general way, introduce a pa-
rameter A (or several parameters) into U(»,)) which
changes a system of simple or known properties (A=2x,)
into a more complicated system which is the system of
interest (A\=2,). For example, the parameter may
modify the pair potential, so that we have

U(-I.', A)= Z u(”ij;)\)a

i<j

(3.10)

where for example u(r;,;;2,) might be the hard-sphere
potential and «(r;,;),) the 6-12 potential or some other
realistic potential. If we follow this idea and replace
the integral in (3.5) by a truncated Taylor series

A(kl) - A(Ao) =|:8—Z;<U(F’ 7*»;' 0‘1 - >to)
A=rg

2
+%[£\—2~(U(F,h)),‘} A =A)?+...  (3.11)
A=

we are led to the perturbation theories which are dis-
cussed in Sec. VII. The great advantage of (3.11) is that
it requires detailed information only on the reference
system (with A=2X,); the corresponding penalty is that
the Taylor series is not necessarily rapidly convergent
(though it ¢s rapidly convergent for the example of

hard-sphere and 6-12 potentials given above). In cases -

where (A,-X,) is a natural “smallness parameter” (for
example, for the three-body interactions and quantum
corrections discussed in Sec. III.D below) Eq. (3.11) is

- a very useful and powerful result. But Eq. (3.5) will
always work, provided that the computer does enough
work!

This perturbation technique can also be used to eval-
uate quantities other than free energy. Thus suppose
that we have a system for which the potential energy is
given by

U=U,+2U, (3.12)

and that we wish to evaluate for this system, to first
order in A, the average of some function X of configu-
ration, which may also depend on A according to

X=X0+7tX1. (3,13)
Then we have
(X), ={Xexp[ -BAU, ], Aexp[ -BAU,])
=[(X o+ MX o =BMXU,)o] /11 BN, )o] + 0(1?)
=(Xodo+ MX )5 =BALX U)o = (XU, o] + O?).
(3.14)
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Thus, for this purpose we must evaluate the covariance
of X, and U, in addition to the averages of X, and X,.

In these equations X could be the virial, required to
determine the pressure; or the energy itself, (U,+ AUL);
or the radial distribution function (RDF) (N, in the dis-
crete representation). These formulae were used by
Barker et ql. (1971) and Barker and Klein (1973) to
evaluate three-body and quantum corrections to the
pressure, energy and specific heat of argon, and ex-
plicit formulae for these cases are given in the two
cited papers. They were also used by Barker (1973) to
evaluate three-body and quantum corrections to the
RDF of argon; the resulting RDF was compared with
their experimental data, with excellent agreement, by
Yarnell et gl. (1973). Note that in (3.14) there are dis-

- tinct terms of order A. The first, MX,),, is-the direct

contribution of AX, to the average; the second, covari-
ance, term is an indirect contribution due to the modi-
fication of the structure of the system by AU, which in
turn modifies the average of X,. These terms are in
general of comparable order of magnitude.

Squire and Hoover (1969) used Eq. (3.5) to evaluate
the free energy of formation of vacancies in a crys-
tal. In Sec. IX we discuss a parametrization based on
a modified periodic boundary condition which changes
a bulk liquid into a set of slabs, thus creating free
surfaces and permitting the calculation of surface free
energy (i.e., surface tension). The invention of such
processes is a fertile field. The power of the Monte
Carlo method lies in the fact that the Gedanken experi-
ments of classical thermodynamics can actually be per-
formed quantitatively.

The relatively large number of Monte Carlo calcula-
tions that may be required to evaluate the integral in
(3.5) has motivated a number of attempts to find meth-
ods for calculating A(X,) —A(%,) when A, is not neces-
sarily very close to A, using Monte Carlo data only for .
the systems with A=), and X=X, (so-called “direct”
methods) (McDonald and Singer, 1967; Bennett and
Alder, 1971; Valleau and Card, 1972; Torrie, et al.,

"1973; Patey and Valleau, 1973; Torrie and Valleau,

1974; Bennett, 1974; Torrie and Valleau, 1976),

Given two systems with potential energy functions U,
and U,, the difference between their free energies is
given by

A, —Ao=—kT1nU e"wld'x"/je'wod'f],

= — kT In(e™4),, (3.15)

where

A=U, - U, (3.16)

An optimized procedure for evaluating this free-en-
ergy difference using purely Boltzmann averages for
the systems and 0 and 1 is described by Bennett (1974).
This procedure was used for the calculation of surface
tension of a liquid by Miyazakai et al. (1976).

Equation (3.15) can be written in the form

A, —Ag= — kT 1n[ [ s eXD(—ﬁAU)dAU], (3.17)
where f,(AU) is the probability density of AU in the

canonical ensemble for U,. Unfortunately, direct
Boltzmann averaging usually does not lead to good es-
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timates of f,(AU) in the range of values of AU which
contribute importantly to the integral in (3.17). This
can be remediea, as Valleau and co-workers have
shown, by generating a Markov chain with limiting
probabilities proportional to W(¥) exp(-BU,) rather than
simply exp(-BU,). We shall denote averages over such
a chain by (). The weighting function W can be chosen
by trial and error to optimize the estimate of f (AU).
The weighting functions used by Valleau and co-workers
had the form

W(F)= W(AU). (3.18)

The Boltzmann average of an arbitrary function 6 (%)
can be recovered from the non-Boltzmann average by
the relation

(8)0 =6/ Wy K1/ W), .

Similarly the probability density f,(AU) can be recover-
ed from the probability density f;, (AU) in the weighted
system by the relation

FolAU)=fy(AU) [W(AUXL/W )y ).

Use of these methods leads to substantial gains in
computational efficiency. A more detailed review is
given by Valleau and Torrie (1976a,b).

Another procedure for calculating the free energy of
a fluid was explored for the case of the hard-sphere
fluid by Adams (1974). This was based on a result for
the chemical potential derived by Widom (1963), that
U is given by

(3.i9)

(3.20)

p= = kg T {In(V/N) + 3 In(2rmky T /h2) + In[{exp(-BY))y ]}

(3.21)
Here ¥ is the potential energy change due to adding one
more molecule to a system of N molecules; the canon-
ical average () is evaluated for the system of N mole-
cules. This method, which gave reasonable results for
densities which were not too high, is closely related to
the grand canonical method discussed below. It is also
related to the ideas of the Scaled Particle Theory (Sec.
V), and Adams used his results to test that theory.

2. The constant-pressure ensemble

The constant-pressure or (T,N,p) ensemble is most
conveniently described by introducing dimensionless
variables scaled by the edge L of the fundamental cube
(Wood, 1968a,b; 1970)

T} =F,/L. (3.22)

The un-normalized weighting function P(¥/,L), which
in the canonical case is just exp(—~BU), becomes in this
case exp{-B[U(LT)+pL* —vNInL]}, with v the dimen-
sionality of the system. A Monte Carlo chain for this
ensemble can be generated exactly as described for the
canonical ensemble, except that the basic step involves
not only changing the dimensionless coordinates 'f{ of
one of the molecules 7, but also changing L by a num-
ber uniformly distributed on the interval (-35,,5;)
where &, may be chosen to optimize convergence. The
quantity which determines acceptance or otherwise of
a move is not just AU, as in the canonical case, but
A[U(LF')+pL* ~vN1InL]. This method has obvious ad-

Rev. Mod. Phys., Vol. 48, No. 4, October 1976

vantages if we are actually interested in results at a
particular pressure, usually zero pressure. It was
used by McDonald (1969) to calculate excess enthalpies
and volumes of mixtures at zero pressure. Voront-
stov-Vel’yaminov et al. (1970) also used this ensemble
to study a single-component fluid.

The average of a function F(¥) of configuration in the
constant pressure ensemble is given by

(Fy= fode J dFF(LEF)PE,L) /fde fd'f"P(F’,L).

(3.23)
For “hard-sphere” particles in any number of dimen-

sions, Wood (1968a,b; 1970) showed that an alternative
and convenient realization of the constant pressure
ensemble could be obtained by explicitly performing
the integrations over L in (3.23). For details of this
we refer to the original papers. This method has the
advantage that the pressure is obtained directly rather
than by extrapolating the RDF g() to the hard-sphere
diameter d.

3. The grand-canonical ensemble

The grand-canonical ensemble or (TV i) ensemble in
which the chemical potential is fixed rather than the
number of molecules had not been used for Monte Carlo
calculations on realistic potentials until fairly recently.
However Norman and Filinov (1969), Adams (1974,
1975) and Rowley et al. (1975) have used different
methods to implement the use of this ensemble. The
great advantage is that it leads directly to estimates of the
free energy (since the chemical potential is fixed).

Using the same “scaled” coordinates as for the con-
stant pressure ensemble, the un-normalized weighting
function P(¥’,N), where N is the number of molecules,
is given by

P(¥' ,N)=exp{ - [ksT InN1 + NkgT InV+ U (¥ ,N) = Nu.]/kpT}.

(3.24)

If N were a continuous variable, one could proceed
exactly as described for the constant pressure en-
semble, with acceptance of a move being decided by the
Metropolis procedure applied to (3.23). However N, if
it is to change, must change by at least £+1, and except
for low densities and/or high temperatures the proba-
bility of this is very low. Thus, it is essential to con-
sider a Markov process with three possible steps: (i)
a molecule is moved (probability a,); (ii) a molecule
is added (probability «,); (iii) a molecule is removed
(probability a_). One requires o,=a_,a,+a,+a_=1.
In adding a molecule its position is chosen randomly in
the cell. Norman and Filinov (1969) used essentially
this procedure, with the type of move [(i), (ii), or
(iii)] being decided randomly. They tried moves in
which more than one molecule was added or removed,
and found AN =z1 only to be preferred—except at low
densities the probability of adding or removing more
than one molecule is negligible, so that attempts at such
moves are wasted labor. By varying ¢, they found that
a,=a, =a_=1/3 appeared to be optimal.

In this process the number of molecules, and hence
the density, must be determined by averaging N; the
pressure may be determined by averaging the virial
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and the energy by averaging U as usual.” Norman and
Filinov generated only short Monte Carlo chains (ap-
proximately 10* steps) and their results were therefore
essentially qualitative for the liquid phase. However
they were able to demonstrate the abrupt change of den-
sity (gas-liquid phase transition) at a particular chem-
ical potential (for a 6—-12 fluid), and their gas-phase
pressure agreed well with that obtained from the virial
series.

Adams (1974, 1975) used a very similar process ex-
cept that moves of type (i) and of type (ii) or (iii) were
performed in turn, with the choice between (ii) and (iii)
being made randomly (with equal probabilities). Thus
the overall numbers of types (i), (ii), and (iii) were in
the ratios 1/2,1/4, 1/4. Results were obtained for hard
spheres (Adams, 1974) up to density pc®=0.7912 and
even at this relatively high density were in good agree-
ment with the accurate equation of state of LeFevre
(1972). Note that in this paper Adams described an ap-
proximate grand canonical method to be used if one
wishes to fix the excess (over ideal gas) chemical po-
tential ./, and an exact method to be used if one wishes
to fix (u’+kzTIn{N)). Since the latter quantity is just
the absolute chemical potential y (apart from a constant
involving the known volume V) it is much better to fix
this and to use the exact method. One cannot determine
the excess of the chemical potential over that of an ideal
gas at the same density until the density is known]
Adams (1975) also obtained results for the 6-~12 fluid at
high temperatures (T*=2.0 and 4.0). At T* =2.0 the re-
sults gave reasonable agreement for pressure and ener-
gy with those interpolated from the canonical ensemble
results of Verlet and Weis (1972a)—note however that
this agreement does not check the chemical potentials
or free energies. It is perhaps worth noting that Adams
mentions that the ensemble averages can show great
sensitivity to shortcomings in the random number gen-
erator used.

In his calculations Adams added a long-range correc-
tion to compensate for the truncation of the potential
at each step of the calculation, in particular in calcu-
lating the value of AU on which the decision whether to
accept a move is based. The long-range correction is
given, if Rmax is the distance at which the potential is
truncated by

2 w
—]\‘],—271’ —fl;max 2u(r)dr.
If this is done the Helmholtz free energy A can be cal-
culated straightforwardly from the equation

A/N=pu-(pV/N),

U= (3.25)

(3.26)

where p is the pressure for the untruncated potential.
If the long-range correction is nof added in this way
then care must be taken in adding it at a later stage.
In particular, the pressure for the truncated potential
[which must be used in (3.26) if one wishes to calculate
the Helmholtz free energy for the truncated potential]
is not given by the truncated integral of the virial

PV
NEgT

R
=1~ ? f maxrsu'(r)g(w)dfr. (3.27)
o
but rather by the expression
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A
NkgT ~

Rm
1——27;" f rour) g )dr
0

27
+ 3 maxtt (B may) §R max) ’

(3.28)
in which the last term arises from the & function in
u' (), —u(R )0 —R_,), at the point of truncation.
Usually one replaces g(R,,,) by 1. For potentials be-
having like 7™ for » =R ,, the last term is equal to the
long-range energy per particle Uu,/N, with U, given by
(3.25); it is also equal to one-half of the usual “long-
range pressure correction ” given by

2rp [

73u (v)dr.

Rmay

Of course it is not necessary in practice to evaluate
the logarithm of N! in the exponent of (3.24), which is
given purely for clarity of exposition. Because of the
obvious result,

carat 1

AN =
N+1’ N=1

e

=N, AN=-1, (3.29)

the probabilities of adding a molecule [type (ii) move]
or removing one [type (iii)] are given by the Metropolis
criterion as min[VZe™*Y /(N +1),1] and min[Ne-#4Y/
(vZ),1] respectively, where Z is ef*,

An alternative and less transparent implementation of
the grand canonical ensemble is given by Rowley ef al.
(1975). In this formulation one considers a set of M
molecules (M being larger than the maximum number
of molecules that can fit in the available volume). With
each molecule there is associated an “occupation num-
ber” n; having the value 0 or 1; if n; is 0 the molecule
is regarded as “fictitious” and not included in calcula-
ting the energy, if it is 1 the molecule is regarded as
“real” and included in calculating the energy. Apart
from this the “real” and “fictitious” molecules are
treated on equal footing. A mathematical argument
leads to the following transition probability rules:
select in order a molecule from qll real and fictitious
molecules; with probability 1/2, simply move it as in
the canonical method; or, also with total probability
1/2, change it from fictitious to real with probability
min[Z VeV AM - N),1] (if fictitious) or from real to
fictitious with probability min[(M — N +1)e™4Y/(ZV),1]
(if real). Mathematically, the ensemble generated by
these rules appears to be identical with the grand ca-
nonical ensemble. There is a “memory” effect in that
a “fictitious” molecule remains in the neighborhood of
the “hole” from which it is removed, and so may be
more likely to be made “real” again at a subsequent
attempt. However there is no reason why this should
lead to incorrect results.

Rowley et al. (1975) made several calculations for the
6-12 fluid at the reduced temperature 7*=1.15. Their
results for the free energy at liquid densities differed
substantially from those calculated using the restricted
canonical ensemble by Hansen and Verlet (1969). The
differences were much larger than the combined statis-
tical uncertainties. Torrie and Valleau (1974) obtained
a value for the free energy at 7*=1.15 using their
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“direct” canonical method which agreed almost exactly
with that of Hansen and Verlet. Miyazaki and Barker
(1975) used a grand canonical method very similar to
that of Adams (1975) to calculate free energies at
T*=1.15 and four densities in the liquid range; their
values agreed closely with those of Hansen and Verlet.
Finally the Barker—Henderson perturbation theory and
the optimized cluster theory of Weeks, Chandler, and
Andersen (see Sec. VIL.D) give results agreeing very
closely with those of Hansen and Verlet. Thus, it is
almost certain that the results of Rowley ef al. are
incorrect. The discrepancy is of the same order of
magnitude as the long-range corrections discussed
above, but its origin is unclear.

The grand-canonical methods work best at higher tem-
peratures and low densities. At higher densities the
methods of Torrie and Valleau (1974) or Bennett (1974)
are to be preferred.

4. The microcanonical ensembie

For the sake of completeness we mention here that the
method of molecular dynamics discussed below may be
regarded (if used for equilibrium studies) as generating
configurations of the microcanonical or (EVN) ensemble.
Strictly speaking, the total momentum is also fixed, and
this leads to corrections of order 1/N (Ree, 1971).
Thermodynamic calculations like those described in
connection with the canonical ensemble can also be made
using this method, via the relation

TdS=dE — pdv,

- in which now both T and p are statistical quantities, the
temperature T being derived from the mean kinetic en-

ergy,
(KEy= (v/2)k;T, (3.31)

for a monatomic fluid, and p from the average of the
virial. However, to our knowledge (3.30) has not been
used in this way.

(3.30)

5. Quantum statistical mechanics

The methods of classical statistical mechanics so far
discussed are valid for all substances at sufficiently
high temperatures, but at low temperatures there are
quantum-mechanical deviations from classical behavior.
These are of two kinds: (i) effects of statistics (and
possibly spin), and (ii) diffraction effects. The effects
of statistics (and spin) are very small for all liquids ex-
cept for liquid helium below or just above the X tempera-
ture, and will not be discussed further. The diffraction
effects, on the other hand, are appreciable at higher
temperatures. They arise from the fact that paths other
than the classical paths contribute to the evolution of
the system.

For most liquids these effects on equilibrium proper-
ties are adequately described by an expansion in powers
of 12 (for analytic potentials; Wigner, 1932; Kirkwood,
1933a,b) or & (for non-analytic potentials; Gibson,
1975a,b), of which the first two or three terms are
readily evaluated by the Monte Carlo procedures al-
ready described.

For spherical molecules with analytic potentials (but
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not necessarily pair-additive potentials) the Helmholtz
free energy is given by

Ay

A/NkpT = " Nk T 967T2(k T)z <ZV U> +0(n*)
A, ; )
“NEST 96772(k T)2 <Z(V U)> L Hoe.

(3.32)

Exchange effects are not included in the above expan-
sion. Such exchange effects are negligibly small at the
high temperatures at which (3.32) can reasonably be ap-
plied (Hill, 1968, 1974; Bruch, 1973). The identity of
the two forms for (3.32) can be shown by an integration
by parts (Green 1951). Alternatively, the canonical par-
tition function Z is given to order 7? by

AT 7 -
zv="5r | exp]:—B<U+96Tr2kaT ZV%UﬂdrlmdF”’
(3.33)

where x=h/(2mmkyT)! /2. By differentiating this with re-
spect to temperature and volume one can derive expres-
sions for thermodynamic energy and pressure which are
valid to order %?; these are given explicitly by Barker
et al. (1971) and have the general form given in Eq.
(3.14). Although these results are correct it must be
noted that the exponential in (3.32) is not the correct
configuration-space probability density to order A*. The
quantum corrections in (3.31) and (3.33) include correc-
tions both to potential energy and kinetic energy; ex-
pressions for the kinetic energy corrections are given
by Gibson (1974, 1975a,b). The correct configuration-
space probability density w is given, for analytic poten-
tials, to order A? by (Landau and Lifschitz, 1969)

- ’ h2 5 2
w = const X exp{—B{U— m Z (v,;0)

48ﬂ2(k T)z Zv Uﬂ (3.34)

This result was used by Barker (1973) in conjunction
with Eq. (3.14) to calculate quantum corrections to the
radial distribution function of liquid argon. Landau and
Lifschitz (1969) also give results for the momentum-
space probability density. Note that in quantum me-
chanics (even to order 4?%) the configuration-space and
momentum-space probabilities are correlated, not in-
dependent as in classical statistical mechanics.

Hansen and Weis (1969) calculated both %% and #* cor-
rections to the free energy for the 6-12 potential, and
applied their results to liquid neon. Detailed expres-
sions for the term of order #* are well known and are
given for example by Hill (1968). The term of order #*
proved to be negligible for liquid neon, and therefore
a fortiori for heavier inert gas liquids.

The above results are valid for spherical molecules.
The basic theory for calculation of quantum effects for
nonspherical molecules was given by Kirkwood (1933b).
Detailed results for axially symmetrical molecules to
order #?, with dipolar and quadrupolar interactions, are
given by Singh and Datta (1970), McCarty and Babu
(1970), and Pompe and Spurling (1973). These results
are given for second virial coefficients but the extension
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to higher densities is obvious if one is prepared to use
the Monte Carlo method. Pompe and Spurling (1973)
also evaluate the term of order 4%, which was earlier
evaluated by Wang Chang (1944). Extension to nonaxially
symmetric molecules could be ‘made following the meth-
ods of Kirkwood (1933b).

If the quantum effects are so large that the Wigner—
Kirkwood expansion discussed above does not show sat-
isfactory convergence there is no generally satisfactory
method which has been applied to liquids at nonzero
temperatures. Bruch et al. (1974) have proposed the
use of essentially classical methods with exp[-gu(#)]
replaced by a two-body Slater sum. While this is not
exact, if may prove to be a useful approximation.

For the ground state of liquid helium, if one assumes
a variational wave function ¥, the expression for the
expectation value of the energy can be cast in the form
of a “canonical” average for a fictitious classical liquid
with |9 |2 replacing e™V (McMillan, 1965), and the clas-
sical Monte Carlo method may be used to evaluate the
expectation value of the Hamiltonian (Schiff and Veriet,
1967; Hansen et al., 1971; Murphy and Watts, 1970;
Murphy, 1971). The ground-state energy of liquid he-
lium has been calculated in this way using Jastrow wave
functions [i.e., wave functions of the form I, f(;,)].
However, this method cannot be used at nonzero tem-
peratures.

Perhaps the most promising approach to a quantum-
mechanical method for nonzero temperature is use of
the Feynman path integral formulation of quantum sta-
tistical mechanics (Feynman and Hibbs, 1965) or the
equivalent Wiener integral formulation, which has been
used successfully for evaluating second and third virial
coefficients of helium by Fosdick and Jordan (Fosdick
and Jordan, 1966; Jordan and Fosdick, 1968; see also
Storer, 1968; Klemm and Storer, 1973; Jorish and
Zitserman, 1975). A form of the quantum-mechanical
partition function which has exactly the form of a clas-
sical partition function is given by Bruch (1971); this
may be derived either as a Riemann sum approximation
to the path-integral expression for the partition function
(Feynman and Hibbs, 1965), or by a variational method
developed by Golden (1965). If there are N molecules
in the system and an L-point Riemann sum is used then
the partition function has the form of a classical parti-
tion function for a system of L X N molecules, so that
the Metropolis Monte Carlo technique could, in princi-
ple, be applied for a many-body system. However no
results for many-body systems using this method have
been published. Actually Bruch’s results are presented
for a two-body system (second virial coefficient) but
they can be generalized in an obvious way to many-body
systems.

Kalos (1970) describes a method for solving the Schro-
dinger equation by a Monte Carlo technique for iterating
the kernel of an integral equation, and this has been
applied to liquid helium by Kalos et al. (1974). It may
be possible to generalize this method to nonzero tem-
peratures. Another possible method (Fermi-Ulam
method) based on a diffusive process with birth and
death has been discussed most recently by Anderson
(1975).

Quantum mechanical study of dynamical properties
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poses an even more difficult problem which has not been
attacked by computer simulation. Heller (1975) de-
scribes a “wavepacket path integral formulation of
semiclassical dynamics” which indicates one possible
line of attack.

6. Long-range interactions

In plasmas, fused salts, and aqueous solutions of ions
the Coulomb potential plays a very important role, and
the truncation of the potential which is used in most
simulation studies is unsatisfactory. This problem has
been met by using the Ewald summation technique to
sum the interactions to infinite distance, using the pe-
riodicity resulting from periodic boundary conditions
(Brush et al., 1966; Barker, 1965). Since the Coulomb
potential will not be discussed further, we give no de-
tails but refer to the original publications.

The dipole—dipole potential is also long ranged and
this gives rise to serious difficulties in connection with
the dielectric properties of dipolar fluids, since trun-
cating the potential produces a “depolarizing” field
which suppresses fluctuations in the polarization. Two
ways dealing with this difficulty are available: the in-
clusion of an Onsager reaction field to cancel the de-
polarizing field produced by truncating the potential
(Barker and Watts, 1973; Watts, 1974) and the use of
the Ewald summation method (Jansoone, 1974). Recent
unpublished Monte Carlo work by Adams and McDonald
(1976) indicates that these two different methods lead
to similar but not identical results. A useful examina-
tion of this question is given by Smith and Perram
(1975). Further investigation is required.

C. The method of molecular dynamics

1. General remarks

The computational procedure in molecular dynamics
involves numerical solution of the Newtonian equations
of motion (for spherical molecules) or the coupled New-
tion-Euler equations of motion for translations and ro-
tations (for rigid nonspherical molecules). These are
sets of several hundred to several thousand ordinary
differential equations which can be handled quite readily
by modern computers. Difficulties arise when there
are very fast and very slow motions present, since a
time-step small enough to describe the fast motions
will require unreasonably long computations to de-
scribe the slow motions. This has so far prevented
detailed study of polymer motions, for example. For
the kinds of molecules we are going to discuss this is
not a serious problem (except to some extent in the
case of water), and we shall not discuss it further.

Many important computations were made for hard-
sphere and square-well potentials, for which a par-
ticularly convenient algorithm is available. We will
discuss this briefly before considering continuous po-
tentials.

2. Hard-sphere and square-well potentials

The first molecular dynamics calculations (Alder and
Wainwright, 1957, 1959; Alder et al., 1972) were made
using hard-sphere and square-well potentials. These
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potentials have the property that the forces between the
particles are zero excépt for implusive forces when the
particles reach particular distances (the hard-sphere
diameter o and the distance Ao corresponding to the
outer wall of the square well). Thus the dynamics
breaks down essentially into a series of binary colli-
sions between which the molecules move in straight
lines. Given a set of molecular coordinates and veloc-
ities immediately after a collision one can calculate
when the next collision will occur and proceed imme-
diately to that time to evaluate the changes of velocities
of the two particles concerned by conservation of ener-
gy and momentum. Thus the basic time-step for the
computation is effectively equal to the mean time be-
tween collisions, whereas for conitinuous potentials the
time-step must be small compared to the duration of a
collision, a much shorter time. This leads to very fast
computations, so that the dynamics can be followed over
relatively long times. A full account of the method for
these potentials is given by Alder and Wainwright (1959),
and a briefer account by Ree (1971).

3. Continuous potentials

Several algorithms have been used for continuous po-
tentials for spherical molecules. Gibson et al. (1960),
who performed molecular dynamics calculations in con-
nection with radiation damage in solids, used a two-step
central difference algorithm

T+ AL/2) =¥, (t - AL/2) + (AL/m)E, (F(2)) (3.35)

and

T,(t+ AD) =T,(t) + (ADT,(t+ AL/2), (3.36)
where E is the force on the ith particle, —§iU. Rahman
(1964), who made the first dynamics computations for
fluids with continuous potentials, first used a predictor-
corrector method, but in later work on water (Rahman
and Stillinger, 1971) adopted a higher-order method of
the type described by Nordsieck (1962). The latter
method gives high-order accuracy while requiring ex-
plicit evaluation only of the forces (not derivatives of
the forces). Verlet (1967) introduced a simple one-step
central difference algorithm

Ti(t+ AL = =F,(£ - A1) +27,(D) + (AL /mf, (r,(1)).  (3.37)

With this algorithm the velocities are not required, but
may be evaluated by the central difference formula

Vi) =[T,(t+ AY) - F,(t - AD]/(240). (3.38)

The initial coordinates may be chosen in a number of
ways. At the beginning of a problem one may start from
a perfect crystal lattice; if the equilibrium state is
liquid, the configuration normally rapidly approaches
liquid-like states. Most often one will start with a near-
equilibrium configuration from the end of a previous
computation. The velocities are normally given an ini-
tial Maxwell distribution to speed the approach to equi-
librium. We note that the equations of motion are such
that the initial periodicity due to the periodic boundary
conditions is maintained at all later times.

The longest time over which meaningful dynamical re-
sults can be obtained is of the order L/c, where L is
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the edge of the periodic box, and ¢ the velocity of sound.
For times longer than this the periodic boundary condi-
tion can lead to spurious behavior.

4. Evaluation of static and dynamic properties

The static equilibrium properties are evaluated by
means of time averages

<A>=f6 L@ AQ)dt

1 &
~ ; A(maAb), (3.39)
in which A could be, for example, the kinetic energy,
from which the temperature may be evaluated, the
virial, the RDF, etc. In (3.39) it is assumed that the
system has reached equilibrium at =0, and © is a suf-
ficiently long time, normally the whole duration of the
computer “experiment,” apart from the preliminary
“equilibration” stage.

Those measurable dynamical properties, such as
(frequency-dependent) viscosity, self-diffusion constant,
thermal conductivity, the results of neutron and optical
spectroscopic measurements etc., which involve the
linear response to an external probe, can be expressed
(Berne, 1971) by means of Green-Kubo formulae in
terms of equilibvium averages of time correlation func-
tions of the form

(A(Q)A(r))= é fo CAMA+T)dt

1 M=n

T Z AmadAdm +nlAl), T=n<At.

il

(3.40)

The nature of the functions A corresponding to various
measurable properties is described by Berne (1971).
In particular the dynamic structure factor S(E, w) is
given by

w©

- 1 . -
SE, w)=5- f et Tydr,

(3.41)
where

- N - -
I, 7) =11_V > (expl-ik F,O)]explifl -, (D (3.42)
s m=

(Chen, 1971). This function has been studied for the
6-12 fluid by Levesque et al. (1973), who also evaluated
viscosity and the self-diffusion coefficient [the latter
quantity had also been evaluated by Rahman (1964) and
Levesque and Verlet (1970)]. Levesque et al. (1973)
find evidence for the existence of a large-time “tail” in
the Green-Kubo function for viscosity [cf., Alder and
Wainwright (1967, 1970)], which means that the precise
evaluation of viscosity by this route may be very diffi-
cult.

As an alternative to the study of transport properties
using equilibrium time correlation functions one can
use nonequilibrium molecular dynamics to study a sys-
tem in which, for example, velocity gradients are pres-
ent (for the case of viscosity). This has been done by
Ashurst and Hoover (1975), Hoover and Ashurst (1975),
and Gosling et al. (1973).
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D. Results of computer simulations

1. Hard spheres in v dimensions

Hard-sphere systems, with potential given by Eq.
(2.4), are of great interest because of the light they cast
on the question of the melting transition and because of
their use as reference systems for perturbation theo-
ries. We note that the partition function for the one-
dimensional hard-sphere system can'be evaluated ex-
actly (Tonks 1936); the pressure is given by

pL 1

e T ST "(3.43)

There is no phase transition, in accord with the theo-
rem of van Hove, which states that there can be no phase
transition for a one-dimensional system with interac-
tions of finite range.

There have been very extensive and careful studies
by both Monte Carlo and molecular dynamics methods
of the equilibrium properties of two-dimensional and
three-dimensional hard-sphere systems. The work up
to about 1967 is summarized and analyzed critically by
Wood (1968a); later references are Hoover and Ree
(1967, 1968), Alder et al. (1968), Alder and Hecht
(1969), Chae et al. (1969), Barker and Henderson
(1971a, 1972), Young and Alder (1974). Another excel-
lent discussion is given by Ree (1971).

A major conclusion is that both two-dimensional and
three-dimensional hard-sphere systems show first-or-
der phase transitions from fluid at low densities to solid
at high densities. For three dimensions this has ap-
peared almost certain since the work of Alder and

FIG. 7. Particle trajectories of hard-disk systein in “two-
phase” region from molecular dynamics calculation (Alder
and Wainwright, 1962).
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TABLE II. Fluid—solid transition data for hard spheres in
two and three dimensions.?

p/py(Fluid) P/po(Solid)  p/(poksT)
Two-dimensions 0.761 0.798 8.08
Three-dimensions 0.667+0.003 0.736+0.003 8.27+0.13

@ Taken from Hoover and Ree (1968) and Ree (1971). The
close-packed density is p,.

Wainwright (1957) and Wood and Jacobson (1957). For
two dimensions the results of Alder and Wainwright
(1962) were also compelling; in particular Fig. 7, taken
from their paper, indicates very clearly the coexistence
of solid and fluid phases. Such coexistence has not been
observed in three-dimensional systems, where much
larger systems would be required. However a finally
convincing proof of the existence of the two phases was
given by Hoover and Ree (1967, 1968), who calculated
the free energy of both phases by methods already dis-
cussed in Sec. III.B, and determined the pressure and
densities of the coexisting phases by thermodynamic
methods (equating pressures and chemical potentials

in the two phases). The results of these calculations
are given in Table II; and pV/NkBT as a function of
density is shown in Figs. 8 and 9.

The reader who wishes to form his own assessment of
the evidence for these phase transitions should undoubt-
edly read the discussion of Wood (1968a), who wrote be-
fore seeing the work of Hoover and Ree, “it seems fair
to state that the molecular dynamics and Monte Carlo
results in foto certainly suggest a first-order phase
transition. To ask that they prove the existence of one
is perhaps asking too much of methods which are pres-
ently constrained to the use of relatively small numbers
of molecules.” However under “Additional references”
he listed the papers of Hoover and Ree (1967,1968), with
the comment, “These important papers essentially de-
cide the question of the existence of a first-order phase
transition.”

It is sometimes felt that the existence of the two-di-
mensional phase transition contradicts a result found by
Peierls (1936) and Landau (1937), according to which the
root-mean-square displacement of a particle in a two-
dimensional solid of infinite extent is infinite. In fact,

o 1 I T
8 |—
E 6
x
=)
2
B 4 -
2
0
0.2 0.4 0.6 0.8
P/po

FIG. 8. Equation of state of unconstrained and single-occu-
pancy hard disk system (Hoover and Ree, 1968). The quantity

" py is the close-packed density.



606 J. A. Barker and D. Henderson: What is ““liquid”’?

101 ! ! I L
8l -]
=
~ 6| ]
2
a 4 Fluid |
V\ Single
2 Occ. |
0 ] | ]
0.2 0.4 0.6 0.8

plpg

FIG. 9. Equation of state of unconstrained and single-occu-
pancy hard sphere systems (Hoover and Ree, 1968). The quan-
tity p, is the close-packed density.

there is no such contradiction (Frenkel, 1946; Mikeska
and Schmidt, 1970; Hoover et al., 1973). Since this is
not universally known we will expand on the point. If
one writes an expression for the mean-square thermal
displacement of a particle in a solid as an integral over
phonon or fluctuation wave number E, the resulting in-
tegral (for an infinite crystal) diverges near =0 like
1/|§| in one dimension and like In|k| in two dimensions,
but is convergent in three dimensions [the situation is
slightly complicated by the fact that Landau and Lif-
schitz (1969) exhibit the integral correctly but state in-
correctly that it is logarithmically divergent in one di-
mension and convergent in two and three dimensions].
Frenkel (1946) states categorically and partly correctly
that “the increase of the quadratic fluctuations in the
relative positions of the atoms with increase of their
average distance apart in the case of linear and plane
lattices has no bearing whatsoever on the question of
their mechanical or thermodynamical stability... it is
only possible to draw the conclusion that one- and two-
dimensional crystals must scatter x-rays in a way sim-
ilar to that which characterizes ordinary three-dimen-
sional liquids.” However, even the latter limited con-
clusion is not valid for finite two-dimensional crystals.
Hoover et al. (1974) calculate explicitly the root-mean-
square displacements for finite two-dimensional crys-
tals containing N atoms [it is proportional to (In N)!/2],
and show that a crystal the size of the known universe
(radius 10%° light years) would still have r.m.s. dis-
placement less than 10 Al Further Mikeska and Schmidt
(1970) show that a two-dimensional crystal would pos-
sess Bragg reflections, since “the Bragg scattering
peaks of a (two-dimensional) crystal turn out to be only
slightly weakened as compared to the usual 6-function
spikes of the structure function.”

It is not easy to find convincing experimental examples
of truly two-dimensional solids, though Frenkel cites
graphite, in which the interlayer bonding is very much
weaker than the intralayer bonding. However, Elgin
and Goodstein (1974) in their thermodynamic study of
*He absorbed on Grafoil find, as well as fluid phases,
both a registered (or “lattice gas”) solid and a nonreg-
istered solid phase. It is the latter which one might re-
gard as a “genuine” two-dimensional solid. It is a little
surprising that the melting transition for this solid ap-
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pears to be a second-order transition. However it is
strictly only for the classical hard-sphere system that
we know that the transition is first-order in two dimen-
sions. Helium on Grafoil is neither classical, nor hard-
sphere (nor, one must add at the risk of weakening the
argument, strictly two-dimensional).

The most extensive tabulation of the RDF for three-
dimensional hard spheres is that of Barker and Hender-
son (1971a,1972). Barker and Henderson (1972) present
a parameterized equation giving the covariances
(N;N,; -~ {(N,XN,) of the discrete radial distribution func-
tion N, derived from Monte Carlo calculations. Chae
et al. (1969) present radial distribution functions for two-
dimensional hard spheres at several densities.

Alder et al. (1970) made a molecular dynamics study
of the transport properties (diffusion coefficient, shear
and bulk viscosity and thermal conductivity) of three-
dimensional hard spheres over the whole fluid range of
densities by evaluating equilibrium time-correlation
functions. They compared their results with the Enskog
theory, which involves a nearly exponentially decaying
time correlation function and takes account of static but
not dynamic many-body effects. They observed devia-
tions from exponential decay (large-timetails) persisted
for many collision times, indicating highly collective
effects. Near the solidification density the shear vis-
cosity was larger than the Enskog value by about a fac-
tor of 2, and the diffusion coefficient was smaller than
the Enskog value by about the same factor. The thermal

TABLE III. Comparison of Monte Carlo and molecular
dynamic results for 6—12 potential with experimental data for
argon.?

P -U
T \4 (atm) (cal/mole)
X) (cm3/mole)  Exptl MC or MD Exptl MC or MD
A. Monte Carlo results:
97.0 28.48 214 200+14 1386  1413%2
97.0 28.95 141 14110 1371  1388%2
97.0 29.68 39 17+12 1340 13602
108.0 28.48 451 443+12 1360 13872
108.0 31.72 16 ~16+10 1244 12582
117.0 28.48 619 60516 1334  1372+2
117.0 29.68 386 399 £14 1289  1319=x2
117.0° 30.92 219 174£13 1245 1278 %2
127.0 30.92 367 331+13 1219 12612
127.0 33.51 137 69+12 1137 11702
127.0 35.02 65 13+13 1094 11172
136.0 30.30 585 607 £14 1214 12642
136.0 32.52 313 28913 1144  1192%2
136.0 38.01 60 3310 1010 10222
B:. Molecular dynamics results: ®
86.1 27.98 95 91 1457
91.0 27.98 205 208 1445
93.7 27.98 272 270 1438
94.2 27.98 282 273 1440
105.4 27.98 513 ‘507 ° 1389 1414
128.1 31.71 292 299 1190 1235
128.3 31.71 295 295 1190 1230

3 Comparison assumes €/& =119 .8K, 0=3.405A; taken from
McDonald and Singer (1969).
b Molecular dynamics results of Verlet (1967).
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TABLE IV. Liquid—gas transition data for 6—12 fluid and
argon,?

D* p)gas pl)'i(quid L *
6-—12" T*-=0.75 0.0025 0.0035 0.825 6.62
Argon T*=0.75 0.0031 0.0047 0.818 6.50
6-12P T*=1.15 0.0597 0.073 0.606 4.34
Argon T*=1.15 0.0664 0.093 0.579 3.73

2 Taken from llansen and Verlet (1969). All quantities are
reduced in terms of € and o; argon data assume €/ =119.8K,
0=3.405 10\; L * is the reduced latent heat of evaporation.

b Derived from Monte Carlo calculations.

conductivity and bulk viscosity were much closer to the
Enskog values. The product of shear viscosity and dif-
fusion constant remained roughly constant, in accord
with the Stokes relation. Dymond and Alder (1971) find
experimental evidence for these effects in the diffusion
coefficients of krypton, methane and carbon dioxide.

Hoover et al. (1971) made Monte Carlo studies of soft
spheres (with repulsive »" potentials) and compared the
results with the predictions of several theoretical re-
sults.

2. The square-well potential

Fairly extensive Monte Carlo (Rotenberg, 1965; Lado
and Wood, 1968; Henderson, Madden, and Fitts, 1976)
and molecular dynamics (Alder et al., 1972) results for
the square-well potential with A=1.5 are available.
These results are discussed in Secs. VI and VII.

3. The Lennard -Jones 6-12 potential

Pressures, energies and radial distribution functions
(RDF) for the 6-12 fluid have been calculated by Monte
Carlo and molecular dynamics methods. The first
Monte Carlo calculations were those of Wood and Parker
(1957) for a supercritical isotherm; more recent work
includes that of Verlet and Levesque (1967) and Mc-
Donald and Singer (1967,1969). Molecular dynamics
results for thermodynamic properties are given by Ver-
let (1967), and for the RDF, including an extensive tab-
ulation, by Verlet (1968). In Table III we compare some
calculated pressures and energies with experimental
data for argon. At high densities the agreement is really

TABLE V. Fluid—solid transition data for 6—12 fluid and

TABLE VI. Triple point properties of the 6—12 potential.

Ty b}
Machine simulation 2 0.68+0.02

PY(E) 0.70 0.0020
BH2 0.66 0.0006

2 Hansen and Verlet (1969).

remarkably good. However, the energies show discrep-
ancies of up to 4% at larger volumes, as one would ex-
pect from the discrepancies in second virial coefficients.

Hansen and Verlet (1969) evaluated free energies and
constructed the phase diagram as discussed in Sec. III.B.
The phase diagram is shown in Fig. 1, with the experi-
mental results for argon for comparison. The qualita-
tive and semi-quantitative agreement is extremely satis-
fying. This diagram undoubtedly represents a major
achievement of statistical mechanics in explaining the
phase relationships of solid, liquid and gas. The Len-
nard-Jones parametersused for argon are e/kB= 119.8K
and 0'=3.4051°x; these were determined solely from gas
properties by Michels et al. (1949).

Some detailed numerical results are given for the
liquid-vapor equilibrium in Table IV and for the fluid-
solid equilibrium in Table V.

Estimates for the triple point properties and critical
constants of the 6-12 fluid based on the Monte Carlo and
molecular dynamics results are given in Tables VI and
VII. Values for the free energy (actually A/Nk,7T) and
pressure (actually pV/NkBT) are given in Tables VIII
and IX.

The quantitative differences between the calculated
and experimental liquid—gas coexistence curve in the
neighborhood of the critical point in Fig. 1 are probably
partly due to the long-range fluctuations which are not
taken into account by the computation, though there may
be a substantial contribution from the shortcomings of
the 6-12 potential. The deviations in liquid density at
lower temperatures, and particularly in the latent heat
at T*=1.15 (Table IV) are almost certainly due to the
latter cause.

Streett et al. (1974) and Raveché et al. (1974) made
very detailed Monte Carlo calculations for the 6—12 sub-
stance in the neighborhood of the solid—fluid transition

TABLE VII. Critical constants for the 6—12 potential.

argon.®P T¥ p& p¥ PV /NepT,
T* p* PX PE i AV*  L* MD 2 1.32-1.36  0.32-0.36  0.13-0.17 0.30-0.36
Exptl 1.26 0.316 0.117 0.293
6-—12 2.74 32.2 1.113 1.179 0.050 2.69 BG(P) P (1.45) (0.40) (0.26) (0.44)
Argon 2.74 37.4 2.34 BG(C) 1.58 © 0.40 0.30 0.48
6—12 1.35 9.00 0.964 1.053 0.087 1.88 PY(P)P (1.25) . (0.29) (0.11) (0.30)
Argon 1.35 9.27 0.982 1.056 0.072 1.63 PY(C) 1,32 0.28 0.13 0.36
6—12 1.15 5.68 0.936 1.024 0.091 1.46 PY(E) 1.34 0.34 0.14 0.31
Argon 1.15 6.09 0.947 1.028 0.082 1.44 HNC(P) P (1.25) (0.26) 0.12) (0.35)
6—-12 0.75 0.67 0.875 0.973 0.135 1.31 HNC(C) 1.39 0.28 0.15 0.38
Argon 0.75 0.59 0.856 0.967 0.133 1.23 BH2 1.38 0.33 0.16 0.35
OCT*® 1.35 0.35 0.15 0.32

2 Taken from Hansen and Verlet (1969). All quantities are
reduced in terms of € and o; argon data assume ¢/ =119.8 K,
0=3.405 &; L * is the reduced latent heat of fusion.

b The 612 values are derived from Monte Carlo calculations.
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2 Verlet (1967).
b Obtained by extrapolation.
€ Sung and Chandler (1974).
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TABLE VIII. Values of A/NkgT for 6—12 potential.

WCAP WCAP
kpT/e po3  Simul.? PY(E) BHLPY) BH1 BH2  Var.(PY) Var.(VW) (PY) (VW/GH) ORPA®
2.74 0.60 —0.34 —-0.33 —0.31 -0.31 —0.33 —0.19 —-0.18 -0.32 —0.33 —0.34
0.70 +0.01 +0.01 +0.04 4+0.02  +0.01 +0.20 +0.21 +0.02 +0.01 +0.00
0.80 0.43 0.43 0.45 0.46 0.42 0.65 0.69 0.43 0.41 0.41
0.90 0.93 0.95 0.97 0.99 0.95 1.21 1.27 0.97 0.92 0.92
1.00 1.59 1.61 1.65 1.66 1.62 1.92 2.01 1.66 1.56 1.56
1.35 0.60 -1.77 -1.75 —1.67 -1.65 -1.75 —1.59 ~1.57 -1.73 -1.74 -1.76
0.70 —-1.65 —-1.62 —1.54 -1.51 —1.63 -1.42 -1.39 —-1.62 -1.63 -1.64
0.80 —1.41 -1.37 —~1.30 -1.26 —1.41 -1.13 —1.07 —-1.39 —1.41 —1.42
0.90 —~1.02 —0.99 —0.90 -0.84 —1.01 —-0.67 —0.57 —0.98 -1.02 —1.03
0.95 —0.72 —-0.72 —0.62 —0.55 —0.72 -0.35 —0.23 (=0.87) (—0.74) (—0.75)
1.15 0.60 —2.29 -2.28 -2.16 -2.15  —2.30 -2.10 —2.09 —2.25 —2.26 -2.29
0.70 —2.25 -2.23 —2.11 -2.10 —2.26 -2.02 —-1.99 -2.23 —2.24 —2.25
0.80 —2.06 —2.06 ~1.95 -1.92 ° -2.10 -1.81 -1.74 —2.08 —2.09 -2.10
0.90 -1.79 -1.74 —1.61 -1.56 —1.76 —-1.40 -1.29 -1.73 -1.77 -1.77
0.75 0.60 —4.24 —3.99 —3.99 ° —4.29 —4.01 —3.99 —4.17 —4.18 —4.25
0.70 —4.53 —4.50 —4.26 —4.26 —4.28 —4.24 —4.24 —4.51 —4.51 —4.54
0.80 —4.69 —4.63 —4.38 —4.37 —4.74 —4.38 —4.30 —4.69 —4.69 -4.71
0.90 —4.55 —4.29 —4.26  —4.67 —4.22 —4.08 (—4.60) (—4.62) (—4.63)

2 Verlet and Levesque (1967), Verlet (1967), Levesque and Verlet (1969), Hansen and Verlet (1969), Hansen (1970).
P HTA of WCA.

¢ ORPA correction to WCA (VW/GH) calculated by Anderson (1972).

at several temperatures, with particular emphasis on
structural properties, the effect of initial conditions
and the possibility of “crystallization” in a Monte Carlo
calculation (which they observed for “nucleated” sys-
tems). They estimated coexisting fluid and solid densi-
ties by a Maxwell construction (which has some uncer-
tainty due to inability to obtain satisfactory averages in

TABLE IX. Values of pV/NkyT for 6—12 potential.

the “unstable” region). Their coexisting densities were
about 4% lower than those of Hansen and Verlet (1969).
These differences are discussed by Hansen and Pollock
(1975) and Raveché et al. (1975). The latter authors be-
lieve that there is agreement within the combined un-
certainties. We have already discussed (in Sec. III.B.2)
other calculations which tend to confirm the accuracy of

WCA?  WCAS
kgT/c pod Simul?® Simul® PY(®E) BHL(PY) BH1  BH2  Var.(PY) Var.(VW) (PY) (VW/GH) ORPAY
274 0.65 2.22 2.23 2.23 2.24 2.22 2.48 2.54 2.21 2.18 2.20
0.75 3.05 3.11 3.11 3.14 3.10 3.43 3.54 3.11 3.04 3.05
0.85 4.38 4.42 4.42 4.48 4.44 4.79 4.98 4.50 4.30 4.31
0.95 6.15 6.31 6.37 6.41 6.40 6.69 6.97 6.57 6.10 6.10
135 0.10 - 0.72 0.72 0.77 0.77 0.74 0.78 0.78 0.77 0.77 0.73
0.20 0.50 0.51 0.54 0.55 0.52 0.56 0.56 0.53 0.53 0.51
0.30 0.35 0.36 0.35 0.39 0.36 0.39 0.39 0.32 0.31 0.35
0.40 0.27 0.29 0.25 0.26 0.26 0.31 0.32 0.17 0.17 0.25
0.50 0.30 0.33 0.29 0.31 0.27 0.39 0.43 0.18 0.18 0.27
0.55 0.41 0.43 0.40 0.43 0.35 0.53 0.58 0.27 0.27 0.35
0.65 0.80 0.85 0.85 0.91 0.74 1.08 1.19 0.72 0.71 0.77
0.75 1.73 1.72 1.77 1.87 1.64 2.14 2.34 1.70 1.64 1.68
0.85 3.37 3.24 3.36 3.54 3.36 3.92 4.24 3.51 3.28 3.30
0.95 6.32 5.65 5.96 6.21 6.32 6.67 7.16 (6.58) (5.90) (5.91)
1.00 0.5 —0.25 —0.22 —-0.25 —0.21 —0.36 —0.10 +0.04  —0.51  —0.50 -0.38
0.75  +0.58 0.48 +0.57 +0.62 +0.71  +0.53 +0.95 1.20 +0.43  +0.40 +0.47
0.85 2.27 2.23 2.14 2.30 2.48 2.25 2.90 3.32 2.41 2.20 2.23
0.90  ~3.50 3.33 3.57 3.79 3.53 4.34 4.84 (3.96) (3.55) (3.57)
0.72  0.85 0.40 0.25 0.33 0.50 0.70 0.25 1.05 1.59 0.43 0.26 0.32
0.90 ~1.60 1.59 1.90 2.15 1.63 2.73 3.39 (2.24) (1.83) (1.87)

2 Verlet and Levesque (1967), Verlet (1967), Levesque and Verlet (1969).
b McDonald and Singer (1969).

©HTA of WCA.

dORPA correction to WCA (VW/GH) calculated by Andersen (1972).
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the results of Hansen and Verlet.

Dynamical properties of the 6-12 fluid have been
studied by Rahman (1964,1968), Levesque and Verlet
(1970), and Levesque ef al. (1973) using the equilibrium
time-correlation method, and by Ashurst and Hoover
(1975) using nonequilibrium methods. A more detailed
discussion of their methods is given by Hoover and As-
hurst (1975). Rahman and Levesque and Verlet found
diffusion coefficients within 15% of experimental values
for argon, but the shear viscosity calculated by Leves-
que et al. (1973) for a thermodynamic state close to the
triple point was over 30% higher than the experimental
value for argon. The results of Ashurst and Hoover in-
dicate that when properly extrapolated to infinite-width
systems the equilibrium and nonequilibrvium results
agree with one another and with experimental data for
argon. This large finite-system effect seems to occur
only near the triple point. The “nonequilibrium” re-
sults had to be corrected for non-Newtonian behavior
by extrapolation to zero shear rate. Ashurst and Hoo-
ver found good agreement between their calculated vis-
cosities and experimental data for argon in a wide range
of conditions. The noneqilibrium methods appear to
have substantial advantages in terms of computer time
requirements.

Fehder (1969,1970) has made a molecular dynamics
study of the two-dimensional 6-12 fluid. A thorough
Monte Carlo investigation of the same system, showing
both liquid-gas and solid-fluid transitions, is given by
Tsien and Valleau (1974).

4. Argon with realistic potentials

The accurate BFW (Barker ef al. 1971) pair potential
for argon and the Axilrod-Teller three-body interaction
have been discussed in Sec. II, and methods for includ-
ing the three-body interaction and quantum corrections
in computer simulations in Sec. III.B. Calculated prop-
erties for fluid and solid argon calculated with these
potentials and methods are compared with experiment
in Table X. The agreement with experiment is excellent
over a very wide range of conditions, including both
fluid and solid phases at pressures up to 20 kbar on the
melting line. The agreement with experiment is better
than for the 6-12 potential even at high liquid densities,
but not much better because the 6-12 potential happens
to give good agreement in the neighborhood of the triple
point. However the real failure of the 6-12 potential to
describe the properties of argon is seen at gaseous den-
sities, as discussed in Sec. II.

" In Tables XI and XII we exhibit the separate two-body,
three-body and quantum contributions to the energy and
pressure for liquid argon. The three-body contributions
are quite large. If one wished to treat the 6-12 poten-
tial as a true pair potential and include three-body and
quantum effects, there would be very large discrepan-
cies with experiment.

Low-temperature properties of solid argon as given
by the BFW and Axilrod-Teller potentials are discussed
by Barker et.al. (1971), Barker (1976), and Fisher and
Watts (1972a); the latter paper discusses elastic con-
stants at temperatures up to the melting point.

The radial distribution function for liquid argon near
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its triple point has been calculated with corrections for
three-body interactions and quantum effects (Barker,
1973) and the results are in excellent agreement with
experiment (Yarnell et al., 1973); the comparison is
shown in Fig. 2. Note, however that the 6-12 potential,
using the results of Verlet (1967b), gives equally good
agreement. The radial distribution function at high den-
sities is quite insensitive to the details of the attractive
potential, being determined primarily by the hard-core
repulsions (cf., Sec. VII).

It would be interesting to repeat the calculation of the
phase diagram using these potentials, particularly near
the critical point to see how much of the discrepancy in,
Fig. 1 is due to the use of the 6-12 potential. Unfortu-
nately this has not been done. However, the calculated
pressures in Table X for the critical isotherm
(7=150.87K) are very close to the experimental values.

Fisher and Watts (1972b) calculated diffusion coeffi-
cients for the BFW potential without the Axilrod-Teller
interaction, and found results rather similar to those
found with the 6-12 potential at the same densities. It
seems likely that the Axilrod-Teller interaction, which
is a relatively slowly-varying interaction, does not

TABLE X. Calculated® and experimental energies and pres-
sures for solid or fluid argon.

14 T Ucale Uexpt Pcalc Psxpt
(cm®/mole) (K) (cal/mole) (cal/mole) (bar) (bar)

Solid on melting line ?

23.75 63.10 ~1786 . 1 0
24.30 - 77.13 ~1727 28 0.25
24.03  108.12 -1664 e 1028 1051
23.05  140.88 -1624 oo 2650 2708
22.55  160.4 —1574 . 3808 3805
22.09  180.15 -1525 oo 4964 4999
21.70  201.32 —1462 ce 6199 6335
. 21.47  197.78 | -1459 6593 6140
20.12  273.11 -1178 11974 11380
19.92  273.11 —1150 12686 cee
19.41  323.14 —941 15988 15354

Fluid on melting line P

23.66 180.15 —-1297 e 4907 4999
22.96 197.78 —-1235 LR 6319 6140
23.10 201.32 —-1236 6143 6335
21.31 273.11 —-940 11645 11380
21.09 273.11 —924 oo 12585 e
20.46 323.14 —664 e 15513 15354
Fluid®

27.04 100.00 —-1423 —1432 655 661
29.66 100.00 —-1313 -1324 118 106 -
30.65 140.00 —-1213 —1209 588 591
35.36 140.00 —-1061 —1069 170 180
41.79 140.00 —906 —-922 18 37
48.39 150.87 —~784 —-789 54 62
57.46 150.87 —679 —-689 48 51
70.73 150.87 —573 —591 50 50
91.94 150.87 —462 —481 50 50

2 yalues calculated by Monte Carlo method using BFW pair
potential and Axilrod—Teller interaction.

b Barker and Klein (1973).

¢ Barker e al . (1971).
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TABLE XI. Contributions to the internal energy of argon.?

T 14 U;(2b) U,-(3b) U;(@) U ; (theor) U ;(exp)

°K) (cm?®/mole) (cal/mole) (cal/mole) (cal/mole) (cal/mole) (cal/mole)
100.00 27.04 —-1525.2 87.1 15.6 —1423 —1432
100.00 29.66 —1393.6 67.9 12.5 -1313 —-1324
140.00 30.65 —1284.7 62.8 9.3 -1213 —1209
140.00 41.79 —951.4 39.5 6.4 —906 —922
150.87 70.73 —-603.8 26.6 4.6 —573 —591

2 All entries taken from Barker ef al. (1971).

have a great effect on dynamical properties at high den-
sities.

5. Other simulation studies

Extensive molecular dynamics studies of nonpolar
liquids with diatomic molecules, with emphasis on dy-
namical properties have been made by Berne and co-
workers, and are well reviewed by Berne (1971).

Liquid water has been studied extensively by molecu-
lar dynamics (Rahman and Stillinger, 1971, Stillinger
and Rahman, 1972,1974) and Monte Carlo methods (Bar-
ker and Watts, 1969,1973; Watts 1974, Popkie et al.,
1973; Kistenmacher ef al. 1974; Lie and Clementi,
1975). Stillinger and Rahman made thorough studies of
static and dynamic properties using successively im-
proved empirical potentials. Clementi and coworkers
emphasize the pair potential, starting from Hartree-—
Fock quantum mechanical calculations and including
correlation effects. Note that Zeiss and Meath (1975)
recently made a careful estimate of ¢4 for water which
is appreciably smaller than that used by Kistenmacher
et al. (1974). The work of Barker and Watts emphasized
the problem of dielectric properties already discussed
in Sec. III.B.6. Evans and Watts (1974) compared sec-
ond virial coefficients for some of the potentials used
in these studies with experiment. Shipman and Scheraga
(1974) derived an empirical water-water potential.

McDonald (1974) made Monte Carlo calculations for
polar molecules interacting with the Stockmayer poten-
tial, he also examined the effects of polarizability of the
molecules using formal results due to Barker (1953).
Patey and Valleau (1974, 1976) made similar studies for
dipolar and quadrupolar hard spheres. McDonald and
Rasaiah (1975) studied by Monte Carlo the average force
between ions in a “Stockmayer” solvent. Patey and
Valleau (1975) made similar studies for charged hard
spheres in a dipolar hard sphere solvent.

There is a very extensive literature on Monte Carlo

TABLE XII. Contributions to the pressure of argon.?

methods for polymers (Lowry, 1970; Lal and Spencer,
1973). Much of this work did not use the Metropolis
scheme. Curro (1974) describes an application of the
Metropolis method to multichain system of oligomers
containing 15 and 20 units. For a general account of the
statistical mechanics of polymers the book by Flory
(1969) is indispensable.

Liquid metals differ from simpler liquids in that the
“effective” pair potentials are oscillatory (March 1968).
Monte Carlo calculations for liquid sodium are described
by Murphy and Klein (1973), Fowler (1973) and Schiff
(1969), and molecular dynamics results are given by
Rahman (1970).

Monte Carlo calculations on rigid nonspherical mole-
cules include those of Levesque et al. (1969) and Vieil-
lard-Baron (1972) on hard ellipses and of Few and Rigby
(1973) and Vieillard-Baron (1974) on hard spherocylin-
ders. These results are referred to in Sec. V. B.

In the work on the two-dimensional hard ellipse sys-
tem Vieillard—Baron observed two first-order phase
transitions, with an oriented solid phase stable at high
densities, a nematic phase with orientational order but
no translational order stable at intermediate densities,
and a liquid phase disordered both in orientations and
translations stable at low densities. In the three-di-
mensional hard spherocylinder system Vieillard—Baron
was unable to observe a nematic phase. It is possible
that this was due to the nature of the initial conditions
used in the Monte Carlo work, which resembled more
closely a smectic (layered) phase. It would be worth-
while to make a Monte Carlo study starting from a ne-
matic structure with perfect orientational order, which
could be generated by applying an affine transformation
x'=x,y'=y,2"=az to a fluid configuration of hard
spheres (this would lead to a nematiclike configuration
of hard ellipsoids).

IV. DENSITY EXPANSIONS AND VIRIAL
COEFFICIENTS

A. Introduction

T \%4 P (20) p(3b) p(Q) p(theor) p(exp) In the limit of zero density, the equation of state of a
°K) (cm%/mole)  (@tm) (atm) (atm) (atm) (atm) gas is given by the perfect gas law
100.00 27.04 +239.9 364.2 42.2 646 652 PV/NEkpT=1. (4.1)
) izg'gg iz'gg :;ig'g iii'g ‘323 éég ;gg As the density is increased, deviations from (4.1) oc-
140 :00 41:79 _33:7 49:0 27 18 37 cur. A gas exhibit.ing these deviatiops may be called an
150.87 70.73 +34.5 13.2 1.2 49 49 impevfect gas. It is observed experimentally that the

2 All entries taken from Barker et al . (1971).
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equation of state of an imperfect gas at low densities is
given by
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]\é——la%=l+%+‘7%+v%+..., (4.2)
where B, C, D, etc. are called the second, third, fourth,. ..
virial coefficients and V,, is the molar volume.

In this section the relation between these virial coeffi-
cients and the coefficients in the density expansion of
other quantities and the intermolecular forces will be
explored. Although Eq. (4.2) does not provide the basis
of a satisfactory theory of liquids, this expansionis use-
ful for imperfect gases at low densities. The virial co-
efficients can be calculated for model or real potentials
and can be regarded as another source of quasi-experi-
mental data similar tothe computer simulations discussed
above. Moreover, density expansions can be used to in-
troduce theories which do apply to the liquid state. For
simplicity, systemswithpairwise-additive centralforces
will be considered in detail. Thus,

N
I = D ulryy),

i< j=1

(4.3)

Ul F,, ...

where 7;;=|F;;| and ¥,;=F, -~ F,. Generalizations to more
complex systems will be considered briefly. _

Additional discussion of density expansions can be
found in Kihara (1953a,1955), Hirschfelder et al. (1954),
Uhlenbeck and Ford (1962), Dymond and Smith (1969),
and Mason and Spurling (1969).

B. General expressions for the virial coefficients
1. Second virial coefficient

The equation of state depends only on the partition
function
A-SN

Zy= f He”drl---dr”,

where >\=lfz/(27rkaT)1/2 results from the integration of
the kinetic energy variables,
e(r) = exp{- pu(n)}, (4.5)

and e;;=e(7;;). Equation (4.4) can be regarded as an
average over N- molecule conflguratmns of noninteract-
ing molecules. Thus

A/kgT=-1nZ,

=—Nan-_1n< INIe“.> , (4.6)

i< j=1

(4.4)

where the terms which are independent of V and which
do not contribute to the equation of state have been
dropped.

The factors e, and e, are independent. Hence,

(ee13) = <912> . (4.7)

However, the three functions e,,, e,;, and e,; are not
independent. Thus,

(1361559 #(€1)° . (4.8)

At sufficiently low densities , only interactions between
pairs of molecules occur with high probability, and con-
figurations in which all three of the functions in (4.8)
differ from unity are rare. Under such conditions, the
equality in (4.8) can be introduced as an approximation.
If products involving more than three molecules are
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treated similarly,

A/kgT=-NInV - §N2In{e,,), (4.9)
where the factor in front of the logarithm arises be-
cause there are 3 N(N —1) ~3 N2 pairs of molecules.
The function e(7) differs from unity only for values of

7 which are a few molecular diameters. Hence, it is
convenient to introduce the function ‘

f» =e(r) - (4.10)
which is called the Mayer f-function. Thus,
A/kgT=—-NInV-3N2In(1+{f,)), (4.11)
where
<f12>= v f f1zd?1d?2
—y- ] fidE,. (4.12)

The integral in (4.12) is of the order of a molecular
volume. Hence, the logarithm in (4.11) can be expanded
to give

A/kyT=-NInvV+B(N/V,), (4.13)

where B is independent of the volume and is given by
N -
B=- _2ﬁ f flrp)dT,,

- _ 27N, f Friar, (4.14)
0
where N,, is Avogadro’s number. The latter form of
(4.14) is valid only for a spherically symmetrical po-
tential. Differentiating to obtain the pressure gives
pv_ _,. B
Ne,T "t T

m

so that B, given by (4.14),
cient.

(4.15)

is the second virial coeffi-

2. Third virial coefficient

To second order in V™!, the error in (4.13) and (4.15)
is due to the neglect of three-molecule correlations.
Hence, for each triplet of molecules, the above approx-
imation to Z, must be multiplied by the factor

I= <812813823>/(612>3 . (4.16)

If this expression is written in terms of the f- functions
and expanded, then

I=((+ £)(1+ fi) A+ fua /14 £}

1+ 3 f12>+ ¥ f12>2+(f12 Jis f23>
1+3<f12>+3<f12> +(fi®

The factor ( f,,) is of order V=, and ( f,, fi5 fo3) is of or-

(4.17)

der V-2, Thus,
I1=1+( fy5 fia fod+ O(V ). (4.18)
Therefore,
A/kgT==NInV+BWN/V,) -+ N3 In(1+{ fi, fis fas))>
J (4.19)
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where the factor in front of the logarithm arises because

there are+ N(N - 1)(N — 2) =~ N3/6 triplets of molecules.
Expanding the logarithm gives

A/kyT=-NWnV+B(WN/V,)+ Lc(N/v2), (4.20)

where C is independent of the volume and is given by
N2 - -
C=- _3% f Jiz fiz fos AT, dTod Ty,

- _N_En fflz fis f23d.f2d-f'3. (4.21)
3

Differentiation gives a result consistent with (4.2) so
that C is the third virial coefficient.

For spherically symmetric potentials (4.21) can be
simplified by using »,,, 7,;, and 7,, as variables. It is
easy to show that

dF,y=2m 78 ay (4.22)
12
so that
872N2
C=-— 3 ffm Jis Jas¥ 12V 15V 23071207 13A7 o5, (4.23)

where the integration is over all »,,, 7,5, and 7,; which
form a triangle.

3. Higher-order virial coefficients

Higher-order virial coefficients can be obtained in a
manner similar to that given above. We shall not give
details. The general scheme for obtaining these virial
coefficients was first given by Mayer and his colleagues
between 1937 and 1942. This procedure has been re-
viewed by Mayer (1940, 1958), Uhlenbeck and Ford (1962),
and van Kampen (1961). We have followed van Kampen’s
treatment because of its relative simplicity.

The higher-order virial coefficients are sums of inte-
grals whose integrands are products of f functions. It is
convenient to represent these cluster integrals by dia-
grams (often called Mayer diagrams) in which a bar re-
presents the function f(»). The junction of two bars (of-
ten called a field point) represents a molecule whose co-
ordinates are integrated while a circle at the end of a
bar (often called a 7oot point) represents a molecule
whose position is fixed. Molecule 1 is taken as the ori-
gin. Thus d¥, represents d(¥; - ¥,). Some examples of
these diagrams are

(4.24)

o—o =f12

and

A= f Frofrafas AT AT (4.25)
Sometimes it will be convenient to use diagrams with
vdf(v)/dv and —de(¥)/dB as bonds. These bonds will be
represented by --- and ~v, respectively. The diagrams
contributing to B, C, and D are given in Fig. 10. The
diagrams which contribute to the virial coefficients are
said to be irveducible because they cannot be factored
into products of simpler terms.

The expressions for B, C, and D in terms of the dia-
grams in Fig. 10 are
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e ——— AMAAA
B1 B1’ B1"
C3 Cc3’ c3”
D4 D4’ D4"” D5
e d
Ve
D5’ D5” Dbo’ D5«

X

D6 D6’ D6"

FIG. 10. Irreducible diagrams contributing to B, C, and D.

B=-(N,/2)B1, (4.26)
= - (N%/3)C3, (4.27)

and
D=~ (N%/8)[3(D4) +6(D5) +D6]. (4.28)

Expressions for the fifth- and higher-order virial coef-
ficients can be written down. However, the number of
irreducible cluster integrals contributing to the virial
coefficient increases rapidly with order. For example,
ten irreducible cluster integrals contribute to the fifth
virial coefficient. Thus, the enumeration of the dia-
grams contributing to the virial coefficients becomes a
difficult problem as the order of the coefficient in-
creases. The diagrams contributing up to the seventh
virial coefficient have been enumerated by Uhlenbeck
and Ford (1962).

4. Virial coefficients for some model potentials

The simplest potential which can be used in the cal-
culation of virial coefficients is that of the so-called
Gaussian molecules where

Fr) = - exp{-r*/a%.

This potential is a soft repulsive potential. Although it
is unrealistic (for example, the potential is temperature
dependent) it has the virtue of yielding simple analytic
expressions for the virial coefficients. Earlier, this
was a great advantage because, for other potentials, the
higher-order cluster integrals are complex. However,
the advent of modern computers permits numerical eval-
uation of the complex cluster integrals. For this reason
Gaussian molecules are no longer of great interest and
will not be considered here. Another simple model sys-
tem which is sirhple enough to permit relatively easy

(4.29)
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evaluation of virial coefficients is the parallel hard cube
system (Geilikman, 1950; Zwanzig, 1956; Hoover and
DeRocco, 1961, 1962). This system consists of hard
cubes whose edges are all constrained to be parallel to
Cartesian coordinate axis.

The simplest model potential which will be considered
in detail is the hard-sphere potential, where

-1, r<d
fo)= (4.30)
0, r>d.
Thus,
B=N,b, (4.31)

Where b=271d%/3 is four times the volume of a hard
sphere. The third virial coefficient for hard spheres
can most easily be obtained by first calculating the fol-
lowing integral

cy(ryp) = ff13f23di:3' (4.32)
For hard spheres, qz(af) is just the volume common to

two spheres of diameter d separated by a distance 7.
This is easily obtained and is

T - /d)+ & @r/a)], r<ad
c(r) = (4.33)
0, r>2d.
Thus
C3=/fWk4ﬂdf
= — 57%d° /6. (4.34)
Hence
c/B%*=%. (4.35)

The fourth virial coefficient for hard spheres can also
be obtained easily from (4.33). The results are

D4=jic4wrdf

=(272/105)6°, (4.36)
and
D5=/}mokgrnwf,
6347
=—mb (4.37)

The fully connected integral D6 is more difficult. It is
most simply obtained from
d::(ylz’ V135 7’23) = ffm f24 fs4df4’ (4'38)
which for hard spheres is the volume common to three
spheres of diameter d. This volume and the resulting
value for D6 can be obtained analytically (van Laar,

1899; Boltzmann, 1899; Nijboer and van Hove, 1952;
Rowlinson, 1963; Powell, 1964). The result for D6 is
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D6 =f Fi2fra Fosda( 1257 15, 7’23)d1?2dF3

_4131cos™(1/3) — T127 — 438\/~2—b3

= 3
5607 =1.2669b°.

(4.39)
Hence

D/B*=0.2869. (4.40)

Numerical values for the fifth virial coefficient for
hard spheres have been obtained by several authors
(Katsura and Abe, 1963; Kilpatrick and Katsura, 1966;
Rowlinson, 1964a; Ree and Hoover, 1964a; Oden et al.,
1966; Barker and Henderson, 1967c¢; Kim and Hender-
son, 1968a). The value of Kim and Henderson (1968a)
should be the best because seven of the ten cluster inte-
grals are obtained analytically in their calculation. Ree
and Hoover (1964a,1967) have obtained numerical val-
ues for the sixth and seventh hard-sphere virial coef-
ficients. The results of these calculations are listed in
Table XIII. All the known hard-sphere virial coeffi-
cients are positive. However, there is evidence that
some of the higher-order virial coefficients may be neg-
ative (Ree and Hoover, 1964D).

The equations of state of hard spheres predicted by
truncated virial expansions are plotted in Fig. 11. As
more terms are included, the agreement with machine
simulations improves. For hard spheres, the virial
series seems convergent at all densities at which the
hard spheres are fluid. Extrapolations using Padé ap-
proximants, which are ratios of polynomials in the den-
sity in which the coefficients are constrained to fit the
known virial coefficients, are in good agreement with
the computer simulations. For more realistic poten-
tials with attractive forces, the convergence is much
poorer (Barker and Henderson 1967c).

The virial coefficients for the square-well potential
have been obtained by Katsura (1959, 1966), Barker and
Monaghan (1962a, 1966), and Barker and Henderson
(1967c). Henderson et al. (1975) have obtained virial
coefficients for hard spheres with a Yukawa tail.

The third, fourth, and fifth virial coefficients have
been obtained numerically for the 6—12 potential. Bar-
ker et al. (1966) give a convenient tabulation. The sim-
pler cluster integrals can be obtained straightforwardly.

TABLE XIII. Hard sphere virial coefficients.

B/N,b C/B* D/B® E/B* F/BY G/B%
Exact 1 0.625 0.2869 0.1103% 0.0386> 0.0138°¢
SPT 1 0.625  0.2969 0.1211  0.0449  0.0156
cs 1 0.625 0.2813 0.1094  0.0156  0.0132
BG(P) 1 0.625  0.2252  0.0475
BG(C) 1 0.625 0.3424 0.1335
K(P) 1 0.625 0.1400
K(C) 1 0.625 0.4418
PY(P) 1 0.625  0.2500 0.0859  0.0273  0.0083
PY(C) 1 0.625 0.2969 0.1211  0.0449  0.0156
HNC(P) 1 0.625  0.4453 0.1447  0.0382
HNC(C) 1 0.625  0.2092 0.0493  0.0281

2 Kim and Henderson (1968a).
b Ree and Hoover (1964a).
¢ Ree and Hoover (1967).
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FIG. 11. Equation of state of hard spheres. The curves give
the results calculated from truncated virial series. The points
denoted by @ and @ give the computer simulation results of
Barker and Henderson (1971a, 1972) and Alder and Wainwright
(1960) for fluid and solid hard spheres, respectively. The re-
duced density p* is Na3/V.

The more complex integrals, such as D6, are most ac-
curately obtained by expanding the integrand in spherical
harmonics (Barker and Monaghan, 1962b). Results for
B, C, D, and E for the 6-12 potential are plotted in Fig.
12. At high temperatures, where the repulsive forces
dominate, the virial coefficients are positive. However,
at low temperatures they are negative. The tempera-
ture for which B =0 is called the Boyle temperature.

For this temperature, the isotherm of pV/NE,T ap-
proaches unity with zero slope as p—~0. Qualitatively,

1T T T T TrT T T

TTTT

FIG. 12. Virial coefficients for 6—12 fluid. The nth virial
coefficient is reduced by the factor (2wN,0%/3)"L.
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one may say that the attractive forces are important be-
low this temperature.

C. Density expansion of the radial distribution function

The distribution functions can also be expanded in
powers of V!, or more conventionally p. At low densi-
ties, where only pairs of molecules interact, the radial

distribution function (RDF) is given by
g)=e(r). (4.41)

The higher-order terms can be obtained by a method
similar to that given above. The result is

gr)=e)y@), (4.42)
where

y(v)=1+i " (7)), (4.43)
and y,(r) =c,(7), 7

y,(r) =d,(r) +2d,(r) + 5{c2() +d, ()}, (4.44)

where the doubly-rooted cluster integral integrals,

Cyy ..., ds are given in Fig. 13. It is to be noted that cZ(7)
decomposes into a product of simpler integrals. Thus,
some of the cluster integrals contributing to g(7) or y(7)
can be decomposed. On the other hand, the expansion
of Ing(7) consists only of integrals which cannot be de-
composed. For example,

Ing(r) = - Bu(¥) +Iny(r), - (4.45)
where
Iny(r) =§ pE,(7), (4.46)
£,(r)=v,(r), and
£,(r) =3,0) - 3930,
=d(r) +20,0) +3d ). (4.47)

If Eqs. (4.42) and (4.43) are substituted into the com-
pressibility, pressure or energy equations, the virial
expansion is obtained. This, of course, is expected
since, once (4.3) is assumed, everything is exact. The
compressibility equation yields (4.26) to (4.28) directly.
The pressure equation yields these expressions be-
cause

B1/=_3(B1),
C3'=-2(C3),

(4.48)
(4.49)

A

FIG. 13. Irreducible diagrams contributing to y,() and y,().
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4(D4’) = - 9(D4), (4.50)

4(D5') +D5a’ = — 9(D5), (4.51)
and

2(D6’) = — 3(D6). (4.52)

Equations (4.48)-(4.52) are established by integration by
parts. The energy equation yields (4.26)—(4.28) because

8B1/88=B1"", (4.53)

8C3/88=C3"", (4.54)

8D4/8B8=D4"’, (4.55)

8D5/88 =4(D5'’) + D5’ (4.56)
and

8D6/58=6(D6"’). (4.57)

The triplet distribution function has the expansion

g123=g12g13g23[1+pd;(123)+. . '], (4.58)

where dj has been defined in (4.38). If d and all higher-
order terms are neglected then one has the superposi-
tion approximation of Kirkwood (1935).

For hard spheres, c,(r), and thus v,(), is given by
(4.33). For this system, Nijboer and van Hove (1952)
have calculated y,(7) and Ree et al. (1966) have calcula-
ted ¥,(#). McQuarrie (1964), Hauge (1965), and Barker
and Henderson (1967¢) have calculated y,(7) and y,(») for
the square-well potential. Henderson (1965), Henderson
and Oden (1966), Henderson et al. (1967), Kim, Hender-
son, and Oden (1969) have computed y,(), v,(r) and
y4(7) for the 6-12 potential.

D. Virial coefficients for more complex systems
1. Quantum effects

Systems such as liquid helium, which have large
quantum mechanical effects, are beyond the scope of
this article. However, for systems such as argon, and
even neon and gaseous hydrogen and helium at high
temperatures, the quantum effects are small and can be
treated by an expansion in 2%, where % is Planck’s con-
stant. For additive interactions which are analytic
(other than at 7 =0), the free energy is given by the ex-
pansion

h2

A=largrmmT

N, f VU)o (X2 + -+ -+, (4.59)
where A, and g, are the free energy and RDF of the
classical system (i.e., 2 —~0 or m —«). An alternative
form of (4.59), which is suited to machine simulations,
has been given earlier, Eq. (3.31). Combining (4.59)
with the density expansion of g,(7) gives the quantum
correction to the virial coefficients. Kim and Hender-
son.(1966, 1968b) have calculated the correction of or-
der k% to B, C, D, and E for the 6-12 potential. The
higher-order 2* and 4° corrections to B are derived and
tabulated by Haberlandt (1964) for the 6—12 potential.

For potentials such as the hard-sphere potential,
which are not analytic, (4.59) is not valid. For hard
spheres, Hemmer (1968) and Jancovici (1969a) have ob-
tained
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A A, T o
Neo T Neo Tty 8@ + ’

(4.60)

where A =h/(@2mmk,T)'/2. For hard spheres, the quan-
tum corrections are of order % rather than 22 as in
(4.59). Combining (4.60) with the density expansion of
2..(d) gives the quantum correction to the hard-sphere
virial coefficients. Jancovici (1969b) has obtained the
second-order quantum correction to the hard-sphere
free energy also. This result can be used to obtain the
quantum corrections to the virial coefficients. Jancovi-
ci (1969b) gives the quantum corrections, to order A2,
to the hard-sphere B and C. The quantum corrections
to order A°® for the hard-sphere B have been given by
Nilsen (1969) who extended the lower-order calculations
of Uhlenbeck and Beth (1936), Handelsman and Keller
(1966), Hemmer and Mork (1967), Hill (1968), and Gib-
son (1970).

Gibson (1972) has obtained the first quantum correc-
tion to the free energy for the square-well potential and
from this deduced the first quantum corrections to the
virial coefficients. The first quantum correction to B
for the square-well potential has been obtained earlier.
References are given by Gibson (1972). ,

The first quantum correction to the RDF for an ana-
lytic potential have been obtained by Singh and Ram
(1973, 1974) and Gibson (1974). These expressions can
be used to obtain expressions for the first quantum cor-
rections to the y,(7). Singh and Ram give some numer-
ical results for these corrections to the y,(»). Equiv-
alent expressions in the discrete representation can be
obtained easily from (3.14) and (3.34). Singh (1974),
Gibson and Byrnes (1975) and Gibson (1975a,b) have ob-
tained the first quantum correction to the RDF for non-
analytic potentials.

2. Three-body interactions

An expression for the free energy, which is valid to
first-order in the strength of the three-body interaction
and which is useful for machine simulations, has been
giveﬁ in (3.14). Written in terms of distribution func-
tions, this becomes

A.-=A2b+%szfgz,,(123)u(123)dF2dF3, (4.61)
where A,, and g,,(123) are the free energy and triplet
distribution function in the absence of three-body
forces. It is to be remembered that (4.61) is valid only
to first-order in the strength of the three-body inter-
actions, v. For simple fluids, such as argon, this is
not a practical limitation becaus€ the v? terms are neg-
ligibly small. From (4.61) it is seen that there is no
three-body force contribution to the second virial co-
efficient. The third virial coefficient is

2

N -
Cc =—3m[_ c3 +f e 1231362:3“123‘1?2‘11'3:]-

(4.62)

A diagrammatic notation to represent the three-body
terms has been devised. For example, see Rushbrooke
and Silbert (1967).

In Fig. 14 the third virial coefficient of argon, calcu-
lated using the BFW (Barker et al., 1971) pair-poten-
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tial and the triple—dipole (Axilrod-Teller), dipole-di-
pole—~quadrupole, and fourth-order triple-dipole three-
body potentials. These results were obtained by Barker
(1976) and Caligaris and Henderson (1975). The agree-
ment with experiment is good only if the three-body
terms are included. Johnson and Spurling (1971b) have
calculated the contributions of the dipole—quadrupole—
quadrupole and triple—quadrupole forces to C and has
found them to be small. For comparison, the second
virial coefficient, calculated from the BFW potential,
is also plotted in Fig. 14. Casanova et al. (1970), Dulla
et al. (1971), and Johnson and Spurling (1974) have cal-
culated three-body force contributions to D.

Lee et al. (1975) and Caligaris and Henderson (1975)
have calculated the second and third virial coefficients
(including three-body interactions) of Ar + Kr and Kr
+Xe mixtures.

There have been no calculations of the effects of
three-body forces on the v,(7), the coefficients in the
density expansion of the RDF.

3. Nonspherical potentials

For a nonspherical potential, the second virial coeffi-
cient is given by a straightforward generalization of
(4.14). Thus,

N, -

B=- Wff(1, 2)dF, dF,dS, dS,, (4.63)
where the dT; are the position volume elements and the
df2; are the angle volume elements normalized so that
the integral of df?; is unity. Appropriate generaliza-
tions of (4.26) to (4.28) give C and D.

There has been a great deal of work on the evaluation
of virial coefficients for a wide variety of angle-depen-
dent potentials. Here we will attempt only to review
work on nonspherical potentials which have also been
used in the theory of liquids.
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FIG. 14. Second and third virial coefficients of argon. For

B, the solid curve gives the results calculated using the BFW
pair-potential. For C, the curves marked - ——— ——

and the solid curve give the results calculated usmg just the
BFW pair potential, the BFW pair potential and ddd, ddd +ddq ,
and ddd +ddq +ddd,, respectively, where ddd, ddq, and ddd,
are the dipole—dipole—dipole (Axilrod—Teller), dipole—dipole—
quadrupole, and fourth-order dipole—dipole—dipole terms. The
points @ and @ give the experimental results of Michels et al .
(1949,1958) and Weir et al . (1967), respectively.
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a. Spherical cores

For dipolar hard spheres, the potential energy is giv-

"en by
w2, R,) =0, r<o
=—(u2/73,)D(1,2), r>o0, (4.64)
where the angle—def)endent term D(1,2) is
D(1,2)=3(; ) (B, 1) = By iy
=2 cosf, cosh, —sinf, sind, cos(@, - ¢,), (4.65)

% 3 ;
and p; and r,, are unit vectors.
ficient is

2o T T o; .
B:-Jif d<pf sineldelf sin92d92f 72, F(1, 2)dr .
4 0 (o] (o] o]

(4.66)

The second virial coef-

The original method (Keesom 1912) for evaluating (4.66)
was to expand f(1,2) in (4.66) in powers of 8 and inte-
grate over 7,,. The subsequent integration over the an-
gles results in the vanishing of the odd powers of B.
The result is

B =b[1-x%/3 -x%/75 - 29x°/55125 —+ - - |, (4.67)

where ¥ =8u2/0%. With the advent of computers, Eq.
(4.66) could be evaluated by direct numerical integra-
tion. Watts (1972) has calculated C for dipolar hard
spheres. Keesom (1915) has also calculated B.for quad-
rupolar hard spheres.

Stockmayer (1941), Rowlinson (1949), and Barker and
Smith (1960) have calculated B for the Stockmayer po-
tential

wlr) =4 {<§>2_ <§>6}-7“—32D(1, 2),

Rowlinson (1951a) has calculated C for this potential.
Rowlinson (1951b) has also calculated B and C for a 6—
12 potential with both dipolar and quadrupolar terms.
Pople (1954a,b) and Buckingham and Pople (1955) have
considered methods of calculating B for a 6-12 poten-
tial with a variety of multipolar terms. A review of
these techniques has been given by Mason and Spurling
(1969).

(4.68)

b. Nonspherical cores

For hard spheres, B=N,b. For hard nonspherical
molecules, we can write

B=N,bf, (4.69)

where b is the second virial coefficient of hard spheres
of the same volume as the nonspherical molecules (i.e.,
four times the volume of N,, hard spheres) and f>1 is a
shape-dependent factor. Isihara (1950), Isihara and
Hayashida (1951a,b) and Kihara (1951, 1953a,b) have
shown that for cornvex molecules f is related to the vol-
ume, V,, surface area, S;, and mean radius of curva-

ture, R_l, of the molecule. In fact,
R S, 3
F=1 < & ) (4.70)
so that
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TABLE XIV. Ry, S;, and V; for several shapes.

Shape Size R Sy vy
Sphere Radius =a a 4ma 4ma’/3
Rectangular Length of edges (Ly+ly+ly)/4 2Lyl +1il3+1yly Ll
Parallelopiped ly,1y,15
Regular tetrahedron Side =1 3L (tan"1v2)/2m V312 v213/12
Cylinder Length =1 (1 +ma) 2ma (I +a) na’l

Radius =a
Prolate (cigar shaped) Length=1 l/4+a 2ma (I +2a) Traz(l +4a/3)
Spherocylinder Radius =a
Prolate ellipsoid Major semi-axis=a a < 1-€2. 1+e 9 sin~le > 9

- = —1n— +
of revolution 2 \1* 3 PiTe 2m 1 el - )2 4mab”/3
Oblate ellipsoid Minor semi-axis =b b sin"le 9 1-€?. 1+e€ 2
of revolution e?=@?-b%/a’ 2 <1 +€(1—€§)52> a1+ Iy 4matb/3
B=N,[V, +§151]- (4.71) co (1961, 1962), of a gas of long hard parallelopipeds

The quantities V,, S,, and R, are given for several
shapes in Table XIV. Gibbons (1969), using the scaled-
particle theory which will be discussed in Sec. V, has
shown that, for this theory, :

- 1 —
Cc =an [V? +2(R,S)V, +§(R 151)21\ ’ (4.72)

and

D=N3[V3+3(R,S,)V?+(R,S,)?V,]. (4.73)

In addition, Gibbons has obtained approximations to the
higher-order virial coefficients. Equation (4.72) is ex-
act for hard spheres.

In the special case of prolate spherocylinders of
length I and diameter o

B _l+a
Nb 4 (4.74)
C 1+20+a@%/3
Ns;'b2= 16 ’ (4.75)
D 1+3a+a?
NET e (4.176)
where
27 3x
0200 (1.%), (4.77)
x=1l/0, and
a:EISI/Vl,
=3(1+2)(1 +x/2) /(1 +3x/2). (4.78)

For hard spheres x=0 and @ =3. Rigby (1970) has cal- -
culated D, for x=0.4 and 0.8, by a Monte Carlo method
and obtained the results in Table XV. Equations (4.72)
and (4.75) are probably exact for prolate spherocylin-
ders as well as for hard spheres. '

By considering the second virial coefficient of a gas
of hard rods, Onsager (1942, 1949) found a first-order
phase change to an anisotropic phase which is similar
to a nematic liquid crystal. Zwanzig (1963) obtained
similar results using the virial c‘oefficients'up to sev-
enth, calculated from the results of Hoover and DeRoc-
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constrained to point only in three mutually perpendicu-
lar directions.

Kihara (1951, 1953a) has studied convex molecules us-
ing nonspherical potentials which have the form u =u(p),
where u(7) is some simple central potential (for exam-
ple, the 6—12 potential) and p is the shortest distance
between the cores (not the centers) of the molecules.
For such simplified potentials B can be calculated with
relative ease. The hard convex molecules considered
above are of this form.

Chen and Steele (1969, 1970) have calculated the virial
coefficients of linear dumbell molecules composed of
fused hard spheres. Their results and the Monte Carlo
results (Rigby 1970) for virial coefficients of this sys-
tem are given in Table XV. The quantity x is {/o, where
l is the separation of the centers of the spheres.
Spherical harmonic contributions to the coefficients of
the density expansion of g(7,,, ,,9,) were also calcu-
lated. Sweet and Steele (1967, 1969) have made similar
calculations for diatomic 6-12, a Kihara core potential
for a linear convex molecule, and a Stockmayer poten-

TABLE XV. Virial coefficients for hard prolate spherocy-
linders and fused diatomic hard spheres.

Prolate spherocylinders

x 0 0.4 0.8

« 3 3.15 3.44

B/N,b 1 1.0382 1.1092

C/N%p? 0.625  0.6632 0.665>  0.7382 0.740"

D/N3p® 0.2869 0.3182 0.301"-  0.3612 0.336"
Fused hard spheres

x 0 0.4 0.6

B/N,b 1 1.053¢ 1.119°¢

C/N2p® 0.625  0.68° 0.684>  0.75¢ 0.757b

D/N3p®  0.2869 0.318" 0.359

2 Equations (4.74)—(4.76).
b Monte Carlo calculations (Rigby, 1970).
€ Chen and Steele (1969,1970).
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tial.

The fused hard spheres and diatomic 6-12 potentials
are examples of what may be called interaction-site po-
tentials in which the pair-potential of the molecule is
built up out of central pair potentials between interac-
tion sites within the molecule. These would usually be
the nuclei (or some subset of the nuclei) within the mol-
ecule in which case they are often referred to as atom—
atom potentials. Evans and Watts (1975, 1976b) have
used such interaction site potentials to compute B for
benzene.

Ladanyi and Chandler (1975) have reformulated the
Mayer cluster expansion in terms of f functions for the
site—site interactions rather than in terms of the mole-
cular f functions. Because the site—site f functions are
functions only of the scalar distance between the inter-

action sites, Ladanyi and Chandler hope that a simplifi- -

cation will be obtained even though the number of dia-
grams has increased.

Rowlinson (1951b) has used a four-charge model with
a central 6-~12 potential to obtain a pair potential for
water. He has used a multipole expansion based on this
model and, retaining only the dipolar and quadrupolar
terms, has calculated B and C. Johnson and Spurling
(1971a) and Johnson et al. (1972) have made similar cal-
culations. With the availability of modern computers,
there is no need to restrict oneself to only the dipolar
and quadrupolar terms. Evans and Watts (1974) have
calculated B for the full Rowlinson potential, the Ben-
Naim and Stillinger (1972) potential and for some poten-
tials arising from Hartree—~Fock calculations of the in-
teractions between water molecules.

Kirkwood (1933b), Wang Chang (1944), McCarty and
Babu (1970), Singh and Datta (1970), and Pompe and
Spurling (1973) have calculated quantum corrections to
the virial coefficients for nonspherical molecules.

V. SCALED-PARTICLE THEORY
A. Hard spheres

It has already been pointed out in Sec. I that, for hard
spheres of diameter d, the equation of state is given by

PV/NEST =1 +4ng(d), (5.1)

where 7= (r/6)pd®. The factor 7d®/6 is the volume of a
hard sphere. Thus, for hard spheres it is only neces-
sary to find g(d). Reiss ef al. (1959) have developed a
simple but accurate method, called the scaled-particle
theory (SPT), for obtaining g(d) and thus p.

Let p,(7) be the probability that there is no molecule
whose center lies within a sphere of radius 7, centered
about some specified point. Thus, —dp,/dv is the prob-
ability of finding an empty sphere whose radius lies be-
tween 7 and 7 +dv. This is equal to the product of the
probability of having no molecule within the radius » and
the conditional probability, 47pG (»)»%d7, of there being
a center of at least one molecule within dv» of » when no
molecule is inside the sphere of radius 7. The signifi-
cance of G(r) arises from the fact that an empty sphere
of radius d affects the remainder of the fluid precisely
like another molecule (hence the name scaled-particle
theory), i.e., G(d) =g(d).

Thus,
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~dp,(r)/dv =p,(v)4w pr3G (v). (5.2)

Also,
po('r) = exp{— BW})

where W(7) is the reversible work necessary to create
a cavity of radius 7 in the fluid. It is to be noted that p,,
W, and G depend upon p as well as . However, for no-
tational simplicity we do not show this dependence ex-
plicitly. Combining (5.2) and (5.3) gives

(5.3)

dp,/py=—BAW = — 4wp G(v)r2dr. (5.4)
Hence,
AW =pdV +ydS =kzTpG(r)dV, (5.5)

where y is the surface tension and S and V are the sur-
face area and the volume of the system, respectively.
Therefore,

2
G(r) = (pkpT)™ <1> +77> . (5.6)
It is to be noted that (5.6) gives
G(©)=pV/NksT =1+4nG(d). (5.7

To proceed further we need to know the 7 dependence
of y. For 7 not too small, it is reasonable to assume

v(r) =y {1 +8(d/7)}, (5.8)
where v, and 6 are constants to be determined. Substi-
tution of (5.8) into (5.6) gives

601 = (0,1 (p 4 2204 254},

(5.9)
To determine y, and & it, i necessary to consider p,(»)
again. For 7<d/2, no more than one molecular center
can lie within a sphere or radius 7 and, therefore, p,(v)
is equal to unity minus the probability of there being a
molecular center within the sphere. Thus,

Do) =1—(4n/3)7r%p, r<d/2. (5.10)
Hence, combining (5.2) and (5.10), we have
—adp,/dv =p,(v)4nrip G (r)
=477r%p, (5.11)
for <d/2. Thus, p,)G(#)=1 and
G(r)=[1~(4n/3)r3p] ", v<d/2. (5.12)

Consequently, Eq. (5.12) is valid for all »<d/2 and Eq.
(5.9) is valid for 7 not too small. For d/2<»<d/V3,
two molecular centers can lie within the sphere and
po() and G(r) cannot be determined without first know-
ing g(¥).

However, as an approximation we can assume that
(5.9) is valid for all »>d/2. This is the central approxi-
mation of the SPT. Hence, approximately

b d i)z
2 @)n(2), ear,
where A =2vy,/pkzTd and B =4y,6/pkzTd?. Solving Egs.
(5.7) and (5.13) for p/pkT and G(v) gives

p _1+4n(A +B)

T (5.14)

Gr)= (5.13)
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and
G(r)=[1-8n(r/d)?]*, »<d/2
A (5.15)
1+4 +B B
=T’7_(“‘1m——)+7+;5, r>d/2..
Expressions for A and B, and thus y, and & caﬁ be ob-
tained by requiring that G(r) and dG /d» be continuous at
7=d/2. The resulting values for A and B are

A =_H, (5.16)
and

B =4(13—’_72n)3. (5.17)
Therefore,

2

#:%—T_’in%. (5.18)
Thus, in the SPT

g(d)=44z12—_7_7:;)"32~. (5.19)

Equation (5.18) gives an exact second and third virial
coefficient and, as may be seen in Table XIII, gives
reasonable values for the higher virial coefficients also.
On the other hand, (5.18) must fail at high densities
since it ﬁredicts that p remains finite and monotonically
increasing for all 7<1 and, therefore, for densities
greater than close packing. However, for the densities
at which hard spheres are fluid, Eq. (5.18) is in good
agreement with the machine simulation results, as may
be seen in Fig. 15. ’

The SPT result for y,, obtained from (5.16), is

9 (kgT\ , 147

yo——2w<d2)1’] e~ (5.20)

Expanding (5.20) in powers of the density gives
yo=_%kBTd4p2+- e (5.21)

which agrees exactly with the known first term in the
density expansion of v, (Kirkwood and Buff, 1949). The
fact that the surface tension is negative may be, at first
sight, surprising. However, it is an immediate con-
sequence of the fact that the hard-sphere fluid has no
attractive forces and so can be maintained at finite vol-
ume only by means of an external pressure. '

The SPT also gives expressions for the equations of
state of two-dimensional hard discs and one-dimension-
al hard rods (Helfand et al., 1961). The expressions
are :

pA 1
N, (=3P i
where y = (1/4)pd?, and
pL 1
NkBT—l—pd’ (5-23)

respectively, for hard discs and hard rods. Equation
(5.22) is a good approximation to the machine simulation
results for hard discs and (5.23) js exact.
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FIG.15. Equation of state of hard spheres and hard prolate
spherocylinders. The points marked O and @ give the simula-
tion results of Barker and Henderson (1971a,1972) and Few and
Rigby (1973) for fluid hard spheres and spherocylinders, re-
spectively, and the points marked -O and -@ give the simulation
results of Alder and Wainwright (1960) and Few and Rigby
(1973) for solid hard spheres and spherocylinders, respective-
ly. The curves give the SPT results. The quantity n is pV,,
where V; is the volume of a molecule.

Carnahan and Starling (1969) have empirically ob-
served that results even better than those of (5.18) can
be obtained by a simple empirical modification of (5.18).
Carnahan and Starling (CS) added the factor An®/(1 — n)®
to (5.18) and chose A to be the integer which gave the
closest approximation to D (and, coincidently, to E and
F also). The CS equation of state is

p_l1+n+n®-n®

= 5.24
T~ (-1 (6.24)
Thus, in this approximation
4-2n
g =37 oy (5.25)

The virial coefficients and equation of state, calculated
from Eq. (5.24), are given in Table XIII and Fig. 16,
respectively. Both are in excellent agreement with the
exact results. It is to be noted, however, that (5.24)
predicts that densities greater than close packing can be
obtained and so must fail at high densities. The CS ex-
pression for the free energy of a hard-sphere fluid may
be obtained by integration. The result is

A 4n - 3n?
NkBT—Slnk—1+lnp+ a-mn?’

where x =#/@2rmkT)*’?. Henderson (1975b) has empiri-
cally modified (5.22) to obtain a very accurate expres-
sion for the hard-disc equation of state. His expression
is

(5.26)

PA  1+y%/8
NepT (1-pF "

(5.27)
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14 T

0 0.2 0.4 0.6 0.8 1.0

FIG. 16. Equation of state of hard spheres. The points
marked @ and O give the machine simulation results of Barker
and Henderson (1971a,1972) for fluid hard spheres and of Alder
and Wainwright (1960) for solid hard spheres. The curves give
the results of various theories. The BG results were calcu-
lated by Kirkwood et al . (1950) and Levesque (1966). The HNC
results were calculated by Klein (1963). The reduced density
p*is Nd*/V.

The SPT can also be used to obtain the equation of
state of hard-sphere mixtures (Lebowitz, Helfand, and
Praestgaard, 1965). Their result is .

P 1+E+8?
P T~ (1= 2

TP
“3{A-p® i %;%;(dy; - d;;)? [2dy;+dy;d55X]

i<j=1

(5.28)

where d;; are the diameters of the » components,

T m
£=Tp x,d8 5.29)
BP?; 2 Arps (
T
X=Tp > %y, (5.30)
k=1
d,j=5i—“2iiii, (5.31)
x,-:—Ni, (5.32)

N, is the number of hard spheres of species ¢, and N is
the total number of molecules in the mixture. Equation
(5.28) also gives B and C correctly and is in good
agreement with the machine results for hard sphere
mixtures. In addition, for the extreme case of a binary
mixture in which d,, -0, Eq. (5.28) yields the result
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P 1+(1-3x)E+E7
pksT (1-¢)3° ’

where &= (r/6)pd3,x,. Equation (5.33) can be written in
the form

P x 1+£+ 8
pkoT 1= -8

Xy A%
STogtHe (NkBT>2'

Equation (5.34) is exact if an exact expression for (pV/
NEgT), is used. Equation (5.34) may be obtained direct-
ly by observing that in the limit d,, -0 all the volume
unoccupied by the big spheres is available to the point
spheres.

(5.33)

(5.34)

B. Hard convex molecules

Gibbons (1969, 1970) and Boublik (1974) have applied
the SPT to mixtures of hard convex (not necessarily
spherical) molecules. The result is

p 1 ABp 1 BCp (5..35)
pkyT 1—vp (1-vp)? 3 (1-vp)*’ :
where
A=Y x.R, (5.36)
; 1 i
B:Zl:x,.si, (5.37)
m '_2
C: x.R. (5'38)
; 1 1)
Y=ixivi, (5.39)
i=1

and R,, S;, and V, are the mean radius of curvature,
surface area, and volume, respectively, of a molecule
of species i. Expressions for these quantities are given
in Table XIV for molecules for various shapes. For the
particular case of a pure fluid, Eq. (5.35) becomes

p 1 R,S,p l R_%S?PZ
kT 1-Vp (A1-V,p2 3(A=V,p)°"

For hard spheres, R;=d;;/2, S;=nd?;,, V;=(n/6)d3,,
and (5.40) and (5.35) give (5.18) and (5.28) respectively.
Equations (5.40) and (5.35) give the correct second viri-
al coefficient and, for hard spheres, give the correct
third virial coefficient. For prolate spherocylinders,
(5.40) gives an accurate third virial coefficient (Rigby
1970). Thus, one may conjecture that the SPT gives the
correct third coefficient for all hard convex molecules.

For hard prolate spherocylinders of length ! and dia-
meter o, Eq. (5.40) becomes

p  3+Ba-6)n+(a®-3a+3)n?
prT ~ 1-n)? ’

where a is given by Eq. (4.78) and =V ,p. For hard
spheres a=3. Few and Rigby (1973) and Vieillard-Ba-
ron (1974) have made Monte Carlo calculations for pro-
late spherocylinders for @=3.6 (I =0) and a=4.5 (I =20),
respectively. The a =3 (spheres) and @ =3.6 results are
plotted in Fig. 15. The SPT works well for hard sphe-
rocylinders as well as for hard spheres. Presumably,

(5.40)

(5.41)
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the SPT is reliable for any isotropic fluid of hard con-
vex molecules.

Cotter and Martire (1970a) have used the SPT to ob-
tain an equation of state for perfectly aligned, as well
as isotropic, hard spherocylinders. Cotter and Martire
(1970b) and Timling (1974) have also made calculations
for partially aligned spherocylinders. They have used
these two models as models of a nematic liquid crystal.
They find a liquid-liquid phase change from the isotrop-
ic to the aligned phase at high densities. Vieillard-Ba-
ron (1974) has attempted to find this phase change for
a=4.5 by the Monte Carlo method. He believes his re-
sults to show that, for this system, the phase change,
if present, occurs at a higher density than that predict-
ed by the SPT. Vieillard-Baron was unable to establish
the existence or non-existence of a liquid-liquid phase
transition for this system at high densities because of
its extreme slowness in achieving equilibrium for 7
>0.54. Some reasons for this have been mentioned in
Sec. III.D.5. However, his calculations indicate that the
value of 17 at which melting occurs increases as x=I/co
increases, whereas Few and Rigby (1973) reached the
opposite conclusion. Actually, both Vieillard~Baron
and Few and Rigby may be correct if the volume change
on melting increases as x increases. Finally, it is
worth noting that the SPT calculations of Cotter and
Martire for the aligned phase are for simplified ver-
sions of the SPT. Thus, it is possible that better re-
sults for the aligned phase can be obtained from the
SPT. The more rigorous calculations of Timling only

- established a lower bound for the fluid-fluid transition.

C. Further developments

We have seen that Eq. (5.18) for the hard-sphere equa-

tion of state results from the approximation
G(r)=G,+G,/7+G,/7?, (5.42)

which is assumed valid for » =d/2, together with the
conditions

G@d/2)=1/(1-7)
and

ac| __en_
T | yeass” AA =)’

which result from (5.12) together with the condition that

(5.43)

(5.44)

G(7) and dG(¥)/dr are continuous at 7 =d/2, and the con- -

ditions

G(d) =g(d) (5.45)
and

G,=(pV/NEkGT)=1+4nG(d). (5.46)

To make further progress, we must gain further un-
derstanding of G(r). For hard spheres this function can
be obtained from p,() through (5.2). Now p,(») is the
probability of finding an empty sphere of at least radius
7. Thus,

f,,, exp[—pUJdT,...d Ty
Jv exp[-pUlAT,...dTy"’

where V is the volume of the system, and V' is the vol-

o) = (5.47)

Rev. Mod. Phys., Vol. 48, No. 4, October 1976

ume outside of the cavity of radius ». Introduce the

‘ function
Ce(F)=1, [%-Rli<r (5.48)
=0, |% =R >,
where R is the center of the cavity. Hence,
N
o) = f;::[l[l —€(T,)] exp[-BUJdT,. . . dTy (5.49)

J exp[-BUlAL; .. dTy

where both integrat'ions are over the volume V. Now

N N N
H[l —-e(T;)]=1- Z e(T;)+ Z e(T)e(Ty) +... .
i=1 i=1 <j=1
(5.50)
Hence,
N g
por) =1+ (<1)"F,, (5.51)
n=1
where
F1=§m'3p (5.52)
and

n
F:"_f
" onl

sphere of radius 7
Thus for 0s7 <d/2, p,() is given by (5.10). For d/2
<7 <d/V3, two molecule centers can lie within the
sphere and

(¥, .. T,)dT,...dF, . (5.53)

An

1 N =
Po¥)=1- 3 r3p + ipzfg( T,T,)dTdT,. (5.54)

Now g(¥,,T,) depends only upon #,,. Hence, we can
integrate (5.54) in part to obtain

4
por)=1- —;77'3;)

vamer [ e[S 3 () +55(2) Ve

(5.55)

The term in the square parenthesis is the common vol-
ume of two spheres of radius » whose centers are a
distance s apart. At =d/¥3, three molecule centers
can lie within the sphere. As 7 increases, more cen-
ters can lie within the cavity. For example, atv =d,
twelve molecule centers can lie within the cavity.

The function G(») for hard spheres can now be calcu-
lated from p,(»). As mentioned earlier, g(») must be
known to obtain G() for d/2 <¥ <d/V3. It can be veri-
fied directly from (5.55) that G and its first derivative
are continuous at » =d/2 and are given by (5.43) and

(5.44). The second derivatives at » =d/2 are
d’G 6n(4 —n)
= 5.56
dr® r=(d/2)-0 d2(1 "71)3 ( )
and
a’G d’G 48
aG = - ———G(d) (5.57)
ar? r=(@/2)+0 ar® r=(d/2) -0 a*(1 -n) ’
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where (5.45) hasbeenused. Thus, the secondderivative of
G is discontinuous at¥ =d/2. Atr =d/V3, thefirst three
derivatives of G are continuous and there is a discontinuity
proportional to the triplet distribution function g(a,a,a)
in the fourth derivative. It appears that the order of the
first discontinuous derivative increases by two at each
singular point.

Thus, for hard spheres G(r) is nonanalytic but quite
smooth and it is reasonable to assume that G can be ap-
proximated fairly closely by a suitably chosen analytic
function. ‘

The function which is chosen is

m
Gwr)= Z Gr~". (5.58)
n=0
Equation (5.57) provides an extra condition, in addition
to (5.43), (5.44), and (5.46). Equation (5.45) is not in-
dependent. It is tempting to use (5.43), (5.44), (5.46),
and (5.57) together with (5.58) withm =3. However, if
this is done, poor results are obtained. At first sight
this is disconcerting. However, Tully-Smith and Reiss
(1970) have shown that, for hard spheres,

G,=0. (5.59)

If (5.59) were not valid, the integral

"
f s2G(s)ds
o

would give rise to terms in In¥ which would give terms
inconsistent with (5.58) in certain consistency equations
obtained by Tully—Smith and Reiss. In 2 dimensions,
G, in (5.59) would be replaced by G,. They show that if
(5.43), (5.44), (5.46), (5.57), and (5.59) are used with
(5.58) withm =4, results only slightly less satisfactory
than the CS equation of state are obtained.

The original form of the SPT G(r) for hard spheres,
Eq. (5.15), actually satisfies (5.43), (5.44), (5.46), and
(5.59), if (5.58) is used withm =4. Tully-Smith and
Reiss obtain the further condition,

G + 3ln(t =) +1]
1 n 1
=6n2 2G(£)dE -6 d £2G(8)dE, (5.60
anz(zefozz[/za (5.60)

and observe that if (5.43), (5.44), (5.46), (5.59), and
(5.60) are used with (5.58) withm =4 that G,=0 and the
original form of the SPT satisfies five conditions, not
three as originally thought. Because of this it is plausi-
ble to use (5.43), (5.44), (5.46), (5.57), (5.59), and
G, =0 together with (5.58) withm =5. Tully—Smith and
Reiss (1970) have done this and obtain the best of their
equations of state, which is almost as good as the CS
equation state but lacking its empirical character.

More recently, Reiss and Tully—Smith (1971) and
Vieceli and Reiss (1972a, 1972b, 1973) have investigated
the statistical thermodynamics of curved surfaces and
have applied these results to the SPT. They obtain two
equations of state for hard spheres. The hard-sphere
solid equation of state is not very accurate and, as a
result, no phase transition is found. Nonetheless, the
approach is very promising.

The recent work of Reiss and colleagues described
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above may be summarized as an attempt to obtain G(d)
through the extrapolation of the results of a study of
large cavities. Stillinger and Cotter (1971) and Cotter
and Stillinger (1972) have made a study, in part com-
plementary to that of Reiss et al., of G(»)for small » for
hard discs. They obtain approximate expressions for
G(r) for d/2 <7 <d/V3, by means of an expansion in
powers of  —d/2)"?, and use

+ Gq + Gy
r-x)*  r-n)*’

G(r)=GO+% (5.61)
where the G, and A, are constants to be determined, for
»=d/V3. The unknown constants in G(() are determined
from several conditions including the continuity of G()
and its first three derivatives at» =d/V3.

Helfand and Stillinger (1962), Harris and Tully—Smith
(1971), and Reiss and Casberg (1974) have attempted to
use the SPT to obtain the radial distribution function of
hard spheres as well as their thermodynamic proper-
ties. The work of the latter authors is the most com-
plete. They obtain an approximate integral equation for
2(r) which involves the triplet distribution which they
approximate. The resulting equation can be solved for
pd®=< 0.5 and gives good values for g(). The thermo-
dynamics calculated from this g(») are more accurate
than the original SPT results (5.18). The accuracy of
this approach at high densities is not known. Reiss and
Casberg (1974) were unable to obtain solutions to their
equation because of numerical difficulties.

Lebowitz and Praestgaard (1964) have obtained an
integral equation for g() by means of arguments similar
to those of the SPT. The equation, which they are un-
able to solve, is highly nonlinear. Interestingly, under
appropriate linearizations it yields several of the equa-
tions which we will consider in the next section, Sec. VI.

Attempts to extend the SPT to fluids with attractive
forces have yielded useful information (Frisch, 1964;
Reiss, 1965). The nonhard core part of the intermo-
lecular potential is regarded as a uniform background
which serves to determine the density of the liquid
while the internal structure is determined by the pack-
ing of hard cores. Reiss and his collaborators were
among the first to recognize this. However, these ideas
are formulated more systematically in the perturbation
theories considered in Sec. VII and so will not be fur-
ther pursued here.

VI. CORRELATION FUNCTIONS AND INTEGRAL
EQUATIONS

A. Introduction

In this section we shall examine several methods for
calculating the distribution or correlation functions at
high densities. At low densities, the distribution func-
tions can be calculated by means of the density expan-
sions considered in Sec. IV. When this procedure is
used, the resulting distribution functions are exact to a
given order in the density and the resulting thermody-
namics are exact to some order in the density no matter
what route, connecting the thermodynamic properties to
the distribution functions, is used.

The methods discussed in this section are approximate
and approximate distribution functions are obtained. As
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a result, this thermodynamic consistency is lost and
differing routes to thermodynamics will give, in gener-
al, differing results.

Throughout most of this section, we assume that only
pairwise-additive spherically symmetric terms con-
tribute to the potential energy. For this situation only
the pair distribution function need be specified to de-
termine the thermodynamic properties. We shall be
concerned mostly with spherical potentials. However,
a few applications to nonspherical systems will be con-
sidered. '

Other recent reviews of the methods we examine here
have been made by Baxter (1971) and Watts (1973).
Henderson and Leonard (1971), McDonald (1973), and
Henderson (1974) have reviewed the application of these
methods to liquid mixtures.

B. Born-Green theory

Let us differentiate (1.10) with respect to T,. If only
pair potentials contribute to Uy,

h
—kpTV,2(1...h) = ,}: g(l...h)V ,u(1j)
=2

+pfg(1. )T (A, + 1)d s,

(6.1)

where u(ij) =u(r;;). These equations were obtained by
Yvon (1935), Bogoliubov (1946), and Born and Green
(1946).

In the special case 2=2, (6.1) becomes

—kp TV 2(12) =g(12)T ,u(12) +p Jg(123)$1u(13)d'f'3.
(6.2)

Equation (6.2) cannot be solved for g(12) unless g(123)
is approximated. Following Kirkwood (1935), we can
assume that

g(123) =g(12)g(13)g(23). (6.3)

This approximation is called the superposition approxi-
mation (SA). We have seen that (6.3) is valid only at low
densities. Direct calculation of the correction term,
d}(123); shows that this term is not small. Thus, from
(4.58) we see that the SA must be significantly in error

at intermediate densities. Alder (1964) has made simu-

lation studies of g(123) for hard spheres'at high densi-
ties. These calculations, although not conclusive, indi-
cate that the SA is reasonably reliable at high densities.

In any case, if (6.3) is substituted into (6.2) we obtain
the BG equation (Born and Green, 1946)

—kpT¥,Ing(12) =V, u(12) +p fg(13)g(23)$1u(13)dY3.
(6.4)

If (6.4) is expanded in powers of the density, an expan-
sion of g(12) may be obtained and the virial coefficients
resulting from (6.4) may be calculated. The first two
terms in the expansion of g(#) are correct but the
higher-order terms are approximate. In fact, the
higher-order terms for g(») in the BG theory cannot be
expressed in terms of integrals involving only f (»), the
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Mayer f function. Thus, the BG equation gives B and C
correctly but gives approximations to the higher-order
virial coefficients. The BG equation virial coefficients
for the hard-sphere potential (Hart ef al., 1951; Rush-
brooke and Scoins, 1951; Nijboer and van Hove, 1952;
Nijboer and Fieschi, 1953) are listed in Table XIII. The
consistency of the pressure and compressibility virial
coefficients, denoted by P and'C, respectively, is poor
and the agreement with the correct values is disappoint-
ing.

The BG equation has been solved numerically for the
hard-sphere potential (Kirkwood et al., 1950; McLellan,
1952; Levesque, 1966). The results for the equation of
state are plotted in Fig. 16. The agreement with the
computer simulations is good at low densities, but be-
comes less satisfactory as the density increases and the
SA breaks down.

Perhaps the most interesting result of the application
of the BG equation to a system of hard spheres is that
for densities greater than about pd®~ 0.95 the integral of
the total correlation function, k(r), does not converge
and the BG equation has no acceptable solutions. This
has been interpreted as indicating that a system of hard
spheres undergoes a transition to an ordered phase at
pd®~ 0.95 despite the absence of any attractive forces.
The existence of this phase transition was the subject
of considerable discussion before its confirmation by the
simulation studies. Because the BG equation has no
solution for densities greater than pd3~ 0.95 statements
to the effect the BG equation predicts a hard-sphere
phase transition are frequently found in the literature.
This is really an overstatement of the situation. All
that happens is that the BG theory breaks down at high
densities. The breakdown of a theory may be sympto-
matic of the onset of a phase transition but is hardly a
theory of the phase transition.

Recently, Raveché and Stuart (1975) have considered
(6.1) with 2=1. They claim to have obtained “fluidlike”
and “solidlike solutions” for g(¥,). The “fluidlike solu-
tions” have the property that g(T,) =1 and the “solidlike
solutions” for g(T,) are periodic. It is difficult to de-
termine the significance of this because, elsewhere in
their paper, they claim that, in the thermodynamic lim-
it, g(¥,) =1 follows immediately, for all T and p, from
the definition of g(F,) (see their Eqs. Al and A6). Pre-
suming their latter result to be correct, the “solidlike
solutions” for g(F,) must be unphysical, introduced by
differentiation, and their existence can, at most, be in-
dicative of an instability of the fluid at high densities
rather than the basis of a theory of freezing.

The results of the BG equation for more realistic po-
tentials (Kirkwood et al., 1952; Zwanzig et al., 1953,
1954; Broyles, 1960, 1961a; Levesque, 1966) are no
better. The BG predictions (Levesque 1966) for the
critical constants of a 6-12 fluid are given in Table VII.
The pressure results must be obtained by extrapolation
because the pressure equation critical point lies in the
region of no solution. The agreement with experiment
and simulation studies is not very satisfactory.

Recently, there has been an extensive study of the BG
equation for the square-well potential by Luks and col-
laborators (Schrodt and Luks, 1972; Kozak et al., 1972;
Schrodt et al., 1972; Schrodt et al., 1974; Lincoln et al.,
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1974; Lincoln et al., 1975a,b). It is difficult to determine
whether the optimism of these authors is justified be-
cause almost all their calculations are for a cutoff of
the potential at A =1.85, rather than 1.5¢ which has been
used in the simulation studies, and comparison is made
with experimental results for argon. Nonetheless, there
is some indication that the BG equation deals fairly sat-
isfactorily with the nonhard core part of the potential
and that the poor results for the BG equation for poten-
tials with attractive tails is due, in part at least, to its
errors in treating the hard core. We will return to this
subject when we discuss perturbation theory in Sec.
VII.C.5.

Born and Green (1947) and Mazo and Kirkwood (1958)

_have developed a quantum version of the BG equation.

The inadequacy of the SA is further illustrated by con-
sidering an integral equation obtained by Kirkwood
(1935). We write the potential energy in such a manner
as to include a coupling parameter:

(6.5)

N N
Up(F,e o B =8 2 w(W) + 25 uG).
i=2 i<G=2
The actual situation is, of course, represented by & =1.
When £ =0, molecule 1 has been “uncoupled.” Differ-

entiating with respect to & yields

'-kﬂ“%g(mw(m)w fu(ls)[g;(llzs)) _g(13)]d¥3.

(6.6)

Equations (6.2) and (6.6) are exact and, therefore,
equivalent. However, if the SA is used, this equivalence
is lost. Substituting (6.3) into (6.6) yields the Kirkwood
equation.

alng(12)

~kaT =

=u(12) +p [ u(13)g(13)[(23) - 1]d T,.

(6.7)

The virial coefficients and equation of state resulting
from (6.7) have been calculated for the hard-sphere
potential. The second and third virial coefficients are
exact. The Kirkwood (K) values for D (Stell, 1962) are
listed in Table XIII and are seen to be inferior to the
BG values. This is true for the equation of state also
(Kirkwood et al., 1950).

The difference between the BG and K results is a re-
flection of the inadequacy of the SA. In the absence of
any approximations the two methods would yield the
same results.

When we say that the SA is inadequate we mean this
only in relation to the integ"ral equations we have con-
sidered. As was mentioned earlier, direct calculations
of g(123) for hard spheres indicate that the superposi-
tion approximation is fairly good at high densities.
Thus, the poor results obtained from (6.4) and (6.7)
probably result from the fact that these equations
grossly magnify the errors in the SA. Other uses of the
SA may yield good results. Such uses will be considered
in Sec. VII.

We may write

£(123) =g(12)g(13)g(23) exp{S(123)}, (6.8)
where S(123) =0 (the low density limit) in the SA. Rice
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and collaborators (Rice and Lekner, 1965; Young and
Rice, 1967a,b,c; Rice and Young, 1967) have approxi-
mated S(123) by calculating the first two terms in the
density expansion of S$(123) and using a Padé extrapola-
tion to approximate $(123). Good results are obtained
at low densities but the equation has no solution at
higher densities where the system is still fluid.

Finally, ‘'we mention the work of Lee et al. (1968, 1969,
1971) who have investigated the possibility of using a
generalization of the SA

_ 2(123)g(124)g(134)g(234)
8(1234) = o )2 (13)2(10)2(23)g (20)2(39)

together with (6.1), for 2 =3, to determine g(123). The
resulting values of g(123) may then be used with (6.2) to
determine g(12). This procedure yields excellent re-
sults for the hard-sphere virial coefficients and for the
hard-sphere g(») at low densities. However, the pro-
cedure is computationally so complex that it is unlikely
to be a practical method of determining g() at high
densities.

(6.9)

C. Percus-Yevick theory

In Sec. I, the direct correlation function, c(r), was
defined by the OZ relation.

n(12) =c(12) +p fh(13)c(23)d?3, (6.10)
where 2(r) =g(») ~1. In Sec. IV.C, the expansion
y) =D P"y,0), (6.11)
n=0

where g(r) =e (¥)y(r) and e () =exp{-pu)}, was given.
We have seen that y,=1,

9,0r) =c,(7), (6.12)
and

9,07) =dy () +2d,(r) + %{cg(r) vd o)) (6.13)
Substitution of (6.11) into (6.10) gives

ctr) =2 Pyalr), (6.14)
where

Yol#) =f () =F () y,) (6.15)
and

7,0) =f ")y, o). (6.16)
Thus, at low densities

ctr)=fr)ywr). (6.17)

At higher densities, (6.17) is not true. For example,

val) =F 0)3) + 3 {e30) +a )} (6.18)
Thus, in general
cr)=f@)ywr)+d@r). (6.19) .
At low densities
40) = 30° [ frufufufuesnd FydFyre e . (6.20)
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For hard spheres of diameter d, f(r)=-1 for » <d, and
is zero otherwise. Thus, for hard spheres a particular
configuration of molecules 1, 2, 3, and 4 makes a con-
tribution to the integral in (6.20) only if 7 ,,, #,,, #,; and
7,, are all less than d and if 7, is greater than d. This
is an unlikely configuration and thus we would expect
d(r) to be small for hard spheres. For other potentials
the situation is less clear.

In any case, we can adopt (6.17) as an approximation
at all densities. Equation (6.17) is the Pevcus—Yevick
(PY) approximation (Percus and Yevick 1958). Substitu-
tion of (6.17) into (6.10) yields the PY integral equation.

y(12)=1+p ff(13)y(13)[e(23)y(23) ~1d%,.  (6.21)
If we substitute (6.11) into (6.21) we find that y,=1,

y,(r) =c,(r), and
Y. () =d;(r) +2d,(r). (6.22)

Thus, as we would expect, y, and y, are exact. Hence,
B and C will also be exact in the PY theory.
It is instructive to define '

Nir ) =p fh(13)c(23)d T (6.23)

N(r) is the indirect part of the total correlation function,

k(). From (6.10) and (6.19) we see that
y»)=1+N@) +d) (6.24)

so that we could also state the PY approximation as
yr)=1+N(). (6.25)

Baxter (1967b) has shown that, in the PY theory, the
pressure, calculated from

NZZT =1 - 4mp f ) 7% (r)dr +2mp fo v ey r)dr

+ 21112p fow kz{ﬁé(kﬂln[l—pé(k)]}dk, (6.26)

where ¢(k) is the Fourier transform of ¢(r), is the same
as the pressure obtained by integrating the compressi-
bility equation.

Further, Baxter (1968a) has also shown that if ¢(») =0
for » <R, the OZ relation can be rewritten as

"R
rer)=-Q) +2m0 [ Q' (IR(s —7)ds, (6.27)

and

rh(r)=-Q'(r) +21p fR o -s)h(lr -s|)Q(s)ds, (6.28)

V]

for all » >0, where (») is a new function which satis-
fies

Q) =0, (6.29)

for all » >R, whose value can be determined by solving
(6.27) and (6.28). The function @‘(r) is the derivative of
Q (r). Baxter also showed that the compressibility equa-
tion can be written in the form

o (22) ~t@ow,

— (6.30)
B
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where

Q) =1-27p fexp{iE-?}Q(r)dr. (6.31)
Note that the compressibility is always positive. If the
potential has a finite range, R, the PY ¢ (») exactly
satisfies the condition ¢(¥) =0 for » >R.

The advantage of Baxter’s formulation is thatif ¢(»)and
h(r) are desired in the range 0<7» <R,,, then (6.27) and
(6.28) need be considered only within this range whereas
if (6.10) is used it is necessary to do the calculations
over 0<7<2R,, . Baxter (1967a) has given an alterna-
tive formulation of the OZ equation which is valid when
c(»)=0 forr>R.

1. Solution of the PY equation for hard spheres
For hard spheres the PY theory requires that

c(»)=0, r>d (6.32)
and

Wr)==1, r>d. (6.33)
Thus, putting R=d, we have from (6.28)

Q'(s)=as+b (6.34)
or

Q(s)= %a(sz— 1)+b(s-1), (6.35)

where s=7/d. Substitution of (6.34) and (6.35) into (6.28)
requires that

a=(1+2n)/(1-n)?
and
b=-31/2(1-n)?,

where 1= npd?/6. Substitution of these results into
(6.27) yields -

(6.36)

(6.37)

—c(s)=y(s)=a® - 6n(a+Db)>s+ % na®s®, »<d
c(s)=0, r>d. (6.38)
Thus, in the PY approximation
1+n/2
d)= ——= . 6.39
$d)= T (6.39)

We now have enough results to calculate the equation of

state. The pressure equation yields
K,% =1+4ny(d)
Lezesr (6.40
while the compressibility equation yields
(%), o
- n__T((11+_21;7))2 , (6.41)

Thus, the compressibility equation of state is
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PV Llin+n?

NET = T (6.42)

These results were obtained earlier by Wertheim (1963,
1964) and Thiele (1963) by a direct solution of (6.21).
We have seen in Sec. V.A. that (6.4) also results from
the scaled-particle theory (SPT). One should not con-
clude that the SPT and PY theory are identical. They
give different results for two-dimensional hard discs.

As may be seen in Fig. 16, Egs. (6.40) and (6.42) are
in good agreement with the simulation results. This is
particularly true for the compressibility équation of state.

The virial coefficients which result from (6.40) and
(6.42) are listed in Table XIII. As we have pointed out
already, B and C are exact. The agreement of the high-
er virial coefficients is good.

Equations (6.40) and (6.42) may be integrated to obtain
the free energy. The result is

A 67
W-3ln7\—1+lnp+21n(1—7’))+(1—_7) N (6.43)
for the pressure equation of state, and
A 3 2-1
W =3lnX —1+1np-—1n(1 —T])+ '—2—17 (_].T;]_)—z , (6.44)

for the compressibility equation of state. In (6.43) and
(6.44)

A=h/(2TmkT)*/ 2. (6.45)

It is worth noting that the CS equation of state (Carna-
han and Starling, 1969), which was mentioned in Sec.
V.A., can be obtained from

pv .\ _1( bV E(.P.K)
<NkBT es 3\NeT ),  3\N&T ),

where the subscripts p and ¢ indicate that the PY pres-
sure and compressibility hard sphere equations of state
are used. -

We can solve (6.28) for hard spheres by letting f(s)
=sy(s) and changing variables in the first integral on
the right-hand side. Thus, for 1<s<2,

(6.46)

f(s)=s+12n jsf(t)Q(s —Ndt - 1277}(;1 (s =D)Q(Ddt.
‘ (6.47)

Equation (6.47) may be solved by differentiating three
times to obtain the linear third-order ordinary differen-
tial equation

o 6n_ _, 18 12n(1 + 2n) _
f (S)+ 1_,’7 f (S).+(1"n)2 f(S)— (l_n)z f(s)—()-
_ (6.48)
The solution of (6.48), for 1<s<2, is
Sg(s)=sy(s)=i: A, exp{m,s}, (6.49)
=0 )

where the m, are the three solutions of the cubic equa-
tion,

18712 12n(1+2n) _
T e = (6.50)

which may be solved analytically. It is straightforward
to show that y(7) and its first two derivatives are con-

6n
3 2
m+1_nm+(
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pd3=0.9 .

r/d

FIG. 17. y () of hard spheres at pd®=0.9. The points give
the simulation results of Barker and Henderson (1971a,1972)
and the solid line gives the semiempirical results of Verlet
and Weis (1972a) and Grundke and Henderson (1972) and the
broken curve gives the PY results.

tinuous at »=d. These conditions may be used to deter-
mine the 4,.

Wertheim (1963,1964), Chen et al. (1965), and Smith
and Henderson (1970) have obtained these results by a
different method. Smith and Henderson have obtained
y(7) analytically for 0< < 5d. Throop and Bearman
(1965) have given numerical results for g(#). Recently,
Perram (1975) has developed an efficient numerical
method for calculating g(#), based upon differential
equations similar to (6.48), which works for arbitrarily
large 7.

The PY values of y(»), g(7), and c(») for hard spheres
are plotted in Figs. 17 and 18. The PY values of g(7)
are in good agreement with the simulation results ex -
cept near »=d where they are somewhat low. There are
no machine simulations for ¢(#) or for y(#) for »<d.
However, the PY results can be compared with accurate
semiempirical expressions which will be discussed in

|
-
BRE

FIG. 18. Direct correlation function of hard spheres at pd?®
=0.9. The solid curve gives the semiempirical results of
Grundke and Henderson (1972) and the broken curve gives the
PY results. The curve is plotted on a sinh™! scale. This
pseudologarithmic scale combines the advantages of a logarith-
mic scale with the ability to display zero and negative quanti-
ties.
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Sec. VI.C.4 The PY expression for c(7) is quite good
but is everywhere too negative. The PY expression for
y(7) for »<d, and hence d(7), is exceedingly poor (Hen-
derson and Grundke, 1975). Stell (1963) has examined
the PY theory for one-dimensional hard rods. He found
that the PY results for g(#) and ¢(#»), and, hence, the
thermodynamics, were exact but that the PY result for
v (7) for »<d and for d(») were poor.

The fact that ¢(#) does not equal the PY expression
for »<d is of interest because it is not uncommon to
read the statement that the PY c(7) is exact for hard
spheres for »<d [see, for example, Eq. (2) of Croxton
(1974a)]. Although the PY ¢(#) is a good approximation
in this region, the statement is false. Indeed, Stell
(1963) has shown that if ¢(7) were equal to the PY ex-
pression inside the core but were not zero outside the
core, the radial distribution function (RDF) generated
by the Ornstein-Zernike equation would not be zero in-
side the core. The point is that although the diagrams
in d(7) are cancelled by diagrams in y(») when »<d,
there still remain diagrams in y(»), which are not of
the PY-type, and which contribute inside the core.
These diagrams are convolutions involving diagrams
which appear in d (7).

The PY g(7) becomes negative for pd®= 1.18 so that
the PY results for fluid hard spheres are physically un-
acceptable for densities greater than this. It is clear
that the PY theory is unphysical at high densities be-
cause (6.40) and (6.42) predict a fluid phase at densities
greater than close-packing. If we wished, we could re-
gard this as an indication of the solid-fluid phase trans-
ition, but it is not a theory of the phase transition any
more than the breakdown of the BG theory is a theory of
this transition.

Lebowitz (1964) has solved the PY equations for hard-
sphere mixtures. For the compressibility equation, he
obtains the same result as that obtained from the SPT,
Eq. (5.28). Again an accurate equation of state for hard-
sphere mixtures can be obtained from (6.46). Leonard
et al. (1971) have obtained results for the RDF’s of a
binary hard-sphere mixture and Perram (1975) has de-
veloped a numerical method for obtaining the RDF of a
hard-sphere mixture with more than two components.

The PY theory has been applied to nonadditive hard-
sphere mixtures where d,, #(d,, +d,,)/2 (Lebowitz and
Zomick, 1971; Penrose and Lebowitz, 1972; Ahn and
Lebowitz, 1973,1974; Melnyk et al., 1972; Guerrero
et al., 1974). This problem is not as esoteric as one
might think. The solution to this problem might be of
interest for the perturbation theories discussed in Sec.
VII. Theparticular case d,,=d,,=0, d,,#0 is also of
interest because it is isomorphic with a model of the
critical point (Widom and Rowlinson, 1970).

2. Results for other systems

The PY theory has been applied to the square-well po-
tential, with a cutoff at A=1.5, by Levesque (1966),
Verlet and Levesque (1967), Tago (1973a,b,1974), and
Smith et al. (1974). Although this potential is not very
realistic, it is a very useful model potential. It is a
relatively short-range potential and, as we see in Sec.
VII, such potentials tend to expose defects in theories.

The PY g(7) for the SW potential is plotted in Fig. 19
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0 ] |
1.0 1.5 2.0 25

FIG. 19. ‘RDF of the square-well fluid, with A=1.5, at po?
=0.8. The points give the MC results of Barker and Henderson
(1971a,1972) and Henderson, Madden, and Fitts (1976) for the
square-well fluid at Be =0 (hard spheres) and Be=1.5, respec-
tively. The curves give the PY results of Smith et al. (1974).

for p*=0.8 and Be=0 and 1.5. At Be=0 (high tempera-
tures), the PY g(7) for the SW potential is just the PY
hard-sphere g(»), and is in reasonably good agreement
with the simulation results. At Be=1.5 (in the liquid

o

clr)

FIG. 20. Direct correlation function of the square-well fluid,
with A=1.5, at po®=0.8 calculated from the PY theory by Smith
et al. (1974).
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PV/NkgT

FIG. 21. Equation of state of the square-well fluid, with
A=1.5, at po®=0.6 and 0.85. The points, denoted by O and e,

give the simulation results of Rotenberg (1965) and Alder et al .

(1972), respectively, and the curves give the PY results cal-
culated by Smith et al. (1974). The letters P, C, and E indi-
cate, respectively, that the isochore was calculated using the
pressure, compressibility, or energy equation.

region, near the triple point), the PY g(#) is quite poor
for »<1.50. The PY c(7) is plotted for the same states
in Fig. 20. There are no simulation results for com-
parison. However, we would expect the PY ¢(7) to be

opE—r—T""T T T T T T

FIG. 22. Compressibility of the square-well fluid, with
A=1.5, at po®=0.6 and 0.85. The PY, MSA, and HNC results
were calculated by Smith et al . (1974), Smith et al . (1976), and
Henderson, Madden, and Fitts (1976).
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Ui/Ne

g

Be
FIG. 23. Internal energy of the square-well fluid, with A
=1.5, at po®=0.6 and 0.85. The points give the MD results of
Alder et al . (1972) and the curves give the theoretical results
calculated by the same authors as cited in the caption of Fig.
22,

appreciably in error at the lower temperature. The
thermodynamic properties are plotted for p*=0.60 and
0.85 in Figs. 21-24. The pressure and compressibility
equation results are not satisfactory at the low temper-
atures and high densities characteristic of the liquid
state. On the other hand, the energy and, to a lesser
extent, the heat capacity, calculated by differentiating
the energy, are reasonably satisfactory. This is partly
due to the fact that the pressure and compressibility,
calculated from the pressure and compressibility equa-

1.5 1 T T T T T 1 1

Cij/Nkg

FIG. 24. Internal heat capacity of the square-well fluid, with
A=1.5, at po®=0.85. The points give the MD results of Alder
et al . (1972) and the curves give the theoretical results calcu-
lated by the same authors as cited in the caption of Fig. 22.
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tions, respectively, are small residues remaining after
the cancellation of much larger positive and negative
contributions. In contrast, there is much less cancella-
tion in obtaining the energy from the energy -equation.
Because of the relatively satisfactory results for the
energy, it is not surprising that the energy equation
values of the pressure are better than the pressure and
compressibility equation values.

The PY theory has been applied to the 6-12 potential
by several authors (Broyles, 1961b; Broyles ef al.,
1962; Verlet, 1964; Verlet and Levesque, 1967; Levesque,
1966; Throop and Bearman, 1966a; Mandel and Bearman,
1968; Mandel et al., 1970; Bearman ef al., 1970; Theeu-
wes and Bearman, 1970; Watts, 1968, 1969a, c, d; Barker
et al., 1970; Henderson ef al., 1970; Henderson and
Murphy, 1972). Only the last three references include the
energy equation of state results. The RDF is plottedin
Fig. 25. The agreement with the simulation results is
fairly good except inthe neighborhood of the first peak.
This error in the neighborhood of the first peak produces
large errors in the pressure and compressibilty equations
of state. However, the energy equation of state is quite
good. The PY results for the equation of state at p*
=0.85 are plotted in Fig. 26. The PY energy equation of
state results are listed in Tables VI to IX. The agree-
ment with the simulation value is good for the energy
equation. The critical density is fairly low. Thus, it is
not surprising that the agreement with simulation results
is good even if the PY pressure and compressibility
equations of state are used.

Throop and Bearman (1966b, 1967) and Grundke, Hen-
derson, and Murphy (1971,1973) have solved the PY
equations for a mixture of 6-12 fluids. The calculations
of Grundke et al. show that good results for the thermo-
dynamic properties are obtained if the energy equation
is used. .

The PY theory works well for hard spheres. How-
ever, the effect of attractive forces on the RDF at high
densities is not satisfactorily described by the PY the-
ory. The use of the energy equation minimizes these
problems for potentials like the square-well and 6-12
potentials. However, it is important to note that the

g 2|

rlo

FIG. 25. RDF of the 6—12 fluid near its triple point. The
points give the MD results of Verlet (1968), and the curve gives
the PY results of Henderson et al. (1970).
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FIG. 26. Equation of state of the 6—12 fluid. The points give
the simulation results (Verlet and Levesque, 1967; Verlet,
1967; Levesque and Verlet, 1969). The three curves labeled
C, P, and E give the PY results calculated by Henderson ef al .
(1970) using the compressibility, pressure, and energy equa-
tions, respectively.

energy equation will not always be the preferred route
(Watts, 1971). '

For molecular fluids with non-spherical interactions,
the PY equation results from the substitution of the PY
approximation,

(715,82, Q) = f (715,84, Qz) Y7135 Q45 Qz) s

into the Ornstein-Zernike equation

(6.51)

(7135 92y, Q) = (715, 25, 2,)
+p f (7155 Ry ) (T gy Ry ) ATy, .

(6.52)
Ben-Naim (1970) has proposed an approximate form of
the PY equation for molecular fluids and has applied it
to water. He approximates the function y(7,,, Q,, 2,),
where , and Q, are the orientation variables, by

V(7125 21, 25) = ¥(712) (6.53)
so that
g('rlz’ Q, Qz) = exp {- Bu(TIZ’ Q,, 92)}31(1’12) . (6.54)

Equation (6.53) can be expected to be valid only at low
densities or for systems in which the non-spherical in-

_ teraction is weak. It is unlikely to be of use for more

general situations. At low densities the density expan-
sions are available. We shall see in Sec. VIL.E.3 that
perturbation expansions are available for weak interac-
tions. Thus, (6.53) is probably not of major value.
Chen and Steele (1969, 1970,1971) have applied to
PY equation to diatomic fused hard spheres. They eR-
panded g (7,5, ,,8,) in spherical harmonics and ob-
tained a set of coupled integral equations which can be
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solved if the harmonic expansion is truncated. The re-
sults of the thermodynamic functions of fused diatomic
hard spheres are almost indistinguishable from the PY
hard-sphere results when plotted as functions of n=po,,,
where v, is the volume of a molecule. There are no
simulation results for comparison. However, inspec-
tion of the virial coefficients in Table XV and reasoning
by analogy with the prolate spherocylinder SPT results
in Sec. V.B, leads one to expect that, at constant 7,
pV/NET increases as [/c increases, where [ is the sep-
aration of the centers of the two spheres whose diameter
is 0. Thus, it seems plausible that the results of Chen
and Steele become increasingly in error as /o increases.
Whether this is a feature of the PY theory or their method
of solution is not known.

Chandler and Andersen (1972) and Chandler (1973) have
developed an integral equation for the correlation func-
tions of a fluid whose molecules are composed of several
(not necessarily linear) interaction sites, usually taken
to be fused hard spheres. Chandler and Andersen focus
their attention on the site—site radial distribution func-
tions. The derivation of their equation is based on ar-
guments similar to those used in obtaining the PY the-
ory. In fact, it is just the PY equation when applied to
central potentials. They call their model the reference
interaction site model (RISM). Lowden and Chandler
(1973,1974) have applied the RISM to several systems
‘of fused hard spheres. Fordiatomic fused hard spheres,
the theory seems less satisfactory than is the PY theory
for hard spheres. For the values of I/o which they con-
sider, the difference between the pressure and com-
pressibility equations of state increases as /o increases.
More seriously, although the compressibility value of
pV/NRT at constant 1, increases as [/o¢ increases (as
one expects), the pressure value of pV/NET at constant
1, decreases as I/o increases, at least for the values
of I/c considered by Lowden and Chandler. This seems
to imply that although the compressibility equation of
state remains accurate as I/o increases, the pressure
equation result becomes increasingly inerror. Interms
of the correlation functions, this may mean that, al-
though the area under the RDF is given reasonably ac-
curately in the RISM, the pair correlation function as a
whole becomes less reliable as I/c¢ increases. Even if
these comments prove valid, the RISM is the only theo-
ry that has been applied to complex molecules composed
of fused hard spheres and is a valuable contribution to
the theory of molecular fluids.

As mentioned earlier, almost all work on the PY the-
ory, and theories of this nature, has been based on the
assumption of pairwise additivity. However, Rushbrooke
and Silbert (1967), Rowlinson (1967), Casanova et al.
(1970), and Dulla et al. (1971) have discussed the incor-
poration of three-body interactions into the PY theory.
They seek an effective pair-potential which will give the
correct RDF. Barker and Henderson (1972) discuss this
approach in detail and point out that this effective pair-
potential may be very difficult to calculate theoretically.
Probably it is better to use Eq. (4.61) together with the
superposition approximation.

Chihara (1973) has recently formulated a quantumver-

sion of the PY equation. - In addition, there have been
several applications of the PY equation in variational
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studies of the ground state of liquid helium. Murphy and
Watts (1970) give a useful summary of such calculations.

3. Extensions of the PY theory

The PY theory works quite well for hard spheres.
However, as attractive forces become important the PY
theory becomes less accurate. We have seen that, in
general

()= fPy(») +dr).

If d(») is known, an integral équation can be obtained by
substituting (6.55) into the OZ equation. Thus

(6.55)

y(12)=1+4d(12)

+ pf [ £(18)3(13) + d(13) [e(23)y(23) — 1]d T, .

(6.56)

If an exact expression for d(») were available, the re-
sulting integral equation would be exact.

In the PY theory, d(»)=0. Since this PY approxima-
tion to d(7) is valid in the limit of low densities, we
might expect that (6.20) might be useful (Stell 1963). We
could even generate more elaborate approximations by
replacing the f;; by %;; or c;; or some of the f;; by i,
and others by c;; (Stell, 1963; Verlet, 1965; Rowlinson,
1966). Green (1965) and Francis et al. (1970) have sug-
gested combining this type of approach with the further
approximation of neglecting d(13) in the integral in
(6.56). Any of these approximations would yield the
correct y,(7) and D. However, thus far none of them
has been of much value at high densities.

Percus (1962) has obtained the Percus-Yevick theory
by means of a functional Taylor series expansion trun-
cated at first order. In principle, this method provides
a systematic scheme for extending the Percus-Yevick
or for generating other approximations. Verlet (1964)
has taken the Taylor expansion to second order and ob-
tained a new set of integral equations, which he calls
the PY 2 equations. The PY 2 theory is not a fully syste-
matic extension of the PY theory. An approximation for
£ (123) must be introduced. Usually, an approximation
to g(123) which has the unappealing property of being
asymmetric in 7,,, 7,;, and 7,; is used. In any case,
the PY 2 theory gives y,(») and D correctly. For-hard
spheres, the PY 2 theory gives results which are better
than the PY results (Verlet and Levesque, 1967). How-
ever for systems with attractive forces, the improve-
ment over the PY results at high densities does not
appear worth the extra computational effort involved in
the PY 2 equations.

Allnatt (1966), Wertheim (1967), and Lux and Miinster
(1967,1968) have proposed other extensions of the PY
theory. Most of these theories give improved results
for hard spheres (although there are exceptions). How-
ever, it is doubtful that any of these methods will be
useful for the 6-12 or realistic potentials because of the
lengthy computations involved.

Recently, Croxton (1972,1973,1974a,b, c) has proposed
an extension of the PY theory which he claims provides
a theory of the solid-fluid phase transition for hard
spheres. We find Croxton’s arguments ad koc and hard
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to follow. However, it appears that he approximates
d(7) by an infinite sum of integrals of the form of (6.20).
The factor of 1/2 in (6.20) is missing from Croxton’s
expression and the factors which Croxton assigns to the
higher-order terms in his series are not justified
clearly. However, let us ignore this. Croxton then re-
places the integrals in his series by integrals only in-
volving the field points. For hard spheres this is justi-
fied if the integration variables are restricted to the
common volume of two spheres of diameter d which are
separated by a distance 7,,. Croxton does not do this,
but instead uses a spherical region of radius R. Clearly,
R should be a function of 7,,. However, for simplicity,
Croxton assumes R to be independent of 7,,. This may
not be unreasonable as the PY theory can be obtained
from the assumption that R=d, independent of the value
of 7,,. Croxton finds that if he makes a particular (but
approximate) choice of the diagrams which are included
in his expression for d(») that he can sum the series.
Further, he assumes, incorrectly, thatfor hard spheres,
c(7) is equal to the PY expression for »<d. Onthisbasis
he finds that 8p/8p can equal zero and that it is possible
to choose R so as to make his predicted “phase transi-
tion” occur at the correct density. In view of the many
approximations and unclear arguments in this approach,
this cannot be regarded as a theory of the hard-sphere
phase transition. However, it is indicative. The ap-
proach might be worth pursuing and refining.

4. Semiempirical expressions for the hard-sphere
correlation functions : :

Verlet and Weis (1972a) have used the PY g (7) as the
basis of a parameterization of the simulation g(#). They
write

gr/d,pd®) =0, r<d
=goy(¥/d’, pd’?)"

+(A/7) exp{m(r —d)} cos{m(y - d)}, r>d.
(6.57)

The purpose of the various terms is quite simple. The
purpose of A is to raise the value of g (7) at contact.
The PY and simulation g (#) are quite close for large 7
and hence the correction term is exponentially damped.
The correction must change sign and be negative for
7~1.2d and, therefore, the cosine is included. Pre-
sumably, the purpose of the » ™! term is to aid in the
computation of the Fourier transform. The purpose of
d’<d isto compensate for the fact that the PYg (») is' slight-
ly out of phase with the simulation g () at large ». Ver-
let and Weis find that '

d’ 3_ 77

(7)-1-16
is satisfactory. Thus, A and m, respectively, are cho-
sen to make the pressure and compressibility equation
results agree with the CS equation of state. Verlet and
Weis (VW) give analytic approximations for A and m.
However, it is no more difficult to make the agreement
with the CS equation of state exact and obtain numerical
values for A and m. The resulting g (») is plotted in

(6.58)
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Fig. 17 and is seen to be in close agreement with simu-
lation RDF,

Although this parametrization is very convenient, it
should not be thought of as a substitute for the simula-
tion studies of the RDF. Verlet and Weis state that the
above g () differs from the simulation g (») by at most
0.03. This is about three times the statistical error in
the simulation results and may lead to errors in some
applications.

Grundke and Henderson (1972) have used the VW g (»)
to compute the Fourier transforms %(2) and ¢(2). Their
results, almost entirely analytic, are given in Hender-
son and Grundke (1975). The direct correlation function
canbe obtained from é(k). The resulting c(#) is compared
withPY ¢(#) in Fig. 18. The more accurate Grundke—Hen-
derson (GH) c(7)is everywhere more positive thanthe PY
c(»).

In addition, Grundke and Henderson (1972) have ap-
proximated y(7) for 0 < 7 < d by making use of the rela-
tions, valid only for hard spheres,

Iny(0)= gu - InpA®, (6.59)

where u is the chemical potential and A=#/(27mkT)*/?,
and .

3 1n y(7)

o =~ 6ny(d) .

r=0

(6.60)

Equations (6.59) and (6.60) are due to Hoover and Poirier
(1962) and Meeron and Siegert (1968), respectively.
Grundke and Henderson (1972) give generalizations of
(6.59) and (6.60) for hard-sphere mixtures. The pro-
cedure of GH is to approximate In y(7), for »<d, as a
cubic polynomial which is fit to (6.59) and (6.60) and to
the values of y(d) and y’(d) computed from the WV g (7).
Their results for y(»), for »<d, are compared with the
PY results in Fig. 17. The PY y(7) is enormously in er-
ror for »<d. The low values of the PY g (7) at contact
are the early symptoms of this failure. Normally, only
r=d is of interest and these errors are of no conse-
quence. However, if Egs. (6.59) or (6.60) were used to
compute the hard-sphere equation of state, very poor
results would be obtained. In addition, we shall see in
Sec. VII.D.3 that some perturbation theories require the
hard-sphere y(7) for » <d, so that reliable results are
essential.

These more reliable values of y(#) and c(7) .can be
used to compute d(7) for hard spheres. The GH d(7)
plotted in Fig. 27. The PY approximation, d(»)=0, is
very poor inside the core. The reason why the PY the-
ory works so well for hard spheres, despite the fact that
d(»)=0 is a poor approximation, is due to the fact that
the large errors in d(v») for small » and high densities
almost exactly cancel the large error in y(7) so that
reasonable values of ¢(7) and, thus g(7), result. Al-
though one prefers an approximation to d(») which is
reliable for all #, it is only essential, for hard spheres
at least, that the approximation be valid in the region
r~o0. For this region d(»)=0 is a fairly good approxi-
mation for hard spheres.

Henderson and Grundke (1975) have obtained approxi-
mate, but accurate, expressions for the hard-sphere
d(¥) and d’(7) at »=0 and accurate ad hoc expressions
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FIG. 27. The function d () for hard spheres at pd®=0.9. The
constant d [not to be confused with the function d ()] is the
hard-sphere diameter. The curve gives the semiempirical re-
sults of Grundke and Henderson (1972). The curve is plotted on
a sinh™! sinh™! scale.

for d(») and d’(¥) for hard spheres at contact. They
approximate Ind(7) by a cubic polynomial and fit the
coefficients to these expressions to obtain a useful para-
metrization of d(») for hard spheres.

Waisman (1973a) has obtained an analytic solution of
the mean spherical approximation for the Yukawa poten-
tial. His result could be used to parametrize the hard-
sphere c(r). We shall discuss his result in the next sec-
tion.

D. Mean spherical approximation

We recall that (6.17) is the PY approximation. For
large 7, (6.17) becomes

c(r)= - pu(r).

Lebowitz and Percus (1966) have suggested using (6.61),
not just for large », but for all 7 in the region where
the potential is attractive. This approximation, called
the mean sphevical approximation (MSA), has been ap-
plied almost exclusively to potentials with a hard core
of diameter o. For such potentials, the MSA is speci-
fied by

(6.61)

ar)=-=1, r<o

and " (6.62)
c(7) = - Bu(r), ‘

together with the OZ equation. The coefficients in the
MSA density expansion cannot be expressed in terms of
integrals involving the Mayer f function. Moreover,
the MSA does not become exact in the limit of low den-
sities, and so does not even given B exactly.

One advantage of the MSA is that it can be solved an-
alytically for a fairly wide variety of systems. If u(»)=0
for >R, the Baxter (1968a) form of the OZ equation
can be used with the MSA without additional approxima-
tion. For hard spheres, the MSA is justthe PY approxi-

r>o,
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mation. Waisman and Lebowitz (1970,1972a,b) have
solved the MSA for changed hard spheres. Waisman
(1973a) has solved the MSA for hard spheres with a
Yukawa tail. Waisman’s solution involves six parame-
ters which must be determined by solving six simulta-
neous equations and so his solution is not immediately
useful. Henderson et al. (1975) have obtained series
expansion of Waisman’s solution in powers of both p and
Be. Hdye and Stell (1975a) have simplified Waisman’s
solution. Recently, the MSA has been solved for a mix-
ture of hard spheres with Yukawa tails (Waisman, 1973b)
and for hard spheres with a tail consisting of two Yuka-
wa tails (Waisman, 1974).

We will not attempt to review these applications of the
MSA. Instead, we will examine the application of the
MSA to the square-well potential and to dipolar hard
spheres as illustrative examples of the application of
the MSA to spherical and nonspherical potentials.

1. Results for square-well potential

Smith et al. (1976) have solved the MSA for the square-
well potential with A=1.5. The MSA g () for the SW po-
tential is plotted in Fig. 28 for p*=0.8 and Be=0and 1.5.
At pe=0 (high temperatures), the MSA g (7) is just the
PY hard-sphere g(#). It is in reasonably good agree-
ment with the simulation results. At ge=1.5, which is
a liquid state near the triple point, the MSA g (7) is
quite good for »<1.50. To some extent, this good agree-
ment is due to a cancellation of errors because the hard-
sphere MSA (or PY) g (#) is too low near contact. Thus,
the MSA correction to the hard-sphere g(7) due to the
attractive forces is underestimated for »~o. Even so,
the results are better than the corresponding PY re-
sults in Fig. 19. The MSA c¢(7») values are plotted in

1.0 1.5 2.0

FIG. 28. RDF of the square-well fluid, with A=1.5, at po®
=0.8. The points give the MC results of Barker and Henderson
(1971a,1972) and Henderson, Madden and Fitts (1976) for the
square-well fluid at Be =0 (hard spheres) and Be=1.5, respec-
tively. The curves give the MSA results of Smith e al . (1976).
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Fig. 29. There are no simulation results for compari-
son. However, the MSA c(7) should be reasonably good.
Some MSA values for the thermodynamic properties
are plotted for p*=0.60 and 0.85 in Figs. 22-24. With
the exception of the heat capacity, the MSA results are
superior to the PY results where simulation results
are available for comparison. The simulation results
for the heat capacity are harder to obtain accurately
than are the other results, and may well have appreci-
able errors. Although there are no simulation results
for comparison, we believe the MSA values for the
compressibility in Fig. 22 to be quite good. Thermody-
namic properties calculated from the energy equation
should be better than those calculated from the other
routes. However, at the time of writing, pressures cal-
culated from the energy equation are not available so
that this conjecture cannot be tested.

2. Solution of the MSA for dipolar hard spheres

Wertheim (1971) has solved the MSA for dipolar hard
spheres, for which

W55y )=, 7, <0

=— (u2/7,°)D(1,2), 7,>0, (6.63)
where u is the dipole moment, and
D(1,2)=3(T‘L1.?12)()3‘2'?12)_-‘11.)3’2 (6'64)

and {1, and T, are unit vectors. If k(1,2)=n(r,, 2, )
is the total correlation function, where @, and §, are
the angular coordinates specifying the orientation of the
dipoles, we may define the projections

hs(r,5)= f n(1,2)dQ,de, , (6.65)

c(r)

FIG. 29. Direct correlation function of the square-well fluid,
with A=1.5, at po®=0.8 calculated from the MSA by Smith e al .
(1976).
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Bp(ry,) = g f D, 2)h(1, 2)dR,d%, , (6.66)
and

hp(ry,)=3 f a1,2)r(1,2)d9, d9, (6.67)
where

A, 2)=1, 7, . (6.68)

The functions D(1,2) and A(1,2) have the property that

fD(l,z)dnlszzo, (6.69)

sz(l,Z)d91d92=—§- , (6.70)

f A(1,2)d9,d0,=0, (6.71)
and

f A%(1,2)d2,dQ,=1/3. (6.72)
Further D(1,2) and A(1,2) are orthogonal, i.e.,

fD(l,Z)A(l,Z)dQldﬂzo (6.73)

Wertheim (1971) showed that, in the MSA,
n(1,2) = hg(r)+hp(1,2)D(1,2)+ 7,(1,2)A(1,2),
(6.74)

where hg(7,,) is just the PY hard-sphere result and
hp(1,2) and 7,(1,2) can be calculated easily from Zg(7,,).
In contrast to kg, k, and k, are functions of gu? as well
as 7.

The thermodynamic properties can then be calculated
from

PV l 2[ -3 -
VT =1+4nys(0) - 3 Npp 7 3hy(»)dT, (6.75)
3p -
kBT<—> =1+p [ nsnat, (6.76)
e /)r
or
Ui=—%Npu2fr'3hD(r,Bu2)d'fo (6.177)

Thus, in the MSA the compressibility equation results
for dipolar hard spheres are equal to the PY hard-
sphere compressibility results. The difference in the
pressure or energy equation results from the hard-
sphere results are determined by %,(1,2). On the other
hand, the dielectric constant, €, is determined by
n,(1,2), through

-1)(2e+1 .
(—e—;%i) =985 (6.78)
where
y=(41/9)pBu?, (6.79)
gk=1+%-pth(r,;3u2)dF. (6.80)

Patey and Valleau (1973,1974,1976) and Verlet and
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FIG. 30. Pair distribution functions of dipolar hard spheres

at pg®=0.9. The points given by @ and O give the results of
Barker and Henderson (1971a,1972) and Verlet and Weis (1974)
for Bu?=0 (hard spheres) and pu?=1, respectively. The solid
and broken curves give the MSA and LEXP results, respec-
tively, for u?=1. For g¢(r), the MSA and LEXP results are
identical.

Weis (1974) have made computer simulations of the di-
polar hard-sphere system. They find that the MSA ther-
modynamic properties are poor., This is because the
MSA results for kg(v), hp(r, Bu?), and h,(r, Bu?) are
unsatisfactory. This may be seen in Fig. 30. Although
hg(7, Bu?) is very nearly independent of gu?, it does
vary with gu2—otherwise the compreéssibility equation
of state would have no gu? dependence. Most of the
error in the MSA g4(»)=hg(»)+1 is the error in the PY
hard-sphere result. The MSA results for %,(7, Su.%) and
h,(r,Bu?) are too small at contact. Just as for the SW
potential, the MSA underestimates the correction to the
hard sphere %(1,2).

For the dielectric constant, Wertheim (1971) obtained

_(1+49H(1+ 8y
€= —aszEr (6.81)
where £ is determined from
_17(+482 (1-2£)
v=3 | (1=2e0 - T o) (6-82)

The parameter & must be less (usually much less) than
1/2. Equation (6.81) is an improvement upon the Clau-
sius-Mossotti result

(e-1)/(e+2)=1y,

which has an incorrect singularity at y=1, and the
Onsager (1936) result

(e -1)(2e+1)/9¢=1

which, as seen from (6.78) corresponds to g,=1 or
ha(7, Bu?)=0. Expanding, the MSA result for small y,
gives

(6.83)

€-1_ 15

S my-g e (6.85)
whereas the Onsager result gives

€—-1_ 5

<33 =y—-2y3+.... (6.86)

The coefficient 15/16 is known to be correct (Jepson,
19686).
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(6.84)

Recently, the MSA has been solved for mixtures of
dipolar hard spheres (Adelman and Deutch, 1973;
Sutherland et al., 1974; Isbister and Bearman, 1974).
The work of the latter authors is the most general since,
in this work, both the hard-sphere diameters and the
dipole moments of the components are unrestricted.

Blum and Torruella (1972) and Blum (1972,1973,1974)
have applied the MSA to systems of hard spheres with
more general charge distributions. The system of quad-
rupolar hard spheres is of some interest because quad-
rupoles appear to have much larger effects on the ther-
modynamic properties and structure than do comparable
dipoles (Patey and Valleau, 1975).

3. Extensions

The MSA is identical to the PY appi'oximation when
B=0. Andersen and Chandler (1970,1972) and Andersen
et al. (19'72) have suggested replacing (6.61) by

c(r) = cyg (r) = Bulr), (6.87)

for »>o0. In (6.87) cyg () is the hard-sphere direct cor-
relation function. If cyg (7)=0 for »>o0, then (6.87) is
just (6.61). However, if an accurate result for cyg(7) is
used, (6.87) will give very accurate results when g=0.
Andersen et al. refer to (6.87) as the optimized random
phase approximation (ORPA).

If we define

e(1,2)=g(1,2) - gys(1,2)
=- ﬁd)(l’z) )

where gyg(1,2) is the hard-sphere result, we can obtain
a good approximation to the ORPA results by adding the
MSA value for €(1,2) to the correct hard-sphere RDF.,
In the limit of low densities, €(1,2)=- pu(1,2), for
r>0, and so ¥(1,2) can be regarded as a renormalized
potential for »>o. For v <o, ¥(1,2)=0, of course. We
shall return to this idea of a renormalized potential in
Sec. VII.B and C. The resulting RDF for the square-
well potential, with A=1.5, is plotted in Fig. 31. At
Be=1.5, the ORPA g (#) is slightly worse at contact
than the MSA result because of the fortuitous cancella-
tion of errors in the latter. Note that the ORPA g (7)
retains the errors in the MSA result for »~1.50.

Andersen and Chandler (1972) have suggested the ex-
ponential (EXP) approximation

g(1,2)=gus(v) exp{e(»)}.

Equation (6.89) seems very attractive. In contrast to
the MSA, the EXP approximation is exact in the limit of
low densities and will produce the exact B.

The EXP result for the RDF for the SW potential with
cutoff at 1.50 is plotted in Fig. 31. For ge=1.5, the
EXP approximation is an improvement over the ORPA
results for »>1.5. For »=< 1.50, the EXP results are
somewhat worse than the MSA or ORPA results. On the
other hand, the EXP results are an improvement at con-
tact.

Even better results can be obtained if a linearized
version of the exponential approximation, suggested by
Verlet and Weis (1974), is used. This approximation,
which we will call the LEXP approximation, is

(6.88)

(6.89)
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FIG. 31. RDF of the square-well fluid, with A=1.5, at po?
=0.8. The points give the MC results of Barker and Henderson
(1971a,1972) and Henderson, Madden, and Fitts (1976) for the
square-well fluid at Be =0 (hard spheres) and fe=1.5, respec-
tively. The dotted, broken, and solid curvés, respectively,
give the ORPA, EXP, and LEXP results (Smith et al ., 1976).
For Be =0 all three approximations give the same result.

g(1,2)=gys(M{1+e(1,2)}. (6.90)

Equation (6.90) will not produce the correct results in
the limit of low densities but, as may be seen in Fig.
31, is an improvement over the MSA, ORPA,’ or EXP
approximations at high densities. !

Verlet and Weis (1974) have found that the EXP ap-
proximation is very poor for dipolar hard spheres.
However, they found the LEXP approximation to be
quite good for this system. From Fig. 30 we see that,
although the LEXP g4(#) is not improved over the MSA
result, the LEXP %,(») and 2,(7) are a considerable
improvement.

All of the applications of the MSA or its extensions
which have been considered thus far in this section have
been to potentials with a hard core. Blum and Narten
(1972), Narten et al. (1974), and Watts et al. (1972) have
considered extensions to systems with soft cores.
Aspects of the perturbation theory of Andersen et al.
(1972), which will be discussed in Secs. VII.C. 6 and
VII.D. 3canbe regarded as an extension of the MSA to sys-
tems with soft cores.

Finally, we mention the generalized mean sphevical
approximation (GMSA). The term was coined by Hdye
et al. (1974). However, the earliest work of this type
was that of Waisman (1973a) who solved the MSA for
hard spheres with a Yukawa tail and applied the solu-
tion to the hard-sphere system. In the GMSA, the
Yukawa tail is not a pair potential but rather the as-
sumed form for the direct correlation function outside
the core. The parameters in the Yukawa tail are cho-
sen to give thermodynamic consistency between the
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pressure and compressibility equations.

Hdye et al. (1974) have applied the GMSA to charged
hard spheres and dipolar hard spheres by solving the
MSA for charged hard spheres and dipolar hard spheres
with a Yukawa tail and adjusting the parameters of the
Yukawa to give reasonable and consistent results for
charged or dipolar hard spheres from the energy, pres-
sure, and compressibility equations.

E. Hyper-netted chain approximation

If the function N(7), defined in Eq. (6.23), is expanded
in powers of the density, it is found that

N@#) = pe,(7)+ pFds(¥) + 2d,(n) ] +. .. . (6.91)

Comparison with (4.44) and (4.45) shows that in lowest
order (6.25) is valid. If we assume (6.25) to be valid in
all densities we are led to the PY theory. However, we
can compare lny(»), as well as y(#), with N(»). Com-
parison of (6.91) with (4.47) and (4.48) shows that, in
lowest order

Iny(»)=N(¥). (6.92)

" Let us assume (6.92) to be valid at all densities. Equa-

tion (6.92) is called the hyper-netted chain (HNC) ap-
proximation or, less frequently, the convolution ap-
proximation. Substitution of (6.92) and the definition of
h(7) into the OZ equation gives the alternative state-
ment of the HNC approximation

c()=f()y(@) +3(r) - 1-1Iny(r). (6.93)
Thus, in the HNC approximation
d7)=y(#r)=-1-Iny(r). (6.94)

It is of some interest to note that d(») given by (6.94)
can never be negative. Substitution of (6.93) into the OZ
equation gives the HNC integral equation

Iny(12)=p [ [ £(13)y(13)+ 3(13)- 1 - Iny(13)]

x [e(23)9(23) - 1]d 7,. (6.95)

The HNC theory has been developed by several authors
(Morita, 1958,1960; Van Leeuwen et al., 1958; Morita
and Hiroike, 1960, 1961; Meeron, 1960a,b, c; Rush-
brooke, 1960; Verlet, 1960).

It is important to note that, even if u()=0 for »>R,
¢(7) will not vanish for >R in the HNC approximation
and the Baxter (1968a) form of the OZ equation cannot
be used except as an additional approximation.

Expansion of (6.95) in powers of the density gives
Yo=1

».(r)=cy(#), (6.96)
and

Vo(7) = dy(v) + 2d,(v) + 3 c3(7) . (6.97)
Thus, 9y, and y,, and hence B and C, are exact in the
HNC theory. The expansion of c(7) is given by (6.14)
where ¥, and 7,(7) are given by (6.15) and (6.16) and

V()= F(#)y, (") + £ c3(). (6.98)
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The HNC theory includes more diagrams than does the
PY theory. On the other hand, we have argued that for
hard spheres, c3() and dg nearly cancel so that includ-
ing more diagrams is not necessarily an improvement.
It turns out that, for hard spheres, although the PY
theory negects more diagrams than does the HNC the-
ory, the PY theory does a better job of eliminating
groups of diagrams whose contributions cancel. For
systems with attractive forces, this cancellation is not
so complete and, in many applications, the HNC is more
satisfactory than the PY theory.

Diagrams of the form of c¢,(») and d,(v) are often called
simple chains and diagrams of the form of d, () are
often called netted chains. Diagrams such as ci(r) and
f(#)cy(7) are often called bundles. The name hypernet-
ted chain theory reflects the fact that this theory in-
cludes the contribution to y(7) of the bundles as well as
the chains. In fact, the HNC theory includes the con-
tributions to y(7) or c(7) of all of the chains and bundles.
The chains and bundles can be formed by repeated con-
volutions of Mayer f functions. They are the complete
class of such diagrams. The name convolution theory
reflects this fact. Because the HNC theory includes the
complete class of such diagrams, the HNC energy equa-
tion results are, apart from a constant of integration,
identical to the pressure equation results. The remain-
ing class of diagrams not included in the HNC theory
are the most complex diagrams and are called, some-
what amusingly, elementary diagrams. An example of
an elementary diagram is dy(»).

Rushbrooke and Hutchinson (1961) and Hutchinson and
Rushbrooke (1963) have calculated the B through F for
hard spheres from the HNC theory. Their results are
listed in Table XIII. The agreement with the exact hard-
sphere results is less satisfactory than was the case for
the PY theory. Klein (1963), Levesque (1966), and Hen-
derson, Madden, and Fitts (1976) have solved the HNC
equation for hard spheres. The HNC g (7) for hard
spheres is plotted in Fig. 32. It is not as satisfactory
as the PY g(7) for hard spheres. The HNC equation
of state for hard spheres is plotted in Fig. 16. It is less
satisfactory than the PY result but is better than the
BGY result.

The general consensus has been that the HNC theory
is inferior to the PY theory for other systems also.
However, the recent HNC calculations of Henderson,
Madden, and Fitts (1976) for the square-well potential
(with X=1.5) have shown this tobe anoversimplification.
The square-well g(») and c(r), calculated from the HNC
theory, are plotted in Figs. 32 and 33. Thehard-sphere
case is Be=0. The results at ge=1.5 are not too good
although they are better than the PY results shown in
Fig. 19. However, close inspection shows the errors
in these results to be, to a good approximation, the
same as for the hard-sphere case. In other words, we
could write

g(r, p)=g (7, 0)+ gunc (7, BE) — Lunc(7,0), (6.99)

where g(7,0) and gyyc(7,0) are the exact and HNC hard-
sphere g (7), respectively. Although Eq. (6.99) has been
introduced here as an ad hoc approximation, it can be

placed on a systematic basis by means of the perturba-
tion theories discussed in Sec. v and we will defer de-
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FIG. 32. RDF of the square-well fluid, with A=1.5, at po?
=0.8. The points give the MC results of Barker and Henderson
(1971a,1972) and Henderson, Madden, and Fitts (1976) for the
square-well fluid at e =0 (hard spheres) and Be =1.5, respec-
tively. The curve gives the HNC results of Henderson, Madden,
and Fitts (1976).

tailed discussion until Sec. VIL.C.5.

The HNC thermodynamic properties for the square-
well fluid are plotted in Figs. 22 to 24 and 34. The HNC
energy equation of state is identical to the HNC pres-
sure equation of state except for a constant of integra-

or—T—TT T L

c(r)

FIG. 33. Direct correlation function of the square-well fluid,
with A=1.5, at po®=0.8 calculated from the HNC theory by
Henderson, Madden, and Fitts (1976).
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FIG. 34. Equation of state of the square-well fluid, with
A=1.5, at po®=0.6 and 0.85. The points given by o and e give
the simulation results of Rotenberg (1965) and Alder & al .
(1972), respectively, and the curves give the HNC pressure
and energy equation results calculated by Henderson, Madden,
and Fitts (1976). The HNC energy equation results are identi-
cal to the HNC pressure equation results except for a constant
of integration.

tion (Morita and Horoike, 1960). If this constant of in-
tegration is chosen so that the hard-sphere (Be=0) re-
sults are given correctly, the energy equation of state
is in very close agreement with the simulation results.
The HNC value of the energy is in close agreement with
the simulation results. It is surprising that the HNC
values of the heat capacity, determined by differentiat-
ing the energy, show appreciable differences with the
simulation results. As we have already commented, the
simulation results for the square-well heat capacity
may have a significant error.

The thermodynamic properties which result from
(6.99) can be obtained from the HNC values by shifting
the curves so that the hard-sphere (B¢ =0) value coin-
cides with the correct hard-sphere result. This will
not affect the heat capacity. However, the pressure and
energy are improved. Although there are no simulation
values of the compressibility for comparison, the HNC
compressibilities are brought into good agreement with
the MSA results and, presumably, are improved.

The HNC theory has been applied to the 6—12 potential
by Broyles et al. (1962), Verlet and Levesque (1962),
Klein and Green (1963), de Boer et al. (1964), Levesque
(1966), and Watts (1969b). The results were not very
encouraging and, as a result, the HNC equation has re-
ceived less attention for this system than has the PY
equation. Most of these calculations were carried out
at high temperatures. Recently, Madden and Fitts
(1974b) obtained encouraging results for g () for the
.6-12 fluid at low temperatures using the HNC equation.
Thus, the problem with the HNC equation lies with the
treatment of the repulsive part of the potential. Madden
and Fitts (1975) have found that approximations such as
(6.99) give improved results for the 6-12 potential. The
HNC values for the 6-12 critical constants are given in
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Rushbrooke and Silbert (1967) have discussed the in-
corporation of three-body interactions into the HNC by
means of an effective potential. There are difficulties
with this approach. Equation (4.61) probably provides a
better method. ) '

Chihara (1973) has recently formulated a quantum
version of the HNC theory. Murphy and Watts (1970)
give a summary of applications of the HNC theory in
variational studies of the ground state of liquid helium.

For hard spheres, the HNC expression overestimates
d(r). It has been popular (Rowlinson, 1965; Carley and
Lado, 1965) to use the approximation

d(r)=¢{y(») -1 -1Iny ()},

where ¢ is a parameter, independent of » but depending
on the thermodynamic variables, which is chosen so that
the pressure and compressibility equations give the same
result. As we have seen in Fig. 27, d(») is always posi-
tive for hard spheres (at least in the range where d(7) is
non-negligible). Thus, it is not surprising that a value
of ¢, between 0 and 1, which is independent of » should
lead to reasonable results for hard spheres because the
quantity in parenthesis in (6.100) is also always posi-
tive. However, for many potentials with attractive tails,
d(r), although positive for <o, is negative at low den-
sities for »~o0. There is every reason to believe that
d(r) can change sign at high densities also. Hence if ¢
is independent of 7, d(r) given by (6.100) must always
have the sign of ¢. Thus, (6.100) cannot be a satisfac-
tory approximation to d(r). Therefore, it is no surprise
that (6.100) has not been found useful for such potentials.

Henderson and Grundke (1975) have considered (6.100)
when ¢ is a function of ». Their procedure is probably
too cumbersome to be used for anything other than hard
spheres. However, they do make the interesting obser-
vation that (6.94) or (6.100) can give rise to the correct
asymptotic behavior of the correlation functions when 7
becomes large.

Another approximation, which will give the correct
hard-sphere results and which would probably give good
results for other temperatures, is

d(r, Be) = d(r, 0) + dyxe (7, BE) — digyc (7, 0)

where dgyc (7, 0) and d(r, 0) are the HNC and exact ex-
pressions’ for the hard sphere d(r). In contrast to the

HNC expression, (6.101) can have negative values. No
calculations, based on (6.101), have been made.

Percus (1962) has shown that the HNC theory can be
obtained by means of a first-order functional Taylor ser-
ies. Verlet (1964) has taken this series to second-order
and obtained a new set of integral equations, which he
calls the HNC 2 equations. Again Verlet introduces an
unsymmetric approximation for g(123). The HNC 2 theo-
ry has not been as fully tested as the PY 2 because of the
belief (probably mistaken for systems other than hard
‘spheres) that the PY theory is a better starting point
that the HNC theory. Even so, for systems with attrac-
tive forces, the improvement over the HNC results
probably does not justify the extra computational effort
involved in the HNC 2 equations.

Wertheim (1967) and Baxter (1968b) have proposed
other extensions of the HNC theory.

(6.100)

(6.101)
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F. Kirkwood-Salsburg equation

Kirkwood and Salsburg (1953) derived a set of integral
relations between distribution functions of the form

g(l seep)

=exp{ﬁ[ue —iu(lk)]}

k=2
, o g
x{g(z-“ n) +ZFPsts(1;”+ 1,°+°,n+s)
s=1 *

xg(2+* n+s)dl,,, ... d?ms} s

(6.102)
where u, is the excess chemical potential given by
v
1
expl —Bu,)=1+ 2 —p° stu; 2:00541)
o Vst

Xg(2°°-s+1)d-f1"°(ff‘s”,

(6.103)
and

n+S
K(3n+1,...,n+s8)= H {exp[ —Bu(1m)] - 1}. (6.104)
m=n+l

For potentials with finite range and hard cores the up-
per limit v in the summations is finite and equal to the
maximum number of molecules which can be packed into
a sphere whose radius is equal to the range of the poten-
tial (since the integrands vanish when s is greater than
this value). Potentially this is an attractive feature.
However in practice v is a relatively large number (of
the order of 13 even for hard spheres). Hence these
equations have been more useful in formal theoretical
developments (Lebowitz and Percus, 1963b; Squire and
Salsburg, 1964; Cheng and Kozak, 1973; Klein, 1973)
than in actual numerical calculations. However Chung
and Espenscheid (1968) used these equations with the
superposition approximation to calculate virial coeffi-
cients for hard spheres; the virial coefficients up to the
fourth were given exactly, and reasonable values for the
fifth were obtained (better than HNC but worse than PY).
However, Chung (1969) found for the 6 -12 potential that
unsatisfactory values for the fifth virial coefficient were
obtained at low temperatures. Sabry (1971) used the
equations to derive approximate integral equations for
hard spheres; the equations actually solved led to un-
satisfactory results except at quite low densities.

G. Some remarks about integral equations for the
correlation functions

- In Sec. VI we have examined in detail four theories for
the correlation functions. For hard spheres, the PY
theory is the most satisfactory. However, the PY theory
seems to be satisfactory for hard spheres and nothing
else. We have seen that the PY theory does not work
well for systems with attractive forces. However even
for repulsive soft spheres, the PY theory is not satis-
factory (Watts, 1971). The HNC theory, and possibly the
BG theory also, seems to be the complement of the PY
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theory. It is unsatisfactory for hard spheres but appears
to account satisfactorily for the effect of the attractive
forces and nonhard core forces. Modification of the
HNC theory through (6.99) or (6.101) should lead to good
results for hard spheres and systems with attractive
forces. The MSA seems to combine the virtues of the
PY and HNC theories. It is identical to the PY theory
for hard spheres and gives good results for systems
with attractive forces -especially when used in the LEXP
version. The lack of a systematic extension to nonhard-
sphere systems is the main weakness of this approach.

Generally speaking, the energy equation leads to the
best thermodynamic properties. In fact for the square-
well and 6-12 systems, this route is insensitive to the
defects in the PY correlation functions and gives good
thermodynamic properties. For the PY theory, the
compressibility equation is generally to be preferred
over the pressure equation. However, for the HNC theo-
ry the pressure equation is, apart from a constant of in-
tegration, the same as the energy equation and is often
to be preferred over the compressibility equation.

Finally, there seems to be a widespread feeling that
further study of integral equations may be unrewarding.
Despite our close association with perturbation theory
which has, to some extent, displaced the integral equa-
tion approaches, we feel that the integral equations are
still of great value. They can provide information un-
available from other sources. For example, the integral
equations give results for y(r) inside the core. Recently,
Henderson, Abraham, and Barker (1976) have been able
to obtain the density profile of a fluid near a surface by
using integral equations.

VIl. PERTURBATION THEORIES
A. Introduction

In this section we shall examine some of the pertur-
bation theories which have been developed and have re-
ceived much attention in the past few years. The meth-
ods which we will discuss are quite general and can be
applied to any system which is, in some sense, slightly
perturbed from some reference system whose proper -
ties are known. In practice, the reference system is
usually taken to be the hard-sphere system. This is
both because hard spheres are a good reference fluid for
many liquids of interest and because there is so much
data available from machine simulations for the RDF and
thermodynamic properties of hard spheres.

As was the case in Sec. VI, the methods developed here
are approximate and thermodynamic consistency is lost.
Almost without exception, the energy equation is used to
relate the thermodynamic properties to the RDF. How-
ever, we note that one advantage of perturbation theory
is that the thermodynamic properties can be calculated
without reference to the RDF of the system.

Throughout most of this section we will be interested
mainly in pairwise additive forces. We will also be
mainly interested in spherical potentials. However, a
few applications to systems with three-body forces or
with nonspherical potentials will be considered.

The reason for the success of the perturbation theory
of liquids is that the structure of a simple liquid is de-
termined primarily by the hard-core part of the poten-
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tial and that the main effect of the nonhard-core part of
the potential is to provide a uniform background poten-
tial in which the molecules move.

This concept has been used for some time. It is the
basis of the equation of state of van der Waals (1873).
If, following van der Waals (vdW), we assume the mo-
lecules to have a hard core, i.e.,

u(r)=», r<o

(7.1)
=M1(’}’), r>0,

then, using this concept, the Helmholtz free energy A of

the liquid is the same as that of a system of hard spheres
of diameter o, except that the free energy is lowered be -
cause of the background potential field. Thus,

A=A,+ INY, (7.2)

where A, is the free energy of the hard-sphere gas, and

Y= 41rpf u, (¥)go(r)vidr . (7.3)
0]

The factor of 1/2 in (7.2) arises because the energy ¥ is
shared by two molecules, and hence would be counted
twice if this factor were not inserted. Since g(7) is the
RDF, pg(r)4nr? is the average number of molecules in a
spherical shell of thickness dv» and radius 7 surround-
ing a molecule at the origin and (7.3) follows immediate -
ly. A subscript zero has been placed on g(7) in (7.3) to
emphasize that, as a result of our assumptions, the RDF
is the same as that of hard-sphere gas.

Van der Waals made the further assumption that the
molecules are randomly distributed, i.e., g,(»)=1. Thus

¥=-2pa, (7“4)
where
a= 27 f” u, (V)72dr . (1.5)

Until recently the properties of hard spheres were not
known. Thus vdW had to approximate A, by assuming
it to be the free energy of a perfect gas with V replaced
by a smaller “free volume,” V,, because the molecules
themselves occupy a finite volume. Therefore,

Ay/NEgT=3Inx -1 —1InV,+1nN, (7.6)
where
V,=V -Nb, (7.7)

and b=270°/3. The factor b has this form because, when
two molecules collide, the center of mass of one of the
molecules is excluded from a volume of 470%/3. This ex-
cluded volume is divided by 2 because it is shared by
two molecules.

Combining (7.2) and (7.4)—(7.7) and differentiating with
respect to V yields the van der Waals equation of site

(p +N2a/V?)(V —Nb)=NkpT. (7.8)

Equation (7.8) gives results which are inpoor agree-
ment with experimental data. This is particularly true
if a is calculated from (7.5). The situation can be im-
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proved somewhat by regarding a as a parameter chosen
to fit some experimental data. However, even in this
case, the results are unsatisfactory.

On the other hand, applications of the SPT to fluids
with attractive forces indicated that liquids could be re -
garded as hard spheres in a uniform background poten-
tial (Reiss 1965). Also, Longuet-Higgins and Widom
(1964) and Guggenheim (1965a) have shown that the main
defect in the van der Waals theory lies in the use of (7.6)
and (7.7) for the hard-sphere free energy. Thus, if (7.8)

is replaced by
p=po —~N*a/V* (1.9)

and some more reliable expression for p, is used, then

‘good agreement with experimental results for argon is

obtained. For example, the PY or CS expressions could
be used. However, the Longuet-Higgins and Widom
(LHW) equation of state is fairly insensitive to the pre-
cise form of p,. In fact, Guggenheim (1965b) showed
that good results could be obtained by replacing the vdW
expression

PoV/NEgT = (1 —4n)™

(7.10)
by the simple and more accurate expression
poV/NEgT = (1 —=n)*. (7.11)

It is to be borne in mind that, in the LHW equation of
state, a is a parameter. The value of a which results
from (7.5) is quite different from that which is required
to fit experimental data.

It is interesting to note that (7.9) has been obtained
regorously for a weak, long-range potential (Kac et al.,
1963; Uhlenbeck et al., 1963; Hemmer et al., 1964;
Hemmer, 1964). This result may be seen intuitively
from (7.3). If u(r) is extremely long ranged, then the
major contribution to the integral comes from large val-
ues of » where go(r) is unity. We shall refer to this limit
of a weak, long-range potential as the vdW limit,

The first influential modern use of perturbation theory
was that of Longuet—Higgins (1951) who used it to develop
the conformal theory of solutions.

Zwanzig (1954) obtained Eqgs. (7.2) and (7.3) by assum-
ing that the intermolecular potential can be written as
the sum of the hard-sphere potential and a perturbation
potential

u(@)=u,(r)+u,(v), - (7.12)
where u,(») is the hard-sphere potential for spheres of
diameter d. If the partition function, and thus the free
energy, are expanded in powers of 8, then, to first
order, Eqs. (7.2) and (7.3) follow. Zwanzig, and later
Smith and Alder (1959), calculated the equation of state
using the 6-12 potential and the BG results (which at
the time were the best available) for A, and g,(»). More
recently, Frisch et al. (1966) made similar calculations
using the PY results for A, and g,(»). The results of
these calculations are in quite reasonable agreement
with experiment at high temperatures. However, these
results are very sensitive to the choice of d, for which
no satisfactory criterion is provided.

An alternative approach has been given by Rowlinson -
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(1964b, c) for repulsive potentials. He expanded the free
energy of a system of molecules with pair potential

u(r)=c, ™ —cr™/? (7.13)

in powers of n™', The reference system (z=«=) is the
hard-sphere gas. If this expansion is taken to first
order, and » is set equal to 12 to give the 6 -12 poten-
tial, good results are obtained for the equation of state
of gases at high temperatures (T* above 12).

McQuarrie and Katz (1966) combined the Zwanzig and
Rowlinson techniques by treating the attractive term
in (7.13) as a pertui'bation on the repulsive term and
treating the repulsive term by means of the »™* expan-
sion. This procedure yields a satisfactory equation of
state for T* above 3.

Thus, the situation in 1967 was that much of the evi-
dence indicated that perturbation theories appeared to
work only at high temperatures. However, the work
of LHW and the work of Reiss and others on the SPT in-
dicated that the hard-sphere fluid was an excellent refer-
ence system for the properties of liquids, even at the
lowest temperatures, although firm conclusions could
not be reached because of the presence of adjustable pa-
rameters in these approaches.

It is clearly important to determine whether the sup-
posed failure of the Zwanzig approach at low tempera-
tures is due to the perturbation approach itself or to the
inadequate treatment of the finite steepness of the re-
pulsive potential. For this reason we devote some time
to an examination of perturbation theory for potentials
with a hard core. In such potentials, the effect of the
attractive forces is not complicated by the “softness”
of the repulsive part of the potential.

The potential with a hard core which we chose is the
square-well potential with cutoff at A=1.5. This is part-
ly because this system has been thoroughly studied both
by the machine simulation methods and by the integral
equation approaches of Sec. VI but also because, with
x=1.5, the square-well potential is relatively short-
ranged and the perturbation expansion converges rela-
tively slowly. As a result, we can examine the relative
merits of various approaches which generally give the
correct first-order term but gives differing approxima-
tions to the higher-order terms. Other potentials with
a hard core, such as the triangle-well and Yukawa poten-
tials (for which simulation results are available), when
their parameters are adjusted to give as good a repre-
sentation of argon as they are able, are relatively long-
ranged and close to the vdW limit. As a result, almost
any approach gives good agreement with the simulation
results and little is learned about the higher-order
terms.

For this reason we commence with a study of pertur-
bation theory for the square-well fluid. In later sections
we apply the theory to systems in which the repulsive
potential has a finite steepness, and to systems with
quantum effects, three-body interactions, and nonspheri-
cal potentials.

Henderson and Barker (1971) and Smith (1973) have re-
viewed perturbation theories of liquids. In addition, Hen-
derson and Leonard (1971), McDonald (1973), and Hen-
derson (1974) have reviewed the application of perturba -
tion theory to the theory of liquid mixtures.
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B. Second-order perturbation theory for potentials with
a hard core

1. Formal expressions for first- and second-order terms

There is considerable flexibility in perturbation theory.
Both the function to be expanded and expansion param-
eter may differ from application to application. Since
there are many combinations, we cannot hope to review
more than a few possibilities. However, we will try to
be as general as possible.

Consider a system of molecules with a pairwise addi-
tive potential such that e(r)=exp{—Bu(r)} depends on a

parameter y
e(r)=elv; 7). (7.14)

We may then obtain a perturbation series, similar to
(7.2) by expanding the free energy in powers of y

9A 1 924
A=A <—> += 2<—> +oee,
oY /9y 2 4 8y” ¥20

Usually y is equal to unity for the physical system under
consideration. This is essentially the method used by
Zwanzig (1954), who assumed the particular form

(7.15)

u@)=uy () +vu, (). (7.16)

We will use (7.14) for generality.
Assuming pairwise additivity, the free energy is given
by

N
II e(yij)d-fl ° 'd?N s

i<j=1

A= -kBTlnf (7.17)

where terms independent of ¢ have been dropped. There-
fore,

9
53‘;1 - ——é—pz [ 212)e, 1207 aF, (7.18)
and
2 1
3% =50’ fguz)e,,(12)(;13361'52
-0 f 2(123)e, (12)e, (23)d¥,dT,dT,
1
70" [ [5(1234) - g(12)g(34)]
xe, (12)e, (34)dF d¥,dF dT, , (7.19)
where
e,=ede/dy, (7.20)
and
e, =€e0%/0y?. (7.21)

Essentially, this is Zwanzig’s result. Although form-
ally correct, it is not useful for numerical computation
because it has been obtained in the canonical ensemble
and is valid only for a finite system. To obtain results
which are useful, we must take the thermodynamic limit
(N —», N/V fixed). The only term which poses any dif -
ficulty in the thermodynamic limit is the last term in
(7.19).

Lebowitz and Percus (1961) and Hiroike (1972) have
shown that, when molecules 1,...,m and m+1,...,
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m+n are widely separated, asymptotically

pm+ng(1 .o 'm+n)

=p™"g(len)glm+1,...,m+n)

_i(@> 3pmg(1- - m)]| Blp"glm+1,. .., m+n)]
BN \3p/ ¢ ap 9p
+ O<F12> : (7.22)

The second term on the RHS of (7.22) makes a contribu-
tion to the last integral in (7.19). Although of order N-!
it makes a finite contribution when integrated over all
space. If e(ij), e,(ij), e, (i), etc., are central, then
we can integrate over T, to obtain V. Thus,

B@—fx:‘): —%prgo(lz)ey(lz)d?z (7.23)

and
32A _ 1
# <"67> =5 [ e, 02,

—Np? f 20(123)e, (12)e, (23)dT,dT,

_%Npaf[go(1234)-—go(12)go(34)]

xe,(12)e, (34)dF,dF,dT,

+NB"<7:§;) T[:_p{_;_pzfg0(1z)e,(12)d?2§]2,
(7.24)

where e, and ¢, are to be evaluated in the limit y -0 and
2,(12), etc., are the distribution functions of the refer-
ence fluid. Similar expressions can be written for the
higher-order derivatives. The procedure is straight-
forward. However, we do not give any results here be-
cause of the length of the expressions.

As we have seen in Sec. VII.A, to first-order in the
free energy, the structure of the fluid is the same as
that of the reference fluid and the first-order term in
the free energy gives the average contribution of e, (v).
This first-order term is often called the mean-field
term and perturbation expansions which are truncated at
first-order in A are often called mean-field theories.

Similarly

57,

=g,(12)e, (12) + 2p f g.(123)e, (23)d7,

+%p2 [ [50(1234) —g,(12)2,39)]e, (30)aF dF,

—2(pp)" (f—&) T{—;—ngo(lz)} -aip-(—;—p f g0(34)e.,(34)df4> .

(7.25)

Equations (7.24) and (7.25) are suitable for numerical
calculations because in the thermodynamic limit g(1234)
—g(12)g(34) approaches zero exactly when the pairs (12)
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and (34) are widely separated. These equations have
been obtained earlier using the grand-canonical ensem-
ble (Barker and Henderson, 1968; Henderson and Bar-
ker, 1971). Henderson et al. (1972) have generalized
(7.23) and (7.24) for mixtures. Similar results can be
found in the earlier papers of Buff and Brout (1955) and
Buff and Schindler (1958). Equations (7.24) and (7.25)
could be put into an alternative form by using the well -
known result (Baxter, 1964a,b; Schofield, 1966)

oo\ 8 [ , B .
(28) tosa2-2pe12) + 80° | [129) ga2))aF,.
(7.26)
In Zwanzig’s expansion
e(y; v) = exp{—plu,(r) +yu,()]}. (7.27)

If the potential has a hard core, u,(») would be the hard-
sphere potential. Using (7.27)

e, (r)= —Bu,(r)

(7.28)
and
ey, () = Blu, (). (7.29)
In the Zwanzig or «,(») expansion
A=Y @Bera,, (7.30)

n=0

where € is some parameter measuring the strength of
the potential, usually the depth, and

g() =Z_: (B€)"g, (7). (7.31)

If the energy equation is used to obtain thermodynamic
functions from g(7),

A, 1 . -
N =g | W OEm 0,

(7.32)

where u¥(r)=u,(v)/€. For n=1, (1.32) is a special case

of (7.23). For n=2, (7.32) could also be obtained from

(7.24) and (7.25).

If the pressure or compressibility equation is used to
relate thermodynamics to g(v), then A, depends upon
g,(r) whereas, in the case of the energy equation, A, de-
pends upon g,_, (7). Thus, we would expect that a trun-
cated expansion for g(») would yield best results when
used with the energy equation.

However, it is important to point out that although the
free energy expansion can be obtained from the expan-
sion of g(7) using these familiar routes to thermodynam-
ics, Eq. (7.15) is more general than this. Equation (7.15)
can be applied to systems with multi-body forces or
quantum effects without reference to the question of how
g(7) is affected. )

The u,(v) expansion is useful when u,(») is small com-
pared to kz7T. In addition, it is often useful at high den-
sities even if u,(#)~ks7T. In the u,(») expansion, the
second- and higher-order terms in g(7) are fluctuation
terms reflecting the changes in the structure of the fluid
because of the presence of «,(). This will be made more
clear when we use the discrete representation in the fol -
lowing section. If the potential, u(v), is strongly repul-
sive at small 7 as is the case if the potential has a hard
core, it is to be expected that such changes in struc-
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ture will become less likely as the density increases.
Thus, the higher-order terms, although important at
low densities, become less important at high densities.

Hence, the more useful criterion for the convergence of

the u,(») expansion is that the effect of u,(») on the struc-
ture should be small.
At low densities g,(v)= -u}(r)g, (). Thus, P(r)=-¢€
X g,(r)/g,(r) can be regarded as a renormalized potential,
similar to that used in the ORPA which is equal to u,(7)
at low densities but which is damped at high densities.
An obvious generalization of (7.27) is

e(y; 7) = exp[ -Buly; )] (7.33)
In this case

e, (r)= ~Bu,(v), (7.34)
where

u, (r) = du(v)/9v, (7.35)
and

€y (1) = BLu, ) = BOw, )/ . (7.36)

In some applications, the perturbation energy
w, (V)= u(r) —uy(v) ‘ (7.37)

_may be large and positive. Clearly, the u,(r) expansion,
(7.28), is inappropriate for this case. However, follow-
ing Barker (1957) we can write

ely; v)=e,(¥) + ve,(r)f,(7), (7.38)
where e (r)= e:;'p{—Buo(v)} and

fir)= exp{-Bul‘(af)} -1. (7.39)
For this case

& =f,(r) (7.40)

and e, =0. In principle, this approach can be used with
negative perturbation potentials, u,(»), also. However,
in this case this expansion is generally less useful. If
u,(¥) is small f,(r)~ —Bu,(r) and the approach has no ad-
vantages over the u,(r) expansion. If «,(r) is large and
negative exp{—pu, (»)}> —Bu,(r) and at high densities this
exponential expansion usually converges more slowly than
the u,(r) expansion. On the other hand, in the limit of low
densities, this exponential expansion becomes exact.
For example, the mean-field term gives the contribu-
tions of u,(») to order p exactly. Thus, at low densities
the exponential expansion may be the preferred expan-
sion.

Occasionally, it is convenient (or even necessary) to
combine e *(») and g(1...#). In this case, the first-or-
der term corresponding to (7.38) is
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8 <z—‘:) == 3Nb [ yorle,(aF, (7.41)
where T
e, (r)=e,(r)f,(¥),
=e(r) —ey(). (7.42)

Lastly, we have the general case where the y depen-
dence of e(y; ¥) is not linear and not confined to the ar-
gument of the exponential. For such cases, it is usually
convenient to combine e™'(») and g(1... k). Thus, the
first-order term is (7.41) with e, () replaced by de(r)/dy.
Henderson and Barker (1968a) have used this type of ex-
ponential expansion in the theory of mixtures of hard
spheres.

Instead of, or in addition to, the expansion of g(») one
could expand y(7). The first-order term in this expan-
sion is just (7.25) with the first term on the RHS missing
and the remaining terms multiplied by e;'(12). This ex-
pansion arises naturally in the exponential expansions.
However in the u,(») expansions, this expansion does not
arise naturally and generally converges slower than the
g(7) expansion at high densities. On the other hand, at
low densities, the y(») series converges faster than the
g(r) series, even in the u,(r) expansion, and can be use-
ful. For example, y(7)=y,(#) is exact in the limit of low
densities.

Finally, we mention the possibility of the expansion of
Ing(7). The first-order term in this expansion is just
—*(r)=g,()/g,(¥). Thus, the first-order Ing(r) and g(»)
series bear the same relationship to each other as the
EXP and LEXP approximations discussed in Sec. VI.D.
In the u,(7) expansion, the lng(») series gives results
which are slightly less satisfactory in the few applica-
tions of the lng(r) series which have been made so far
at high densities. Despite this, the lng(7) series is of in-
terest. It gives exact results in the limit of low den-
sities even when truncated at first order. This is not
surprising because the lng(») and lny(v) series differ
only by e,(r) and so have similar convergence proper-
ties. B

Equations (7.24) and (7.25) are not very useful for com-
putation because of the complexity of the three- and four-
body distribution functions. However, if the superposi-
tion approximations i

20(1234) = g,(12)g, (13)g,(14)g,(23)2, (24)g,(34)
2,(123) =g,(12)g,(13)g,(23)

(7.43)
(7.44)

‘are substituted into (7.24) and (7.25) and all reducible

cluster integrals are omitted, then we obtain the more
easily used approximate expressions of Barker and Hen-
derson (1968)

B(i.‘i)ﬂ():_%Np f 2(12)e,, (12)F, ~No* [ g,(12)2,(23)e, (12)e, (23, (13)dF,dF,

3)/2

- %-Npa f 20(12)2,(34)e, (12)e, (34)[ 275 (13)126(24) + 41 (13)g (1416 (24) + hg (13)g (14)120(23) o (24)|dF,dF dF,

and
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(7.45)

-
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( g (12)

+ —;—pz f 2(34)e, (34) [2}10(13)}10(24) + 4y (13)7y (14)1,(24) + ho(13)h0(14)h0(23)h0(24)]d?3df4},

We shall refer to (7.45) and (7.46) as the superposition ap-

proximations (SA) to 824/8y? and 8g/dy.

Although simpler to use than the exact expressions, the

SA is not very useful. It is possible to calculate 824 /852
and 8g/dy from the exact expressions so that the SA is
not needed for these terms. On the other hand, the SA
expressions for the higher-order terms are too complex
for useful calculations.

2. Discrete representation

An alternative formulation of perturbation theory
which is more suitable for numerical work has been
given by Barker and Henderson (1967a). We refer to
this formulation as the discrete representation. The
range of intermolecular distances is divided into inter-
vals (7, 71), - - - (#;,74,1)5 . - ., €tc. By taking the limit
as the interval widths tend to zero, the continuous de-
scription is recovered. However, the discussion is
simpler in terms of discrete divisions. If p(N,, N,,...)
is the probability that the system has N; intermolecular
distances in the interval (r,,7;,;), then

<N{>= Z

Ny Ng.o.

Nip(Nu . -); (747)
etc. If u(v) can be regarded as having the constant val-
ue u(7;) in the interval (v;, v;,,), then

PN, N, . . .)=fexp(-BUN)d?1---d?N Qy,  (7.48)
' R

where R is the region of configuration space for which

there are N, intermolecular distances in the interval

(r, ,1',“), Q@ is the configurational partition function of
the system and ‘

Uy= Xijwiu(vi) (7.49)
is the potential energy.

We now proceed to obtain the perturbation expansion
for the specific case when (7.16) is valid. Results ap-
propriate to the exponential expansion can be obtained
easily from the results given here. The partition func-
tion can be written

Zy=2, Z Doy, ... ) exp [—3 ZNiux(”’i)]
N N 7 .

=Z, <exp {—B 2; N.-u,(r,-)}>

where Z, is the partition function of the reference sys-
tem, py(Ny,...) is the probability that the reference
system has N; intermolecular distances in the interval
(745 71.1), and u, () is the perturbation energy defined
by (7.16) (with-y=1). The subscript zero on the angular
brackets means that the average is over the reference
system. .

Expanding the exponential in (7.50) yields

(7.50)

2
0o
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o7 )hl):go(lz){e,(lzhZpfgu(l'23);,»,(2:3);,0(13)&3

(7.46)

r

Zy=2, {1 —B D AN (r;)

42 B NNy Jry () + - } (7.51)

Hence,

(A = Ag)/kgT=B DNty (r,)

—%’Bz ;{(NiNj>o - <N¢>0<Nj>o}u1('ri)ui(71)

Feee

(7.52)
Thus,

Ay/RpT =D (N (r,) (7.53)

and
A,/ksT= =5 AN N, )o = (NN ot (r ).

(7.54)

Similarly, it is easy to show that

Ay/kgT =% g {(NNNY, = B(N N Do Nio

+ 2N )o{ N ol Nyo bt (v Just (7 ) (7,)
(7.55)

with increasingly more complex expressions for the
higher-order A,. The terms, such as (N;) and (N;N,)
— (N;){N;>, which appear in the expressions for the A,
are called cumulants and the terms such as (N;) and
(N;N,) which appear in the expansion of the partition
function are called moments. The particular term
(N;N;) - (N )N, is called a covariance.

Barker and Henderson (1967a) have observed that to
obtain these results it is not necessary to assume that
the potential is pairwise additive. All that is required
is that the perturbation be pairwise additive.

The (N,), are of course related to the radial distribu-
tion function. Thus,

T+l
(N)=27Np f Pgo(r)dr. (7.56)
i
Hence, (7.53) is equivalent to (7.23).

If the potential has a hard core, u,(r) would be the
hard-sphere potential. In this case the first-order term
makes no contribution to the entropy. Hence, in first-
order the structure of the fluid is unaffected and the
only effect of the attractive forces is toprovide a back-
ground or mean field in which the molecules move as
hard spheres. As is seen from (7.54) and (7.55), the
higher-order A, are fluctuations in the energy which
represent the effect of the attractive potential on the
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structure of the fluid in compressing the molecules into
energetically favorable regions. We would expect these
higher-order terms to be least important at high den-
sities, where the fluid is nearly incompressible and
changes in structure are difficult. Thus, the %, expan-
sion should be most useful at high densities.

Expressions for g,(») and g,(») can be obtained in the
discrete representation also. Substitution of (7.48) and
(7.50) into (7.47) gives

(Ny= Z N,
Nl"'

Xf exp(—ﬁUo) eXp(—BUl)d?lv . .d;N/ {Qo(exp(—ﬁUl)>O}’
R

(7.57)
where
Up= D uo(ry)),
i<j
= Z Nauo(7y), (7.58)
and similarly for U,. Now
PNy, .. )= fRexp(-BUo) dT,++-dT N/Qo . (7.59)
Hence, )
(Np= 3 N expl-BUIP, ) Cexpl=pT D,
= (N; exp(-BU,))/(exp(-BU,)),. (7.60)
Expanding (7.60) yields
(Ni)= (N = Be D AN N Y, = (No(Nydoaet (7).
(7.61)
Hence,
2o(7;) = 3{N;}o/27Np(r} - 7}.,) (7.62)
and
g1(r) =~ 321 AN N Jo = (N Nyol et 07) . (7.63)

2aNp(r3 - 73.))

Barker and Henderson (1968, 1972) and Henderson and
Barker (1971) have made a Monte Carlo calculation of
(N and {(N;N;), — {(N;){N;), for a hard-sphere refer-
ence system for arbitrary hard-sphere diameter. In
their calculation, the small intervals were chosen to be
given by 7,=(1+0.070)'/2d, where d is the hard-sphere
diameter and A=1, ..., 60. Their calculations can be
applied to any perturbation potential. Barker and Hen-
derson (1971a, 1972) have used these values of (N;), to
obtain extensive tables of g () for hard spheres.

In addition, Barker and Henderson (1972) have written
(7.54) in the form

A,/NE T = —7pd® fw gout(ra)1>r*ar

+ J f F oy, v,)uk (v, dyuk (v, d)dr,dr,,
1 1

(7.64)
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where 7 is the distance divided by d, and

Fy(r;, 7))= lim [N N = (NN,

Ar; =0 Ar; =0

- 5ij<Ni>o]/2NA1’,- A7 (7.65)

is a continuous function. They fitted F,(r,,7,) to an ex-
pression of the form

FO(,VI! 7’2) = Z Am"¢m(71)¢n(72),

(7.66)

where A, is symmetric, and
¢, (r)=1, (7.67)
o, (r)=v -1, (7.68)
7¢,,() =sin[(r/a)(( -2)(r-1)],- 3<m<9,  (7.69)

and a=(5.2)'/2 -1, This value of @ was used because
(5.2)'/2 was the largest value of  for which (N;N,),
— {N;)%{N;), had been calculated. Thus, Eq. (7.66) should
be used only in the specified region for which it is in-
tended. It is assumed that the perturbation u}(»d) can
be neglected for >(5.2)'/2 in computing the second in-
tegral in (7.64). However, in calculating A, and the
first integral in (7.64) the contributions of u¥(») for all
values of » must be included.

Thus,

Ay/NkpT=—mpd? [ gyt ordr + 3 A, I, 1,
1

m, n=1

(7.70)

where

1+
L= [ wtdemar (7.71)
1
A table of the A, has been given by Barker and Hender-
son (1972).
This parametrization of the (N;N;), can be used to
calculate g;(»). Thus,

£00)= - 0D e S Ao, (172)

where again » is the distance divided by d.

There is considerable cancellation between the first
and second terms in (7.70) or (7.72). To preserve this
it is preferable to use the MC values of g,(#) of Barker
and Henderson (1971a, 1972) which were used in the fit
of the A, , in evaluating the first term.

Because of the factorized form of (7.70) it is possible
to calculate A, and g, (») with little labor. In most ap-
plications it is probably better to use (7.70) and (7.72)
rather than the original MC data for (N,N;), since the
fit of the A, has introduced some smoothing into A,
and g, (7).

3. Lattice gas

The simplest application of the above results is to the
case of the lattice gas where the N molecules have no
kinetic eriergy and their positions are restricted to L
lattice sites. Further, the intermolecular potential is
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u(¥)=ow, r=0
= —¢, 7 is the nnd

=0 otherwise, (7.73)

where nnd means nearest-neighbor distance. This sys-
tem is of interest because it is simple enough so that
exact results may be obtained. We will obtain results
for the u, expansion.

For the unperturbed system a lattice gas of noninter-
acting molecules, subject to the restriction that only
one molecule can occupy a lattice site, can be used.
Thus,

A, 1-x

NepT STy

In(1 —x), (7.74)
where x=N/L plays the role of the density. In applying
(7.18) and (7.24) we must replace cluster integrals by
cluster sums. The g,(1...%) are equal to unity when
all the molecules occupy different sites and are zero
otherwise. Hence, the use of the superposition approxi-
mation for the gy(1...#) introduces no error. However,
it should be noted that the g(1...%) of the perturbed
system will not in general satisfy the superposition ap-
proximation. Thus, 7%,(12) is zero unless molecules 1
and 2 are on the same site; and »}(12)g,(12) is zero
unless molecules 1 and 2 are nearest neighbors.

Hence, if z is the number of nearest neighbors

A,/NEk,T = —3xz. (7.75)
Let us write _
A,/NET = —5xl, — 3x°I, — 5% (21, + 41, + 1), (7.76)

where the I, are the cluster sums in (7.45). We see that

IL=-I,=1,= -2z (7.77)
and

I,=1,=0. (7.78)
Thus,

A,/NkgT=—5x(1 — x?)z. (7.79)

The higher-order terms can also be evaluated. For ex-
ample,

Ag/NkgT =% x(1 - x)2(1 — 2x)2z —§x3(1 —x)°&, (7.80)
where £ is the total number of triangles of nearest
neighbors that can be formed on the lattice divided by
N. Equations (7.75) and (7.79) were obtained first by
Kirkwood (1938).

We can also determine g,(v). Making use of the fact
that —u*(12)g,(12) is unity when molecules 1 and 2 are
nearest neighbors and zero otherwise, we obtain

g(r)=0, =0
=go(M[1+Be(l —=x)++-+], » is the nnd

=g,(7), otherwise. (7.81)

4. Results for square-well potential

To calculate the thermodynamics of the square-well
potential, we need know only N,, the number of inter-
molecular distances in the range of the attractive well

Rev. Mod. Phys., Vol. 48, No. 4, October 1976

0 T T T | T T T T
°
| \. _
\’
21— o ]
\o
\o

Y L AN .

~ o_

g ]
<EF. 4 \ ]

.\Q
N
| \\.\ HNC] .
\- N
\'\E;-,\\ PY
61— e~ —
® VAN R
\\ AT
1 | | J | ] | ]
0 0.2 0.4 0.6 0.8 1.0
o

FIG. 35. A, for the square-well potential with A=1.5. The
solid and open points give the simulation results of Barker and
Henderson (1968,1972) and Alder et al. (1972), respectively,
and the solid curve gives the results obtained from (7.84). The
curves marked + -+ -, ---, and — — give the results obtained
using (7.23) with the PY, HNC, and BG g,(r), respectively.

of the potential which we take here to be o <# < 30/2.
Thus,

A,/NkyT=—(N,),/N, (7.82)

and

A,/NEgT = —35[(N}), — (N, R)/N. (7.83)

The MC values of A, and A, of Barker and Henderson
(1968, 1972) are plotted in Figs. 35 and 36, respective-
ly. The A, curve is quite smooth. However, there is
some scatter in the MC values of A, indicating, as one
would expect, that it is much harder to calculate the
difference (N;N;), — (N;),{N;), than the (N;),.
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FIG. 36. A, for the square-well potential with A=1.5. The
solid and open points and the solid curve have the same mean-
ing as in Fig. 35. The broken curve, marked SA, gives the
results, obtained by Smith e al. (1970,1971), from (7.45) using
the PY go().
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TABLE XVI. Parameters used in the Fit of A, for the square-
well potential with A=1.50.

n Oy Bn Cn Py @n

1 1.5 V2
2 2.75 V2

—8.460 822
7.956 887

—4.974192
—2.487 096

—2.427 216
9.919 624

It is interesting to note that A, is roughly a linear
function of the density. Recall that one of the assump-
tions of the van der Waals and Longuet—Huggins and
Widom theories was that A, was proportional to the den-
sity. In contrast to A,, A, becomes small athighden-
sities. Alder et al. (1972) have made MD calculations
of A, and A, for the square-well potential and obtained
identical results. They have also estimated A, and A,
for this system. These quantities are even more diffi-
cult than A, to obtain numerically. As a result, their
values are probably only qualitative. However, it is
of interest to note that their calculations confirm that
A, and A, rapidly go to zero at high densities.

We have fit the MC results to the function

A,/NEpT=C{1 - expl-a,o/(B,-p)] - a.n/B.}
+P,p+Q,0°% (7.84)

for n=1and 2. We chose 8,=V2 (i.e., the close-packed
density) and forced the P, to give the correct contribu-
tion of order p, which can be calculated from (7.23) and
(7.24). The remaining coefficients were chosen by the
least squares criterion. The resulting values of the
parameters are given in Table XVI. The values of A,
and A, which result from (7.84) are plotted in Figs. 35
and 36.

The thermodynamic functions can now be calculated

10 I ! ! 1 I .l 1 T 1

\"
PV/NKgT

Be

FIG. 37. Equation of state of the square-well fluid, with
A=1.5, at po®=0.6 and 0.85. The points derioted by O and e
give the simulation results of Rotenberg (1965) and Alder et al .
(1972), respectively. The broken and solid curves give the
results of first- and second-order perturbation theory, re-
spectively.
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from the series

A=A, +BeA, +(Be)?A,, (7.85)

where A, is given by the CS expression, Eq. (5.24). The
equation of state of the sqaure-well fluid, calculated
from (7.85), is plotted in Fig. 37. The agreement with
the machine simulations (Alder et al., 1972) is good
even if the series is truncated after A, and is excellent
if A, is included.

In as much as A, makes a significant contribution to
the thermodynamics, one might argue that the good
agreement in Fig. 37 is fortuitous and that if the pertur-
bation expansion were truncated after A, or some
higher-order term less satisfactory agreement would be
obtained. However, truncation after A, is not as arbi-
trary as one might think at first. As Barker and
Henderson (1967a) have pointed out, if po(N,,...) were
a multivariate normal distribution, the series would
terminate exactly with A,. The distribution cannot be ex-
actly normal, if only because the N, mustbe positive. How-
ever, at high densities the values of N; near zero are
unimportant and the distribution may be approximately
normal. As we have mentioned the estimates of A, and
A, of Alder et al. (1972) indicate that these terms are
near zero at high densities, confirming that p,(N,,...)
is approximately normal at high densities.

The internal energy, U;, and the internal heat capaci-
ty, C;, are more sensitive than the free energy to the
higher-order terms as may be seen from

o

Ui =2: -1 An

Ne ,,:1"(56)_ NkpT (7'?6)
and

G ¥ n_An

Nk, ":Zn(n 1)(Be) NeoT (7.87)

These functions, calculated from (7.86) and (7.87) with
the series terminated at A,, are plotted in Figs. 38 and

U,/Ne

Be
FIG. 38. Internal energy of the square-well fluid, with
A=1.5, at po®=0.6 and 0.85. The points and curves have the
same meaning as in Fig. 37.
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FIG. 39. Internal heat capacity of the square-well fluid, with
A=1.5, at po3=0.85. The points and curves have the same
meaning as in Fig. 38.

39. The agreement of the second-order perturbation
theory values of U; with the simulation results (Alder
et al., 1972) is quite good. On the other hand, except
at low temperatures, the second-order perturbation
theory results for C; are significantly different from the
simulation results (Alder ef al., 1972). This is not too
worrisome because the simulation results for C; are
probably less accurate than the results for U;. The
simulation results for U; and C; both indicate that A, or
possible some of the higher-order A, are positive at
high densities.

Smith et al. (1971) have calculated g,) for the
square-well potential using (7.63) and have given an ex-
tensive tabulation. With the exception of g,(¢) at high
densities, the results in this tabulation are very accu-
rate. The fact that the values of the Smith et al. (1971)
g:(0) are slightly in error at high densities can be seen
from Fig. 40 where the tabulated values of g,(0) are
compared with those calculated from

0.5 I 1 I I 1 ] i
0
3 [ i
o
—-0.5f —
1.0} . e
| ] | l | l ] l Il
0 0.2 0.4 0.6 0.8 1.0

' FIG. 40. Values of g,(0) for the square-well potential with A
=1.5. The points denoted by @ and [J give the tabulated results
for g4(0) of Smith e al . (1971) and the results obtained from
(7.72), respectively, and the curve gives the value of gy(0) cal-
culated from (7.88). The points denoted by O give the values
for g,(0) calculated from (7.89).
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&,(0) =(p,V/NET)/4n +X3g,(10), (7.88)

where p, is calculated from (7.84), n=7pc>/6 and x =3/2
for the usual choice of the width of the attractive well.
The values of g,(¢) which are obtained from (7.88) are
the more accurate because they are obtained entirely
from the (N;), whereas the tabulated values are obtained
by extrapolation of results obtained from (N;N;),
—{N;){N;),- These more accurate values have been
tabulated by Henderson, Barker, and Smith (1976). Val-
ues of g,(0), calculated from (7.72), are generally
closer to those obtained from (7.88) than to the tabulated
values. This is because some smoothing of the MC data
for (N; N;), has occurred in the fit of the A,,,. Justas
g.(0) can be obtained from (7.88) we can obtain an esti-
mate of g,(o) from

g,(0) = (f;:;)/zn Y Egrl(kc+) " %go()\o)] . (7.89)

The values of g,(c) which result from (7.89) are plotted
in Fig. 40. They are considerably smaller than the cor-
responding values of g,(o) indicative of the rapid con-
vergence of the expansion of the RDF.

Values of g,#) and g,(r) are plotted in Fig. 41 for
po3=0.7. The results of (7.72) and the tabulated results
are in agreement for values of » other thano. It is
seen that g,(r) is smaller than g,(r). Again this is in-
dicative of the satisfactory convergence of the series
for g(r). The renormalized potential y*() = -g,(r)/g,@)
is plotted in Fig. 42 for p*=0 and p*=0.8. It is seen
that (») is damped at high densities, as expected.

The first-order perturbation theory results for g@)

" are plotted in Fig. 43. For Be =0 the agreement with the

simulation results (Barker and Henderson, 1971a, 1972)
is exact because an exact g,(r) is used. The agreement
with the simulation results (Henderson, Madden, and

g,(r)

-1 | Il L | l L L | ]

1.0 ' 1.5 2.0
rlo

FIG. 41. Values of g,() for the square-wéll potential with
A=1.5. The values of g((r) are the tabulated value of Barker
and Henderson (1971a, 1972) and the values of g{() are the
tabulated values of Smith e al. (1971) except at » =0 where
£1(0) calculated from (7.88) is used.
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yir)
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| | |
1.0 1.5 2.0
r/o
FIG. 42. Values of the renormalized potential y*r) =g,(r)/
go(r) for the square-well potential with A=1.5. The solid curve
gives u ¥ () which is equal to yp*(r) at po*3=0 and the broken
curve gives the values for po®=0.8.

Fitts, 1976) is very good.

In addition, the tabulation of Smith ef al. (1971) or Eq.
(7.72) can be used to obtain a first-order perturbation
expansion for y(»). At high densities this leads to val-
ues of y() which are negative for some ». Thus, this y
expansion is not promising. Another possibility is to
use a Ing(r) or, equivalently, a Iny(») expansion. To
first-order this leads to

gWr) =g,(r) exp|Beg,)/g,)]. (7.90)

It is to be noted that the renormalized potential appears
in the exponential. At high densities, Eq. (7.90) leads to
results which are slightly worse than those obtained
from first-order perturbation theory for g(»). As may

4 - —
p* =08
L% i
%
2 \ _
\ e =15
= JL-‘/'
o
41— ]
- A\
2 '\. Be =0
- ~ 0/./°_'\'¥
oo _o—0—
0 | |
1.0 1.5 2.0 2.5

rlo

FIG. 43. RDF of the square-well fluid, with A=1.5, at po®
=0.8. The points give the MC values of Barker and Henderson
(1971a,1972) and Henderson, Madden, and Fitts (1976) for the
square-well fluid at e =0 (hard spheres) and Be =1.5, respec-
tively. The solid and broken curves give the results of first-
order perturbation theory for g@) and Ing(), respectively.
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be seen from Fig. 43, the value of g(») at » =0, ob-
tained from (7.90), is increased which is good. How-
ever, the value of g(») at » < 30/2 is increased by too
large an amount. Although from this point of view Eq.
(7.90) is disappointing, it does have the virtue of being

- exact in the limit of low densities.

C. Approximate calculation of second- and higher-order
terms

We have seen that it is possible to obtain machine
simulation values of the terms through second-order in
the perturbation expansion of the free energy and
through first-order in the perturbation expansion of the
RDF. Although these terms are sufficient to give good
agreement with experiment at high densities, it is de-
sirable to approximate the higher-order terms if for no
other reason than to obtain completely satisfactory re-
sults at low densities. In this section we will outline
some of the methods which have been proposed. Where
appropriate we will test these schemes by examining
their predictions for A, A,, g,), and g,(r) for the
square-well potential.

One such scheme has been discussed already. It is
the use of the superposition approximation (SA) to ob-
tain (7.45) and (7.46). Smith et al. (1970, 1971) have
calculated A, and g,(») from (7.45) and (7.46) using the
square-well potential and obtained only fair agreement
with the MC results as may be seen in Fig. 36. Thus,
the method is not very promising. In addition, it is
difficult to use the method to obtain the higher-order
perturbation terms. Smith (1973) has used this method
to obtain A, at low densities for the square-well poten-
tial. Beyond that nothing has been done. Thus, we will
not consider this method further.

In this section we will consider several approximate
methods for calculating higher-order perturbation
terms. Some of these methods are of specialized inter-
est. Readers not interested in these methods should
pass directly to Sec. VIL.D.

1. Compressibility and related approximations

We have seen that the higher-order perturbation terms
are related to the cumulants of p,(N,,...). The N; can
be regarded as representing the number of molecules in
spherical shells surrounding other central molecules.

If these shells were large macroscopic volumes, the
numbers of molecules in different shells would be un-
correlated:

(NyN;) =(N; XN;) =0, i#j, (7.91)

and the fluctuation of the number in a given shell would
be given by

(N?) -<N¢>2 =(N‘)kBT(ap/ap).

If these expressions can be applied to the microscopic
N;, then following Barker and Henderson (1967a)
A, 1

o == 1P (), [ s,

(7.92)

(7.93)

where@p/ap), is the derivative of p with respect to p of

reference fluid. Equation (7.93) is called the macro-
scopic compressibility (mc) approximation. Since
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kyT(8p/3p), approaches unity at low densities and zero
at high densities, the above expression is exact a low
densities and has the desirable property of being small
at high densities. Inasmuch as the second-order term
represents the effect of the attractive potential in com-
pressing the molecules into energetically favorable re-
gions, it seems reasonable that this effect should be
proportional to the compressibility.

The mc approximation can be used to approximate

g,r). Substituting (7.91) and (7.92) into (7.63) gives
£.0) ==kaT(20/20)out (")gor). (1.94)

Equation (7.94) is not very promising since it predicts,
incorrectly, that g,(») =0 outside the range of »,(»). The
mc approximation can be used to obtain the higher-
order A,. For macroscopic volumes, Minster (1969)
shows that

(N = (N))™ ) =&y T a%“N-' (N

a(N;)

+a{(N; =N )" ) kpT o

5

(7.95)

where | is the chemical potential. Thus,

o %P(kaTV(Z—z)i;—p <p g—z)o} [ (uze)? gotr)at.

(7.96)

Similar expressions can be obtained for the higher-
order terms.

Despite its intuitive appeal, the mc approximation has
not been overly successful. For the lattice gas, kgT(op/
8p),=1—x so that the mc approximation does not yield
(7.79). More seriously, as may be seen in Fig. 44, A,
calculated from (7.93) using the square-well potential
A =1.5 is too small at intermediate and high densities.
This is true for the 6—12 potential also. The third-
order term, given by (7.96) is smaller, for the square-
well potential, than the machine simulation estimates.

Barker and Henderson (1967a) have suggested that,

0
—
£ 0.2 =
=2
<
o~
T
—-0.3— —
[ B! | ] | | | !
0 0.2 0.4 0.6 0.8 1.0

FIG. 44. A, for the square-well potential with A=1.5. The
solid and open points and the solid curve have the same mean-
ing as in Fig. 35. The curves given by ---- and —+~ give, re-
spectively, the mc and lc results.
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since the shells containing the N; are microscopic vol-
umes, the relevant quantity is the local compressibility,
3[pg()]/ap. Thus, one might expect better results by
replacing (8p/8p )o&,() in (7.93) by (G[pg,#)]/2p),- This
gives the local compressibility (1c) approximation:

N‘::T =- %pf[u;(r)JszTC—["T—g;@l)Od?.
For the lattice gas, (7.97) is identical to (7.93). As is
seen from Fig. 44, (7.94) is only slightly better for the
square-well potential with A =1.50 than (7.93). For the
6-12 potential, (7.94) underestimates A, at high densi-
ties also.

Praestgaard and Toxvaerd (1970) have obtained ex-
pressions for the higher-order A, in the lc approxima- -
tion and summed the A, to obtain the free energy in
closed form. They found that this approximation did not
contribute significantly to the free energy except at low
densities.

The semimacroscopic arguments upon which (7.93) and
(7.97) are based are similar to those used in the deriva-
tion of the vdW and LHW equations of state and, hence,
should be best for long range potentials. That this is
the case can be seen from the calculations of Smith
et al. (1975) for the triangle-well potential. For the
case of the parameters used in their study, this poten-
tial is long ranged. The A, for this potential, calculated
from (7.54), is very similar to that given by (7.93) and
(7.97).

One possible generalization of (7.93) and (7.96) would
be to use these expressions with 25 T(p/3p), replaced by

4A,/NksT
T [t g,dT
This would give A, exactly. For the particular case of
the square-well potential @ =2A,/A .
Another possible generalization is to use the result
(Fisher, 1964; Henderson and Davison, 1967), valid
for microscopic volumes,

(N N;Y =N XN =(NB 4 p? f hry)dTd T, -

(7.97)

a= (7.98)

(7.99)

If the volumes are small enough that 2(»;;) is constant,
then

.<N4 Nj> "<N1)<Nj> =<N‘>6“ +P2h(7"”)A_f‘i A?j. (7.100)

In our case (7.100) is an approximation because in (7.54)
and (7.63) the N; are numbers of pairs of molecules with
one molecule at »; and the other at the origin whereas in
(7.100) the N; and N; are the number of molecules in

A7y and A7; ‘with no account taken of the third molecule
at the origin.

We can attempt to correct for this assumption by
multiplying the second term by the probabilities of there
being pairs of molecules (with one molecule at the
origin) at #; and ;. Thus,

(N; Nj) —{N; ><N1> =<Ni>6ij +ng(’}’,)g('r‘j)h(7,-j)A_f‘i A—fj'
- (7.101)

If we use (7.101), we obtain the first two terms in the SA
approximations, (7.45) and (7.46). Such an approxima-
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tion to A, will be less successful than the SA because of

the cancellation will be lost. However, it is interesting

to see how generalizations of (7.92) and (7.93) relate to
earlier approximations.

Stell (1970) has suggested an approximation similar to
the mc approximation. He observes that asymptotically

h(r)~ ks T(ep/20)]°Bul), (7.102)

for large . If the (long-range) perturbation is weak, wé
can replace ap/3p by @0/9p),. Thus, an approximation
for g(r), suggested by (7.102), is

gwr)=0, r<go

=g,r) -By), v>o, (7.103)

where
V) = kg ToP/2p)5u (7).

The function () can be regarded as a venormalized
potentigl which is equal to u,(r) at low densities but is
damped at high densities. It plays the same role as the
renormalized potential, —-g,(r)/g,(r), or the ORPA re-
normalized potential but is easier to compute. In addi-
tion to (7.103) the EXP and LEXP versions of Stell’s ap-
proximation can be found in a manner similar to (6.88)
and (6.90). It is to be noted that all of these versions
share the deficiency of predicting that g() =g,() out-
side the range of potential.

As we have mentioned kzT(®p/2p),=1 -x for the lat-
tice gas. Thus, (7.103) and (7.104) will give the exact
A, for the lattice gas. However, for other systems, the
A, which results from (7.103) and (7.104) will be damped
even faster than was the case for the mc approximation
and so will be even further from the simulation values
for A, than was the mc approximation.

Stell has extended (7.103) and (7.104) by forming the
chain sum

prer ) =a’e () +a” [l )elr)dF

(7.104)

+a fq)(ym)@ V)@@ )dTd T+,

(7.105)
where a =pkyT(®0/8p), and & () =—pu,(»). The chain sum
given above is just the sum of repeated convolutions of
& () with a as a vertex function. Taking the Fourier
transform of (7.105), summing, and inverting yields

ap\2 1 a2k .
ew) = (kT - f T2V g%, (7.106
('V) ( B 31))0 (277)3 e l—aq,(k) d » ( )

where & (k) is the Fourier transform of (). If a® (%) is
neglected in the denominator of (7.106),

ap\ 2
Cr)=—(kgT —) Bu,). (7.107)

ap/, -
Thus, we could use (7.103) or the EXP or LEXP ver-
sions of (7.103) but with ¢ (r) defined by

V) =~kgTewr), (7.108)

with €() defined by (7.106) for » > o and €(r) =0 for
v <o, instead of (7.104).

Equation (7.108) has not been tested. However, y(»)
defined by (7.108) will be damped less rapidly than ¢ ()
defined by (7.104).
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2. Approximations based on the lattice gas

We have seen that for the lattice gas

A/NkyT=- }2x (7.109)

and

A,/NEkyT=~ 1x(1-x)%z. (7.110)
Expressions for the higher-order A, can be obtained.
One could use these expressions to obtain approxima-
tions for the higher-order A, by replacing xz in A, by

p f {ul*(r)}"go(r)d T

and choosing x to equal p or better to give A, exactly.
This procedure is not very satisfactory for the square-
well potential. More seriously when applied to g(»),
this type of approximation gives no contribution to g(»)
outside the range of u,(r).

3. Padé approximants

We could use a Padé approximant for the free energy.
Since A, and A, are known, we could write

A“A-4,) _ A, /NkgT
NEaT Be T-ped,/A)" (7.111)
This approximation gives
A2 n-1
= . 7.112
4,=4,(5%) (.112)

Since A, is considerably smaller than A, at high densi-
ties, Eq. (7.112) predicts that the higher-order A, are
small at high densities. This is certainly attractive.
On the negative side, (7.112) is incorrect at low densi-
ties. Furthermore since A, and A, are negative, all the
A, given by (7.112) will be negative. We have com-
mented that, for the square-well potential at least, A,
is probably positive at high densities.

We have tested (7.111) for the square-well potential
with A=1.5. For this potential

1
Ag=r A +eee (7.113)

at low densities, whereas (7.112) gives, at low densities

1
AIl:F.Al-*_'..

(7.114)
Thus, (7.111) overestimates the magnitude of the higher-
order A, at low densities. Our calculations indicate that
(7.111) gives estimates of the higher-order A, which

are too negative at high densities also.

A Padé approximant based on the expansion of g(r)
could be formed. However, this also would be in error
at low densities and there is no reason to believe that it
would be useful at high densities.

4. Approximations for the distribution py (N,, . . .)

We have seen that if we known p,(N,,...) we can cal-
culate the (N;),, {N; N;),, etc., and from these, the
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thermodynamic functions and the RDF. Furthermore,
we have seen that the use of second-order perturbation
theory can be interpreted as the assumption that
Po(N,,...) is a multivariate normal distribution. The
distribution cannot be normal if only because the N; are
positive. A possible improvement would be to assume
the distribution to be a multivariate log normal distri-
bution for which the N; are positive.

For simplicity in testing the usefulness of the log
normal distribution, let us restrict ourselves to the
square-well potential where, to obtain the thermody-
namic properties, we need only consider one set of
intermolecular distances, N,. For the square-well po-
tential, we have

b)) =C exp{-N (InN, -~ InN,,)?/a?,

where C is determined by normalization and N,, and «
are determined from A, and A,. Using (7.115) it is easy
to show that

(7.115)

(N®-Y = N*-1 exp{a?(k? — 1)/4N}. (7.116)
This leads to
A =24A,(A,/A )% (7.117)

Thus, the log normal distribution shares the defects of’
the Padé approximant (7.112) and is numerlcally much
worse. .

At low densities

PRUAE exp(—x)Z X 5N, —n). (7.118)
Instead of (7.118) let us try
Do(N,) = exp(—x )Z I‘(n/—a+1) 6(N, —n), (7.119)

where x - and a are to be determined from A, and A,. If
a—1 at low densities, (119) will give correct results in
this limit. From (7.50) we have, for the square-well
potential,

Zy=Z, Y bo(N,) exp(BeN,). (7.120)

LA

Replacing the sum by an integral and substituting (7.119)
into (7.120) gives

Zy=Z,exp(-x") Z F(;l—%:—l)—exl)(nﬁf)-

n=0

(7.121)

In the thermodynamic limit, the distribution will be very
strongly peaked at its maximum. Hence, replace the
sum by its largest term. Thus, employing Stirling’s
approximation,

InZy=IlnzZ,-x* +nlnx — (n/ @) In(n/a) +n/a +nBe.
(7.122)

Differentiating to determine the value of » corresponding
to the largest term in (7.122) gives

n=ax" exp(ape). (7.123)
Hence,
InZy=InZ,+x[exp(ape) - 1]. (7.124)

If x and o are chosen so as to given the correct value of
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, all the information contained in (N; N;),.

A, and A,
A _ A A\ exp(ape) -1
NkT ~ NERT ~\NRT) a ’ (7.125)
where
a=2A,/A,. ° (7.126)

We note that @ =1 at low densities so that, in this limit,
(7.119) reduces to (7.118). From (7.125) we have

1
A,= n—!Al(ZAz/A )

(7.127)
Thus, this approximation gives A, which are similar to
those given by the Padé approximant and the log normal
distribution but which are correct in the limit of low
densities. On the other hand, the A,, given by Eq.
(7.127), are negative for all densities whereas for the
square-well potential, at least, A, is probably positive
at high densities. Thus, (7.125) is an improvement over
second-order perturbation theory. However, at high
densities (7.125) gives results which, although still very
good, are very slightly inferior to those given by sec-
ond-order perturbation theory.

In order to calculate g(») for the SW potential or to
apply the technique to more general potentials, (7.118)
must be generalized to multivariate distribution. 'The
simplest generalization is

)= Hexp(—x; )Z

PO(NU' o I‘(n /a +1)

O(N; —ny).

(7.128)

Equation (7.128) is not the most satisfactory generaliza-
tion of (7.119). A more satisfactory generalization, in-
volving some matrix of parameters, could make use of
However,

(7.128) is sufficient to indicate the possibilities. Using
(7.128), we get in place of (7.124)
InZy=Inz, v %% [exp{-a;Bu,ry)} - 1]. (7.129)
i

If we require that the first-order perturbation term in
the free energy be given correctly, (7.129) leads to

A expl-a@)fu; (r)} =1
( NET NkT _pf 0(7)[ a(?’)‘ ]

(7.130)

The simplest assumption would be that @ is indepen-
dent of . Requiring that A, be given correctly gives

4A,/NkT

== - = . 7.131
* T b Turt )z )dT (7.131)
Hence, the A, are given by
A, /NET= (-0 [ [ur))go)dF.  (1.132)
n 27[! 1 o M .

Thus, the higher-order A, are exact at low densities
and are small and negative at high densities. Equation
(7.130) has not been tested.

A second possibility is

£,0)

g (7.133)

a)=-
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It is easy to see that this is equivalent to

g(r) =g,(r) exp|Beg,)/g,@)]. (7.134)

That is, (7.133) is equivalent to the use of a truncated
Ing(r) expansion. Equation (7.134) is exact in the limit
of low densities. Expansion of (7.134) gives

g.r) =(1/n!)g, () g, )/ g,)]", (7.135)
and
N‘:;T =Ell-pfu;«(r)go(r)[igﬂmdi (7.136)

Equation (7.134) has been tested only for the square-
well potential with A=1.5. We have already seen in Fig.
43 that at high densities, (7.134) is very slightly inferi-
or, for this potential, to the first-order expansion of

&r).

5. Approximations based on integral equations for g(r)

In Sec. VI we discussed integral equations for g().
We can use the theories developed there to calculate the
£,) for a given potential. If we used all of the g,()
given by that theory, the perturbation series so ob-
tained would be no different than g(») and thermodynam-
ics generated by the theory using the methods of Sec.
VI. On the other hand, we can follow the suggestion of
Chen et al. (1969) and use these equations only to gener-
ate the higher-order g,() which can be used with the
machine simulation values of g,(r) and g,(»). Thus,

gr) = gor)+Beg,(v) +[g) = &,) ~Beg, (V)] pr0x 5
(7.137)

where the quantities in the parenthesis have been calcu-
lated from some approximate integral equation. This
approach is a generalization and justification of the pro-
cedure of replacing the integral equation approximation
for g,(») by the correct result which was introduced in
an ad hoc manner in Sec. VI. Depending upon one’s
taste, this technique can be regarded as using perturba-
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FIG. 45. g,(r) for the square-well potential, with A=1.5, at
po®=0.8. The solid circles give the MC values tabulated by
Smith et al . (1971) and the open circle gives the value of g;(0)
calculated from (7.88). The curves give the results of several
approximations.
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FIIG. 46. A, for the square-well potential with A=1.5. The
solid and open circles and the solid curve have the same mean-
ing as in Fig. 35. The other curves give the results of several
approximations. The HNC result is virtually identical with the
result obtained from (7.84).

tion theory to improve the integral equation methods or
using the integral equations to given the higher-order
perturbation terms.

The earliest calculation of this type is that of Chen
et al. (1969) [corrections and additional detail are given
in Henderson and Chen (1975)] who calculated the PY ap-
proximation to g,(») and A, for the square-well poten-
tial with A =1.5. The PY g,(r) can be obtained from the
earlier work of Wertheim (1963, 1964), Thiele (1963),
and Smith and Henderson (1970). We have already seen
that the PY hard-sphere g,(#) is quite good. As may be
seen in Fig. 35, the A, calculated from the PY hard-
sphere g,(r) differs from the MC results only at the
highest densities. The PY values for g,(r) and A, for
the square-well potential, shown in Figs. 45 and 46, are
much less satisfactory. At high densities, the PY A,
is negative and, thus, not in agreement with the simula-
tion studies which indicate that A, is positive at high
densities. If these calculations of the PY g,() and g,()
for the square-well potential are combined with calcu-
lations of Smith e# al. (1974), the PY estimates of the
higher-order terms can be obtained. The resulting RDF
is plotted in Fig. 47 for a high density. The results are
somewhat worse than for the truncated perturbation
series but better than those of the PY theory itself.
This is consistent with our earlier conclusion that, at
high densities, the PY theory gives a poor estimate of
£,(r) and the higher-order perturbation terms. On the
other hand, the PY g,(») are exact in the limit of low
densities.

Smith et al. (1976) have calculated the MSA g(») and
&,(r) for the square-well potential with A =1.5. The
MSA g,(») and A, are identical with the PY g,(») and A ,.
The MSA g,(r) and A, are shown in Figs. 45 and 46.
They are a considerable improvement over the PY re-
sults. However, the MSA g,(r) is not sufficiently nega-
tive for »~ o. This, in turn, results in an A, which is
too negative at high densities. The preliminary evidence
is that the MSA A; is small and positive at high densi-
ties. The g() resulting from (7.137) using the MSA
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FIG. 47. RDF of the square-well fluid, with A=1.5, at po®
=0.8. The points have the same meaning as in Fig. 43. The
curve a gives the results of first-order perturbation theory
while the curves & and d give the results of Eq. (7.137) using
the PY and HNC theories, respectively. The broken and solid
curves c give the results of Eq. (7.137) using the MSA and
LEXP approximations, respectively.

values for the quantities in parenthesis is plotted in Fig.
47 for a high density and is seen to be quite good.

At low densities this p\rocedure of using (7.137) with
the MSA will not lead to exact results because in the
limit of low densities

& wsalr) =€,[1 = Bu, )]. (7.138)

Henderson, Madden, and Fitts (1976) have calculated
the HNC g(*), &,(»), and g,(») for the square-well po-
tential with A =1.5. The HNC g() and g,(») are plotted
for a high density in Fig. 32. The HNC g,(») is much
less satisfactory than the PY g,(»). On the other hand,
the HNC g,(»), plotted in Fig. 45 for a high density, is
very good. It is better than that given by any of the
other integral equations. The HNC A, and A, are plotted
in Figs. 35 and 46 for the square-well potential. The
HNC A, is poorer than the PYA,. This is to be ex-
pected in view of the errors in the HNC g,). On the
other hand, the HNC A, is in excellent agreement with
the MC results.

The g(r), resulting from (7.138) using the HNC g(),
go,(r), and g ,(r) is plotted in Fig. 47 and is very good.
Evidently, the HNC theory, although in error for the
hard-sphere reference system, correctly accounts for
the effects of the perturbation and gives good values for
g,r) and A, and the higher-order perturbation terms.
It is of interest to note that the HNC A4, is small and
positive at high densities. The HNC g,(») have the fur-
ther virtue of being exact in the limit of low densities.

Finally, we mention that Lincoln ef al. (1975a) have
used the BG theory to obtain g,(») through g;(#») and A,
through A, for the square-well potential with A =1.5.
The BG g,(7) is rather poor. Thus, it is no surprise
that the BG A,, which is plotted in Fig. 35, is also

.poor. The BG g,(r) and A, are surprisingly good al-
though not as good as either the MSA or HNC results.
It is conceivable that the BG theory, like the HNC the-
ory, gives good results for the higher-order g,(r). It
is not possible to examine this conjecture since BG
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values for the complete g(») for the square-well poten-
tial with A =1.5 are not available at present. However,
it is worth noting that, at high densities, the values of
A, calculated by Lincoln ef al. are considerably more
negative than one expects.

6. Optimized cluster theory

Andersen and Chandler (1970, 1972) and Andersen
et al. (1972) have proposed a series of related approx-
imations for the higher-order perturbation terms which
they call the optimized cluster theory (OCT). These
approximations have been discussed in part in Sec. VI.D.
They write the direct correlation function as

clr) =c o) —=po ).

Outside the core, ¢(r)=u,(r). Inside the core ¢() can-
not be taken as zero. If ¢() were zero inside the core,
the g(r) calculated from (7.139) by means of the Orn-
stein—Zernike equation would not be zero inside the
core. Anderson ef al. chose ¢(v) inside the core so
that g(r)=0 inside the core. They refer to their proce-
dure of calculating ¢(r) as optimization. If c,(r) is the
PY hard-sphere direct correlation function, their
procedure is entirely equivalent to the MSA. On the
other hand, one can use a more accurate expression
for c,(r), as do Andersen ef al., and then Eq. (7.139)
specifies the ORPA. The ORPA expression for g(») is

(7.140)

(7.139)

g)=g,)+ecl),

where g,(r) is the exact hard-sphere RDF and € (r) is
a chain sum, similar to Eq. (7.105).

This chain sum, € (), is to a good approximation
just the difference between the MSA g () and g,(»).
Viewed in this way the ORPA is similar in spirit to
Eq. (7.137), but with only g,(») required to be exact.
the ORPA g, (7) will be nearly identical to that given
by the MSA and so-will not be negative enough at high
densities for » ~o0.  The ORPA renormalized potential
is a weak function of the temperature and is rather
similar to the renormalized potential plotted in Fig. 42.
Some ORPA results for g(») for the square-well poten-
tial have been plotted in Fig. 31. At low temperatures
the ORPA g(7) is too large for » ~o. This is because
the ORPA g,(7) is not sufficiently negative for » ~o.
The g(r) resulting from Eq. (7.138) using the ORPA
values for g(r), £,(r), and g,(r) for the SW potential
will be very nearly identical to the corresponding MSA
results plotted in Fig. 47. The results are good.

Somewhat better results can be obtained from the
LEXP approximation

g)=g,1+e@)]. (7.141)

The LEXP g,(r) and A, are plotted in Figs. 45 and 486.
The LEXP g,(r) is an improvement on the MSA and
ORPA result but is too negative for » ~o. This results
in an A, which is surprisingly poor. It is no better
than the lc or PY results. Some LEXP values of g(r)
for the SW potential have been plotted in Fig. 31 and
the g(r) resulting from (7.138) using the LEXP values
of g(r), g,(r), and g,(r) for the SW potential is plotted
in Fig. 47. In both cases the results are good.

The MSA, ORPA, and LEXP approximations all lead
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to Eq. (7.138) at low densities and hence, will not be
exact at low densities. This problem can be overcome
by using the EXP approximation

&) =g,(r) exp{e ")}. (7.142)

This approximation leads to the same g,(») and A, as
does the LEXP approximation. For potentials such as
the square-well potential, the LEXP approximation
gives results for g(») which are about the same as for
the LEXP approximation. However, for strong per-
turbations, such as the dipolar hard spheres, the EXP
approximation is less satisfactory than the LEXP ap-
proximation.

Andersen et al. have proposed overcoming the defects
in the ORPA or LEXP g(r) at low densities through the
use of the renormalized potential ¥(r)= —kgTC ().
They propose adding

A(J—Vg—f)%p [ (pueyaz
_é p [ Lexpl ~pp0)} - 1+890)] g, )EF

(7.143)

to the ORPA expression for the free energy. The rea-
son for the separate treatment of the g% term, is be-
cause in the ORPA

Jéﬁ: - %p[ fu*@ )2 dF 4 o, (7.149)
at low densities, rather than the correct low density
expression which has g,() in the integrand. Andersen
et al. refer to Eq. (7.143) as the B, approximation.

In the case of the LEXP approximations, the correct
expression is given for A, at low densities. Thus, for
the LEXP approximation we should add

A<%ﬂ>é - %‘p f [exp{-Buv@)} - 1+83()

- +{BY)1go0)dT (7.145)
to the expression for the free energy.

The B, approximation is most useful when the renor-
malized potential is strongly damped at high densities.
For the SW potential at least, the ORPA renormalized
potential does not appear to meet this requirement.
Thus when used with the ORPA ¥(r), Eqgs. (7.144) and
(7.145) may make excessively large contributions at -
high densities and low temperatures and should be used
with care. : '

On the other hand, Stell’s renormalized potential,
Eq. (7.104), is damped out at high densities (in fact
excessively so). Thus, (7.144) and (7.145) can be used
with Stell’s renormalized potential without any danger
of difficulties at high densities.

7. Summary

We have discussed several methods which can be
used to obtain higher-order terms in perturbation
theory. For a potential such as the square-well po-
tential with cut off at 1.50, there is little need for such
corrections at high densities since the truncated per-
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turbation expansion yields such good results. How-
ever, the convergence of the perturbation expansions
for g(») and A is less rapid at low densities. Thus,
these corrections are useful at low densities. In addi-
tion, they may be useful in applications of perturbation
theory to other potentials where the convergence is
less rapid.

The simplest approximations are the compressibility
approximations. Using their predictions for A, as a
criterion, the local compressibility approximation is
the best of these types of approximations for potentials
such as the square-well potential. This approximation
gives an A, which is as good as that given by the PY
theory or the OCT. The thermodynamic properties cal-
culated using this approximation are in good agreement
with experiment for systems like the square-well fluid.
The approximation is very useful for simple practic‘al
calculations. The main drawback of the approximation
is that it does not give a useful approximation to g().

The Padé approximant seems to overestimate the
higher-order A, and does not yield the correct results
in the low density limit. Furthermore, it does not give
a useful approximation to g(»). The main advantage of
this method is its simplicity. As we shall see, it has
proven useful in the theory of dipolar hard spheres.
However, even here the evidence seems to indicate
that the higher-order perturbation terms are overes-
timated (Patey and Valleau, 1976). It is possible that,
even for this system, some of the other methods we
have discussed will be more useful.

The approximations based on the distribution function
Po(N,,...) which we have discussed are potentially very
useful. Even the simplest approximation yields a result
similar to, but more reliable than, the Padé approxi-
mant. When the method is generalized so that all the
information in (N;N,), is utilized, this should be a very
powerful method.

The approximations based upon integral equations are
the most accurate at present. Of these the HNC equa-
tion is the most reliable. However, the MSA/OCT is
quite good also.

D. Potentials with a “‘soft core”

We have seen that perturbation theory gives excellent
results for the equation of state of the square-well fluid
even at very low temperatures if the attractive potential
is treated as a perturbation on a hard-sphere system.
This suggests that the failure of earlier perturbation
theories at low temperatures is due either to the lack of
a satisfactory treatment of the “softness” of the repul-
sive potential, with a consequent extreme sensitivity to
the choice of the hard-sphere diameter (Zwanzig, 1954;
Smith and Alder, 1959; Frisch et al., 1966), or to the
use of the large ™ term as a perturbation (McQuarrie
and Katz, 1966). In this section we outline some recent
theories which attempt to overcome these defects.

1. Barker—Henderson theory

The earliest successful perturbation for potentials
with a “soft” core is that of Barker and Henderson
(1967b) who assumed the potential to be of the form

u@)=u,(r)+u,(r), (7.146)
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where u,(7) is the reference potential, given by

uy()=u(), r<o

=0, r>o0, (7.147)
and #,(r) is the perturbation, given by
u,(r)=0, r<o
=u(r), v>o, (7.148)

where 0 is the value of » for which u(») is equal to zero.
Thus, .

A= (Bora,, (7.149)
=0

n
where € is the depth of the potential, and A, is the free
energy of the reference system. The reference system,
defined by (7.147) is not convenient for computation be-
cause its properties are not well known. However,
Barker and Henderson have shown that 4, and g,(») may
be systematically approximated by

Ay=Ays (7.150)

and

£o)=guslr), (7.151)

where Ayg and gys(7) are the free energy and RDF of a
system of hard spheres of diameter d, defined by

d= [ lexpl-pur)} - 1lar,

which accounts for the “softness” of u,(»). Note that d
is a function of temperature but not density. Equation
(7.150) has been tested by direct computer simulation
by Levesque and Verlet (1969) and found to be very ac-
curate.

The expansion (7.149) is an inverse temperature ex-
pansion. Thus, (7.149) will be most accurate at high
temperatures. On the other hand, Egs. (7.150) and
(7.151) are most reliable when u,(»)/%57T is steeply
repulsive, i.e., at low temperatures. This is not a
practical problem because, for realistic potentials,
u(»)/kyT is steep for all temperatures of physical in-
terest. However, if the BH theory is to be applied at
exceedingly high temperatures, the corrections terms
to (7.150) and (7.151) must be obtained. These can be
obtained in a systematic manner using the procedure
of Barker and Henderson (1967b). Smith (1973) has
given the first correction term to (7.150).

Thus, the procedure of Barker and Henderson is to
write

A=Ags+BeA, +(Be)A,,

(7.152)

(7.153)

where Ayg is calculated from the CS expression, and,
A, and A, are calculated from (7.53) and (7.54) or
(7.70) with g,(») given by (7.151) and d given by (7.152).
Even though (7.153) is similar to those obtained in the
the earlier theories, the Barker-Henderson (BH)
theory does not share the difficulties of these theories.
Note that there is no contribution to A, for » <o and
that the diameter d has been chosen to account for the
“softness” of u,(r). For potentials with a hard core,
u,(r)=ugs() in Eq. (7.152) gives d=0, as desired.
Equations (7.150) to (7.152) can be regarded as the key
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to the BH theory.

The BH theory has been applied to the 6—12 potential
(Barker and Henderson, 1967b; Henderson and Barker,
1971; Barker and Henderson, 1971b, 1972). Some of
these results for the thermodynamic properties are
tabulated in Tables VI to IX. We have listed values cal-
culated from first-order perturbation theory using the
PY gys(»), which we call BH1(PY), from first-order
perturbation theory using the MC gy4(#), which we call
BH1, and from second-order perturbation theory using
MC values for A; and A,, which we call BH2. The
agreement of the BH2 results with the simulation re-
sults is excellent. The second-order term is required
to get this good agreement. The effect of the neglected
higher-order terms appears to be very small.

The BH theory can be used to calculate the RDF of
the 6-12 fluid (Barker and Henderson, 1971b; 1972).
In Fig. 48 we show the results of a calculation of g(r)
for the 6-12 fluid near its triple point. The agreement
with the simulation values (Verlet, 1968) is very good.
It is much better than the corresponding PY result in
Fig. 25. The broken curve in Fig. 48 is gy(»), deter-
mined by the hard-sphere packing, and the solid curve
is the first-order result. It is the attractive potential
which produces the rounding of the peak. The effect of
the “softness” of the repulsive potential is apparent
only for »<1.030, where g(v) has fallen to about 1.5.

At high densities there appears to be no need to go
beyond second order in the thermodynamic properties
of first order in g(»). However, higher-order terms
are required at low densities. These can be computed
using the techniques developed in the preceding section.

Leonard ef al. (1970), Henderson and Leonard (1971)
and Grundke, Henderson, Barker, and Leonard (1973)
have applied the BH theory to liquid mixtures and ob-
tained excellent results for the excess thermodynamic
properties. Lee et al. (1975) have used the BH theory
for liquid mixtures to determine Ar+ Kr and Kr + Xe
intermolecular potentials.
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FIG. 48. RDF of the 6—12 liquid near its triple point. The
points give the results of simulation studies (Verlet, 1968) and
the broken and solid curves give the results for the zeroth-
and first-order BH perturbation theory, respectively.
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2. Variational method

Mansoori and Canfield (1969, 1970) and Rasaiah and
Stell (1970a,b) have drawn attention to the fact that if

ur)=uyg(r) +u, (), (7.154)
where uyg(r) is the hard-sphere potential, then
A=Ayg+ 21Np f U, (r) s @ W27 . (7.155)
a

This inequality is based upon the inequality e*=1+x.
Mansoori and Canfield, and Rasaiah and Stell propose
applying (7.155) to potentials such as the 6-12 poten-
tial as well as to potentials of the form of (7.154). The
most appropriate choice of d is that for which the RHS
of (7.155) is a minimum. This provides a criterion for
d which is missing in the original Zwanzig formulation,
The hard-sphere diameter so obtained is a function of
both density and temperature and must be found by it-
eration and so is more difficult to compute than the BH
choice for d.

The difficulty with this approach is that the tendency
of the theory is to describe a system whose intermo-
lecular potential is given by (7.154) rather than a sys-
tem with a soft core. The “softness” of the potential
for » <d is much less of a problem at low temperatures
than at high temperatures. This may be seen in Tables
VIII and IX where the results of the variational theory,
computed using the PY and Verlet-Weis (VW) gyus()
are listed for the 6-12 fluid. At low temperatures the
variational theory results are roughly comparable with
the BH1 theory but are somewhat less satisfactory at
high temperatures. Replacing the PY gy<(r) by the VW
8us() tends to make the results of the variational theo-
ry slightly worse.

Mansoori and Leland (1970) and Mansoori (1972) have
applied the variational method to binary mixtures and
obtained very good results for the excess thermodyna-
mic properties.

3. Weeks—Chandler-Andersen theory

Weeks, Chandler, and Andersen (WCA) (Weeks and
Chandler, 1970; Weeks et al., 1971a,b) and, indepen-
dently, Gubbins et al. (1971) have proposed the choice

u@)=ul)+€, r<rv,

=0, r>7, (7.156)
u,(r)=~¢, f<rm
=uly), v>r,, (7.157)

where 7, is the value of » for which «(») is a minimum,
and u(r,,)= —€. For the 6—12 potential, 7, =2%¢. To
first order

A=Ag+3Np [ 1) g, (7.158)
where A, and g,(») are the free energy and RDF of the
reference fluid. This is an excellent division of u(»)
into the reference and perturbation potentials because
u,(r) varies slowly and the importance of fluctuations,
and thus the second-order term, are reduced. Since
the properties of the reference fluid are not well known,
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further approximations are necessary. Here WCA show
that A, and g,(») may be systematically approximated
by ’

Ay=Aps (7.159)

and

gor) = exp{—Bu()}yystr), (7.160)

where Ayg and y,g are the free energy and distribution
function for hard spheres of diameter d, defined by

J;rmyzyns(y)dy=J‘""‘yzexp{_Buo(fy')}yHS('r)d'r. (7.161)

WCA refer to Egs. (7.158) to (7.161) as the high tem-
pevature approximation (HTA).

The hard-sphere diameter obtained from (7.161) is a
function of both density and temperature and must be
found by iteration and so is more difficult to compute
than the BH choice for d. Barker and Henderson
(1971c) and Verlet and Weis (1972a) have shown these
approximations to be very good, in fact better than
using the PY theory for the reference fluid (Henderson,
1971). In addition, they show that the WCA theory con-
verges very rapidly. ’

Some results of the HTA of the WCA theory for a 6—

' 12 fluid are shown in Tables VIII and IX. These results

have been calculated using the PY yy(») and the VW/
GH y45(r). The numbers in parentheses were calculated
using a hard-sphere system which was so dense that
these results are of uncertain accuracy.

The HTA of the WCA leads to very good agreement
with the machine simulation results. It is much better
than the BH1 results. This is indicative of the fast
convergenée of the WCA theory. However, the slower
convergence of the BH theory is not a serious problem
because the BH2 results can be easily calculated from
Eq. (7.70). In the BH theory d~o whereas in the WCA
theory d~7,. As a result, for a liquid at high densities,
the WCA hard sphere, in contrast to the BH hard-
sphere, reference system is at a value of pd® which
may be so large that the properties of the hard spheres
are uncertain or possibly so large that the hard
spheres have solidified. For the states considered in
Tables VIII and IX, this does not appear to be a prac-
tical problem. However, it may explain the failure,
noted by Lee and Levesque (1973), of the HTA of the
WCA theory to give satisfactory excess thermodynamic
properties of liquid mixtures.

Andersen, Chandler, and Weeks (1972), Andersen and
Chandler (1972), and Sung and Chandler (1974) have used
the OCT to obtain corrections to the HTA for the 6-12
fluid. Some of their calculations are listed in Tables
VII, VIII, and IX. They are able to account for most of
the small errors in the HTA.

The RDF has also been computed by WCA. The HTA
to g(»), Eq. (7.160), is plotted in Fig. 49. It is a good
first approximation. As is seen in Fig. 49, if the EXP
version of OCT is used to compute the corrections to
the HTA, excellent results are obtained.

Chandler (1974), Andersen (1975), and Andersenetal. -
(1976) have recently reviewed the WCA theory.
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FIG. 49. RDF’s of the 6—12 fluid. The points give the re-
sults of simulation studies (Verlet, 1968) and the broken and
solid curves give the results of HTA of the WCA theory and the
EXP approximation, respectively.

E. Perturbation theory for more complex systems

1. Quantum effects

Kim, Henderson, and Barker (1969) have successfully
calculated the equation of state of neon and hydrogen and
helium at high temperatures by using Eq. (4.59). They
computed A, from the BH theory and used Eq. (7.151)
for g.,(7). )

There have been no perturbation theory calculations of
- the effect of quantum corrections on g(#) for liquids.:

2. Three-body interactions

Barker et al. (1968, 1969) have applied perturbation
theory to real fluids in which three-body interactions
are present. They used Eq. (4.61) and computed A,,
from the BH perturbation theory, using the Barker—
Pompe potential for argon and the lc approximation for
the second-order term. They made calculations of the
last term on the RHS of (4.61), using the triple-dipole
(Axilrod-Teller) three-body interaction and the pertur-
bation approximation

225(123) =gy(123),

with the hard-sphere diameter given by (7.152). They
made both computer simulations of this term and direct
numerical integrations using the superposition approxi-
mation. In either case they found that this term could
be fit by the expression

(7.162)
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2.707 97+ 1.689 18pd® — 0.315700°d ®
1-0.59056pd° + 0.200 590°d ©

d9A3b — 3
Nv =pd

(7.163)

Using these techniques, Barker et al. obtained gqod
agreement with the experimental results for argon. It
would be desirable to repeat these calculations using the
more accurate BFW potential, Eq. (7.70) for the second-
order term in the BH theory, and including the dipole—
dipole—quadrupole and fourth-order triple-dipole three-
body potentials. Presumably, even better results would
be obtained.

There have been no perturbation theory calculations
of the effect of three-body forces on g(7) for liquids.

3. Nonspherical potentials

We give only a brief review here. More detailed
treatments can be found in the recent reviews of Gray
(1975) and Egelstaff et al. (1975) which are devoted
specifically to liquids with nonspherical potentials.

a. Spherical cores

Nonspherical molecules with spherical cores can be
treated straightforwardly by perturbation theory. Thus,
if ,

(715, 2y, 2,)= uo(ylz) +yuy (710, Q4 2,), (7.164)

our earlier expressions, Egs. (7.23) and (7.24), apply.
The only change from our earlier applications is that
e,, e,,, and u, are functions of the orientations of the
molecules as well as their separation. Hence,

4, 1 . |
NT T2? f 2o(r1)dT, f w¥(12)d,ds,,

(7.165)

where, for simplicity, u,(ij) has been used to denote
u(;, Q45 25).
For many systems of interest

f 4, (12)d0dS2, = 0 (7.166)

so that A, =0. The second-order term is given by a
simple generalization of (7.24). For systems such that
(7.166) is satisfied, the last term vanishes. Thus,

A 1
NeeT ~"7P J £o(712)dT, f {ur(12)}2a9, aq,

_%pz f 2,(123)dF,d¥, f w¥(12)uF(13)dS, dS,dS,.

(7.167)

It is sometimes helpful to expand u,(¢j) in spherical
harmonics. Thus,

uF (g5 4y Q) = IZ Yziz,-m("’ij)yt,m(eu (pi)Yljm(ei’ ®;);
itjm

(7.168)

where 6;, ¢;, 6;, and ¢; are angles specifying the ori-
entations of molecules ¢ and j. For systems for which
(7.166) is satisfied, Ypo(7y;)=0. Using (7.168) becomes
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A, 1 | T,
W—_4p I?I;m J‘ﬁllzm(ylZ)go(ylz)drz

L #1,

-0 Z f 7100(7’12)7100(7'13)P1(305923)g0(123)d-f2d;3-
%0

(7.169)

For a large class of potentials, v,,(7;;)=0. These are
called multipolelike potentials. Examples of such po-
tentials are the dipole and quadrupole interactions. For
such interactions, the second term in (7.169) vanishes
and we obtain the result of Pople (1954a)

A 1 T
__Nk;T = —Zp f Zo(715)dT, J. {u?‘(lz)}zdﬂldﬂz

1
=-zP 2.
Iyigm
1%y

For the special case where 'y,o(',(r,.j) =0,

A 1
m:—T ='1_§pfgo(7’12)d;z J{u;“(lZ)Pdﬂldﬂz

f V3 11ym(712)20(71)dT,. (7.170)

+%p2 f 2,(123)dF,d¥,

x f wF(12)uk (13)u*(28)dQ,d20dS%.  (7.171)

Gubbins and Gray (1972) have obtained analogous ex-

pressions for the pair distribution function. Here
g(r1g, Ry Q) =20(715) + Begy (715, Ry, Q)+ 002, (7.172)

where g,(7,,) is the RDF of the reference fluid with pair
potential uy(7,,) and

€21 (V145 R, Q5) = —ufF (715, Q5 R)20(715)

_pfg0(123)d?3f fuF (13) + ¥ (23)} de,.

(7.173)

The term involving g,(1234) vanishes because of (7.166).
For the special case where v, (7;;) =0, the second term
in (7.173) vanishes so that to first order

(712, Qs ) =20 (r15)[1 = Buy (715, Ry, )] (7.174)
Equation (7.174) implies that g (7,,) =g,(7,,). Although
this may be a reasonably good approximation for some
systems, it is clearly a deficiency of (7.174). This
problem can be removed by going to next highest order.
Gubbins and Gray give an expression for g,(7,,, 2, 2,).
Perram and White (1972, 1974) have shown that with an
exponential expansion g (7y,) #g,(7,) in first order. We
discuss their approach in more detail in Sec. VII.E.3b.
Rushbrooke et al. (1973) have applied perturbation
theory to the system of dipolar hard spheres, defined
by Eqgs. (4.64) and (4.65). For this system u,(7,,) is
the hard-sphere potential and

wy (75, S, 2,) = —(12/73,)D(1, 2). (7.175)
Hence,
A=Ay+ Y (Br2)A,, (7.176)
n=1
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where A, is the hard-sphere free energy. Because of
(6.69), A, =0. Using (7.170)
A, 1 -6 -
T 6P f 7°g, (r)dF. (7.177)
In third order, only the second integral in (7.171) is
nonvanishing. Using a theorem of Barker (1954) it can
‘be shown that

A 1 ..
_Nk;T :5—402 f U,2590(123)dT,dT,, (7.178)
where
6
u123=1+3cosel cosé, cosb, ) (7.179)

(715715729)°

Thus, the integral in (7.178) is formally identical to the
integral giving the effect of the triple—dipole (Axilrod-
Teller) three-body potential in the BH theory. There-
fore, Rushbrooke et al. do not integrate Eq. (7.168) but
instead use the result of Barker et al. (1968, 1969)
given in Eq. (7.163).

Rushbrooke et al. find that (7.176) converges slowly
for dipole moments of physical interest. As a result,
they find a perturbation expansion, truncated after A,,
unsatisfactory., However, they find that the Padé ap-
proximant,

- 2,4 A2
A-AO+B s T—W’ (7.180)
more promising since the contribution of the dipoles is,
in the limit of u -, finite and proportional to u? with
a coefficient which is close to the known exact result
for dipoles on a lattice.

Patey and Valleau (1973, 1974, 1976) and Verlet and
Weis (1974) have made MC calculations of the thermo-
dynamic properties of this system and have found
('7.180) to be a good approximation for the total thermo-
dynamic properties. Patey and Valleau (1976), how-
ever, find evidence that (7.180) overestimates the in-
dividual A,. This is in agreement with our observation
following the comparison of (7.113) and (7.114). Pos-
sibly an appropriate generalization of (7.125) would
overcome this difficulty.

The pair distribution function for the dipolar hard
spheres can be obtained in a manner similar to (7.176).
The result is

&g, Sy, 2,) = go(7y,) + Z (B2 g (112, 2y, R2,), (7.181)
n=l

where g,(7,,) is the hard-sphere distribution function,

PR R =%VIZ)D(1, 2), (7.182)
v 5
227125 szlv 5 §2)
%%ya, 2)
_ %p{ 1+3 c"?f;jis)fz cosb, g0(123)d?3]p(1, 2)
xp [ 3—‘(%?27";);—1&(123)61?4“1, 2, (1.189)
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and A(1, 2) is defined in Eq. (6.68).

Hgye and Stell (19'75b) have proposed an approxima-
tion for g(r,,, 2,, ,) for dipolar hard spheres. They
suggest that Eq. (6.74) be used with % (r,,) #7,(r,). Al-
though g,(7,,) = go(r,,), the machine simulations show
that g,(r,,) is not equal to g,(»,,). They propose a
scheme whereby %, (7,,) canbe chosen so as to reproduce the
Padéapproximant, (7.180), when the energy equation,
(6.77), is used, %,(1, 2) canbe chosen so as to give the di-
electric constant correctly both through (6.80) and another
relation which they give; and k(7,,) can be chosen so
as to give (7.180) both through the pressure and com-
pressibility equations, (6.75) and (6.77), respectively.
Clearly this is an approximate procedure both because
(7.180) is approximate and because (6.74) is approxi-
mate. Using (6.74) means that the noncentral portion
of terms such as the first term in (7.169), which is
proportional to D?(1,2), are neglected. However, such
terms are “inactive” in the sense that they do not con-
tribute either to the thermodynamic functions or the di-
electric constant and are hopefully small. Neither the
terms in (7.168) and (7.169) or the Hdye—Stell
2715, ., Q,) have yet been calculated.

Stell et al. (1972, 1974) and McDonald (1974) have
made similar calculations for the Stockmayer potential,
(4.68). Madden and Fitts (1974a) have made approxi-
mate calculations of the first-order perturbation term
of the RDF for the Stockmayer potential (but not the full
pair distribution function) using formulae similar to
(7.168) and (7.169) but with angle averages performed.

Melynk and Smith (1974) have applied the procedure
of Rushbrooke et al. (1973) to a mixture of dipolar hard
spheres whose components have differing dipole mo-
ments but equal diameters. They find that if (7.180) is
used, the results are (apart from an entropy of mixing
term) identical to those of a pure fluid with an averaged
dipole moment.

Patey and Valleau (1976) have made machine simula-
tion and perturbation theory studies of pure quadrupolar
hard spheres and mixtures of dipolar and quadrupolar
hard spheres. They find that although a perturbation
expansion, truncated after A,, is inadequate, Eq. -
(7.180) is a remarkably good representation of the ma-
chine simulation results. They also make the interesting
observation that the quadrupolar potential induces
larger structural changes in the hard-sphere fluid than
the dipolar potential.

From (7.178) we see that the free energy is identical,
to order g*, with the first-order perturbation expansion
for a fluid with a spherical potential, given by

u(r) =u(7’ —% Bf {u,(12)}2dQ,dS,. (7.184)
The above observation is of limited usefulness because
the correspondence between the real fluid and the fluid
with the pseudo-potential defined by (7.181) breaks down
in the next order of perturbation theory and because
Eq. (7.181) sheds no light on the pair or radial distribu-
tion function beyond g (7) =go(7).

This has not been an exhaustive review of what has
been done or what can be done for systems with spheri-
cal cores.  Perturbation theories based upon exponential
expansions, lng(ry,, ?,, ,) series, etc., are possible
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both for the dipolar and quadrupolar hard spheres, the
Stockmayer potential, and for other systems.

b. Nonspherical cores

Molecules with nonspherical cores are more difficult
to treat. The most straightforward procedurg is that of
Pople (1954a) who observed that Eq. (7.164) can be writ-
ten for any potential if u,(»,,) is defined by

U7 ,5) = J‘ u(7,5, 1, 2,)dQ,dQ, . (7.185)
Thus,

U, (715,21, Rp) =U(ry,, Q,,,) —uy(7,,) (7.186)
and hence,

[ w1221, 2,0d9,49,=0. (7.187)

Therefore, all the formalism developed for the spheri-
cal core case can be applied. ’

This procedure of Pople (1954a) and Gubbins and Gray
(1972) can be expected to be successful only when’

0,(12)=u(12) - [ u(12)ae,de, (7.188)
is small in some sense. If the repulsive core of the
potential is nonspherical, there will be regions in which
u,(12) will be large and an expansion in the strength of
u,(12) may converge poorly or not at all.

One way of avoidingthis problemis to use an exponen-
tial expansion. There have been two applications of ex-
ponential expansions to angular dependent potentials.
The first is that of Bellemans (1968) who considered
fluids composed of hard nonspherical molecules. For

such systems the pair potential is
oo’ 712<d(91192) .
u(712:91:92)= 0’. 1‘12>d(91’9,2) , (7.189)

where d(R2,,8,) is the distance of closest approach of the
two molecules with orientations specified by &, and Q,.

Bellemans introduced the parametrization
A(Q,,Q,) =d[1+1v(Q,,Q,)], (7.190)

where A is the expansion parameter which is eventually
set equal to unity and d, is defined by

do= [ d(@,,9,)49,d9,. (7.191)
Thus

Y(Q,,Q,) ={d(Q,,2,)/d,] -1, (7.192)
and

[ v@,20d2,49.=0. (7.193)
Now

de/or=—dyv(R,, R,)0(r —d,) . (7.194)
Therefore,

A=Ayt Y A, (7.195)
n=1
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where A, is the free energy of a system of hard spheres
of diameter d,

A
o7 = 12ndo) [ #@,,2,)d92.49,

=0,
n= (ﬂ/G)Pdg s

and y,(d,) is value of y(#) at contact for the reference
hard-sphere system. Because of (7.193), the four-mol-
ecule term in A, vanishes. Thus,

(7.196)
(7.197)

A
IV"];;%: = sn[zyo(do) +do(do) [VH(Q2,, Q)

_.12.p2d§ f eo(13)y,(123)8(r,, —do)6(¥py —d )T, dT,

% [ ¥(@, 279, 2)42,d2.A2; (7.198)
From the PY theory
9 149
4 = - ———
doyo(do) 37 aA-ne" (7.199)

Equation (7.199) could be used with (7.198). On the
other hand, a more accurate expression for y4(d,) could
be obtained from the VW/GH y,(#). However, (7.199)
is probably sufficiently accurate, especially since
90(123) must be approximated.

The expansion of y(r,,, 2,,9,) is

Y(#12, 25, Q,)

= Yo(71,) = pd, f €6(13)y,(123)6(7 55 = do)d T, f YR, 3)dQ,

—pd [ €0(23)95(128)0(r,, —d)a T, [ 7(2,2,)aS -

(7.200)

The only calculations using this approach are those of
Bellemans (1968) who made a few calculations for pro-
late ellipsoids. It is hard to judge the utility of this
theory until more calculations have been made. How-
ever, this approach is very similar to that of Hender-
son and Barker (1968a) who developed a perturbation
theory of hard-sphere mixtures using a single-compo-
nent hard-sphere reference system whose diameter is
chosen to annul the first-order term in the expansion of
A. The Henderson-Barker approach has been thorough-
ly examined and the expressions for the thermodynamic
properties are useful even when the large spheres in
the mixture have a diameter twice as large as that of
the small spheres. Based on this, the Bellemans the-
ory would probably be useful for the thermodynamic
properties even for molecules whose length divided by
width is as great as two. On the other hand, the Hen-
derson—Barker theory of hard-sphere mixtures is much
less useful for the distribution functions (Smith and
Henderson, 1972). Conceivably, Eq. (7.200) will be less
useful than (7.195) to (7.198).

Perram and White (1972, 1974) have used an expo-
nential expansion based upon

3(712: Ql’ 92) = 60(712)[1 +f1(7’12; Ql, Qz)] ] (7.201)
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where
eo('rlz)=f exp{ - Bu(r,,, 2,,Q,)}dR,dQ,, ©(7.202)
Jir15,9,,9Q,) = exP{" Bu (75, 24, Qz)} -1, (7.203)
U, (719,21, Q) =u(r 15, 21, 92,) —uo(ry,) , (7.204)
and
Uo(71,) = — kT Iney(7,,) . (7.205)

In this approach,

A 1 .
NeT = 2P [ sotr.aaz, [ 102040,

= —';_pfyo(ylz)d-fzf {6(12) _eo('rlz)}dﬂldﬂ'z

=0. (7.206)

In contrast to the Pople expansion, Eq. (7.188), this
expansion is well behaved if «,(12) is large and positive.
On the other hand, for regions where u,(12) is large and
negative, it is not at all obvious that this approach will
always be satisfactory except, of course, at low den-
sities.

Mo and Gubbins (1974) and Sandler (1974) have con-
sidered u,(12) expansions based upon nonspherical ref-
erence potentials which can be chosen as either the
positive or the repulsive part of the potential. This ap-
proach is more close in spirit to the BH and WCA theo-
ries, which have been successful for liquids with spher-
ically symmetric interactions, than either the Pople or
the Perram and White procedures.

The properties of the reference fluid can be related
to those of some appropriate hard molecules by a gen-
eralization of the procedures of Barker and Henderson
(Mo and Gubbins, 1974) or Weeks, Chandler, and An-
dersen (Sung and Chandler, 1972; Steele and Sandler,
1974). The properties of the hard-molecule system can
then be determined by machine simulations, the SPT,
some generalization of the integral equation techniques
discussed in Sec. VI, such as RISM, or the Bellemans
theory discussed above.

c. Extensions of the van der Waals and LHW equation
of state

The van der Waals and Longuet—Higgins and Widom
(LHW) equation of state is

P=po—P2a~

Rigby (1972) has suggested using (7.207) with p, chosen
to be the equation of state of some hard nonspherical
system. In the specific application which he considers,
he uses the SPT result for hard prolate spherocylinders
and finds that as molecules deviate increasing from
spherical shape, the value of pV/Nk,T at the critical
point decreases. This is in accord with experiment.

Another possibility, based on Eq. (7.184), would be to
use a hard sphere equation of state for p, but to replace
(7.207) by

p=p,—Bp%a.

(7.207)

(7.208)
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Equation (7.208) is probably less useful than Rigby’s
procedure.

VIIl. CELL AND CELL CLUSTER THEORIES

Among the earliest theories of liquids were “cell” or
“free-volume” theories which were based on the intui-
tive idea that a molecule in a liquid is essentially con-
fined to a cell or cage formed by its neighbors. If the
molecules were regarded as moving independently in
their cells this led, for hard spheres, to an expression
for the canonical configuration integral of the form

Qszy)

where vy is the “free volume” available to a single mo-
lecule moving in its cell. Much of the early develop-
ment of these ideas, including the inclusion of the effect
of attractive forces and of empty cells or vacancies,
was done by Eyring and his collaborators (Eyring, 1936;
Eyring and Hirschfelder, 1937; Cernuschi and Eyring,
1939). Since that time, Eyring and a number of collab-
orators have developed these ideas into the “Significant
Structures Theory of Liquids,” in which the liquid is

" regarded as a mixture of solidlike and gaslike degrees
of freedom. The aim of this theory is to predict the
properties of liquids on the basis of the known proper-
ties of the corresponding solids and gases, without ex~
plicit reference to intermolecular forces. The theory
correlates a very wide range of properties of a wide
range of liquids. It has been extensively reviewed in
recent books (Eyring and Jhon, 1969; Jhon and Eyring,
1971).

There have also been a number of attempts, until re-
cently relatively unsuccessful, to use the cell concept
as the basis for a theory relating dense fluid properties
directly to intermolecular forces. Most of this work
was based on the formulation of the cell model by Len-
nard-Jones and Devonshire (1939a,b); and a detailed
review of the period up to 1963 is given by Barker
(1963). The most important formal development was
the idea of a cell-cluster expansion, introduced inde-
pendently and in somewhat different forms by de Boer
(1954), Barker (1955), and Taylor (1956). Since this-
idea has recently been developed in a fruitful way we
shall give a brief account of it using a more recent and
more flexible formulation due to Barker (1966) based on
the grand canonical partition function.

Suppose that the whole of space is divided into a set of
identical space-filling cells, numbered by A=1,2,...;
the size of the cells need not yet be specified. We can
specify the configuration of the whole system either by
giving the absolute coordinates of all the molecules o7
by giving the number of molecules N, in each cell and
their coordinates relative to the cell center ?g\j,j =1...
N,. For brevity let us use i, to denote the set of vari-
ables {N,;T4;,j=1...N,}. Let us use the symbol 3,
to denote integration over the cell volume with respect
toT4, for A=1...N, followed by summation over N,.
The advantage of the description in terms of ¢, over that
in terms of absolute coordinates is that we can be cer-
tain that molecules in cells remote one from another
will not interact. Let us define

(8.1)
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) N
U(iy)==Nyp +kzTIn0N, 1)+ }f u(| T4, = T4, (8.2)

m<n=1
and
Ny Ny .
UGn, )= D u(|T5, =Fhal), (8.3)
m=1n=1

in which p is the chemical potential. Then a little re-
flection will show that the grand partition function for
the whole system is given exacily by

E= Z exp[—B; U(z’x)—ngU(ix,iv)]. (8.4)

l.iz' L)
Further, if the interactions are of short enough range
Ul(iy, ¢,) will be nonzero only when the cells A and v are
reasonably close in the lattice.

Thus, at the cost of a somewhat abstract notation we
have cast the problem into the relatively familiar form
of a problem in lattice statistics such as one meets in
connection with the Ising model for magnetism. The ad-
vantage is that we can proceed to use approximations
and expansions familiar in the latter context. We can
deal exactly with the terms U(¢,) and introduce approxi-
mations only involving U(iy,i,). In particular, if the
cells are small enough so that two molecules cannot fit
in a single cell, we deal exactly with U(i,) by restric-
ting the configurations so that N,=0 or 1 for every A.

Suppose that we introduce an approximation to U(é,,i,)
of the form

UQin, 6) =W, (@0) + Wi (i) (8.5)
and define

Ayy=U(iy,3,) =W, () =Wa(E,) (8.6)

Frv=exp[-Bay,] -1, (8.7)
and

U'(iy) = U(iy) + Z}:W,,(i)\). (8.8)
Then Eq. ‘(8.4) becomes

2= 3 ew[-8 D v6)| [T+ s, (8.9)

iz

By expanding the product in (8.9), performing the
summations and formally taking the logarithm, one gen-
erates a cell-cluster expansion similar to (but more
complex than) the Mayer cluster expansion. The prop-
erties of the expansion depend on the choice of the ap-
proximating functions W, (¢,). The earlier cell cluster
theory was based on the choice (for 1 molecule in each
cell),

W, () =3u(|a]) + [u(|2+Ty]) —u(|E]], (8.10)
where 2 is the vector joining cell centers, which is
motivated by the theory of Lennard-Jones and
Devonshire (1939a,b), and in lowest order reproduces
that theory exactly (for a detailed discussion see Bark-
er, 1963). As a consequence of this choice, the theory
gave a good description of solids (Rudd et al., 1969;
Westera and Cowley, 1975) but could not describe fluids.
On the other hand, one could choose W, to be zero.
In this case one is generating the same terms that ap-
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pear in the Mayer expansion, though combined in unus-
ual ways. There is reason to suppose that this would
lead to a description of fluids (though rapid convergence
is not guaranteed!).

There is an even more interesting possibility; one
can choose W, by a self-consistency criterion,

Fan)'=0, (8.11)
where ( )’ means “average for a system with probabil-
ity density exp[- 8 27, U’(i,)] over the configuration of
all cells except A.” This can be seen to be equivalent to
the Bethe or quasichemical approximation in lattice
statistics (Barker, 1966; Lloyd, 1964). Approximate
solutions for these self-consistency equations were
found by Barker (1975), and Barker and Gladney (1975)
for hard spheres with one molecule per cell (single-
occupancy models) in three, two, and one dimensions
at high densities. In one dimension the results were ex-
act, as was to be expected. In two and three dimen-
sions, one approximate solution gave an excellent des-
cription of the corresponding solids, especially when
higher cluster corrections were included. However, in
both cases there was a second approximate solution,
yielding one-particle distribution functions much less
strongly peaked at the cell center, which was tentatively
associated with the fluid phase. .

Honda (1974a) derived the self -consistency Eq. (8.10)
for single-occupancy systems independently using the
cluster-variation method of Morita and Tanaka (1966)
based ultimately on the work of Kikuchi (1951). A sim-
ilar but slightly less explicit derivation was given by
Allnatt (1968). Honda (1974b) solved the equations num-
erically for the two-dimensional single-occupancy
hard-sphere system, and found that there were indeed
two kinds of solution, one solidlike and one fluidlike.
Further, the free energy curves as functions of density
indicated a first-order phase transition. The density
of the fluid phase at the transition was somewhat lower
than that found by computer experiments on the uncon-
strained hard-disk system. This was to be expected be-
cause the single-occupation model does not include the
“communal entropy” (Hoover and Ree, 1968).

Thus, it appears that the self-consistent cell-cluster
theory may contain a unified description of solid, fluid
and melting, although some details remain to be filled
in. This would fill, in a rather pleasing way, a gap in
our theoretical understanding. Apart from the Monte
Carlo calculations discussed in Sec. III, most other the-
ories of melting (which are reviewed by Hoover and
Ross, 1971) either used different models for solid and
fluid phases (e.g., Henderson and Barker, 1968b) or
used the known melting properties of hard spheres to
predict those of more realistic systems (Rowlinson,
1964b; Crawford, 1974).

Another approach to the cell theory was used by Caron
(1972), who assumed the neighbors of a central mole-
cule to have a distribution of distances corresponding
to “random close packing,” following the ideas of Ber-
nal (Bernal and King, 1968). The “entropy of disorder”
associated with “degeneracy of ideal structures” was
calculated from experimental data and found to be re-
markably constant.
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IX. THE LIQUID-GAS INTERFACE

The subject of liquid surfaces is such an enormous
one that we shall seek here to do no more than indicate
the various theoretical approaches that have been used
and provide entry points to the literature.

In the neighborhood of the critical point the interface
between liquid and gas phases becomes very wide com-
pared with the range of the intermolecular forces. In
these conditions the quasithermodynamic theory of sur-
face structure developed by van der Waals (1894),

Cahn and Hilliard (1958) and Fisk and Widom (1969)
among others provides useful insights. An excellent
critical review of this theory with detailed references
is given by Widom (1972). The basic idea is that there
exists a local free energy density, ¥(z) (where z is a
coordinate normal to the interface) given by

T(z) =¥,[p(2)]+5A(3p(2)/02)%, (9.1)
where ¥ [ p(z)] is the free energy density of a uniform
fluid at the density p(z), extrapolated in some way into
the metastable region, and A is some function of tem-
perature. The density profile through the interface is
determined by minimizing the total free energy. With
appropriate assumptions on the form of the function
¥[ p] and the temperature dependence of A, the theory
gives a good description of surface tension and the inter-
face thickness in the critical region. The relationship
between this theory and detailed microscopic theories
is discussed by Lovett et al. (1973), Felderhof (1970),
Triezenberg and Zwanzig (1972), and Abraham (1975).
Kirkwood and Buff (1949) and Buff (1952) derived from
a general expression for the stress in a fluid an expres-
sion for the surface tension ¥ of the form

1 r~ - ¥ =25\ @ =
v=3 f dzlf dTu'(r,,) —LV—JZ n?F,,F,). (9.2
'—o0 12

Here n® (%,,F,) is the two body distribution function for
the inhomogeneous system. This result is valid for
pair-additive spherical potentials; the generalization to
nonspherical potentials is given by Gray and Gubbins
(1975). Buff (1952) showed that Eq. (9.2) could also be
derived by a scaling procedure similar to that used to
derive the virial pressure equation for a homogeneous
fluid (see Sec. II). Some alternative forms of this equa-
tion are given by Lovett ef al. (1973).

A different equation for the surface tension can be de-
rived which involves the direct correlation function
c¢(r,,7,) for the inhomogeneous 'fluid. This function,
which was introduced in an important paper on nonuni-
form fluids by Lebowitz and Percus (1963) satisfies the
generalized Ornstein—Zernike equation

W(E,,Ty) = 6(F, Fy) + f nO(ER(E,, Fo)c (T Fd Ty s

(9.3)

where
r(E,, Tp) = [ F e O(F,) | [ Ey, Ty) —nO(F )n(F,)].
(9.4)

Thus, if the distribution functions n(?),n“) for the inho-
mogeneous fluid are known, c(r,, 7,) can be calculated.
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In terms of this function the surface tension is given
by

1 w L d (1) (1), . .
y= _kBTf dzlfdrz_l_(ﬂ_) MC( rl,rz)(xf2+ 3’?2)’
4 ) oo dz, dz,

(9.5)

Two different derivations of this equation are given by
Lovett et al. (1973) and Triezenberg and Zwanzig (1972).
If the width of the interface is large compared to the
range of the direct correlation function, this reduces to

the expression used in the quasithermodynamic theory
(Lovett et al., 1973). Note that (9.5) is much more gen-
eral than (9.2) in that it makes no assumption about
pair additivity. In this sense the relation between (9.5)
and (9.2) is similar to that between the compressibility
equation and virial pressure equations for homogeneous
fluids. Of course these equations are useful only if we
know or can approximate the one- and two-body distri-
bution functions in the interface. The simplest approxi-
mation proposed by Kirkwood and Buff (1949) was to set
n®(t,, T,) in Eq. (9.2) equal to O for z, or z, greater than
0, and to the bulk liquid value otherwise; this corres-
ponds to a plane discontinuous surface with negligible
vapor density. This model, also used by Fowler (1937),
has been tested recently by Freeman and McDonald
(1973); earlier references are listed in that paper.
They used the 6—-12 potential and found good agreement
with experiment, for example for argon, for surfaceten-
sion but bad agreement for surface energy. Further-
more, the surface tension and surface energy values
were not thermodynamically consistent. It is almost
certain that the good agreement for surface tension is
fortuitous, since several independent MC calculations,
as well as perturbation theories (are below) indicate
that the true surface tension for the 6—12 fluid is sub-
stantially higher than that of argon (see Table XVII).
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One would certainly have expected that this simple mod-
el would be better for surface energy than for surface
tension. .

Monte Carlo simulations of liquid surfaces have been
made in two dimensions (Croxton and Ferrier; 1971)
and in three dimensions (Lee ef al., 1974; Lui, 1974,
Abraham et al., 1975; Chapela et al., 1975, Miyazaki
et al., 1976). Also Opitz (1974) made a molecular dy-
namics simulation. Lee et al. (1974) and Chapela et al.
(1975) calculated the surface tension using equations
equivalent to (9.2); the calculations used the 6-12 po-
tential. The results for a temperature near the triple
point are given in Table XVII. Because the integrand in
(9.2) fluctuates widely, surface tensions derived in this
way have rather high uncertainties. Miyazaki et al.
(1976) used a modified periodic boundary condition to
separate a bulk liquid into slabs and thus calculated
directly the reversible work required to create a sur-
face; this surface free energy is equal to the surface
tension. The surface tension calculated this way has
smaller uncertainty (see Table XVII). Miyazaki el al. .
also used the 6-12 potential, but estimated by a pertur-
bation technique the difference between the surface ten-
sion for “6-12 argon” and “argon with accurate pair po-
tential and three-body interactions.” The results for
argon eéstimated in this way are in fair agreement with
experiment, whereas all calculations other than the
simple Kirkwood—Buff—Fowler model indicate that the
surface tension for “6-12 argon” is appreciably higher
than that for “real argon.”

The work of Croxton and Ferrier (1971) and Lee et al.
(1974) suggested the existence of oscillatory behavior in
the density profile through the interface. However, it
is now certain as a result of the work of Abraham ef al.
(1975) and Chapela et al. (1975) that this oscillatory be-
havior, though it persists over surprisingly long MC
chains, is not present in a true canonical average. The

TABLE XVII. Calculated and experimental surface properties for liquid argon at triple

point.

Surface tension Surface energy

Method Potential (erg cm™?) (erg cm™2)
Monte Carlo ? 6—-12 16.5+2.6
(surface stress)
Monte Carlo® 6—12 ~19
(surface stress)
Monte Carlo © 6—12 18.3+0.3 38.9
(surface free energy) ]
Perturbation theory 4 6-12 19.7
Estimated from BFW alone 17.7 38.3
Monte Carlo €€
Estimated from BFW with 14.1 34.7
Monte Carlo ¢+ © Axilrod-Teller
Experiment 13.35 34.8

3 Lee e al. (1974). .

b Chapela e al . (1975).
¢ Miyazaki et al . (1976).
d Abraham (1975).

¢ Estimate from c by perturbation theory by Miyazaki et al . (1976).

f sprow and Prausnitz (1966).
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equilibrium density profile is monotonic.

Toxvaerd (1971) generalized the Barker—Henderson
perturbation theory (Sec. VII) to apply to an inhomogen-
eous fluid and calculated surface tension after minimiz-
ing the free energy with respect to the density profile;
for the detailed assumptions of this theory we refer to
the original paper. Abraham (1975) made calculations
of surface tension using both this theory and a version
incorporating the Weeks—Chandler—Anderson perturba-
tion theory (Sec. VII); the two methods gave results in
good agreement. Note that these perturbation theories
do not use either Eq. (9.2) or (9.5); the free energy is
calculated directly. However, near the critical point
the theory can be recast into a form similar to the
quasithermodynamic theory (Abraham 1975).

The normal component p,(z) of the stress tensor at a
point in the interface is given by (Irving and Kirkwood,
1950)

. 1 . 22
pN=kBTn(r]_)—§ fdrlz;-‘zu’(rlz)
12

1
xf nF, - aF,,, T+ (1 - a)F,]da .

(9.6)

Since for equilibrium p, must be constant, this provides
and integral equation relating X ¥,) and »®(%,, T.,).
This equation is equivalent (Harasima, 1958) to an inte-
grated form of the first member of the BG hierarchy of
equations (see Sec. VI). There is a relatively large
body of work (Toxvaerd, 1975, 1976, and references
therein)based on the idea of approximating n@)('fl, T,) by
a closure approximation in terms of #{ 1)('fl) and solving
the resulting integral equation for »{!X¥,). The closure
approximations use homogeneous fluid radial distribu-
tion functions g(r, p). The results obtained depend on
the detailed form of the closure approximations; for de-
tails we refer to the review of Toxvaerd (1975) and the
original papers.

Recently, Mandell and Reiss (1975a, b) have developed
a thermodynamic formalism for a bulk phase bounded
by a hard wall, and used scaled particle theory (Sec. V)
to study the structure of a hard-sphere fluid bounded by
a hard wall. ‘

We note that the apparent divergence to infinity of the
mean square displacement of a surface in zero gravity
discussed by Buff et al. (1965) and Widom (1972) is
prevented by the finite size of the system in the same
way as the related apparent divergence of mean-square
displacement in a two-dimensional solid discussed in
Sec. III.D.1. ¥ we carry through the calculation des-
cribed by Buff ef al. for a square surface of edge D we
find that the root-mean-square displacement is (kz7/
4my,)?[In(- 69D/L)]** where v, is the surface tension
unmodified by long wavelength distortions, and L the
interface width. If we consider the case they discuss
of liquid argon with 7'=90K, y=11.9 dyne cm™, L=~4A,
this formula gives 4.1A for the root mean square dis-
placement with D=1cm. This is a perfectly finite and
consistent result. The corresponding result for D=1m
is 4.2A. Surface tensions are usually measured in
somewhat smaller capillaries! The finite size of the
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system plays the same role as gravity in providing a
long wave cutoff.
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