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We present a unified discussion and illustrations of the electron-optical aspects of electron penetration into,
or escape from, the inner region of atoms. Both processes may focus or defocus the amplitudes of
wavefunctions and shift their phases, as manifested in countless phenomena ranging from level shifts to P-
decay rates. A background survey begins by discussing the Fermi-Segre formula for hyperfine splittings and
emphasizes the interplay of hydrogenic and WKB approximations. The Phase-Amplitude Method, which
determines amplitude ratios and phase shifts directly, proves useful for interpreting the systematics of these
parameters along the Periodic System. We present results of survey calculations, carried through the
Periodic System using Hartree —Slater potential fields, of: (a) a, (0)/a, (oo), the ratio of the wavefunction's
amplitude at r = 0 to that outside the atom; (h) 8,(E = 0) and d8, /d@s s, the phase shift and its energy
derivative at E = 0; and (c) the changes in 8&(E = 0) and a, (0)/a&(oo) induced by either a unit perturbation
localized near r = 0 or a relativistic correction. Thus we provide a broad mapping of certain fundamental
parameters based on rather crude but realistic calculations. These results are meant to serve as a bench
mark in surveying problems and in checking new results, while standard methods are preferable for
working out specific applications accurately.
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A broad class of atomic properties depends on the deep
penetration of electrons into the region near the nucleus.
This class includes the fine and hyperfine structure of
atomic levels and their shifts due to relativistic dynam-
ics prevailing near the nucleus. Closely related are the
effects of spin-orbit coupling and of relativistic dynam-
ics upon the scattering of slow electrons by atoms or
ions. All these effects are proportional to the squared
amplitude of an electron's wave function near the nucle-
us, which in turn depends on the normalization of this
function, and therefore on the ratio of its amplitudes in
the limits of &-0 and &-~.

Another important class of phenomena depends on the
same ratio of wave function amplitudes, namely, the
phenomena involving the escape of electrons released at
or near a nucleus. This class includes P-decay, inter-
nal conversion, and the photoionization and Auger effect

of inner shells. The probability of each of these pro-
cesses is proportional to the squared amplitude of an
electron's wave function at or near a nucleus, for a wave
function normalized "per unit energy, " i.e. , with an am-
plitude standardized outside the atom. Bremsstrahlung
and pair production depend on the product of two such
squared amplitudes, for the initial and final states of a
particle or for particle and antiparticle states, respec-
tively, when the transitions take place near a nucleus.

The ratio of wave function amplitudes in the outer and
inner reaches of the atom depends, of course, on the
solution of the radial wave equation and thus on the atom-
ic potential field prevailing throughout the range of in-
termediate distances from the nucleus. Variations of
the potential field from one atom to another enhance or
depress this amplitude ratio systematically along the
Periodic System. Since the atomic field can so modify
the amplitude of the electron's wave function, and hence
the electron density, we have chosen to liken it to an
electron-optical lens. This nomenclature is unorthodox
in this context, but we feel it conveys an important as-
pect of the processes of electron penetration into, or es-
cape from, an inner region of an. atom.

This amplitude ratio is conjugate —in a quantum me-
chanical sense —to the phase shift which characterizes
the elastic scattering of a free electron by an atomic or
ionic field. The phase shifts of an electron-ion collision
are in turn equivalent, when extrapolated to negative
energy, to the quantum defects which determine the op-
tical energy levels of a neutral atom in a single-electron
model. The phase shifts and quantum defects are them-
selves electron-optical parameters of the atomic field,
whose systematics are of obvious interest and have been
studied occasionally in the past (Hellmig 1935; Griffin
et al. , 1969; Manson 1969). The connection between the
phase shifts and amplitude ratios belongs to the broad
class of dispersion relations and will be discussed brief-
ly in Sec. IV.

This article presents an overview of the electron —op-
tical problem thus outlined and a set of illustrative data.
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The data show a smooth average dependence of ampli-
tude ratios on the atomic number, modulated by striking
effects of the progressive filling of outer shells. Para-
doxically, our subject appears to have drawn little at-
tention just because the calculation of a radial wave
function for any specific problem amounts today to a
rather trivial 'numerical exercise. Within the range of
problems we consider, the exercise must have been
carried out countless times as the need arose. On the
other hand, directing attention to the general aspects of
the problem and to qualitative and semiquantitative as-
pects of its solution should serve as a valuable bench
mark in. surveying problems and in checking results.

Early studies, particularly of fine and hyperfine struc-
ture in the 20's and 30's, did concern. themselves with
finding general formulas to represent the dependence of
these properties on the atomic number, but later devel-
opments were scarce. Among these is a recent calcula-
tion of rates of slow-meson capture in the context of the
Thomas-Fermi model (Leon and Seki, 1974). This mod-
el, however, apart from its well-known deficiencies in
the extreme regions —both at the atomic surface and
near the nucleus —does not incorporate the dependence
on the shell structure. This dependence does manifest
itself strikingly in the experimental data on meson c3p-
ture (Wiegand 1969; Wiegand and Godfrey, 1973), whose
connection with the variation of atomic radii along the
Periodic System was subsequently pointed out by Condo
(1974).

In fact, the studies reported in this article or ig inate
from the availability of extensive data on atomic poten-
tials (Herman and Skillman, 1963) calculated by the
Hartree —Slater (HS) model which incorporates the shell
structure. A mapping of these potential data facilitated
the survey of several properties, particularly of the ef-
fects of centrifugal potentials which depend critically on
the radii of atoms (Bau and Fano, 1968, Fig. 1). Later
on, with the intent of displaying the relationship between
the potential field and the parameters of interest, we
have been solving the Schrodinger equation by the Phase-
Amplitude Method (PAM) (Calogero 1967, Babikov, 1967
and 1968). As its name implies, this method yields
linked expressions for the amplitude ratios of wave func-
tions and for the phase shifts (and quantum defects). An
initial application of this approach dealt with the sys-
tematic trend of spin-orbit splitting along the Periodic
System (Dehmer, 1973). Various additional applications
are presented in this article. An extensive set of cal-
culations of phase shifts, designed from the same point
of view but carried out by non-PAM techniques, has
been reported by Manson (1969).

The first part of this article describes the historical
background and qualitative aspects of our problem, and
then discusses the characteristics and limitations of the
Hartree-Slater model potentials and those of approaches
based on the WKB approximation (Secs. ,II-V). The sec-
ond part presents data on the amplitude ratios and on
the phase shifts of s, P, and d wave functions throughout
the Periodic System and on the dependence of these pa-
rameters on perturbations acting near the nucleus. The
data pertain mostly to electrons with energies at the
ionization threshold, but include a study of the energy
dependence of phase shifts, d&/dE, and information on

how rapidly the effects of shell structure decline as the
electron energy increases. A final section reviews the
implications of the present knowledge for the various
phenomena mentioned in this Introduction.

Although we stress the connection of electron-optical
properties of atomic fields with diverse phenomena, we
present illustrative data only for neutral atomic sys-
tems, more specifically, for an electron moving in the
field of a singly charged residual ion. Consequently,
the numerical data shown do not apply directly to phe-
nomena, such as electron-atom scattering, which in-
volve an electro'n moving in the field of a neutral atom.
Nevertheless, the point of view is applicable to ionic
systems although the detailed systematics would, of
course, have to be re-examined. Extension to highly
stripped ion, s is under consideration. Illustrative data
pertain to s, P, and d electrons only, because f elec-
trons do not usually penetrate beyond the outer portions
of atoms owing to centrifugal repulsion. Moreover, we
confine ourselves to situations where the atomic poten-
tial may be adequately regarded as fixed for each kind
of atom, in contrast to the important phenomena such as
antishielding (Armstrong, 1971), where the effect of in-
terest polarizes or otherwise distorts the rest of the
atomic structure substantially.

I I. BAC KG ROUND

Early attempts to identify a systematic dependence of
spectral properties of atoms on their atomic number
utilized hydrogenic approximations, even. before the ad-
vent of quantum mechanics. (See, e.g. , Lande 1924.)
Even in highly improved treatments one finds it conve-
nient to express results with reference to hydrogenic
approximations, as we shall see, because a hydrogenic
approximation accounts for the major dependence on
atomic number. As a notable example of this approach,
consider the formula developed in 1933 by Fermi and
Segre (see also Fermi, 1962, Vol. 1, p. 514) in their
study of hyperfine splittings. This formula represents
the probability of finding at the nucleus (& =0) an optical
s electron bound in an orbital state of quantum number
n, in the form

~e(0)~2 = (I —P2Z2) ~~2 dE
2''I dn

'

The first factor of this formula, where a is the Bohr
radius and I„=13.6 eV, is the value of ~+(0)~' for a zero-
energy, free, nonrelativistic electron in a Coulomb field
of atomic number Z, normalized per unit energy range.
The last factor, denoting the derivative of the energy of
a bound electron with respect to its principal quantum
number, is drawn from the quantum defect theory, which
assumes that a Coulomb field prevails again in the outer
fringe of the atom where the optical electron is bound.
The middle factor, with the empirical parameter P
=1/139, is called a relativistic correction. It serves,
in fact, to represent the results of extensive numerical
calculations, which start from the Dirac equation. and
use the Thomas-Fermi potential model to propagate the
wave function from & =0 all the way to the edge of the
atom where the field becomes hydrogenic again.

Soon thereafter, Fermi treated the escape of an elec-
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tron through the atomic field, in his formulation of the
theory of P-ray emission (Fermi, 1934). In this case he
took the value of

~

@~' at the nuclear surface simply from
the solution of the Dirac equation for the unscreened nu-
clear field, i.e. , as the relativistic form of the first
factor on the right of Eq. (1), without commenting on the
choice of this approximation. The basis for Fermi's
choice was identified explicitly soon thereafter by Rose
(1936). Electrons propagate freely —that is without any
partial reflection —through a potential field under semi-
classical conditions, namely, within the range of valid-
ity of the WKB approximation. In other words, trans-
mission through the atomic field focuses or defocuses
electrons only to the extent that the VfKB approximation
fails. The &KB approximation fails within the & shell
of any atom, but here the field is approximately Cou-
lombic and its effect can be treated analytically. It fails
again for any slow electron near the outer edge of an
atom where the field tends once more to be hydrogenic;
it fails certainly at the largest radial distance attained
by a bound electron. On this basis, our problem re-
duces to locating and evaluating the effect of simulta-
neous departures from WKB and from hydrogenic aP-
Proximations. Specifically, in the escape of P rays,
WEB conditions prevail in practice throughout the region
outside the & shell. Therefore, the field in this region
does not affect the amplitude ratio of the wave function
at infinity and near the nucleus, even though it affects
its phase. This justifies Fermi's use of the wave func-
tion for an unscreened field, within the scope of his ap-
plic ation.

One may visualize a general formula for representing
the electron density at or near a nucleus as having the
general structure of the Fermi-Segre formula, Eq. (1).
It would consist of a first factor determined by hydro-
genic wave functions of the unscreened nuclear field,
embodying the effects of relativity prevailing near the
nucleus, as necessary. A second factor would be char-
acteristic of electron transmission through the region
occupied by L, M, . . . shell electrons; this factor would
depart from unity only to the extent that a &KB treat-
ment proves inadequate in this range. A third factor,
analogous to the last factor of Eq. (1), would depend on
the state of the electron in the outer region of the atom.
Both the second and third factors are very approximate-
ly unity in the ease of P-ray emission, since one deals
usually with electrons of nonnegligible energy for which
the WKB approximation holds in the outer atom. The
~ emarkable success of approaches related. to the Fermi-
Segre formula has attracted attention more recently,
forming the subject of studies by Foldy (1958) and by
Froman and Froman (1972). These studies confirmed
that the nonhydrogen. ic elements of the theory arise from
departures from the %'KB approximation at intermediate
radial distances.

The work leading to the present article was stimulated
by several developments: (a) Analysis of photoabsorp-
tion by inner-shell electrons showed that photoelectron
escape depends strongly on the field in the outer parts
of an atom, particularly on potential barriers due to the
local dominance of centrifugal forces (see, e.g. , Fano
and Cooper1968, ). (b) In this and other connections,
the net atomic field was found to depend sensitively on

the variations of the atomic radius from one element to
the next (Bau and Fano, 1968). (c) Application of quan-
tum defect analysis to fine structure data showed a
smooth general trend with superposed modulations in
their variations along the periodic system (Fano and
Martin, 1971). (d) There emerged a widespread in-
crease of activity in calculating still other atomic prop-

, erties as functions of their positions in the periodic ta-
ble: scattering phase shifts (Manson, 1969; Griffin
et al. , 1969); relativity effects (Desclaux and Kim,
1975); spin-orbit coupling (Dehmer, 1973); moments of
dipole oscillator strength distributions (Dehmer et al. ,
1975). Thus, the interest increased in singling out ele-
ments common to the various results.

I I I. THE MODEL POTENTIAL
/

Calculation of the electron-optical parameters pre-
supposes the adoption of a model potential. This sche-
matization is inherent to our approach because an elec-
tron moving radially through an atom is actually a part
of a many-electron system; as a result the potential has
nonlocal components and the parameters of interest de-
pend on the state of the complete system. For the pur-
pose of producing broad sets of representative data we
have utilized the atomic potentials tabulated by Herman
and Skillman (1963), which are derived from the inde-
pendent-electron HS model. The variations of these po-
tentials along the Periodic System, shown in Fig. 1, fol-
low the variations of atomic radii fairly realistically.
Moreover, ample evidence (Fano and Cooper, 1968;
Manson, 1969; Dehmer, 1973; Dehmer et al. , 1975)
exists to show that the HS model is a, very useful tool
for gaining a realistic first-order approximation to di-
verse atomic properties. One should, however, bear in
mind various limitations of the HS model when assessing
the accuracy of the data presented in this article.

Three major approximations are used in the model.
First, a local exchange approximation proposed by Sla-
ter (1951)permits definition of a local, central potential
in the context of the independent-electron model. This
exchange potential, exyressed as a.function of the local
charge density, is based on a statistical model of the
atom. Therefore, the model does not distinguish be-
tween different I S terms of an atomic configuration and
hence represents only the average properties of the con-
figuration. This limitation is particularly severe when

comparing a HS result with experiments that select
only particular terms of a configuration, e.g. , the photo-
absorption process.

The second approximation of the HS model lies in the
use of potentials which are derived from ground-state
charge distributions, and therefore are best suited for
the calculation of ground state wave functions. Thus we
disregard the possible occurrence of vacancies in inner
shells and all effects of relaxation of the atomic e1.ec-
trons due to such vacancies or to the very motion of the
electron under consideration. The most pronounced ef-
fect of this approximation occurs for atoms, such as the
alkali metals, whose ground state charge distribution
differs significantly from that of the ground ionic state
in the region outside the rare gas core. This effect is
discussed below in the context of numerical results.
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Third, the HS potentials employ a schematic approxi-
mation due to Latter (1955). The potential is based on
the charge distribution of a neutral atom, and would ac-
cordingly vanish outside that charge distribution. In
order to treat the motion of an electron in the field of
an atomic ion, Latter spliced this neutral potential with
that of a unit-charge Coulomb potential at the crossing
point of the two poteritials, a point indicated in the fol-
lowing as & =&o. This mockup of the effective potential
of the ion causes a discontinuity in the derivative of the
potential at the joining point, which might produce arti-
facts in a wave function although none have been explicit-
ly documented to our knowledge. The introduction of the
Latter approximation proves very convenient, in a pure-
ly operational sense, because it eliminates departures
from Coulomb fieM altogether from the whole range

Thus all numerical calculations can stop at the
"cutoff radius" &„ which is of the order of a few Ang-
stroms. The resulting inaccuracy of the model poten-
tial in the region &-&» near the edge of the atom, is
troublesome because this region is the seat of the con-
spicuous effects of shell filling along the Periodic Sys-
tem displayed in Secs. VI-IX. These effects are magni-
fied for d (and f) electrons by the near cancellation of
the electric and centrifugal potentials and accordingly
depend sensitively on the accuracy of the model potential
in the range &-&~. On the other hand, little profit might
ensue from elimination of the I atter approximation in

the presence of other inherent inaccuracies of the model
potential.

The HS model potential also fails to make allowance
for the polarization of the ion by an electron at &&&0.
This effect contributes generally a small positive
amount, of the order of 0.01, to the phase shifts or quan-
tum defects. It can be readily estimated using the Born
approximation form, Eq. (9) below, of the PAM with the
perturbation DU = o.e~/&, at &~ &„ where n indicates the
polarizability of the ion and is of the order of one atomic
unit,

The limitations of our model prove serious for the
treatment of perturbations that modify appreciably the
wave function of several electrons, as in the example of
the relativistic correction, which operates near the nu-
cleus only but tends to draw all penetrating orbitals
closer to the nucleus (Sec. VIII). This contraction dis-
turbs the self-consistency of the whole potential field
and thereby irifluences the motion of all other electrons
(Desclaux and Kim, 1975). No approximation method
has been developed to treat this chain of perturbations,
short of a full recalculation of the self-consistent field.
The same difficulty is met in the treatment of antishield-
ing effects (Armstrong, 1971), as noted in the Introduc-
tion.

The model also disregards inelastic interactions, i.e. ,
the possible excitation or ionization of other electrons
by the electron of interest in the course of its penetra-
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tion or escape. The probability of inelastic events is
generally of the order of only a few percent when. the
electron energy exceeds the threshold for escape by
-10-50 eV as evidenced by the weakness of the satellites
in Auger spectra; at lower escape energies these satel-
lites may reach 20-30% (Krause et ai. , 1971). Even
when they occur, inelastic events need not disturb the
penetration or escape severely, but their possible in.-
fluence should be evaluated for each process.

IV. THE PHASE-AMPLITUDE METHOD (PAM)

We review here the formulas of the PAM which serve
to calculate phase shifts and amplitude ratios directly.
Some technical aspects of their application will also be
discussed.

Consider the Schrodinger equation

, ~A, '(r)u(r) =0, k =, [E—V(r)]-d'u, 2 2m l(l+1)
(2)

u(r) = a(r)[f(r) cos6(r) —g(r) sin6(r)], (4)

with the constraint

du/dr = n(r)[(d f/dr ) cos & (r) —(dg/dr) s in 6 (r)J . (5)

Substitution of Eq. (4) in the Schrodinger equation, fol-
lowed by analytical manipulation, shows &(r) to be given
by

r
6(r) =W '(2m/I') U(r')[f(r') cos&(r')

0

—g(r') sin~ {r')]'dr' (6}

or equivalently by

r
tan6(r ) =W-'(2m/h') U(r')

0

x [f(r') —g(r') tan6(r')] dr',

while o.(r) is given by

with alternative atomic potentials V(r} and U, (r), where

V(r) = U (r) —U(r),

and U(r) may be designed to vanish for large values of
r, e.g. , at r &r, . [The sign of U in Eq. (2) implies that
U represents an increment of attraction and serves to
eliminate negative signs from later equations. ] Indicate
by f(r) and g(r) a regular and an irregular solution of
the equation with potential U0. The objective of PAM is
to study properties of the regular solution u of the equa-'
tion with potential V, as explicit functions of U, f, and
g. Thi.s enables one to i6corpoj ate into the so-called
"comparison functions, " (f, g), the properties of the
terms grouped into U, and to express explicitly the way
in which (f , g) are mod'ified by the remaining term U so
as to produce the net wave function u(r). (The utility of
this technique is illustrated by examples in the following
sections. )

One represents u as a superposition of J' and g in the
form

&(r) -W '(2m/5')
r

n. U(r')[ f(r')]'dr'. (9)

On the other hand, the integrand of Eq. (8) contains a
factor with alternating sign; hence, o.(r) may be ampli-
fied or depressed —i.e. , the electron may be focused or
defocused —depending on the sign of the integrand in dif-
ferent ranges of &'. Also, whereas the calculation of the
phase shift ~(r) proceeds outward from the nucleus owing
to the boundary condition ~(0) =0, the calculation of the
amplitude factor n(r) proceeds inwards starting from
unit normalization at r =~. The analog for o.(r) of the
Born approximation formula (9) is

a(tl-a(-) 1 W- (2m/5 ) J ~U(r )f(t')g(Y )ch

(10)

In[~(r)/~( )] = -W-'{2m/@') U(r')
r

x [f(r') cos ( ') g( ') sin (r')]

x [f(r') sin~(r') + g(r') cos6 (r'}]dr', (8)

where W is the Wronskian of f and g, often normalized
to unity. Equation (6) is a Voiterra equation in ~(r) and
can be readily solved numerically; once this is done,
Eq. (8) yields n(r) by quadrature. Note that n(r) re-
mains well defined, as the ratio of u(r) to the expres-
sion in the brackets of Eq. (4), even in the important
limit of & =0 where each of these quantities vanishes for
l~0.

Essential features of the representation (4) of u(r) are
the following: (a) &(r) represents at each r the phase
shift of the wave function u(r) with respect to f(r) in-
duced by the potential U in the interval 0~&'«, pro-
vided g(r) is chosen so as to oscillate with a phase 90'
behind that of f(r) as r-~; (b) a(r) represents a change
of normalization induced by U. [Hence U modifies the
amplitude ratio, which is the main concern of this pa-
per, by the factor n(r)/o(~). ] (c) different physical
questions can be formulated with correspondingly dif-
ferent choices of the initial potential Uo(r) and of the
"comparison functions" f and g. This flexibility is a
convenient feature of the PAM. The basic literature
(Calogero, 1967) usually starts from a zero potential,
or, more exactly, from the cen. trifugal potential alone,
U (r) = (8'/2m) l(l +1)/r'; the corresponding functions f
and g are the Riccati-Bessel functions j, and n, . At the
same time it stresses the option of alternative poten-
tials. Thus, Dehmer and Fano (1970) combined the cen-
trifugal potential with the unit-charge Coulomb potential
setting Uo(r) = -e'/r + (@'/2m) l(l + 1)/r' as appropriate to
the outer region of an atomic field. The use of Coulomb
wave functions requires some attention. to their normal-
ization in the regions of & =0 and & =~. This subject has
been studied by Seaton (1958) with reference to Quantum
Defect Theory; its relevance to PAM has been. treated
by Dehmer and Fano (1970).

Note the following properties of Eqs. (6) and (8). If U

is non-negative (non-positive), &(r) is a monotonically
increasing (decreasing) function of r. Furthermore, if
we replace U by &U which is so small that & remains
«I, Eq. (6) reduces to the Born approximation formula

Rev. Mod. Phys. , Vol. 48, No. 1, January 1976
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x 2 sin2[y (x') + 6 (x')] dx' . (13)

Equation (12) shows more explicitly than Eq. (6) how the
contribution of U(r') to ~(&) varies, in successive inter-
vals d&', in proportion to the square of the function
y(&') sin[/(&') +&(&')] which is equal to the exact wave
function divided by the amplitude function. Equation (13)
shows how the corresponding contribution to lno. (&) var-
ies, instead, in proportion to the oscillating function
sin2[@(&') + & (~')].

As we!iave seen, the PAM expresses electron-optical
parameters directly in terms of integrals over the po-
tential U(&), and thus displays the separate contributions
to these integrals by various ranges of &. Qn the other
hand, its numerical implementation may not optimize
computational efficiency. For example, in Sec. VIII the
phase shift of a relativistic wave function will be ob-
tained in terms of a &U, representing the difference of
relativistic and nonrelativistic Hamiltonians, and of
nonrelativistic comparison functions. The calculation of
the integrals in Eqs. (6) and (8) is simple in this 'case,
but must be preceded by a separate calculation of the
nonrelativistic wave functions. Straightforward solution
of both the relativistic and nonrelativistic equations
might be faster, while providing sufficient accuracy for
the resulting phase shift difference.

Another problem arises w'hen an atomic wave function.
is expressed in terms of analytically known solutions to
the long-range field outside the atom. In the cases we
study, the electron moves in a Coulomb field at large &

and one is led to choose (f, g) to be solutions of the wave

A further form of Eqs. (6) and (8}serves to illustrate
their properties. This form is obtained by casting the
comparison functions themselves in a phase-amplitude
form, that is, by setting

f(~) =y(~) sin&(~), g(~) =-y(~) cosP(r),
with y=[f'+g']'' and tang =-f/g. Substitution in (6) and
(8) yields

r
n(r) =w '(2m/n') f U(r'h'(r') si n'[y(x'}+5(w'')]dr',

(12)
oQ /

in[ o.(r)/a(~)] = W '(2m/8 ') U(r')y'(~')
r )

inC =1n[o.(0)/o(~)]+ i6(~)

= W-i (2m/k ~) U(&'} [f(&')cos ~ (&') —g(&') sin& (~')]

equation for this Coulomb field with unit effective charge.
This results in (f, g) functions that do not oscillate with-
in the atom and in large U values at small &, for an
average size atom. Consequently, the phase and ampli-
tude functions exhibit very sharp variations at small &,
where they induce nodes in the net wave function by mix-
ing the nonoscillating comparison functions. Such rapid
variations are to be expected whenever solutions of a
potential are synthesized from solutions of a much weak-
er field, since the nodes in the solution of the stronger
field are generated by admixing over a narrow range the
irregular function of the weaker field which is diverging
at small &. Sample phase functions for zero-energy P
waves for Z =16, 33, and 51, illustrate this behavior in
Fig. 2 showing its general characteristic, namely, a
steep step by -n at the center of each p subshell. It is
this step which combines the Coulomb functions with
Z =1 to generate the inner loops (i.e. , halfwaves) of the
atomic wave function. These steps may complicate the
numerical solution of Eq. (6). One normally generates
the functions (f, g) on a, coarse mesh, either by solving
the Coulomb equation numerically or by generating the
functions analytically. Then 6(r) is generated outward
from & =0 using a variable mesh and an adequate number
of points to extend the solution accurately through the
steep steps in Fig. 2. Although we have not performed
timing tests, the forthright solution of the Schrodinger
equation with the potential V =U, —U is clearly more ef-
ficient than employing the PAM equations, if one is in-
terested only in calculating the net phase shift.

The data on the amplitudes and phase shifts shown in
the following sections illustrate the dispersion relation
which presumably holds between 1no. (0) and ~(& =~) and
which causes each of these quantities to peak wherever
the other increases fastest as a function of energy. ' We
say "presumably" because the applicability of this rela-
tion to the specific circumstances of our treatment does
not appear to have been investigated explicitly. The
matter hinges on the analyticity of the expression, de-
rived from Eqs. (6) and (8),

10—

II

33

5—40
Z=16

r(a.u,)

PEG. 2. Phase functions obtained by using Coulomb waves with
Z =1 as comparison functions.

(14)

The outgoing and the ingoing portions of a standing wave func-
tion with unit amplitude at x =0 can be expressed at large x as
an x-dependent factor times a coefficient of the form
[n (~)/n (0)] exp + i4 . Accordingly, the amplitude and the phase
shift constitute the modulus and phase of a complex number.
On the other hand, dispersion relations —analogous to the
Kramers —Kronig relations (Landau and Lifshitz, 1960)—hold
between the real and the imaginary parts of a complex analytic
function of energy, rather than between its modulus and phase.
To convert the modulus and phase of a function into the real
and imaginary parts of another function, one simply replaces
the initial function by its logarithm; in our case, the real part
of the new function is in[a (~)/n (0)] and its imaginary part is
+6 . A dispersion relation will link in[a (~)/0. (0)] and 6 if the
function (14) has the appropriate analytic properties. The am-
plitude function 0. (~) is set to unity in Eq. (14) .
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in[o(0, k )/(3. (~, k )] =-ff 'I' dP(p —k„) '6(~,p)

The function @' is the analog, for our problem, of the
Jost function of scattering theory. The usual Jost func-
tion (see, e.g. , Newton 1960) is an analytic function of
k„= (2mE/k')'2 provided the full potential V(&), 0 ~&~ ~,
meets certain conditions that exclude a long range Cou-'

lomb behavior. In our problem, this behavior is taken
into account by the use of PAM with Coulomb compari-
son functions, whereby the residual potential U(&), con-
fined to &~&„meets the required conditions. For such
a truncated potential Calogero formulates a dispersion
relation (Calogero, 1967, p. 36) equivalent to

d lnA 1 d ink'
cos[2(g +&)],

d& 1 d ln&

2
s in[2(g +&)] . (1 7b)

1 1 d lnA, '

dr dx' k k dr
d ln~
dQ

(18)

According to these equations, both the amplitude A and
the phase & vary with & only to the extent that &, i.e. ,
the reciprocal of the wavelength ~, varies. Specifically,
the WEB approximation holds insofar as the numerical
parameter

+Q in[1+ q',./k'], (15)

is much smaller than unity. The Eqs. (17) can be ex-
pressed in terms of & by taking @ as an independent
variable, yielding

where f—5 2q2/2m]. represents the energies of the finite
set of bound states of the potenti3. 1 U, and where P spe-
cifies principal part integration at P -&, The deriva-
tion is in the context of free-particle comparison func-
tions; Calogero (1967}also states that PAM results hold
broadly irrespective of the nature of comparison func-
tions, but makes no further explicit reference to the
dispersion relation. In practice, n(0, k ) and ~(~, k )
are seldom known over the full range of the energy pa-
rameter k; Eq. (15) and analogous relations serve then
mostly to illustrate the quasisingular behavior of n
(or ~) which results when the main contribution to the in-
tegral in Eq. (15) stems from a narrow range of integra-
tion, P -~ .

d i@A.

dQ 2
= ——cos[2(@+4)],

= —sin[2 (y +a)] .d4

(19a)

(19b)

2mE 2Z„.,; (3') l(l y 1)
k ~ gx' y'2 (20)

To evaluate the parameter &, it is convenient- to ex-
press the potential in terms of an effective atomic num-
ber by writing V(&}=-Z„.f(&) e2/3'. Equation (2) gives
then

2m Z„, (r)e2 l(l +1)

V. THE WKB APPROXIMATION FOR
ATOMIC FIELDS

u(r) =A (3"}k(r) '/'
sin[&ad&(r) +a (3")],

du(r)/d3' =A(3 )k(r)~2 cos[(tf(r) +h(r)];
the usual WKB phase function

(16a)

(16b)

f (rl= f k(x')dw' (16c)

serves here as a comparison phase. This formulation
pertains to the classically accessible region where ~ is
real; the lower limit of integration in Eq. (16c) relates
to the definition of &. Equations (16a) and (16b) trans-
form the Schriinger equation (2) into the pair of first-
order nonlinear equations,

In approaching our problem it seemed desirable to see
how one could compute directly the effect of departures
from the WEB approximation. To the extent that this
approximation holds over most of the atomic field out-
side the & shell, one should be able to demonstrate di-
rectly that the solution of the Schrodinger equation over
this range contributes to a Fermi-Segre-type formula,
Eq. (1), a factor close to unity. A formalism suited to
this purpose is available in the PAM literature, particu-
larly on p. 43 and p. 187 of Babikov (1968). We sum-
marize it as follows.

The solution of the radial Schrodinger equation (2) can
be expressed in terms of an amplitude function A(3') and
a phase function b, (3'} defined implicitly by the pair of
equations

where a is the Bohr radius, and

d (k ') (Z,ff /a& ') (I —d lnZ, f(. /d In3') —I (l + I)/r '
dy [k2 ~2Z, ff /ar —l(l ~I)/x2]3

I 1 —d lnZ, ff,/d ln3' —l (l + I )/p, ff

(p. )'" [2+k'- '/p. „—.I(I+I)/p. ]'" (21)

where k =(2mE/k') ', as above, and p, ff Z ff(&)3'/a
represents & in units of a "local value" of the Bohr ra-
dius, a/Z, ff(3'). In the asymptotic region, outside the
charge distribution of the ion core, Z, ~f becomes unity
yielding,

1 1 —l(l +1)/p
1/2 [2 i(I + I )/p] 3/2 u 1 0'

(22)

Figure 3 shows sample plots of the parameter & for s
and p electrons with zero energy at s =~. In the interior
of the atom, breakdown of the WEB approximation is
represented by large values of & near &=0 for s elec-
trons and near the classical "turning point" due to the
centrifugal potential barrier for P Bnd higher-L elec-
trons. For d —and even more strikingly for f—elec-
trons a second region of breakdown occurs for ~ -0 in
the outer region of the atom where the centrifugal re-
pulsion again tends to dominate over the electrostatic
attraction and thus to generate a second classically for-
bidden region. Our example of zero kinetic energy em-
phasizes the non-WKB circumstances in the atom, and
is pertinent to the data in the following sections. How-
ever, we emphasize again that these high-l effects on
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the edge of the atom are suppressed and the & values at
intermediate values of & are generally reduced as the
electron energy increases.

Figure 4 shows sample values of the quantity Q
=

~
d InZ, &t /d Inr~ which plays a central role in the behav-

ior of e described by Eq. (21). Irregularities of Q re-
flect the shell structure of the charge distribution or,
equivalently, of dZ„,-/d&; these oscillations appear more
pronounced in the outer shells because they are sup-
pressed at small distances where the denominator of the
quantity d inZ„T/d lnr = (dZ„.;/dr)/(Z, t.;«) is large. As ex-
pected, these features vary along the Periodic System,
depending on the electronic configuration of the ion. On
the whole, Q changes considerably in the region 0 to 2.5
a.u. , reaching a maximum of about 1.2 to 1.4.

Figure 3 demonstrates clearly that & is, in fact, never
very small for energies near threshold; its peak in the
middle of the range corresponds to the peak of Q, and
shows the shell structure features due to Q. We con-
clude from the figures that better-than-WKB treatments
are required at such energies. Indeed the Fermi-Segre
and analogous calculations of the 30's did involve numer-
ical integration of the radial wave equations. On the
other hand, the values of & decrease as the electron
energy rises above threshold, through' the influence of
the &'r' term in the denominator of Eq. (21). Numeri-
cal estimation of the value of s given by Eq. (21) is fa-
cilitated by use of the approximate formulas d lnZ, ,;f/d lnr
=-Q ——1 and p, fq -0.4Z+' in the important range 0.25
«~2 a.u, '

Whenever the energy of an escaping electron is suffi-
cien ly high to make & negligible, WEB conditions hold in.he intermediate and outer shells; consequently the hy-
drogenic formulas applicable near the nucleus become
adequate, in accordance with Sec. II. This should be the
case, e.g. , throughout the energy range at which the
standard formulas of P-decay theory hav'e been applied.
The same circumstances obtain for most of the usual
applications of hydrogenic formulas to bremsstrahlung,
Auger effect, etc. We have in mind here primarily the
processes occurring within the & shell; however, these
considerations can be applied to intermediate shell pro-
cesses with the proviso that hydrogenic formulas be
suitably adjusted, e.g. , with screening corrections.
However, caution must be' exercised when extending ap-
plications to the escape of electrons with energy not
much in excess of threshold; examples of near-threshold
effects are given. in the following sections.

VI. Z-DEPENDENCE OF THE AMPLITUDE RATIO
o.,(0)/n, (~)

The first electron —optical parameter which we con-
sider is the Z dependence of the amplitude ratio for
zero-energy waves. Its values for 0~1~2 are presented
in Fig. 5 in terms of a. function &(&, Z) defined below.
For this application, we adopt as comparison functions
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FIG. 3. Values of the &KB parameter e. =-dX/dh at E =0 for
various elements; (a) l =0, (b) l =1.

the eigenfunctions of a Coulomb field with charge ze
which, for K=0, have the large r forms (Bethe and Sal-
peter, 1957)

f —(ar/2z )'~' sin(u,

g- —(ar/2z)' ' costa,

(23a)

(23b)

I5—

I.O—

0.5—

where,

(u = (Srz/a)'~' —(I + —,
'

)s .
This choice of (f, g) reduces o.(~) to unity; indeed, a(r)
remains constant at unity outside the charge distribution.
of the parent ion, which in the HS model, vanishes for

The existence of this convenient approximate formula for p jf,
implying that Z, ff(x) -0.4Z a/x over a broad range, is not
widely known but is verified easily by inspection of Tables of
the Herman —Skillman (1963) or Thomas —Fermi (Gombas,
1949}potentials.

0

FIG. 4. Values of the atomic field funotion Q =
~
d lnZ'off(r)/

d Inr
~

for sample elements at E =0.
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all &o. In. the following we set z =1.
With n(~, Z) thus set to unity, we represent the am-

plitude ratio in the form

[o'i(0, Z)/o'i(, Z)l' = o' '(o, Z) =Z""'~(L,Z).
This expression is analogous to the Fermi-Segre for-
mula (Eq. . l) in that the first factor on its right-hand side
represents the dominant contribution to the Z dependence
due to the Coulomb field near & =0, while the factor
Z(L, Z), plotted in Fig. 5, represents the non-WEB ef-
fect of the remainder of the atomic field. We neglect
relativistic effects in this treatment. Consequently, the
deviations of &(L, Z) from unity indicate how much the
propagation of a zero-energy electron through the atomic
shells departs from the WEB approximation.

Inspection of Fig. 5 shows sharp departures from unity
which follow the structure of the Periodic System, su-
perimposed on a smoother average trend. For E =0 this
average trend is flat and near unity. For ~ =1 and even
more so for L =2, the average &(L, Z) is depressed sig-
nificantly for low Z and then gradually returns toward
unity as Z increases. This average behavior is caused
by the centrifugal potential which inhibits the deep pene-
tration of non-s electrons into the atomic core, and
thus prevents the amplitude ratio from rising as fast as
implied by the factor Z~'" in Eq. (24).~- The relative
importance of this "centrifugal" screening diminishes
as Z increases, so that the average value of ~(L, Z)
tends toward the hydrogenic value Z(L, Z) =1. Note that
for L =2, &(L,Z) remains small for all Z &20 as no orbit
penetrates inside the centrifugal barrier on the edge of
the atom at zero energy. As pointed out in Sec. II,
Z(L, Z) should approach unity as the electron kinetic en-
ergy increases, so that for higher values of E, the
curves in Fig. 5 should approach unity uniformly.

Now we focus on the periodic structure of &(L, Z) and
on its relation to the filling of the subshells in the Peri-
odic Table. An important consideration here is evident
from the expression of 1n[o.(&)/o. (~)] in Eq. (13) in terms
of the oscillating function sin2[P+~]. . Since y U is non-
negative in our problem, even quadrants of P+ & con-
tribute negatively to the integral in Eq. (13), while odd
quadrants contribute positively. A combination of this
representation of o., (0) with knowledge of the nodal
structure of atomic radial wave functions permits an
analysis of the sharp structures in Fig. 5. We can fur-
ther note that in the closed-shell region of the atom the
potential well is deep and the inner loops of the wave
function vary smoothly with Z. Each loop over which
Q+~ increases by n, contributes one positive and one
negative part to the integral in Eq. (13). These contri-
butions cancel somewhat and produce a net smooth in-
crease without any periodic structure in &(L,Z). Hence,

the periodic variations of &(L, Z) stem from the valence
region of the potential. It is in this region of space, out-
side the closed shells but within the region of finite elec-
tron density, that the atomic shell structure manifests
itself. Moreover, z'(&) will be relatively smooth in this
critical region so that consideration of the factor
sin2[P+&] is sufficient for our purposes.

As a specific example, we analyze the variation of
Z(L, Z) over the elements Xe (Z=54) through Hn (Z=86).
Within this range, subshells with E =0, 1, 2, 3, are filling.
The first of these elements is xenon, whose 5P subshell
has just filled and has a wave function with exactly four
loops overlapping the compact (closed-shell) rare gas
potential U. - This atom corresponds to a local minimum
in the function &(1,Z), associated with an even number
of quadrants of the wave function in the interval [0, &0].
Likewise, all. rare gasps represent local minima of
~(O, Z). For Xe, this occurs because five complete L =0
loops lie in the range [0, &,]. Gn the other hand, Xe is
nearer a local maximum for E =2, because incipient con-
traction of the 5d subshell causes the leading quadrant of
the third E =2 loop to overlap mith U, resulting in an un-
canceled positive contribution to the integral in Eq. (13).

Going from Xe to Cs, we note a dramatic change. The
6s subshell becomes occupied causing a sudden expan-
sion of the radius &0 from 3.57 to 4.15a. For l =0, the
enhanced overlap between the more extended U and the
eleventh quadrant of the 6s wave function causes a very
sharp rise of &(O, Z). This particular effect may, how-
ever, be overemphasized by the inaccuracy implicit in
utilizing the HS field of a neutral atom to study the mo-
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3This effect of inner screening is often represented (Casimir,
1962) by replacing Z ~+~ by [(Z —0(Z)j2t+1 in Eq. (24) where the
screening number 0(Z) replaces the factor Z(l, Z). The value
of 0(Z) implied by spin —orbit coupling data for p electrons has
been found to vary from 2 for Z =5 to 9 for Z=90 (Fano and
Martin, 1971). This empirical method of accounting for non-
hydrogenic behavior has unphysical implications which have
been pointed out elsewhere (Fano and Martin, 1971, and
Dehmer, 1973).
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FIG. 5. Reduced values of the amplitude ratio o.'(x =0).j
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tion of a valence electron in the field of the residual ion.
That is, whereas a Cs' ion with an. open-shell configura-
tion, e.g. , 4d'5P'6s, is indeed much larger than Xe';
the Cs ground state 4d' 5P6 is much smaller. There-
fore, when applying Fig. 5 to ground-state ion cores
only, one should rather expect a shift in. this sudden rise
towards the next higher Z value. Analogous qualifica-
tions pertain to the other alkali metals, and, to a lesser
extent, to other neutral atoms containing one electron
outside a closed-shell core. For Ba a, slight decrease of
&(O, Z) is observed in Fig. 5 as the 6s subshell closes.
For p waves, &(1,Z) also rises as an s subshell fills
for reasons similar to the case of s waves. However,
the jump is less abrupt here and it lags behind that of
the s wave, reflecting the delay between the penetration
into the core of the valence loop of the P wave relative to
that of the s wave. For I =2, a peak in &(2, Z) at Cs is
followed by a plummeting at Ba caused by a sudden con-
traction of the 5d subshell inside the centrifugal bar-
rier; this effect occurs systematically one atomic num-
ber before a high-& subshell becomes occupied in the
ground state (see, e.g. , Griffin et al. , 1969).

The large peak in &(2, Z) occurring in the vicinity of
the alkali metals is related to the familiar shape reso-
nance which is observed in many phenomena, e.g. ,
elastic and inelastic electron scattering (Schulz, 1973)
and photoabsorption (Fano and Cooper, 1968). A shape
resonance is a phenomenon associated with the motion
of a single particle with energy close to the edge of a
deep potential weB (Blatt and Weisskopf, 1952). It oc-
curs for an electron-ion or electron-atom potential
field mainly when it exhibits a centrifugal barrier be-
cause otherwise the edge of an atomic field would be too
diffuse. As discussed extensively elsewhere (see, e.g. ,
Fano and Cooper, 1968 and references therein) many
situations exist wherein the potential well inside the bar-
rier can support a narrow band of quasibound states at
some energy near or below the top of the barrier. This
circumstance causes the amplitude ratio o., (0)/o. , (~) to
peak over this band of total energies. The conventional
way of observing this resonance phenomenon is to "tune"
the total energy so that the net well inside barrier is
sufficiently attractive to support a quasibound state. An
alternative way is to tune the strength of the inner well
by altering the nuclear charge, as displayed in Fig. 5.
The sharp pe aks in &(2,Z ), there fore, correspond to
eigen-atomic numbers at which the inner well supports
a quasibound d state at zero energy.

Between Z = 57 and Z = 71, the 4f subshell is filling.
The I =0, 1 curves in Fig. 5 are very flat in this range,
except for minor fluctuations at the particular elements
with Z = 57, 64, and 71, which differ from the others by
having one electron shifted to a 5d orbit, a physical ef-
fect (Cotton and Wilkinson, 1967) reflected in the HS
model. This flat behavior is to be expected since the +
shell has a radius (&-I a..u. ) smaller than the 6s and 6P
valence subshells. These subshells are thus shielded
from the progressive increase in nuclear charge by the
progressive addition of 4f electrons localized deeper
within the atom. Only the ~ = 2 curve varies in this range
of Z; its rise accompanies the shrinking of the inner
4d subshell which i.s only partially screened from the in-
crease in nuc. lear charge.

At Z = 72, the 5d subshell starts filling up extensively,
causing the value of &(2, Z) to decrease suddenly as the
5d wave function attains full overlap with &U with re-
sulting cancellation between its positive and negative
contributions to the integral of Eq. (13). Along this se-
quence, the 6P loop begins to move into the interval
[0,&,] prior to its occupation at Z =81. This causes the
fifth quadrant of the 6P wave function to yield an in-
creasingly positive contribution to the integral in Eq.
(13). On the other hand, the I =0 curve is rather flat be-
tween Z =72 and 77, because the 6s subshell is already
full and the onset of 7s filling is not yet imminent. At
Z =78, 79, both &(O, Z) and ~(I, Z) jump by -10/o as the
HS model field reflects the transfer of a 6s electron to
the 5d subshell, a well-known discontinuity (Cotton and
Wilkinson, '1967).

From Z =81 to 86, the 6P subshell fills, completing
the cycle at radon. Along this sequence, &(I,Z) steadily
decreases reflecting the growing overlap between the
even quadrant of the outer loop of the 6P wave function
and U. On the other hand, &(O,IZ) decreases only slight-
ly in this range, while &(2, Z) rises owing to an increase
in penetration of the leading quadrant of the 6d loop in
preparation for its sudden contraction at Z = 88.

The characteristic Z dependence of n, (0)/ o(~) em-
bodied in Fig. 5 should manifest itself in the Z depen-
dence of any atomic parameter which depends on the be-
havior of radial wave functions at small &. We discuss
two main examples here —spin-orbit coupling and hy-
perfine interaction, and indicate several other examples.
In these examples we cast the Z dependence of each pa-
rameter as a product of two factors so that the major Z
dependence is contained in one factor which depends
solely on o., (0)/o. , (~) whereas the other factor is nearly
Z independent.

P, T dX, (25)

where &, is a zero-energy spin independent P wave eval-
uated for the atomic field V and normalized per unit
energy range. Equation (25) assumes b, p, «p. and is
analogous to the Born. approximation form given in Eq.
(9), with W =1, &U=& ~(dV/d&), ~ and f =P, . For high

'Note that

1 dV Zqff d lnZeff jeff
r &' r3 dim" r3

where Q, the parameter defined in Sec. V, is «1 through most
of the range contributing to the integral in Eq. (25).

A. Spin-orbit coupling

In a previous study, Dehmer (1973) applied this ap-
proach to the Z dependence of spin-orbit coupling for
zero-energy P waves. In that study, the spin-orbit cou-
pling strength was represented by &p, , the difference in
quantum defect between the fine structure states. This
parameter may be described as the spin-orbit energy
of states normalized per unit energy range; accordingly,
it is dimensionless, varies smoothly through the ioniza-
tion limit, and characterizes the strength of spin-orbit
coupling at F- =0 conveniently. The value of &p is given
by the perturbation theory expression
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„„~(l )
[ io( .r.)/o'i(0)1' Hl Z --,

l ~

cff, l
(30)

where o. , (r „) is the amplitude function at the peak of
the spin-orbit integrand (the mean r value of the inte-
grand would also suffice for our purposes), C, is the
area under the "universal" integrand, Z„-;, is the effec-
tive charge at r ... and H, is Casimir's (1962) rela, -
tivistic correction. The extreme right-hand side of Eq.
(30) expresses the result in terms of the factor &(f, Z)
plotted in Fig. 5, and of the residual factors [o.', (r „)/

(o)]0' and H, . For I =1, the first of these factors is
very nearly unity while the r elativistic correction H, is
significant, ranging up to -&.25. For higher ~, II, will be
negligible, but the factor [o., (r „)/o., (0)j ' may have a
more significant, though smooth, effect on Dp, (Z)
caused by changes in screening experienced in the re-
gion of & .„.Variations of the scaled integral C, can
also be expected to exhibit smooth but nonnegligible
variations with atomic number, probably amounting to
-10 to 20Vp for the ranges indicated above. Estimations

~We thank Dr. M. Inokuti for pointing out to us why this par-
ticular average of x, unlike other weighted averages, is inde-
pendent of the energy for any non-s eigenstate in the pure
hydrogenic field. This property arises because the centrifugal
force m @' l (l +1)y' and the CoUlomb force —Zg y' are both
radial, and their algebraic sum must be equal to the time
derivative of the radial component p„=—ibad (d/dh)r of the mo-
mentum. Because the average of any time derivative should
vanish (the hypervirial theorem), we have (m 5 l (l +1)x ~)
= (Ze2& ), or equivalently, (x )/(y ~) =Z ~L (l +1)a, in
agreement with results of explicit calculations of (r 2) and
(x ~) [see Bethe and Salpeter, 1957, Eq. (3.25) and (3.26),
p. 17].

k=2 and 3 may be analyzed proceeding along the fol-
lowing lines. To begin with, one should extend to higher
E the characterization of the radial location of the inte-
grand in Eq. (25}. Since the spin —orbit interaction is
confined to the small & region, which is dominated by
the Coulomb field of the nucleus, we utilize here hydro-
genic formulas. In this approximation the mean radius
of the integrand in Eq. (25) can be described as the aver-
age of & weighted by the electron density multiplied by
r ' and is accordingly represented by (r ')/(r '). This
mean radius is energy independent, 6 peaks one shell
nearer the nucleus than the shell containing the first ra-
dial antinode of angular momentum &, and is skewed to
large &. Therefore, the spin-orbit intera. ction is local-
ized well within the radius of the first antinode of the
radial wave function of a given &, and its profile resem-
bles the one shown in Fig. 7. Consequently, the screen-
ing of the spin-orbit interaction will saturate near the
atomic number at which the first subshell of a given I

becomes fully occupied, that is, Z =30 for ~ =2 and
Z =71 for ~ =3. As a result, the profile of the integrand
in Eq. (25) becomes approximately Z-independent when
plotted as a function of Z, ff& and divided by the square of
the amplitude function at & „. This suggests a general
form for Dg, which is analogous to Eq. (27) but applies
to ll & 4,

,,Z) C
[o&(r ..}/o'i( )l'

H=—C,
Zcff, /

of the slowly varying factors which depend on the field
at small r, namely, [o, (r,„„)/cL,(0)j2 and C, , may be ob-
tained conveniently using an analytic procedure for pro-
ducing small-& radial wave function by McEnnan and
Pratt (1975). These factors are nonnegligible and must
be evaluated numerically for more quantitative treat-
ments. In addition, since &p. , is very small for &&1, the
effect of perturbations neglected in our treatment may
become so important as to obscure the Z dependence
predicted by Eq. (30). Nevertheless, this representation
provides a useful frame of reference in which the cen-
tral role of the parameter o., (0) is exhibited explicitly.

&p = (8~/3f) y ~p, ,(2f +1)@',(0) . (32)

For 42(0), the I. =0 data in Fig. 5 are fitted by the for-
mula

4",(0) =0.88(Z'' ~'/2@a jH)

which is to be compared with the first factor of Eq. (1),
namely,

4', (0) = Z/2va'S„. (34)

Therefore, the gross behavior of the model calculation
agrees very well with the Fermi —Segre formula. How-
ever, the large periodic fluctuations from the mean ob-
served in Fig. 5 should be observable and should extend
our understanding beyond the level of the Fermi —Segre
model. Although a large amount of data exist (Lindgren
and Bosen, 1974), the comparison between the funda-
mental parameters discussed here and experiment is
again stymied by the traditional procedure of reporting
spectroscopic data for individual levels. Their reduc-
tion in terms of quantum defects and differences of quan-
tum defects would make the properties of different levels
comparable at a glance and would provide an overview of
the behavior of whole Bydberg series (Fano, 1975a). A
re-examination of the data of Lindgren and Bosen (1974)
on this basis would be most desirable, but such a task
exceeds the scope of the present paper.

For l + 0 the strength of hyperfine interaction is pro-
portional to the magnetic field generated by the electron
at the nucleus and hence to (r '). Therefore the pre-
ceding discussion of fine structure also applies here.
However it must be kept in mind that this interaction is
easily overshadowed by perturbative interaction. with s
levels which would obscure the pattern's predicted by

B. Hyperfine interaction and other inner-shell

phenomena

In the most important and yet elementary case,
=2, the hyperfine interaction leads to the appearance of
a doublet, I' = X + 2, with a splitting given by

El, ,~, —F., ~, = (8m/3l) PNP, (2I +l, )4'„(0)
1,

where I is the nuclear spin quantum number, Ij ~ and p, ,
are the nuclear and electron magnetic moments, respec-
tively, and +2(0} is the density at r =0 of the electron in

a discrete orbit. Since this doublet splitting vanishes at
the ionization threshold, we transform it once again into
a difference of quantum defects for the two levels. This
amounts to a simple replacement of +2 by its energy-
normalized counterpart 4', =+'„(dn/dE)s=s which yields

Rev. Mod. Phys. , Vol. 48, No. t, January 1976
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Fig. 5.
0th henomena which can be interpreted using theer p eno
t of Fi'. 5 include j3 decay, inner-shell ~especia y

K-shell) photoionization, internal conversion, an
decay, as in ica e ind* t d Sec I. Whereas we have stresse

a er the Z dependence of Z(l, Z) and related pa-
rameters, their energy dependence can also e rea e
from the same point of view. For energy ranges small
compared with the strength of the potential in the region
of interaction, the energy dependence of any matrix e e-

-ments is o a ytotall confined to the variation in the amp»-
tudes of energy-dependent wave functions. Consider, as

&-she ll photoioniz ation in Kr. This process
consists of the ejection of an electron from the s e

ll d b the escape of the photoelectron to in ini y.
The-first of these steps occurs at a mean radius o ~/
=a/36, where the potential is -Z' a..u. =30 keV. Under
th d't' s the shape and nodal structure of the
final state wave function in th'e interaction region will be
independent of variations of final-state energy over a
range of, say, 0 ol%%u f 30 keV =300 eV. Over this range
the energy eh dependence of the photoionization cross sec-
t' 'll be due solely to variations of o!,(, ), e

ve at & =0.square of the amplitude of the outgoing P wave a
Th "density of states, " or "enhancement factor" as it

electron from the atomic core and therefore depends on
th 1 ctron-optical properties of the weaker potentialeee
field outsi e ede the & shell where energy variations of
eV are signi ignificant. Consequently, the energy dependence
of the d' 1 matrix element in situations such as is

b I t d
' the factor o.'(0, E) and analyzed using

the PAM representation.

defect and is indicated by p, as in Sec. VI, yor b (J. The
effect of perturbation potentials &U, such as the spin-
orbit interaction discussed in Sec. is then conve-
niently represented by the resulting phase shift pertur-
bation &&, which yields

2I
( —&/ )' (36)

AE 2 E„ (36')

l6

l5

In order to focus on the Z dependence of &„we have
/

evaluated this parameter at the standard energy E =0 for
all atoms ig.(F' 8) This type of plot was introduced by
Manson as a(1969) as a part of his study of the phase shi
as a function of both atomic number and energy. qua-
tion 12 shows a, o(12) h that for U-O, &(&) is a monotonica y
increasing func ion o, int f x 'n contrast with cP(&) which de-
pends on e in egra ith t t on over an oscillating function in
Eq. (13). As Z increases, U increases and additional
loops of the function represented yb sin +~) move into
the core region & This increase accounts for the

11 upward variation of ~, (&0) with increasing Z ex-
hibited in Fig. 8. In addition, the variations in p
this plot can be correlated with the noda 1 structure of the
radial wave functions. Specifically, one can argue from

Vll. Z-DEPENDENCE OF 6, AND d5,/dE ATE=0
The second electron-optical property we drscuss is

&, (E,Z), the phase shift of an electron in the iethe field of a
singly charged posi ive ion.d 't on This parameter determines
the cross sec ion or e af 1 stic scattering of electrons from
the positive ions, which are found '

pin lasmas in the
upper atmosphere, and in interstellar space. It is also
relevant to the angular distribution of electrons ejected

photoionization. Specifically, when
an electron can emerge with alternative orbital momen a
(l, I" 't gular distribution depends on the interfer-)e i s an
ence of the corresponding spherical harmonics &,

of theirand hence on the phase differences, , —,, o
coefficients. (An additional contribution to these phase
differences arises from the Coulommb field and is included
in the comparison functions. ~ The phhase shift data of
Manson (1969) have been utilized extensively for this
purpose jManson,( 1972). Closely related to this is the
a plication of phase shifts to angular distributions of
secondary electrons produced by charged particle im-
pact ionization (Kim, 1972 and Madison, 1973). For

n threshold, the1 ctron energ ie s be low the ion izat ioe ec ron
phase s i spayh ft la the r ole of quantum defects in det

s throu h themining the energy levels of Bydberg series, throug e
basic formula

l4

l2

o~ lo

6Q

Ch

4P
V)

~ 6O
CL

0 I I

IO 20 50 40 50 60 70 80 90 l00

a
2

(35)E„=I„/(n —6/m)', I„=13.60 e V.

In this context, the ratio &/~ is usually called a quantum

atomic number Z

FIG. 8. Zero-energy p ase s zh hift as a function of atomic number
for l =0, 1,2, 3.

Rev. Mod. Phys. , Vol. 48, No. 't, January 1976



(12) tha, t 5, (~,) is t tio
ehRnges QZ when

y respect to smal]
w en a node occurs at & w

currence of an *
,, whereas the oc-

n antinode at & is accom
changes ~&, (& ) over

accompanied by large
over an equal range &Z. T

c ear y for high &, where t g o
is separated from

b t t lbn ia arrier. This eoi
fth

occurs in the vicinit o
o e nodal structure since the barrier

t ion. of an antinode th h
icini y o &, and prevents as a gradual transi-

terval. Indeed a node o
rough this classiically forbidden in-

a no e occurs near & for l~ 2
idi t md~( i gy

, except for extremel y p p ( — )
i ional loop of the wave f

rapidly into the well '
ave unction shifts

we inside the barrier.
also present in the l t

rier. This behavior is
e p o s for lower E b

only a modulation
ut it causes there

ion on a steeply risin e
od d t od

sence of a barrier. Th d
no es pass &, more smoothl y in the ab-

Er. e der ivative d&

no R structure in the r
clearly as w'll bi e seen below.

e range «& more0

Thi's correlation b
ion of radial node

/ Z and the loca-
o es near & su est() gg pt

o i i y of the "valence loo " ofop

shell since the rad"
on e loop which overla sps the valence
ra ii o the loops within

smoothly toward thr e nucleus as Z in
i in the core move

of '(0) , periodic variations of ~o, (&,) can be at-
o e valen. ce loop wh

cess of enter ing int th
p ich is in the pro-

in o e interval «& .
def ine mob ility as the eh
ing a small increment . o e

s e change in phase sh

E (12) l b
men in Z. Gwing to the
mo ility corresponds t

of an antinode at & h
s o the oeeurrence

to a node Rt &0.
obility corresponds

This concept is illustrated both b th
't lf db th tof tha o he next param. eter

y, e derivative with res e
h h ft, d5, ( )/dE

arne er is evaluated at

' ~ ~

on i s dependence on atomic
in Fig. 9. Two obs b

omie number shown
servable dynamical rp op

e ay (Wigner, 1955),

exper ienced b an.

(37)

y an. electron with orbital
turn I in elastic eollisieo isions with a positive
cisely this is the shift

e ion; more pre-
ys in time dela wit

ogenic field. The seconde seeon application oc-
e eet theor why, /

rma ization of disc retc e i e
e

screte eigenfunction. s to a

continuum wave funct
er unit energy ran e Rng nalogous to that of

e unc ions as follows. T
Bydberg state wav f

The square of each
ve unction normalize

manner can be show t
a ized in the standard

own o inc lude a factor

dZ„I I~~' 1
dn —„n Edn 2( E)+' n dE (38)

All transition m ' omatrix elements to B db
on n through this f t

o y erg states depend
i ac or, and so do the

of perturbation ene
e matrix elements

energies. Bemoval of t
wRve func tions Rnd

o his factor makes
n matrix elements ddirectly comparable

to one another and to th
continuous spectrum.

o e correspondin'
g quantities of the

The mobilit of' '
y valence shells near the

atom, i.e. , at &-. & aff
ar e edge of the

d&/dE, since differ
fects not onl y /&Z, but also

erential increments of
increase the effective de

o e~ther Z or E

case of energy incr t
ec ive depth of the atomic fiic ield. In the
increments one should

that the phase shifts &

, of course, recalls, due to the potent
erally be added to th

p ntial U must gen-
o e Coulomb phase

arison unctions; this is not the-".'".-.q 3
consideration does t

q. or for Eq, 38 . However this
oes not complicate our dir iscussion sig-

e erivative of the CCoulo b phRs i

For these re asons local maxima in the l

caused b the
a ig mobilit of' '

y of the valence loop
y e presence of Rn antin

mobility eorresp d'
onversely, a local minimum

pon ing to the resp presence of a node at &

ec' ic example, consider t
Q

~ec', er he l =2 waves fo 20
s pointed out in Sec. VI thee valence loop of a

7.0—
6.0

40

3.0

2.0

1.0

—1.0—
—2.0—
—3.0—

I

—0.5

—1.0

—1.5

—2.0

pI I

—0.5

—1.0

—1.5

—2.0—
2 10 20 30 40 0 70 80 90 100

F . a
Z

IG. 9. Time delaay parameters de&/dE at E =0

"»o, TheodosioU, and D he mer: Electron-o tic- p al properties of atomic fields

Revev. Mod. Phys. , Vol. 48 N o. 1, January 1976



Fano, Theodosiou, and Dehmer: Electron-optical properties of atomic fields

d wave function has already shrunk into the inner well of
the atomic potential one atomic number before a new d
subshell becomes occupied in the ground state. This is
the case for-the Ca atom, at which the mobility for L =2
has reached a minimum. This situation persists along
the whole sequence of transition elements. At Z =31
(Ga), the next d orbit begins penetrating the core as the
atomic field nears the condition where it can support an
additional I =2 loop in the inner well. The increasing
slope corresponds to the penetration of the leading edge
of the second loop of the E =2 wave function into the
atomic core. At Z = 37 (Rb), the mobility of the d wave
has a local maximum. This denotes the closest approach
of the second d antinode to &0 for integer Z. Owing to
the potential barrier, however, the passage of an anti-
node into the atomic core is extremely rapid, and oc-
curs, suddenly, at noninteger Z. In any case, between
Hb and Sr, the second k =2 loop moves from outside or
near to r to inside r„stabilizing &2(ro) once again, and
restarting the cycle.

For & =0, the highest mobility occurs at the alkali
metals, where the valence s orbital has just become oc-
cupied. (The discussion of artifacts of the model pre-
sented in Secs. III and VI becomes again relevant here. )
One Z later, this subshell is filled and has become rela-
tively insensitive to small changes in the potential. At
this point, attention must be transferred to the next loop
in the wave function, which begins to move steadily
toward &=&, as the higher ~ subshells are filling. The
mobility of this loop increases with S until it, too, be-
comes fully occupied, and thus stabilized against small
perturbations. Many individual points deviate from this
trend. These points correspond to atoms in which an
electron has been transferred from the valence subshell
to fill or to half-fill a d or f subshell.

For P waves, the same pattern prevails, only it is
slightly shifted in Z. For this case, the d&/dE curve
starts to decrease when the P subshell begins to fill.
This decrease continues, reaching a low plateau when
the shell is half filled. After the rare gases, the values
begin an upward trend as the deepening atomic well be-
gins to attract the next loop of the P wave function.

Vill. RESPONSE OF O'., AND 5, TO PERTURBATIONS
LOCALIZED NEAR THE NUCLEUS

This section tests the changes of the electron-optical
parameters induced by perturbations of the atomic field
which are concentrated near the nucleus. That is, we
shall investigate how the effects of a localized perturba-
tion combine with those of the rest of the atomic field in
modifying the amplitude and phase of an electron's wave
function. As in previous sections we will concentrate on
the variations of these properties along the Periodic
System.

Specifically me. consider the effects of two perturba-
tions, namely: (a) a highly localized model perturbation
consisting of a narrow square well (pseudo & function)
placed immediately outside the nucleus so as not to over-
lap it, and (b) a more physical perturbation, the kinetic
energy part of the relativistic correction to the Schro-
dinger equation.

To distinguish the effect of these perturbations from

the background of the non-Coulomb part of the atomic
field we incorporate this background in our comparison
functions. These functions will then be solutions of the
nonrelativistic Schrodinger equation, with a HS model
potential, for an electron of zero energy. As in previous
sections one of the comparison functions will be the
regular solution and the other will be the irregular solu-
tion which has a 90' phase lag with respect to the regu-
lar one at large &. Therefore these comparison functions
behave at small & as

(39)

and at large r as (Burgess, 1963)

E, = g '(r) sin[4(r) +&,],
G, = -& '(r) cos[P(r) + ~, ] .

(40a)

The f and P functions are identified by substitution in the
Schrodinger equation which g ive s

g2 P2 + gl/2 (d2/dr 2)g-a/2 (41)

y(r) = j (r') dr', (42)

ih (2Zr)&+i

2Z (2l + 1)!
2Zr (2Zr)2

(2l+2) 2!(2l+2)(2l+3)

for r-0. (43)

The integration is extended outwards to a point beyond
r, at which a, standard procedure (Burgess, 1963) fits
the numerical values of &, to the analytic form

E =Ay z2(r) sin[&(r)+&]. (44)

The fitting yields the values of A. and &; normalization is
achieved by replacing E with E/A. This procedure is
commonly used in single-channel photoionization calcu-
lations to normalize the final state continuum wave func-
tion and determine its phase shift [cf. Cooper (1962)
and Manson and Cooper (1986)]. The value of A has the
same order of magnitude throughout the Periodic Sys-
tem because 1/A' is essentially the same as the coeffi-
cient &(1,Z) discussed in Sec. VI.

The irregular function G& is then obtained by inte-
grating Eq. (2) in&yards from large r, using Eq. (40b) as

~The relationship of atomic to Coulomb wave functions near
the origin has been discussed by Pratt et al . O973).

where the integration constant is fixed by the boundary
condition Eq. (23) (Smith, 1971). The phase P(r) includes
the Coulomb contribution. whereas &, is due to the non-
Coulomb part of the field; the perturbation effect on the
phase shift will be called A&, .

In the calculations reported here, the regular solution
E, was obtained by integrating Eq. (2) by the Numerov
method, taking V equal to the HS model potential and
starting from the small & behavior of the regular Cou-
lomb function with atomic number Z, '
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the starting behavior. The expressions (40) of E, and G,
are normalized to make their Wronskian W equal to
unity; the constancy of 8' was checked at each value of

Through this condition, Eq. (39) is renormalized to
F, ~r'"/A G ~r 'A.

-t8

I

I

i
I

I

A. Delta-function perturbation

for &&R =1.5 &10 a.u.

&U = Vo =5x10' a.u. for &o + +o+d;d =1x10 3 a u

for r&A, +d.

(46)

For the purpose of probing the response of the phase
and amplitude functions to highly localized perturbations
of the atomic field, we chose as a standard model per-
turbation a square well defined by

.Q
e

GQ

0—
«10

28—

2Q—

Notice that the parameters are sochosenthat (2mVO/k2)~~'
Y.d =1; this means that in the absence of other fields the
wave function would acquire a phase of 1 radian. when
traversing the well. In this sense the perturbation may
be said to be of unit strength. The choices of Ro and d
ensure that the well surrounds the nucleus while re-
maining much smaller than the &-shell radius for all
atoms. The parameters &~& and n& are determined
completely by integrations extending only over the thick-
ness ~f the well as can be seen from Eqs. (6) and (8).

Figure 10 presents the values of &~, (r~R, +d) calcu-
lated for our standard perturbation. More precisely, we
have plotted &&,/Z" ' to separate out the major effect
of the unscreened Coulomb field near the nucleus upon
the local amplitude of the comparison function &. This
arrangement is suggested by the Born approximation
formula (9), whose application to our problem yields,

b& (r~R +d)=W '(2mV/k') [F,(r)]'dr. (46)
Ro

To the extent that this approximation holds, &&, should
be approximately proportional to [E,(0)]' and hence, ac-
cording to Eqs. (43) and (24), to Z" ' and to the residual
factor Z(l, Z) plotted in Fig. 6. A comparison of Figs.
10 and 5 verifies these expectations for l =1 an.d 2. For
l =0, however, considerable departures are observed
indicating that Eq. (46) does not hold here, in agreement
with the fact that &&o is indeed of order unity for large
Z. The magnitude of &~& for &&0 is extremely smaIl,
owin. g to the centrifugal repulsion that makes &, vanish-
ingly small near the nucleus.

Figure 11 shows the results for the amplitude ratio
o., (0)/o. , (~) = o.(R,)/n(R, +d). Its departures from unity
are non-negligible even for l& 0, in accordance with the
Born approximation, formula. (16), which in our case is

o. 0 Ro—= 1 —W '(2mV, /k') F, (r)G, (r)dr . (47)() RO

This expression depends on the product E, (r)G, (r) which
remains of the order unity at small & where E& is very
small. Indeed it follows from the renormalized small &

expressions, E, ~r' /A„G, o-r 'A„ that the Born ap-
proximation formula (47) is independent of the normal-
ization coefficient which alone depends on the outer shel)

~I

8 —~ tW

7—

0 0 20 X) 40 50 60 70 80 90 lOO

FIG. 10. Reduced values of the phase shifts induced by a
square-well perturbation near the nucleus.
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FIG. 11. Amplitude function o. (r =0) induced by a square well
perturbation near the nucleus, G. (r =~) =1.

structure of the atoms. In particular the expression (47)
reduces to (2l+1)+ (terms linear in Z) as Ro-0 and d-0.
Conversely, the periodic variations due the shell struc-
ture reappear for & =0 and medium to large Z where the
Born approximation fails.
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varies smoothly as far as the smallest value of & in our
mesh, namely, &, =1.5&&10 4 a.u. Accordingly Fig. 14
shows the variation of o.', (&„Z)/o. , (™,Z) or rather the
ratio [o., (&,)/o.', (~) —I]/Z'. This latter ratio is chosen
because in the Born approximation the amplitude ratio
departs from unity proportionally to &U, that is, to Z'.
On this scale appreciable variations appear along the
Periodic System comparatively large for ~ = 2 where the
field in the valence shells plays a larger role. These
variations are an amplified manifestation. of the contri-
bution of the relativistic correction in the region of the
outer shells. Here again the results agree on the whole
with the Born approximation prediction except for the
rapid drop of the curve for l =0 and Z &80 which reflects
a lag of the relativistic effect relative to the Z' rise of
the hydrogenic and Born approximations.

IX. CONCLUDING REMARKS
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Both the introductory discussion in Sec. II and the dis-
play and analysis of numerical data in the body of this
paper have centered on departures from hydrogenic for-
mulas, departures attributed to inadequacy of a WKB
approximation. An index of these inadequacies is af-
forded by the numerical parameter e, Eq. (18), whose
magnitude has been discussed and illustrated by sample
data in Sec. V. It was shown there that & is far from
small for electron energies near the ionization thresh-
old. The resulting departures from WKB behavior in
this energy range have been illustrated in Secs. VI-VIII.

Particularly conspicuous, in this energy range, are
the effects of the centrifugal barriers which often hinder
the passage of d or f electrons through the outer re-
gions of atoms. The diversity of experimental mani-
festations of these barriers, e.g. , in optical and x-ray
spectra, and their critical dependence on the chemical
environment of each atom have been stressed in a re-
cent note (Pano, 1975b). Barrier effects of centrifugal
or other origin are also prominent in molecular and
condensed state phenomena (Dehmer, 1974; Dehmer and
Dill, 1975).

On the other hand, the WKB appr oximation become s
increasingly appropriate as an electron's energy in-
creases above the ionization threshold. The steady de-
crease of the parameter & with increasing energy re-
sults from the increase of the coefficient ~' in the de-
nominator of Eq. (21). The rate of convergence of e to
zero over various ranges of the radial distance, for dif-
ferent orbital momenta and for atoms throughout the
Periodic System, remains to be studied by extended cal-
culations. However most applications of WKB-based
formulas to P-decay, x-ray and Auger phenomena have
probably been carried out at energies sufficiently high
for & to be negligible.

More specifically, the probability of P-ray emission
may be evaluated as proportional to the square of a
hydrogenic wave function at the nucleus, except for very
low energies of escape at which the correction factor
Z(l, Z) of Sec. VI departs appreciably from unity.
Bre~sstrahlung and pair production processes —for
which theory summaries are given by Koch and Motz
(1959) and Motz et al. (1969), respectively —are often
localized within a distance of the order of the brompton

FIG. 14. Reduced values of the amplitude function m {x=-Ro)
induced by the relativistic correction AU, evaluated at

A 0
——1.5 x 10 4 a.u. , 0. tr = ~}= 1.

wavelength &, around the nucleus; this occurs typically
for pair production at &10 MeV. In this event hydrogenic
theory applies and one needs to introduce the amplitude
factor &(l, Z), to correct departures from WKB behavior
in the outer atom, only for the escape of electrons near
threshold. The importance of this effect for bremsstrah-
lung emission near the spectral edge has been noted
above and has been illustrated by recent calculations for
La using a model potential (Lee and Pratt, 1975). The
localization of both bremsstrahlung and pair production
spreads progressively through the whole atom at ex-
treme. relativistic energies, and for lower energy
bremsstrahlung at all incident energies. Theory has
taken this effect into account in the past by complement-
ing the hydrogenic formulas by consideration of a
screened potential. More recent calculations, however,
have used the HS model potential instead of a hydrogenic
field (Tseng and Pratt, 1971), thus including from the
outset the non-WKB effects discussed in Sec. VI.

Ejection of inner-shell electrons may also result from
internal conversion, photoionization or Auger effect. If
a hydrogenic approximation is adequate in the region
where the process occurs, the escape of the electron
through the outer shells will not modify its results, ex-
cept for energies near threshold at which the %KB ap-
proximation is inadequate. At such low energies, a cor-
rection is applied by multiplying the result by the coef-
ficient &(I,Z) of Sec. VI, evaluated for the appropriate
escape energy and & value. To improve upon the hydro-
genic approximation in the relevant inner-shell region,
one might utilize for the final state a wave function cal-
culated with a realistic potential and normalized to coin-
cide with a hydrogenic wave function near the nucleus.
The approach of McEnnan et al. (1975) is particular-
ly suited to this task. The calculation of this wave func-
tion need not be extended to the outer shells; its nor-
malization may then be adjusted by multiplication of the
result by Z(l, Z) as appropriate to take into account the
escape through the outer shells.

The analysis of the fine and hyperfine interactions af-
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&~„=+(-,'+[1/(2l+1}]]v&p. „ for j =l+-,' (50)

where &p, is the parameter which was discussed in Sec.
VI but should be evaluated, of course, for the appropri-
ate value of & &0, and (d) a relativistic correction which
might be taken as the difference of relativistic and non-
relativistic hydrogenic phase shifts, &&,„, from Eq.
(49}. For high energies and low /, the sum of the con-
tributions (a) and (b) is given directly by the hydrogenic
value of the phase shift for the unscreened nuclear
charge Z. Since &&» «1 except for the highest values of
Z, its direct calculation using the coupling potential
& 'dV/d& or by solving the Dirac equation should be nec-
essary only for precision purposes. It should be re-
called, however, in connection with this and all other
applications, that all the considerations presented in this
paper are qualified by the limitation of the model poten-
tials, discussed in Sec. III, and particularly by the pos-
sible occurrence of inelastic processes in the traversal
of an atomic field.

Relativistic effects have been explored in Sec. VDI of
this paper through the evaluation of the effect of the
kinetic energy correction (E —V)'/2mc' upon the phase
and amplitude function. s. As noted there, this evaluation
has only semi-quantitative value when applied to a single
electron, because the effect under consideration modi-
fies the whole self-consistent field of the atom. This
qualification becomes unimportant for the motion of
high-energy electrons, for which the WEB approxima-
tion holds outside the & shell. Here, then, hydrogenic
theory applies and relativistic corrections can easily be
obtained by comparing the solutions of the Dirac and
Schrodinger equations. Proper handling of these cor-
rections is indeed important for applications to P-ray
emission and to the hyperfine structure of s and Pg2
levels, both of which depend on the value of the wave
function at the edge of the nucleus. (The exact Dirac
wave function would diverge for a point nucleus. ) For
the emission of P rays with l =0, hydrogenic theory
yields a relativistic correction which rises to a factor

feeting optical spectra should afford a major field of
application for the points of view and results presented
in this paper. However, as discussed in Sec. VI, this
application has been frustrated by several circum-
stances. Firstly the available observational data, even
though extensive, appear too fragmentary for dependable,
extensive analysis of their systematic trends. Secondly,
the theoretical study of these interactions has been gen-
erally conducted, thus far, on a level-by-level basis,
rather by the simultaneous treatment of entire spectra
which is made possible by application of quantum defect
analysis (Seaton, 1966; Fano, 1975a). Finally, both the
fine and hyperfine interaction. s decrease rapidly with in-
creasing orbital momentum; therefore their manifesta-
tions are often distorted by perturbative coupling to lower
& levels, i.e. , for ~ values &1 in the case of fine struc-
tures and E&0 for hyperfine structures.

For elastic scattering of electrons by ions, the phase
shifts can be represented as the sum of (a) the Coulomb
contribution argI'(l +1 +is/0 ), where z is the ionic
charge, (b) the contribution &, due to the stronger field
of the ionic core, which has been discussed in Sec. ~I,
(c}the contribution of spin —orbit coupling,

of 10 at large Z (Fano, 1952). For the hyperfine inter-
action the matter is more complicated because non-WEB
conditions preva .near the ionization threshold through-
out most of the atomic field. In. this case it might be ap-
propriate to take into account the singular behavior of
the Dirae wave functions through the ratio of the Dirac-
hydrogenic formula [Eq. (14.43) of Bethe and Salpeter
(1957)] to the corresponding Schr Minger-hydrogenic
formula; the Schrodinger ~+(0)~' could be evaluated
separately, at the energy of interest, using a potential
field based on a self-consistent relativistic calculation
(Desclaux and Kim, 1975).
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