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We present a short review of the current status of electronic structure calculations for ordered solid
surfaces. For the s—p bonded metal surfaces, emphasis is centered entirely on self-consistent field (SCF)
calculations employing a local density approximation for exchange and correlation. For semiconductor
surfaces both SCF and empirical tight-binding methods are discussed, while for transition metal surfaces,
where no SCF calculations have been carried out, a number of different schemes for solving Schrodinger's
equation at a surface are reviewed that use plausible but not self-consistent forms for the surface potential.
Finally, calculations for chemisorbed systems are briefly covered, with emphasis on ordered monolayers on
semiconductor and transition metal surfaces.
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*This paper is adapted from one to appear in CRC Critical Re-
views in Solid State Physics as part of a series of papers that
were presented at the Second International Summer Institute in
Surface Science, heM at the 'University of Wisconsin, Milwau-
kee, 18—22 August 1975. The complete proceedings of the In-
stitute appear in this volume.

I. INTRODUCTION

A. Scope

The electronic structure of solid surfaces has become
a very active area of study in the past few years. Recent
advances in experimental techniques have produced an
abundant supply of reliable data on clean, well-ordered
single crystal surfaces (Eastman and Nathan, 1975;
Park, 1975; Plummer et al. , 1975). This, in turn, has
spurred theoretical research in the development and ap-
plication of models and computational techniques (Schrief-
fer and Soven, 1975). To attempt a comprehensive re-
view in this rapidly developing area seems somewhat
premature. Instead, this survey is aimed at presenting
the authors' selection of a sampling of recent work that
seems to offer the most promise for further develop-
ment and application.

The scope of this review is limited to theoretical

studies of the electronic structure of solid surfaces in
the independent-particle approximation. Explicitly col-
lective effects, such as surface plasma oscillations, are
excluded. Interest is further focused on the occupied
electron states, and low-lying excited states which are
still bound within the solid. This excludes the consider-
able literature concerned with the diffraction of low-
energy electrons (30 to 300 eV) from surfaces (LEED).
While many formal parallelisms exist between this prob-
lem and that of the occupied states, a quite different set
of physical effects is emphasized in each case. For
example, in I.EED the strong potential in the core re-
gions of atoms in the vicinity of the surface is of pri-
mary importance, while for the valence states, the
bonding potential between atoms is paramount. In ad-
dition, I RED electrons have a short mean free pa, th
(5-10 A) between inelastic collisions, and this fact plays
an important role in most calculational techniques de-
veloped in this field. Ground state one-electron wave
functions are, of course, not subject to decay.

Another criterion for selection was that the work re-
viewed pertain explicitly to extended surfaces. Calcu-
lational techniques developed for molecular problems
have recently been applied to clusters of atoms as a
means to study surface electronic structure. The ques-
tion of what aspects of such results apply to extended
surfaces remains largely unexplored at present, how-
ever.

The final criterion consciously applied in arriving at
the presented selection of work is one of realism. A
wide range of simplified models have been devised to
explore various aspects of surface electronic structure
qualitatively. The re'cent trend, however, is towards
models representing specific solids and their surfaces
well enough to permit quantitative comparisons with
experimental studies. Such calculations have now been
carried out for simple metals, semiconductors, transi-
tion metals, and surfaces with chemisorbed overlayers.
The methods employed range from empirical to first
principles in nature, and the questions investigated
range from demonstrating the existence of an isolated
surface state to determining the complete spectrum,
geometry, and charge distribution. Earlier work treat-
ing more simplified models has been reviewe'd by Davi-
son and Levine (1970) and by Jones (1975).

The material in this review is organized as follows.
In the second subsection of this Introduction, general
concepts underlying the description of surface electronic
structure are discussed. Many of these are often taken
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480 Appelbaum and Hamann: Electronic structure of solid surfaces

for granted in the literature, and this summary is in-
tended to provide a base from which the nonspecialist
can approach the literature. No specific results are
discussed, and no references are given. The remaining
material is grouped according to the physical system
treated rather than the methods employed. Examples
of studies of simple metals (those with s—p bonding) a.re
given in Sec. II. Studies of semic'onductors, transition
metals, and chemisorbed overlayers are given in Secs.
III, IV, and V, respectively. W. hile there is some
grouping of methods employed with systems treated,
there is considerable overlap. A method is discussed
in detail when it is first introduced, and reference is
made to this discussion when it appears in subsequent
sections.

The emphasis in Secs. II to V is twofold. On the one
hand, we wish to provide a sufficiently detailed picture
of the physical approximations involved in each model
to enable the reader to establish his own credibility
limits, and to give some indication of the complexity
and completeness of the calculation. On the other hand,
we wish to stress the nature of the physical problems
being explored and consequently have made reference
to the experimental literature where appropriate. In
no sense, however, should our limited citations be re-
garded as a review of the experimental literature, even
on the specific subject in question.

SeetionVI gives a brief summary and indicates our
expectations for the continuing evolution of this field
and the factors which will shape this evolution.

B. Basic concepts

While we must assume thai the reader has at least a
passing familiarity with common concepts and calcula-
tional techniques in the electronic structure of bulk
solids, a few general conceyts related to surface elec-
tronic structure will be introduced below. Many of
these will be expanded upon in more detail in the context
of specific calculations described later.

A basic concept underlying the entire subject of this
review is that of the surface region, which refers to the
volume of space containing the last few atomic layers
of the solid, any adsorbed overlayers if present, and
the nearby vacuum. ' In this region, the atomic geom-
etry may depart from that of the bulk, and the effective
potential seen by the electrons changes from that char-
acteristic of the bulk to the constant vacuum level. While
this is the "physical" definition of the surface region,
the working definition differs with calculational technique
and depends on the approximations made. These may
range from neglecting the surface region altogether by
assum. ing that the bulk abruptly joins the vacuum, to
letting the surface region include the entire system, as
might be done in the case of a slab calculation (a finite
number of atom layers with two surfaces).

Another working definition of the surface region can
be made on the basis of experimental techniques. The

~The term surface is-also used in a more restricted sense to
refer to the last atomic layer, with the term selvedge employed
for additional nearby layers that are perturbed by the surface.

two most commonly applied probes of the surface spec-
trum are ultraviolet photoemission spectroscopy and
inelastic low-energy electron scattering. Both tech-
niques derive their surface sensitivity from the fact that
the mean free path of the electrons involved in each is
quite short, say 5-10 A. These spectroscopies thus
selectively probe the first few atom layers. While a
detailed calculation of the entire process involved in
each type of spectroscopy is ultimately desirable for
theoretical comparison, the simpler alternative usually
adopted is to assume that structure seen in these spec-
troscopies is characteristic of the surface density of
states. The local density of states is a well-defined theo-
retical concept. It is simply the total density of states
for the system weighted by the squared magnitude of the
wave functions in an incremental energy range at the
spatial point in question. The local density of states
integrated over the surface region, possibly with a
weighting factor that decays towards the bulk, is the
sort of output that might be generated by a theoretical
study and called the surface density of states in a sense
paralleling the experimental definition.

As a consequence of the three-dimensional periodicity
of a bulk solid, electron eigenstates can be classified
by a Bloch wave vector k uniquely defined within the
Brillouin zone. The presence of a surface destroys
periodicity in the direction normal to the surface, but
periodicity in the directions parallel to the surface re-
mains. The electron states in the presence of a surface
can thus be characterized by a two-dimensional Bloch
wave vector k, , which is uniquely defined within a poly-
gon that is the surface Brillouin zone. The bulk band
structure can be projected onto the surface Brillouin
zone. For cack k, there will be continuous ranges of
energies for which bulk states exist and gaps in which
no bulk states exist. The presence of a low-index sur-
face will usually leave some symmetry operations pos-
sessed by the bulk solid intact, and the system will be-
long to some point group involving rotations about the
surface normal and reflections in planes containing the
surface normal. For wave vectors k, that are invariant
under some subgroup of this point group, states may
be further classified as belonging to various irreducible
representations of the subgroup. States belonging to
different representations will not mix. In projecting the
bulk band structure onto k„'s which lie at symmetry
points of the surface Brillouin zone, allowed energy
ranges and gaps may be similarly classed by symmetry
type. It is perfectly possible to have an allowed region
for one symmetry type overlap a gap for another.

Suppose the band structure problem is turned around
and considered from the point of view of the surface
classification of states. Given a k„, an energy F, , and
a symmetry type if appropriate, what are the solutions
of Schrodinger's equation for the bulk potential that are
periodic in the direction normal to the surface (which
we shall call the z direction)? U E falls in one of the
aforementioned allowed ranges, there are of course one
or more pairs of Bloch states with wave vectors k;(R).
There are, in addition, an inf'inite number of solutions
with complex k, . These are the so-called evanescent
Bloch waves, and they are, normally neglected in dealing
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with a bulk solid since they diverge in amplitude as z
goes to either + ~ or -~. In the presence of the surface,
however, evanescent waves that decay into the bulk are
perfectly permissible components of a wave function.
While an infinite number of evanescent waves exist in
principle for any k and Z, a calculation with a finite
basis will only give a finite number, related to the num-
ber of bands. Any given complex k,(E) can be followed
as a function of energy; each will become real for a
certain range of energy. Thus each evanescent wave
can be considered to "belong" to a band of propagating
waves. In general, only evanescent waves belonging to
bands near a given energy will play any significant role
in wave functions at that energy for the solid mith its
surface.

Outside the surface region in the vacuum, the electron
wave functions with which we shall be concerned are de-
caying exponential functions with periodic modulation
parallel to the surface. In the surface region itself, the
potential lacks any simple description aside from its
two-dimensional periodicity, and there is nothing one
can say about the electron states other than specifying
k,

~

and F.
There are two distinct types of wave functions that

must be considered in any complete study of surface
electronic structure. For a given k)j and any F in an al-
lowed band, there will be one or more scattering states-.
These are specified by the requirement that deep in the
bulk they consist of a single propagating Bloch wave
car rying cur rent toward the surf ace, and one or more
reflected Bloch waves. In calculating the total charge or
density of states, ihe incident Bloch maves are conven-
tionally normalized (to one electron per bulk unit cell),
are summed over occupied bands, and are integrated
over the three-dimensional bulk Brillouin zone, assign-
ing equal weight to equal volume elements for the three-
dimensional Bloch vector k. The other type of wave
functions which must be considered are those of surface
states. These can exist for particular energies which
lie in the gaps or forbidden regions for a given k . They
consist purely of decaying evanescent waves in the bulk,
and thus are "bound" to the surface. The existence of
one or more surface states in a gap depends on the de-
tailed nature of the potential in the surface region, and
cannot be in general predicted in the absence of this in-
formation. - Once a surface state is known to exist at a
given k, in a certain gap, one can attempt to follow it
as a function of k„and thereby define its dispersion
relation c(k„). Several things may happen: The gap and
the surface state may exist over the entire surface
Brillouin zone; the gap may close up and "squeeze out"
the surface state; or the surface state e(k„) may merge
into the allowed band at an edge of the gap and the sur-
face state disappear while the gap persists. A related
question concerns the extent of localization of charge in
a surface state, that is, the apportionment of its charge
between the surface region and its evanescent tail in the
bulk. Typically, a surface state near the center of a
wide gap will be highly localized in the surface region,
while one in a small gap or with its energy near the
edge of a gap will have a lot of its weight in a slowly de-
caying tail. Thus a state merging into the edge of a gap

might gradually fade away in terms of its amplitude at
the surface, rather than abruptly vanish.

Another situation may exist that, while it involves
scattering states, is closely related to the formation of
surface states. This is the so-called surface resonance.
If one plots the squared amplitude of a scattering state
integrated over the surface region while sweeping the
energy F. across an allowed band (fixed k„), it will typi-
cally vary smoothly and go to zero at the band edges.
In some circumstances, however, it may be sharply
peaked about a particular energy, with the integrated
chargeunder thepeak equal to a sizeable fraction of an
electron in the surface region. This might occur, for
example, at the edge of a band if the disturbance in the
surface region is not quite strong enough to split off a
surface state from that band. Another situation in which
one finds resonances is when a surface state split well
below one minimum in the band structure (in the sense
that the principal component of its evanescent tail "be-
longs" to that minimum) runs into another overlapping
band. In this case, a surface state one was following
as a function of k, mould not "fade away" as it approached
the edge of the "foreign" band, but keep its charge more
or less intact and acquire some small width in energy.
In such a situation it is conceptually valid to regard the
q(k„) relation as extending into the band region. Another
situation in which a sharp resonance might be expected
is when a well-localized surface state at a symmetry
point in the surface Brillouin zone is overlapped by a
band of a different symmetry. As one moves away from
the symmetry point in certain directions, the surface
state and the band will be mixed by the symmetry-break-
ing component of k~) The mixing may be sufficiently
weak over a considerable region that it is valid to as-
sociate a surface state-like e(k„) with the resonance,
even though a true surface state only exists at a single
point or on a single line.

There is a good reason behind the emphasis that has
been placed on surface states, surface resonances, and
their s(k„) dispersion relation in the preceding discus-
sion and in much of the literature. It is that the most
interesting and experimentally accessible features of
the surface density of states will be those arising from
the surface state. The two-dimensional dispersion re-
lation can have critical points that give rise to steps and
to logarithmic singularities in the density of states.
This is sharper structure than that attained by the bulk
density of states. In addition, the appearance of surface
states is related to differences between the surface and
the bulk, and the presence or absence of surface-state
related structure in a spectrum can yield information
to test various hypotheses about changes in geometry
and chemical bonding at the surface. While the contribu-
tions of nonresonant scattering states to the surface
density of states will certainly reflect information about
such changes, these contributions are likely to be grad-
ual modulations of the bulk density of states and difficult
to distinguish and interpret in an experimental spec-
trum.

The preceding descriptions give a conceptual basis for
classifying and discussing features of a single surface
on a semi-infinite solid. While some of the theoretical
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methods to be discussed use this geometry directly,
manyarebasedon a slab of finite thickness in the direc-
tion normal to the surface. In the limit of a thick slab,
the front and back surfaces cannot interact, and quanti-
ties such as the surface charge distribution, surface
density of states, etc. must converge to limits equal to
the single-surface result. For any finite thickness,
however, the states are classified differently, and their
relation to states of the semi-infinite solid bears brief
consideration.

Suppose we have a complete set of states for a semi-
infinite solid, and form the slab by cutting off the sur-
face region plus some number of bulk layers and joining
this to its mirror image in the plane of the cut (which
we chose to be a mirror plane of the bulk structure').
First consider the surface states. For a given k „we
now have, to the first approximation, a degenerate pair
of states at the previously found energy z—one on each
surface. However, the evanescent wave tail of each
extends past the mirror plane, so in general there will
be a nonzero matrix element of the Hamiltonian between
ihe pair of states. The proper eigenstates of the slab
will then be the even and odd linear combinations, and
they will be split to energies &+ 5. Since the evanescent
tails decay exponentially, the overlap and hence 5 should
decrease exponentially with slab thickness. This be-
havior with slab thickness constitutes a signature for
identifying surface states in a slab calculation, as well
as a means for extrapolating to the converged energy &.

The above means of identifying surface states works
well if the states are highly localized, which usually
means that their energy e is well away from band edges
and implies that 6 is small. For less well localized
states nearbandedges, however, one of the pair q + I5

may land within the band for any computationally practi-
cal slab. In this situation or one approaching it, the
"two-by-two" formulation of the problem breaks down.
While the surface state from the front surface is ortho-
gonal to continuum states of that surface, its tail near
the back surface mill interact with continuum states near
that surface, and the behavior of the surface-state de-
rived pair of states with thickness will not display the
simple asymptotic form discussed above. In this case,
it may be difficult to determine whether or noi a surface
state will exist in the thick-slab limit by examining the
spectra for several finite-thickness cases. In terms
of physically relevent results, however, this is not an
especially significant limitation, since a weakly bound
surface state and a band-edge resonance will make
comparable contributions to the surface density of states
as previously discussed.

The more numerous states in a slab calculation are,
of course, those related to the continuum states of the
semi-infinite solid. Assuming a solution of this problem
as before, suppose we choose a k and an E for which a
single pair of propagating Bloch states exist. If we
examine the states associated with each surface at the

2We have assumed for heuristic purposes that the solid pos-
sesses a mirror plane parallel to the surface of interest. In its
absence the discussion needs to be generalized. See, for ex-
ample, Appelbaum and Blount (1973).

mirror plane, it will in general not be possible to join
them with continuous values and slopes. If the mirror
plane is deep enough that the evanescent wave compo-
nents have decayed to negligible values, we simply have
a classic "particle in a box" quantization problem, and
value and slope will match only at discrete energies.
If the incident and reflected Bloch waves have equal
magnitude wave vectors perpendicular to the surface,
i.e. , k,' = + Q„a scattering phase shift can be def ined in
direct analogy with conventional scattering in one di-
mension. In this case, k, will be quantized in units of
~/L(F), where L is an effective length that involves the
actual thickness of the slab and the phase shift. Thus
the eigenvalues of the slab could be found directly from
the bulk e(k) and the scattering phase shift of the surface
in this case.

There are many more complex situations. The inci-
dent and reflected Bloch waves could have different ~k, ~,
there could be multiple reflected waves, or the energy
could be near an extremum of an overlapping band so that
long-range evanescent waves would have to be consid-
ered. Relations between single-surface and slab states
have not been worked out for complex situations. Happi-
ly, they are not necessary to perform the calculations.
By construction, the calculations always yield a spec-
trum of discrete energies and their corresponding wave
functions for a given k„. While the interpretation of
these in terms of surface states, scattering resonances,
and nonresonant scattering states often may not be pos-
sible, it is not necessary in the computation of, for
example, the surface density of states. The slab thick-
ness necessary to produce a given accuracy in the densi-
ty of states can be judged directly from the level spac-
ing.

In all the preceding discussion, nothing has been said
about the surface region except that its potential is peri-
odic parallel to the surface. What ultimately determines
the surface region potential and, through it, the electron
states, is the type of atoms in this region and their geo-
metric arrangement. To conclude the discussion of gen-
eral concepts, we will catalog the types of surface re-
gions treated in the examples. First, one can have the
ideal atomic geometry of the bulk continue right up to the
vacuum. This is believed to be a good approximation for
many metal surfaces, and has been verified in a limited
number of cases by LEED intensity analysis. In this
case, the potential differs from that of the bulk primar-
ily outside the last atom plane, where the periodic parts
of the potential fall to zero, and the average potential
rises to the vacuum level, forming the so-called surface
barrier. The distance scale for these changes is the or-
der of the screening length. In the case of covalently
bonded semiconductors (where the assumption of ideal
atomic geometry is usually hypothetical) the existence of
the surface barrier usually leads to one or more bands
of surface states that lie at the upper end of the range of
occupied states and are physically associated with broken
bonds. Surface states have been found in calculations for
undistorted metal surfaces, but, given the less direc-
tional nature of metallic bonding, their significance is
not clear.

At the next level of complexity, the surface atoms can
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be relaxed. This denotes motions that change the length
and direction of the bonds between atora. s in the first few
layers, but do not change their periodic arrangement
parallel to the surface. This is believed to occur on
some metal and most semiconductor surfaces, although
the latter are usually in the next category. There are
two possible physical origins of surface relaxation. If
interatom forces longer ranged than nearest-neighbor
are important in the bulk lattice equilibrium, the balance
of forces on the surface region atoms will be different
and could move them. Secondly, atoms at the surface
will form somewhat different chemical bonds than they do
in the bulk because they will have some nonbonded elec-
trons. The consequences of relaxation for the electronic
structure are the possible existence of additional surface
states and resonances not present for the unrelaxed sur-
face, whose charge will be primarily localized in the
disturbed bonds. This implies that the spectrum as mea-
sured by the local density of states around these bonds is
different from the bulk density of states, which would
certainly be expected. One could break the category of
relaxed surfaces into two subcategories: relaxations that
do riot change the point group symmetry of the surface,
and those that do. We are not aware of calculations in-
volving the latter type of distortion, but it is easy to an-
ticipate such consequences as additional critical points
in surface-state bands and broadening of surface states
at k

~
points where they are crossed by bands of differing

(bulk) symmetry.
The third category of surface region behavior is recon-

struction. This denotes distortions that increase the size
of the surface unit cell to some multiple of that of the
ideal surface. Reconstruction patterns are designated in
terms of the manner in which the ideal unit cell is multi-
plied in each of two directions with notations such as
2 && 1, 7&& 7, etc. The occurrence of reconstruction is
easily detected by LEED and is common on semiconduc-
tor surfaces and rare on metals. In the presence of re-
construction, the larger unit cell must be used, implying
a smaller surface Brillouin zone. The bulk band struc-
ture is folded into the new zone, so for a given k there
will generally be more band extrema and less total gap
space. Surface-state bands whose origin is not funda-
mentally related to the reconstruction may be split and
may be broadened into resonances by mixing with bands
that have been folded on top of them. New surface states
and resonances may be formed by the bond distortions
involved in the reconstruction.

The final category of surfaces is those with ordered
chemisorbed layers. The layers may or may not in-
crease the surface unit cell size, and the general discus-
sions for the reconstructed or relaxed situations apply
as appropriate. The adsorbed atoms or molecules form
bonds to the substrate which are different from bulk
bonds and therefore will give rise to additional bands of
surface states and/or resonances. Of course, such fea-
tures present on the clean surface from broken or modi-
fied bonds may be removed. States of the adsorbed spe-
cies that do not participate in bonding to the substrate
will nonetheless be described as surface states. They
will acquire some bandwidth by indirect exchange of
electrons through the substrate, and, of course, will be

narrow resonances instead of surface states where they
overlap bulk bands.

0.944+ 8.77y'~3E(y)- —y 0.984+
~& && &

„,~, ). (114)

While the form of V„, implied by (II3) a, nd (II4) has sub-
stantial theoretical justification in the limit that p, (z)
varies slowly as a, function of z (Kohn and Sham, 1965),
this condition is not satisfied at a surface. Its use in this
region rests on empirical grounds. Equation (II4) has
been applied with considerable success to bulk solids and
atoms, and should work for surfaces. While we shall see
that this expectation is substantially borne out, it is im-

II. s-p BONDED METALS

A. Jellium

Because of the weak interaction between the valence
electrons arid the ion cores in metals such as Na, K, or
Al, they have served for many years as experimental
prototypes of a highly useful theoretical construct —the
electron gas (Pines, 1962; Kittel, 1963). In this model,
the electrons are viewed as moving in. a uniform neutral-
izing background of positive charge (referred to as jel-
lium), interacting only among themselves. A single pa. —

rameter characterizes the system —the electron den-
sity —defined by x„ the radius of a sphere (in units of
Bohr radii) containing one electron. By this measure,
Na and Al are treated as electron gases with x, =-4 and 2,
respectively.

The surface of such an electron gas has been studied
by assuming that the positive background terminates
abruptly and calculating the response of the electron gas
to this termination, Many such calculations have been
made, by fa,r the most complete and accurate of which
are those of Lang (1969) and Lang and Kohn (1970, 1971).
We review their results, which are also reviewed in de-
tail by Lang (1973).

Lang and Kohn determine the response of the electron
gas by solving Schrodinger's equation for the occupied
levels of the semi-infinite system using an effective one-
electron potential that depends on the electron density.
The calculation is done self-consistently, so that the ef-
fective potential and the charge density it implies (via
Schrodinger's equation) are mutually consistent.

The potential Vr(z) is written as

Vr(z) = V.,(z) + V„,(z),
where V„ is the electrostatic potential determined by
Poisson's equation

(112)

and V„, is the effective exchange and correlation poten-
tial, written as a local function of the density,

(113)

The electron density is denoted by p, (z), the neutralizing
positive background density by po, and 6 is the unit step
function.

For the function I, Lang a,nd Kohn used the Wigner
interpolation form (Wigner, 1934)
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portant to keep in mind that there are a Priori limitations
to a local density formalism. For example, it fails to
properly go over asymptotically to the image potential,
I/4z, in the vacuum region. No local approximation to
exchange and correlation can accomplish this. Fortu-
nately, this has only a small effect on the surface elec-
tronic properties, as demonstrated by Lang and Kohn,
since so little electron density extends into the asymp-
totic region in which (II4) breaks down. Second, being a
statistical theory, it works best for extended systems
that interact strongly and for which many electronic
states participate, and less well for isolated states.

Since the potential is one dimensional, the solution to
Schrodinger's equation is comparatively straightforward.
Self-consistency is basically achieved by an iterative
process in which a potential is assumed and a charge
density is calculated via Schrodinger's equation, and
from that, with the use of (II1)—(II4), a. new potential is
calculated. This process is repeated until the input and
output potentials agree to a prescribed amount.

Having summarized the basic physical assumptions that
enter into the Lang and Kohn calculations, we turn to some of
their results. In Figs. 1 and 2 we have plotted p(z), V„(z),
and Vr(z) versus z (distance) for an r, =4 and 2 electron
gas. The spatial origin is at the jellium discontinuity,
with the positive background occupying the negative half-
space. We are measuring distance in units of Fermi
wavelength (2m/kz), and energy in units of the Fermi en-
ergy. The zero of energy is fixed at the Fermi level.
Focusing on the low-density case (Fig. 1), we see that
the surface barrier arises primarily from V„„and that

0.9

it is nearly twice the Fermi energy. The comparatively
large size of V~ produces quantum or Friedel oscilla-
tions in the electron density, clearly visible in Fig. 1.
These quantum oscillations have all but disappeared in
the high-density limit (Fig. 2), a finding which is consis-
tent with the fa.ct that the surface barrier is only 30/o
larger than E~. Once again V~ is dominated by V„, al-
though not nearly so much as for r, =4. The work func-
tion, defined as Vr(~) —E~, is 3.87 eV for x, =2 and 3.06
eV for x, =4. If one uses Al and Na as representative of
x, =2 and 4, respectively, the calculated and experimen-
tally measured work functions of pelycrystalline samples
agree to within 10/0. This agreement is highly gratifying
considering the relative simplicity of the jellium approx-
imation.

While yielding excellent results for the work function,
the surfac, e energy calculated from the jellium model is
not reliable. For higher densities, x, ~ 2.8, the surface
energy becomes negative, reflecting a well-known insta-
bility in bulk jellium (Herring, 1966). Clearly, it is de-
sirable to include the discrete lattice in surface elec-
tronic calculations. For nearly free electron metals,
jellium calculations can serve as a useful starting point.
For example, from information about the linear response of
a jellium surface to a unif orm external electric field, Lang
and Kohn were able to calculate to first order the change in
work function produced by the discrete lattice. In addi-
tion, they showed that the introduction of a discrete lat-
tice, assuming its effect on the valence charge density
was small, allows one to recover positive surface ener-
gies in reasonable agreement with experiment. for the
nearly free electron metals. Jellium, however, clearly
has its limitations. It fails, for example, to give spec-
tral information about the surface and does not allow one
to calculate the three-dimensional behavior of the elec-
tronic charge density.

We turn now to consider a number of computational
schemes, developed during the. last few years, in which
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FIG. 1. Surface region electron charge density (pe), electro-
static potential (V„), and total potential (Vz) plotted versus
distance normal to the surface for the jellium model of Na(&~
=4). From Lang and Kohn (1970), with permission.

FIG. 2. Surface region electron charge density (p, ), electro-
static potential (V„), and tatal potential (V&) plotted versus
distance normal to the surface for the jellium model of Al(&~
=2). From Lang and Kohn (1970), with permission.
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full account is taken of the three-dimensional nature of
the surface.

uo (z, )

B. Sodium

The first fully self-consistent calculation using a dis-
crete lattice model was carried out by Appelbaum and
Hamann (1972) for Na. In this calculation the surface is
studied as the boundary of a semi-infinite solid. The po-
tential has the form

Vr(x) = Q exp(iG„~ x„)vo (z), (116)

V (x) = V„(x)+ V„,(x) + V,,„(x),
where V„and V„, are the electrostatic and exchange and
correlation potentials, respectively, defined by (II2)—
(II4). V, ,„(x) represents the nonelectrostatic electron-
ion interactions.

The three-dimensional form of Vz, (x) complicates enor-
mously the problem of solving Schrodinger's equation.
To simplify this task as much as possible maximum use
must be made of the two-dimensional translational sym-
metry possessed by the surface.

The potential Vr(x) and wave function @j,~(x) are ex-
panded in a. Laue representation (von Laue, 1931; Marcus
and Jepsen, 1968),

uo„(z,.)

d/dz)uo (z,.)

(1110)

d/dz)uo„(z,

Knowledge of T» constitutes only a partial solution to
the problem; satis fying the appropr iate boundar y condi-
tions on u(z) for z in the bulk and in the vacuum repre-
sents the remainder. The boundary value problem is il-
lustrated in Fig. 3, where space is divided into three re-
gions by two planes parallel to the surface. To the left
of the bulk plane V~ is assumed equal to its infinite bulk
solid value, and to the right of the vacuum plane V~ is
assumed to have no spatial variation parallel to the sur-
face. In both these regions the solutions u; to the Schro-
dinger equation are known. In region I they are Bloch
waves that either propagate or decay to the left, and in
the region III they have the form exp[i(k„+G„) x„]pe„(z),
where po„(z) decays exponentially with increasing z.
Connecting the solutions of known form in region I to re-
gion III is the job of the transfer matrix. The boundary
conditions can be written as

+-„(x)= Q exp(iG„~ x„+ik„~ x„)uo (z) . (117)
up= Tp „U„,

The coordinate system is oriented so that z is normal to
the surface, and x pa. ra.llel to it. (G„] is the set of re-
ciprocal lattice vectors that characterizes the two-di-
mensional periodicity of the surface. Each wave func-
tion is labeled by a Bloch wave vector k, which, togeth-
er with the energy E, constitutes the basic quantum num-
bers of the problem. The Laue representation [(II6),
(II7)] implies relatively rapid convergence of Vr in a.

plane wave basis. To achieve this one must use for V,,„
a, model or pseudopotential in which the strong atomic
core potential has been effectively removed.

Substituting (II6) and (II7) into Schrodinger's equation
results in a set of coupled differential equations for
uo (z), viz. ,

BULK —I SURFACE -II VACUUM III

Z- AXIS

where u„and u~ are sums of allowed vacuum and bulk
solutions, respectively, for the given E and k, ~.

For E within a bulk band, u~ is assumed to contain an
incident propagating wave of unit amplitude and (II11)
then uniquely specifies the remainder of u~ and u„, and
through (II9), u everywhere. For E in a ba.ndgap no
propagating Bloch waves exist, only evanescent waves,
a.nd (II11) can have solutions only a.t special energies

1 d2
, + —(k„+G„)' E uo (z)+Q vo o„(z)uo„(z)=0,

2 dz2
{G")

II

(118)

(119)

where u; is a vector constructed from uo„(z;) and
duo (z;)/dz,

where the number of G,~'s retained is determined by the
strength of t/'~.

For a given E' and k„, (II8) can be integrated numeri-
cally assuming ug (z) and (d/dz)uo„(z) are specified on a
plane, say z =z, . Integration to another plane & =z, is
represented concisely by defining a transfer matrix

2y 1&

U2 —T2~ zu I

BULK
PLANE

Z=b

VAC UUM
PLANE

Z=V

I'IG. 3. Schematic representation of the three regions into
which space is divided in the method developed by the authors.
In region I the disturbance in the potential produced by the sur-
face is assumed to have been screened to negligible values. In
region II, only the nuclear coordinates are specified and the po-
tential is allowed to adjust itself self-consistently. In region
III, the variation of the potential parallel to the surface is as-
sumed negligible.
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C. Lithium

An alternative geometrical approach that is frequently
adopted in studying solid surfaces is the slab geometry.
The first self-consistent calculation using this geometry
was that of Alldredge and Kleinman (1974). The electron
potential is treated as in (II5), except the added flex-
ibility of having a nonlocal ion-electron potential is al-
lowed.

Schrodinger's equation is solved by the following de-
vice. The slab of material studied is embedded in a
larger one-dimensional'channel of width L whose infinite

a)
0)k

(~'
5

1.3 VAC

E„'(k„), which define the spectral location of the surfa, ce
states. These states, free to propagate along the sur-
face, are bound to the surface region by the vacuum bar-
rier on one side and the bandgap of solid on the other.
Their energies are found by varying E in a bandgap and
searching for possible zeros of the multidimensional
vector u~ —T~ „u„. It must be borne in mind that k~, is al-
ways fixed, and that a bandgap for a fixed k~~ can and does
often coincide with regions of allowed electron state den-
sity at other k„'s.

Having outlined the method, we consider its applica-
tion to Na(100). The surface has no occupied surface
states, so only band states are needed for self-consis-
tency. For V, ,„, the Ashcroft model potential (Ashcroft,
1966) was used and the bulk matching plane was placed
between the second and third layer. Placing it between
the third and fourth layer caused only very small
changes in any of the results. The work function calcu-
lated for Na is shifted by 0.'3 eV downward from that of
jellium because of the inclusion of the discrete lattice.
This shift is consistent with that calculated by LK from
perturbation theory and is in closer agreement with ex-
periment than is jellium. The Friedel surface oscilla-
tions and the bulk charge density oscillations appear to
superpose linearly —not surprising considering that both
represent 10% effects.

The three-dimensional potential along rays normal to
the surface is plotted in Fig. 4. The potential is still far
from uniform 2 A outside the last plane of Na, where
there remains a 0.4 eV variation parallel to the surface.

potential walls are placed a few lattice spacings from
the last physical atomic plane, so that their effect on the
real surface barrier is minimized. The wave function
4'k (x) is expanded in a basis set 1C &~~ (x)) defined by

(I g lpga

pk6~~ (x) =exp(iG„x„+ik„x„)sin(k„z+yt7t/2), (II12)

where

v„(r, r') = v(r) 6(r- r')+R„,p„(r)p„(r'), (II14)

w ere v(r)is the atomic potential, F.„„,empirically ad-
justed, equals 4.4884 Ry, and p„ is the 1s wave func-
tion calculated from Herman and Skillman (1963). This
choice, unfortunately, was not optimum with respect to
the Li band structure, and as a consequence, the calcu-
lated work function for Li(100) was 3.71 eV, almost 1 eV
greater than experiment. The charge density calculated
is shown in Fig. 5 along lines normal to the surface and
through surface atoms at (0, 0), second layer atoms at
(—,', —,') and various interstitial regions. The prominence
of the first Friedel peak is very clear in almost all
lines. Alldredge and Kleinman (1974b, c) also calculated
the force on the first few atomic layers adjacent to vacu-
um. They found sizable inward forces on the first Li
plane which they attributed to a tendency of the surface
layer to contract under the electrostatic force of the
first Friedel peak.

D. Aluminum

k„=v,m/L, v, =1,2, . . .
The diagonalization of the Hamiltonian matrix yields a
discrete spectrum of allowed energies for any k . As the
slab is allowed to grow in size, the spacing between
most levels diminishes accordingly, and in the limit of
an infinitely thick slab, goes over to a continuum of al-
lowed Ek, forming energy bands. Those levels that re-
main isolated from the banding levels are surface states.
They always occur in pairs, and they are spatially lo-
calized.

The strength of the slab geometry is that all states,
continuum and surface, are discrete and are treated in
the same way. Its weakness lies in the fact that the
computational effort involved grows as a high power of
the number of layers. This forces one to work with
comparatively thin slabs, and size and surface effects
canbecome entangled. We now turn to the specific calcu-
lation; Alldredge and Kleinman studied the Li(100) sur-
face using 13 atomic layers which allowed them to ex-
ploit the mirror symmetry possessed by the slab. A

nonlocal pseudopotential was chosen of the form

~ &n 18
x 12

6-
pO -6-

O
t ~ -18-0
CL 48 7 2

= (o,o,z)'

FIG. 4. Potential at the Na(100) surface along three lines nor-
mal to the surface. The bottom line goes through a surface
atom (heavy bar), and the top line passes through the midpoint
between nearest-neighbor surface atoms. Distance is in atomic
units. From Appelbaum and Hamann (1972) .

Chelikowsky et al. (1975) have taken a somewhat dif-
ferent approach in treating the slab geometry. During
the course of their study of Al(111), they, following Cohen
et al. (1975), embedded a 12-layer Al slab in an empty
tetragonal periodic lattice. This empty lattice has the
same periodicity parallel to the slab surfaces as that of
the Al slab; normal to the surface the lattice has an 18-
layer repeatdistance, which allows a vacuum region of
-4 A per surface.

With periodic boundary conditions the natural basis for
expanding the eigenvectors becomes

Rev. Mod. Phys. , Vol. 48, No. 3, July 1976



Appelbaum and Hamann: Electronic structure of solid surfaces

I0

l

I !

o=
3—

1—

I

I

I

I

I

I

l

2
I

4

I

I

(o,o) —3

2

(i &)

p

(—'') ='
2

(J i)
0

(i i)
:2

(i i):
i l —,p8 9

FIG. 5. Valence charge density for the Li(100) surface plotted
along several lines normal to the surface. (0, 0) passes through

a surface atom and (1/2, 1/2) through a second layer atom.
Distance and charge are in lattice constant units, a/2 and ea

respectively. From Alldredge and Kleinman (1974a), with per-
mission.

w

u&' (x) = exp(i G„x„+ik„x„+ik„s),
where

k„=2'/I, n =0, +1, . . .

(II15)

and L is the length (normal to the surface studied) of the
tetragonal unit cell. A sufficiently large number of

u~k~~ „(x) are retained for convergence, with Lbwdin per-
turbation techniques used to simplify the matrix diago-
nalization (Lowdin, 1951). The calculation is carried to
convergence using the core potential for Al" proposed
by Animalu and Heine (1965). The extracted work func-
tion is 5.16 eV, considerably larger than experiment.
Aluminum has a number of long-range surface states
below the Fermi energy and one such state is shown in
Fig. 6. This state, which is comparatively localized
compared to others that exist on this surface, extends
quite deeply into the bulk. Chelikowsky et al. found
considerable Friedel oscillation in their charge density,
as well as important modifications in the surface barrier
in the first two atomic layers. This result is quite in-
teresting considering that Lang and Kohn (1970, 1971)
found almost no Friedel oscillations present for x, = 2,
which would be appropriate to Al.

10

Al (111j Surface
p(Z)

6-

SURFACE STATE AT K

IEF —Es) = 0.07 Ry

Z (A)

!
8 12

Hamann (1973,1974), Pandey and Phillips (1974a,, b;
1976), and Schluter et al. (1975), as representative of
the state of the art.

This surface occurs in three structural forms, a
metastable 2 &&1, a stable 7 &&7, and a high-temperature
1 &&1. The calculations we review in this section are
for the 1 && 1 form. They allow, however, for normal
displacements of the outermost surface plane.

The methods used by Appelbaum and Hamann have
already been reviewed in Sec. II.B. We summarize their
results. The ionization potential (I.P.), which denotes
the distance between vacuum level and valence band
maximum, is calculated to be 5.3-eV—in very good
agreement with data for the stable 7 &&.7 surface (within
0.2 eV). (There are no measurements of the 1 && 1 form. )
The I.p. is found to be insensitive to small normal dis-
placements. For all geometries a "dangling bond" sur-
face-state band exists that is highly localized in front of
and just behind the surface atoms. A plot of the charge
density in an occupied state in this band is shown in Fig.
7. This band is only partially occupied and, lying 'as it
does within the gap between the valence and conduction
bands, defines a surface Fermi level, E». For 0.34 A
inward displacement of the surface plane, E» lies 0.3
eV above the valence band maximum, in close agree-
ment with Si(111)7& 7 experimental data. . For relaxa. —

tion inward, additional bands of surface states occur at
the bottom of the lowest valence band and within the p-
like region of the bulk band structure. The latter has
charge localized on the bonds between the first and sec-
ond atomic layers and is shown in Fig. 8.

These surface-state bands, among or below the valence
bands, had not been predicted before Appelbaum and
Hamann (1974). Experimental evidence for their exis-
tence can be found in both photoemission and electron
energy loss scattering. The more recent work of
Schluter et af. (1975), using the slab geometry (de-
scribed in Sec. II.D), confirm these spectral findings.
They obtain an ionization potential of -4.0 eV, but re-
mark that their methods are presently unsuitable for
extracting the correct asymptotic vacuum level because

I I I. SEIVI ICONDUCTORS

A. Si{111}lX 1

I ar ge numbers of calculations have been made for this
surface. We shall review three, from Appelbaum and

FIG. 6. Surface state at the Al(111) surface. The upper portion
shows the planar average charge density as a function of nor-
mal coordinate (the surface is here to the left), and the lower
portion shows contours of constant charge density in a (110)
plane, with atom centers indicated by' heevy dots. From Cheli-
kowsky et al, . (1975), with permission.
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TO 12
h, =1

VACUUM

FIG. 7. Contours of constant charge
density for the occupied portion of the
dangl ing bond sur face state on the Si(111j
surface. The energy of this state is
within the absolute gap. Dots locate atom
centers, the vacuum is above, and charge
density is in a.u. &103. From J. A. Appel-
baum and D. R. Hamann, in Proceedings
of the Twelfth International Conference
on the Physics of Semiconductors, edited
by M. H. I'ilkuhn (Teubner, Stuttgart,
1974), p. 675.

SILICON TOP SURFACE STATE CHARGE DENSITY

of the proximity of the slabs to each other in their per-
iodic slab formulation.

The methods of Pandey and Phillips are quite different
from the above. They have invigorated the empir ical
tight-binding approach to calculating bulk spectra (Dres-
selhaus and Dresselhaus, 1967) and surfa, ce spectra.
(Hirabayashi, 1969). This method has a long and vener-
able history in chemistry, but has been viewed with con-
siderable reservation when applied to semiconductors
because of its apparent failure to satisfactorily repro-
duce their band structure. The method, in the form
applied by Pandey and Phillips, as sume s that the wave
functions of a thin slab can be written as

y; = g exp(ik, R )a' ~ g,.(r —R ),

where k,
~

is the surface Bloch wave vector, and g,.(r —R
is an orthogonalized atomic orbital of either' s
or p symmetry about atomic site R . Using (IIII) as a
basis, seven parameters characterize the matrix ele-
ments of the Hamiltonian. They are the diagongal s-p
energy splitting (1 parameter), the s and p nearest-
neighbor matrix elements (4 parameters), and the pp
second-neighbor matrix elements (2 parameters). These
parameters are determined by calculating the mean-
squared error between tight-binding and pseudopotential
energy levels for bulk Si at many points in the zone for
the valence and lowest conduction bands, and varying
the parameters to find the absolute minimum. This
highly overdetermined fit yields satisfactory band struc-
ture over the entire range of interest. Pandey and Phil-

lips postulate no change in these parameters at the sur-
f'ace of the slab (assuming no relaxation) and calcula. te
the spectrum of a 20-layer Si slab oriented with respect
to the (111) surface. Excellent correspondence with Ap-
pelbaum and Hamann's spectra at symmetry points is
obtained. To incorporate relaxation, they make the
ansatz that the matrix elements M.~(R ) between nearest
neighbor orbitals g,.(r) and g„(r —R ) depends on R„
through a Huckel relationship,

M, (R )=M, (R )exp[p(~R
~

—~R ~)], (III2)

where P is an empirical "overlap" parameter used for
all jP and 8 is the separation of orbitals j, @ before
relaxation. The parameter P was fixed by fitting the
calculated surface spectra to the calculations of Appel-
baum and Hamann (1974, 1975). Once again good agree-
ment with the spectra was obtained with a single param-
eter for all orbitals. The density of states on the sur-
face layer, four layers into the slab, and in the bulk,
calculated by Pandey and Phillips, is shown in Fig. 9.
Notice the prominent position of the dangling bond states
in the first layer and the location of critical points due
to the back bond and bottom of the band surface states
caused by the relaxation. These features are the ones
observed in photoemission on Si(111)7x 7.

B. Si (111)2X 1

The Si(111) surface occurs in a metastable 2 &&1 form
when prepared by cleavage. This surface has been the
subject of a large number of theoretical calculations.
Two of the most realistic are those of Schliiter et al.

I TO 27 VACUUM

SILICON MIDDLE SURFACE STATE CHARGE DENSITY

FIG. 8. Contours of con.stant charge
density for the Si(111) back bond surface-
state band lying in internal gaps, 2 to 3.5
eV below the valence band maximum. This
state occurs only for a substantial degree
of inward relaxation of the surface layer,

0
0.34 A in this case. Charge density is in
a.u. &103, and dots locate atom centers.
From J. A. Appelbaum and D. R. Hamann,
in Proceedings of the Tu elfth International
Conge~ence on the physics of Semiconduc-
tors, edited by M. H. Pilkuhn (B. G.
Teubner, Stuttgart, 1974), p. 675.
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lations for the GaAs(100) (Appelbaum, Baraff, and
Hamann, 1976) and GaAs and ZnSe(110) (Chelikowsky
and Cohen, 1976) surfaces have just become available.
We concentrate on the results from the self-consistent
calculations. For GaAs(110), two bands of gap surfa. ce
states separated by 1.5 eV exist and are associated with
the Ga and As atoms, respectively. With the As surface
band full and the Ga band empty, this splitting widens
considerably in going to ZnSe. The tight-binding and
abrupt junction results are in qualitative agreement with
these results. For the Ga terminated surface of
GaAs(100), two bands of gap surface states were found
corresponding to the two broken bonds present on this
surface. One was dangling-bond-like and —,

' occupied,
and the other empty and lying within the surface atom
plane along the broken bond direction. Contour plots of
these states are seen in Figs. 15 and 16. For both (110)
and (100) surfaces it was concluded that the effective
ionic character of the atoms at the surface appeared
similar to that in the bulk, in one case from the shape
of the charge density contours, in another [GaAs(100)]
from a direct calculation of the effective charge on the
Ga surface atoms. This was done in a completely un-
ambiguous fashion by studying the change in surface
dipole potential as a function of the displacement of the
last atom plane. The efficient screening of the surface
atoms, which appears to leave them in a bulklike charge
state, helps explain the qualitative similarity of the
more accurate of the tight-binding calculations with
experiment.

Ga AS (100) SURFACE STATE
VACUUM

FIG. 15. The dangling bond electron density at kII =J is coIl-
tour plotted on a plane normal to the (100) surface and passing
through the back bond between the surface Ga atoms (shown as
heavy dots) and their second layer As atoms (shown as light
dots). The density is in a.u. X103. From Appelbaumet al. (1976).

GaAS (100) SURFACE STATE
VACUUM

TOTAL CHARG E DENS I T Y —PAIR I NG MODEL

FIG. 14. Contours of constant charge density for the total
charge of the pairing model for the 2 &1 reconstructed Si(100)
surface. The dimer bond between the paired first layer atoms
is seen to be similar in shape to the partially visible bulk bonds
between the fourth and fifth layers. Second and third layer
atoms are out of the plane of the plot. From Appelbaum et al. ,
Phys. Rev. Lett. 34, 806 (1975).

FIG. 16. The bridge bond electron density at k
~~

——J' is contour
plotted on a plane normal to the (100) surface and oriented in
the direction of the surface broken bonds. The Ga(As) atoms
are shown as heavy (light) dots and the density is in a.u. &&10 .
From Appelbaum et al. (1976).
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IV. TRANSITION METALS

A. Cu

Forstmann and Heine (1970) and Forstmann and Pendry
(1970) studied the existence of surface states on Cu(100).
Their model, extensively used by Heine (1962) and Jones
(1968) for semiconductors, assumes a semi-infinite
geometry in which the bulk potential continues undis-
turbed up to the first symmetry plane beyond the surface
atoms, at which point it changes discontinuously to a
constant value determined by the experimental work
function. Emphasis is placed on surface states, and
Schrodinger's equation is solved for energies F. within
a bandgap by solving for the evanescent Bloch waves
of the periodic crystal and matching them to exponential-
ly decaying waves in the constant potential vacuum
region. This procedure is most likely to be adequate
for weakly bound surface states, where the precise form
of the surface potential may not be of paramount impor-
tance. They treat the bulk Bloch functions by an em-
pirical adaptation of the KKR method (Korringa, 1947;
Kohn and Rostoker, 1954), in which the Cu muffin-tin
potential is assumed to scatter only d waves, with a
phase shift parametrized as a simple resonance form.

The surface state Forstmann and co-workers studied
was in a hybridization gap between sp and d-like bands.
A surface state was found split -0.3 eV from the lower
portion of the gap (only k„=0 is studied). This relatively
weak splitting suggests a comparatively delocalized
state, although the spatial nature of the state was not
studied. They argue that this kind of hybridization gap
surface state is of the type seen in photoemission mea-
surements on Ni and Cu (Callcott and MacRae, 1969).
For this to be the case, one would expect that the state
would have to be comparatively well localized in the
surface region. The resolution of this question will have
to await more extensive theoretical work.

B. Nl and Mo

The study of surface states on W and Mo by Kasowski
(1975) treats the surface within a slab geometry and
uses a comparatively new method for solving Schro-
dinger 's equation —the linear combination of muff in- tin
orbitals (LCMTO) technique due to Andersen and
Kasowski. (1971). The non-seU- consistent potential used
is constructed by taking a superposition of overlapping
atomic charge densities to represent the charge within
the slab and using Slater exchange and Poisson's equa-
tion to calculate a potential from it. The angular de-
pendence of the potential within each atom cell is ex-
panded in spherical harmonics. The LCMTO method
is patterned after the traditional linear combination of
atomic orbitals (LCAO) method, but in place of atomic
orbitals it uses orbitals which allow analytic reduction
of all the multicentered integrals to a relatively small
number of radial integrals. These multicentered inte-
grals are usually the bane of LCAO calculations. The
special orbitals (MTO) used in the LCMTO method are
defined as follows. A sphere of radius A,. around each
atomic site R,. is introduced and a spherically averaged
potentiaI calculated. The solution of Schrodinger's equa-

where j, and n, are spherical Bessel and Neumann func-
tions and a, and b, are coefficierits fixed by continuity
requirements on p,. and its derivative across the sphere.
The energy v'&0 determines the rate of decay of the
orbital tails and is treated as a variational parameter.

A wave function with wave vector k is then written as

4- (x) = g c, , g exp(ik, R,. ) y, , (x —R,. ),
2 ~

(Iv2)

where j labels a particular atomic layer, m the atom in
that layer, and i a particular MTO. The c,, are deter-
mined by minimizing the energy in the usual manner.
Note that while a muffin-. tin potential is introduced for
use in defining the orbitals, the complete non-muffin-
tin potential is used in calculating the Hamiltonian ma-
trix.

A 20-layer slab was used by Kasowski in his study of
W and Mo(100) surfaces. In contrast to the situation on
Cu and Ni, he finds surface states on W and Mo that are
strongly localized within the outermost two or three
atomic layers. These states are sensitive to assump-
tions concerning surface relaxation both with respect to
spatial extent and with respect to their position in ener-
gy. The state studied in W(100) lies at —0.22 Ry (rela-
tive to the Fermi level) and shifts to —0.14 with a 3.2/o
decrease in the first to second layer back bond distance.
For Mo a 3% bond length decrease is required to induce
a surface state at -0.05 Ry. A full study of the spectrum
has not been undertaken for these systems and the im-
portance of self-consistency has not yet been explored.

C. Fe(100}
Caruthers and Kleinman (1975) have studied the ener-

gy spectrum of a 13-layer Fe slab. The method used is
basically that of Alldredge and Kleinman (1974) with the
plane wave basis (II12), supplemented with localized d
functions, cp(r —R„) that are defined by

p(x —R) = I;„(x—R/ ~x —R ~)

(Iv3)

where P and o. are chosen so that p and its first deriva, —

tive vanish at A, and (d, is the l =2 solution to Schro-
dinger's equation with no nodes and zero slope at A.
These nonoverlapping d functions allow Caruthers and
Kleinman to use a manageable set of standing waves in
the expansion of the eigenfunctions of the slab.

tion for an energy R «0 (vacuum level) within the sphere
is denoted by cu, (x), where I labels the angular momen-
tum state involved.

The MTO about site R,. is then defined as

y, , (x —R,.) = Y, (x —R,/ i
x —R,. i )

~, (lx —R,. I)+~,j,(~ lx —R,. I),

Ix-R.
J
«X, ,

I,n, (sc fx- R,. f), /x- R,.
/
&X, ,

(IV1)
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Caruthers and Kleinman used three differently con-
structed potentials in order to explore the sensitivity of
their results to the details of the potential. The most
realistic (with regards to both bulk and surface proper-
ties) was constructed by superposing atomic 3d'4s'
Coulomb potentials and calculating the exchange and cor-
relation potential by overlapping atomic densities and
using Slater's p'~' (Slater, 1951). In addition the 4s elec-
trons were modified by modulating their tails in the vacu-
um region so that the experimental work function was
obtained.

The spectrum of the Fe slab for this as well as three
other choices for the potential were studied (at k„=0).
They find two surface states which are s-d hybrids in
general agreement with Kasowski's work on W and Mo
(Kasowski, 1975).

The higher of the two surface states found at I lies
1.5 eV below the Fermi level and is well located within
the surface region. It is shown in Fig. 17. They find
their calculated spectrum is sensitive to the details of
the surface potential and conclude that self-consistency
is important to include in transition metal surface-state
studies.

V. CHEMISORPTION

A. Introduction

A very large theoretical effort is being made to calcu-
late the chemical and electronic properties of chemi-

,o)

, o)

sorbed systems. We shall restrict ourselves to those
which treat an ordered overlayer of foreign atoms on a
surface, and not discuss the problem of an isolated
chemisorbed atom on a surface. We focus on two quite
different systems, H chemisorbed on Si(ill), for which
calculations have been carried out by Appelbaum and
Hamann (1975b), using the self-consistent field method,
and Pandey (1976), using the semiempirical tight-binding
approach, and the work of Kasowski (1974) for the 0 on
Ni(100) system, carried out using the LCMTO method
described in Sec. IV.

B. H on Si{111)
Using the method described in Sec. II.B, Appelbaum

and Hamann (1875b) have studied the electronic proper-
ties of H on Si(111). They have calculated density of
states in the surface region, the strength of the Si-H
bond, and the equilibrium spacing between the Si and H
overlayer. Atomic hydrogen chemisorbs on the Si(111),
saturating the single broken bond per surface atom pres-
ent on this surface (Ibach and Rowe, 1974). This removes
the dangling bond surface-state band and replaces it by
a band of states that, over large portions of k,

~
space,

hybridizes strongly with the energy level structure of S:,
substrate. Where it exists as a surface state the Si-H
bond looks like a strongly polarized s wave. The charge
density in the Si-H bond surface state is exhibited at a
particular point in k„space in Fig. 18.

The spectrum on the H atom is plotted in Fig. 19, to-
gether with the bulk density of states of the Si substrate.
Notice the suppression of most of the s band and the en-
hancement of the lower portion of the p band and the top
of the s band. The calculated density of states and mea-
sured photoemission spectra are in close agreement,
as seen in Fig. 20, where the difference between the
bulk Si density of states and that on the H are compared
with the data taken by Sakurai and Hagstrum (1975).
From studies of the force on the H plane, via the Hell-
mann-Feynman theorem (Hellman, 1937; Feynman,
1937), an equilibrium position and force constant for the

.5, o)
H ON SI( I I I j-SURFACE STATE

VACUUM

5, .25)

.5, .5)

, .25)

l I

B A

Z —AXIS

FIG. 17. Surface state wave function for the Fe(100) surface
at energy —0.27 Ry measured from the Fermi level plotted
along several rays normal to the surface. The ray (0, 0) passes
through a first layer atom, and (1/2, 1/2) passes through a
second layer atom. Core region oscillations have been re-
moved from the figure. From Caruthers and Kleinman (1975),
with permis sion.

FIG. 18. Contours of constant charge density for a surface
state on the Si(111) surface with chemisorbed H. The state is
at -—5 eV relative to the valence band Inaximum. The H atom
and Si atoms in the first two layers are indicated by dots.
From Appelbaum and Hamann (1975b).
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Si—H bond is obtained. The calculated force constant is
0.175 (a.u. ), which implies a Si—H vibration mode that
agrees with that measured by infrared absorption within
5% (Becker and Gobeli, 1963). The calculated Si—H bond
length agrees within 0.03 A with the experimental Si-H
bond length extracted from molecular studies on a large
variety of Si-H compounds.

Pandey (1976) has studied H on Si with an empirical
tight-binding method, described in Sec. III.A. The pa-
rameters of his model were fixed in the following ways.
The Si-Si overlap parameters were fixed from their
study of bulk Si as in Sec. III.A, while the Si-H overlap
and diagonal energy splittings were determined by fitting
the molecular spectra of silane (SiH~) and disilane
(Si,H, ). He obtains a. density of states on the H similar
to that shown in Fig. 20 obtained by Appelbaum and
Hamann, and in excellent agreement with experiment,

e. oon N&(&oo)

Kasowski (1974), using the LCMTO method, ha. s
studied surface states induced by 0 chemisorbed on Ni
in a perfect 1 && 1 overlayer and placed 0.9 A above the
Ni surface layer. He finds that 0 induces surface states
of p character at —0.4 Ry and -0.55 Ry (referenced to
the Fermi energy). The state at -0.4 Ry has been seen
in INS and UPS and identified by Hagstrum and Becker
(1969) as a p state from their study of the 0, S, and Se
on Ni series. While the experiments were performed
on a C(2 x 2) structure, Kasowski argues that the small
overlap of the oxygens, even on the 1 && 1 form, make
the theoretical conclusions found for 1 && 1 applicable to
the C(2 && 2) form. Kasowski studied the dependence of
the surface- state spectra on changes in d, the 0-Ni
layer spacing, and concluded that the spectra for d =0.9
A, the spacing predicted by Demuth et al. (1973) from
LEED studies, was in much better agreement with the
experimental spectra than the choice d =1.5 A, predicted

by Anderson et al. (1973), also from LEED. Presently,
the LEED studies by different workers have converged
on d =0.9 A, so that there is general agreement between
LEED inferred geometries and that inferred from ex-
perimental and theoretical spectral comparisons.

Si (111)
H EXPOSURE

He I(21.2 6V) 0'
QN ~Qp, THEORY

Vl. SUMMARY

The examples discussed in the preceding sections
present a stopped-motion snapshot of a rapidly moving
field. It is safe to speculate that by the time this article
is in the readers' hands, a number of additional studies
will have been carried out by the researchers repre-
sented here, and that comparable or better calculations
by others will have appeared based on similar or new
methods.

In both discussing the existing calculations and pro-
jecting trends into the future, one must keep in mind that
surface calculations exist between two well- established
bodies of work. On the one side are calculations of the
electronic structures of bulk solids, and on the other,
molecular calculations. It is unlikely that any funda-
mentally new approximations or types of representation
for wave functions are going to be initially developed in
the surface context. The process so far has primarily
been one of selecting elements from the other contexts
which are most suitable for surface problems. Lacking
some of the simplifying symmetry properties of bulk
solids, or the small number of atoms of most mole-
eules that have been studied in a first-principles fash-
ion, computational efficiency has been an important
factor guiding the choices. As a result, pseudopotentials

0
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FIG. 19. Local density of states on H for H chemisorbed on
Si(111) compared to the bulk Si density of states. From Appel-
baum and Ham~» (1975b).

VAC( ")

FIG. 20. uv photoemission spectrum at A~=21.2 eV for clean
Si(111) and Si(111)after varying degrees of H exposure. Top
inset shows difference curves compared to difference histo-
gram of the theoretical densities of states in Fig. 19. From
Sakurai and Hagstrum (1975), with permission.
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have been heavily employed, and the local approxima-
tion for the exchange-correlation potential is nearly
universal. These are certainly among the most effi-
cient and accurate approximations employed in bulk band
theory. On the other hand, considerably greater emph-
asis is being placed on self-consistency than is custom-
ary in bulk calculations, the surface field being closer
to molecular studies in this respect. This is motivated
by the fact that no other way exists to determine how
rapidly the disturbance produced by the surface is
screened out, and what charge and potential distortions
accompany the geometrical distortions present at many
surfaces. Self-consistency is also absolutely necessary
if calculations of equilibrium surface geometries are to
become common.

It is clear that in computational efficiency alone,
minimum-basis empirical tight-binding schemes excel.
The limitations on these schemes are primarily imposed
by problems in choosing the parameters. In the exam-
ples cited here, very good results were obtained for
semiconductors and chemisorption on semiconductors.
On the other hand, there are many (uncited) examples
where such schemes have produced results considerably
inferior in quantitative accuracy. Further exploration
of the extent to which the principles employed in pa-
rameter selection in the cited examples will continue to
be successful in a wider range of systems is clearly
desirable. One may also anticipate a hybrid type of ap-
proach in which first-principles calculations are used
to fit empirical parameters in bonding situations that
have no convenient solid state or molecular analog (or
no available data) and these parameters then used to
treat a surface situation too complex to be computa-
tionally tractable in a first-principles scheme.

The preponderance of calculations reported here is
based on a slab geometry rather than a semi-infinite
geometry. As discussed in Sec. I.B, the physical infor-
mation available is really the same in both cases. The
slab methods are generally more easily programmed,
since the bulk of the calculation is a matrix diagonaliza-
tion, while the semi-infinite methods can generally get
more out of a given amount of computer capacity. The
ability to work back and forth between the two with a
common set of approximations would be valuable, since
this would, for example, enable one to achieve self-
consistency with a coarse mesh of states, and then ex-
amine interesting spectral features in fine-grained de-
tail.

The final point to consider is an overall question: to
what ends are all the efforts that have been discussed
here directed? First, toward the development of met-
hods sufficiently accurate to provide reliable quantitative
aid in the interpretation of a variety of surface experi-
ments. Second, toward an understanding of the addi-
tional physical and chemical effects that are peculiar to
the surface, and to identify the key parameters in terms
of which these, effects may be empirically systemized.
Finally, to offer calculational insights into physical and
chemical structures that are not accessible to direct
experimental measurement, such as intermediate sur-
face transition states, which are important for catalytic
reactions.
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