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This is a review of the salient features of high energy diffraction scattering of hadrons. It begins with a
summary of the experimental situation for those processes which persist at very high energies —the
diffractive processess —and defines the underlying exchange mechanism called the Pomeron. A review is
made of the key features of the multiperipheral model, since it lies at the beginning of all studies of
diffraction. Its virtues and blemishes are exposed. Then we turn to various models which attempt to add
unitarity to the multiperipheral model. From the point of view of the direct channel we consider absorptive
models, eikonal models, and the multiperipheral bootstrap. The t channel is taken next, and an exposition
of the formulation and major results of Reggeon field theory is given.

"Etfut une diane parole de Julius Brusus aux ouvriers oui lui offraient pour trois mille
ecus mettre sa maison en tel point que ses voisins n'y auraient plus la vue q'u'ils y avaient:
'Je vous en donnerai, ' dit-il, 'six mille, et faites que chacun y voie de toutes parts. '"

de Montaigne, M. (1585 88), —
"Du repentir»
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I ~ INTRODUCTION
A very striking phenomenon in the collision of strongly

interacting particles (hadrons) is the existence of cross
sections which are almost independent of the incident
energy. Several examples are shown in Fig. 1 (Kycia,
19I4) and included is the proton-proton total cross sec-
tion which has been measured from threshold up to
equivalent laboratory momentum =1.5 &&10' GeV/c at the
Intersecting Storage Ring (ISR) at CERN. Cross sec-
tions which remain constant or perhaps grow slowly

with the square of the center-of-mass energy s are
called diffractive. This alludes to the coherence nec-
essary among the multitude of final states allowed in a
large + collision in order to produce a cross section
which does not decrease rapidly with a An excellent
example of nondiffractive collisions is pion-nucleon
charge exchange (Barnes et al. , 19'l4): w p- m'n, which
has been measured up to laboratory momentum -150
GeV/c. The cross section for this process behaves as
s ' and becomes very small very quickly (Fig. 2). At
100 GeV/c, for example, it is 3.3 pb compared to 20-40
mb for typical diffractive cross sections.

This review is concerned primarily with the theoreti-
cal work on the problem of diffraction processes. We
will begin with a theorist's eye view of the experimental
situation and attempt to identify those aspects of dif-

fractivee

reactions which are amenable to theoretical
discussion now and which, equally interesting to be
sure, require further and deeper developments. From
this discussion we will extract the following signals of
diffraction (Leith, 19'?4):

A. Cross sections (total, elastic, inclusive) are in-
dependent of energy up to powers of log%

B. The amplitude for diffraction scattering is mainly
imaginary.

C. Diff raction amplitudes factorize. This means the
ratio of amplitudes for AB A'&' and for C&-C'B' is
independent of & and &'. Formally one writes for the
AE-A'B' amplitude T

&(&&-&'&') =(a'~~ ) (gsa )

&factors independent of A, A', &, or &'

D. In the differential cross section do/dt as a function
of four momentum transf er, t, there is a sharp forward
peak. The evidence is that this peak becomes sharper
as the energy & increases.

E. If diffraction is viewed as mediated by an exchange
between hadrons, the exchanged object carries thequan-
tum numbers of the vacuum (I=O, P=C =+, . . . ),
effective spin of one.

F. At the vertices AA'-exchanged object or &&'-ex-
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FIG. 2. The measured cross section for vr p —7r n (called
0.CFX). The references on the figure may be found in Barnes
et ~l. (f974) from whom the graph has been taken. s ~pl, b .
Compare the rapid fall off of this crass section with the slow
variation of the total cross sections.

FIG. 1. The measured total cross sections for Tt', A', p and
p incident on protons. The references on the figure may be
found in Kycia (f 974) from whom the graph has been taken.
S P lab

changed object the rule PA=PA (-1) A ~A' where PA
is parity, and J& is spin, seems to hold.

G. The cross section for particle + target is equal to
the cross section for antiparticle + target.

With these phenomena in mind we will proceed to the
theoretical side of our discussion. Theories divide
more or less neatly into two viewpoints: (1) The s-
channel view and (2) the t-channel view (Fig. 3). These
views are represented in Fig. 3 where the collision
AR-A'&' is portrayed. The total collision energy
(squared) in the center-of-mass frame is s=(pA+ ps)'.
The four momentum transferred is t=(PA —P„)'. For
proton-proton scattering the physical range of s and t
are s& 4m~, —s& t & 0. In diffractive processes s be-
comes large, while t remains finite and small.

Viewpoint (1) looks in the direction of s and concen-
trates on the detailed production mechanisms occurring
as intermediate states in the transition from initial to
final states. In Fig. 4(a), for example, we show the
initial A& becoming the final state A'B' via an inter-
mediate state of %=8 particles. The s-channel view-
point must treat these intermediate states for each N.

Viewpoint (2) looks in the direction of t and concen-
trates on the possible set of exchange mechanisms
which may mediate the diffractive scattering. In Fig.
4(b) a wiggly line is shown as representing this ex-

we see that energy independence (up to logs) requires
J =1. The t-channel viewpoint is thus concerned with
the spectrum of possible exchanges with angular. mo-
mentum in the neighborhood of J =1.

In each of these points of view unitarity plays a key
role. We can see this directly in the s channel by look-
lllg at 'tile 11111'tal'lty 1'ela'tloll fol' TAS~A~S 1(s» t ). Tills

t= ( PA- PIIr)
t- channel

'=(p~'ps) 2

s-channel
Bl

In diffraction
S = CO

t held fixed

FIG. 3. The two body —two body collision AB A'B'. When
the quantum number s of the vacuum (I = 0, 5' = G =C =+ 1, . . . )
are allowed in the t direc tion, then we have cross sections
which are almost constant in s far fi~ed, small I, as s —~.
This is a key signal of diffractive processes.

change. If the wiggly line carries angular momentum J,
then the amplitude T is approximately

TAS~A s (sq t) s gAA'(t)g (sts)
+~OO
t fixed

Since the total cross section for A&-anything is given
by the optical theorem as

VT (s) ~ ™AS~As(S~0)AB 1
s

Rev. Mod. Phys. , Vol. 48, No. 3, July 1976



Henry D. I. Abarbanel: Diffraction scattering of hadrons 437

A A A

exchange

si

phase
space

exchange

sl I—s

(a)

B'

(b)
B

FIG. 4. (a) The s-channel point of view in looking at the dif-
fraction amplitude of Fig. 3. One examines each N particle
intermediate state. (b) The t-channel point of view in looking
at the diffraction amplitude of Fig. 3. One characterizes the
s dependence by the allowed exchange mechanisms. Diffraction
requires the effective spin of the exchange to be one.

gives the imaginary part of T in terms of a sum over
all possible intermediate states compatible with con-
servation laws.

ImT&s~~. ~, (s, t) = Q T~~~~ TA'8'~~ (4)

A A

as portrayed in Fig. 5. The imaginary part of T» ~ is
itself linked via unitarity to T» & ~ and a large num-
ber of other states since (symbolically to be sure)

ImT ~ TQJ3 + T
N

So via unitarity all states which can communicate with
each other are linked together. Since the s-channel
viewpoint focuses on the T~ ~ as building blocks and
these are, connected via the nonlinear unitarity relations
to the amplitudes of interest, the complexity of the scat-
tering problem from the s-channel point of view is im-
pressive. Fortunately the number of important inter-
mediate states appears to grow only as logs (Giacomelli,
1974) rather than as Vs which is permitted by energy
conservation alone. Nevertheless, logs is 8 at the high-
est- available energies, so multiparticle states and the
resulting kinematical complexity is an issue. We will
discuss the techniques used to study these questions.

In the t-channel point of view unitarity rises to im-
portance because of the possibility of rnultiPle exchanges.
In Fig. 6 we show the wiggly line of Fig. 4(b) being ex-
changed twice. Just as multiple particle states in the
s channel give rise to an imaginary part of T and link
many amplitudes, so do multiple wiggly exchanges give
rise to imaginary parts of T, and these are linked by
unitarity. The appropriate form for the unitarity rela-
tion when viewed through the t-channel is in terms of
t-channel partial wave amplitudes. The question of
multiple exchanges becomes crucial in diffraction phe-

FIG. 6. Double exchange of the wiggly line of Fig. 4(b) with
effective spin =1. Each exchange contributes a power of s
while the integral around the loop contributes a power s
The net amplitude behaves as s which is the same order as
the single exchange in Fig. 4(b).

nomena because the effective angular momentum of the
wiggly exchange is one. When we exchange this twice
we have a factor s"' from the product of the exchanges
and a factor s ' from the loop integral implied in Fig. 6.
The net amplitude is s' which is the same order as the
initial process in Fig. 4(b).

Unitarity, being nonlinear, is a difficult constraint to
impose on a theory. One sure way to achieve it is to
write a quantum field theory for whatever processes are
deemed important and then solve it. Well, that's a fairly
tall order. In the case of the s-channel viewpoint, ap-
proximation techniques of one sort or another have bee'~
developed. For the t-channel outlook an effective field
theory has been developed which does enforce unitarity
(Abarbanel and Bronzan, 1974a, b; Gribov, 1968;
Migdal et al. , 1974). The other attractive enforcer of
unitarity (Chew, 1961) studies the analytic structure of
amplitudes and writes dispersion relations which con-
nect amplitudes and imaginary parts. This has proven
to be an inappropriate tool for investigating diffraction
scattering. Dispersion relations are powerful indeed
when the number of intermediate states is small. In
diffraction, viewed either from the s channel or the t
channel, the number of relevant amplitudes to be con-
nected by unitarity is always large. Other tools are
requir ed.

This review article is riot without bias. My preference
for the t-channel view will be reflected both in my em-
phasis during the discussion of theories and in the much
larger and more detailed presentation I shall give it.
The major portion of this review will be devoted to an
explanation of the developments in the t-channel view-
point which go under the names of Heggeon field theory
(Abarbanel and Bronzan, 1974a, b; Abarbanel ef al. ,
1975c; Migdal et a/. , 1974) or Reggeon calculus(Gribov,
1968). The Reggeon of paramount interest in diffractive
processes is that which carries vacuum quantum num-
bers and is pleasantly named the Porneron after the
Soviet physicist I. Ya. Pomeranchuk who first discussed
many of its properties (Pomeranchuk, 1958). From
either point of view (s or t) it is the Pomeron whose
properties we seek. As promised we begin with the
theorist's summary of the experimental facts.

B B B B

FIG. 5. The unitarity relation in the s channel. It relates the
imaginary part of the two body amplitude to the production
amplitudes T~

II. REVIElN OF THE EXPERIMENTAL SITUATION

In the introduction we made a list of the features which
signal diffractive processes. Now the proposal is to go
down this list and discuss each item. After presenting
each experimental aspect, I will say a few words about

Rev. Mod. Phys. , Vol. 48, No. 3, July 1976
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the ease or difficulty in interpreting that observation
theoretically. We emphasize that the Pomeron which
appears in total cross sections, elastic cross sections,
diffractive dissociation, inclusive processes —what have
you, where vacuum quantum numbers canbe exchanged-
is always the same Pomeron. So we are allowedto draw
on all these data to illuminate the properties of the
Pome ron.

] 0
o„(s)~

s (9)

d'o. (PP -A + anything) /vdy„dP'r (10)

is almost constant in s.
Finally we look at the cross sections for PP-A. +any-

thing with A =P, P, m', K' as shown in Fig. 8 (Giacomelli,
1974). Plotted here is the differential cross section

A. Energy independence

ar (s) =ImT~s(s, 0)/E' '(s, mz, ms),
where

(6)

b,(x, y, z) =(x+y —z)' —4xy

is the usual flux factor. If we make the ansatz

T~B(s, t) =s(logs) f„s(t),

(7)

(8)

The easiest measurement here is of total cross sec-
tions or (s) (Kycia, 1974). In Fig. 1 are shown the

(&) for collisions of A on protons with A. =P, P, m
' and

Over a wide range of beam momentum each of
these cross sections varies rather slowly. Each is
compatible with only logarithmic dependence on

2 Mp P] b after a correction term proportional to s
is removed. Compare this to the very dramatic de-
crease of the charge exchange cross section (Barnes
et al. , 1974) shown in Fig. 2.

How do we interpret this'P The total cross section is
related to the invariant amplitude T~~(&, t) for elastic
AB scattering via the optical theorem (Abarbanel et al. ,
197la)

for fixed momentum P2. of A transverse to the beam di-
rection as a function of the rapidity of A (De Tar, 1971),
when y& is near its maximum value. Rapidity is defined
as

3 2 Iog(@ +pll )/(+ pll )

where pII is the momentum along the beam direction, and
E=(P'r+P~~+I')' ' is the Particle energy. The cross
sections are given for Ws from =6.8 GeV [p„„
=24 GeV/cI to Ms=58 [P„„=1400GeV/cI. In each of
the se proc e s se s vacuum quantum number s can be ex-
changed in generalized t channels. The resulting con-
stancy of the cross sections is impressive.

The theoretical status of this energy independence of
cross sections or s' behavior of amplitudes is that there
is no fundamental explanation for approximate spin-one
exchange. There are many conjectures and many sug-
gestive formulae. We will see some of these. It is
true that if T„~(s, 0) -s" then the Froissart bound re-
quires n +1, and experiment saturates the bound. It is
hard to know what precisely to make of that. Recent
work in diffraction physics has retreated from "ex-
plaining" why n =1 and focused attention on the con-
sequences thereof; for example, if TA~(s, 0) -s "(logs)

with P small, we have a representation of the amplitude
which gives err (s) =(logs) . The Froissart bound
(Froissart, 1961a; Martin, 1963; Martin and Cheung,
1970) on the growth of &rr(s) limits P& 2. In terms of a
I-channel point of view, the amplitude (8) represents the
exchange of a spin-one object with a little bit of loga-
rithmic dependence.

As another example of cross sections becoming ener-
gy independent we look at the elastic cross sections
(Fermilab Single Arm Spectrometer Group, 1975; Leith,

. 1974) in Fig. 7. Again after the disappearance of a term
behaving more or less as s ' ' in the elastic amplitude,
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perhaps P is predictable given +=1. Caveats aside
there are suggestions, and we will come to them.

B. Diffraction amplitudes are almost imaginary

shown for proton-proton scattering from laboratory
energies of 1 to 1000 QeV. Note that in the neighbor-
hood of 120 Qe7 this ratio becomes positive, while re-.
maining small. If the cross section grows as (logs) s,
then analyticity arguments (Leith, 1974) tell us that

Figure 9 shows the best evidence for this statement
(Leith, 1974). The ratio p(s) =ReT(s, 0)/ImT(s, 0) is p(s) ——mP 1

2 Ipgs
(12)

Rev. Mod. Phys. , Vol. 48, No. 3, JUIy 1976
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for large s. So eventually p(s) must be small and posi-
tive for large s.

The imaginary nature of the diffraction amplitude
represents absorption out of the elastic channel. Indeed,
if the amplitude is purely imaginary, then in some loose
sense the competing inelastic channels have become as
strong as possible in soaking up probability. The imag-
inary nature of the diff raction amplitude can be con-
nected with a =1 and sufficient analyticity (Eden, 1967).
In several of the models to be discussed, notably the
multiperipheral model, it is also rather natural. We
may now update our ansatz (8) to exhibit the imaginary
amplitude

T~B(s, t) =is(logs) f~B(t)

near t=0. f&B(t) is real.

are superficially as important as the faetorized con-
tribution. Factorization is an important challenge to
theories of diffraction.

We give two examples to show the quality of factoriza-
tion in experimental results. Others are discussed by
Leith (1974). First, in the set of reactions AP-AP and
AP-AN*(1688) with A = m, IL, or P the ratio of these
amplitudes should be independent of A, if factorization
holds true. The process AP-AN*(1688) is called dif-
fractive dissociation and involves an energy independent
cross section and the other attributes of diffraction. In
Fig. 10 (Leith, 1974) is shown the ratio of the differ-
ential cross sections for these diffractive processes as
a function of t. The independence of beam required for
factorization holds remarkably well.

If this is the case, then

= independent of E, B'.
TcB c'B '( t) Acc'(t )

(15)

Furthermore this independence must hold for all s as a
function, of t. Clearly this is a stringent requirement.

Before revealing the evidence for factorization, a few
theoretical words are in order. If the wiggly exchange
diagram of Fig. 4(b) were correct, factorization would
be elementary. It would represent the locality of the
acts A -A'+wiggly and &+wiggly —&'. Indeed, if the
wiggly is an elementary particle or a simple pole in
angular momentum, one can demonstrate using unitarity
(Arbab and Jackson, 1968) that the amplitude must
factorize.

Alas for the simplest picture, multiple exchange
graphs as in Fig. 6 in general have no factorization but

C. Diffraction amplitudes factorize

As explained above this means that the amplitude for
the process AE-A. 'B' can be written as

TAB +A B (s 1 t ) —gAA'(t ) EBB'(t )

&&function of s independent of A, A', E, E'.
(14)
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FIG. 10. The ratio of the differential cross sections
Ap AN*(1688)/Ap Ap for A= 7r, K and p as a function of
t. The equality of these ratios is a test of factorization.
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diffraction to read

T~zz ~~s.(s, t) =zs(logs) g~~'(t) I"zzzzi(t) . (18)

D. The diffraction differential cross section has a sharp
forward peak which gets sharper as s increases

77 orK 77 orK

FIG. 11. On the left is the amplitude for vr {K )+p anything
+p. When this amplitude is squared the picture on the right
emerges. The ratio of 7I. p X+p and A p X+p cancels out
the little dragonfly of Pomeron and four protons and leaves a
number equal to O„„„,j{7r p)/O. ,„„.l(K p), independent of s, t,
and x.

do
(s, t) =

d (s, 0) exp[- b(s) I t I ], (19)

The most comprehensive measurements of elastic
cross sections are for proton-proton scattering. From
Fermilab and the CERN-ISR we have good data for .

s-100 (GeV)' up to s-3000 (GeV)' that show for I f I &0.15
(GeV/c)' that

Second we turn to the results of an inclusive experi-
ment at Serpukhov. The CERN-IHEP collaboration mea-
sured

with

b(&) =b, +2m'logjs/1 (GeV)']

and

(20)

(der/dtdx) (zz p-Ã+p) o'„,g(zz p)
(do/dtdx)(K p-X+p) v„,„(K p)

(17)

Integrating over t, the left-hand side here is 1.20+0.09,
and the right is 1.18 +0.04.

There are, as mentioned, several other (better) ex-
amples of factorization. I choose these two rather di-
verse examples to stress the point that Pomeron ampli-
tudes must factorize everywhere, not just sometimes,
since the same wiggly t-channel or s-channel object is
involved.

We may now further update our model amplitude for

K p- X„p {CERN-IHEP 1972)

v P-X+P and K P X+P
at beam momenta 25 GeV/c and 40 GeV/c. These re-
actions are shown in Fig. 11. If the Pomeron factorizes,
then the ratio of these cross sections should be inde-
pendent of beam, momentum, momentum transfer t be-
tween the protons, and x, the fraction of beam momen-,
tum carried off by the recoil proton. The experimental
results are shown in Fig. 12 (Leith, 1974). Indeed we
must have

and

b, =8.3 (Gev) ', (21)

12

IO

I I I I I I III

Q~
0 0

I I IIII

I I I I I I Il

o. ' =0.28 (GeV) ' .

There is other evidence for a shrinking of the sharp
forward peak in elastic diffractive scattering, but none
of it covers so large an energy range as the P-P data.
The most recent data comes from Fermilab (Fermilab,
1975) and is shown in Fig. 13 where the parameter b(s)
is given.

We must modify our model amplitude again to take
account of the shrinking peak

T„z3 „zz (s, t) = s"' (logs) g„~ (t) g» (t),
where a(t) =1+ cz't and g;,(t) falls rapidly with increas-
ing jtj. P here may depend on t; experiments are not
yet sensitive to it.
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a. function of x the fraction of beam momentum carried by the
recoil proton. The ratio of these cross sections should be in-
dependent of x, beam energy and t, the momentum transferred
between the protons. References to the data may be found in
I eith (1974) from whom the figure is borrowed.
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FIG. 13. The slope parameter b(s) in elastic scattering. The
elastic cross section is parametrized as do/dt = (constant)
x exp I

—2b(s)t] and the data shown is for t = 0.2 (GeV/e)
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E. Vacuum quantum numbers exchanged

The evidence here is simple to state. Any process
which carries nonvacuum quantum numbers in the t
channel has a cross section which falls rapidly (as a
power of s) in energy. A beautiful example is pion-nu-
cleon charge exchange which has I= 1, Q = 1, C = —1
quantum numbers flowing in the t channel. The dominant
~N amplitude is the spin nonf lip I=O t-channel amplitude.
It has an energy independent cross section and is dif-
fractive.

We may also examine the cross sections for the pro-
cesses K P-IY+(Nvn)sho'wn in Fig. 14 (Leith, 1974).
In the (Nwn')+ configuration there are enhancements in
the Nzn mass due to diffractive excitation of a nucleon
excited state. There are none in the (Nvv)' spectrum.
As Leith notes, this experiment is evidence for the
Q =0 and C =+I nature of the Pomeron.

There is no known theoretical "explanation" of vacu-
um quantum numbers for the Pomeron. However, from
the t-channel exchange viewpoint it has been shown
(Pomeranchuk and Okun, 1956) and generalized (Amati
et al. , 1964) that if amplitudes are dominately imag-
inary, then exchange of vacuum quantum numbers gives
larger cross sections than exchange of nonvacuum quan-
tum numbers. Of course, they could both have the same
s dependence but the vacuum exchange the larger nu-

acuum Quantum
Numbers Dominate

FIG. 15. An exchange of quantum numbers along the wiggly
line connecting particles rapidly moving by each other re-
quires radiation as the wiggly line rapidly changes its momen-
tum. This decreases the cross section into the channel shown.
When vacuum quantum numbers are exchanged, no radiation
need occur.

merieal amplitude. It seems profitable to set aside this
issue and accept for the moment that vacuum quantum
number exchange amplitudes is where we look for ener-
gy independent cross sections.

There is a little analogy which is useful, if not rigor-
ous, in helping to understand how vacuum quantum num-
ber exchanges might remain larger than nonvaeuum
quantum number exchanges. In the wiggly exchange
graph of Fig. 15 we can imagine a flow of some current
(isospin current, charge current, . . . ) along each line.
If the current must carry charge or isospin or whatever,
then the quantity carried must accelerate very rapidly
to go from the direction of travel of particles A and A '

to the direction of travel of particles B and &'. In this
acceleration, stuff is radiated as in electrodynamics
when charge is accelerated. The faster A and & pass
by each other, the higher s is, the more rapid the ac-
celeration of the quantity must be, and the more radia-
tion of the quanta of the stuff must occur. Radiation of
quanta opens up more channels for the scattering to go
into and dec&eases the amplitude in the AB-A'E' chan-
nel. Only if the quantum numbers of the vacuum are
carried across is nothing accelerated, and there is no
accompanying amplitude decreasing radiation.

O IOO—

O

O 50—

1470 .

I
—K {I

~+ ~- )+

F. At the vertices A ~A'+ Pomeron, the rule parity of
A = parity of A'X { 1)(spin ot&i-(spin o&A'i holds

This is at best a rule (Leith, 1974) which has no sub-
stantial theoretical footing but seems to be empirically
true. To study this rule one must examine the overlap
of the wave function of A with the wave function of A'
with the operator which represents the emission or ab-
sorption of the Pomeron.

g~~ ~ Qg (Pomeron operator) g„. (24)

0 I

(b)

0

n the reaction KN —K(¹r7r)
References to the data will

the figure is borrowed.

I 2
B~vr EFF MASS {GeV)

FIG. f.4. Mass spectrum for
at beaxn momentum of 10 Ge
be found in I eith (1974) from

The theoretical lack of knowledge about the hadronic
wave functions itI& is legendary; the same holds for the
Pomeron operator. It is my opinion that keen insight
into the structure of hadrons will be necessary before
one ean address the spin-parity rules for the A-&'—
Pomeron vertex. It is an important problem which will
not be touched on further in this review.

G. The cross section for A8equals the cross section for A8

In Fig. 16 (Leith, 1974) are shown data for the total
cross sections Ap with A = z', K', p' Bnd the K'n total
cross sections plotted versus (P„„) ' ' for P„„up to 25
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FIG. f.7. The exchange of a spin J&, mass ynJ, resonance in
the s channel.
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Multiperipheral scattering amplitudes are generaliza-
tions of the exchange proc e s se s familiar from quantum
field theory (Drell and Hearn, 1966). Suppose we have
two-to-two scattering of spinless equal mass (m) parti-
cles. At low energies the amplitude for this will be
dominated by resonances when they can occur. These
are poles in s (Chew, 1961; Eden, 1967; Frautschi,
1963) (Fig. 17)
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T(s, t)= P

R
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FIG. i6. Total cross sections plotted versus (P&,b) showing
how particle and antiparticle cross sections approach each
other as s o=

p& b . Data is referred to by Leith (1974)
from whom the graph is borrowed.

GeV/c. Each of the pairs AB and A.B become equal at
very large P„„. Since the difference between the A&
-A& amplitude and the X&-A.& amplitude is.some non-
vacuum quantum number exchange, these data are con-
sistent with the remarks above.

This ends our review of the experimental situation in
diffraction scattering of hadrons. For more detail the
lectures of Leith (1974) from which we have generously
drawn should be consulted. We turn now to the theoret-
ical structure which has grown up around and with these
experimental results. First we look at the s-channel
viewpoint and then examine at some length the t-channel
point of view.

where the resonance is at the (complex) value M~. The
center-of-mass scattering angle 8, is related to t by

t = —2(& j4 —m') (1 —cosg,), (26)

with

ts= —2 —-m' (l-cosg, ) . (28)

Now for fixed t and s- ~ which is the limit we are con-
cerned with, . each term in Eq. (27) behaves as s &. A
finite sum of t-channel resonances will give amplitudes
growing faster than s', if any of those resonances has
J& &1. Such a growth violates the Froissart bound, not
to mention experiment. Does this mean we cannot allow

and the spin 4„of the resonance enters via the Legendre
polynomial I'» .

When the energy s is increased, one leaves the reso-
nance region and cross sections become very smooth.
The number of partial waves is about (Vs) &&(impact pa-
ra.meter =1 F) and becomes quite large. Now a finite
set of resonances give an amplitude which falls as s '.
Diffra. etive amplitudes rise approximately as s' a.nd
charge exchange amplitudes as s', so a. finite set of
s-channel resonances cannot be enough.

In field theory (Bjorken and Drell, 1964) one may also
exchange resonances in the t channel as in Fig. 18 giving
rise to the amplitude

Pz (cos Ht )
(27)

R

I I I. BASIC THEORETICAL IDEAS

Almost all thinking about high energy scattering at
small momentum transfer is an extension in some form
of the multiperipheral model (Abarbanel et al. , 1971a;
Amati et al. , 1962; Bertocchi et al. , 1962; Fubini,
1963). Diffraction scattering is no exception. We will
review here very briefly the fundamentals of multi-
peripheralism, its key content, and its major implica-
tions.

FIG. 18. The exchange of a
spin Jz, mass mz resonance
in the t channel.

S MR

0 ZR
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Tp
mass m

spin 0

FIG. 19. The simplest periph-
eral amplitude approximation
to elastic scattering: ex-
change of a spin-0 particle in
the t channel.
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Ni' Q I

Pj

Pp

PN-I
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resonances with spin & 1? No, it means that a finite set
of resonances won't do, and the sum in Eq. (27) must
diverge. More of this later.

The peripheral model (Drell and Hearn, 1966) in its
crudest form approximates the t-channel resonance sum
by the term with the lowest mass or longest range in
impact parameter (thus the name peripheral). This
term is usually the pion or another (fictitious) spin 0
meson giving the peripheral amplitude (Fig. 19)

TI,(s, t) =g (~ —t ) (29)

In itself this amplitude won't do. It is pure real and be-
haves as s'.

The multiperipheral model (Fubini, 1963) attempts to
approximate the imaginary payt of the AE-A'&' ampli-
tude by making a peripheral amplitude ansatz for each
possible t-channel-like exchange. The unitarity relation
(4) (Zachariasen, 1971) gives ImT(s, t) as

ImT» A'B'(PA +Ps PA' +Pe')

FIG. 20. The most elementary multiperipheral approximation
to the 2 N production amplitude: single particles are pro-
duced by the repeated exchange of a spinless particle in the
t; = Q; channel. More complicated multiperipheral models
have clusters of particles produced with total momenta p, and/
or more elaborate exchanges in the t; channels. When such
augmentation does not change the smoothness" of the poten-
tial K [Eq. (33)], much the same consequences follow.

If we call A =ImT(P~ +Ps —P„+Ps ) and the propaga-
tors (I' —Q', ) '(m' —Q,") ' = Go, we may cast (33) into
the symbolic form

(35)

which reveals it to be just the Schrodinger equation
(well, really the Bethe —Salpeter equation), for two par-
ticle scattering in the t channel. This equation can be
partly diagonalized by the Mellin transform (Abarbanel
et al. , 1971a)

A((, t) = J dss ' 'A(s, t)
so

whose inverse

d'p, .

(2 ), 2'~ (2w('5' p~+p —Q(',).
N= 2 j=1 j=1

(36)

x T„s «(p~+p~ -p, ~ ~ .P«)

xT~,s, „(p„.+p~ -p, ~ p«) .
C+4 ~

A(s, t) = ' . s'A(l, t)
C 4 Oo 7TS

(37)

T» ~«(PA +PB Pl P«) 2m jj= 1

where

Now one makes a peripheral approximation to T»
(Fig. 20)

represents A(s, t) as a "sum" over powers of s. What
we have done in this transform is trade off the variable
logs for its conjugate variable l. (Conjugate because
s' is e'"g'. )

The resultingequation is togo dimensional, and if we
assign two vectors to each momentum (Fig. 22), we are
able to write

Q, =p~-p, —' ' ' —p; (32)

and is the momentum transfer between links along the
particle emission chain.

In the peripheral approximation T» ~ is related to
T» „,by multiplication with g/(I' —Q'«, ), so one
may write a recursion relation for ImT» „s (Fig. 21)

A (l, t ) =A(/, p, q, k)

=K(l, p, q, k)

+ d'P'K(l, p, q, k') Go(p', q) A(l, p', q, k), (38)

ImT(PA +PB PA' +PB') (PA +PB PA' +Pe ') where t= —[q('. The equation is two dimensional be

with

d Q,d Q( & (Q, —Q,' —p~+p~. )

"~(p~ —Q, —p~ —9,')

xlmT(Q, +P~ - Q,'+P~.), (33)

A

A A

Q~ l(t' i& Qj

B

A

~(pA +ps pA' + pB ') +g ((pA +pa) ™0) (34) FIG. 2i. The multiperipheral integral equation.
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t=-tq~—2

q/2-p q/2-k' B' q/2-p

+
Q

q/2-p

q/2+p'

q/2- k If n(t) ~1 for /&0, then this result of the multiperiph-
eral model answers most of the questions we ask about
high energy scattering. Furthermore, if we find an n(/)
such that o. (0) =1, then we have a total cross section
which is constant since by the optical theorem

q/2+p q/2+k q/2+p q/2+ k 1D" (s)- —A(8, 0) =s""' 'P (o)P (o). (46)
FIG. 22. The partially diagonalized multiperipheral integral
equation. l and t are parameters in the equation (i.e. , they
have been diagonalized), and the dynamics resides in the two
dimensional p space.

A(/, p, q, k)=g 4.(/, p, q) 1 "~ '«4.*(/, k, q),k„(l, /)

n n

where

(40)

K (l, p, q, k) =Q k„(l, t)g„(/, p, q)g„(/, k, q) . (41)

For doing the Mellin inversion of (37) to reconstruct the
absorptive part of T» ~.~, we need to know the analyt-
ic structure of A(l, /) in /. For our particular K, and for
most smooth enough potentials K, K(l) is analytic in l to
the right of / = —1. Also the $(/, p, q) are smooth in /.
The interesting structure comes when ~„=1, this occurs
a.t l = n„(/)

~„(~„(/), /) =1. (42)

Furthermore when K is "smooth enough, " that is to say
usually, A.„ is analytic near / =n„(/) so the singularity in

A(l, t) is a set of poles

cause in integrating over s we had to specify two com-
ponents of each four vector: the energy and the mo-
mentum in the beam direction. The two remaining mo-
menta are the conjugate variables to the impa, ct pa-
rameter vectors b. All the dynamics resides in the two
degrees of freedom perpendicular to the beam direction.
This two dimensional dynamic space is not particular to
the multiperipheral approximation. It is pervasive in
very high energy processes.

The solution to (38) is given in terms of the eigenfunc-
tions of the homogeneous equation

x„(l, tg„(l, p, q'I =f d'p'R(l, p, q, p''IG (p', q)g„(l, p', q)

(39)

in the usual fashion

A nice interpretation. can be given to this power of s,
a(t), by thinking again of the multiperipheral integral
equation as a SchrMinger equation. When looking for
the eigenstates we are essentially looking for the two
particle bound states (or resonances) whose position
n„(t) depends on the parameter t Ju.st as we had a pe-
ripheral amplitude in Eq. (27) which behaved as s~& for
a spin 4~ resonance in the t channel, so we may inter-
pret the multiperipheral s "~"' as coming from a reso-
nance with "spin" n„(t). This "spin" depends on / and
may even be complex. The behavior s""' represents
the sum

m(t)g ~is

1%iR
(47)

outside its region of convergence.
Unfortunately the multiperipheral result has its fatal

flaws. These are a signal of the inadequate representa-
tion of the unitarity relation, and all attempts to go be-
yond multiperipheralism have basically had the goal of
the restoration of unitarity or the addition of more uni-
tarity. The first flaw is that nothing prevents n(0) from
becoming larger than 1 (the unitarity bound), if the
strength of the potential K is made large enough. Take
our particular "potential" (34) with m, =0. Then explic-
itly one has (Wick and Cutkosky, 1954)

x/2

n(0) = ——+ —+
2 4 16m'm' (48)

and we may easily arrange that o.(0)&1. Somewhere we
didn't get enough unitarity.

The second flaw is experimental. If we only have
poles in l at o.„(t), then even if o. (0) =1 we can at most
have constant total cross sections. We have seen in our
experimental review that total cross sections appear not
to be constants, but rise as a.small power of logs.

The third flaw is subtler. We have evaluated only
ImT. If we imagine that T(s, /) near / =0 is pure imagi-

A(l, /) =g g„gk„

and for A(s, /), we find

9A.„
l = n„(t)-

—n. (/), (43)
nary, then the sign of the contribution to T(s, t) of the
double scattering correction depicted in Fig. 6 is Posi-
tive in multiperipheral models (Abarbanel, 1972b). This
occurs because such corrections are determined from
unitarity which is more or less ImT CC T*T& 0. Now -if a

A(s, &) =g s".&'&P„(p, /)P„(k, t). (44) purely imaginary amplitude represents absorption from
the initial channel, as it must, then double exchange

t fixed

whose similari. ty to Eq. (23) is notable.

(45)

This is the key result of the multiperipheral model:
there are poles in the vaxiable l conjugate to logs, the
Position of these Poles vayies zvith t;l =o.„(t). The large.
s, fixed / behavior of A. (s, /) is given by the o.„(t), with
the largest Reo.„(t), call it o.(t), so

represents absorption of amplitude from the simple
exchange and should subtract from it not add to it. It
can hardly be a secret any longer that this flaw is fixed
up by unitarity as well. What's missing is even more
absorption, multiple scattering if you like, that results
in the appropriate sign of the correction term.

The fourth flam, if one more is even needed, is a con.—

sistency problem with the multiperipheral model Pole
with o. (0) =1. For good kernels K this pole will be iso-
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lated and a(t) will be regular at t =0. In such a case
one may prove, beginning with properties of inclusive
reactions (Abarbanel et a/. , 1971b) like PP -P +anything,
and on through some weighty analysis (Brower and Weis,
1972; Jones et a/. , 1972) that tive Pomexon so defined
does not cont ibute to total cross sections at al/t In
particular quantities like P„„(0)as in Eq. (46) must be
zero. Again this is a price one pays for ignoring uni-
tarity. This time the avoidance of unitarity comes from
not considering complicated potentials or kernels K
which contain the poles at c(„(t) themselves. When this
is done, the resulting K's are not "smooth enough, " and
poles alone do not emerge.

It would be unfortunate indeed to end our comments
about the multipexipheral model on this sour note, for it
actually provides a very excellent description of an
enormous amount of data and is certainly a very ration-
al starting point for refined theories of diffraction
(Bg(ggild and Ferbel, 1974; DeTar, 1971). After all, it
does possess Pozvex behaved amplitudes zvhose pogeey
varies zoitlz t. These amplitudes facto+ice. Just these
results with the ansate that o. (0) =1 gives constant cross
sections, and cross sections are almost constant. It
gives inclusive cross sections that are essentially inde-
pendent of produced particle rapidity for produced par-
ticles slow in the center-of-mass of the collision (pion-
ization region). The view, then, of the multiperipheral
model I feel one ought to take is that it yields a very
attractive beginning point for theoretical fine tuning in
the study of diffraction. It identifies most of the im-
portant degrees of freedom one needs to focus on, and
provides the "unperturbed problem" from which devia-
tions are to be treated as perturbations.

There is a fruitful analogy in many body theory to this
use of the multiperipheral model. In the theory of sec-
ond order phase transitions (Fisher, 1974; Stanley,
1971; Wilson and Kogut, 1974) one begins the study of the
correlation functions of spins or whatever with a mean
field theory which has only poles in Green's functions.
These poles are just like those in the multiperipheral
model. They represent effective resonances or mean
fields. The mean field theory with only poles is an ac-
curate description of systems with a phase transition
far enough away from the transition. Close to the tran-
sition the Green's functions deviate in small but striking
ways from the "poles only" behavior. "Poles only, "
however, remain an excellent starting point. From that
point the fine tuning begins.

S TAB ~A B

FIG. 23. Two body scattering taking place via the double ex-
change of potential U& and potential U2. Going over to impact
parameter space makes the T Inatrix a product of V& and Uz.
The impact parameter is thus like a generalized s-channel
angular momentum.

secondaries and are able to take into account many more
rescatterings (Auerbach et al. , 1972; Aviv et a/. , 1972).

The statement of rescattering is best made in rapidity
y =logs and impact parameter b space. To see why this
is so consider the two-to-two process AB-A'B' as
shown in Fig. 23 taking place by the "exchange" of a po-
tential V, and then U, . To leading order in s the product
scattering is diagonal in s (or logs), b space

T, „,(s, b) =V, (s, 5)V, (s, 5), (49)

T (s, b)=f

dt's

(bl t )T «(—s, t), (50)

is just a slick partial wave projection.
Now imagine an amplitude for T» ~„as a function of

the rapidities y~ and impact parameters b~ of the pro-
duced particles, and let the amplitude be represented
as in the multiperipheral like configuration of Fig. 24

T„,„„„(y„,b, )= ~ T(I;, B,),

where the exchanges are themselves elastic T matrices
depending on the rapidity differences Y. = p,.+, —y,. and
impact pa, rameter differences B,. =b, +, —b,. along the
production chain. A pure pole exchange with s"" ' gives

T (F B) —e- l )) l
'&4 ~' re ~ ' y (52)

and insertion of this in Eq. (51) gives back the multipe-
ripheral model.

because at very high energy there is a two dimensional
subgroup of the full Lorentz group which remains as a
symmetry. This resides in the two dimensional impact
parameter space. Products of amplitudes are just group
multiplication. Another way to view this is to remember
that the angular momentum l is related to impact param-
eter ~b~ by l =Ws~b( and going over to impact parameter
space by

IV. ABSORPTION MODELS

The s -channel approach to cor rec ting the mult iper iph-
eral model concentrates on the modification of the pro-
duction amplitudes T» ~ in their contribution to
T„~ ~ ~. via the unitarity relation. The requirements
of unitarity are imposed through rescattering of the
produced particles after the basic production mecha-
nism has operated. Typically this rescattering is taken
to occur only between pairs of particles so only the
elastic S-matrix S~e, need be considered (Blanken-
becler and Sachrajda, 1975; Ciafaloni and Marchesini,
1975; Schwimmer, 1974). Some more ambitious models
use two very fast particles as a c-number source for

Y=log s
b

yg+ l, bN+l = Y = log s, b

yN bN

yN l, bg

yz»z
yl, bi=0, 0

FIG. 24. The multiperipheral approximation to the 2 N pro-
duction amplitude. Each T is a two body amplitude. The whole
process is expressed in rapidity, impact parameter space.
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FIG. 25. Elastic rescattering correction to the y, b form of the
multiperipheral amplitude. One introduces rescattering be-
tween paints of particles by multiplying with v S = expi6(Ay, l&)
for each pair. Corrections are multiplicative in y, b space.

Now rescattering is introduced by allowing the- initial
particles and Pairs of outgoing particles to interact as
if they were elastic, and thus each pair picks up the
phase (Finkelstein and Zachariasen, 1971; Gottfried
and Jackson, 1964; Schwimmer, 1974}expi&(Y;. , B,.)
=[S(I;., B,.)]'~' corresponding to its y and 6 gap. One
modifies (51) then

T„'s"'~"+,(y„ba)

FIG. 27. The iterative approach to rescattering corrections in
the s channel. Pomeron interactions produce the many parti-
cle interactions absent from Fig. 25.

Schwimmer, 1974}: let the T(y, b) in (53) determine it-
self via the unitarity relation

»mT(y, b) =
I T(y, 6)l'+ Z ITN+, (ya, 6~)l'.

M=2 (54)

This yields a T(y, b) which is a black disc

T(y, b) =is 8(R~oy' —62)+lower order terms (.55)

In the very high energy limit there is no scattering out-
side an impact parameter IbI =Rologs and total absorp-
tion within. Since impact space is two dimensional the
total cross section coming from this amplitude

=[S(y,6)1"....T(&,, B,) .... (S(y.-y, 6.-6 }&"
i~ r& u~ ~+a

(53)

a,.„,(s) = — d'bImT(s, 6)I

—(logs)',

(56)

as shown in Fig. 25. I

Before we go any further it is clear that the full con-,
tent of s-channel unitarity has not been employed. Pos-
sible many particle interactions as. shown in Fig. 26 are
clearly absent. This means we may well have not put
in enough unitar ity by th is elas tic r esc atte ring appr oxi-
mation.

If we take just the multiperipheral amplitude of Eq.
(52) with no rescattering, then the resulting total cross
section violates the Froissart bound. Even if we take
(52) and the rescattering in (53), the total cross section
grows faster than any power of logs (Schwimmer, 1974}.
Unitarity requires o„~(s) & (logs)'. So clearly another
tack is needed.

One is a self-consistency approach (Caneschi and
Schwimmer, 1972; Finkelstein and Zachariasen, 1971;

and in the elastic amplitude T(s, t) structure in i varies
as (logs)2 in contrast to logs characteristic of the multi-
peripheral model (and experiment). This behavior is
also found in various eikonal models which we' ll discuss
soon. An amusing result in such self-consistent models
comes when one allows the Pomeron here called vS to
act in other channels; that is, allows diffraction disso-
ciation. Then one demonstrates (Schwimmer, 1974)

1
elastic + diff. dissoc. 2 total ' (5S)

A second interesting approach is iterative (Ciafaloni
and Marchesini, 1975). It chooses a zeroth step Pom-
eron and then creates a first step Pomeron by adding
zeroth step Pomeron rescattering corrections as in Fig.
27 using the rescattering prescription in Eq. (53), elas-
tic scattering only. An amplitude of the scaling form

T(y, b) =y" 'f(6'/y"')

emerges from this, where

q =1/2,
v=3/2,

(59)

(60)

(61)

in first approximation. The total cross section grows
as

v„,~ (s) —(logs)" (62)

FIG. 26. Many particle interactions missing in the elastic re-
scatter ing approxbn ation.

and the structure in i is correlated with (logs)'. This is
certainly better than the self-consistency program from
an experimental point of view. Where multiple itera-
tions lead is not established.

We have seen in two approximate approaches to adding
unitarity to the multiperipheral amplitude, s""', two
characteristic features:
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1. The amplitude is multiplied by powers of logs. This
is the fine. tuning alluded to in the introductory remarks.
The power behavior is taken as more or less given, and
the structure in logs is determined.

2. The (]((t) functional dependence is modified from
n (t) = 1 + e]'t to 1 + o(' t 'i'.

CO

eikoz)a]
N=l'

exchanges

In pur discussions from the t-channel point of view,
much the same fine tuning will occur when a much great-
er set of absorptive corrections are accounted for.

V. E IKONAL IVIODELS

FIG. 28. The many Pomeron jeikonal phase gj exchange
graphs summed by the eikonal approximation. The factor N f

and the relation g&
——(g&) are crucial to the exponentiation of

the eikonal formula. They are not expected in general.

There is another class of models which enforce uni-
tarity in the s channel by iterating the basic Pomeron
exchange. The underlying idea is the eikonal approxi-
mation (Abarbanel and Itzykson, 1969; Blankenbecler
and Sugar, 1969; Chang and Ma, IS69; Cheng'and Wu,
1969; Glauber, 1959; Levy and Sucher, 1969) which is
taken over, with appropriate window dressing, from po-
tential scattering theory. Recall that a particle of mass
m scattering in a potential V(r) has the eikonal scatter-
ing matrix from initial momentum k,- to final momentum
k~

( Pzxz z) = f d eb(P[x+ 'zx(bb)] —1)exP(-ie b)

(68)

in the limit lk;l =lk&l =k-~, and momentum transferred
t =(k,. —kz)'=lal'+O(1 jk) is fixed. The vector b is a
two dimensional vector transverse to some appropriate
linear combination of unit vectors k, =k, /lk, .

l
and kz.

The eikonal phase is

m
x(b, I ) =-—„de v(b, z),

I

and z represents the line perpendicular to b. This phase
is just that phase picked up by the particle as it tra-
verses the scattering potential. If we replace k/m by
s/m2, and V(b, z) by an integral over the exchanged ob-
ject or the Born approximation, then the eikonal formula
may be taken over to quantum field theory (more or
less). So

d q
x(b, s) =+ . expl:iq b) T...„(s, t =-lql') (65)

and

2s J-1
x(b, s) = d'q exp(iq b)/(m'+ Iql') ~ (69)

If &=0, scalarmesonexchange, then for large s, fixed
t, the behavior of the eikonal T matrix is just 'E~„„;
clearly an uninteresting case. If J=l, X(s, b) is indepen-
dent of s, and T(s, t) is

T (s, t) = i sf (t) . (70)

, Now this is much better. It comes very close to our
ansatz a long time ago, but lacks a power of s which
changes with t.

Now suppose ~& 1. In. our earliest discussions above
we noted that multiple exchanges of this would violate
unitarity more and more. Here, however, the eikonal
phase grows with s and the integrand oscillates. The
phase is stationary when & cc logs, and since transverse
space is two dimensional

T(s, t) —is(logs)', (71)

or (s) —(logs)', (72)

saturating the Froissart unitarity bound.
The eikonal formula is then an attractive framework

into which one may put her or his dynamics and rest as-
sured that significant aspects of s-channel unitarity will
be respected. If one has a more complex T~„„than. Eq.
(68), for example is"" ' or additional logarithms, then
very much the same qualitative features as far as s
dependence goes emerges (Chou and Yang, 1968; Durand
and Lipes, 1968; Frautschi and Margolis, 1968). In
pictorial language one is summing via Eq. (66) the ex-
change graphs of Fig. 28 in which the particle —particle—
N Pomeron couplings g~ are

( i) =P,sf d')I exp[-zb b](exp[is(b, s)] —)),

t=-l&l'. (66)

Formally this representation of T is unitary as the S
matrix in b, s space is precisely

S(b, s) =exp[iX(b, s)]. (67)

Next is needed a rationale for selecting a X(b, s). Sev-
eral approaches have been tried. If T)), (s, t) is taken to
be the exchange of an elementary spin & particle, then

T. (s, t =-lql') =g's'/(m'+lql'),

which is quite special to the eikonal approximation. One
of the obvious missing ingredients in the eikonal model
is a process such as appears in Fig. 2S. Here the Pom-
erons emitted by the particles are allowed to interact
and, since Pomeron exchange is absorptive, further
shield the original exchange. One may organize the
complicated exchange on the left of Fig. 29 to look like
an eikonal like exchange, but barring miracles the
eikonal condition Eq. (73) on the modified couplings H~
will not transpire.

One could go on at some length about eikonal formula-
tions of very high energy scattering (Abarbanel, 1972a.;
Blankenbecler et al. , 1974; Sugar, 1972). Indeed one
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boldness of the approximations, one expands the inte-
gral equation into pieces singular at / =1 and t =0 and
pieces regular there. When we finish, there emerges
a solution

OI
s ""' s

Im T (s, t) = P, (t) log
So So

&& J,[(RO logs +R,)l t ]/—(Ro logs +R, )v'-t

FIG. 29. Pomeron interactions missing from the eikonal for-
mula. They will crucially alter the couplings and combinatori-
al factors needed to exponentiate the eikonal phase or Born
term.

may eikonalize not only the elastic amplitude but also
the N-M amplitudes (Baker and Blankenbecler, 1962;
Dash and Pignotti, 1970; Dash et ai. , 1970) and con-
struct explicitly s-channel unitary models of production.
When we have introduced and explained Reggeon field
theories in the t-channel sections, it will be fairly clear
that eikonal formulae do not respect t-channel unitarity,
at least for s-~, t=0, so the peculiarities of the pro-
duction models are perhaps just that.

Vl. MULTIPERIPHERAL BOOTSTRAP MODELS

PA'

Pg PB'

FIG. 30. The kernel for the multiperipheral bootstrap model:
elastic unitarity involving T(s, t) itself. T(s, t) is represented
by a simple exchange here.

If the basic multiperipheral model amplitudes are not
good enough, it seems natural enough to modify the orig-
inal multiperipheral equation to alter its failures (Ball
and Zachariasen, 1974; Zachariasen, 1974). In the
spirit of multiperipheralism the only place where one
has freedom to enlarge the game is in the potential or
kernel of Eq. (33). We took K to be just single particle
production as in Fig. 21, but suppose we imagine that
instead two particle productio~ is significant, and single
particle states arise as resonances of the produced two
particle states. Since K is just the phase space integral
over the two particle scattering amplitudes, we have
(I ig. 30)

~(I t) ds s —l-\ Pl P2 (P& +Ps Pg P2)
2E, 2E2 (2z)'

AB~12(PA +PB P1 +P2)

A'B' 12(PA' +P8' P1 +P2)

(74)

In the case that T is primarily imaginary, one arrives
at a nonlinear integral equation for A(l, t) by combining
the ansatz for K with the integral equation (38).

Now any progress in solving this is certainly impres-
sive. Putting aside one's justified astonishment at the

(t) 1
+ po(t) ZoKRo logs +R, )v —t ] + 0

S( logs

(75)

where &, (z) is the usual Bessel function, n(t) =1 +n't,
P„(t) is an arbitrary function of t, and so, Ro, and R,
are some. constants. The total cross section here rises
as logs, while the structure in t is a mixture of logs
and (logs)' behavior coming from the combination of
Bessel functions and s""'. The appearance of logs as
the expansion parameter rather than, say, (logs)~, P
noninteger, comes from the assumption of a Taylor
series in the conjugate variable E around l =1. In solving
the bootstrap equation a, series like (l —1) Q~, C~(l —1)~,
would significantly alter the details.

We may understand the leading term emerging from
the multiperipheral bootstrap by going over to the ever
popular impact parameter space, where

T(s, b) ~ (is/logs) 8(Ro logs —~b~) (76)

which is close to-the absorption models we studied
above. This satisfied elastic unitarity (more or less)

T(s, b) T(s, b) ' 1
S S S

which, strictly speaking, is the only feature which has
been built in by the choice of kernel (74).

Vll. BRIEF SUIVIMARY OF s-CHANNEL IVIODELS

We have quickly reviewed the chief features and under-
lying ideas of attempts to impose unitarity on a multi-
peripheral model. The almost insurmountable problem
with the s-channel approach is the large number of
variables involved in the determination of a T» „am-
plitude, namely 3N-4. Indeed one must make, as N
grows, evidently stronger and stronger statements
about production amplitudes which are the ingredients
in the unitarity recipe for ImT» ~.~.. As we saw from
the initial discussion of the multiperipheral model, a
remarkably simple ansatz led to s""' behavior and most
of the major features of the experimental data. How
one corrects this elementary behavior to restrict o (0)
&1, for example, is where the many body final state
complications enter without relief. In the study of full
s-channel unitarity for T„~ as well as T2, and T,
the variable problem only magnifies.

The simplifying assumption that only two body inter-
actions (initial and final state) are important can hardly
be said to be grounded very strongly, but without it it is
almost impossible to pr'oceed. Even accepting this bold
step, it was necessary to guess at self-consistent Porn-
eron formulae to highly nonlinear equations (as in ab-
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sorption models and multiperipheral bootstrap models)
or to ignore Pomeron —Pomeron interactions as in the
eikonal models.

A feature of these self-consistent models, which re-
curs persistently is that the differential cross section
depends on the combination v'-t logs or equivalently has
impact parameters growing as logs. This would mean
the differential cross section do/dt would shrink as
(logs)' which is not what the evidence from the CERN-
ISR or from Fermilab (Fig. 13) tells us. The multi-
peripheral model in contrast gives dv/dt shrinking as
logs and impact parameters -logs, in accord with the
present day experimental observations, but no very
dramatic conclusions ought to be drawn from that.

At the risk of turning this review into an expose of my
opinions, I feel it is fair to state that the s-channel ap-
proach to unitarizing the multiperipheral or other
"underlying" production mechanism has been artfully
carried out but less than successful in producing a con-
vincing and coherent account of very high energy dif-
fraction scattering. I believe the basic physics of ab-
sorption coupled with the multiperipheral amplitude,
s""', is the correct approach. Unfortunately, despite
very clever efforts, posing the problem in the language
where many body effects are unavoidable and intractable
has proven a serious barrier.

VIII. t-CHANNEL VIEWPGINTS AND REGQEGN
F I E L l3 TH EGR Y

We now begin the parts of this article which constitute
the heart of recent developments in the theory of diffrac-
tion scattering (Abarbanel et al. , 1975c). The discus-
sion is couched in terms of the two dimensional impact
parameter b and its conjugate variable q (four momen-
tum transfer in elastic processes = —Iql') and of the
rapidity p =logs and its conjugate variable J' (called l
above). This variable J will turn out to be none other
than the complex angular momentum, so we' ll start
with a pedestrian review of facts about complex angular
momentum (Brower et al. , 1974; Chiu, 1972; Collins,
1971; Eden, 1967; Frautschi, 1963).

The angular momentum referred to is that in the t
channel. It is defined by the partial wave expansion
(Goldberger and Watson. , 1964) of the elastic amplitude
(for equal mass, m, spinless particles)

1
" ds'ImT(s', t) 1 " du' ImT(u', t)

7( 4~ 2 s —s —'LE' 7j 4~2 u —u —2EI

and using this in the definition of Ez(t) we have

z (t) =1+4m'/2(t/4 —m'), z =cos8, (83)

and Q~(z) is the Legendre function of the second kind.
This formula of Froissart (1961b) and Gribov (1962) al-
lows one to define signatuxed partial wave amplitudes

00 I

F'(J, t) = Qz(z')[ImT(z', t) we ImT( —z', t)],
z ~t)0

(s4)

with 7 =+1. This is the appropriate formula for con-
tinuing to complex J. The full amplitude T(s, t) is re-
covered by the Sommerfeld-Watson transform (Collins,
1971; Frautschi, 1963)

T(, t) =—,g '. ' F'(z t), (s5)2s , saner

where the contour in the J plane runs to the right of
singularities in F'(d, t).

We are interested in very high energies which formal-
ly means z, large. For this regime we may use

P, (z) -z' (ss)

q, (z) -z-'-'
to rewrite our expressions for F'(J, t) and T(s, t)

(87)

and

F'(d, t) = ds' s' ~ '[ImT(s', t) we ImT( —s', t)],
4m

(ss}

T(s, t(= f . s P('F (z, t(, ' (89)

F, (t) = — dz'q, (z')[imT(z', t) (-I—)'lmT(-z', t)],
'0 &"

(82)

where

T(s, t) = QP~(cosg, )(2J +1)F~(t),
J=0

(78)
with

g~ =(~+e "~)/sinnJ . (90)

+g

E~(t) = — d(cosa, )P~(cos8, )T(s, t),
-1.

(79)
Now one may verify by elementary integration that when
ImT(s, t)-s""' as in the multiperipheral model

t
s = —2 ——m' (1 —cosa ).C g ~ (80)

These definitions hold for integer J in the physical re-
gion of the t channel: t~4~', s ~0. We wish to continue
the expansion to t &0, s ~4m', the physical region of the
s channel, and any &. Books are available on how one
does this in detail (Eden, 1967; Qmnes and Froissart,
1963). We imagine a dispersion relation. in s, for fixed
t, may be written for T(s, t)

F'(&, t) =(& —o. (t)) ' for ~ =+1 or ~ = —1. (91)

If 7 = +1, then the partial wave amplitude has physical
Poles in even (odd) angular momentum. We wish to
examine the' F'(J, t) which is relevant for d = 1, t =0 and
do not wish any poles or other singularities to represent
actual singularities or equivalently particles, since
there are no zero mass particles of spin-one in pure
hadron physics. So we are interested in the ~ =+1 am-
plitude, and unless further warning is made, we will
discuss it alone. Call it simply F(&, t)
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(92) FIG. 82. The contribution to
elastic unitarity from Fig. 30.

(93)

gz
——(1+e ''~)/sinmJ. (94)

Notice that the representation (92) is just the Mellin
transform needed to partially diagonalize the multipe-
ripheral integral equation. This is not a coincidence.
The poles of the multiperipheral model are known as
Regge poles (Blankenbecler and Goldberger, 1962;
Chew and Frautschi, 1961). Regge first discussed J-
plane poles in potential scattering (Regge, 1960).

Now we are ready to consider the question of unitarity
coupled with the multiperipheral model. In our present
language, we wish to ask: What happens to the pole in
J when it rescatters? Our approach will be to take a
Feynman graph from a conventional P' like field theory
and analyze it at large s, fixed t. We want this graph
to have double Reggeon s ' or IJ —n(t)] ' exchange.
The simplest such graph one would consider writing is
shown in Fig. 30. However, one can give a physical
argument why it will be dominated for large s by the
more complicated graph in Fig. 31. It goes like this:
the scattering is caused during the very rapid passage
of particles A and B by each other via the exchange of
two objects (Reggeons here) in the two dimensional
plane perpendicular to their relative motion. As s is
increased, the time which A and B spend in each other' s
vicinity during which they must make the exchange de-
creases rapidly. In Fig. 30 particle A emits a Reggeon
(wiggly line) and latex' emits a. second Reggeon. B ab-
sorbs one at a time; this also involves a time delay.
In Fig. 31 particle A breaks up into two other particles
and each, of these emits a Reggeon at the same time.
B does the same in order to receive the Reggeons at the
same time. Particle A reconstitutes itself from the
particles it emitted, but it does this at its leisure in its
own rest frame no longer caring a&out the brief en-
counter with B,

There is a fancy defense for this little argument.
Figure 31 was first studied by Mandelstam (1963) who
showed it dominated Fig. 30 as a. Feynman graph for

s- ~. Figure 30 was first considered by Amati et al.
(1962) as a contribution to ImT (s, t) through elastic uni-
tarity (Fig. 32). When one understands that there are
additional contributions to ImT(s, t) from two Reggeon
exchange, the two seemingly disparate calculations are
easily reconciled.

After some straightforward algebra the contribution
of Fig. 31 to the partial wave amplitude E(J, t) aris'ing
from the double exchange of s is (Fig. 33)

E(J, t) = d'q, d'q, 5'(q —q, —q, )N, (J, q„q, )'/J —n(q, )

—n(q, )+1,
with t = —

I q I

' as usual, n(q) = n(t = -
I q I

'), and
N, (J, q„q, ) is a complicated integral over the crossed
box graph shown in Fig. 34. N, is a smooth function in
J for q&= 0, so the only singularity in J from (95) is a
branch point due to the denominator. This branch point
occurs at

(96)

Note that this branch point occurs at J = 1 when t =0, if
n(0) = 1.

From the exchange of K Reggeons one finds a contri-
bution to E(J, t)

4 gpss g q' ÃE Jq&, . . . q
j= 1

x J — cyq,. +K —1

This gives rise to a branch point in J at

J —1 = n (t) —1 =K
I n(t/K ) —1] .

Note that this branch point occurs at 4 =1 when t =0, if
n(0) = 1.

Return to Eq. (95) now and take the discontinuity in J
a.cross the branch line. Since N, (J) is regular, this
amounts to replacing the denominator by a delta func-
tion

FIG. 3i. The dominant, double exchange graph in the high en-
ergy limit. The colliding particles break up to exchange the
Reggeons at the same time. Figure 30 requires Reggeon
emission at different times, but as s —~ the colliding parti-
cles spend less and less time in each other's vicinity.

FIG. 33. Kinematics of the
two Reggeon exchange contri-
bution to the t-channel partial
wave amplitude E'{J,t). Ã2 is
the amplitude for two particles

two Reggeons.
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FIG. 34. The approximation to N2 coming from the double
cross graph of Fig. 31.

FIG. 36. The simplest graph that contributes Reggeon branch
points to N2, the particle —Reggeon transition amplitude.

disc S'(d, q) =qsc f d'q, d'q, s*(q —q, —q, )

x5(1 J —[1—a.(q, ) ] —[1—a (q, ) j )

appearance -of 2'T*, however, is important. It announc-
es the presence of an imaginary part in 2'»» itself.
If we generalize the set of graphs entering N, to include
diagrams like Fig. 36, then (100) reads

xN, (J, q„q,)'

or writing E =1—J (the Re@geon energy)

disc S'(Z, t)) =-qsi f d'q, d'q, s'(q —q, —q, )

x 5(E —e(q, ) —e(q2))

(99)
d sc d(d', qc)=qi f d'q, d'q, ll'(q —q, —q, )

x 5(E —&(q1) —& (q2))

xN2(E+2e, q„q, )N, (E —ie, q„q ),
(103)

with

e(q) = 1 —o'(q),

x N, (E, q1, q2) (100)

(101)

2$ d p~ d p2
AB(ss t) =

(2 s2 2 2 (PA+ pB pl p2)

x 5 (E„+E —E(p,) —E (p, ))

AB 12(PA PB Pl P2)

x TAB 12 ( PA PB Pl P2)

(102)

Fxcept for uninteresting factors of 2m and i, this for-
mula is to be read almost identically to the Reggeon
discontinuity formula, (100). Some differences are ele-
mentary: phase space has three momentum coordinates
and one energy coordinate. E(p) =(m'+

l pl ')'I'. The

which is shown in Fig. 35.
We read this formula as follows: two particles create

two Reggeons, o.(q, ) and o.(q2), with an amplitude
N, (E, q„q,). These two Reggeons are "on shell:"
e(q) =1 —o((q) and their momentum coordinates q, are
integrated over, d'q, d'q„subject to the constraints of
momentum conservation, 5'(q —q, —q, ), and "energy"
conservation, 5(E —e(q, ) —e(q2)). Finally the two Reg-
geons become two particles with an amplitude N, . It is
instructive to compare this to the N=2 contribution to
the unitarity relation for TAB „B(s, t) (Eq. 30):

and the correspondence with usual unitarity is complete.
The +is refers to the two Reggeon branch point in N, .

From the Reggeon unitaxity relation we abstract the
following view of a Reggeon: it is a quasi-particle
living in one time and two space dimensions 7 and x,
which are the conjugate variables to the Reggeon energy
E and Reggeon momentum q. In the unitarity relation
when the Reggeons are on shell, the energy-momentum
relation is E(q) =1 —o, (q), where o.(q) = o,(t = —

~ q~ ') is the
familiar function describing the s dependence of the
multiperipheral model. If o.(0) =l, then E(0) =0, which
is the energy-zero momentum relation for a massless
particle. The Pomexon is a massless particle in E, q
space.

Away from q =0, the exchange of various numbers of
Reggeons gives rise in F(E,q) to, first a pole at
E = s(q), then various branch points associated with
many Reggeon states in the unitarity relation. Figure
37 shows this. At q= 0, the pole is at e(0); the N Reg-
geon branch point is at Ne(0). When e(0) =0, all the cuts
and the pole coalesce, just as one expects from experi-
ence with massless particles, such as photons.

One may write discontinuity or unitarity relations for
N~(E, q, ) as well (Abarbanel, 1972b; Gribov et al
1965; White, 1972). These are shown in Fig. 38 for the

two Reggeon discontinuity of N, . This involves the four
Reggeon amplitude M4. Of course, a discontinuity rela-

two
Reggeon

cut

disc

FIG. 35. The contribution of two Reggeons to an absorptive
part (discontinuity in J) of E'(J, t). This is the simplest Reg-
geon unitarity relation. It can be "rigorously" derived from
analytically contined four particle unitarity for t-channel
partial waves. It is also true in all models.

pole

three
Reggeon

cut

I"IG. 37. The pole and branch points in the Reggeon energy
(E= 1 —J) plane. If the on-shell Reggeon energy satisfies
e (q= 0) = 0 (a(0) = i), then all the cuts collapse on the pole at
E =0 when q=0.
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cll SC F

FIG. 38. Reggeon unitarity for the particle-Reggeon amplitude
N2 showing the two Reggeon cut. The four Reggeon amplitude
3f4 enters here.

tion for M4 may be written. It involves M4 itself and is
depicted in Fig. 39.

The status of these unitarity relations is quite gene-
ral. They have been derived from the structure of hy-
brid Feynman graphs (Gribov, 1968), from the dual
resonance model (I ovelace, 1971), in a very wide class
of multiperipheral models (Abarbanel, 1972b), and di-
rectly from analytically continued multiparticle t-chan-
nel unitarity (Gribov et al. , 1965; White, 1972). Any
theory that satisfies them for n Reggeons- m Reggeons
will satisfy t-channel unitarity in the same regime.

If n(0)(1, so e(0))0, for the Reggeons, then the pole
and its as soc ia ted br anch points are separated in the E
plane. The study of F(E) or Nr(E) or M~(E) would then
be adequately carried out by a dispersion relation in E
which utilized the nearby singularities (Abarbanel,
1972b). For e(0) =0, this is clearly inadequate in the
neighborhood of E =0. The technique which has been
more fruitful has been to write a Reggeon field theory
treating the Reggeon as a quasi-particle in the v. , x
space described before (Abarbanel et al. , 1975c;
Gribov, 1968). This guarantees the phase space
structure of the Reggeon unitarity relations and pro-
vides a constructive method for determining the M~
or N~ functions. A solution of the field theory in any
consistent scheme yields the M~ or N~ within the limi-
tations of that scheme and satisfies t-channel unitarity.

So we introduce a, field P(x, v) and take the multipe-
ripheral model for our "bare" Reggeon

FIG. 40. Examples of Reggeon interactions showing 1 —2,
2 —2, and 1 —3. When quantum numbers allow, any number
of Reggeons may go into any other number. Both heuristic and
firmer arguments show that, only the triple coupling is impor-
tant for the eventual asymptotic behavior of cross sections.

which has vacuum quantum numbers, graphs with n
Pomerons- m Pomerons exist. Figure 40 shows ex-
amples of 1-2, 2-2, and 1- 3. Each of these transi-
tions is described by a function M " ' l(E;, q;) depending
on the energies and momenta of all the Reggeons. Reg-
geons carrying quantum numbers may have restrictions
as to which n may go to which m, but all that are so
allowed can be found in the graphical analysis.

If we had to face this terrible infinity of nonlocal cou-
plings, there would be little hope of achieving anything.
We are interested in a restricted set of questions, how'-

ever, having to do with diffraction scattering as s- ~,
t fixed. First we will argue that we need only consider
the Pomeron, then that we need only consider the re-
gime E=O, t small, and finally that only the triple
Pomeron couplinN, will be important (Abarbanel and
Bronzan, 1974a, b; Migdal et al. , 1974).

Let us take the Green's function for the Lagrangian
(107). In E, q space it is

(108)
(X(t) =

CVO + CPot q

E(q) = Aoq + 60 i

40 = 1 —ceo.

(104)

(105)

(106} G(y, x) =
d' dE~, exp[i(q ~ x —E7)]G(E, q)

27r 3

and in ~ = -i logs = -iy, x space it is

The Lagr ange dens ity for this energy- momentum rela-
tion is = &( y)exp(-y&.), e~(-

I xl '/4~l y),4pn'y (110)

g(x 7) = —
@ (x 7) —Q(x, r) —n~VQ+ ~ V@ —Dog+@ .

(107}

Reggeons will interact and this we must account for.
The study of more complicated graphs which are the
generalization of Fig. 31 shows that for the Pomeron,

dl SC F

FIG. 39. Reggeon unitarity for the Reggeon amplitude M4
showing the two Reggeon cut.

which represents the probability amplitude for a. source
(particles) to emit a. Reggeon (o.(t) = no+ not) at zero
rapidity, zero impact parameter and for another source
to absorb it at y, x. This is shown in Fig. 41. This
amplitude represents the diffusion of the Reggeon over
the time interval y and space interval

~
x~ . If two Reg-

geons depart the initial source and arrive at the sink,
Fig. 42 represents that possibility. Each line carries
a factor like Zq. (110). Along the way from (0, 0) to
(y, x) the Reggeons may choose to interact. Figure 48
shows this.

This space-"time" picture is borne out experimental-
ly to a very reasonable approximation. The latest re-
sults on elastic scattering (Fermilab, 1975) show that,
indeed, the average "size" of a hadron as probed by
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yBg~ )
yap I x I /4

47ra y

(y, x)

rapidity

(y, X)

, 0)

FIG. 41. Space-time picture of a Reggeon. It diffuses with the
Green's function Eq. (110) from a hadron at zero rapidity,
zero impact parameter to another hadron at (y, b).

Pomerons is ~clogs and that the "stuff" interacting via
Pomerons is distributed more or less as a Gaussian in
impact parameter space. This is all a support for the
multiperipheral amplitude being a sensible starting
point for a theory of diffraction.

Now for very long times, y- ~; that is logs- ~. Qnly
those Reggeons with the smallest Ao will survive. All
others will be damped by exp( —b.py) in the Green's func-
tion. Well, the smallest Ao is for the Pomeron,
Ao= 1 —ceo=0. In the limit then where logs is large,
only the Pomeron and its interactions need be con-
sidered. If one is discussing a process like charge ex-
change, then clearly at least one Reggeon carrying the
appropriate quantum numbers need be exchanged, and
accompanying it will be as many Pomerons as one likes.
Actually the argument just given shows that only one
quantum number carrying Reggeon will survive in the
limit (Abarbanel and Sugar, 1974; Gribov et al. , 1971).
For diffraction scattering, Pomerons alone are
suff icient.

If we deal with only the Pomeron, then the neighbor-
hood of E =0 is where we need concentrate our attention.
Furthermore, since we wish to study t~ 0, we will also
be interested in q=O. From the point of view of the
fleggeon field theory, then, we are concerned with the
study of an infrared Pxoblem to learn about s -~, t
small, diffraction scattering.

Since we are focusing our attention only on E;, q&=0,
we want to include in our field theory only the contribu-
tions which require the least phase space dE& d'q; when
they operate. Those interactions are the ones with the
fewest number of fields and no derivative couplings.
All this points our concentration on

(o, 0)

FIG. 43. Reggeons interacting on their way from one hadron
to another. Between interactions they propagate with the
Green's function (i i0). Eventually all Reggeons except the
Pomeron with A= 0 are killed by this propagator.

1975). The results of these calculations show that
terms involving 2-2 or 1- 3 couplings as in Fig. 40
are the next most important. When all graphs are
summed, this interaction modifies n(t) by factors of
t/(logt)', which is very mild, and makes contributions
to the total cross section down by powers of logs rela-
tive to the @' coupling of Eq. (111).

Before we can write down the final field theory one
more important point must be noted. In the graph of
Fig. 44 we have a. relative minus sign compared to the
single Pomeron exchange graph of Fig. 41. The pe-
destrian origin of this sign is that each Pomeron
carries a factor

1+exp[-inn(t)]
sinma(t)

near t =0, and each loop integration has a factor -i. So
the pole term has a phase -i, while the Pomeron loop
has a phase (-i)'(-i) =i. Physically the change in sign
means that the amplitude of Fig. 44 subtracts from the
pole exchange, which an absorptive Pomeron ought to
do. In the field theory formulation we may arrange this
automatically by letting the triple Pomeron coupling,
Xp, be purely imaginary (Gribov, 1968): X,=ir, (Fig.
44)

The full Lagrange density we now must study in the
infrared limit is

2 + ~ +&(, ) = -Qp —4&p- o 4p' 4'p- p4p4p2 BT

gl (x, 7) = —(Xp/2) P'(x, r) P(x, v) [P' (x, r) + P' (x, r)] .
(111)

More rigorous arguments (Calucci and Jengo, 1975)
ean be made for the predominance of this interaction,
and its importance can be defended by detailed calcula-
tion (Abarbanel and Bronzan, 1974c; Bardeen et al. ,

e

2' 4o AP(4" + AP) (112)

(y, x) FIG. 44. The minus sign as-
sociated with absorption. It is
taken to each triple Pomeron
vertex as v' —f. .

(0, o)

FIG. 42. Double Reggeon exchange from hadron to hadron.
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Furthermore we want to study this to all orders in r„
since a Priori near E, q=0 all graphs are of equal im-
portance. The appropriate tool must be nonperturba-
tive to be reliable. The renormalization group is the
answer (Abarbanel, 1974a; Coleman, 1973; Wilson and
Kogut, 1974).

When we have finished solving the field theory de-
fined by Eq. (112), we will find it to depend on four
numbers:

(1) The scale of the renormalized Pomeron field
which we can arrange to be equal to one. This is done
by rescaling the unrenormalized field Qo(x, r) by a
factor Z,"'

P(x, v) = Z, "'P,(x, ~) . (113)

Each of these scalings defines a new set of parame-
ters. We will express the renormalized Green's func-
tions of the theory in terms of these parameters and the
E„q, of the Pome rons. These parameter s depend on
the normalization point of the theory. This normaliza-
tion point is precisely like a subtraction in dispersion
theory and is familiar from the study of quantum elec-
trodynamics. Suppose we change the normalization
point from E„ to EN + 5EN. Clearly the physics of our
problem doesn't change; that's all in the Lagrangian
(112). The parametrization of Green's functions will
change slightly. The parameters 1, n', A, and r must
change so as to preserve the physics:

Z, is yet to be determined.
(2) A new "slope" parameter o. ' which is a function

of the arbitrary point EN, kN in energy momentum space
where we choose to define the field theory e' is related
by a scale change to a0'.

n'=Z 'n'

(3) A new gap or mass parameter b. which is also a
function of EN and k„. It is given by

a = Z4'a0.

(4) A new coupling constant r. Again it is a function
of the arbitrary normalization point of the theory. It is
related to the bare value r0 by

r+ r EN ].ogZ Z1
8 3P -1 EN

EN

EN=r 1+P
EN

(123)

(124)

~(n+ m) j2~(n, m) (E q & i & ~ ) (128)

In order to preserve the physics under this change of
parametrization the parameters must enter the Green's
functions in a prescribed fashion. Basically they must
represent the same quantity as EN is varied. Thus they
are a nonlinear, nontrivial representation of motions
along the real line. This is the renormalization
group.

To best express the content of the renormalization
group constraints we consider the n Pomeron-m
Pomeron proper vertex function I "' )(E, , q;) (Abarbanel
and Bronzan, 1974a,, b; Migdal et al. , 1974), which is
the n- m Green's function with external legs removed.I""(E, q') is the inverse propagator and contains the
spectrum of the theory. We are now dealing with
Pomerons alone (the Mz functions from above) and will
reintroduce particles shortly. The renormalized I ~n™
is a function of a', E and the dimensionless coupling
constant

D/4-1a'-
( I)Dy&Eg

where D is the number of dimensions of impact param-
eter space.

The generalization to D transverse dimensions is
solely a technical aid. It alloms one to nicely regularize
and then renormalize the Feynman integrals of the
field theory. In establishing the dimension of quantities
in our field theory, separate dimensions must be at-
tributed to space x, and "time" v. In Eq. (125) we see
that D =4 is selected out as that dimension where g, the
dimensionless coupling, does not depend on the nor-
malization point EN used in defining the field theory.
At D =4 the theory possesses a, scale invariance under
x, 7 scalings. D=2 in our real four space-time dimen-
sional world.

Here I "' is related to the unrenormalized I U
'

computed in terms of n0, b„and r0 from the Lagran-
gian by

I(" -)(E,, q, , ~', g, ~, E )

1- 1+ E logZ
N N

EN1+ N

EN

A ~ A + A EN logZ2

(117)

(118)

(119)

Since I ~n ™doesn't know about EN, the point where we
choose to normalize I' "', we have8, s s () (n+m) („)E~ E +ma', +))A +P ——

2 y I" "' =0,

(127)

1+v
EN

(120)
8

P=E~sE g
N

(128)

and

8
A + 6 EN -- logZ

EN

aE„1+g
EN

(121)

(122)

and the other functions have been defined a moment ago.
Now the normalization conditions on the theory must

define 1, cy', A, and r. We mant E, the renormalized
energy gap or mass to be zero, since

~=1—a(0) =0 (129)

for the Pomeron. This leads us to require
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r(1,1& (Z q 2) —0 (130) to the study of g(-t = -log() as its argument-+~. With
the P(g) for our theory

The other parameters are defined by

p(l, l)
U

q2= 0

Z-1
3 (131)

g wgN

q =0

= —OfQ Z2 Z3 (132)

(27&)'~'"' (, , &

U
rQ Z1=2Z2=-2&3= -EN, qz=Q

(lss)

This allows us to determine the Z; and thus our renor-
malized parameters. Any other definitions entail a
finite renormalization.

The crucial information is in the function P(g) which
is determined in lowest order perturbation theory to be

g(i) = e~4 &~~4 —+ (e&4 D&&I2 I)
—

1 4x.
g 4 —D

— -1/2
(140)

r'" '(z, , q„~',g„z„)

with the boundary condition g(0) =g. Now as t-+~g(t)
-g, . [If P, were negative, g(t) would recede from such
a zero. ] So we learn that in the infrared limit, the
Pomeron Green's functions we seek are determined by
a, zero of the function P(g). If D were four, then g, =0
and on the right hand side of Eq. (136) we would be in-
structed to determine I'~"' by an effective free theory.
If D44, as in physics, g, may still be small enough.

Anyway for E, small enough g- g, . Using ordinary
dimensional analysis we find this restricts I'~"™to be
of the form (Abarbanel and Bronzan, 1974a, b; Migdal
et a/. , 1974)

(4 —D)
p(g) = —

4
g+xg'', (134)

(2-n -m) D/4 E 1-(n+ m) /2$ (4'1)+ z(g'1) (2-n -m) D/4

N

with X&0 (Fig. 45). This has a zero at g=g, o.(4 —D)'~'
and

p, = — &O.dP

dg &g

(135)

This information is important because of the solution
(Abarbanel, 1974a.; Coleman; 1973) to the renormaliza-
tion group equation tells us

r~" &(gz, , q, , o. ', g, E„)= I' " ' &(E„q;,o7'(-t), g( t), E„)—

fz -z -'"'q q n'
l(E E EN

(141)

z('g, ) =1—~(g, ) . (142)

is not determined by what we have said so far.
Clearly the limit in which (141) makes sense must be

where E=+ E„g„ is a, dimensionless function of itsn, m

scaled variables, and

where

t = log(,

x exp
0

~(g(t')),
t

(ls6)

(137)

(138)

E. O

E;/E fixed

q;. q~/(-E)' fixed

We can draw two immediate consequences from this
solution to our infrared problem:

(1) If there is a renormalized Pomeron, which would
arise as a zero of r ", it must have the energy mo-
mentum relation

g t dt
= 1 ~(g(t))

1 dpi'(t)

The study of r~"' & for $- 0; that is, E&- 0, is reduced
or

n(t) = I +R„( )

(144)

I

gI

FIG. 45. The function P(g) for Heggeon field theory. In the
infrared limit (E, q —0) governing diffraction scattering the ef-
fective coupling constant of the theory becomes g& where P(g&)
= 0. In Reggeon field theory g& ~ v'4 —D .where D is the number
of dimensions of impact parameter space. This suggests a
fruitful expansion in e =4 —D for D~4. Physics takes place at
D=2, .

which is not substantially different from the original
multiperipheral Pomeron as long as z(g, )=1.

(2) The contribution to the total cross section coming
from one renormalized Pomeron exchange (Fig. 46)
factowizes, and behaves as

o'r (s) -g„g~(logs) (146)

Various attempts have been made to estimate the size
of y and z. The first was in an expansion around D =4
dimensions where the theory is scale invariant. Since
the zero of P(g) g, is proportional to (4—D)'~', this ex-
pansion is sure to be accurate near D=4. Its accuracy
at D= 2 cannot be determined a Priori. The other method
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a T (s)-gAgB(log s)

+l/4 & —y &+l/2
E,q

irO+ 2

E-E', q

FIG. 46. The dominant asymptotic contribution to the elastic
cross section and total cross section. cr & (s) factoxizes and
rises as Oogs) &. —y is a positive number which is one of the
critical exponents in the scaling form of the Moscow —Batavia
Pomeron. Numerical estimates indicate 4 ~ —y ~ 2.

of determining these exponents is to use the analogue of
solid state physics' high temperature expansion. The
best efforts place the values in the range (Abarbanel and
Bronzan, 1974a, b; Baker, 1974; Bronzan and Dash,
1974; Dash and Harrington, 1975; Ellis and Savit, 1975;
Migdal et aE. , 1974)

+4 ~ —yQ+2 (147)

9 ~ ~ 5
8 4 ~ (148)

It is important to note that higher order Pomeron ex-
changes involving I "~ and so on, give rise to lower
and lower contributions to o; „&. The hierarchy of con-
tributions is shown in Fig. 47. This means that the
asympiotic total cross section zoill factorize and wise as
(logs) & according to Reggeon field theory.

gT (s)
g g (log s)

IX. DEVELOPMENTS IN REGGEON FIELD THEORY

A. Early work

The discussion so far has emphasized the summation
of all graphs of the Reggeon field theory by use of the
renormalization group. Earlier techniques emphasized
instead the Schwinger-Dyson equations of the field theo-
ry which ccIntain the full nonlinear information via cou-
pled integral equations. For example, I' ", the inverse
propagator satisfies (Fig. 48)

FIG. 48. The Schwinger —Dyson equation of Heggeon field the-
ory. Early Soviet work attempted to find self consistent solu-
tions to this kind of nonlinear equation.

ir'"'(E, q') = E —n,'q —~,
2 I ~f0 l (P(1 ~ 1)(EI ~/2)

«' "(E-E', (q-q')'6 '

x I'~' "(E',E —E', q', q —q') ~ (149)

The early Soviet work (Gribov and Migdal, 1969a,b, c)
emphasized two possible solutions to this and related
nonlinear equations:

(1) A weak couPiing solution where the integral in Eq.
(149) remains negligible and the Pomexon remains a
simPle Pole. As we have emphasized before, there is
such theoretical disaster associated with a pure Pomer-
on pole that we need not further discuss it.

(2) A strong coupling solution. Here the inverse prop-
agator becomes

1' '= (-E)'-'0 „,(q /(-E)'), (150)

B. Secondary trajectories

It is natural to ask how the theory of the Pomeron de-
veloped above affects Reggeons with quantum number
exchange (p, ~,A„. . . ) or n(0) & 1 ( f, . . . ) (Abarbanel
and Sugar, 1974; Gribov et aL, 1971). Since it is the
exchange of the p Reggeon with

just as in the renormalization group solution. This solu-
tion was arrived at in a manner quite different from the
latter day renormalization group method. It was argued
then that it led to a negative total cross section. Need-
less to say, it was rejected. In retrospect one can see
that the scaling forms do formally satisfy the nonlinear
integral equations of the theory yielding integral equa-
tions among the scaling functions Q„. The argument
that led to negative cross sections, however, went out-
side the field theory and was incorrect.

(G V)* (151)

—f&B (log s) .

+hAB(log s)

FIG. 47. The hierarchy of contributions to the total cross sec-
tion in Heggeon field theory. The leading term factorizes; the
other s need not.

that is so accurately measured in the pion-nucleon
charge exchange experiments mentioned above, the mat-
ter has direct experimental importance.

The theoretical issue involves the summation of the
graphs in Fig. 49. Again this may be done using the re-
normalization group. In the theory of secondary trajec-
tories one has two P functions. One for the triple Pom-
eron coupling and one for the Reggeon-Pomeron-Pom-
eron coupling shown in Fig. 49. One searches the effec-
tive coupling constant space for stable points in the in-
frared limit. The result is that the amplitude for charge
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+ e e

term in more conventional field theory (Abarbanel,
1974b). When 6= 1 —n(0) =0, there must be a very spe-
cial value of b,„call it b.,c (for critical), which is a
complicated function of a,' and ~,. This value is obtained
by formally integrating Eq. (131) for i I' "(Sugar and
White, 1974a, 1)

FIG. 49. Reggeon graphs summed to study the Pomeron or
absorptive corrections to secondary H, eggeons ( p, A2, . . . ) or
fermions. The Pomeron is shown with a wiggly line; it enters
to all orders. The other Beggeon, which has n(0) &i, enters
only once.

ii',"&(Z, 0) =—

where

Vo

(+ r)D/4

4/(4-D) 1 1
dy —,

-)yz„/-e 3' +s( 3')

(158)

exchange is modif ied from

TcEx(s, t) = gages" P~'~[wp+ exp( —i7/o. )p(t)] (152)

-4((4-D) ~f p

( ))D/4 (157)

which it was for a pure pole (v~= —1) by multiplication
with (logs) ~o. The function o.~(t) remains linear for
small t. Estimates of yz using an expansion about D= 4
indicate it is very small: -yp= 1/10. So the t-channel
Beggeon field theory for boson trajectories is in very
attractive shape.

Fermion trajectories are quite a bit more complicated
(Bartels and Savit, 1975; Gribov et al. , 1970). The re-
sults of summing the same set of graphs as in Fig. 49
yields a fermion o.~(u), measured in backward scatter-
ing, which is almost linear in u, as indicated experi-
mentally. Also for u& 0, one has both positive and nega-
tive parity poles in the J plane. For u& 0 where fermion
states would be observed, only positive parity states or
only negative parity states are produced. This also is
borne out by the observed fermion states; no parity
doublet of states ha, s yet been found.

o.(0) &1, (153)

(154)

Also fairly straightforward is the requirement that
+elastic +total WhiCh

-y~~z ~2 (155)

Now this second restriction is true in all numerical
calculations of the indices y and z. Furthermore by
studying the lattice formulation of Beggeon field theory
(Brower et (2l. , 1975; Cardy and Sugar, 1975) it has
been possible to show that the existence of a zero of P(g)
like g, where P, & 0 implies Eq. (155).

The question of whether n(0) &1 is more subtle, but is
also tractable. The key observation is that the term
~,P+(t in the Heggeon Lagrangian (112) acts like a mass

C. The issue of s-channel unitarity

Beggeon field theories are constructed to satisfy t-
channel unitarity as expressed via the Beggeon unitarity
relations. It is not in the least obvious that the theory
respects unitarity in the s channel as well. Actually it
is very difficult to formulate completely the consequenc-
es of s-channel unitarity since there are deta. iled rela-
tions that must hold for T~ ~ that are hard to investi-
gate. Nevertheless, some features can be studied.

An important aspect of unitarity in the s channel is
the Froissart bound which requires

Comparing this with perturbation theory tells us that

Oc ~ +ac
—4/(4-D) ao

yy ]0

(~.')"* ). ~' &.(~) ' (158)

which is negative. The value of the bare Pomeron inter-
cept which produces o.(0) = 1 is greater than one

noc&1 (159)

In the theory which we have studied above, we assumed
no= noc so E= 0. What happens when ao ~~Dc& When
o.', & n,o, one has A& 0 or o.(0)& 1, and the familiar pat-
tern of separated poles and branch cuts in E emerges.
When n, & n,c, the theory becomes unstable in expansion
about P = P'=0, and one must find new values to expand
around. The fields develop expectation values in the
ground state and in the end E& 0 again (Abarbanel et al. ,
1975d, e).

The question of n, & n« is examined by looking at the
effective action (Coleman, 1973) of the Heggeon field
theory. The ext emg of this quantity determine the
points around which one expands the quantum field. For
o., & n, c, these are at Q = Q+ = 0. When o., passes through
cv«, one moves to a different branch of the solutions
and the fields develop expectation values. In convention-
al field theory this has the name spontaneous symmetry
breaking. In statistical physics (Fischer, 1974; Wilson
and Kogut, 1974) this corresponds to a phase transition
where the expecta. tion value, in the theory of ma, gnets
say, is the spontaneous magnetization. I"oy all vaLues
of the input Porneron intercept, oz, the output intercept
n(0) ~ l. It is absolutely crucial in this that there be
Pomeron interactions. Without them the Pomeron inter-
cept would blithely go on up through one and never stop.
This is precisely the situation which prevails in the mul-
tiperipheral model. Beggeon field theory has been ar-
ranged to reduce to this when there are no Reggeon in-

teractionss.

There are several other requirements of s-channel
unitarity which come in the form of inequalities like
(155). They are met in the strong coupling solution of
Heggeon field theories we have presented above (Cardy,
1975).

A heuristic argument can be made why Reggeon field
theories satisfy the simple inequality constraints of s-
channel unitarity. It is known by construction that eikon-
al models as discussed above do satisfy these require-
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cut
ope

FIG. 50. The model for cutting open a Reggeon to study its s-
channel particle content. It's the multiperipheral amplitude,
of cour se.

ments. Among the additions of Reggeon field theory to
the eikonal models is more absorption through Pomeron
interactions. This is going to decrease the eikonal am-
plitudes and presumably satisfy the same inequalities.
Whether the detailed s-channel unitarity requirements
are satisfied is not known. As a bold conjecture let me
state that Reggeon field theories, built to meet t-chan-
nel unitarity, also satisfy s-channel unitarity.

There have been developed methods to study the s-
channel content of Reggeon field theories. The two
prime techniques are as follows:

(1) Processes in the s-channel, as in the multiperiph-
eral model, build up the basic or bare Beggeons which
go into the Reggeon graphs of Reggeon field theory. We
have seen many examples of this. If we have a rule
(Abramovskii et al. , 1974; Caneschi and Jengo, 1975;
Cardy and Suranyi, 1975; Koplik and Mueller, 19V5;
McLerran and Weis, 1975; Suranyi, 1975) for opening
up a Reggeon and exposing its s-channel particle content,
then we can take Beggeon graphs and enumerate their
contribution to any given physical process in the s chan-
nel.

The simplest graph is just one Reggeon exchange (Fig.
50) which we open up by taking the absorptive part. Tak-
ing this to reproduce the results of the multiperipheral
model (flat spectrum in rapidity for inclusive process-
es, etc. ) we may take more complicated graphs, such
as Fig. 51, to study corrections to the multiperipheral
model.

This procedure commits one to a specific mechanism
for the building up of a Reggeon. Using the multiperiph-
eral model as that choice makes excellent sense. How-
ever, the utility of the technique of cutting open Reg-.
geons must break down as one arrives at energies where
the scaling solutions discussed above become important.
The reason is just that the number of graphs becomes
infinite, and resuming cut graphs requires a new fields
theory of cut and uncut Reggeons. Such field theories
have been developed and explored (Caneschi and Jengo,
1975; Cardy and Suranyi, 1975; Suranyi, 1975). For
simple aspects of multiparticle production such as the
average multiplicity one finds

FIG. 52. The triple Reggeon region for inclusive reactions.
Reggeon energy is not conserved here because an intermediate
fixed "time" = lo g M i s expo sed.

{n)(s) - (logs)' (160)

which rises faster than the logs of the multiperipheral
model. Also the higher moments behave as

{n')(s)-(logs)"' ~', h=1, 2, . . . . (161)

(2) The other approach has been to study specific s-
channel processes and develop a calculus of Reggeons
appropriate to it. Then one uses a field theory and, of
course, the renormalization group to sum up all contri-
butions to these processes in the E;,q;- 0 limit. This
has been used in the study of production amplitudes T, ~
(Bartels, 1975a, b) and inclusive cross sections in the
triple Regge region (Fig. 52) (Abarbanel et al. , 1975a;
Cardy et al. , 1975).

The formulation of a field theory for either T, ~ am-
plitudes or the triple Regge amplitudes involves amus-
ing complications coming from the presence of many
partial wave amplitudes or the possibility of nonconser-
vation of Reggeon energy.

In the case of T, ~ one must sum the Reggeon graphs
in Fig. 53 to evaluate the partial cross section for N
particles o~(s). . Each of the solid dots represents a
particle being produced. Here one must evaluate the
renormalization of the additional vertex for Pomeron-
Pomeron-particle which is not encountered in the elas-
tic scattering problem. One finds (Anselm and Dyatlov,
1968; Bartels and Rabinovici, 1975) that each o~(s) be-

cut
ope

to lear
about or or

FIG. 51. Processes one may learn about by cutting open the
simplest triple Pomeron graph.

FIG. 53. Reggeon graphs to be summed in the study of 2 —N
production cross sections. Each heavy dot is a particle pro-
duc ed.
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haves

v~(s) —(logs) (162)
The exponent is again determined in expansion around
a=4. This calculation serves to demonstrate that the
shielding effect of absorptive Pomeron corrections does
fix up the old Finkelstein-Kajantie disease of the multi-
peripheral model (Zachariasen, 1971). Without Pomeron
corrections o„(s) grew faster than (logs)' for N large
enough and violated the elementary relation o.~& ot
& (logs)'.

The same calculation shows that Pomerons alone are
not sufficient to build up a o„(s) which when summed on
N yields the o„,~ of the full @' Reggeon field theory.
Instead Q~o~-cr„„„,& o„,~. Since the contributions to
o~(s) involve looking into the bare Pomeron couplings
to discover how they are built from more fundamental
processes, it is perhaps not surprising that Pomerons
alone do not build Pomerons. Additional contributions
from secondary objects will be needed. This is in strik-
ing contrast to the attempts from the s-channel point of
view to make o~(s) and o„,„(s) from a self-consistent
Pomeron.

The study of the triple Pomeron region of inclusive
processes is important for in the multiperipheral model
where a(t) =1++'t, the study of the graph in Fig. 52
showed that the triple Pomeron coupling had to vanish
when t= 0 (Aba, rbanel et a/. , 1971b). Looking into this
coupling one found further and further restrictions on
zero momentum transfer Pomeron couplings until it was
shown that the particle-particle-Pomeron coupling
which governs total cross sections had to vanish as well
(Brower and Weis, 1972).

A Reggeon field theory for this process involves the
energy nonconserving triPle Pomeron vertex F~"~(E;,g, )
which reduces to our usual 1~"~when E,=E, +E, (Fig.
52). The energy nonconservation arises because the
process involves an intermediate "time, " v= logM', M'
= the missing mass, in the progression of Reggeons
from zero time up to logs. One must sum up Reggeon
diagrams as in Fig. 54 and more tricky as in Fig. 55,
using the renormalization group (Abarbanel et al. ,
1975b; Frazer and Moshe, 1975).

The result of operating this machinery is that the total
cross section from the triple Regge region behaves as

FIG. 55. A pleasant complication in the Reggeon graphology
for the triple Reggeon region of inclusive processes.

D. Other matters

There are two other interesting results within the
framework of Reggeon field theory which bear reporting.
The first has to do with scattering on nuclei (Kancheli,
1973; Lehman and Winbow, 1974; Schwimmer, 1975).
In the single pole approximation (Fig. 56) when the nu-
clear radius R,A. ' ' is large compared to the impact pa-
rameter fluctuation distance v'o. ' logs given by the
Green's function (110)

v' A' logs« Ao/

the total cross section should behave as

(164)

(logs) ~ and not greater than oz,(s) as in the multiperiph-
eral model. So the interacting Pomeron restores the
consistency with the elementary requirement af p] R gg,
~ o„«. The triple Pomeron vertex need not vanish ana-
lytically at t= 0, and none of the Pomeron decoupling
theorems need be addressed. The differential cross
section in the triple Pomeron region has more or less
the form

do/dt dlogM'- (logM') &/(logs/M') '~ exp[ —t(logs)'],

(163)

for IogM'» logs/M'. This has no tendency to vanish at
t=0 and gives the integrated cross section (logs) ~ men-
tioned above. This closes the circle on the mysterious
Pomeron decoupling theorems and provides substantial
support for the consistency of Reggeon field theories
with s-channel unitarity.

t2

0'tong(S) = 27TEO/l

and the multiplicity of produced particles as

(n) „(s)-/I'~' logs.

(165)

(166)

Now experiment (Busza et al. , 1974) shows that the
cross section does behave more or less as A' ', but the

FIG. 54. One of the Reggeon graphs to be summed in the study
of the asymptotic behavior of the tripple Regge region of in-
clusive reactions. Reggeon rules do not allow Reggeons to
traverse between the t& and t2 channels.

A
//////i /

i=i

FIG. 56. The simple Pomeron
exchange for particle scatter-
ing on nuclei. It gives a multi-
plicity of produced particles

logs for a nucleus of
A nucleons. Experiment gives
only logs.
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A nucleons

FIG. 57. The dominant graph for particle-nucleus scattering.
It gives a multiplicity ~ log s.

multiplicity is essentially independent of A.. What is
missing is interaction among the Pomerons. Figure 57
gives the leading term. Now the multiplicity grows as
logs essentially independent of A. One may heuristically
understand this by thinking of the Pomeron interactions
with the A nucleons as just producing a new Pomeron-
Nucleus-Nucleus vertex function as in the right hand
part of Fig. 57. Now a constant cross section and (n)
—logs are quite natural. Pomeron radiative corrections
as in Fig. 58 have not yet been accounted for, but the
whole apparatus described above is ready for that.

Finally there has been an interesting technical achieve-
ment in determining not only the scaling indices y and z
but also the scaling functions like Q, , in Eq. (141) (Abar-
banel et aL, 1975b; Frazer and Moshe, 1975). In par-
ticular for F" the functional dependence on the scaling
variable is determined by the two equations

E &-Y 27

i I'~~"~E, q', n,', r, = .— [1+q(1+ v)] 1+—
1 —y

(167)

and the scaling variable g is given through

(168)

These are valid in the expansion in e = 4 —D described
before and to the appropriate order —y= c/12 and T= e/
24.

The technique is essentially to express I'" in terms
of integrals over the Z; as done in Eq. (156). Then de-
termine the Z; using the renormalization group equa-
tions for them and the expansion about D=4 to establish
the coefficients in these differential equations. Using a
general normalization point E~, ~q~ to define the theory
one is able to determine the dependence of the Z, on the
dimensionless variables g [Eq. (125)] and q = n'q2~/EN.
This yields up Eq. (167) and Eq. (168) by means of an
expansion in e. This result shows that there are no
fixed singularities at E = 0 for q fixed. Further it al-
lows one to arrive at an explicit formula for the elastic

differential cross section which exhibits the usual sharp
fall off in t for small t and then "bounces, " that is has a
zero and a secondary maximum which lies about six or-
ders of magnitude below the diffraction peak at t= 0.
This, crude as it is, appears to be in rough accord with
the data at the CERN —ISR (Giacomelli, 1974).

X. ASSESSMENT OF THE t-CHANNEL APPROACH

(169)

which characterize the tota1 cross section

o r(s) - (logs) ~, (1V 0)

and the shrinkage of the diffraction peak. The leading
asymptotic amplitude factorizes, despite the presence
of branch cuts. s-channel unitarity is at least enforced
at the level of crucial inequalities; such as, n(0) &1,
-y& 2 and so forth. The problems of a p trajectory with
n~(t) remaining almost linear and of fermion Regge be-
havior are very neatly answered. The possibility of us-
ing the field theory formalism in the study of specific
interesting s-channel processes has proven real and has
allowed one to further delve into the key question of s-
channel unitar ity.

The matter of the full behavior of diffraction ampli-
tudes has hardly been set to rest, however. Looking
back at our list of properties of diffraction, one will
note that we have not even begun to deal with the ques-
tion of the vertices Pomeron-Particle-Particle and any
selection rules for it (I eith, 1974). We have not faced
up to the question why n(0) = 1, but only have been able
to demonstrate that it cannot be greater (Abarbanel et
al. , 1975d). Frankly, these questions are, I believe,
not amenable to answer within the framework discussed
in this paper. More about it later.

An important issue we have postponed is when we
ought to expect the scaling behavior to set in. The di-
mensionless expansion parameter of the Reggeon field
theory is

As I have indicated several times in this article, I
very much favor the view from the t channel. It pre-
sents a consistent, attractive way to deal with the inter-
play between Regge poles (or the multiperipheral model,
if you will) and the branch points demanded by unitarity.
Indeed, it does it in a formal structure that is an ab-
straction of unitarity itself. With Beggeon field theories
we are able to focus our attention on two critical indices
y and '." for the elastic amplitude

(r', /n, ') logs. (171)

Certainly as long as this is much less than 1, we need
not look for the scaling solution since the only graph of
any importance will be the old one Pomeron exchange.
Since it has no&1, it will give a rising total cross sec-
tion. From data on the triple Regge regime of PP- P+X
and Pd- d+ X, one learns that

/////////A 4 P/////////

FIG. 58. Pomeron radiative corrections to particle-nucleus
scattering.

2/ I 1
+o o 5o &

so when

logs ~ 25,

(172)

(178)

Rev. IVlod. Phys. , Vol. 48, No. 3, July 1976



Henry D. I. Abarbanel: Diffraction scattering of hadrons

the Moscow-Batavia scaling solution will certainly be
necessary. A more precise estimate examines how far
away from Reggeon energy E = 0 we can trust our scal-
ing formula at D= 2

2 — 1/6il"'(Z 0)= — dx 1+
Bm'cv,'x

1

This deviates from the scaling formula noted in Eqs.
(167) and (168) by the time (Abarbanel et aL, 1975b)

(lv4)

Z = 3r', /8zn, ',
or when

(lv5)

logs ~ 5.
Other estimates (Amati and Jengo, 1975) of the same
"transition" energy lie at logs =9 or 10. Since at the
maximum energy the CERN-ISB has logs =8 and a 1000
GeV/c on 1000 GeV/c colliding beam would have logs
=14, one may (let optimism prevail!) be in or about to
go through the transition region. Further optimism
would suggest that phenomenology done with the scaling
formulae even at the present highest energies might be
signif icant.

If we have not yet entered the scaling regime, then it
is difficult to give an a pxioxi estimation of what would
comprise a useful phenomenology in the context of Reg-
geon field theory. Certainly one will be involved in the
evaluation of at first a few and, then as s increases, of
more and more terms of perturbation theory for what-
ever field theory one chooses. Since terms with many
derivative couplings and high powers of the Pomeron
field are suppressed quite rapidly, one might imagine
adding just

(1v6)

—~(P'Q)' ——'(p'Q'+ Q"Q)+a few derivatives,

(177)

to begin a finite phenomenology. The territory is basic-
ally unexplor ed.

There is another suggestion by Gribov (1975) for find-
ing a diffraction theory useful at "intermediate" ener-
gies. He notes that the Pomeron slope n,' is like an ef-
fective mass

E=q /2m, ff+ A, (lv8)

eff n I 92&o

so that the Pomeron, with o.o =0.3 (GeV/c) ' is much
less mobile in x, ~ space than, say, a p meson with n,'
= 1. Until the times (logs) become very large, the rapid-
ly moving lower lying trajectories and even particles
will dominate the t-channel dynamics. He has formulat-
ed a diffraction theory as an expansion around m, ff

——

or no= 0. It goes into the Moscow-Batavia scaling solu-
tion. It, too, is basically unexplored territory.

'The t-channel view of Reggeon field theory teaches us
a lesson which is attractive while disappointing. We
learn that a few basic bare Pomeron parameters (n,',
x„and maybe others) are sufficient to yield the asymp-
totic behavior of diffraction amplitudes. We are reward-
ed by a simple, universal behavior- whose detailed fea-
tures lie in a small number of critical indices like y

and z. This is the attractive part. The disappointing
part is that in large s, small t physics we learn nothing
about the underlying structure of the hadrons them-
selves. We have averaged over hadron coordinates in
forming the Reggeon field @(x,r) in the first place.
Then we took a limit which emphasized an infinite cor-
relation length in rapidity space (~l/b. ) and thus washed
out the details of the production processes which occur
at finite rapidity gaps.

The analogy with systems like a magnet near a criti-
cal temperature is persuasive. One is able to charac-
terize the interesting quantities such as the susceptibil-
ity and spontaneous magnetization by a few universal
critical indices. However, in the neighborhood of the
critical temperature the correlation length among spins
goes to infinity and one does a grand averaging over the
detailed coordinates of the original magnetic system.
It eventually doesn't matter if the spin lattice is body-
centered-cubic or face-centered-cubic or if the spin-
spin interactions are nearest neighbor or fifth nearest
neighbor; all that gets washed out.

Xl. OUTLOOK: THE BARE POIVIERON AND n{0}=1

We have come close to the conclusion of our overview
of theories of hadron diffraction. We have looked at dif-
fractive processes from the direct channel by examining
the production amplitudes which build up diffraction
through unitarity. We have peered down the t-channel
to satisfy unitarity in that direction through the medium
of Beggeon field theories.

I would like to end this extended discussion not by re-
viewing the review but by pointing to the crucial prob-
lem raised by the last several years' hard effort in the
theory of high energy hadron scattering. This is the
question of the bare Pomexon and bare (or noninteract-
ing) Reggeons in general. In the Reggeon field theories
we found that having been given a set of parameters e„
no, r„.. . for the Lagrangian, we could calculate, using
the renormalization group or whatever technique, a uni-
versal asymptotic behavior for any s-channel process
we like. Two very important matters remained unad-
dressed: (1) Where do the bare Reggeon parameters
come from? Are they "fundamental" quantities in theo-
ries of diffraction to be determined by experiment? Or
are they calculable from some underlying field theory
or S-matrix principles'? (2) If we adopt the view that,
indeed, the Pomeron intercept o. (0) = 1, then a special
relation among the bare parameters [like Eq. (158)]
must be met (Abarbanel et al. , 1975d). I haven't the
answers to these questions. There has been some work
on the former; the latter is wide open.

We have identified the bare Pomeron or bare Reggeon
with the multiperipheral model. The reader will have
noticed that the key element in Pomeron making was the
presence of bound states in the t channel whose total
spin J' varied with t: J = o.(t). Making the Pomeron or
other Reggeon then becomes a question of finding the
bound states from some underlying field theory, say,
and studying their variation in the (J', t) plane. Clearly
then we are adopting the point of view that the bare Pom-
eron parameters come from an underlying theory. In
Fig. 59 is a schematic flow chart of the hierarchy of
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HIERARCHY OF HADRON PHYSICS

Building Hadrons

Quarks Confined
Charm, Color, . . .
Static Properties: Masses,

Magnetic Moments, . . .

Grand Synthesis
{not available for

this review)

Building Reggeons

Hadron Bound States
Multiper ipheral Models
Clusters in Production
s-Channel Unitarity

Interacting Reggeons

Reggeon Field Theory
t-Channel Unitarity
Universal Asymptotic Behavior
Scaling Laws
Rising Cross Sections

FIG. 59. The hierarchy of hadron physics. This review dwells
primarily in the middle and lower boxes. The upper box con-
tains the secret of the bare Pomeron.

hadron physics suggested by this outlook. The bulk of
this article has concentrated on the bottom or middle
box. The questions we are raising here probably find
their answers in the top box. "Fundamentality" decreas-
es as one goes down the page.

There are at least two major views on the study of the
bare Pomeron. One is to concentrate on good old quan-
tum field theory and try to find the spectrum in the (J, t)
plane. Attention has focused (properly I suspect) on the-
ories which have "asymptotic freedom;" namely, ultra-
violet behavior which is almost that of free field theory
(Coleman, 1973). The most realistic example of this is
non-Abelian gauge theories, although, because of its
simpler structure, Q' theory in six space-time dimen-
sions ha. s been studied in this category (Cardy, 1974;
Lovelace, 1975). These theories have very complex in-
frared behavior and, since bound states grow on infrared
or soft quantum exchange (hard quanta destroy binding),
the problem remains. Indications are encouraging, how-
ever, since @' in six dimensions shows Hegge pole be-
havior while similar field theories: Q' in four dimen-
sions and electrodynamics do not. The latter two are
not free in the ultraviolet region, and that makes all the
diff erence.

The second approach is complementary to this field the-
ory and in a sense resides in the middle box of Fig. 59.
Without specifying what field theory one makes hadrons
from, it is proposed to classify the Feynman graphs of
the theory according to the "planarity. " [There is a
more precise topological definition (Chan et al. , 1975;
Chew and Rosenzweig, 1975; Ciafaloni et al. , 1975;
Schmid and Sorensen, 1975).] One can do this by hand
or by introducing a U(N) internal symmetry group and
considering N to be large. (N= 3 may be large enough. )

The leading graphs in powers of N are planar. They, in
a multiperipheral sense, are identified with Reggeons
involving quantum number exchange, certainly with o. (0)
&1. Next in orders of N are a set of nonplanar graphs
which are identified with the bare Pomeron. Again it is
a pole in the J plane whose a., is bigger than the quan-
tum numbered Reggeon since there are more graphs.
In this scheme the triple Pomeron vertex comes out
O(l/N) giving some rationale for the smallness of the
observed number tEq. (172)]. Although at the time of
this writing it is too early to assess the quantitative val-
ue of the "topological Pomeron" or the fundamental field
theory approach they do promise to be valuable tools in
the search for the bare Pomeron.
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