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A general microscopic and macroscopic theory is developed for systems which are governed by a {linear)
master equation. The theory is based on a network representation of the master equation, and the results
are obtained mostly by application of some basic theorems of mathematical graph theory. In the
microscopic part of the theory, the construction of a steady state solution of the master equation in terms
of graph theoretical elements is, described (KirchhofFs theorem), and it is shown that the master equation
satisfies a global asymptotic Liapunov stability criterion with respect to this state. The
Cxlansdorff —Prigogine criterion turns out to be the differential version and thus a special case of the global
criterion. In the macroscopic part of the theory, a general prescription is given describing macrostates of
the systems arbitrarily fear from equilibrium in the language of generalized forces and fluxes of nonlinear
irreversible thermodynamics. As a particular result, Onsager s reciprocity relations for the
phenomenological coefficients are obtained as coinciding with the reciprocity relations of a near-to-
equilibrium network.
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I. INTRODUCTION

d, p, (t) =g ((~ (j&p,(t) —&j (f&p, (t))

A frequent situation of nonequilibrium physics is a sys-
tem S in contact with several different reservoir sys-
tems for thermal energy, volume, matter, electric
charge, etc. Examples are: a rod of a heat conducting
material with different fixed temperatures at its ends, a
permeable or semipermeable membrane between two dif-
ferent electrolyte solutions, or a system of coupled
chemical reactions where some of the reactants are con-
tinuously fed into the system and others are continuously
withdrawn. In all these cases, the reservoir systems
are not necessarily in mutual equilibrium such that the
system S cannot also achieve an equilibrium state, but
at most tend into some nonequilibrium steady state. The
purpose of this article is to review some of the mathe-
matical and physical techniques which have turned out to
yield appropriate descriptions of such nonequilibrium
situations. The starting point of all these techniques is
a master equation formulation of the system S, i.e., an
equation

o-p)(f)-I, Q pg(t) = I (1.2)

(Sec. V), overall stability and the uniqueness of the
steady state solution (Sec. VI), and eventually the role of
the Qlandsdorff-Prigogine criterion of stability. In con-

for the dynamical evolution of a probability distribution
p,.(t) over states i=1,2, . . .K which characterize the sys-
tem S. The quantity (i

~
j & is the transition probability

per time to state i from state j. It contains internal rate
constants as well as external conditions imposed by the
coupling to the reservoir systems like differences of
temperature, pressure, and electrochemical potentials
between the different reservoir systems. Regarding the
nature of the states i=1,2, . . ..N these could be chosen
such as to represent a complete quantum-mechanical or
classical description of the system S. In most cases of
interest, however, the states i = 1,2, . . .N will be the
result of some coarse graining procedure and thus each
already involving a large number of quantum-mechanical
or classical degrees of freedom. In any case, we shall
call the description of S in terms of the states i
= I, 2, . . .N a microscopic description as to be distin-
guished from a macroscopic description which will be
introduced later. Let us also mention that the number
N of states need not be finite. In all following considera-
tions, the limit N-~ can be performed without princi-
pal difficulties. Examples for the master equation (1.1)
and the appropriate choice of states mill be given in
Sec. II.

The techniques which we will be presenting in the fol-
lowing sections will all amount to a mathematical and
physical analysis of the master equation (1.1). Accord-
ing to the preliminary distinction betmeen a microscopic
and a macroscopic description of the nonequilibrium
system S, this analysis involves two corresponding
parts. In the microscopic part, we shall investigate
problems like the existence and construction of steady
state solutions of (1.1) (Sec. III), mathematical proper-
ties of time-dependent solutions (Sec. IV), stability of
time-dependent solutions in the "physical region, " i.e.,
the region where
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trast to the microscopic description of the system in
terms of probability distributions (P,.) for the microscop-
ic states i, =1,2, . . .N, the phenomenological theory of
nonequilibrium thermodynamics defines macro- states by
assigning values to a set of independent macroscopic
forces or fluxes. In the macroscopic part of our analy-
sis, we shall establish the relationship between the mas-
ter equation (1.1) and the macroscopic variables, forces
and fluxes, on the basis of a graph or network represen-
tation of the system of equations (1.1). The basic con-
cepts and facts from graph theory which are needed for
this procedure will be represented in Sec. VIII. In Sec.
IX, the macroscopic properties of the steady state, in
particular the mascroscopic entropy production, will be
discussed.

Up to this point, all investigations and all results ob-
tained apply to thermodynamic states which may be arbi-
trarily far from thermal equilibrium. In Sec. X, how-
ever, we shall focus our interest on the thermal equilib-
rium and on its vicinity, the so-called linear range of
irreversible thermodynamics. The main results of this
section include the derivation of the linear relationship
between macroscopic forces and fluxes and the proof of
Qnsager's reciprocity relation for the phenomenological
coefficients. As pointed out above, we shall make use of
some elementary concepts and facts of graph theory,
particularly in Secs. III and VIII. Although we try to
represent the mathematical background as far as possi-
ble, we refer for further details to the monographs of
Ore (1962), Desoer, Kuh (1969) and Chen (1971).

ii. MAST~8 EQUAT)ON DESCRiPTiON: TWO
EXAMPLES

A. Pores in a membrane

Qur first example of a master equation description of
a nonequilibrium system was originally initiated by a
biophysical problem. It is a common physiological obser-
vation that cell membranes, i.e. , the walls of a biologi-
cal cell, separate two electrolyte solutions which are
usually very different in their chemical composition. In
many cases, the cell membranes are permeable very
selectively to particular kinds of ions like Na' or K'.
The large difference in the composition of the adjoining
solution means that the membrane is in a very pro-
nounced nonequilibrium situation as typical for many bio-
logical systems. To account for the selectivity of trans-
port, one has developed the model concept of a very nar-
row membrane pore as a transport chanel for particu-
lar kinds of ions or molecules. Such a pore is envisaged
as a one-dimensional array of N —1 stable sites for ex-
actly that kind of ions or molecules. It traverses the
membrane perpendicular to the membrane plane and con-
nects the two solutions as indicated in part (a) of Fig. l.

I.et us focus our interest upon the case of an ion per-
meating through the pore. Assuming that electrostatic
repulsion prevents situations with more than one ion oc-
cupying the pore, it can exist in N states: i =1, . . .N —1
for occupation of the N —1 sites, and the state i =N for
the empty pore. Qbviously, we can represent this model
by a diagram or graph by assigning nodes or vertices to
each of the states, and by connecting lines or edges to
the allowed transitions between the states. In the case

of our simple example, the representative graph is a
cycle shown in part (b) of Fig. 1. The edges or transi-
tions stand for elementary diffusion jumps of the ion be-
tween neighboring sites or into or out of the pore. The
transition probabilities per time including an applied
electric field are given by

(i+1li)=k, e~ . i=1,2, . . .N —1,
iIi+1)=k,e ~ i=N, 1, . . .N —2,
(1 lN) = ck e~, (N —1 lN) = c'k~, e

Q = zeEb. /2Nk~T,

(2.1)

c,g N-1

rnernbra ne

(bI

FIG. 1. (a) Simple membrane pore model, (b) diagram of
states of the model.

where c, c'=ionic concentrations on the left and right re-
spectively, E= applied electric field (E&0 from left to
right), e = elementary charge, z = ionic valency, k~
= Boltzmann's constant, T = temperature, & = membrane
thickness, k,. = internal rate constants. In (2.1), a cyclic
numbering has been adopted: N+1=1. Note that in the
representative diagram a vertex represents one micro-
state with its probability p, , but an edge represents two
transition probabilities (i

l j) and (j
l
i), one for each of

the two possible directions of the transition.
The diagrammatic representation thai we just described

in the case of our simple example is a very general and .
helpful technique for studying models of higher complex-
ity. As Hill and Plesner (1965) have shown, quite a
variety of rather complex model systems are covered by
the master equation (1.1). Examples particularly for
membrane models have been given by Hill and Kedem
(1966) and Hill (1968). The reason why such a, diagram-
matic technique is needed even though the underlying
mathematical equation (1.1) is linear, lies in the fact
that the linearity does indeed guarantee a lot of theorems
on the existence of solutions, but does not help any fur-
ther if one asks for the solution of particular models,
for the asymptotic behavior and stability of solutions, or
for the thermodynamic description of the model systems.
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dx/dt = k, ax' —k,'x' —k, bx+ k,'c, (2.3)

where a, b, c are the fixed concentrations of A, B, and
C y

and ky p kgb k„k,' are the forward and reverse rate con-
stants of the reactions (1) and (2) in (2.2), respectively.
Schlogl (1972) has investigated the deterministic proper-
ties of this system. It shows instabilities of the type of
multiple steady states and represents a simple model
for a first-order nonequilibrium phase transition.

Whereas in our first example we could construct the
probabilities p,. in the master equation as p, =X,./X
where X,. is the number of pores in the state i, and 2C is
the total number of pores, such a construction is im-
possible for the present example since the deterministic
rate equation (2.3) is nonlinear. Instead, one has to in-
troduce a probability p(x, t) that the system contains the
number X of molecules of the type X at time t. (In order
to avoid too many notations, we choose the symbol X
also for the number of molecules of type X). Now the
variable X replaces the subscripts i which denote the
states of the system in the distribution $P,.j. An expres-
sion for the time derivative of p(x', t) is then obtained by
taking into account all reaction transitions from states
with numbers X+ 1 and X —1 to the state with a number
X of molecules of type X and vice versa. As discussed
by Janssen (1974) in detail, the resulting master equa-
tion reads

2

~]P(x, &) = Q ]&xix —1&"'p(x —1, t) + (x
l
x+ I)"'p(x+ 1, f)

p =1

B. Autocatalytic reaction system

Qur second example is a system of two chemical reac-
tions

(1) A+ 2X=3X,
(2) B+X=C. (2.2)

In this system, the concentration x of the molecules of
type X is variable, whereas that of the molecules A, B,
and C is kept fixed by coupling the system to appropriate
reservoir systems. The deterministic theory of the sys-
tem (2.2) starts from the rate equation for the concen-
tration x which is obtained from (2.2) as

sections. We stress this point because for the purpose
of a solution of (2.4) [Landauer (1952), Haken (1974,
1975), Janssen (1974)] it is convenient to compress the
two transitions formally into one. This is a purely for-
mal trick and must not be misinterpreted as a physical
change of the system. We will come back to this point
later.

g W„.p,. =o, (3.1)

III. STEADY STATE SOLUTION

For our following investigations let us adopt a very
general point of view. Given any physical system which
is described by a master equation (1.1), we first con-
struct its basic graph G as pointed out in Sec. II. Our
general results will not depend on the particular nature
of the system. We shall refer to the examples given in
Section II only to illustrate the results. An essential
prerequisite for the investigations in this paper is the
assumption that if there exists a transition from so'me
state j to some state i, i.e. , (i

l
j)&0, then the reverse

transition is also possible, i.e. , (j l
i) & 0. The reason

for this assumption i.s first of all the fact that for a real
transition between physical states there will always
exist, at least in principle, the opposite transition, pos-
sibly at a very low rate. Moreover, - it is convenient for
mathematical purposes to start with the above assump-
tion and to discuss the limit of vanishing transition rates
for single directions only in the final results. We shall
perform such limits in the steady state solution for two
typical examples at the end of the section.

With the above assumption that (i
l j)&0 implies (j

l
i)

&0, we may now assume without any loss of generality
that our basic graph G is connected in the sense that to
each pair of states or vertices (i, j), i 4 j, there exists
at least one sequence of transitions or edges connecting
them in both directions. If G were not connected, the
physical system behind G would decompose into nonin-
teracting subsystems which could be treated separately.

To obta, in the steady state solution p,. of (1.1). i.e. ,
dp, /dt=0 (not to be c.onfused with the thermodynamic
equilibrium) one would have to solve the linear equation

- ~&x- 'lx&"'+ &x+ I IX&" ]P(x, f)] (2 4)
I

The superscript p =1,2 refers to the two reactions which
may each increase or decrease the number X by unity.
The transition probabilities are

&xlx I&"'=a,a(x-l)(x 2)/v, &xlx I&"'=u;cv

(2.5)

&x llx&"'=u;X(x 1)(x 2)/v', &x llx&&'&=a, nx
I

and V is the volume of the system.
Following the same translation rules as in the case of

the first example we again represent the master equation
(2.4) by a diagram or basic graph which is shown in Fig.
2. From this graph we learn that there may be several
transitions between the same pair of states. In our ex-
ample, these transitions belong to independent chemical
reactions and thus have to be treated independently in the
mathematical and physical considerations in subsequent

w„.=(sly) —5,, g &&l~&

is an N&&N matrix if N is the total number of states,
i = 1,2, . . .N, as before. The existence of a nontrivial
solution of (3.1) is guaranteed if

det(W, ,] = 0

which follows from

(3.3)

(2) (2)

FIG. 2. Graph of the master equation description of the auto-
catalytie reaction system.
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g w, ,=g(&, ~, ) n, , g&a~z)) =o.
j k

(3.4)

Equation (3.3) means that the rank ~(W„-) of W, , is less
than N

(3 5)

The theory of linear equations does not tell us whether
at least one nontrivial solution of (3.1), if normalized to
1

(3.6)

satisfies the condition

O~p,. ~1
which should be required to interpret the(p, .j as a, proba,
bility distribution. Moreover, it is not at all trivial to
answer the following questions: how many nontrivial so-
lutions of (3.1) exist, and how many of them can be sub-
mitted to the conditions (3.6) and (3.7)'? Even if we know
that only one simultaneous solution of (3.1) and (3.6}
exists, its analytical expression obtained from usual
linear algebra in terms of determinants and subdetermi-
nants (Cramer's rule) is not tractable for a discussion
of the properties of the steady state in particular sys-
tems.

The diagrammatic representation of a system by its
basic graph G has led to an operative and very elegant
method to construct the steady state solution p,. in terms
of partial graphs of G. Moreover, the p,. obtained in
this way automatically satisfies (3.6) and (3.7). We shall
briefly review this method without proof. A detailed de-
scription and proof including application to models like
that of our example was given by Hill (1966). Before
Hill, other authors [Bott, Mayberry (1954), King, Alt-
mann (1956)] had already made use of this method, the
first one being Kirchhoff in 184'7 in context with network
theory. We shall therefore refer to it as to Kirchhoff's
theorem.

Let us start by defining a maximal tree T(G) of our
basic graph G. T(G) is uniquely cha, racterized by the
following properties:

(1) T(G) is a covering subgraph of G, i.e. , (a) all edges
of T(G) are edges of G, and (b} T(G) contains all vertices
of G;

(2) T(G) is connected;
(3) T(G) contains no circuits (cyclic sequences of

edges). It is easily shown, that T(G) has N —1 edges if
N is the number of states and thus of vertices in G, or
with other words, &=E —N+1 edges of G are missing in
T(G) where E is the number of edges in G.

Part (b) of Fig. 3 shows all possible maximal trees T(G)
of the graph G defined in part (a).

I et us denote the various possible maximal trees by
T&~'(G}, p. =1,2, . . .M. The total number M of maximal
trees crucially depends on the topological structure of
6 and on its number E of edges. For the example in
Fig. 3(a}, (b} we have M= 8, for the simple cycle in Fig.
1(b), M =E=N. If G consists of two cycles which are
connected in one vertex, M =E,E„where E, and E, are

p,. =S,.js,
where

(3.8)

S,. = Q A(T,. '"'(G)), S=Q S,. (3 9)

(N being the number of vertices in G). From (3.8) and
(3.9) we immediately derive the normalization condition
(3.6). Since all S,. &0, none of the p,. can vanish and thus
none of them can be equal to 1 and hence

0&p,. &1, (3.10)

i.e. , the equality signs in (3.7) can be excluded for the

(b) I LJ

FIG. 3. Example for constructing maximal trees and its di-
rected versions: (a) basic graph G, (b) all possible maximal
trees T ~ (G) of G, (c) 1-directed versions T && (G) of the maxi-
mal trees.

the numbers of edges in the two cycles. If the two cycles
have one edge in common instead of one vertex and E,
and E, are the numbers of their separate edges, then
M = E~' E2+ Eq+ E2.

From each of the maximal trees T'~'(G) we obtain its
i-directed version T,'"'(G. ) by directing all edges of
T'"'(G) toward the vertex with number i. This is a
unique procedure for every T&~ '(G) and every i, since the
T& "(G) contain no cycles and cover all vertices of G.
Part (c) of Fig. 3 shows all i-directed version T', ''(G).
for i=1 in that example.

To every T&~'(G) we assign an algebraic value
A(T,.'" '(G)) by multiplying all transition probabilities
(i

~
j& whose edges occur in T,' '(G) .in the direction to i

from j. For example, to the first one of the 1-directed
'(G) in Fig. 3(c) the product (1 I2&(213&(2 I4& would be

assigned. Kirchhoff's theorem now states that the steady
state solution p,. is given by

Rev. Mod. Phys. , Vol. 48, No. 4, October 'f976
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steady state.
I,et us now discuss what could happen if transition

rates vanish for a single direction but remain finite in
the reverse direction. It is easily visualized that such a
situation may drastically reduce the number of terms
contributing to S,. in Eq. (3.9). Let us consider two ex-
amples. In the first example we assume that a transition
rate for a single direction vanishes along a bridge of
G. A bridge is defined as a sequence of edges which is
not part of any cycle of G. Thus cutting an edge along a
bridge means to cut G into two pieces. An example for
a bridge is shown in Fig. 4(a). If now along such a
bridge we have (i

~
j)= 0 but (j ~i) &0, we immediately see

from Kirchhoff's theorem that the steady state probabili-
ties of all states on the i side of the bridge vanish since
their values of A(T,'. ~)(G)) necessarily contain the factor
(i

~

j). For the calculation of the remaining probabilities
on the j side of the bridge we may reduce the original
graph G to the partial graph G' containing all vertices on
the j side since their values of A(T,' "'(G)) ha. ve a com-
mon factor made up from transition rates on the i side
which is canceled when taking the ratio in Eq. (3.8). For
the second example let us assume that in the cycle of
Fig. 1 we ha, ve (N 1~N}=0—but (N~N —1)&0. Let T' '(G)
be the maximal tree obtained from the cycle G by
omitting the edge between the vertices p, —1 and p, ,
where p, = 1,2, . . .N and p, = 0 is equivalent to p, =

¹ %e
then immediately see that A(T,'~)(G))=0 f.or p, =1,2, . . . i
such that the evaluation of S,. is reduced to

S,. = Q A(T,'~ '(G)) . (3.11)

The answer to the question, whether Kirchhoff's theorem
is of any use for the evaluation of actual systems, pri-
marily depends on the topological structure of G, but
only secondarily on the number of vertices of G.

First of all, there are the cases where G is a simple
finite or infinite chain of states. In such a case, the
Kirchhoff solution coincides with the solution of the
master equation given by Landauer (1962) and Haken
(1974, 1975). This even applies to cases where G is a
chain of cycles as in the second example of Sec. II, cf.,
Fig. 2. The reader may easily verify that in this case
the expression S» as defined by (3.9) for i'=A' is given as

X

/=1

(aj

FIG. 4. (a) Graph with a bridge between the states i and j,
the arrow indicating (i ~ j)=0, (b) reduced graph G' for the
steady state solution.

number of up to three or four cycles which are connected
by common vertices or edges, the combinatorial problem
of finding all maximal trees may be solved analytically.
Examples of this type may be found in the paper by Hill
and Kedem (1966) or even for arbitrary large numbers
of vertices in an earlier paper by the author [Schnaken-
berg (1973)]. Apart from analytic methods, Heckmann
et al. (1969) have developed a general algorithm for a
computer evaluation of arbitrary complex systems on
the basis of Kirchhoff's theorem. It is evident that the
computing time for this algorith again strictly depends
on the topological structure of G.

IV. PROPERTIES OF THE TIME-DEPENDENT
SOLUTlON

From the theory of systems of ordinary differential
equations with coidstant coefficients we know that for
every set of initial conditions

p((fo) =pg~ t = 1~ 2~ ~ ~ ~ N

there exists a unique solution p, (t) of the maste. r equa-
tion (1.1) satisfying the initial condition (4.1) and being
analytic for all finite values of t. Furthermore, we de-
rive from (1.1)

(4.2)

po (4.3)

the corresponding solution p, (t) satisfying (4.1) re. mains
normalized

by making use of (3.4). Thus, the sum of the p, (1) is a. .
constant of motion. If we normalize the initial values

0
Pi&

(3.12) g p,.(t) =1. (4 4)

Equation (3.12) illustrates the meaning of compressing
different transitions into one as a formal trick to solve
the steady state master equation. Defining

(3.13)

reduces the chain of cycles to a chain of states as far as
the formal structure of the steady state solution is con-
cerned. Insertion of (3.12) into (3.8) directly leads to
the solutions as described by Landauer and Haken.

For less symmetric structures of G the application of
Kirchhoff's theorem requires a little more of graph the-
oreticaI or combinatorial analysis. If G consists of a

0 —p,.(t) —1 (4.5)

for all t. In fact, we shall be able to prove p, (t) &0for.
all t and i, if p, (t) satisfies the initial co.nditions (4.1),
if the po are subject to (4.3), if

0 —p,. —1, (4.6)

and if the representative graph G of the system is con-
nected From p,..(t) &0 together with (4.4) we then con-
clude that (4.5) holds even without the equality signs.

In order to interpret the p, (t) as a probability dist. ribu-
tion, we still have to prove that in addition to (4.4)

Rev. Mod. Phys. , Vol. 48, No. 4, October 'l 976
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Qur findings will be in complete agreement with that of
Keizer (1972) obtained by application of methods from
matrix theory to the master equation (1.1).

Under the above assumptions, we first prove that
there exists a 7 &0 such that for all t within the interval
to & t & t, + v, p,.(t) & 0 for all i . If all po & 0, the existence
of a & as stated above is evident. Therefore assume
that for some i, p,.(to) =p',. =0 such that the master equa-
tion (1.1) gives

(4.7)

If at least for one of the neighbors jof i, i.e. , for at least
one vertex jci with (i

~

j&o 0 (j being directly connected
to i by a single edge in G) p,.(t,) = p',. & 0, then Eq. (4.7)
yields p,.(t,) &0. If for all neighbors j of i, p,.(t,) =p',. = 0
and thus p,.(t,) =0, we take the second time derivative of
the ma.ster equation (1.1) to obtain

(4.8)

fy (4.3) and (4.6). For this purpose, we make use of a
stability theorem which was proposed by Schlogl (1971).

Let

x;=I",(x„. . . . x„), z=1, 2, . . . n (5.1)

(5.3)

for all z in A and 5x40,

( }
dK ~ sK(x) ~

8+i

be a system of differential equations for the functions
x,.(t), let A be a. region in the x=(x„.. .x„) space which
contains the origin x= 0, and let R(x) be a function de-
fined in A and having the following properties:

(a) K(x) has continuous second-order derivatives in A
(b) K(x) ~0 in A (5.2)

the equality sign being valid for x=0 only,
(c) K(x) is concave, i.e.,

Inserting p,.(to) = 0, p,.(t,) = 0 for t = t, into (4.8), and ex-
pressing p,.(to) again by the master equation (1.1), we
get for p,.(t,) =0

j, k

(4.9)

In Eq. (4.9), the vertex i is linked to its second order
neighbors k in G. If at least for one of those P„(t,) =P'„
&0, then Eq. (3.9) yields p,.(t,) &0; otherwise p,.(t,) =0.
In the latter case, we continue this procedure until in a
connected graph G we must arrive eventually at a posi-
tive v-th-order time derivative of p,.(t) at t=t, . This
then ensures the existence of a v,. such that p, (t) &0 for.
t, & t & to+ &, , and consequently p,.(t) & 0 for t, & t & t, + v and
all i = 1, 2, . . .K with & = min(7', .). In the second and final
step we show that it can never happen for t~ tp that any
of the p,.(t) vanishes. Let us assume the contrary and let
t, &t, be the first time that any of the p,.(t} vanishes:
p,.(t,) =0. In the same way a.s in Eq. (4.7) we get

(4.10)

V. L I APUNOV STAB I L ITY

In this section, we shall prove that the master equa-
tion (1.1) is stable whenever the initial conditions satis-

Again we have two possibilities:
(a) either for at least one of the neighbors j of i

p,.(t,) &0 and thus p,.(t,) &0, i.e. , p,.(t} has a first-order
zero for t=t, and p,.(t) would yield negative values for
t&t, sufficiently near to t, This is a contradiction,
since ty was assumed to be the first time that any of the
p,.(t) vanishes.

(b) or for all neighbors j of i is p,.(t, ) =0. In this case,
we apply (4.10) to the neighbors j of i to see if one of the
p,.(t,) &0 and so on. In a connected graph, we eventually
must arrive at a p~(t, ) &0 since not all of the p,.(t,) can
vanish, this following from (4.4) for t= t, . If now p~(t, }&0
and p~(t, ) =0 we return to case (a).

(5.4)

lim x,.(t) = 0 for all i .
C)O

(5.5)

The proof of this theorem is almost evident. It may be
regarded as "strong version" of Liapunov's stability
criterion which, in its usual form, makes less incisive
assumptions [Lasalle, Lefshetz (1961)]. On the other
hand, the strong version ensures stability in a whole
region A and not only in the vicinity of the origin.

%/hen applying the above stability theorem to the mas-
ter equation (1.1) we follow the work of Schlogl (1971)
and choose an arbitrary linear parametrization for the
probabilities p, ,

N-I.

p,. =p,. + Q U(.))x„ (5.6)
k=1

such that

g p,. =l (5.7)

is satisfied by an appropriate choice of the U,.k. The
region A is chosen as that part of the parameter space
for which

0(p ($ (5.8)

The p,. of Eq. (5.6) are the probabilities of an arbitrary
steady state in the "physical region" defined by (5.7) and
(5.8}. The Kirchhoff theorem ensures the existence of
at least one such steady state. As Liapunov function we
choose

the equality sign being valid for x=0 only.
Properties (b} and (c} imply that there exists a closed

surfa. ce S(C): K(x) = C(C & 0) within A such that S(C) en-
closes all surfaces S(C') with C& C' &0. Let A. be the in-
terior of the surface S(C) with maximal C such that S(C)
is still contained in A. Then the stability theorem states
that any solution of (5.1) starting in A remains in A. and
tends into the origin at t-~:
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(5 9)

which can be expressed in terms of the independent para-
meters x,. by inserting (5.6) into (5.9). The function of
Eq. (5.9) was introduced by Kullback (1951 a, b) and
Renyi (1966) as the gain of information when replacing
the distribution (p,.].by a different distribution lp,.).
Based on this interpretation, Schlogl has recognized its
significance as a Liapunov function for physical systems.

Properties (a), (b), and (c) are easily established
[Schlogl (1971)] and moreover, it can be shown that A
coincides with A, i.e., A corresponds to the whole physi-
cal region (5.7), (5.8). What remains to be demonstrated
is property (d), the proof of which depends on the Mark-
ovian type of the master equation (1.1). By inserting
(1.1) into A and by making use of (4.2) we obtain

(1) No degeneracy: al I„'s are different from each
other, and Q,'."'(t) —= 1.

(2) Degeneracy: among the X„'s a group of k are equal
(0-fold degeneracy).

(a) If for the k degenerate eigenvalues a number of k
linear independent eigenvectors can be found, we again
have QI"'(i) =1 for this group. In this case, we prefer to
denote the degenerate ~„'s by different values of v.

(b) If for the group of the k degenerate eigenvalues
the number of linear independent eigenvqctors is less
than k, the Q',."'(t) are polynomials of degree less than
iv. In this case, we distinguish the linear independent
eigenvectors by different values for v.

We need not go into any further details since for the
following considerations the general structure of the so-
lution in (6.1) will be sufficient. The existence of the
steady state in the Kirchhoff theorem implies that at
least one eigenvalue X„, say X» vanishes: A., =O. De-
noting the Kirchhoff steady state by pi we may write the
general solution of (1.1) in the form

p (t} p + g c u(v)q(v)(i)e-x„t (6.2)

p J'I

(5.10)

= g—'Qw„p, . P(P w„)p,. =o
i i J

(5.11)

by making use of Eqs. (3.1) and (3.4). As can be seen
from (5.10), the equality sign holds only if for all pairs
i,j p,./p, =p, /p, which reduces t.o p. ,. =p,. for all i

We have shown that any solution which starts in the
physical region (5.7), (5.8) is asymptotically stable with
respect to any steady state in the physical region, for
example that of the Kirchhoff theorem. Thus, we obtain
as a by-product of our considerations that the steady
state of the Kirchhoff theorem is unique in the physical
region since a solution cannot be asymptotically stable
with respect to different steady states.

Vl. THE EIGENVALUES OF THE TRANSITION
MODEL

since Iogx~ x —1 for x&0, and (i
~
j)p,. &0. In the last ex-

pression of (5.10), (i
~
j) can be replaced by W, , [c.f. Eq.

(3.2)] since the diagonal terms i =j do not contribute. In
this way we have

—Qw;v( ' ' —1)
i J

C=g p,.(O) =1+ g Re(c,uI"q&,"(0)],
i

we have normalized the solution p,.(t) such that

(6 5)

(6.6)

since p,.(t) —p,. also satisfies Eq. (1.1). We now prove
that all X„ for v ~ 1 in (6.2) have positive real parts:
Reh.„&0. This includes the statement that the eigenvalue
A.,=O is nondegenerate. Although the proof to be given
will be based upon the results of the stability considera-
tions of Sec. V, it is not a trivial consequence of the
stability properties since these have been established in
the physical region only. Hyver (1972) and Keizer (1972)
have proved the above statement by application of matrix
theory. Let us assume now that for any of the A.„'s for
v~ 1, say for X„we have Re%., ~O. Let us then look at
a particular solution obtained from (6.2) by setting
cl @0, c, = c, = = 0 and taking the real part

p, (t) =p, +Re(c,u,'"QI"(t)e '&']. (6.3)

Since the system (1.1) is linear and homogeneous, we
may multiply the right-hand side of (6.3) by an arbitrary
factor to obtain a solution in the form

p, (t) = C '[p,.+ Re(c,uI ". Q,
'"(t)e ~".]].

By choosing

The most general form of the solution for the system
(1.1) of linear homogeneous differential equations reads

Finally, we can always bring the

p,.(0) = C '[p, + Re(c,u'. "Q!"(0)]] (6 7)

P (f) Q C u(v)q(v&(t)e-Xvt (6.1)
to satisfy

0 &p,.(0) &1 (6.8)

In (6.1) the A., are the eigenvalues of the matrix -W, , de-
fined by (3.2) with eigenvectors (u,", . . .u~"'), v

=1,2, . . . , and the c„are arbitrary constants. Regard-
ing the Q,'."'(t), the following cases are possible:

by choosing c, sufficiently small, since for the Kirchhoff
steady state p,. we have 0 &p,. &1. Now the solution p, (t)
satisfies all conditions of the stability theorem of Sec. &.
This immediately implies either ReA., &0 or QI"(f) = const
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if Rek, =0. The latter possibility, however, is excluded
since then p,.(t) = const would represent a steady state in
the physical region different from the Kirchhoff steady
state. This cannot be the case since the Kirchhoff steady
state is unique in the physical region as mentioned at the
end of Sec. V.

Summarizing our conclusions from Secs. III, IV, V and
the present one we may now say that

(a) —W„. has exactly one nondegenerate eigenvalue X, =0
or, with other words,

xfW, ,$=N —1

which completes the inequality (3.5),
(b) all other eigenvalues of —W, , have positive real

parts~
(c) the Kirchhoff steady state p,. is unique in the full

mathematical space of the normalized variables p, , i.e.,
Z,.p,. = 1, and every solution starting at arbitrary points
in this space is asymptotically stable with respect to the
p g

~

Vl I. ENTROPY PRODUCTION ANDTHE GLANSDGRFF-
PRIGOGINE CRITERION OF STABILITY

As pointed out in the introductory-See. I, we call a de-
scription of the nonequilibrium system S in terms of
probability distributions (p,.) over states i = 1,2, . . .N a
microscopic description even if the states i do not rep-
resent a complete quantum-mechanical or classical set
of variables. In the two examples of Sec. II, the states
i had been chosen as configurational states of a mern-
brane pore or as states with given numbers of a mole-
cule of type X, respectively, and thus are evidently not
complete in the above sense. Nevertheless, the notation
"microscopic" for such a description may be justified.
This will become clear if we now turn to what we shall
call a macroscopic or phenomenological thermodynamic
description of the nonequilibrium system S.

From a thermodynamic point of view, the nonequilibri-
um system S is envisaged as a black box exposed to a
well-defined set of generalized external thermodynamic
forces due to the simultaneous coupling to different re-
servoir systems. The response of the system to this set
of forces manifests itself in a corresponding set of
generalized thermodynamic fluxes. For the membrane
example in Sec. II, the force is proportional to the dif-
ference of the electrochemical potential of the ion across
the membrane, and the flux is the number of ions pene-
trating across the membrane per time and area; for the
reaction system in part (B) of Sec. II, force and flux are
given as the overall affinity of the net reaction A+ B=C
divided by the temperature T, and as the reaction rate
as number of moles per time. We could equally well ex-
pose the system to fixed and given values of fluxes and
observe the corresponding forces as its response, but
since this alteration would not principally change the sub-
sequent considerations, we usually refer to the former
situation in order not to make the formulation too diffi-
cult.

The first step on our way from a microscopic to a ma-
croscopic description of the nonequilibrium system S is
to establish an expression P for what will turn out to be
the entropy production of S. The way we shall derive

~';, =(i ~i)c, —(j ~i)c;, (7 1)

where c, , c,. are the concentrations of X, , X,, respective-
ly, and (i

~
j), (j

~
i) are the transition probabilities to be

taken from the master equation (1.1);
(c) there may be further chemical components involved

in the reaction between X,. and X,. not belonging to the set
X„X„.. .X~; such components are assumed to be fed
into the system at constant concentrations and the values
of their concentrations are incorporated into the con-
sta.nts (i

t j) and (j (i).
It is clear that these prescriptions do not define S' in a
unique way. Every system S' which satisfies the above
prescriptions may be accepted as representative.

Due to (7.1) the time change of the concentration c,. of
the component X,. in S' is given as

4c;
(7 2)

By choosing

p ~ =c ~ z "). (7.3)

[Z,.cj= const, cf. (4.2)] Eq. (7.2) becomes formally
equivalent to the niaster equation (1.1). We therefore
rewrite (7.1) as

(7.4)

such that the reaction rates J', , -J,-,. with a proportionality
factor independent of i,j.

Here J',, as given by (7.1) is the generalized thermody-
namic Qux of the reaction X,.=X,-. The conjugated gen-
eralized thermodynamic force is the affinity defined as

(7.5)

for an ideal system S'. Our definition (7.5) deviates from
the usual definition of the affinity which contains an addi-
tional factor k~T in front of the log term, k~ being the
Boltzmann constant, and T the temperature at which the
reaction occurs. With this latter convention, however,
the generalized force is then given by the affinity divided
by the temperature so that eventually the temperature
is canceled, in agreement with our definition (7.5) (apart
from the factor ka). Since the system S is a fictitious
one and was assumed to be homogeneous, the choice of
a temperature would be completely irrelevant and there-

this expression P will seem a little artificial, however,
it will be an essential aim of the following sections to
prove that P obtained thereby satisfies all requirements
to be imposed on the entropy production.

Once again our starting point is the assumption that
the master equation (1.1) gives the microscopic dynami-
cal evolution of the system S as far as we are interested
in its internal degrees of freedom. From this master
equation we now construct a fictitious system S' by the
following prescriptions:

(a) S' is a, materially open homogeneous system con-
taining the chemical species X„X„.. .X~;

(b) there are chemical reactions possible between
pairs (X, , X,.) of the components, X,. =X,, such that the
reaction rates are given as
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fore it is logical to start from the definition (V. 5).
Having now defined generalized fluxes and forces in the

system S' by (7.1) and (7.5) we are led to interpret the
bilinear expression

P= — J,,A, ,=1
2t

(7.6)

P=P, +P2,
where

(7 7)

as the entropy production in S'. [Equation (7.6) differs
from the usual definition of P by a factor k~ and another
factor contained in (V.3) as we have replaced J',, by J,,.]
Since S' was assumed to be homogeneous, the chemical
reactions X,.=X,. are indeed the only irreversible pro-
cesses in S' and there will be no further contribution to
P.

The question to be raised at this point is whether the
entropy production P of the fictitious system S' has any-
thing to do with the entropy production of the real sys-
tem S which in the language of phenomenological thermo-
dynamics would have to be expressed as a bilinear form
of the fluxes and forces of the real system S, instead of
that of the fictitious system S'. This will be an essential
aim of the following sections VIII-X. In the context of
the present section, however, we can already give two
hints which will lead us to identify P of (V.6) with the
entropy production of S.

First, we observe that P of (7.6) can be split into two
contributions

eJ, , OA, , 0,~ =1
2 7

where from (7.4) and (7.5) we have

6J;;=(7~i)6P; —(i
~
f)6P;,

6&,, = (6P,&P,) —(6P,&P;),

(7.12)

(7.13)

(7.14)

6P =P P;—. (7.15)

are the fluctuations around the steady state the stability
of which is to be examined. Inserting (7.14) and the
fluctuation version of the master equation

(7.16)

P; to account for the corresponding external production
of entropy. In this case, only the sum P, +P'2+P3 would
be positive but not necessarily each of the contributions
Pz P2 P3 and neither partial sums . Thus the entropy
production P of (7.6) could be interpreted as the minimal
entropy production which is realized for ideal reservoir
systems.

The second hint identifying P of (7.6) with the entropy
production of the real system S comes from the formu-
lation of the stability criterion of Glansdorff and Prigo-
gine (1971) for the fictitious system S'. According to this
criterion, a steady state of a thermodynamic system is
stable if the second-order variation O'P of its entropy
production around the steady state, the so-called excess
entropy production, is positive. With J,.&

and A,-,. as the
fluxes and forces of the fictitious system S' defined by
(7.4) and (7.5) the Glansdorff-Prigogine criterion then
reads

J,, log~,=1 . . p (V.8)
into (7.12) and making use of 6 J,.&

= —6 J&„we obtain

(7.9)

It is easily verified that P, can be expressed as

P, = dS/dt,

where

S = - g p,. log p,.

(7.10)

(7.11)

d
dt 2 . pg

(7.17)

To prove (7.10) we only have to make use of the master
equation (1.1).

Let us discuss briefly the physical background of the
splitting of the total entropy production P into the con-
tributions P, and P, . From the fact that P, is given as
the time derivative of the expression S defined in (V.ll)
which would have been chosen as the entropy of the sys-
tem S under equilibrium conditions, we conclude that the
contribution P, is due to the coupling of the system to an
external set of thermodynamic forces which prevent the
system from achieving an equilibrium state. It should
be emphasized that neither P, nor P, are necessarily
positive but only that P=P, +P; «0 as immediately fol-
lows from (7.6).

If the external reservoir systems were to involve some
further external dissipative process, the total entropy
production P would have to include some further term

The Qlansdorff-Prigogine criterion now has the usual
form of a Liapunov stability criterion with

(7.18)

as the corresponding Liapunov function. The deciding
point of our present consideration is the fact that O'I of
(7.18) is nothing else than the negative second-order var-
iation of the X functional which is obtained from (5.9) as

O'X= 6' g P,. log —'
P

.p&+ 5p& log
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This means that the Glansdorff-Prigogine criterion for
the fictitious system S' coincides with the differential
version of the global Liapunov criterion for our real sys-
tem S and can thus be considered as a consequence or
special case of the global criterion.

The relationship between the Glansdorff-Prigogine cri-
terion and the K functional has been pointed out the first
time by Schlogl (1971). A general discussion of the
Glansdorff-Prigogine criterion in the light of Liapunov's
theory has been given by De Sobrino (1975). From this
latter discussion it becomes clear that for general ma-
croseopie systems of chemical reactions the Glansdorff-
Prigogine criterion is only a sufficient criterion of
stability. There are macroscopic systems which do not
satisfy this criterion as for example the macroscopic
version of the system defined in Eq. (2.2). For our
master equation systems S and hence for the fictitious
systems S' derived from S, however, we have shown
in (7.17) and (7.18) that the Glansdorff —Prigogine cri-
terion is always satisfied.

VIII. IVIACROSCOPIC THERMODYNAMIC FORIVIU-
LATION CYCLES AND AF F INITIES

The generalized thermodynamic forces to which the
real nonequilibrium system S is exposed when coupled
to different reservoir systems are incorporated in the
transition probabilities (i

~
j) of the master equation (1.1).

Let us elucidate the relation between the thermodynamic
forces and the (i

~
j) in the case of the two examples given

in Sec. II. For this purpose, we multiply the transition
probabilities a.s given by (2.1) for the membrane pore
model along the two possible directions of the basic cy-
clic graph of Fig. 1(b). Taking the ratio of the two prod
ucts, we obtain

biguity with the factor T in (8.2) and (8.4).
Generalizing the above conclusions from our two ex-

amples, we assume for arbitrary systems governed by
a master equation (1.1), the corresponding macroscopic
forces to be determined by the cycles of the basic graph
G in the same way as in (8.1) and (8.3). This assumption
can be confirmed for all the numerous models which
have been constructed on the basis of a master equation
for transport across membranes and other nonequilibri-
um phenomena [cf., Hill, Kedem (1966)].

The aim of this section and of the next is to justify the
above conjecture of associating the thermodynamic
forces with the cycles of the graph G. To this end, . we
shall prove that the steady state value of the entropy
production as given by (7.6) can be written as a bilinear
expression

V

I =g A(C. )E(C.) (8.5)

or forces A(C„) and fluxes E(C ) such that under steady
state conditions

(a) A(C ) and E(C„) are uniquely determined by a, funda-
mental set of cycles C of the basic graph G,

(b) the A(C ) a.re independent of the steady state prob-
abilities p,. and thus only depend on the external coupling
conditions as in (8.2) and (8.4),

(c) A(C ) = 0 for all n is equivalent to F(C ) = 0 for all
o. which in turn is equiva. lent to (i ~g)P,. =(y

~
i)P,. for all

independent transitions between the state i and j which
means the thermodynamic equilibrium,

(d) if the steady state p,. is a thermodyna. mic equilibri-
um& there is a linear relation between the A(C ) and
E(C ) in the vicinity of the equilibrium,

(N IN —I)(N —1IN —» ~ ~ (2 I 1)(1IN)
(N I 1)(l i

2)' ' (N 2 i N —1)(N ——1 i N)

=exp( "),
(8.1)

A(C„)= g Z.,E(C,)

with

(8.6)

where

(8.2)

k~k~ab
A.= k~T log

zC
(8.4)

is the overall affinity of the reaction A+ B=C. Note that
the result A of (8.4) does not depend on the position of
the cycle, i.e., on the states X and X-1 between which
the cycle is situated; Both examples are homogeneous
with respect to the temperature such that there is no am-

is the over-all difference of the electrochemical potential
of the involved ion across the membrane. Quite analo-
gously, the ratio of the transition probability products
along the two possible directions of -a single cycle be-
tween the states X —1 and X in the second example of
Sec. II (cf. Fig. 2) is obtained from (2.5) as

(xl x—l)~"(x- 1 I x)"' k, k2ab A
(XiX 1)"'(X 1[X&"' k'k'c p k T

where

Clearly, these findings would link the microscopic dy-
namic description of the system in the master equation
(1.1) with the macroscopic thermodynamic description in
terms of generalized thermodynamic forces and fluxes.
Moreov'er, they justify the identification of the steady
state value of P in (7.6) with the macroscopic entropy
production of the real system S.

This raises two questions: how many cycles can be
identified in a graph G and whether or not each of these
corresponds to an independent thermodynamic force. To
answer these questions, we have to go a little further
into some elementary methods and theorems of the
mathematical theory of graphs. In Sec. III, we have al-
ready introduced maximal trees T(G) of G as connected,
covering and circuit-free subgraphs of G. The edges of
G which do not belong to T(G) are called the chords of
T(G). The number of chords is given by v = E —N+ 1,
where E and N are the numbers of edges and vertices in
G, respectively. T(G) has the important property that if
one of the chords s„.. . s„ is added to T(G) the resulting
subgraph T(G)+ s contains exactly one circuit, say C„,
which is obta. ined from T(G)+ s by removing all edges
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(b)

of circuits [case (b) in Fig. 5], a. so-called quasicircuit,
i.e. , a subgraph in which every vertex is connected with
an even number of neighboring vertices.

For a unique definition of the thermodynamic force A
of a circuit like that in (8.1) or (8.3) we not only need the
topological structure of C in G but also a reference ori-
entation of C since A changes its sign when C changes its
orientation. For this purpose, we first choose an arbi-
trary reference orientation for each edge x, of G (1 & e
~ E, E being the number of edges in G) by defining a ma-
trix

FIG. 5. Two possibilities to construct fundamental sets of
circuits for the example given in Fig. 3; in parts (a) and (b)
one starts from two different maximal trees of part {b) of Fig.
3. The circuit C& in {b) is the result of the -relation of C&
and C2 in {a).

which are not part of the circuit. The set of circuits
(C„.. . C„].obtained in this way is called a fundamental
set. Fig. 5 shows the construction of a fundamental set
for the example given in Fig. 3.

A mell-known theorem of graph theory now proves that
any circuit C of G can be represented as linear combina-
tion

C= p, C, G3 p, C, S. . . Gap„C„ (8.7)

C=C, SC, (8.8)

between two circuits C„C, is defined as to yield a sub-
graph C of G such that the set E(C) of edges of C is the
symmetric difference between the sets E(C,), E(C,) of
edges of C„C,

E(c) = [E(c,) E(c,) ]v[E(c,) E(c,) ] (8.9)

Eq. (8.9) means that C contains all edges of C, and C,
which do not simultaneously belong to C, and C, . Figure
8 gives two exa.mples for the relation (8.8).

It should be noted, that the result C of Eq. (8.8) need
not be a simple circuit, but is perhaps a superposition

(a)

of the circuits of a fundamental set where p = 1 or 0 de-
pending on whether the chord s belongs to C or not. The
relation

+1 &fs x~

D(i, x,) = 1 if i —x, ,

0 otherwise

(8.10)

where i-x, andi -x, denote that the reference orienta-
tion of edge x, is directed into the vertex i and out of
vertex i, respectively. A particularly simple choice of
reference directions for edges x, =" (j, k) would be k- j if
and only if j&k and vice versa. This special choice is
expressed in terms of the above matrix D as D[i, ( j, k) ]
= + 1 if i =j& k or i = k &j, D [i, ( j, k) ] = —1 if i =j & k or
i = k& j, and D[i, ( j, k) ] = 0 otherwise.

Letting (x„.. . xs) be an arbitrary ordering of the
edges of G such that the first v of them coincide with the
chords (s„.. . s„) of a fundamental set, any directed sub
graph P of G, i e. , a subgraph P of G with arbitrary di-
rections on its edges, is uniquely characterized by num-
bers S,(P) with

S,(P) =

+1 if P, x, parallel,
—1 if P, x, antiparallel,

0 if x, notinP,
(8.11)

where P, x, parallel means that P contains edge x, in its
reference orientation, and P, x, antiparallel analogously.

Allowing S,(P) to adopt any positive or negative integer
or zero we generalize the concept of a subgraph in that
P may then contain an edge of G several times. The
generalized subgraphs form a linear vector space if we
define

S,(c,P, + c,P,) = c,S,(P,)+ c,S,(P,) (8.12)

c„c,being integers.
Eventually, we introduce a linear operator 8,. acting on

directed subgraphs as

8;P= Di, x, S, P
e=l

(8.13)

Cp Calling the oriented or directed versions of circuits and
quasicircuits cycles and quasicycles, respectively, we
immediately see that

C)
(bI

B,.Q= 0 (8.14)

C2

FIG. 6. Two examples for the. relation C& C2= C, the result
being a simple circuit in (a) and a quasicircuit in (b).

may be considered as the defining equation for quasi-
cycles. [Eq. (8.14) is often referred to as Tellegen's
theorem].

We can now solve our original problem. Let C be any
cycle of G and let the corresponding (undirected) circuit
have the representation (8.7) with respect to an arbi-
trary fundamental set.of circuits. From the latter we
construct a fundamental set of cycles by assigning arbi-
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trary orientations to the C„.. . C„ to obtain C„.. . . C„.
Defining a scalar product

A(C) = g S.(C)log
e=l Iz

(8.21)

(C, C.) = S.(C)S„(C„)1» ~ ~ v (8.15)

which may be any positive or negative integer or zero,
we consider the subgraph

Q= Q (C, C )C (8.16)

Since the C are cycles,

&,C =0 (8.17)

and 9,. is linear, we conclude

B,.Q= 0 (8.18)

such that Q of (8.16) is a, quasicycle. Furthermore, it is
evident from (8.15) that the corresponding quasicircuit
Q contains the same chords as the circuit C. Since the
chords of a fundamental set uniquely characterize a,

quasicircuit, we conclude Q = C which says that Q is a
circuit. Finally, Q and C are parallel on all chords s
with (C, C ) o 0 such that Q = C a.nd

C = g (C, C.)C. .
e 1

Comparing (8.7) and (8.19) we a.iso have

p. = f(C, C„)[.

(8.19)

(8.20)

I'IG. 7. Example to illustrate the operations defined in Sec.
VIII for the inclusion of orientation of circuits and reference
orientation of edges (A detailed description of the example is
given in the text of Sec. VIII).

The significance of (8.19) lies in the fact that orienta
tion can be included in the concept of the linear vector
space of the circuits such that the oriented edges of G
which occur on the right-hand side of Eq. (8.19), but not
in C cancel each other completely.

The representation (8.19) of a cycle C of the graph G

by a fundamental set of cycles is illustrated in Fig. 7.
The arrows along the edges of the graph in Fig. 7 indi-

cate the reference orientations of the edges. The funda-
mental set of cycles Cl C2 C3 drawn into Fig. 7 is gen-
erated by a maximal tree with chords s, =(1,5),
s, =(3,4), s, =(4, 5). The S„(C ) of Eq. (8.11) are given
as+1, —1, —1 for o =1,2, 3 and S (C8)=0 if ngP. As-
suming that we want to represent the cycle C
= (1,2, 4, 5, 1) with reference orientation in this order
of vertices, we simply have S (C) =+ 1, 0, —1 and thus
by insertion into (8.15) and (8.19) C = C, + C, .

It is now obvious how the definitions (8.1) and (8.3) of
the force A(C) of an arbitrary cycle C in G has to be gen-
eralized, namely

where it is understood on the right-hand side of (8.21)
that the reference orientation of edge x, is such that x,
is directed from j to i. It is consistent not to include a
factor ksT into the definition (8.21) since A(C) is meant
as a thermodynamic force whereas the forces corre-
sponding to the examples given in (8.2) and (8.4) are
given as ~q/T and A/T (for homogeneous temperatures).

It is easy to show that we could also have defined A(C)
as the sum of the affinities along the edges of C

A(C) = g S,(c)A,
e=l

(8.22)

where according to (7.5) the affinity A., of edge x, is given
by

A.,= log —.—.(z ~i&P

&i ~z&P;
(8 23)

The right-hand sides of (8.21) and (8.22) are equal since

g S,(C)log~= 0.
e=l pi

(8.24)

Note that although A, depends on the microstate (p,.j of
the system, the affinity A(C) along a cycle does not.

The essential result of this section is obtained by in-
serting the fundamental representation of cycle C as
given in Eq. (8.19) into (8.22). By making use of the lin
earity of S„(C), cf. Eq. (8.12), we get

A(c) = P
e=l

8, C, C C

= g (C, C.) g S,(C.)A„

where

C, C A. C
0, -1

(8.25)

A(C ) = Q S,(C ) A, , (8.26)

is again independent of the microstate. Equation (8.25)
confirms a basic assumption of the phenomenological the-
ory of irreversible thermodynamics: an arbitrary mac-
roscopic generalized force A(C) associated with one of
the cycles of the basic graphs is a linear combination of
the forces A.(C ) associated with a fundamental set of
cycles, the coefficients being + 1, -1 or 0 depending on
whether C is parallel or antiparallel to C or does not
contain C„. A fundamental set of (undirected) circuits is
obtained by choosing an arbitrary maximal tree T(G) in
G, successively adding one of the chords to T(G) and re-
moving all edges which are not part of the generated cir-
cuit. From the fundamental set of circuits a fundamental
set of cycles is obtained by giving arbitrary orientations
to the circuits of the set. The dimension of the funda-
mental sets is v=E -%+1.

The thermodynamic significance of cycles in the rep-
resentative graph and the possibility of creating new cy-
cles by linear combinations was first observed by Bak
(1963). In Bak's theory, however, the cycles and their
affinities only appear in Wegscheider's condition for the
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eigenvalues A. , of Section V, to have positive real parts.
In this condition, it is assumed that all affinities A.(C )
vanish. Interpreting the A(c ) as the phenomenological
forces, Wegscheider's condition reduces to the condition
of thermal equilibrium (compare Section X). As we have
shown in Section VI, the positivity of the real parts of
the eigenvalues X can be proved under much less restric-
tive conditions.

The fact that the cycles of G are related to the phenom-
enological forces, follows from Kirchhoff's theorem
(compa. re Section III). For particular models, this rela-
tionship has been pointed out by Hill (1968).

(9.6)

~= g Z,A, .
e=l

(9.7)

Let us now consider the entropy production & in the
steady state. By successively inserting Eq. (9.5) and Eq.
(8.26) into (9.7) we derive

p = g J,A, = g E(C„)g S.(C.) A.

Introducing A, =-A, , , J,=—J,.&
into (9.6) where edge x, has

reference orientation from j to i, we can rewrite (9.6) as

IX. STEADY STATE' KIRCHOFF'S CU-RRENT LAW
AND MACROSCOPIC ENTROPY PRODUCTION = g S'(C.)A(C.). (9.8)

For any edge x, with reference orientation from j to i
in the basic graph G of our system we define in corre-
spondence with Eq. (7.4) as steady state flux

l

~.=~„=& lj&p, -&jl &p;. (9.1)

The ra.te equation (1.1) of our system can simply be ex-
pressed in the steady state as

This result already confirms part of the program set up
in Sec. VIII following Eq. (8.5): Eq. (9.8) proves Eq.
(8.5), point (a) is expressed by (8.26) and the inverse of
(9.5), which due to KCL is unique in the steady state,
and point (b) is obtained by applying (8.21) to C = C„ for
all cyc1.es C of the fundamental set.

J,, =O (9.2)

By making use of definitions (7.6) and (8.1) we get from
(9.2)

X.= g S,(C.)Z(C.) . (9.5)

If x, happens to coincide with one of the chords s, Eq.
(9.5) reduces to (9.4) since S'„(C ) =1. If x, in (9.5) is
part of a bridge in G, i.e. , if there exists no circuit in
G which contains x„we derive from (9.5) Z, = 0. Thus,
if we restrict ourselves to the study of the steady state,
we may remove all edges along bridges, so-called cut
edges, from G and thereby decompose our system into
unconnected sub-systems.

In Section VII, Eq. (7.6), we have written the entropy
production P of the fictitious system S' for arbitrary
microstates p,. as

Q D(i, x,) J,= 0
e=l

which is Kirchhoff's Current Law (KCL) for each vertex
i. Note that KCL in the form of (9.3) is restricted to the
steady state, but not necessarily to thermal equilibrium.
We could easily generalize KCL to include even non-
steady state situations by introducing capacitive elements
for nonvanishing dp~/dt but for our subsequent considera-
tions there is no need for this generalization.

Let T(G) be a maximal tree of G with chords (s„.. . s„)
and let (C„.. .C,) be a fundamental set of cycles de-
rived from T(G). As the steady state flux E(C„) along the
cycle C of the fundamental set we define

E(C )=S (C )J (9.4)

where J is the steady state flux of the chord s of C
relative to T(G). By repeatedly applying KCL to the
steady state fluxes in G we easily obtain for the steady
state flux J, along any of the edges x, of G

z, =&i ljiP, -&jl;&p,. =o (10.1)

for all independent transitions between all pairs of states
(i,j) If the. re is no transition between a pair of states
(i, j), condition (10.1) is identically satisfied since in this
ease we have (i j& = (j i&= 0 independent of the values of
p"

It seems worth while to point out in this context that the
equilibrium condition (10.1) applied to the reaction sys-
tem of Sec. II(B) means

7"",= (x lx-1&"'po(x 1) (x 1lx&"&p~(x) = 0

(10.2)

separately for p=1 and p=2. Qn the other hand, an arbi-
trary steady state of this system is defined as

-(l) (2)JX,X-.+ JX,x-l = 0. (10.3)

The basic graph of this system is a double chain as shown
in Fig. 2. The left-hand side of (10.3) is the total flux
along this double chain. Then KCL, Eq. (9.3), implies
that, first of all, the total flux on the left-hand side of
(10.3) is constant, i.e. , independent of X. Since the dou-
ble chain ends at least at X= 0, the constant total flux
vanishes. .

Clearly, (10.2) satisfies (10.3) but not necessarily vice
versa. Indeed, if there is a finite overall affinity A. as
defined by (8.4) there will also be a finite flux J'»»,
= —Jx 'x, = J~ ', ~ along all cycles of the double chain.
This is easily seen by evaluating the steady state condi-
tion (10.3) as

X. THE RMAL EQUIL I BR IVIVI: KIRCHOF F'S VOLTAGE
LAW, THE PHENOMENOLOGICAL COEFFICIENTS AND
ONSAGE R'S RECIPROCITY R E LATIONS

Thermal equilibrium is a particular steady state p',.
which on the microscopic level may be defined by, the
condition of "complete" detailed balance, i.e. , by postu-
lating
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(x 1 lx&"'+ (x 1 lx)"'—
—1& + (xlx —1

which upon inse tio into x'x-& leads to

(10.4)

JX,X-& JX,X-&

(xi x 1&"'(x 1 ix&"'
P a T (xlx I&&»+(xlx 1&&»

if A. 40 (10.5)

for all macroscopic fluxes I, or equivalently by

A =0 (10.7)

for all macroscopic forces A .
Identifying the F of (10.6) with the fluxes E(C ) along

the cycles as defined in (9.4), we easily see that the mi-
croscopic and macroscopic versions, (10.1) and (10.6)
respectively, of defining the thermal equilibrium are
equivalent. Indeed, if (10.1) holds for all edges, it also
holds for the chords s of the cycles C, and thus we
have from (9.4) E(C„)= 0 for all cycles C . On the other
hand, if E(C ) =0 for all C, we derive from (9.5) J', =0
for all edges x, of G.

What remains to be proved, is the equivalence between
(10.6) and (10.7) if the A of (10.7) are identified with the
A(C ) of (8.26). Let us start by assuming that F(C ) =0
for all cycles C . As shown above, this implies J', =0
for all edges x, or

~:=~;,=&'lj&p, —&~ l'&p, = o (10.8)

if edge x, has reference orientation from j to i. Since
(j li&w0 if x, exists and p,. & 0 (ef. See. IV), we obtain
from Eq. (10.8)

(10.9)

and thus from (7.5)

Further equivalent definitions of equilibrium in the rate
equations are discussed by Thomsen (1953). In the mac-
roscopic theory of irreversible thermodynamics, ther-
mal equilibrium is defined by

(10.6)

where again x, has reference orientation from j to i.
From (10.11), J,&0, we derive

&' I j&p, /& j l~&j, » (10.13)

and hence A.(C) & 0. Due to (8.19), C ean be represented
by a linear combination of the cycles C of the funda-

- mental set, the coefficients being identical with that in
Eq. (8.25), where A(C) is given as a, linear combination
of the A(C ). Thus, not all of the A.(C ) can vanish if
A.(C) &0, q. e.d.

Let us emphasize the fact that the equivalence proofs
just given depend on the steady state condition. Clearly,
the fluxes along single edges of 6 can be finite during
fluctuations of the system even if all forces A(C„) vanish.
The equivalence of (10.1), (10.6), and (10.7) in the steady
state proves point (c) of the program which we have es-
tablished in the context of Eq. (8.5).

Condition (10,7) for thermal equilibrium is identical
with Kirchhoff's voltage Law (KVL). It is easy to show
that for purely electric systems the affinities reduce to
voltage differences. In our version of representing sys-
tems described by a master equation like that in (1.1) by
graphs or networks, KVL is thus restricted to thermal
equilibrium, whereas KCL was restricted to the steady
state. It should be noted once again that the question
whether KCL and KVL are satisfied or not for restricted
or unrestricted states of the system, depends definitely
on the network language which is used to represent the
system. Oster, Desoer, Perelson and Katchalsky (1971,
1973) have developed a, different way of representing even
nonlinear equations of systems by so-called bond-graph
networks. In the language of bond graphs, KCL and KVL
are satisfied for arbitrary states of the system.

Let us complete our discussion of the thermal equilib-
rium by establishing the linear relations between the
phenomenological fluxes and forces near the equilibrium
a.s stated as point (d) of our program following Eq. (8.5).
This derivation becomes a very simple procedure on the
basis of our formalism. For this purpose, we consider
steady states p,. of our system near the equilibrium state
p',. such that

(10.14)

(10.10)

for all edges x,. Inserting (10.10) into (8.26) we conclude
A.(C„)= 0 for all cycles C

To prove the second part of the equivalence, let us as-
sume that at least one of the E(C ) is nonzero. As a con-
sequence, there must be at least one edge in 6, say x„
along which the steady state flux does not vanish, for
example along the chord s of C . Moreover, KCL then
implies the existence of a cycle C with edges (x„.. .x~),
X «E, such that

S,(C)Z, &0 e=1, . . . X (10.11)

Let the reference orientations of xy xy be such that
S,(C) =+1 for e=1, . . . X. The force along C is then given
by

The affinity A, of an edge x, with reference orientation
from j to i in the state p,. is given by

= log 0 + log
(i I j&p'. 1+z.

(10.15)

A.=, —;=(&
l j&j, &j I'&j;)/~. -

= Z./q, ,
where

(10.16)

Due to (10.9) or (10.10), the first contribution on the
right-hand side of (10.15) vanishes. In the second contri-
bution, we expand in powers of z, , z,. up to first-order
terms to obtain

A(C) = g A.,= P log
&jl~&P;

' (10.12) ~.= &'lj&j;=&jl~&F;, (10.17)
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and again use has been made of Eq. (10.9). Inserting
(10.16) into (8.26) and expressing 8, by Eq. (9.5) we ob-
tain for the cyclic force A(C„)

A(c. ) = g s,(c.}A.
e =1

(University of Regensburg) for many helpful and en-
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search fellowship from the Battelle Memorial Institute.
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where

f.,= g —s.(c.)s.(c,).
e=l

(10.19)
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Without any further calculations we immediately derive
from Eq. (10.19) that the phenomenological coefficients
I. ~ fulfill Onsager's reciprocity relations

(10.20)eg go,

One could even argue that the expression (10.19) bears
some formal similarity to the Kubo representation of
linear phenomenological coefficients, but we will not
overstress this relationship. From a network point of
view, (10.20) expresses the reciprocity property of our
graphs or networks which, however, in our case is re-
stricted to the vicinity of the thermodynamic equilibrium.
For arbitrary nonequilibrium situations in our graphs or
networks, the reciprocity property is in general not
valid, -the reason being that the transitions between states
i and j are so-called 2-pole elements or, in the language
of electric circuit theory, 4-pole elements which are
generally not reciprocal. In any case, (10.18) and (10.20)
prove point d and hence complete the full program estab-
lished in Sec. VIII.
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