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Heavy ion experiments are already enriching nuclear science with a tapestry of new phenomena which
require explanation. In response, theoretical nuclear physics is rapidly expanding its insights to encompass
these new observations, especially those concerned with the macroscopic aspects. Preliminary theoretical
studies already suggest that the dynamical nuclear fluid must sometimes be considered viscous, '

compressible, and/or rotational, if its microscopic properties are to be encompassed. These and some
threads already well placed in the picture will be discussed. Other reasons will be cited to support the
expectation that theoretical nulear macroscopists may more and more come to be fluid dynamicists who
specialize in those few thousand fluids called nuclei. Three such reasons are {a) the promised richness of
their structure as dynamical fluids, {b) their unique prospect, among all the objects of modern physical
science, of allowing a complete microscopic, as well as a phenomenological macroscopic, description, and
{c)-the possible overflow of such nuclear implications into classical fluid theory, from the viewpoint of
which the nuclear heavy ion data are a significant novelty.
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In retrospect, the word "dissipative" might better have been
used here to avoid any suggestion that the microscopic struc-
ture of the dissipative process (sa far unknown) is necessarily
associated with the particular "hydrodynamical" form familiar
from the Navier —Stakes equation.

I. DATA, PARAMETERS, AND

THE HYDRODYNAMICAL ANALOGY

This paper attempts to communicate a few simple
ideas on the general subject of nuclei as dynamical flu-
ids. It is in no sense a "review" of the subject, which
is probably too new anyway for cataloging, but rather
an outline of one still changing viewpoint, and of some
recent related research.

The first section of the paper Btiempts to demonstrate
for those who are unfamiliar with recent heavy ion
studies that heavy ion data is rich and complex. It also
suggests the view that the utility of fluid dynamical
parameters is already well established in organizing the

. phenomenology of heavy ion collisions. As an illustra-
tion, we emphasize the idea that macroscopic liquid
droplets in collision are very interesting bases for gain-
ing insight into nuclear collision.

A. Heavy ion data is rich and complex

Figure 1 is taken from Kratz et al. (1974). It presents
the results of their radiochemical studies of the pro-
ducts from ' Kr accelerated against "U Bt a labora-
tory energy of 605 MeV. (We empha. size that this data
is thick target data so that reactions occur over a range
of energies, and that radiochemistry measures only
those products which live for a substantial time after
the collision. Both of these limitations to the informa-
tion available in this data should be kept in mind. )

B. Some qualitative features still need explanation

Qf richness, Figure 1 is a remarkable example. In
the lower half of the figure the several components~ne
might more precisely say, "Components Bs inter-
preted" —in the distribution are labeled by letters A, B,
C, D, E, F, G.

Component A is a broad distribution of the type which
is expected to follow the formation of a compound nu-
cleus (the "complete fusion" process) by the amalgama. —

tion of the krypton nucleus with a uranium nucleus into

Reviews of Modern Physics, Val. 48, No. 3, July 1S76 Copyright 't 976 Arnerical Physical Society



Griffin and Kan: Colliding heavy ions: Nuclei as dynamical fluids

a. single compound nucleus. At the other extreme, the
"rabbit ear" distributions, E and F, seem to describe
the mass- elastic or nearly mass- elastic processes in-
volving only one, two, or at most a few nucleons trans-
ferred, which occur in this reaction. Distribution C is
an example of the "deep inelastic" or "'quasifission"
process in which a substantial number of nucleons are
transferred but still a. small fra, ction of the number (84)
in the lighter colliding nucleus, so that the basic iden-
tity of the incoming projectile is maintained. The cor-
responding deep inelastic distribution in the mass
region around the uranium rabbit ear F does not appear,
because, one presumes, fissionability of nuclei in that
region is very high, especially when they possess a
substantial amount of excitation energy, such as a deep
inelastic collision would impart. Distribution B is in-
deed an asymmetric fission mass distribution which
might arise from the fission of elements around uran-
ium, and distribution B is a symmetric distribution
which could easily correspond to fission of more highly
excited elements. We note that its center is displaced
downward, as might naturally be expected to follow
from the boilout of some neutrons before the average
fission process occurred.

Finally the most remarkable distribution is that la-
beled G, which seems to peak around mass 200. This
is the so- called "Goldfinger, " a wholly unexpected dis-
covery of this radiochemical study. lt represents a
feature of this reaction which has yet to receive an
adequate and/or compelling explanation [but, cf. , re-
cent discussions by Huizenga (1975), and Griffin and
Wong (1975)j.
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FIG. 2. Equiprobability contours for kinetic energy vs angle
of potassium ion in reaction Th{ A, K), from Artukh ~ ~l.
(i.973), after Wilczynski (1973).

C. Frictional forces are useful in
describing heavy ion collisions

Figures 2 and 3 support the next short statement, that
fluid dynamical parameters are useful in phenomenolog-
izing heavy ion reactions. Here we address in parti-
cular the energy-momentum dissipation parameter anal-
ogous to the hydrodynamical viscosity, and show the
data (Artukh et a/. , 1973) from the reactions '"Th-
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FIG. 1. The (radiochemical) mass and charge yields measured
by Kratz, Norris and Seaborg, after the reaction Kr+ U are
shown {Kratz et al. , f974). The cross section vs A is dis-
cussed at leg.gth in the text.

FIG. 3. Wilczynski's interpretation of the data of Fig. 2 (upper
part), and his physical picture (lower part) of how a nuclear
frictional force can result in such an observation (Wilczynski,
1973).
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(4'Ar, K) after Wilczynski (1973). One sees that as the
scattering angle diminishes from about 40 toward 10',
the most probable kinetic energy of the potassium ion dimin-
ishes very steeply from some 280 MeV to about 100
MeV. In Fig. 3 Wilczynski's (1973) schematization of
this same data is reprinted together with his trajec-
tory diagram presenting his (very natural) in'terpreta-
tion of the data: (a) the incoming ion orbits along the
periphery of the target nucleus for a time short enough
so that its ba, sic identity is unimpaired', (b) the longer
the contact time the greater the deviation of the final
scattering from the grazing angle. His "frictional" as-
sumption, that the amount of kinetic energy lost in-
creases with longer contact time between the two nu-
clei, then provides a most natural description of the
observed data. It provides also a very persuasive ex-
ample of the utility of the notion of dissipation in ion-
ion collisions.

FIG. 4. An artistic impres-
sion of the films described in
Adam et al. (1968). High
velocity head-on collisions
lead in one oscillation to a
"necklace" of nearly equal
spheres. The time unit is
-milliseconds; the drop radii,
-10-' cm.

Vl BRAT IONAL INSTABILITY

t=0

D. Colliding water droplets may teach us about nuclei

The third remark of this first section is that real
hydrodynamical droplets, i.e. , macroscopic classical
liquid droplets, show promise of providing insight into
nuclear heavy ion processes. The data of Dr. Charles
Hendricks of the University of Illinois (now at the
Lawrence Livermore Laboratory), in the form of mov-
ing pictures of controlled collisions of water droplets,
illustrate this point very well. Figures 4 and 5 have
been sketched to give an impression of Dr. Hendricks'
movie-filmed data' for several droplet collisions. [See
Adam et al. (1968) for some actual frames. ] The
movies show examples of fusion reactions, and sub-
sequent oscillations of the amalgamated drops. They
also include examples of what we propose to call "neck-
lace" reactions (Fig. 4), in which the drop amalgamates
momentarily, oscillates once into a very much flattened
shape, then into a long, needle-shaped object, whence
it disintegrates into several drops equal in size, some-
times three or four, but sometimes as many as twelve
or fifteen. These droplets are about as uniform in size
and as well ordered in space as the pearls in a neck-
lace. Hence the suggested name. In the seventh and
eighth reactions, the particles come together and then
re-fission into two fragments. Finally, the movies
show two reactions in which the drops pass one another
tangentially, ripping off small droplets from their over-
lapping edges, in a kind of process we call "peripheral
fragmentation, " as in Fig. 5.

This data supports the suggestion that the nuclear
theorist, in studying these droplet collisions, can
strengthen and inform his intuition concerning nuclear
processes. Nuclei are, after all, still fluids, we be-
lieve, even if a mite too small to see with the camera,

-t-5 ooooooooo
a,s these classical droplets can be seen. (More about
nuclei's own special kind of smallness, associated with
their distinctly finite number of nucleons, in sections
II.D and II.E below. )

II. FLUID DYNAIVIICS IN SCHRODINGER THEORY;
COMP RESSI8IL ITY AND INE RTIA

In this second portion of this report, we propose three
additional statements: (a) that fluid dynamics fit very

PERIPHERAL FRAGMENTATION

t =0

t 2

Norenberg proposes that the mass, charge, etc. transfer
leading towards equilibrium can be described by a Fokker-
Planck-type transport equation (Norenberg, 1974, 1975).

Dr. Hendricks kindly lent this film to one of the authors
(J. J. G.) for presentation at the A. P. S. meeting of October
31, 1974. %e wish to express our gratitude for this assistance
and to recommend to our reader s that here is a case, indeed,
where it is better to see the movie than to read the book.

t 3.5 000 00 00 000 000 00 0

FIG. 5. An artist's rendition shows how tangential collisions
described in Adam et al. , (1968) lead to a matter "bridge"
which disintegrates into small pieces while the major portion
of each droplet continues in a nearly straight line. Time unit
and drop radii as in Fig. 4.
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naturally with the Schrodinger theory of quantum me-
chanics (even leading one to an idealized "single-par-
ticle Schrodinger fluid" whose properties will be dis-
cussed further below). In addition, (b) the inference is
drawn from the study of the single-particle Schrodinger
fluid that the nuclei cannot safely be assumed to be
dynamically incompressible. More specifically, nu-
clear inertial parameters can be strongly influenced
by the local compressibility of the nuclear mass flow
patterns. ' Finally, from this discussion, one concludes
that (c) for nuclei, large effects on the inertial param-
eters due to just a few nucleons may require each nu-
cleus to be viewed as a. unique and separate dynamical
fluid. Then the available nuclear isotopes offer to fluid
dynamics some several thousand specific examples
against which fluid dynamical theories might be tested,
rather than just the single object which each classical
fluid constitutes.

has a form similar to a stationary state Schrodinger
equation, and serves to relate the density of the Schro-
dinger fluid (given by the local Schrodinger probability
density,

~
C ~') with the properties of the system which

are incorporated into the Hamiltonian operator, a,s
modified by the fluid dynamical properties, through the
addition of the "dynamical modification potential" —(d.

This derivation already suffices to sustain the claim
that Schrodinger's equation, even at the most elemen-
tary one-particle level, is already naturally capable of
reinterpretation' in fluid dynamical terms (Madelung,
1926). Consequently any fluid dynamical theory of
many-body systems described by the Schrodinger equa-
tion ought to exploit and build upon this natural struc-
tural relationship between the time-dependent quantum
theory and the classical fluid theory.

B. Dynamical compressibility

SPA+= C exp — 8; 4 and S, real.

Then in terms of

one obtains the following three equations:

'7 ( pv~) = —9p/Bt (continuity equation),

co =IBS/at —v

(4)

(5)

(6a)

which is equivalent to

IDv~/Dt = Tco (Euler equation), (6b)

and

[H —u]O = e@ (equation of state) . (7)

The three equations a.re (a) the continuity equation [Eq.
(5)], (b) a dynamical equation [Eq. (6)] describing the
acceleration of a given mass probability element anal-
ogous to the Euler equation in fluid dynamics, and (c)
a. modified Schrodinger equation of state [Eq. (7)] which

Ef recent suggestions that the motion of the nuclear shape
may be dissipation dominated (Swiatecki, f 972; Myers, 4 976)
are borne out, then the importance of inertial parameters in
the dynamical process cauld be substantially reduced.

Some of this research has been partially published or re-
ported earlier. See Griffin and Kan (4974, f975); Kan (1975);
Kan and Griffin (i974a, 1974b, i 976).

A. Fluid dynamical concepts and Schrodinger theory

We illustrate the first of these ideas by exhibiting'
the equivalence of the time-dependent Schrodinger equa-
tion with a set of three equations with a specifically
fluid dynamical cast which result when one writes 0, the
solution of the Schrodinger equation, in polar form, and
separates the equation as follows. In

Hc =i@4,
let

We turn now to the question of dynamical compress-
ibility of the Schrodinger fluid, and emphasize the fact
that a flow is incompressible only when the total time
derivative of the density vanishes; i.e. , when

Dp/Dt = Bp/Bt+ v~ &p =0. (8)

C. The effect of compressible flow on inertial parameters

Indeed the whole purpose of this discussion is to
emphasize the fact that such propagation of density
ripples from place to place is a dominant effect in the
vibrational inertia which one calculates from the crank-
ing model (Inglis, 1954; Beiyaev, 1959). Figure 6
demonstrates this statement more specifically in sche-
matic terms (Griffin and Kan, 1974). It exhibits a level
crossing of two single-particle levels in which the par-
ticle adiabatically makes an adjustment from orbit "&"
to orbit "b", and the uppermost level remains unfilled
both to the left and to the right of the crossing. This
is the expected behavior when the collective motion is
very slow.

E. Madelung (4926) first suggested a fluid dynamical inter-
pretation of this type, but it does not seem to have been
utilized effectively to describe actual physical processes,
perhaps because atoms, being dominated by a fixed central
Coulomb field, are less Quid-like than nuclei.

[Note that in combination with the continuity equation
(5), (8) is equivalent to the requirement that the di-
vergence of the velocity field vanish, & v —-0 where-
ever pWO. ] More specifically, the notion of static in
compressibility, which simply states that the volume
occupied by the total nuclear mass remains constant,
is not sufficient to guarantee that the dynamical flow in
nuclei is incompressible. In particular, a given amount
of matter may be contained in a given volume and that volume
may change its shape in such a way that the average
density over the volume remains constant; still the
flow pattern may be compressible, since small density
ripples in the system may flow from place to place re-
sulting in local variations from regions where the den-
sity is increasing (compression) to other regions where
the density is decreasing.
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level b
HOW lVIASS FLOWS AT CROSSING D. Analogy with Strutinsky shells

level aIo~
node of fa node of yb

We have schematized the levels "a" and "b" as single-
node states, "&" having a node along the x axis, and
"b" a node along the y axis. When the wave function
adjusts by remaining in the lower filled level then the
mass flow pattern near the crossing is a compressible
flow pattern: the divergence of the irrotational veloc-
ity field is represented schematically in the ellipse at
the center of Fig. 8, where the sign of the divergence
is positive in the region where level "a" has a maxi-
mum and level "P" has a node, and negative where
the level "a" has a node and level "b".has a maximum.
Thus one can see that when particles are adjusting to
crossings of levels at the top of the Fermi sea, then
the flow is compressible.

Just such compressible flow at level crossing (Griffin
and Ken, 1974) is of overwhelming importance for the
inertial parameters associated with nuclear shape vi-
brations. When one estimates (Griffin, 1969b; Primack,
1966) on the basis of the cranking model just how much
such crossings contribute to the inertial parameters for
quadrupole deformation, the contribution on the average
is 1000 times the value of the inertia for incompress-
ible irrotational flow when the particles are taken as
completely independent particles, and still ten times
that value (Griffin, 1971) for systems paired with rea-
sonable pairing strengths.

Thus one concludes that in either case the effects of
compressibility on collective nuclear inertia are sub-
stantial and are dominated by the rearrangement of the
last few nucleons. A natural corollary is that, since
in each nucleus the inertial parameters will be strongly
affected by the details of level crossings near the Fermi
sea, then the inertial parameter for each nucleus is a
unique function specifically associated with the parti-
cular structure for its own values of (N, Z). It there-
fore follows that when the nuclear flow is finally sub-
jected to a complete dynamical analysis, one must ex-
pect at the most detailed level to treat each nucleus as
separate and distinct. Then indeed each of the 2000
nuclei in the periodic table must ultimately be con-
sidered a distinct dynamical fluid.

Pat tern of V - v near crossing

FLOW I S COMPRESSIBLE
FIG. 6. Adiabatic adjustment to the lower state +I at a cross-
ing leads to compressible flow of nuclear Inatter.

The analogy between this inertial effect of compress-
ibility and Strutinsky's (Strutinsky, 1968; Brack et al. ,
1972) generalized shell correction for potential energies
is close. Both effects arise from the properties of a
few nucleons in levels near the top of the Fermi sea, .
In the Strutinsky-potential-energy case, the crucial
question is whether those levels are closer together or
further apart than the smoothed average level density. '

For inertial parameters the question is instead
whether the level crossings occur more frequently or
less frequently. In both cases one obtains for each
nucleus at each shape a specific correction to the col-
lective potential energy on the one hand or to the in-
ertial parameters (collective kinetic energy) on the
other. Thus whether nuclei are viewed as static ob-
jects, whose collective properties at any shape re-
quire knowledge only of a potential energy, or as dy-
namical objects, whose inertial parameters are also
crucial for the description of their motions, one comes
to the conclusion that each nucleus is a separate and
unique object exhibiting its own specific and distinct
finite-particle- number properties. These, of course,
are expected to diminish, relatively, in importance as
the number of particles becomes very large. But for
nuclei they still exert a significant influence.

E. Every nucleus a fluid of its own

The conclusion then emerges that nuclei offer a unique
testing ground for the ultimate theories of fluid dynam-
ics for two reasons: (a) that nuclei promise to be the
first many-body systems which will be microscopically
analyzed from first principles and (b) that since nuclei
do exhibit these distinctly finite-particle-number ef-
fects, each offers its own specific test for a dynamical
theory. Thus altogether nuclei may offer a much richer
field for testing fluid dynamical theories than do sys-
tems with infinitely many particles, where no such idio-
syncratic properties are expected to demand explanation.

II I. NOVEL VIEW OF QUANTUlVl PHYSICS VIA
THE SINGLE-PARTICLE SCHRODINGER FLUID

In this third part, we exhibit some grounds for ex-
pecting that the single-pa, rticle Schrodinger fluid (Kan,
1975; Kan and Griffin, 1976) ean suggest useful new physical
characterizations of time-dependent quantal systems.
Specifically, velocity fields arise naturally therefrom,
and lead, in turn, to novel expressions for such phys-
ical quantities as collective kinetic energy, etc. We
believe that the importance of this lies not in the sev-
eral results already obtained, but in the promise that
new expressions, from anew viewpoint, forbasicphys-
ical quantities, can allow us the opportunity to perceive
relevant new insights which, although complicated in
the old language, might be substantially simplified in
the new.

Indeed, the fluid dynamical interpretation of quantal
systems has already led to at least one spinoff idea not

For a schematic discussion of Strutinsky shell corrections,
see Griffin (4 969a).
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immediately connected with the context in which it first
arose: the nonlinear Schrodinger equation for friction
(Kan and Griffin, 1974a, b). This description a.rises
naturally when one considers the fluid dynamical inter-
pretation of one-dimensional problem. We shall dis-
cuss it in more detail in Sec. IV.

B. Regular velocity

In addition to the irrotational velocity field, which
alone is uniquely prescribed by the exact wave func-
tion, other velocity fields, which solve the continuity
equation under various selected conditions (Kan, 1975;
Kan and Griffin, 1976) also can be introduced naturally
into the time-dependent description of the single-par-
ticle Schrodinger fluid. One such field is the "regular
velocity field" v~, which is prescribed to solve the con-
tinuity equation but to have no singularity in the finite
space i.e. ,

p& v~+ v~ &p= —&p/Bt. (9)

As an example, for pure rotations the regular velocity
field is simply

vz ——0 x r, (10)

where 0 is the rotational angular velocity vector, and r is
the position vector. This regular field is just the famil-
iar velocity field for rigid-body rotation about an axis.
In this case, it is obviously regular everwhere. (It is
also, incidentally, an incompressible flow field in this
case. ) Other useful velocity fields are discussed in
Kan (1975) and Kan and Griffin (1976).

C. Coliective kinetic energy

We mention these two particular velocity fields just
to be able to exhibit the fact that the collective kinetic
energy of the single-particle Schrodinger fluid assumes
an especially simple form (Kan, 1S75; Kan and Griffin,

A. Irrotational velocity

Already in Eq. (4) we find the first velocity field given
by the gradient of the phase, v~ =-VS. This field inevi-
tably arises in the problem of the single-particle Schro-
dinger fluid. Since it is a gradient almost ever'ywhere,
its curl is almost everywhere zero, and we refer to it
as the irrotational velocity field, v. It leads naturally
to a current given by the density times that irrotational
velocity field, J= pv~, which current obeys the continu-
ity equation.

One especially interesting property of this irrotational
velocity field v~ (which, we emphasize, is uniquely pre-
scribed once the wave function which solves the Schro-
dinger equation is known) is that it is not so simple as
one at first thinks, because it may exhibit line vortices
wherever the wave function has a zero. Thus, if the
solution of the time- dependent Schrodinger equation van-
ishes somewhere, then singularities in the velocity po-
tential (which itself is not a physically observable quan-
tity) may occur there. These singula. rities violate no
physical principles, but do allow a rich structure to
exist in the irrotational velocity fields which occur in
the single-particle Schrodinger Quid. FIG. V. This figure, together with several subsequent figures

(8, 12, 16) attempts to portray in the fluid dynamical imagery
(Kan 4975 Kan and Griffin, 4976) of the wave functions 4'=u
+ iOv for single particles in a rotating, deformed simple har-
monic oscillator potential. Here u and v are real, and the
lines are equiamplitude contours for a particle in the
(N„,N, N )=(0, 0, i) state. The upper figure portrays u; the
lower, v. In this and subsequent figures (8—16), the con-
tour values shown are in arbitrary relative units.

1S76) when one rewrites it in terms of these two vel-
locity fields, v and v~. The general expression for
the kinetic energy is

K &&= p BS Bt d7.

After some algebraic manipulation, one obtains the re-
sult

1K„»——— pv .v„d~ in general (12)

pv Qxr (13)

The hope of connecting Eq. (13) with the well-known
fact that la.rge (Amado and Brueckner, 1S59), smooth

through terms quadratic in n. Thus the kinetic energy
is described simply by a volume integral of the density-
weighted scalar product of the irrotational with the
regular velocity field. [Note that the result (12) is iden-
tical with the corresponding single-particle contribution
to the cranking model (Inglis, 1954; Belyaev, 1959)
inertia. ] For rotations, the simple form (12) becomes
even more intriguing because of Eq. (10)

Rev. Mod. Phys. , Vol. 48, No. 3, July 1976
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1 (

FlG. 10. The collective kinetic energy density pve ~ (Qxr) of
Eq. (io) in text, is shown as a function of position for the slow
rotation of Fig. 8 and 9.

simple and symmetric quadratic form involving, not,
as in the classical case, the square of one single veloc-
ity, but instead the scalar product between two distinct
velocities, each of which arises naturally out of the
description. Although the physical content of Eq. (12)
goes no further than the cranking model so long used in
nuclear structure physics, one hopes still that it offers
an opportunity for new insight and development.

FIG. 8. For a slow rotation of the potential (0 small), the
magnitude C, and phase S, of the wave function 4, of Fig. 7
are displayed, in the upper and lower figures, respectively.
Note that the lower figure exhibits a phase S which, as a veloc-
ity potential, describes a velocity field v~ = —V'S with stream-
lines encircling the x axis (the only line vortex in this field) in
a counterclockwise dir ection.

(Migdal, 1959), or special (Bohr and Mottelson, 1955)
systems rotate with rigid-body kinetic energies

D. Single-particle Schrodinger fluid: Some details

Several figures, 7—l7, exhibit calculations of some
of the fluid dynamical properties of simple single-
particle Schrodinger fluids: the real and imaginary
pa, rts (Fig. 7), the magnitude and phase of the wave
function 4 (Fig. 8), the local decompression, P'. ve (Fig.
9), the collective kinetic energy density, pv ~ (0 x r)
(Fig. 10), and the dynamical modification potential, —m

= —m(BS/Bt —~ Pe) (Fig. 11) which occurs in the modified
Schrodinger equation of state, Eq. (7), and whose
gradient provides the accelerative force in the Euler
equation (Gb), are all shown' for the rotation of the sim-
plest nontrivial simple harmonic oscillator (SHO) wave

T= p Qxr (14)

is irresistible.
Thus one finds for the kinetic energy a remarkably

z

Y

FIG. 1i. The "dynamical modification potential, " —co= —I [(BS/
Bt) —2v], of Eq. (7) in text, weighted by p, is shown for the
slow rotation of Figs. 8 and 9.

FIG. 9. The divergence V' ~ v= —V' S, weighted by p, of the ir-
rotational velocity field defined by the phase S in Fig. 8, is
shown as a function of position. Since a nonzero divergence
implies compressible flow I(by Eq. (8)), we refer to the quan-
tity —V' v as the "local compression. "

The local decompression, V' ~ v, and the dynamical modifi-
cation potential, —cu, shown in Figs. 9, if. , 13, and 15 are
weighted by the density, p, in order to remove the singularities
in these quantities.

Rev. Mod. Phys. , Vol. 48, No. 3, July 1976
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II' =II, + qs

implies that in ihe classical limit the potential forces
F~ will be augmented by a frictional force F&

F= Fp+ F~, (16)

where

the irrotational velocity potential for the wave function.
That is,

FIG. 46. The phase, or velocity potential S in 4 =4 exp[—(iyyy/

6)S], is displayed for a more complicated single-particle func-
tion (Nz &Ny&Nz) = (i, 1. , 2) than that of Figs. 7—15. In this case
seven line vortices occur, as compared to one in the
(N, N, N ) = (0, 0, 1) case.

imaginary potential, one needs instead a wave func-
tion whose probability integral is constant but which
describes a motion, the magnitude of whose oscillations
diminishes with time.

Some time after this fluid interpretation had been
developed, we realized that the velocity potential of-
fered an opportunity to solve this problem very simply
(Kan and Griffin, 19 t4a, b). We here briefly summarize
the solution, which leads to a nonlinear equation sim-
ilar to that which Kostin (1972) had discovered earlier
in studying descriptions of Brownian motion by quantal
Langevin equations.

Consider a one-particle Hamiltonian II0. Upon add-
ition of a constant multiple of the velocity potential,
S, to the one-particle Hamiltonian II0, one insures that
in the classical limit (where gradients of the potential
term in the Hamiltonian define the forces) he obtains a
classical force proportional to the negative gradient of

(H) =(e,)=(T+ v). (19)

The resulting nonlinear time-dependent Schrodinger
equation is

i A4= HN= [H, + (qh/2im) (in@/@* —(in4/4")) ]@. (20)

The equation is remarkable in that, although it is a
nonlinear equation, it does not violate probability con-
servation, as in general one must expect nonlinear
equations to do. The reason: Its nonlinear term de-
pends only on the phase, and not on the magriitude, of
C. Moreover, for the ease of a zero-order Hamiltonian
which describes a particle in a simple harmonic oscil-
lator well, this wave equation exhibits exact, closed-
form solutions

Ff ——q&S = —yves,

is proportional to the negative velocity of the particle.
Of course, when a wave packet is being used to de-

scribe a localized, classical particle, such a force is
proportional to the negative velocity of the particle it-
self, as required by the correspondence principle.
Thus addition of the velocity potential to a Hamiltonian
guarantees in a classical limit exactly the kind of fric-
tional force desired.

The second step in constructing the equation is then
to add a counterterm to cancel the expectation value of
the velocity potential (which, after all, is not to be con-
sidered physically as an energy) in order not to alter
the usual relationship between the expectation value of
H and the expectation value of T+ V. Then one has for
the Hamiltonian

H =II, + qs q(s)

which, ' by construction, guarantees that

e= (t„[x—4 (t) ]expilxP (t)/0 —g „(t)],

where $„(x) is any eigenfunction of H„and

(21a)

X'(t) = 2C,[exp(—yt) ]cos(~t —6), (21b)

P(t) = —mK, [exp(—yt)][csin((dt —6) + y cos(ut —6)],
(21c)

(21d)

FIG. 17. The streamline pattern implied for v by the velocity
potential of Fig. 16 is displayed. It is remarkable how intri-
cate it is, even for a pure rotation of such a simple,
(N„,N, N ) = (1, i, 2), single-particle wave function.

We note that the use of the word "Hamiltonian" as applied
to an object like II in Eq'. (48) is worth some discussion (Amiot
and Griffin, 1.975). One can say for nonlinear problems like
the present one at least that each operational implication of
such a name ought to be inspected closely before utilization.
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2 2 2
CO = (d

where

y= g/2m.

(22a)

(22b)

Fach of these solutions develops in time ultimately in-
to an eigenstate of the undamped Hamiltonian. More-
over, for such an eigenstate, the complex phase is con-
stant in space, so that the nonlinear frictional force
vanishes identically.

Thus this equation resolves in a very simple way the
question of whether such a frictional term ought or
ought not to operate on the zero-point velocities, which
are still finite in the quantum ground state. This par-
ticular nonlinear theory answers that question unam-
biguously: Frictional forces do not apply to the zero-
point oscillations of the particle, nor, indeed, to any
velocity not associated with a nonzero matter current
J. This answer is in our judgement an encouraging and
agreeable result for two reasons.

The first is the inescapable implication of the theory
that undamped solutions exist, at least in principle,
even for arbitrarily high excitation energies. At first
we considered this a puzzling and disturbing result.
But when viewed from the background of the many-body
problem out of which the quantum time-dependent
frictional equation (20), obtained by inserting (18) into
the time-dependent Schrodinger equation, purports to
describe just one degree of freedom, these excited
stationary states find a natural role as reflections in
the reduced subspace, of the normal mode eigen-oscil-
lations of the many-body system. They assert the very
plausible claim that, if the many-body system is care-
fully prepared at t= 0 to be in a well-defined stationary
excited state (i.e. , in a normal mode), then the pro-
jection of that state onto the one-dimensional subspace
described by Eq. (20) will also oscillate without damp
ing. Of course, the spectra of such stationary states
will hardly be so simple as that of the present pure
oscillator model. " Nevertheless, a plausible physical
content seems to exist in these unanticipated stationary
solutions of Eq. (20).

In addition, the vanishing of frictional forces in sta-
tionary states resolves certain paradoxical implications
of alternative descriptions, especially the occurrence
of solutions which, as t-~, grow narrower and nar-
rower in the physical momentum space (Kanai, 1948;

One might reasonably conjecture more: That the "best"
solution to such a reduction problem may not be universal, but
may vary with the properties of the underlying many-body sys-
tern. Then many different "theories" of quantal friction might
be "correct. " Hasse (1975a) lists three possible one-dimen-
sional forms for nonlinear frictional Hamiltonians which he
(1975b) and others (Snssman, 1974; Albrecht, 1975) have
studied.

These describe the damped oscillations of wave pack-
ets whose internal structure may correspond to the
amplitude function of any eigenstate of the undamped
simple harmonic oscillator Hamilton ian IIO. The oscillation
frequency is shifted slightly from the oscillator fre-
quency co„exactly to the value which applies to the
classical damped oscillator

Britten, 1950; Bopp, 1962). We note that this agree-
able feature of Eq. (21) is essentially connected with its
nonlinearity; as the state approaches a stationary state,
the frictional force is able to diminish to zero only be-
cause of its dependence upon +.

Having such a description for the one-dimensional
friction problem, one naturally wonders whether it can
be applied to nuclear problems" and generalized to the
more complicated problem of describing the processes
of nuclear viscosity. The answer to this question is
open, but our attitude toward it is optimistic.
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