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A fundamental paradox of classical physics is why matter, which is held together by Coulomb forces, does
not collapse. The resolution is given here in three steps. First, the stability of atom is demonstrated, in the
framework of nonrelativistic quantum mechanics. Next the Pauli principle, together with some facts about
Thomas —Fermi theory, is shown, to account for the stability (i.e., saturation) of bulk matter.
Thomas —Fermi theory is developed in some detail because, as is also pointed out, it is the asymptotically
correct picture of heavy atoms and molecules (in the Z~~ limit). Finally, a rigorous version of screening
is introduced to account for thermodynamic stability.
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INTRODUCTION

Some features of the physical world are so common-
place that they hardly seem to deserve comment. One
of these is that ordinary matter, either in the form of
atoms or in bulk, is held together with Coulomb forces
and yet is stable. Nowadays we regard this truly re-
markable phenomenon as a consequence of quantum me-
chanics, but it is far from obvious how the conclusion
follows from the premise. It is not necessary to ponder
the question very long before realizing that it is a subtle
one and that the answer is not to be found in any text-
book.

Although the Schrodinger equation is half a century old,
it was only in the last few years that the proof of stabil-
ity was completed. The aim of this paper is to present
the full story in a simple and coherent way, highlighting
only the main physical and mathematical ideas.

The sense of profound unease about the problem just
before the dawn of quantum mechanics is exemplified
by this quotation (Jeans, 1915):

".. . there would be a very real difficulty in sup-
posing that the law 1/r' held down to zero values
of x. For the force between'two charges at zero
distance would be infinite; we should have charges
of opposite sign continually rushing together and,
when once together, no force would be adequate to
separate them. . . Thus the. matter in the universe
would tend to shrink into nothing or to diminish
indefinitely in size. . . We should however prob-
ably be wrong in regarding a molecule as a clus-
ter of electrons and positive charges. A more
likely suggestion, put forwaid by Larmor and
others is that the molecule may consist, in part
at least, of rings of electrons in rapid orbital
motion. "

Jeans' words strike a contemporary chord, especially
since one aspect of theproblem that worried him has not
yet been fully resolved. This is that electrons and nu-
clei have a magnetic dipole-dipole interaction whose
energy goes as x '. Although the angular average of
this interaction vanishes, the interaction can cause the
collapse that Jeans feared, even with Schrodinger me-
chanics. A proper quantum electrodynamics is needed
to describe the dipolar interaction at very small dis-
tances. For that reason spin dependent forces will be
ignored in this paper; only nonrelativistic quantum me-
chanics will be considered.

It is difficult to find a reliable textbook answer even to
the question: How does quantum mechanics prevent the
collapse of an atom? One possibility is to say that the
Schrodinger equation for the hydrogen atom can be
solved and the answer seen explicitly. This is hardly
satisfactory for the many-electron atom or for the
molecule. Another possible answer is the Heisenberg
uncertainty principle. This, unfortunately, is a false
argument, as shown in Sec. I. There is, however, a
much better uncertainty principle, formulated by So-
bolev, which does adequately describe the intuitive fact
that a particle's kinetic energy increases sufficiently
fast, as the wave function is compressed, to prevent
collapse. (See Kato, 1951).

The next question to consider is well stated in this quo-
tation from Ehrenfest (in Dyson, 1967):

"We take a piece of metal. Or a stone. When we
think about it, we are astonished that this quantity
of matter should occupy so large a volume. Ad-
mittedly, the molecules are packed tightly to-
gether, and likewise the atoms within each mol. e-
cule. But why are the atoms themselves so
big. . . . Answer: only the Pauli principle, 'No
two electrons in the same state. ' That is why
atoms are so unnecessarily big, and why metal
and stone are so bulky. "

Dyson then goes on to say that without the Pauli prin-
ciple

"We show that not only individual atoms but mat-
ter in bulk would collapse into a condensed high-
density phase. The assembly of any two macro-
scopic objects would release energy comparable
to that of an atomic bomb. "

+Work partially supported by U. S. National Science Founda-
tion grant MCS 75—21684.

Two distinct facts are involved here. One is that mat-
ter is stable (or saturates), meaning that the ground
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state energy is bounded below by a constant times the
first power, and not a higher power, of the particle
number. This was proved for the first time by Dyson
and Lenard (Dyson and Lenard, 1967, and Lenard and Dy-
son, 1968), in a beautiful series of papers. Their me-
thod is quite complicated, however, and a simpler proof
is given in Sec. IV. In addition, they used sufficiently
many inequalities that their estimate (for hydrogen
atoms) is about —10'~ Ry/particle. We will obtain a
bound of about -23 Ry/particle; The second fact is that
matter would definitely not be stable if electrons were
bosons (Dyson, 1967). The energy would increase at
least as fast as —A' '.

Therefore, Ehrenfest's surmise that the Pauli prin-
ciple plays a crucial role in preventing collapse is cor-
rect. The problem is to display the essence of the Pauli
principle in a clear, succinct and mathematically pre-
cise way. Unless this is done the physics of stability
will remain unclear.

The key fact is developed in Sec. II: If p(x) is the one-
particle density of any fermion wave function then the
total kinetic energy is bounded below by (constant)
fp(x)'~3dx. ' This inequality may be termed the un-
certainty principle -for fermions. It is simple yet pow-
erful enough to establish stability.

Given this bound, it is then necessary to show how the
kinetic energy eventually overcomes the ~ ' Coulomb
singularity. It turns out that Thomas —Fermi (TF) theory
is exactly what is needed for this purpose because, as
Teller discovered in 1962, atoms do not bind in TF the-
ory. Thus TF theory immediately implies saturation.
The necessary facts about TF theory are developed in
Sec. III.

There is also another good reason for understanding
TF theory in detail. The theory used to be regarded as
an uncertain approximation in atomic physics, but it is
now known that it is more than that. It happens to be an
asymptotically correct theory of atoms and molecules
as the nuclear charges tend to infinity. In short, TF
theory and the theory of the hydrogen atom constitute
two opposite, but rigorous foundations for the many
electron problem.

After putting together the results of Sec. II and III in
Sec. IV, and thereby proving the stability of bulk matter,
we address the third main topic of this paper in Sec. V.
Does a sensible thermodynamic limit exist for matter?
The problem here centers around the long range r '

nature of the Coulomb potential, not the short range'
singularity. Put another way, the question is that if
matter does not implode, how do we know that it does
not explode? Normally systems with potentials that fall
off less slowly than ~ ' ' for some e &0 cannot be ex-
pected to have a thermodynamic limit. The crucial
physical fact was discovered by Newton in 1687: outside
an isotropic distribution of charge, all the charge ap-
pears to be concentrated at the center. This fact is the
basis for screening, but to use it a geometric fact about
the packing of balls will be needed. Quantum mechanics
as such plays almost no role in Sec. V.

The content of this paper can be summarized as fol-
lows:

(i) Atoms are stable because of an uncertainty prin-
ciple,

(ii) Bulk matter is stable because of a stronger un-
certainty principle that holds only for fermions;

(iii) Thermodynamics exists because of screening.

My hope is that the necessary mathematics, which is
presented as briefly as possible, will not obscure these
simple physical ideas.

This paper is based on research carried out over the
past few years, and it was my good fortune to have had
the benefit of collaboration with J. L. Lebowitz, B.
Simon, and W. E. Thirring. Without their insights and
stimulation probably none of this would have been car-
ried to fruition. Secs. II and IV come from Lieb and
Thirring (1975), Sec. III from Lieb and Simon (1977),
and Sec. V from Lieb and Lebowitz (1972).

Lectures given in 1976 at the Centro Internazionale
Matematico Estivo in Bressanone were the impetus for
writing this paper. The bibliography is not intended to
be scholarly, but I believe no theorem or idea has been
quoted without proper credit.

I am doubly grateful to S. B. Treiman. He kindly in-
vited me to submit this paper to Reviesos of Modern
Physics, and he also generously devoted much time
to reading the manuscript and made many valuable sug-
gestions to improve its clarity.

I. THE STABILITY OF ATOMS

By the phrase "stability of an atom" is meant that the
ground state energy of an atom is finite. This is a wea-
ker notion than the concept of H stability of matter, to
be discussed in Sec. IV, which means that the ground
state energy of a many-body system is not merely
bounded below but is also bounded by a constant times
the number of particles. This, in turn, is different
from thermodynamic stability discussed in Sec. V.

Consider the Hamiltonian for the hydrogenic atom:

H =-& —zlxl-'
(using units in whichh'/2=1, nz=l, and lel=1). H acts
on I-'(R'), the square integrabie functions on 3-space.
Why is the ground state energy finite, i.e., why is

(2)

for some F., -~? The obvious elementary quantum
mechanics textbook answer is the IIeisenbe~g uncer-
tainty Principle (Heisenberg, 1927): If the kinetic en-
«gy is defined by

Tp -=V x 2dx,

and lf

then when

Jf(x)dx, or simply ff, always denotes a three-dimensional
integral.
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The intuition behind applying the Heisenberg uncer-
tainty principle (4) to the ground state problem (2) is
that if the electron tries to get within a distance B of the
nucleus, .the kinetic energy T& is at least as large as
R '. Consequently (tP, Hg) &R ' —Z/R, and this has a
minimum —Z'/4 for B = 2/Z.

The above argument is false! The Heisenberg uncer-
tainty principle says no such thing, despite the endless
invocation of the argument. Consider a g consisting of
two parts, g=g, +P, . g, is a narrow wave packet of
radius H, centered at the origin with f I((&, I' = —,'. ((&, is
spherically symmetric and has support in a narrow shell
of mean radius L and f lg2I'=~. If L is large then,
roughly f txI'lg(x) I'dx L'/» whereas f Ixl 'I p(x)I'dx
-1/2A. Thus, from (4) we can conclude only that
T&&9/2I. 2 and hence that (g, HrP) & 9/2L2 —Z/2R. With
this wave function, and using only the Heisenberg un-
certainty principle, we can make Ep arbitrarily negative
by letting B-O.

A more colorful way to put the situation is this: an
electron cannot have both a sharply defined position and
momentum. If one is willing to place the electron in
two widely separated packets, however, say here and
on the moon, then the Heisenberg uncertainty principle
alone does not preclude each packet from having a sharp
position and momentum.

Thus, while Eq. (4) is correct it is a pale reflection
of the power of the operator -A to prevent collapse. A
better uncertainty principle (i.e. , a lower bound for the
kinetic energy in terms of some integral of P which does
not involve derivatives) is needed, one which reflects
more accurately the fact that if one tries to compress a
wave function anysvhe~e then the kinetic energy will in-
crease. This principle was provided by Sobolev (1938)
and for some unknown reason his inequality, which is
simple and goes directly to the heart of the matter,
has not made its way into the quantum mechanics text-
books where it belongs. Sobolev's inequality in three
dimensions tunlike (4) its form is dimension dependent]
ls

Ivy(x&l's~» ii, I pi(~&*a~I"* ii-Il&i'll. , =.
where

(6)

is the density and

K, =3(~/2)'" = 5.478

is known to be the best possible constant. Equation (5)
is nonlinear in p, but that is unimportant.

A rigorous derivation of (5) would take too long to
present but it can be made plausible as follows (Rosen,
1971): K, is the minimum of

f Iv(((x) I'dx
(fl@( )I'd~P" '

Let us accept that a minimizing f exists (this is the
hard part) and that it satisfies the obvious variational
equation

-(~q)(x) —~y(x)5 =0

with o. &0. Assuming also that there is a minimizing q

and hence when (tl&, g) = 1

l», Hi&& - min
I

h(p&: p(x& -0, (8)

The latter calculation is trivial (for any potential) since
gradients are not involved. One finds that the solution
to the variational equation is p(x) =a[lxI '-R ']'~' for
lxl-«ndP(x) =0 f» lxl-&, with& =K. ~ '"Z '.
Then

h(p) = Z'(7&/2)' '/K, = ——,
' Z' Ry.

(Recall that one Rydberg =Ry =' in these units. ) Thus,
Eq. (5) leads easily to the conclusion

) 4 g'2

and this is an excellent lower bound to the correct
Ep Z ' Ry, especially since no dif fer ent ial equation
had to be solved.

In anticipation of later developments, a weaker, but
also useful, form of Eq. (5) can be derived. By Hol-
der's inequality

p(x)'~' dx &
»'3

S 2ts
(x&'dx

) fp&x&dx
S

(10)

and, since we always take f I|j&l'=1,

T~~~, p~ x "3dx. (11)
Note that there is now an exponent I outside the integral.
Although K, is the best constant in (5) it is not the best
constant in (11). Call the latter K,. K, is the minimum
of

f Ivy(x) I'dx
fp(x)'" dx

subject to fp(x) dx= 1. This leads to a nonlinear Schro-
dinger equation whose numerical solution yields (J. F.
Barnes, private communication)

K, = 9.578 .
In any event

K &K'-=(-')(6~2)2~'=9.116,

2Holder's inequa1ity states that
1/p 1/q

f (x)g(x) dx If (x) I
+ dx I g(x) I dx

whelp +q =1 and P ~ 1. To obtain (10) take
f -p~ g-p ~P

which is nonnegative and spherically symmetric (this
can be proved by a rearrangement inequality), one finds
by inspection that

&j&(x) = (3/o& ) (1 +
I
x I ) ' ~2

When this is inserted into the expression for K the re-
sult is K, =3(7&/2)4 '. The minimizing g is not square
integrable, but that is of no concern.

Now let us make a simple calculation to show how
good (5) really is. For any g

its
(y, Hy) & K, p(, (x)'dx —Z I x I 'p(, (x)dx =—~(p),

(7)
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and hence

Tg ~K ~(x)"'dx when lg(x) I
dx= 1: (12)

l&,y(x„,xs,'&„,es) ~'dx, . dx~
Og= $

(16)
' K is much bigger than K„ it is the classical value and
will be encountered again in Sec. II and in Sec. III,
where its significance will be clarified.

%e can repeat the minimization calculation analogous
to Eq. (8) using the bound (12) and the functional

p(x)=(-,'(Z/K')(~x~ ' —H ')}'~' (13)

h'(p) = K' p(x)'~' dx —Z i x
i

'p(x) dx.

(We could, of course, use the better constant K, . ) This
tlllle

to be the usual kinetic energy of iP and define

p~(x) =N Q I lg(x x2 ~ ~ xs o'i ~ ~ os)l dx2 ~ ~ ~ dxs

(17)
to be the single particle density, i.e. , the probability of
finding a pa. rticle at x. The analog of (12) is the follow-
ing (Lich and Thirring, 1975):

Theorem I. If (g, g) = 1 then

for ~x~ ~R. R is determined by fp= 1 and one finds that
A = (K'/Z)(4/n')' ' and

7'~~ (4wq) ' 'E', pq(x)' 'dx. (18)

F. - —(9Z /5K')(w'/4)' =-3' 'Z' Ry (14

The quantity 3' ' is only 8.2% greater than ~~.

The Sobolev inequality (5) or its variant (12) is, for
our purposes, a much better uncertainty principle than
Heisenberg's —indeed it is also fairly accurate. We
now want to extend (12) to the N-particle case in order
to establish the stability of bulk matter, . The impor-
tant new fact that will be involved is that the X particles
are fenians; that is to say the N-particle wave func-
tion is an antisymmetric function of the N-space, spin
variables.

II. EXTENSION OF THE UNCERTAINTY
PRINGIPLE TO MANY FERMIONS

Apart from the annoying factor (4v) '~'= 0.185, (18) says
that the intuition behind considering (15) as a lower
bound is correct. We believe that (4w) '~' does not be-
long in (18) and hope to eliminate it someday. Recent
work (Lieb, 1976) has improved the constant by a factor
(1.83)'~'= 1.496, so we are now off from the conjectured
constant q

'l'K' only by'the factor 0.277.
The proof of Theorem 1 is not long but it is slightly

tricky. It is necessary first to investigate the negative
eigenvalues of a one-particle Schrodinger equation when
the potential is nonpositive.

Theorem 2. Let V(x) ~ 0 be a, potential for the one-
particle, three dimensional Schrodinger operator II = —4
~ V(x) on I,'(R'). For E & 0 let Ns(V) be the number of
eigenstates of II with energies ~ E. Then

A well known elementary calculation is that of the
lowest kinetic energy, T of N fexnrions in a cubic box
of volume V. For large N one finds that

Ns(V) - (4~) '{2[&[) ' '
) V(x) -E/2]' dx, {19)

@-2I3~ tzp5ls (15) where
) f(x) [

=
( f(x) [

if f(x) ~ 0 and
( f(x) [

= 0 otherwise.

where p = N/V and q is the number of spin states avail-
able to each particle (q =2 for electrons). Equation
(15) is obtained by merely adding up the N/q lowest
eigenvalues of -b, with Dirichlet (/=0) boundary condi-
tions on the walls of the box. The important feature of
(15) is that it is proportional to N' ' instead of N, as
would be the case if the particles were not fermions.
The extra factor N' ' is essential for the stability of
matter; if electrons were bosons, matter would not be
stable.

Equation (15) suggests that Eq. (12), with a factor
q

' ' ought to extend to the N-particle case if p(x) is in-
terpreted properly. The idea is old, going back to Lenz
(1932), who got it from Thomas-Fermi theory. The
proof that something like (12) is not only an approxima-
tion but is also a lower bound is new.

To say that the N particles are fexmions with q spin
states means that the N-particle wave function
q(x„.. . , x„;a„.. . , vs) defined for x;WR' and
o', H (I, 2, . . . q} is anti symmetric in the pairs (x;, o;). The
norm is given by

Def ine

If e, & e, &. . . & 0 are the negative eigen-
values of H (if any) then

(20)

Proof P~e~~ = f,. N (V)d oInsert (19) and do the o,
integration first and then the x integration. The result
is (20). 0

We believe the factor (4n) does not belong in (20).

P~oof of Theorem 2. From the Schrodinger equation
Hg = eg it is easy to deduce that Ns(v) is equal to the
number of eigenvalues which are ~ 1 of the positive de-
finite Birman —Schwinger operator (Birman, 1961;
Schwinger, 1961)

(21)

Essentially Eq (21) come.s from the fact that if Hg=eg
then (- b, —e)Q=

~ V(g. If one defines
~

V(' 'g=—P, then
B,P = g. Thus II, has an eigenvalue 1 when e is an eigen-
value. However, B'~ is a compact positive sernidefinite
operator on I,'(R') for E & 0 and, as an operator, Rs is
monotone increasing in E. Thus, if B'~ has k eigenval-
ues ~ 1, there exist k numbers e, - e, - e„-g such that

Rev. Mod. Phys. , Vol. 48, No. 4, October 1976



Elliott H. Lieb: The stability of matter 557

has eigenvalue 1.
Consequently N~(V) ~ TrB~(V)'. On the other hand,

.Vs(V) ~N~&, (- l
V —E/2l ) by the variational principle

(draw a graph of V(x) —E/2). Thus, since Rz(V) has a
kernel, Bs(x,y) =

l
V(x)l'~'expl- lEl'~'lx-y l)[4rlx-yl] '

xl V(y)l'~', one has that

iV~(V) Tra ~,(- l
V- E/2l )'

=(4~) ', dxdy IV(x)-E/2I II'(y)-«2I

x exp- (2IEI)"lx-y 1}lx.-y I
'. (22)

Equation (19) results from applying Young's inequality~
to Eq. (22). Alternatively, one can do the convolution
integral by Fourier transforms and note that the Fourier
transform of the last factor has a maximum at p =0,
where it is 4n(2lEl) '~'.

Using (20), which is a. statement about the energy lev-
els of a single particle Hamiltonian, we can, surprising-
ly, prove Theorem 1, which ref ers to the kinetic ener-
gy of N fermions.

Proof of Theorem l. g and hence p&(x) are given.
Consider the non-positive single particle potential V(x)
—= —op&(x)

~' where o. is given by (2/3w)qa'~' = 1. Next
consider the following N-particle Hamiltonian:

~Young's inequality states that

f(x)g(x -y)h(y) dxdy ~ f (x) ~dx

x g(x)

1/r
x h(x} "dx

when P +q +r =2 and P, q', x~1. For (22) take p =r =2 and

g =1.

II~= Q k;; k, = —d, + V(x))

on I'(R'; C')~. If E, is the fexmion ground state energy
of H~, we have that E,& qPe, , where the e& are the neg-
ative eigenvalues of the single particle Hamiltonian h.
(We merely fill the lowest negative energy levels q
times until the N particles are accounted for; if there
are k such levels and if N& kq then E,&qge, . If N& kq,
the surplus particles can be placed in wave packets far
away from the origin with arbitrarily small kinetic ener-
gy. ) On the other hand, Eo&((,8„()= 7'& —n fp&( )'~x'd x
by the variational principle. If thyrse two inequalities
are combined together with (20), which says that pe& &

—(4/15')o. '~' f p&( )'x~'dx, then (18) is the result. ~
It might not be too much out of place to explain at this

point why EP is called the classical constant. The name
does not stem from its antiquity, as in the ideal gas
kinetic energy (15), but rather from classical mechan-
ics—more precisely the semiclassical approximation to
quantum mechanics. This intuitive idea is valuable.

As the proof of Theorem 1 shows, the constant in (18)
for T& is simply related to the constant in (20) for the

sum of the eigenvalues. The point is that the semiclas-
sical approximation to this sum is

g le, l=(15~') ' lV(x)l' 'dx,

and this, in turn, would yield (18) without the (4n) '~'
factor. The semiclassical approximation is obtained by
saying that a region of volume (2m)' in the six-dimen-
sional phase space (P, x) can accommodate one eigen-
state. Hence, integrating over the set 8(H), in which
ZE(p, x) =p + V(x) is negative,

Qe,. =(2n) 'JI J~ dxc@(P'+ V(x)f

=(2n) ' ' dx4n.
Qp

If a coupling constant g is introduced, and if V is re-
placed by gU, then it is a theorem that the semiclassical
approximation is asymptotically exact as g-~ for any
V in I '~'(R')

Theorem 1 gives a lower bound to the kinetic energy of
fermions which is crucial for the II stability of matter
as developed in Sec. IV. To appreciate the significance
of Theorem 1 it should be compared with the one-par-
ticle Sobolev bound (12). Suppose that p(x) =0 outside
somefixed domain Q of volume U. Then since

5 3
5/3 (

-
L

-~/s
p(x)'~'dx& p(x) dx ~

1~
"0 &Q ( "0

by Holder's inequality, one sees that 7'& grows at 1.east
as fast as N'~'. Using Eq. (12) alone, one would only be
able to conclude that T& grows as ¹ This distinction
stems from the Pauli principle, i.e. , the antisymmetric
nature of the N-particle wave function. As we shall see,
this N' growth is essential for the stability of matter
because without it the ground state energy of N particles
with Coulomb foices would grow at least as fast as
—N'~' instead of —V.

The Fermi pressure is needed to prevent a collapse,
but to learn how to exploit it we must first turn to an-
other chapter in the theory of Coulomb systems, namely
Thomas-Fermi theory.

I II. THOIVIA$-FE RMI THEORY

The statistical theory of atoms and molecules was in-
vented independently by Thomas and Fermi (Thomas,
1927; Fermi, 1927). For many years the TF theory
was regarded as an uncertain approximation to the N-
particle Schrodinger equation and much effort was de-
voted to trying to determine its validity (e.g. , Qombis,
1949). It wa. s eventually noticed numerically (Sheldon,
1955) that molecules did not appear to bind in this theo-
ry, and then Teller (1962) proved this to be a general
theorem.

It is now understood that TF theory is really a large Z
theory (Lieb and Simon, 1977); to be precise it is exact
in the limit Z- ~. For finite Z, TF theory is qualita-
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where

1«i& j «N
~x, —x,. ~

"+ U((z„R,.}', ,), (23)

V(x)= P z,. ~x-R,.
~

', (24a)

tively correct in that it adequately describes the bulk of
an atom or molecule. It is not precise enough to give
binding. Indeed, it should not do so because binding in
TF theory would imply that the cores of atoms bind, and
this does not happen. Atomic binding is a fine quantum
effect. Nevertheless, TF theory deserves to be well
understood because it is exact in a limit; the TF theory
is to the many-electron system as the hydrogen atom is
to the few-electron system. For this reason the main
features of the theory are presented here, mostly with-
out proof.

A second reason for our interest in TF theory is this:
in the next section the problem of the H stability of mat-
ter will be reduced to a TF problem. The knowledge
that TF theory is H stable (this is a corollary of the no
binding theorem) will enable us to conclude that the true
quantum system is H stable.

The Hamiltonian for N electrons with 4 static nuclei of
charges z,.&0 and locations B, is

N

HN = Q —&; —V(x;)

for non ne-gative functions p(x). Then for X~0

Eg =—lnf 8 p: px dx=~

is the TF energy for X electrons (X need not be an integ-
er, of course). When X =N, the minimizing p is sup-
posed to approximate the p~ givenby (17), wherein g is the
true ground state wave function, and E~ is supposed to
approximate E~.

The intuitive idea behind TF theory is this: If |tt is any
fermiori wave function and T„and p~ are given by Eqs.
(16) and (17), then the first term in (26) is supposed to
approximate T~. This is based on the box kinetic energy
(15). The last three terms in (26) represent, respec-
tively, the electron-nuclear, electron-electron, and
nuclear-nuclear Coulomb energy. E~~F in (27) is then
the "ground state energy" of (26).

The second and fourth terms on the right side of (26)
are exact but the first and third are not. The first is to
some extent justified by the kinetic energy inequality,
Theorem 1; the third term will be discussed later. In
any event, Eqs. (26) and (27) define TF theory.

It would be too much to try to reproduce here the de-
tails of our analysis of TF theory. A short summary of
some of the main theorems will have to suffice.

The first question is whether or not E~TF (which, by
simple estimates using Young's and Holder's inequali-
ties, can be shown to be finite for all X) is a minimum
as distinct from merely an infimum. The distinction is
crucial because the TF equation [the Euler-Lagrange
equation for (26) and (27)]

(24b)U((z, R,}) ~) = Q z;z, Rq —R; (

1«i& j «k

The nuclear-nuclear repulsion U is, of course, a con-
stant term in H~ but it is included for two reasons:

(i) We wish to consider the dependence on the R,. of

3K'q ' 'p' '(x) =max(P(x) —p, ,O}

with

@(x)= V(x) — p(y) ix-y
i

'dy

(28)

(29)

is smaller than the ground state energy of the true Ham-
iltonian [defined in Eq. (58)] in which the nuclear kinetic
energy is included. Later on when we do the proper
thermodynamics of the whole system we shall have to
include the nuclear kinetic energy.

The problem of estimating E~ is as old as the Schro-
dinger equation. The TF theory, as interpreted by Lenz
(1932), reads as follows: For fermions having q spin
states (q = 2 for electrons) define the TF energy junc
tional:

b(p) =q '~'K' p(x)'~'-, V(x)p(x)

+2 p(x)p(y) ix- y i
'dxdy+ U((z, , R,},",)

Eg((z. , R,.}» ) -=the ground state energy of H~. (25)

(ii) Without U the energy will not be bounded by N.
The nuclear kinetic energy is not included in H~. For

the H-stability problem we are only interested in finding
a lower bound to E~, and the nuclear kinetic energy
adds a positive term. In other words,

inf Eg((z, , R,.},". ,)

—p, =dE, F/dX. (3o)

(iii) There is no other solution to (28) and (29) (for
any p) with J p = X other than p»

(iv) When X=Z, p=0. Otherwise p, &0, i.e. , Ep
is strictly decreasing in X.

(v) As X varies from 0 to Z, p, varies continuously
from+~ to 0.

(vi) p, is a convex, decreasing function of X.
(vii) @»r" (x) &0 for all x and X. Hence when X =Z
—'-IC'q '~'p~~(x)'~'= gx~(x) .

If X&'Z then E~ (X) is not a minimum and (28) and (29)
have no solution with f p = X. Negative ions do not exist
in TF theory. Nevertheless, E~~ exists and E~~ =E~~
for X» Z.

has a solution with f p= X if and only if there is a min-
imizing p for E~ . The basic theorem is as follows.

k
Theoyem 3. If &~Z =Qz, z,. then

(i) g(p) has a minimum on the set J p(x) dx= X.
(ii) This minimizing p (call it p»rp) is unique and sat-

isfies (28) and (29). p, is non-negative, and —p, is the
chemical potential, i.e. ,

(26) The proof of Theorem 3 is an exercise in functional
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analysis. Basically, one first shows that 'S(p) is bound-
ed below so that E~ exists. The Banach-Alaoglu theo-
rem is used to find an I' ' weakly convergent sequence
of p's such that $(p) converges to ET1". Then one notes
that 8(p) is weakly lower semicontinuous so that a mini-
mizing p exists under the subsidiary condition that

Jp~ &. The uniqueness comes from an important prop-
erty of $(p), namely that it is convex This also im-
plies that the minimizing p satisfies Jp = &.

A major point to notice is that a solution of the TF
equation is obtained as a by-product of minimizing 8(p);
a direct proof that the TF equation has a solution would
be very complicated.

Only in the case & ~ Z is pT„"(x) positive for all x,
when &&Z, p, &0 and, since QT~F(x) goes to zero as ~xj
goes to infinity, Eq. (28) implies that pP(x) vanishes
outside some bounded set.

Apart from the details presented in Theorem 3, the
main point is that TF theory is well defined. In particu-
lar the density pT" is unique —a state of affairs in
marked contrast to that of Hartree-Fock theory (Har-
tree, 1927-28; Fock, 1930; Slater, 1930; Lich and
Simon, 1973).

The TF density p~ has the following properties:

Theorem 4'. If &~Z then

(') (-. @'q '"p"( )'"-
near each R, .

(31)

j =1

To this end we make the following definition: Fix
fz/, R/}&2, and A.. It is not necessary to assume that A.

(ii) In the neutral case, X=Z =Q/, z/,

( ) —(3/.)'(—.'&'q '/'J' (32)

as ~x~ —~, irrespective of the distribution of the nuclei.
(iii) p1 (x) and p1 (x) are real analytic in x away

from all the R„on all of 3-space in the neutral case and
on (x: $1TF(x) & p} in the positive ionic case.

Equation (32) is especially remarkable: at large dis-
tances one loses all knowledge of the nuclear charges
and configuration. Property (i) recalls the singularity
found in the minimization of h (p) [see Eq. (13)J.

Equation (31) can be seen from (28) and (29) by inspec-
tion. Equation (32) is more subtle but it is consistent
with the observation that (28) and (29) can be rewritten
(when p, =0) as

(47/) 1 + &/&T F(x) (( )q2 /3 QTF(x)/+ c}3/2

away from the R, . If it is assumed that &f TzF(x) goes to
zero as a power of ~x

~

then (32) follows. This observa-
tion was first made by Sommerfeld (1932). The proof
that a power law falloff actually occurs is somewhat
subtle and involves potential theoretic ideas such as that
used in the proof of Lemma 8.

As pointed out earlier, the connection between TF
theory and the Schrodinger equation is best seen in the
limit Z —~. Let the number, 4, of nuclei be held fixed,
but let N-~ and z, -~ in such a way that the degree of
ionization N/Z is constant, where

pT F(/ 1 /3x) a 2pT F(x) (34)

for any a~0. Hence, for the above sequence of systems
parametrized by a~,

(35)

g 2pT F(a 1 /3x) pT F(x) (36)

for all N.
If, on the other hand, the nuclei are held fixed then

one can prove that

(37)lim a 'E F((a z. R.})= g ET (z )
j =1

where E1 (z) is the energy of an isolated atom of nuc-
Xg

lear charge z. The X& are determined by the condition
that Q/, X&

= X if X ~ Z (otherwise, ~/, X&
= Z) and that

the chemical potentials of the k atoms are all the same.
Another way to say this is that the XJ minimize the right
side of Eq. (37). With the nuclei fixed, the analog of
(36) is

lim a„'p„F(a ' '(x —R,) ) = p,, (x) . (38)

The right side of Eq. (38) is the p for a single atom of
nuclear charge z and electron charge X&. Equations (37)
and (38) are a precise statement of the fact that isolated
atoms result from fixing the Rz.

The TF energy for an isolated, neutral atone of nuc-
lear charge Z is found numerically to be

ETF = (2 21)q2/3(~&) 1Z 7/3 (39)

For future use, note that ETzF is proportional to 1/K'.
Thus, if one considers a TF theory with K' replaced by
some other constant ot, &0, as will be necessary in Sec.
IV, then Eq. (39) is correct if K' is replaced by 1F.

Theorem 5. With a~ =N/X and jz/, R&}/2, fixed
(i) &///'E//({&„z/, +// /'R/}/, ) has a limit as N- ~.
(ii) This limit is E1TF((z/, R&}«/. ,).
(iii) a~'/'E„((a„z&, R,}", ,) has a limit as N- ~. . This

limit is the right side of (37).
(1v) &„'p//(a„'/'x; (a„z/, a„'/3R, }/2,) also has a limit as

4If Ez@ is degenerate, P& can be any ground state wave function
as far as Theorem 5 is concerned. If EN is not an eigenvalue,
but merely inf spec Hz, then it is possible to define an approx-
imating sequence gz, with p~ still given by Eq. (17), in such a
way that Theorem 5 holds. We omit the details of this con-
struction here.

«Z. For each N=1, , 2, . . . define a~ by Xa~=N. In II~
(23) replace z,. by z/aN and R,. by R/a„'/'. This means
that the nuclei come together as N- ~. If they stay at
fixed positions then that is equivalent, in the limit, to
isolated atoms, i.e. , it is equivalent to starting with all
the nuclei infinitely far from each other. Finally, for
the nuclear configuration la~z/, a„'/'R/}/2, let p„be the
ground state wave function, F~@ the ground state energy,
and pg(x) be the single particle density as defined by
Eq. (17).'

It is important to note that there is a simple and ob-
vious scaling relation for TF theory, namely

ETF((11z 11 1/3R }2 ) =117/3ETF((z R }" )

and the densities for the two systems are related by
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1V-~. If X~Z=~&, z&, this limit is p~TF(x) and the con-
vergence is in weak L'(R'). If X&Z, the limit is peTF(x)
in weak L„,(R').

(v) For fixed nuclei, a„3p~(a~'~3(x —R,.);(a„z, , R,.j.&,)
has a limit [in. the same sense as (iv)] which is the~ right
side of (38).

The proof of Theorem 5 does not use anything intro-
duced so far. It is complicated, but elementary. One
partitions 3-space into boxes with sides of order Z ' '.
In each box the potential is replaced by its maximum
(respectively, mimimum) and one obtains an upper (re-
spectively, lower) bound to Eg by 'imposing Dirichlet
(/=0) (respectively, Neumann (V/=0)) bounda, ry condi-
tions on the boxes. The upper bound is essentially a
Hartree- Fock calculation. The —x ' singularity near
the nuclei poses a problem for the lower bound, and it
is tamed by exploiting the concept of angular momentum
barrier.

What. Theorem 5 says, first of all, is that the true
quantum energy has a limit on the order of Z' ' when
the ratio of electron to nuclear charge is held fixed.
Second, this limit is given correctly by TF theory as is
shown in Eq. (35). The requirement that the nuclei
move together as Z ' ' should be regarded as a refine-
ment rather than as a drawback, for if the nuclei are
fixed a limit also exists but it is an uninteresting one of
isolated atoms.

Theorem 5 also says that the density p~@ is proportion-
al to Z ' and has a scale length proportional to Z ' '.
If X &Z, Theorem 5 states that the surplus charge moves
off to infinity and the result is a neutral molecule.
This means that large atoms or molecules cannot have
a negative ionization proportional to the total nuclear
charge; at best they can have a negative ionization which
is a vanishingly small fraction of the total charge. This
result is physically obvious for electrostatic reasons,
but it is nice to have a proof of it.

Theorem 5 also resolves certain "anomalies" of TF
theory:

(a) In real atoms or molecules the electron density
falls off exponentially, while in TF theory (Theorem 4)
the density falls off as ~x

~

'.
(b) The TF atom shrinks in size as Z '~3 [cf. Eq. (36)]

while real large atoms have roughly constant size.
(c) In TF theory there is no molecular binding, as we

shall show next, but there is binding for real molecules.
(d) In real moleucles the electron density is finite at

the nuclei, but in TF theory it goes to infinity as
z,. ~x —R,. ~

3~3 (Theorem 4).

As Theorem 5 shows, TF theory. is really a theory of
heavy atoms or molecules. A large atom looks like a
stellar galaxy, poetically speaking. It has a core which
shrinks as Z ' ' and which contains most of the elec-
trons. The density (on a scale of Z') is not finite at the
nucleus because, as the simplest Bohr theory shows,
the S-wave electrons have a density proportional to Z'
which is infinite on a scale of Z'. Outside the core is a
mantle in which the density is proportional to (cf. Theo-
rem 4) (3/m)'[( —,')K'2 ' ']'Z3/(Z' '

~x ~)', which is inde-
pendent of Zt This density is correct to infinite dis-
tances on a length scale Z '~'. The core and the man-

Thus, to the next order, the energy should be

Zg(~ R.]'. ) =ETF(1z, , R,.},'. ,)+-'. g e',

+ lower order, (41)

since q =2 for electrons. Note that F~~ -q 3 while
the Scott correction is proportional to q.

It is remarkable that Eq. (41) gives a precise conjec-
ture about the next correction. It is simple to under-
stand physically, yet we do not have the means to prove
it.

The third main fact about TF theory is that there is
no binding. This was proved by Teller in 1962. Consid-
ering the effort that went into the study of TF theory
since its inception in 1927, it is remarkable that the no

tie contain 100/p of the electrons as Z- ~. The third
region is a transition region to the outer shell, and
while it may contain many electrons, it contains only a
vanishingly small fraction of them. The fourth region
is the outer shell in which chemistry and binding takes
place. TF theory has nothing to say about this region.
The fifth region is the one in which the density drops off
exponentially.

Thus, TF theory. deals only with the core and the man-
tle in which the bulk of the energy and the electrons re-
side. There ought not to be binding in TF theory, and
indeed there is none, because TF energies are propor-
tional to Z' ' and binding energies are of order one.
The binding occurs in the fourth layer.

An important question is what is the next term in the
energy beyond the Z ' term of TF theory. Several cor-
rections have been proposed: '(e.g. , Dira. c, 1930; Von
Weizsacker, 1935; Kirzhnits, 1957; Kompaneets and
Pavlovskii, 1956; Scott, 1952). With the exception of
the last, all these corrections are of order Z' '. Scott
(as late as 1952!) said there should be a Z ~' correction
because TF theory is not able to treat correctly the in-
nermost core electrons. Let us give a heuristic argu-
ment. Recall that in Bohr theory each inner electron
alone has an energy proportional to Z'. As these inner
electrons are unscreeened, their energies should be
independent of the presence or absence of the electron-
electron repulsion. In other words, the Z correction
for a molecule should be precisely a sum of corrections,
one for each atom. The atomic correction should be the
difference between the Bohr energy and the Z'~' TF en-
ergy for an atom in which the electron-electron repul-
sion is neglected. We already calculated the TF energy
for such an "atom" in Eq. (14) (put Z =1 there and then
use scaling; also replace K' by q '~3K'). Thus, for a
neutral atom zvitkout electron-electron repulsion

ET F (31/3/4)q3/3Z 7/3 (40)z
For the Bohr atom, each shell of energy —Z3/4333 has
n' states, so

Z N 2 2
L3 I L—= —= g n3+(L+1)3 @

— + + +(L+I) P3
q q, 3 2 6

with 0 ~
Q ~1 being the fraction of the (L+ 1)th shell that

is filled. One finds L = (3Z/q)'~3 ——,
' —@+o(1) -'nd

Z'
@Bohr

q @+~l ETF+ qZ3
Z Z

Rev. Mod. Phys. , Vol. 48, No. 4, October t976



Elliott H. Lieb: The stability of matter

binding phenomenon was not seriously noticed until the
computer study of Sheldon in 1955. Teller's original
proof involved some questionable manipulation with 5
functions and for that reason his result was questioned.
His ideas were basically right, however, and we have
made them rigorous.

Tlzeoxem 6 (no binding). If there are at least two nuc-
lei, write the nuclear attraction V(x) =Z;, z,. Ix —R~I

'
as the sum of two pieces, V= V'+ V' where V'(x)

, z~ Ix —R,. I

' and 1 ~m &k. Let E~ ' be the TF
energy for the nuclei 1, . . . , m (with
U=Q, «J z, z,. IR,. —R,. I

', of course) and let E~~'
be the same for the nuclei m+1, . . . , k. Given X, let.
A., ~ 0 and x 2

= x —X, ~ 0 be chosen to minimize the sum
of the energies of the separate molecules, i.e. , E~, '+E„".(If X =Z =+, , z,. then by Theorem 3,

Z;, z, ) Then

ETF)@TP~l+~ TF,2
)t

Since the right side of Eq. (42) is the energy of two
widely separated molecules, with the relative nuclear
positions unchanged within each molecule, Theorem 6

says that the TF energy is unstable under every decom-
position of the big molecule into smaller molecules. In
particular, a molecule is unstable under decomposition
into isolated atoms, and Theorem 9 is a simple conse-
quence of this fact. One would suppose that if X and the
z j are fixed, but the Rj are replaced by &Aj then

E„(fz;,o'R,.)z, ) is monotone decreasing in n .
In other words, the "pressure" is always positive. This
is an unproved co~je ctn~e, but it has been proved
(Balazs, 1967) in the case 0= 2 and z, =z, .

An interesting side remark is the following.

Tlzeowem 7. If the TF energy (26), (27) is redefined by
excluding the repulsion term U in (26), then the inequal-
ity in (42) is reversed.

Thus, the nuclear repulsion is essential for the no
binding theorem 6.

Another useful fact for some further developments of
the theory, especially the TF theory of solids and the
TF theory of screening (Lieb and Simon, 1977) is the
following lemma (also, attributed to Teller), which is
used to prove the main no binding theorem 6.

Lemma 8. Fix (R&)&, and fix p. ~0 in the TF equa-
tion (28) but not (z~)z~, . (This means that as the z&'s
are varied X will vary, but always 0 ~ X ~Z =Zzj. If
p, =0 then X =Z always. ) If (z,'.J& „and (z. ';),",are two
sets of z 's such that

There is strict inequality when p, =0. In short, increas-
ing some z j increases the density everywhere, not just
on the average.

The proof of Lemma 8 involves a beautifully simple
potential theoretic argument which we cannot resist giv-
ing.

Proof of Lemma 8. We want to prove @,
"(x) ~ Q~" (x)

for all x and will content ourselves here with proving
only a when p =0. Let B =(x: Q,

" (x) & @~2" (x)). B is an
open set and B does not contain any A,- for which z,'
&z& by the TF equation (29). Let g(x) =P "(x) —Pr" (x)
If x~ Bthe. n g(x) &0 and, by (28), pr, "(x)&pr2F(x). For
xaB, —(4vr) 'ag(x) =pY" (x) —pr, (x) «0, so g is subbase
monic on B Ii.e. , ((x) & the average of ( on any sphere
contained inB and centered atx]. Hence g has its max-
imum on the boundary of B or at ~, at all of which
points g =0. Theref'ore B is the empty set 0

In the p =0 case it is easy to show how Theorem 6 fol-
lows from Lemma 8.

Proof of Theorem 6 urhen A, =Zz, z;. The proof when

z, uses the same ideas but is more complicated.
Since A. = Zz& then A. , =Z&, z&, A. , =Zf „z, and p, = 0
for all three systems. For n &0 let f (a)

'L~~y& ' r ~mr~m 1r+' ' )zkr~" lt ' &RA)
TF TFE(o.z „-.. . , oz; R 1, . . . , R ) —E (z, 1, . . . , zp,
„,. . . , R~), where the three Er" are defined for neu-

tral systems (i.e. , p, =0 for all a). The goal is to show
that f (1) & 0. Since f (0) =0, it is enough to show tha. t

df (o.)/do. & 0. From (26) and (27) it is true, and almost
obvious, that

~@TF
p'"(y)ly -R'I 'dy+Zz'I« -R~l '

Bz& j vs)

=Iim y (x) -z, Ix -R, I-'.
x R-

This is the TF version of the Feynman-Hellmann theo-
rem; notice how the nuclear —nuclear repulsion comes
in here. Thus,

m

= Q lim z,q „(x),
&=i x~g

where ri~(x) = Q, (x) —@," (x) and @~rF is the potential for

for all x by Lemma 8, and hence ri„(x) & 0. Q

Theorem 6 has a natural application to the stability of
matter problem. As will be shown in the next section,
the TF energy (27) is, with suitably modified constants,
a lower bound to the true quantum energy E~~ for ag' Z.
By Theorem 3 (iv) and Theorem 6 we have the following
theorem.

z .~ z . all j, and z &z,

and if ~, and ~2 are the corresponding X's for the two
sets, then for all x

y,"(x)—@,", (x)

and hence

Theorem 9. Fix fz~, R,-)&, and let Z =Z&,z, . Then
for all A. ~ 0

E "&E "& (221)q (K)- gz
The latter constant, 2.21, is obtained by numerically
Solving the TF equation for a single, neutral atom (J. F.
Barnes, private communication). By scaling, Eq. (43)
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Theorem 20. Suppose that x1 xN are any N dis-
tinct points in 3-space and define

I'x(s) = Q lx —xgl
g= 1

(44)

Let y & 0 a, nd let p(x) be any non-negative function such
that jp(x) dx &~ and J p(x)'/'dx &~. Then

holds for an choice of K' in the definition (26) of g(p).
Theorem 9 is what will be needed for the B stability

of matter because it says that the TF system is H sta-
ble, i.e., the ene rgy is bounded below by a constant
times the nuclear particle number (assuming that the z,.
a.re bounded, of course).

Another application of Theorem 6 that will be needed
is the following strange inversion of the 2ole of elec-
trons and nuclei in TF theory. It will enable us to give
a lower bound to the true quantum-mechanical electron-
elec~ron repulsion. This theorem has nothing to do with
quantum mechanics per se; it is really a theorem pure-
ly about electrostatics even though it is derived from
the TF no binding theorem.

Zo, =(y, H„y) (46)

with HN being the N-particle Hamiltonian given in (23)
and (q, ())) = 1.

For the third term on the right side of (23) Theorem
10 can be used with p taken to be p&. Then, for any

1~1&i ~N

1
2 pp (x) I x xl -'pg (s) d xdy

—(2.21)Ny ' —y f py (y)')'42.

p~ (x) lx —pl 'p~ ( y) d xdy

(48)

To control the kinetic energy in (23) Theorem 1 is
used; the total result is then

(47)

Notice how the first and second terms on the right side
of (45) combine to give + —,

' since

I x; -x
l
'- —— p(x)l x —yl 'p(x) dxA

1~i &j &N 2

+ p(S) I/x(X) dX —(2 21)N/y

(45)
with

p, x'~'dx — Vxp, x dx

1
+

2 p~(x)lx sl 'p~-(y) dxdy

+ U((z, , H,),",) —(2.21)Ny-' (49)

Proof. Consider 8(p) (26) with(I =1, k=N, K' re-
placed by y, z, = 1 and R;=x&,j =1, . . . , N. Let A.

=f p(x) dx. Then h(p) & ET&" (by definition) and Ez"
& —(2.21)N/y by Theorem 9. The difference of the two
sides in Eq. (45) is just h(p) +(2.21)N/y.

IV. THE STABII ITY OF BlJLK MATTER

The various results of the last two sections can now
be assembled to prove that the ground state energy (or
infimum of the spectrum, if this not an eigenvalue) of
BN is bounded below by an extensive quantity, namely
the total number of particles, independent of the nu-
clear locations /LB,.j. This is called the H stability of
matter to distinguish it from thermodynamic stability
introduced in the next section. As explained before, the
inclusion of the nuclear kinetic energy, as will be done
in the next section, can only raise the energy.

The first proof of the N boundedness of the energy
was given by Dyson and Lenard (Dyson and Lenard,
1967, Lenard and Dyson, 1968). Their proof is a re-
markable analytic tour de force, but a chain of suffi-
ciently many inequalities was used that they ended up
with an estimate of something like —10" Ry/particle.
Using the results of the previous sections we will end
up with —23 Ry/pa. rticle [see Eq. {55)].

%e have in mind, of course, that the nuclear charges
z,-, if they are not all the same, are bounded above by
some fixed charge z.

Take any fermion $(x„.. . , x2(;a „.. . , o N) which is
normalized and antisymmetric in the (x„a&). Define the
kinetic energy T& and the single particle density p& as
in (16) and (17). We wish to compute a lower bound to

(x = (4w(I) '/'K' —y. (50)

Restrict y, which was arbitrary, so that & & 0. Then,
apart from the constant term —(2.21)Ny ', Eq. (49) is
just h~(p&), the Thomas —Fermi energy functional $
applied to p&, but with@ ' 'E' replaced by o.. Since
8„(p&) & &TFN=—inf(h„(p): f p =N) (by definition), and
since the neutral case always has the lowest TF ener-
gy, as shown in Theorem 9, we have that

g (p ) & (2 21)(x ' z2/'.
= 1

Thus we have proved the following:

(51)

Tlzeo2em 21. If f is a normalized, antisymmetric
function of space and spin of N variables, and if there
are q spin states associated with each particle then,
for any y& 0 such that (x defined by Eq. (50) is positive,

(4, » 4) (2 21)INy +-ty .' Q yq)''I.
)=1

(52)

The optimum choice for y is

in which case

(4~q)2/3N ( z7/3 / )
222

x (53)

This is the desired result, but some additional remarks
are in order.

(1) Since [1+a'/']' ~ 2+2a,
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(54) E@(bosons) ~—,N'~ ' 1+ g
Thus, provided the nuclear charges z, are bounded
above by some fixed z, E is indeed bounded below by a
constant times the ~»a& particle number N+k.

(2) Theorem 11 does not presuppose neutrality.
(3) For electrons, q =2 and the prefactor in Eq. (53)

is -(2.08)N. As remarked after Theorem 1, the un-
wanted constant (4m)'~3 has been improved to [4m/
(1.83)]'~'. Using this, the prefactor becomes —(1.39)N.
If z,. =1 (hydrogen atoms) and N=k (neutrality) then

Eos ~ —(5.56)N = —(22.24)N Ry. (55)

and this is bounded above by the total particle number.
Next, for any P ~ 0, it is easy to check that there is a

C& & 0 such that for any non-negative p(x),

J
p(x)' 'dx ' t ixi~ p(x) dx

&C, p x dx ""~'.

It is easy to find a minimizing p for this and to calcu-
late C~: p(x)' '=1 —~x( for ~x~ - 1; p(x) =0, otherwise.

Since T& satisfies Eq. (18) we have that

~xp p, (x) dx C,'N(N'i'/)E„I)'~',

with C~ =C~(K'/4) ~'(4m@) ~~'.

If it is assumed that'Qz, ' /N is bounded, and hence
that (N'~'/[E„~) ~'&AN~ ' for some A, we reach the con-
clusion that the radius of the system is at least of the
order N' ', as it should be.

The above analysis did not use any specific property
of the Coulomb potential, such as the virial theorem.
It is also applicable to the more general Hamiltonian
H„„ in Eq. (58).

(6) The q dependence was purposely retained in Eq.
(53) in order to say something about bosons. If q =N,
then it is easy to see that the requirement of antisym-
metry in g is no restriction at all. In this case then,
one has simply

E~~=inf spec II~

over all of I '(R')». Therefore

(4) The power law z'~' cannot be improved upon for
large z because Theorem 5 asserts that the energy of
an atom is indeed proportional toe' ' for large s.

(5) It is also possible to show that matter is indeed
bulky. This will be proved for any g and any nuclear
configuration (not just the minimum energy configura-
tion) for which E& &0. The minimizing nuclear con-
figuration is, of course, included in this hypothesis.
Then

0~ E~& = ~ T& +(g, H~g),

where H» is Eq. (23) but with a factor & multiplying
Zq, b&. By Theorem 11, (Q, H~g) ~ 2E~, where E~ is
the right side of Eq. (53) (replace K' by K'/2 there).
Therefore, the first important fact is that

(56)

It was shown by Dyson and Lenard (Dyson and Lenard,
1967) that

E~~(bosons) ~ —(const)N"'~'

and by Dyson (Dyson, 1967) that

E~s(bosons) ~ —(const)N'i '.
Proving Eq. (57) was not easy. Dyson had to construct
a rather complicated variational function related to the
type used in the QCS theory of superconductivity.
Therefore bosons axe not stable under the action of
Coulomb forces, but the exact power law is not yet
known. Dyson has conjectured that it is -', .

In any event, the essential point has been made that
Fermi statistics is essential for the stability of matter.
The uncertainty principle for one particle, even in the
strong form (5), together with intuitive notions that the
electrostatic energy ought not to be very great, are in-
sufficient for stability. The additional physical fact that
is needed is that the kinetic energy increases as the —,

'
power of the fermion density.

V. THE THERMODYNAMIC LIMIT

Having established that E~ is bounded below by the
total particle number, the next question to consider is
whether, under appropriate conditions, E~/N has a
limit as N-~, as expected. More generally, the same
question can be asked about the free energy per particle
when the temperature is not zero and the particles are
confined to a box.

It should be appreciated that the difficulty in obtaining
the lower bound to E@ came almost entirely from the
x ' short range singularity of the Coulomb potential.
Other potentials, such as the Yukawa potential, with the
same singularity would present the same difficulty
which would be resolved in the same way. The singu-
larity was tamed by the p"' behavior of the fermion ki-
netic energy.

The difficulty for the thermodynamic limit is differ-
ent. It is caused by the long &ange x ' behavior of the
Coulomb potential. In other words, we are faced with
the problem of explosion rather than implosion. Nor-
mally, a potential that falls off with distance more
slowly than x ' ' for some ~ &0 does not have a ther-
modynamic limit. Because the charges have different
signs, however, there is hope that a cancellation at
large distances may occur.

An additional physical hypothesis will be needed,
namely neutrality. To appreciate the importance of
neutrality consider the case that the electrons have
positive, instead of negative charge. Then E„&0 be-
cause every term in Eq. (23) would be positive. Whi1e
the H-stability question is trivial in this case, the ther-
modynamic limit is not. If the particles are constrained
to be in a domain Q whose volume ~Q

~
is proportional to

K, the particles will repel each other so strongly that
they will all go to )he boundary of 0 in order to mini-
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mize the electrostatic energy. The minimum electro-
static energy will be of the order +A'jQl "'-+N"'
Hence no thermodynamic limit will exist.

When the system is neutral, however, the energy can
be expected to be extensive, i.e. , O(N). For this to be
so, different parts of the system far from each other
must be approximately independent, despite the long
range nature of the Coulomb force. The fundamental
physical, or rather electrostatic, fact that underlies
this is screening; the distribution of the particles must
be sufficiently neutral and isotropic locally so that ac-
cording to Newton's theorem (13 below) the electric po-
tential far away will be zero, The problem is to ex-
press this idea in precise mathematical form.

We begin by defining the Hamiltonian for the entitle
system consisting of k nuclei, each of charge z and
mass M, and n electrons (h'/2=1, m =1, lel= 1):

Z (N, Q, P) = Tr exp(-PH„~),
where the trace is on 2'(Q)t "~ and j3= 1/T, T being the
temperature in units in which Boltzmann's constant is
unity.

The free energy Per unit volume is

(62)

&(V, Q, P) = -P-' InZ (X, Q, P)/j Q j

and the problem is to show that with

p is then the density in the thermodynamic limit. Here
we shall choose the Q,- to be a sequence of balls of radii
R,. and shall denote them by B,.

It can be shown tha the same thermodynamic limit for
the energy and free enrgy holds for any sequence X,-, B,-
and depends only on the limiting p and P, and not on the
"shape" of the 4, , provided the Q,. go to infinity in some
reasonable way.

The basic quantity of interest is the canonical parti-
tion function

F„=F(N, , Q, , P), (64)

tt+1» (&j»&+0

(58)
The first and second terms in Eci. (58) a,re, respec-
tively, the kinetic energies of the electrons and the
nuclei. The last three terms are, respectively, the
electron —nuclear, electron-electron, and nuclear-
nuclear Coulomb interactions. The electron coordinates
are x, and the nuclear coordinates are y,-. The elec-
trons are fermions with spin —', ; the nuclei may be either
bosons or fermions.

The basic neutrality hypotheses is that n and k are
related by

n=kz. (59)

It is assumed that z is rational.
The thermodynamic limit to be discussed here can be

proved under more general assumptions, i.e. , we can
have several kinds of negative particles (but they must
all be fermions in order that the basic stability estimate
of Sec. IV holds) and several kinds of nuclei with differ-
ent statistics, charges, and masses. Neutrality must
always hold, however. Short range forces and hard
cores, in addition to the Coulomb forces, can also be
included with a considerable sacrifice in simplicity of
the proof See (Lieb. and Lebowitz, 1972).

H„„acts on square integrable functions of n+ k vari-
ables (and spin as well). To complete the definition of
H„~ we must specify boundary conditions: choose a
domain Q (an open set, which need not be connected) and
require that P = 0 if x,. or y,. are on the boundary of Q.

For each non-negative integer j, choose an n,. and a
corresponding k,. determined by Ecj. (59), and choose a
domain 0, The symbol%, - will henceforth stand for the
pair (n, , k, ) and

jX, j ~n,.+ u,

We' require that the densities

(60)

lim E,' = E(p, P)

exists. A similar problem is to show that

(65)

E(N, Q) —=
l
Q l

' inf (g, H„~g)/( g, g), (66)

the ground state energy per unit volunze, has a limit

e(p) = lim E, ,

where

(67)

Theorem 12. Given%, Q, and P there exists a con-
stant C depending only on p = jÃ j/l Q

l
and P such that

E(V, Q, P) -C.
Proof Write H„~=H.„+He, where

(68)

is half the kinetic energy. Then He ~ b jK l, with b de-
pending only on z, by the results of Sec. IV (increasing
the mass by a factor of 2 in He only changes the constant b) .
Hence Z(V, Q, J3) ~ exp(-Pb jN l) Tr exp(-PH„). However,
Tr exp(-PH~) is the partition function of an ideal gas
and it is known by explicit computation that it is
bounded above by e~"~~~ with d depending only on p = jRj/
IQ I

and P. Thus

E,=E(X, , Q, ) .

The proof we will give for the limit E(p, P) will hold
equally well for e(p) because E, can. be substituted for
I, in all statements.

The basic strategy consists of two parts. The easiest
part is to show that I",. is bounded below. We already
know this for E& by the results of Sec. IV. The second
step is to show that in some sense the sequence &,. is
decreasing. This will then imply the existence of a
limit.

be such that

lim p,. = p. (61)

F(N, Q, P ) ~ (b -d)p .

For the second step, two elementary but basic in-
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equalities used in the general theory of the thermody-
namic limit are needed and they will be described next.

A. . Domain Partition inequality: Given a domain Q
and the particle numbers N = (n, k), let m be a partition
of Q into l disjoint domains O', . . . , O'. Likewise N is
partitioned into I integral parts (some of which may be
zero):

x~Q' denote the average charge density in 0' for this
ensemble of independent domains, namely

(75)

N =N'+ . +N'

Then for any such partition, &, of Q and Ã

Z (PI, Q, P) = Tr exp( PH„-,) & Tr" exp( —PH„") .
Here Tr' means trace over

X'=-L'(Q')~" ~e" ~L'(Q')~" ~

(69)

with the following notation: X' stands for the coordin-
ates of the I¹Iparticles in Q', dx,. means integration
over all these coordinates (in Q') with the exception of
x, , and x,. is set equal to x; q,. is the charge (-1 or +z)
of the jth particle; exp(-PH')(X', 1") is a kernel (x-
space representation) for exp(-PH'). q'(x) vanishes if
xZ n'.

With the definitions (75) one has that

and H~ is defined as in (58) but with Dirichlet ((=0)
boundary conditions for the N' particles on the boundary
of Q' (for i =1, . . . , l).

Simply stated, the first.N' particles are confined to
Q', the second Ã to 0, etc. The interaction among the
particles in different domains is still present in H~.
Equation (69) can be proved by the Peierls-Bogoliubov
variational principle for Tre". Alternatively, (69) can
be viewed simply as the statement that the insertion of
a hard wall, infinite potential on the boundaries of the
0' only decreases Z; the further restriction of a defin-
ite particle number to each Q' further reduces Z be-
cause it means that the trace is then over only the H~-
invariant subspace, 3C', of the full Hilbert space.

B. Inequality ~fox the interdomain interaction. : The
second inequality is another consequence of the con-
vexity of A —Tre (Peierls —Bogoliubov inequality):

(W)= gi&j o. Q.j
q.'(x)qj(y) Ix —yI 'dxdy. (76)

Theorem 23 (¹wton) Let p(x.) be an integrable func-
tion on 3-space such that p(x) = p(y) if IxI= IyI (isotropy)
and p(x) =0 if IxI&A for some A&0. let

@(x)= p(y) I
x —y I

'd y (77)

Equation (70), together with (76) and (74), is the de-
sired inequality for the interdomain interactjon. It is
quite general in that an analogous inequality holds for
arbitrary two-body potentials. Neither specific proper-
ties of the Coulomb potential nor neutrality was used.

Now we come to the crucial point at which screening
is brought in. The following venerable result from the
Principia Matkematica is essential.

Tre""s & Tre" exp(B),
where

(B)=- TrBe "/Tre~ .

(70)

(71)

be the Coulomb potential generated by p. Then if IxI
~A

y(x) = Ixl '
I (y)dy. (78)

Some technical conditions are needed here, but Eqs.
(70) and (71) will hold in our application.

To exploit (70), first make the same partition m as in
inequality A. and then write

H„=Ho+ W(X),

H =H'+ ~ +H'

(72)

(73)

with II being that part of the total Hamiltonian (58) in-
volving only the N' particles in Q', and H' is defined
with the stated Dirichlet boundary conditions on the
boundary of Q'. W(X), with X standing for all the co-
ordinates, is the igterdomain Coulomb interaction. In
other words, W(X) is that part of the last three terms
on the right side of (58) which involves coordinates in
different blocks of the partition r. Technically, 8' is a
small perturbation of H, .

With

A = -PHD and B = -PW (74)

in (70), we must calculate (W). Since e"= e 8 "o is a
simple tensor product of operators on each L'(Q')~~ ~,

S' is merely the average interdomain Coulomb energy
in a canonical ensemble in which the Coulomb inter-
action is present in each subdomain but the L domains
are independent of each other. In other words, let q'(x),

The important point is that an isotropic, neut aE

charge distribution generates zero potential outside its
support, irrespective of how the charge is distributed
radially.

Suppose that ¹ is neutra~, i.e. , the electron number
=z times the nucleon number for each subdomain in Q.
Suppose also that the subdomain 0' is a ba/l of radius
R' centered at a'. Then since II' is rotation invariant,
q'(x) = q'(y) if Ix -a'I=

I y —a'I, jq'(x)dx=0 (by neutral-
ity) and q'(x) =0 if Ix —a'I&A'. Then, by Theorem 13,
every term in Eq. (76) involving q' vanishes, because
when j &i, q'(y) =0 if I y —a'I &R' since Q~ is disjoint
from O'. Consequently the average-interdomain inter-
action, (W), vanishes.

In the decomposition, &, of 0 into O', . . . , Q' and%
into N', . . . jN' we will arrange matters such that

(i) Q', . . . , Q' ' are balls,
(ii) N', . . . , N' ' are neutral,
(iii) N' =0

Then (W) =0 and, using Eqs. (69) and (70)

Z(N, Q, P) o- Tr'exp( PH„') - -[ Z(N', Q', P)e-"~'
i=1

2

, . &(N', Q', P)
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in addition to (i), (ii), (iii) it will also be necessary to
arrange matters such that when 0 is a ball B~ in the
chosen sequence of domains, then the subdomains Q',
. . . , 0' ' in the partition of B„are «so smaller balls in
the same sequence. With these requirements-in mind
the standard sequence, which depends on the limiting
density p, is defined as follows:

(1) Choose p & 0.
(2) Choose any N, satisfying the neutrality condition

(59)
(3) Choose R, such that

with

&= 28 ~& ~ (85)

K-1 OQ

lim P f», =
—,',. g y'=1. (86)

It is also "geometrically rapid" because the fraction of
IB»I that is uncovered is

y»

The packing is asymptotically complete in the sense that

28(4&/3) pRl = I&.l

(4) For j~ 1 let

(80) The necessary ingredients having been assembled, we
can now prove the following theorem.

R, = (28)'R„
=(28)". 'No

(81)

be the radius of the ball B,. and the particle number in
that ball.

It will be noted that the density in all the balls except
the first is

while the density in the smallest ball is much bigger:

pa =28p. (83)

This has been done so that when a ball BK,K ~ 1 is packed
with smaller balls in the manner to be described below,
the density in each ball will come out right; the higher
density in B, compensates for the portion of BK not cov-
ered by smaller balls. The radii increase geometrically,
namely by a factor of 28.

The number 28 may be surprising until it is realized
that the objective is to be able to pack BK with balls of
type BK „BK„etc., in such a way that as much a,s pos-
sible of BK is covered and also that very little of BK is
covered by very small balls. If the ratio of radii were
too close to unity, then the packing of BK would be in-
efficient from this point of view. In short, if the num-
ber 28 is replaced by a much smaller number the analog
of the foQowing basic geometric theorem willnotbetrue.

"Pack" means that all the balls in the union are disjoint.

We will not give a proof of Theorem 14 here, but note
that it entails showing that m, balls of radius AK, can
be packed in BK in a cubic array, then that m, balls of
radius RK, can be packed in a cubic array in. the inter-
stitial region, etc.

Theorem 14 states that B» can be packed with (28)'
balls of type B» „(27)(28) balls of type B» „etc If.
f», is the fraction .of the volume of B» occupied by all
the balls of radius B,. in the packing, then

f,=,.(R,./R ) = —y. (84)

Theorem 14 (Cheese theorem). For j a. positive in-
teger define the integer m,. =—{27)' '(28)". Then for each
positive integer K~ 1 it is possible to pack the ball BK
of radius R» (given by 81) with

K-x

IJ (rn», . balls of radius R,.).

K-1 ¹m . =N 27 K' 28'K+ 28 ' ' 2V ' ' 28
g=o j=l

K-z

= N, (28)'»

as it should be.
Use the basic inequality (79); (W) = 0 since all the

smaller balls are neutral and 0' contains no particles.
Thus, taking logarithms and dividing by IB»I we have
for K~ 1 that

K-x

~g j'f (88)

with f =y'/27 and y=. —,", . This inequality can be rewrit-
ten as

K-1 y +K-j
F =g ' —d„

0 2 7 (89)

with d» - 0. Equation (89) is a ~enesoaE equation which
can be solved explicitly by inspection:

~+ —'.d - E()

, , 28 28 '

We now use the first step, Theorem 13, on the boun-
dedness of j'». Since 5'»~ C, Q,". , d,. must be finite, for
otherwise (90) would say that E»- —~. The convergence
of the sum implies that dK-0 as K-~. Hence the limit
exists; specifically

Q= llm +K —— ~ + —.d I
j, 28 28

' ~ (91)

Theorem 15 is the desired goal, namely the existence
of the thermodynamic limit for the free energy (or
ground state energy) per unit volume. There are, how-

Theo+em 25. Given p and P&0, the thermodynamic
limits F( p p) and e( p) (65 67) exist for the sequence of
balls and particle numbers specified by (80) and (81).

Proof. I et F» given by Eq. (64) be the free energy per
unit volume for the ball BK with NK particles in it. For
K - 1, partition BK into disjoint domains G'» 0
where the 0' for i=1, . . . , l —1 designate the smaller
balls referred to in Theorem 14, and 0' (which is the
"cheese" after the holes have been removed) is the re-
mainder of BK. The smaller balls are copies of Bj,
0 & j &K—1; in each of these place ¹ particles accord-
ing to (81). N'=0. The total particle number in B» is
then
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ever, some additional points that deserve comment.

(A) For each given limiting density p, a, particular
sequence of domains, namely balls, and particle num-
bers was used. It can be shown that the same limit is
reached for general domains, with some mild conditions
on their shape including, of course, balls of different
radii than that used here. The argument involves pack-
ing the given domains with balls of the standard se-
quence and vice versa. The proof is tedious, but stand-
ard, and can be found in (Lieb and Lebowitz, 1972).

(8}Here we have considered the thermodynamic linut
for real matter, in which all the particles are mobile.
There are, however, other models of some physical in-
terest. One is jellium in which the positive nuclei are
replaced by a fixed, uniform bachgxound of positive
charge. With the ai.d of an additional trick the thermo-
dynamic limit can also be proved for this model (Lieb
and Narnhofer, 1975}. Another, more important model
is one in which the nuclei are fixed point chases ar-
ranged periodically in a lattice. This is the model of
solid state physics. Unfortunately, local rotation in-
variance is lost and Newton's Theorem 13 cannot be
used. This problem is still open and its solution will
require a deeper insight into screening.

(C) An absolute physical requirement for PE(p, P), as
a function of f3=1/T, is that it be concave. This is
equivalent to the fact that the specific heat is non-nega-
tive since (specific heat) = —P'B'pE(p, P)/BP . Fortu-
nately it is true. From the definitions (57), (58) we see
that InZ(N, 0, p) is convex in p for every finite system
and hence PE(N, 0, p) is concave. Since the limit of a
sequence of concave functions is always concave, the
limit PE(p, P} is concave in P.

(D) Another absolute requirement is that E(p, p) be
convex as a function of p. This is called thermodynamic
stability as distinct from the lower bound II stability of
the previous sections. It is equivalent to the fact that
the compressibility is non-negative, since (compressi-.
bility) '= BP/Bp= pB'E(p, P)/Bp'. Frequently, in approxi-
mate theories (e.g. , van der Waals' theory of the vapor—
liquid transition. , some field theories, or some theories
of magnetic systems in which the magnetization per unit
volume plays the role of p), one introduces an E' with a
double bump. Such an E is nonphysical and never should
arise in an exact theory.

For a finite system, E is defined only for integral N,
and hence not for all real p. It can be defined for all p
by linear interpolation, for example, but even so it can
neither be expected to be, nor is it generally, convex,
except in the limit. The idea behind the following proof
is standard.

Theo&em 16. The limit function E(p, p) is a convex
function of p for each fixed P. E(p) is also 'a convex
function of p.

Proof: This means that for p= Ap'+(I —X) p', 0- A, ~ 1,
E(p, P)-. ~E(p', p)+(I ~) E(p', e)

and similarly for E(p). As E is bounded above on
bounded p intervals (this can be proved by a simple
variational calculation), it is sufficient to prove (92)
when A= —,. To avoid technicalities (which can be sup-
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plied) and concentrate on the main idea, we shall here
prove (92) when p' and p' are rationally related: ap'
= bp', a and b positive integers. Choose any neutral
particle number M and define a sequence of balls B,.
with radii as given in (81)and with 28 (4w/3) PA', = (a+ b)

~

M ~.

For the p system take N, =(a+b)M, N, =(2.8)" 'N~, j~ 1.
For the p' (respectively, p') system take N,'= 2bM, N', .
= (28)" 'No [respectively, No = 2aM, N', =(28. )" 'N', ).
Consider the p system. In the canonical partition & of
B» into smaller balls (Theorem 14) note that the number
of balls Bz is m» &

and this number is even In. half of
these ball. s place N', . particles and in the other half place
N', . particles, 0 &j &E—1. Then in place of (88) we get

1 sc

E»(p}- —g f»; [E,(p')+ E,(p')] (93)2 f Q

in an obvious notation. Inserting (89) on the right side
of (93),

E»(P) - 2 tE»(p')+ E»(p'))+ 2(d'»+ d»}.

Since limz „dz'-—0, we can take the limit E-~ in Eq.
(94) and obtain (92). Q

(E) The convexity in p' and concavity in p of E(p, p)
has another important consequence. Since E is bounded
below (Theorem 13) and bounded above (by a simple
variational argument) on bounded sets in the (p, P) plane,
the convexity/concavity implies that it is jointly contin
uous in (p, p). This, together with the monotonicity in EC

of E»+ Zd» (see (90)), implies by a standard argument
using Dini's theorem that the thermodynamic limit is
uniform on bounded (p, P) sets. This uniformity is some-
times overlooked as a basic desideratum of the thermo-
dynamic limit. Without it one would have to fix p and P
precisely in taking the limit —an impossible task exper-
imentally. With it, it is sufficient to have merely an in-
creasing sequence of systems such that p&-p and p~- p.
The same result holds for e(p).

(F) An application of the uniformity of the' limit for
e(p) is the following. Instead of confining the particles
to a box (Dirichlet boundary condition for H„~) one could
consider H„„defined on all of I'(R') ~N~, i.e., no con-
finement at all. In this case

E g—= inf (g, H„~g}/(g, g)

is just the ground state energy of a neutral molecule and
it is expected that E»/~N~ has a limit. Indeed, this lim-
it exists and lt ls simply

lim Eg/~N~=lim p 'e(p) .

There is no analog of this for E(p, P) because removing
the box would cause the partition function to be infinite
even for a finite system.

(G) The ensemble used here is the canonical ensem-
ble. It is possible to define and prove the existence of
the thermodynamic limit for the micxocanonieal and
grand canonical ensembles and to show that all three
ensembles are equivalent (i.e. , that they yield the same
values for all thermodynamic quantities, such as the
pressure). (See Lieb and Lebowitz, 1972.)

(H) Charge neutrality was essentially for taming the
long range Coulomb force. ~&at happens if the system
is not nent&al P To answer this let¹,QJ be a sequence

I



Elliott H. Lich: The stability of matter

of pairs of particle numbers and domains, but without
(59) being satisfied. Let Q,. =gk,. —n,. be the net charge,
p~= I~~I/IQ;Iasbefore and. p,. —p. One expects that if

(i) Q,. I Q,. I

'~'-0 then the same limit E(p, p} is achieved
a.s if Q, =O.

On the other hand, if
(ii) Q,. I Q,. I

'~'-~ then there is no limit for
E(N , Q, ,. p). More precisely E(N, , Q, , p) -~ because the
minimum electrostatic energy is too great. Bothof these
expectations can be proved to be correct.

The interesting case is if
(iii) lim, . „Q,. l Q,.

l

'~'= o exists. Then one expects a
shape dependent limit to exist as follows. Assume that
the Q. are geometrically similar, i.e. , Q,. =A, Qo with

I Qol
=1 and IN, IA., '=

p. ,. with p,. —p. Let C be the electxosta
tic capacity of 0„ it depends upon the shape of 0,. The
capacity of QJ is then C,.=C~,-. From elementary elec-
trostatics theory the expectation is that

Ii.m E(N, , Q, , P) = E(p, P)+ 0'/2C. (95)

Note that (Q',./2C, .)
I
Q,. I

' —cr'/2C .
Equation (95) can be proved for ellipsoids and balls.

The proof is as complicated as the result is simple.
With work, the proof could probably be pushed through
for other domains Q, with smooth boundaries.

The result (95} is amazing and shows how special the
Coulomb force is. It says that the surplus charge Q,.
goes to a thin layer near the surface. There, only its
electrostatic energy, which overwhelms its kinetic en-
ergy, is significant. The bulk of 0,. is neutral and un-
influenced by the surface layer because the latter gen-
erates a constant potential inside the bulk. It is seldom
that one has two strongly interacting subsystems and
that the final result has no cross terms, as in Eq. (95).

(I) There might be a temptation, which should be
avoided, to suppose that the thermodynamic limit de-
scribes a single phase system of uniform density. The
temptation arises from the construction in the proof of
Theorem 15 in which a large domain I3~ is partitioned
into smaller domains having essentially constant den-
sity. Several- phases can be present inside a large do-
main. Indeed, if P is very large a solid is expected to
form, and if the average density, p, is smaller than the
equilibrium density, p„of the solid a dilute gas phase
will also be present. The location of the solid inside the
larger domain will be indeterminate.

From this point of view, there is an amusing, al-
though expected, aspect to the theorem given in Eq. (95}.
Suppose that P is very large and that p &p, . Suppose,
also, that a surplus charge Q=OV' ' is present, where
U is the volume of the container. In equilibrium, the
surplus charge will never be bound to the surface of the
solid, for that would give rise to a larger free energy
than in (95).

(J) The inequality (53) of Sec. IV, together with known
facts about the ideal gas, permit one to derive upper
and lower bounds to the free energy and pressure for
any neutral mixture of electrons and various nuclei.
These bounds are absolutely rigorous and involve no
approximation whatsoever (beyond the assumption of
nonrelativistic SchrMinger mechanics with purely Cou-
lomb forces).

If one has bounds on the free energy per unit volume

E'(p, u)-. E(p. u)-. E'(p, p), (96)

then since the pressure P is equal to —E+ pBE/8 p, and
since I is convex in p, one has that

P ~ —E. + p min e ' 1E( p+ c, p) —E ( p, p)].,

P ~ —E+ p max E (E ( pq p) —E( p —6q P)j ~

(9 I)

E~ = Eo„,( p,„„p)+ max {(I—y)E'„(p, '„(1—y) p )

+ y-'x/I QI] . (99)

A numerical evaluation of these bounds will be presented
elsewhere.

As a final remark, the existence of the thermodynamic
limit (and hence the existence of intensive thermodynamic
variables such as the pressure) does not establish the ex-
istance of aunique thermodynamic state. In other words,
it has not been shown that correlation functions, which
always exist for finite systems, have unique limits as
the volume goes to infinity. Indeed, unique limits might
not exist if several phases are present. For well be-
haved potentials there are techniques available for prov-
ing that a state exists when the density is small, but
these techniques do not work for the long range Coulomb
potential. Probably the next chapter to be written in
this subject will consist of a proof that correlation
functions are well defined in the thermodynamic limit
when p or P is small.
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