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A mainly didactic discussion is given of the mechanism for the gradual build up of transverse polarization
of electrons and positrons in storage rings. The history and basic results are reviewed briefly. Then an
intuitive explanation of the polarization in terms of spontaneous emission via a nonrelativistic magnetic
dipole transition in a moving inertial frame is presented and criticized. This simple treatment contains a
large part of the essential physics, but not all. It is surprisingly successful for electrons and positrons
(g =2), becomes exact for large g factors of either sign, but fails badly for particles with g factors of the
range 0 g 1.5. The failure occurs because here the spin-magnetic-moment system cannot be treated even
approximately in isolation from the orbital motion. A correct semiclassical description of radiation by a
spin system is then given, in direct analogy with semiclassical radiation theory for charged particles
ignoring spin. The classical equation of motion for a spin in relativistic motion, derived originally by
Thomas, is used to obtain an effective Hamiltonian of interaction of a spin with electromagnetic fields.
Emission and absorption of radiation is then described by replacing the classical electromagnetic fields with
the appropriately normalized photon fields. The resulting formulas are applicable to charged particles of
arbitrary g factor. Expressions are given for the differential spectra in angle and in frequency for numbers
of photons and for radiated power, as well as the previously known results for the total transition rates.
These results seem of physical interest only for g =2 but serve useful pedagogic purposes, refuting some of
the expectations of the naive explanation. The various differential spectra are treated in detail for g =2 and

compared with the corresponding spectra for ordinary synchrotron radiation.
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where the maximum polarization is
P,=8/5/3 =0.9238, (1b)

and the characteristic time 7, is

roe[ B ST (10)

8 mzczps
(Sokolov and Ternov, 1963). The polarization is per-
pendicular to both velocity and acceleration, that is,
along the direction of the magnetic field responsible for
the bending. Positrons are polarized parallel to the
magnetic field, electrons antiparallel.

The original work of Sokolov, Ternov, and collabora-
tors was done with exact solutions for a relativistic Di-
rac electron in a uniform magnetic field. Subsequently,
Baier and Katkov generalized the results to motion in
inhomogeneous fields. For the spin-flip radiation by
relativistic electrons or positrons, they obtained (Baier
and Katkov, 1967a; Baier, 1971a,b) the transition
probability per unit time,

2 - > A 8'\/_» P <
W= Sy Bl [1-3E - 5T E- 2B, @

where the unit axial vector ¢ specifies the ir)itial fpin
direction in the electron’s rest frame and, Band 8 are
unit vectors in the directions of the local velocity and
acceleration, respectively. For a circular orbit with
]§|=c/p, Eq. (2) leads to results (1) with the senses of
polarization for electrons and positrons already stated.
The amount of spin-flip radiation is extremely small
compared to the ordinary (nonflip) synchrotron radia-
tion. The ratio of the powers radiated is (Ternov, Los-
kutov, and Korovina, 1961; Sokolov and Ternov, 1963)

@, 2\2
o5 1425)
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where the choice of sign depends on the initial spin state
of the particle. Only when y approaches the critical
value, .

v,= (2e)", @

will the amount of spin-flip radiation be comparable to
the ordinary synchrotron radiation. At present, a typ-
ical bending radius for an electron storage ring is p
~13 m. Hence y,~6X 10 while ¥<10%, showing that
the ratio (3) is of the order of 10!, The smallness of
this ratio is reflected in the relative largeness of the
buildup time 7.

In practice one must distinguish the ring’s effective
bending radius p from the average orbit radius R, de-
fined is the circumference of the orbit divided by 2.
Let the s be the length along the actual orbit in the stor-
age ring, and p(s) be the radius of curvature of the or-
bit at each point. Then by consideration of the accumu-
lation of probabilities it is easy to show that the effec-
tive radius of curvature p to be inserted in (1c¢) is

p"3=§ [p(s)]’Sds/fj; ds. (5)

This formula is valid even if p(s) changes sign locally
around the orbit as would occur with the so-called wig-
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gler magnets, suggested as a means of controlling the
characteristic time 7, (Paterson, Rees, and Wiede-
mann, 1975). For a storage ring consisting of a set of
identical bending magnets of bending radius p and
straight sections combining to an orbit of circumference
27R, the right-hand side of (5) is equal to (o/R)p™3. In
practical units the time constant 7, is then
3

To(sec)=98.66[—g)(—(c%])]5§. (6)
For SPEAR, the storage ring at the Stanford Linear Ac-
celerator Center, p=12.7 m, R=37.3 m. At 2 GeV per
beam the buildup time is roughly 5 h, while at 4 GeV per
beam it is about 10 min. The strong dependence on en-
ergy means that the polarization can be utilized as an
effective physics tool only in the upper energy range of
existing storage rings (SPEAR and DORIS, at Hamburg).

Indications of a buildup of the polarization in a single
circulating beam were first reported in 1968 by the Or-
say group (Belbeoch ef al., 1970), with unambiguous
evidence from both Novosibirsk and Orsay in 1971.2
The first observations on polarization with two beams,
under conditions similar to actual running for physics,
were made at Orsay and presented by LeDuff et al.
(1973). More recently observations have been made at
SPEAR on the polarization of a single stored beam with
E=2.4 GeV (Camerini ef al., 1975) and for colliding
beams at E=3.7 GeV in the reactions e*e”—e*e” and
e*e” - u*u” (Learned, Resvanis, and Spencer, 1975) and
in e*e”— u*u” and e*e” —hadrons (Schwitters ef al.,
1975). Contemporaneously, polarization measurements
in the reaction e*e”™— pu*u~ at 0.5-0.7 GeV per beam have
been communicated from Novosibirsk by Kurdadze et al.
(1975). Since the observed azimuthal asymmetries for
the QED processes e*e”—e*e”, u*u” are entirely consis-
tent with the expectations of theory, these data are used
to determine the time constant 7, and the degree of po-
larization P,. At SPEAR the observed value of polariza-
tion was P,=0.76+0.05, while the time constant was in
rough accord with Eq. (6) (Learned, Resvanis, and
Spencer, 1975). It is presumed that depolarizing effects
in the storage ring are responsible for the failure to
achieve the anticipated P,=0.924. The azimuthal asym-
metries of the inclusive hadronic cross sections eluci-
date the dynamics of the production of hadrons in e*e”
annihilation. The same information is in principle
available from the polar angular distributions with un-
polarized beams, but the peculiarities of the experimen-
tal arrangement make the azimuthal information more
reliable (Schwitters et al., 1975).

For all practical purposes the works of Sokolov and Ter-
nov and of Baier and Katkov, especially the review by Baier
(1971b) with its discussion of both theoretical and practical
problems, are more than adequate todescribe the radiative
polarization of beams in storage rings. Nevertheless, it
seems that there is the need for an anschaulich, didac-

>The results from VEPP-2 at Novosibirsk are summarized
in Sec. 6 of Baier (1971b) which is a slightly updated version
of Baier (1971a), with the addition of these experimental ob-
servations. The results of the Orsay storage ring group are
contained in the report by Potaux (1971) to the accelerator con-
ference in Geneva.
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tic discussion of the subject. After all, Schwinger
(1954) demonstrated clearly that ordinary synchrotron
radiation is an entirely classical phenomenon. He
showed that the orbit is classical provided (Zc/Ep)<< 1,
where E is the total energy of the particle and p is the
orbit radius of curvature, and that the first order quan-
tum-mechanical corrections were obtained by replace-
ment of w—w(l+7%w/E) in the differential transition
probability. It follows that for relativistic particles
with 1<y <y, the orbit can be treated classically, and
recoil effects can be neglected. This regime of approx-
imation is the basis of the treatment of the spin-flip
synchrotron radiation and similar problems by Baier
and Katkov (1967a,b; 1968).2> The works of Schwinger
and of Baier and Katkov are important in seeking as
classical an understanding as possible of the phenom-
enon. We focus oOn the spin itself and seek in its dynam-
ics a simple physical basis for the spin-flip radiation.
The words “spin-flip” warn, of course, that the treat-
ment cannot be completely classical —the electron spin
must be treated quantum mechanically—but otherwise
it is reasonable to expect that one can obtain an under-
standing of the phenomenon in simple intuitive terms.

It turns out that there are subtleties that prevent the
realization of this expectation in its naivest form, but

a satisfying elementary explanation can be obtained
nevertheless.

The plan of the paper is as follows. First, the simple
description is presented. It has direct intuitive appeal
and does surprisingly well for electrons and positrons.
The circumstances in which the elementary treatment
is exact or approximately correct are then described,
as well as the reasons for its failure in general. Next,

- the familiar semiclassical treatment of emission of
radiation found in texts on quantum mechanics is out-
lined and generalized via the classical relativistic equa-
tion of motion of spin to include spin-flip radiation. The
effective Hamiltonian so obtained serves as the basis of"
a semiclassical treatment of the radiative polarization
of a particle of charge e and arbitrary g factor. Differ-
ential spectra in frequency and angle are presented, as
well as the total transition rate, lifetime, and asymp-
totic polarization. The virtue of a treatment for arbi-
trary g factor, seemingly only an academic curiosity,
is in its ability to confound some of the “common sense”
notions of the simple discussion. A final section pre-
sents in detail various spectra of the spin-flip radiation
for electrons and positrons (g=2). These are of peda-
gogical, if not practical, value. Some mathematical de-
tails appear in an Appendix.

Il. INTUITIVE TREATMENT, ITS SUCCESSES AND
SHORTCOMINGS

A. Elementary description4

The physicist’s appetite for an elementary description
of radiative polarization is whetted by the following

A summary of the work of Baier and Katkov on the classical
regime and lowest order quantum corrections for ordinary and
spin-flip synchrotron radiation can be found in Sec. 59 of
Berestetskii, Lifshitz, and Pitaevskii (1971), written in col-
laboration with Baier.
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facts:

(1) The effect involves spin-flip.

(2) The rate is very slow, as befits a magnetic dipole
transition between states with a small energy difference.

(3) The electrons and positrons are polarized with
their magnetic moments parallel to the magnetic field,
corresponding to the state of lowest energy of an isolat-
ed spin system.

(4) Formulas (1c) or (2) smack of magnetic dipole,
with |§|® providing the factor of w® and |]?/% visible in
the product of fundamental constants.

Obviously, he says, go to the rest frame of the orbiting
electron and consider a simple M1 transition from the
upper energy level to the lower. We follow his pre-
scription.
" Though we know that for rélativistic particles all that
affects the character of the radiation is a segment of
trajectory of length d~p/vy, corresponding to an angular
deflection A8~ 1/7, for simplicity we consider a parti-
cle of charge e and mass m moving at constant speed
v=cf in a circular orbit of radius p in a uniform static
magnetic field B. The orbital frequency is w0=v/p
=wy,/y, where wy=eB/mc is the nonrelativistic cyclo-
tron frequency. We now consider the fields in an in-
stantaneously comoving inertial frame K’ moving with
speed v =cpB tangent to the circle. The magnetic field B
appears in this frame as a magnetic field B’ =yB in the
same direction as B and an electric field E’ ='yﬁB in the
direction ¥ x B as shown in Fig. 1. Suppose that the spin
degree of freedom can be treated nonrelatiﬁristically in
this frame. With magnetic moment

II =L§ * Eeyﬂic-&s (7)

the spin system has two energy levels in K’ with fre-
quency difference,

g

2

T2

. eB’ |g
mce

wly= Y 2w,. (8)

The transition probability per unit time for a spontane-
ous magnetic dipole transition from the upper state to
the lower is

4 (W\3 01
r—_— (212 2
w _3ﬁ<c )|<z|u|1>| . ©)
With (7) and (8) this becomes
2|g|® e
=3 (5| e Cwd (10)

Time dilatation gives a laboratory transition rate re-
duced by one power of y. With w, =c/p for a relativis-
tic particle, (10) then leads to a characteristic time

o= [5|8] orer] an

mEcEp

4This simple approach was first published by Lyboshitz (1966)
who used it to discuss the radiative polarization of neutrons in
magnetic and electric fields, a phenomenon previously treated
in less transparent fashion by Ternov, Bagrov and Khapaev
(1965). For such uncharged particles, the method is essential-
ly exact.
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Instantaneously co-moving

Laboratory frame
: inertial frame

FIG. 1. Orbit of a positively charged particle with a uniform
magnetic field B into the page is a circular path of radius p
traversed at constant speed v. In the frame moving with
velocity vV to the right the orbit is retrograde, caused by a
magnetic field B’=vyB and a crossed electric field £E’'=yB8B with
directions as shown on the right.

to be compared with (1c).

For Igl 2, Eq. (11) agrees with (1c¢) to within a factor
of order umty Furthermore, spontaneous emission
from the “upper” to “lower” energy level leads trivially
to 100% polarization with the correct senses for elec-
trons and positrons. Comparison with Eq. (2), with its
ratio of approximately 25 for the “downwards” transi-
tion rate compared to the “upwards” one and its ulti-
mate polarization of 92.4%, indicates that all the essen-
tials are given qualitatively, and even semiquantitative-
ly, by the naive argument. Not bad! The physicist then
waves his hands expressively and remarks that of
course the spin is not exactly at rest all the time in the
moving frame and such neglected refinements can ex-
plain away the remaining small discrepancies. The
phenomenon is “understood.”

The physicist might then proceed to consider how the
phenomenon appears in detail in the laboratory. Of in-
terest are the differential spectra in angle and in fre-
quency. In the moving frame, the radiation is mono-
chromatic (the linewidth being negligible) with frequency
w!, and has a (1 +cos?¢’) angular distribution, where &’
is the polar angle relative to the direction of the magne-
tic field. The differential transition probability is thus

AP Yol
aQ’dw’ T

A
2

yzwo> . 1::311(1+coszg’), (12)

where 7 is the laboratory lifetime (11). The differential
transition probability in the laboratory can be obtained
by a Lorentz transformation, using the fact that the
number of photons in an element of invariant phase
space d®k/k, is a Lorentz invariant quantity. This
means that

d’w _ w  d*w’
dQdw ~yw’ dQ' dw’’

Here unprimed quantities are those in the laboratory,
and the right-hand side of the equation is to be ex-
pressed in terms of those quantities through the Lorentz
transformation. Using the notation of Fig. 3 below and
assuming y>>1, the physicist finds straightforwardly,
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d?w _ 3y? [(1+7y26%)%+ 4926 singp]
dQde 41w (1+7%6%)°

—|gly 3wo/w) (13)

X6(1+y26%

as the doubly differential transition probability in labo-

ratory frequency and laboratory angle. The unique cor-
relation between angle and frequency implied by the del-
ta function is a direct consequence of the monochroma-
tic nature of the frequency spectrum in the moving in-
ertial frame. The well-known forward peaking of radia-
tion from rapidly moving sources is evident; the radia-
tion is confined to angles of the order of 1/7 around the
direction of motion.

Integration over angles yields the differential frequen-
cy spectrum

dw 3

w w \?
27 - - 1
T dw 4wmax [1 * 2<wmax> 2 <wmax> ]’ ( 4)

where wm.= |g]73w0 is the frequency at which the spec-
trum falls abruptly to zero. This spectrum is displayed
below in Fig. 4, where it is compared with the correct
results for various g factors. It is a simple parabolic
continuum with relative values 1.0 at each end, and 1.5
at the center.

B. Comments and criticism

If the reader has only a passing interest in the pro-
cess of radiative polarization of the beams in electron
storage rings, he or she may stop here and be content
with the above simple discussion. It is qualitatively
correct for electrons and positrons and contains al-
most, but not quite, all of the physics. But if it nags
that the polarization is only 92.4% instead of 100% and
that the lifetime 7 contains a curious 5V3/8 instead of
the expected % of Eq. (11), then he or she must read on.
First we establish when the elementary argument holds
without question, when it should hold approximately, and
when it might be expected to fail.

For neutral particles possessing magnetic moments,
the simple arguinent is exact, as was pointed out by
Lyboshitz (1966). [For this situation we must eliminate
g, e, and p from Eq. (11) in favor of the magnetic field
B and the magnetic moment (. by means of ge =4 umc/7,
ep=ymc?/B, and put Wy =4|u|By?/7 in Eq. (14).] This
is because a neutral particle experiences no Lorentz
force in the presence of electromagnetic fields, and the
forces of translation arising from the coupling of its
magnetic moment to the fields are generally negligible.
The only significant effect of electromagnetic fields is
the precession of the magnetic moment by the magnetic
field B’ in the rest frame (which is now our inertial
frame). The above results, (11)—(14), apply to a neu-
tral particle moving perpendicular to the direction of
the magnetic field, but it is easy to generalize them to
an arbitrary angle between the particle’s velocity and
the field and also to include the effects of an electric
field in the laboratory (Lyboshitz, 1966; Ternov,
Bagrov and Khapaev, 1965).

Though correct for neutral particles with magnetic
moments, the simple arguments are only approximate
for charged particles, failing ‘badly in detail in some
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circumstances. A clue to when they might be expected
to hold to high accuracy can be found by considering the
neutral particle with a given magnetic moment as the
limit of a particle with infinitesimally small charge.
Since the g factor of a particle of spin s possessing both
charge e and magnetic moment u is defined as

g= (2mc/elis),

the neutral particle can be thought of as having an in-
finite g factor. As a consequence we suspect that the
elementary results (11)—(14) should hold with reason-
able accuracy for charged particles possessing large g
factors, and become exact in the limit Igl~oo.

The relative reliability of the simple arguments for
large | g| and their unreliability for small [ g| can be un-
derstood by considering the general features of the spin
motion and the mechanical motion of the charged par-
ticle. It is well known (Bargmann, Michel and Telegdi,
1959) that the magnetic moment of a particle with g =2
precesses in a uniform magnetic field at exactly the or-
bital frequency w,. For g#2, the laboratory preces-
sional frequency is (see Sec. IV.B below)

Q= |:1+'y(g2_ 2)} W,

For a g factor appreciably different from 2, £ becomes
very large compared to w, for extreme relativistic. mo-
tion. More relevant is the number of precessions dur-
ing the short time At~1/‘yw0 it takes the particle to
trace out a segment of path that subtends an angle

A6 ~1/y at the center of the orbit, for it is this time
interval that is germane to the emission of relativistic
synchrotron radiation in any given direction. For y>1,
the number of precessions in Af is evidently ~ (g - 2)/47.

For large | gl the magnetic moment thus precesses
many complete revolutions during the characteristic
time interval A¢. This rapidly spinning system has am-
ple time, in effect, to establish the two-level system
described above and to undergo its simple magnetic di-
pole transition (with very small probability), without be-
ing influenced appreciably by the orbital motion. Said
another way, the instantaneously comoving inertial
frame closely approximates the particle’s rest frame
for long enough, namely for times of order At~ 1/

y] g|wo, that the simple nonrelativistic arguments apply
there (Derbenev and Kondratenko, 1973).

For g factors of order unity, however, the magnetic
moment does not precess rapidly enough to ignore the
coupling between the spin system and the orbital motion.
A proper calculation shows that the lifetime 7 has a
complicated dependence on g, approaching the |gff be-
havior of Eq. (11) only for large | gl (Derbenev and Kon-
dratenko, 1973). Furthermore, the frequency spectrum
differs significantly from Eq. (14) unless ]g] is large—
see Eq. (58) and Fig. 4 below. The final and most dra-
matic shortcoming of the simple treatment is that the
actual degree and sense of the polarization depends sen-
sitively on the value of g and is such that for the range
0<g<1.2 the “upper” energy level is populated prefer-
entially over the “lower” one! —see Fig. 6 below.
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C. Energy levels and the classical limit

Some further understanding of the failure of the idea
of spontaneous emission from an “upper” to a “lower”
energy level of the magnetic-moment-spin system can
be found in consideration of the energy levels of the or-
bital motion. At the same time, an elementary justifi-
cation for the use of the classical trajectory and soft-
photon limit can be obtained. For relativistic circular
orbits in the laboratory, Bohr’s quantization rule for
angular momentum gives the orbital quantum number as

n=ymep/i=yy? (15)

where y, is the critical value, (4). The spacing between
adjacent orbital energy levels is

AE =Tiw,,

| (16)

where w,=c/p is the orbital frequency. For highly rela-
tivistic particles, this spacing is very small compared
to Zw], given by (8), or, more properly for considera-
tions in the laboratory, y%w!, ~y 3w, where we are as-
suming |g|= O(1). With the spacing between orbital lev-
els very small compared to the transition energy, that
transition will inevitably involve some changes in orbit-
al quantum number. In other words, there will occur
exchanges of energy between spin and orbital degrees of
freedom. There is then little significance in the con-
cept of “upper” and “lower” energy states for the spin
system alone.

Another way to reach the same conclusion is to con-
sider the conservation of momentum during the emis-
sion of a typical “spin-flip” photon. For ordinary syn-
chrotron radiation, the photons emerge within angles
of the order of A6~y ! of the path of the particle and
possess a broad spectrum of energies up to y 37w, and
somewhat beyond. The same will be demonstrated be-
low for the spin-flip synchrotron radiation. With emis-
sion essentially parallel to the particle’s direction and
a typical momentum of the order of 'ysﬁwo/ c, the photon
will cause the particle’s momentum to decrease by an
amount

Ap=y3Hw,/c=v3/p. @am

This corresponds to a fractional change in orbital quan-
tum number,

an Ap YR

xYr o_ 2
%~ “ymep (r/7.)%,

(18)

and, using (15), to a value of Az itself of the order of
An=y3,

This demonstrates that the changes in orbital quantum
number from recoil are enormous. With 2.5 GeV elec-
trons, y=5X10% and An=~10", At the quantum level

the orbital motion is evidently disturbed by the emission
act! The disturbance is nevertheless totally negligible
to the orbit and its classical description provided y<< y,.
For the typical conditions of p=+13 m and y=~5 X 103,

Eq. (15) yields »=~2X 10" and (18), An/n=5X10"". The
astronomical value of » shows how classical the orbit
is; the minute value of An/n shows how small the per-
turbation of the orbit. Note from (15) and (17) that An/n
is just the fractional change in the energy of the particle
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as it emits the photon. These considerations provide
justification for a classical treatment of the problem
(given classical trajectory and soft-photon limit).

D. Particle motion in the laboratory and in the moving

inertial frame
An assumption of the elementary treatment is that in
the instantaneously comoving inertial frame the effects
of the electric field E’ can be ignored, that is, that the
motion of the particle in the moving frame can be ne-
glected for the time intervals of interest. When the g
factor is large and the relevant time interval is
At,~1/|glyw,, this is valid, as already observed, but
for g=0(1) it is not. In terms of the instantaneous ra-
dius of curvature p of a particle’s arbitrary trajectory,
the usual synchrotron radiation time interval is
At~ p/yv, corresponding to a change in direction by an
angle Af~1/y. In practical circumstances this time in-
terval is so short that the radius of curvature and the
speed can be treated as constants during it. The arbi-
trary trajectory can thus be approximated locally as a
circular path of radius p along which the particle moves
at constant speed v =pc or angular velocity w0=ﬁc/p. A
suitable choice of coordinates in the laboratory is shown
in Fig. 2. The zero of time is chosen when the particle
is at the origin. For a horizontal storage ring the guid-
ing magnetic field is in the vertical (z) direction, in or
out of the page, the velocity at =0 is in the x direction,
and the acceleration at that instant in the y direction.
The instantaneously comoving inertial frame is defined
by a boost in the positive x direction with speed gc. De-
noting coordinates in the moving frame with primes, we
have the orbit described parametrically in the two
frames by
x=psinwyt,
y=p(1 - coswyi), laboratory (19a)
z2=0,
x" =yp(sinwyt — wyt),
9" =p(1 - coswyt),

z2'=0

moving frame. (19p)
The time coordinate in the moving frame is
wot’ = y(wyt — B2 sinw,i). (20)

For laboratory times such that yw|t|=O(1), the orbit
equations (19b) and (20) can be approximated as

' = —(p/ 67 2)(ywot)?,
" = (p/2y ®)(vwt)?, (21)
wol’ = (wot/Y)(1 + 7 2w3t?/6).
The equation of the orbit is thus
v’ = (p/2y2)(6y2[x’|/p)2/3. (22)

This path is shown on the right-hand side of Fig. 2.
Note that the unit of length is p/y2, so the scale is
greatly enlarged compared to the laboratory figure.
Values of the parameter yw,t are indicated along the
path to show the correspondence with points on the cir-
cular arc in the laboratory. In terms of this parameter
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the components of the velocity and acceleration of the
particle in the moving frame are

Bl = =y wit?/2y',

;Q'ywot/’r',
A7~ 2 3 (23)
7~ _y Zwo(ywt)/v"?,
ey Fa(1 -y /20y,
where
v =1+y2wit?/2 (24)

is the ratio of energy to rest energy for the particle in
the moving frame. .

Since the relevant range of yw,t is of order unity, (23)
and (24) tell us that the particle, while instantaneously
at rest in the moving frame at =0, soon attains speed
close to that of light. It is admittedly not ultrarelativ-
istic in the contributing time interval, but is changing
its state of motion rapidly and is certainly not even ap-
proximately at rest for purpose of calculating the radia-
tion.

Two comments in passing:

(1) The path in the moving frame can be thought of as
being produced by the combined action of a magnetic
field in the 2’ direction and an electric field in the y’
direction. The scale of ‘curvature of the path is p/y?2,
as shown in Fig. 2. This means that, although the speed
is not constant in this frame, the characteristic orbital
angular frequency is w}~y%w,, of the same order of
magnitude as Eq. (8), the frequency associated with in-
trinsic spin, provided |g|=0(1).

(2) It is amusing to verify the Lorentz invariance of
total radiated power by calculating in the moving frame
with Liénard’s generalization of the Larmor power for-
mula,

,_2_32_';/'2 2 > B2
o =="—I[(B")*~ (B" X B')*]. (25)

Substitution from (23) leads to the familiar result,
@’ =2e%wiy*/3c =2e%cy*p*/3p%, (26)

independent of time, even though the components of ve-

y
2
Bc ra0n_ 277

woz—P—
W\ P +1.5Xp/72
\\\ +1.0
« *0.5
-pry

Instantaneously co-moving inertial
frame

Laboratory frame

FIG. 2. Segment of particle orbit as seen in the laboratory and
in the instantaneously comoving inertial frame. In the labora-
tory the path is the arc of a circle of radius p, traversed at
constant angular speed w,. In the moving frame it has a cusp
at the origin. The tick marks and numbers along the path give
the values of the laboratory time parameter, ywy . Note that
the length scale in the moving frame is p/y?.
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locity and acceleration are time dependent in the moving
frame.

It is hoped that by now the reader is persuaded that
the naive consideration of the electron’s spin as an iso-
lated, nonrelativistic system in the moving frame is un-
justified. Because of ease of exchange of energy be-
tween mechanical and spin degrees of freedom, no sig-
nificance canbe attached to the labels “upper” and “lower”
energy levels for the magnetic moment interaction.
Since the motion in the instantaneously comoving iner-
tial frame becomes somewhat relativistic in the time
interval of interest, there is no compelling reason for
considering the phenomenon in that frame. The labora-
tory serves as well and is more familiar. We now pro-
ceed to a discussion of a semiclassical derivation of the
correct results.

It may be objected that the business of the instantane-
ously comoving inertial frame is a straw man, that
there is a frame where the spin is always at rest, name-
1y the exactly comoving Lorentz frame obtained by a
boost with the instantaneous velocity v(f). The diffi-
culty with such an approach is that discussion of fre-
quency spectra and transition probabilities inevitably
requires consideration of nonvanishing time intervals.
A time-dependent Lorentz transformation to a noniner-
tial frame seems to present insurmountable problems,
and is not anschaulich, to say the least. The relativis-
tic effects of acceleration, i.e., the Thomas precession,
are included automatically in the derivation that follows.

111. SEMICLASSICAL DESCRIPTION
A. Semiclassical radiation theory for charge

The time honored elementary treatment of spontaneous
emission proceeds as follows. First consider a nonrel-

ativistic charged particle of mass m and charge e inter- -

acting with an extewnal classical electromagnetic field
described by scalar and vector potentials (&, &) and also
with another given interaction potential U. Its motion is
described quantum mechanically by the Schrodinger
equation with a Hamiltonian

H=(1/2m)@ - eA/c)?+ed+U. (27)

Commonly (e.g., in atomic physics) the potential U is
absent and the scalar potential is the Coulomb potential
of the fixed nuclei. If the vector potential is treated as
a perturbation, the Hamiltonian is written as a zeroth
order term

=2/ 2m+ed+ U
plus a small interaction term

H,, = —eA*p, (28)

where the velocity operator is B (- zﬁ/mc)v and the po-
tentials are in the radiation gauge with V.A=0. The
term in A2 has been neglected. Effects of weak external
fields are examined by use of perturbation theory with
the states of the unperturbed Hamiltonian H, as the ba-
sis. Phenomena like the Zeeman effect involve static
external fields, but one can also treat time-varying ap-
plied fields and discuss transitions between different
energy levels of the unperturbed system.

It is then an easy step to consider A in (28) as the vec-
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tor potential of a plane electromagnetic wave incident on
the unperturbed system

AR, ) =%A, exp(ik + T —iwt) + c.c. . (29)

The constant A, is initially arbitrary, but is soon chosen
to have the value

= (277ic/k)?, (30)

corresponding to one photon of energy 7w per unit vol-
ume in the incident beam, computed by equating the
classical time-averaged Poynting vector to 7c*K. The
substitution of the vector potential (29) into the interac-
tion Hamiltonian (28), followed by a treatment of time-
dependent perturbation theory using the method of vari-
ation of parameters of Dirac, and leading to a discus-
sion of the photoelectric effect or other transitions in-
volving the absorption of photons, can be traced in al-
most any book on quantum mechanics.

The derivation involves at some step a resonant en-
hancement (conservation of energy!) arising from the
time integral of the product of two exponentials

I EFEDE/n , privt

The first factor comes from the time dependences of the
initial and final unperturbed states, and the second from
the first term in Eq. (29). Since E,>E; by assumption,
the second (complex conjugate) term in (29) gives no
contribution to the time integral. However, it takes no
prodding to convince the student to consider the opposite
situation where E;>E,. He or she is thus led smoothly
to spontaneous emission where the second (complex con-
jugate) piece in (29) is operative. It is plausible in con-
sidering a transition with the emission of a single pho-
ton of wave number K that the same normalization con-
stant (30) enters the vector potential here as for absorp-
tion.

For our purposes the “golden-rule” result for the
transition probability is not as appropriate as an expres-
sion for the differential probability at time ¢ for the
emission of a photon of polarization € and wave number
Kin an elemental volume d®F

dp(t) = ' 7 f ()| H o (0 (2) ar!| (2 )3. (31)
It is customary to extract the time dependence of the
initial and final states and so obtain the exponential fac-
tor discussed above, but because of our transition to a
classical orbit following Schwinger, Baier, and Katkov
we treat the states and operators in the Heisenberg pic-
ture. In the limit as #—+, Eq. (31) is the probability
of photon emission into d3%2. The energy radiated can
be obtained by multiplying by Zw. We are thus led to a
result with a classical counterpart, the differential in-
tensity of energy radiated with polarization € per unit
solid angle and per unit frequency interval

d3l wdp(oo)
dQdw ~ dQdw”

With the second term in Eq. (29) operative in Eq. (28),
the interaction becomes

2n7ic\* /2
(Hint)emission=—e< 2 )

o .Eeiwt-iE-F_ (32)
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This gives
2 2, .2 - . - 2
it " e - Blperer ROl (D)at

(33)

Here the velocity B(£) and the coordinate ¥(¢) are Hei-
senberg operators. Equation (33) can be compared with
its classical analog.® The transition to the classical
limit is evidently achieved by the replacement,

)% Bl ot ROy (1))~ T . E(t)eiwt-ii-m )
(34)

where now E(t) and T(¢) are given classical quantities.
This is just the result of Schwinger (1954) and Baier
and Katkov (1967b) in the limit that the orbit is classical
(the wave functions localized tightly around the orbit)
and the energy of the emitted photon is very small com-
pared to the energy of the particle (the noncommutativity
of the various Heisenberg operators can then be neglect-
ed).

The result (33) with the replacement (34) can form a
starting point for the derivation of the classic results
of Schwinger (1949) and others for ordinary synchrotron
radiation.’ The alert reader may have noticed that we
began with the nonrelativistic Schrédinger equation and
are now discussing extreme relativistic motion! The
reason this is permitted is that to the neglect of spin
the interaction Hamiltonian (28) is correct relativistical-
ly with a suitable velocity operator. In the classical
limit, the velocity operator is replaced by the classical
velocity. The result is therefore generally applicable

for arbitrary speeds provided the trajectory is classical A

and y<<y,.

B. Semiclassical radiation theory for spin

1. Nonrelativistic spin system

A semiclassical treatment of emission and absorption
of radiation by a spin system in motion parallels the
discussion of the last section. For orientation we first
consider a spin 78 with associated magnetic moment
i, =gelS/2me at rest in interaction with an external
magnetic field B. The Hamiltonian of interaction is

- = ell \= =

2mce (35)

The corresponding Heisenberg equation of motion is the
familiar result

-> € > =
% =55,y ] =<§)m—cs xB.
The interaction Hamiltonian (35) can be used to discuss
the effects of static or time-varying magnetic fields on
the energy levels and transitions of the spin system in
isolation or perhaps with coupling to other (orbital) de-
grees of freedom. Spontaneous emission can be treated
by the ansatz of the previous section—the emitted pho-
ton is described by the second term of the vector poten-
‘tial (29) with strength A, given by (30). The electric

(36)

5Jackson (1975), Eq. (14.67).
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and magnetic fields of the emitted photon are thus
EF, 1) = — V2w exeivt=ikt
B(T, ) = -V 2w ([ X €*)e“"t"’

where 1 is a unit vector in the direction of K. With this
magnetic field inserted into (35), standard lowest order
perturbation theory leads, in the long wavelength limit,
to the magnetic dipole transition rate (9).

(37

2

2. Relativistic spin system

In order to describe radiation by a spin system in rel-
ativistic motion we must obtain suitable generalizations
of (35) and (36). - The relativistic equation of motion for
spin is by now relatively well known. It was first de-
rived by Thomas (1927) in his detailed paper on what is
called the Thomas precession, was discussed in a par-
ticle physics context by Bargmann, Michel, and Telegdi
(1959), and is now standard textbook fare.® The Thom-
as—BMT equation of motion for the spin 3 of a particle
of charge e, mass m, and rest-frame magnetlc moment
Bo=gelis/2me, in motion with velocity V=pc in external
electromagnehc fields E B can be written in Thomas’s

original form,
45 =2 5x[(ar2)B - 256 B - (v 1o)AxE],
(38)

y+1

where a is called the magnetic moment anomaly and is
defined by

a=(g-2)/2.

The spin vector 3 describes the spin in its rest system
(just as does the Pauli ¢/2 and the Pauli spinors in the
2-component reduction of the 4-component Dirac spinor),
but the time rate of change in (38) is with respect to
laboratory time.

Equation (38) is the relativistic generalization of (36).
Strictly speaking, it holds only for spatially uniform
fields, but is an adequate description for sufficiently
slowly varying fields or for weak fields, whatever their
space and time variation. The Thomas~BMT equation
can be thought of as following from an effective Hamil-
tonian in the same way as (36) follows as a Heisenberg
equation of motion from (35). Evidently this effective
Hamiltonian is

(ef) — eﬁ__. l...- ay *-—.—» _ 1 >'D -oJ
HGP =223 [<a+7>B TICRE (a+y+1 FxE|.
(40)

int
Although (40) is explicit and the most useful form for
calculation, the terms in the square bracket canbe rear-
ranged into a more 1ntu1t1ve, if implicit, form. First
we define the magnetic field B’ in the rest frame of the
spin

(39)

"=y(B - ﬁXE)— B(ﬁ B). (41)

Then we introduce the Thomas precession angular ve-

/

6See, for example, Barut (1964), Sec. II.4; Hagedorn (1963),
Chap. 9; Jackson (1975), Sec. 11.11; Sard (1970), Sec. 5.4.
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locity vector W,

‘yz > > e
X =—
-y+1(B A) mc

By = S5 [FB-BE B)-FxE].

42)

In terms of B’ and &, the effective Hamiltonian (40) can
be written

HEP - _51:0 B+ 1oy 3. 43)
The two terms in (43) have immediate physical inter-
pretations. The first is the expected rest-frame cou-
pling between magnetic moment and magnetic field in
that frame, diminished by a factor y™ to account for the
time dilatation seen in the laboratory [remember that
(38) is a laboratory equation of motion, even though §
is the rest-frame spin vector]. The second term is the
contribution to the energy from the relativistic Thomas

precession of axes in the accelerated rest frame.

3. Radiation formula

The semiclassical description of radiation by the spin
$ proceeds with the replacement of the classical exter-
nal fields E, B in (40) by the fields (37) of the emitted
photon. The effective Hamiltonian for emission then be-
comes

[H(eff)

el » i b4
=7 . fwit=ike
int ]emission =i 217w mc s *Ve b r’ (44)

where

-

N w, ay >+ = = Y ) -
={a+— *x_ %Y 22, *) *
Vv <a+_y>n><e 'y+IBB (nx €*) <a+ B X e*.

The matrix element of (44) between particle states (of
spin and spatial coordinates) can be used straightfor-
wardly to discuss transitions between states of different
spin orientation. For the present purposes we consider
the classical limit of the orbital motion, as in going
from (31) to (33) and (34). Comparison of the Hamilto-
nian (32) for the emission of radiation by a charge e
with (44) shows that the formula at the end of the last
section can be transcribed with the substitution,

3@ -V@©). . (46)

€ () -’,‘—Z 2me

Now the only quantum-mechanical aspect is the
spin vector. The spin analog of (33) and (34) is

dzIspin _ 32h2w4
dQdw — 41*m3c®

J” af |g(t)|i>.V(t)eiwt-ii.?(n 2, (47)

with V(t) given by (45). The radiation is emitted in the
course of a transition from initial spin state ¢ to final
spin state f, both states specified in the rest frame of
the particle. While in principle nonflip, as well as spin-
flip, transitions contribute to the radiation, the nonflip
transitions are dominated overwhelmingly by the ordi-
nary charge radiation [see Eq. (3)]. Thus only spin-
flip transitions need concern us.
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It should be remarked at this point that the author’s
idea of the effective semiclassical Hamiltonian, Egs.
(40), (44), and (45), was anticipated by Derbenev and
Kondratenko (1973). They point out that, for spin 3 par-
ticles, it follows to first order in # from a Foldy—
Wouthuysen reduction of the Dirac equation. The au-
thor’s justification was via a Pauli reduction of the mo-
mentum-space matrix element of the Dirac—Pauli cur-
rent (with o,, coupling for the anomalous magnetic mo-
ment) in the soft-photon limit.

IV. SPIN-FLIP SYNCHROTRON RADIATION FOR
ARBITRARY g FACTOR

A. Definitions of differential energy, photon number,
and transition rates

We now apply (47) to a calculation of the radiation
emitted by a relativistic spin-3 particle of charge e and
arbitrary g factor in a spin-flip transition while moving
at velocity Ec in an instantaneously circular arc of radius
p. Defining the time integral in (47) to be

log= f dt et EEOF () (A5 4) (48)

we have the intensity of energy radiated per unit solid
angle and per unit frequency interval with polarization
€ in a single passage along the arc
2 2%2 4
a1 == 20)2 5'311'2.
dQdw 16m°m>c

(49)

The number of photons emitted per unit solid angle, etc.,
is obtained by dividing by Zw

d>N eZhw3’

d9dw " Term?es 10 (50)

The differential transition rate follows from (50) with
multiplication by w,/2m, where w,=8c/p

2 2713
dw MIWIZ (51)

This last result rigorously depends on the assumption of
continuous motion at constant speed in a circular orbit,
but in practice holds provided the speed and radius of
curvature are sensibly constant over a reasonable seg-
ment of path. The modifications for storage-ring orbits
with bending sections and straight sections are almost
self-evident. For the total rate they have been incor-
porated in (5) and (6).

B. Nonradiative motion of the spin and (f[$(¢) |/

The spin operator $(f) in (47) and (48) is a Heisenberg,
time-dependent spin operator whose motion is described
by the Thomas—BMT equation, (38). In the absence of
an electric field and the approximation of a uniform
static magnetic field B and motion of the particle per-
pendicular to the field, Eq. (38) reduces to

dS/dt=5x (1+ya)w,, (52)
where
@, =eB/ymc.

This equatiog describes the precession of § around the
direction of B with angular velocity,
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Q=1 +ya)w,

with respect to axes fixed in the laboratory. (With re-
spect to axes rotating in the plane of the orbit so that
they are fixed in orientation relative to the particle’s
velocity, the precessional frequency is only Q' =Q — w,
=vaw,.)

With the coordinate axes chosen as shown in Fig. 3
and the magnetic field in the negative z direction for a
positive charge e, the solutions of the Egs. (52) can be
written in terms of spin operators at some initial time
t=1, as

5.0 =[5, ()i t0) 1 s_ (1) eI 4=t)],
s,() =%[s+(to)ei9(t-to) —s_(ty)e itto)], (53)

s ,(8) =s,(t,).

The constant operators s,(4,), s.(¢,), s (¢,) are

st(to) = é(cx + ioy))

s.(t) = éUz ’

where o,, 0,, 0, are the familiar Pauli spin operators.

We choose the initial spin direction to be along a unit
vector ¢ in the rest frame and consider a radiative
trg.nsition in which the spin direction changes from Zto
—Z. The spherical angles of £ are (6,5 @,) With respect
to the z axis of Fig. 3 (not to be confused with the 6 and
@ of the photon shown there). In Eq. (48) we are there-
fore interested in the matrix element of S(¢) between the
initial state [i)=R[}, 3) and the final state |f)=R[}, -3),
where R is a rotation operator that rotates the state
from z direction to the { direction. With the choice
(¢o, 65, 0) of the Euler angles and the customary phases
for the rotation matrices, we find

(s (to)liy=—4ei?o(1 - cos6,),

(fls_to)]i) = ke 90(1 + cosby),
(ﬂsz(to)li> =—3 sinb,.

Bo)

z

FIG. 3. Coordinate system used in the calculations. The orbit
lies in the x~y plane with ¥ and y axes defined by the directions
of E and B at £=0. The unit vector i specifies the direction of
the photon wave vector K.
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These can be inserted into the matrix elements of Eqgs.
(53) to obtain {fS(1)}i).

C. Matrix element

The matrix element I, defined by Eq. (48), can be
written in the form,

M= —sinb,U, — 3(1 — cosfy)e @2k,
+3(1+cosby)e iy, (54)

where the three integrals are

3\

Uy (w, B, 9= f ALV (f)eteii i)
U (0, 7,2) = f A (V1) — iV (1) Jei (@ t=iTEe), ) (55)

U,(w, 7, z)=f At (V (1) + iV (1) Jeitw-Dt-ikE ()
4

When the absolute square of (54) is taken it is only nec-
essary to keep the sum of the absolute squares of the
three separate terms. The interference terms involve
sinusoidal terms in Q¢, or 2Q¢,. For beams in storage
rings the physical situation corresponds to random ini-
tial times #,; the interference terms average to zero.

What remains now is a calculation of U; for y> 1 with
V(#) given by (45) and (£) and T(#) found from the orbit
equations (19a) suitably approximated for wf|=0(y™).
The approximations are essentially the same as for or-
dinary synchrotron radiation,’ and the integrals en-
countered the same. The relative complexity of V@)
compared with B(¢) of Eq. (33), especially for a#0, and
the presence of the factor exp(+iQ¢) in U, and U, makes
the calculation at least an order of magnitude more
cumbersome and not very illuminating. We merely
quote results. Some of the mathematical details are
given in the Appendix.

D. Doubly differential spectrum in frequency and angle

For the sake of compactness in the relatively unwieldy
formulas, we introduce some notation. The angles of
emission of the photon are shown in Fig. 3. We define
the following variables:

t=7v6 sing,

v=2w/3y3w,,

2= (3v/4¥/3(1 +13),
z,=(Bv/4/3(1+1%x4a/3v).

(56)

The dimensionless frequency variable v is the standard
synchrotron radiation variable, called £ by Schwinger
(1949). In terms of these variables and 7, defined by
Eq. (1c), the differential transition probability (51),
summed over photon polarizations, is
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d*w _ 8(3v/4)"/®
aQdw  57V3Tyy2w,

+5(1 - cos@o)z[tz

+5(1+ cosb,)? [t 2

The functions Ai(x), Ai’(x) are the Airy function and its
derivative, as defined in Abramowitz and Stegun (1964)
_and in Eq. (A1) of the Appendix.

This rather formidable expression gives the differen-
tial rate of emission in angle and frequency for arbi-
trary a and arbitrary direction of spin flip. For a=0
(electrons and positrons) it simplifies drastically. This
limit is discussed in detail separately in the following
section. There the Airy integrals are replaced by the
perhaps more familiar modified Bessel functions, K, ,,
and K, ,;, as was done by Schwinger for ordinary syn-
chrotron radiation. Here the Airy functions are re-
tained because the arguments z, can be positive or neg-
ative, depending on the sign of ¢ and the value of v.
With Bessel functions it is necessary to treat separate-
ly the “exponential” domain (z>0) and the “oscillatory”
domain (z <0). A single definition of the Airy function
suffices for the whole range of z.

The functional dependence on angle and frequency is
sufficiently complicated that general discussion is not
profitable, but some remarks on the limit of large |q|
are in order. For definiteness, assume a>0. (The op-
posite choice follows very similarly.) Also consider
0,=0 or 6,=m, i.e., spin-flip along the magnetic field
direction. Since the minimum value of z, is 3(a/2)%/3(1
+£2)'/3 and the Airy functions decrease exponentially for
large positive argument, the second group of terms in
(5'7) will vanish rapidly for large a. Only the third group

J

57, dw a?

(1+a)Ai(z,) + a(%})l /3Ai'(z+)

(1+a)Ai(z.) - a <%>1 /SAi' (z.)
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{s‘mzeo [(1 —af)?|Ai(z,)|? + azt"’(%)z /3| Ai'(zo)’z:l

2
+

[1 + a(l + 22 +-§%>] Ai(z,)+ 1+ a)<3_‘t}>‘ Az

]
s

(57)

2
+

[1 +a<1 e —%)]Ai(z_) —+ a)(%)llsAi'(z_)

.
survive, corresponding to the transition from “upper”
to “lower” energy level in the intuitive description.
Furthermore, z_ is large positively or negatively, ex-
cept for a very small range of #2 for a given v and a.
The angular distribution is therefore sharply peaked in
angle, just as in Airy’s original application to the rain-
bow, for a given frequency. The result is in complete
correspondence with the simple delta function depen-
dence of Eq. (13).

E. Differential frequency spectrum

Integration of (57) over angles leads to the frequency
spectrum of spin-flip synchrotron radiation. This is
accomplished by noting from Fig. 3 that for small 6,

0 sing ~sinf sing = cos#’, where 6’ is a polar angle
measured from the z axis. Introducing a corresponding
azimuthal angle ¢’ and noting that the distribution (57)
is confined to a range of angles 6’=7/2+0(y™), we can
write the solid angle element as

du=de’ d(cosé’) =(1/y)de’ di,

with the range of ¢ effectively (-, o) for y>> 1. The in-
tegration involving squares of Airy functions can be per-
formed by means of formulas derived by Aspnes (1966)
in another connection. The relevant formulas are given
in the Appendix. The result for the differential frequen-
cy spectrum times (57,/V3) is

2
20 °= —sin%6, {azyoAi(yo) + (a + —2—>y§Ai'(yo) + (1 +a+ %)ygAil(yo)}

V3 dv

+1(1 - cos@o)z{- [a®+ 203+ 3(1+ a)?v]y,Ai(y,) — 2 (

5a 5a?

l+5=+ T>3’3Ai'(3’+)

+ [a‘*+§ 1+ a)ﬁ'—§<1+3?a +943> <V2+%>]Ail(y+)}

5a 5a2>
2

+1(1+ cosb,)? {—[a2+ 2a® - 3(1+a)*v]y,Ai(y.) - 2<1 ot YEAI’(y.)

+[esraran 31 D) ~5§5>]Ail(y.)}.

In Eq. (58) the variables y,,y, are

Vo= (3V/2)2/3,
v, =(3v/2/3[1 + (4a/3v)],

(59)

and the function Ai,(x)= [~ Ai(x") dx’.
This formula, like its predecessor, is a formidable
function of v, a, and 6,. For a=0, it simplifies great-
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(58)

r

ly—see Eq. (72) below. In the opposite limit of |a|> 1 it
approaches the expression (14). This can be seen as
follows. Choose a>0 and 6,=0 or 6,=m, just as below
Eq. (57). For large a, y, is always large and positive;
the Airy functions of this argument are negligible; only
the last group of terms in (58) are important. When
v>4a/3, y.>0. Then for large a, even these Airy func-
tions decrease rapidly as v goes above 4a/3. The spec-
trum thus cuts off effectively at v=v,, =4a/3. This is
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equivalent to w=w,,,, in Eq. (14). For v values signifi-
cantly less than v ,,,,, the argument y_ is large and nega-
tive. The functions Ai(y_) and Ai’(y.) are rapidly oscil-
lating and damped by a power, while Ai,(y.) =1+ (damped
oscillatory terms). The frequency spectrum is given by
the coefficient of Ai,(y.) in (58). For large a, this is
exactly Eq. (14).

The changes in the skape of the frequency spectrum as
a function of a are illustrated in Fig. 4. Only the “down”
transition (6,=0) is displayed, but the other transition
has qualitatively similar spectra (with a—~ —a). Because
the frequency spectrum extends over the range O<w
<|aly®w, for large |a|, the abscissa in Fig. 4 has been
scaled according to x =v(1 +16a2/81)"Y2, To facilitate
further the comparison of the shapes for different a, the
ordinates have been scaled so that the curves have unit
area. The asymptotic shape of Eq. (14) is then (1 +2x/3
—-2x2/9)/4, shown as the dashed curve in Fig. 4. For
negative a, for which the “down” transition is unfavored,
and even for a =0, the frequency spectrum is far from
the simple parabolic shape. For a>0, the behavior de-
scribed in the preceding paragraph is evident. For
large a, the spectrum is given for x <3 by the asymp-
totic shape plus oscillatory terms decreasing as (27a)”2
and for x >3 by (2 7a)" Y2 times exponentially decreasing
terms.

F. Total rate, characteristic time and polarization

The total transition rate is obtained from Eq. (58) by
integration over frequencies. For the Airy functions of
argument ¥, the integrals are straightforward, but for
those of argument y, they are less so. Again the rele-
vant integrals are discussed in the Appendix. The re-

0.5 T T T T T

x
3

-3

|
|
|
|
|
I
|
I
|
|
i
0 ] | !
[¢] 1 2 3
X
FIG. 4. Normalized frequency spectra for the number of photons
per unit frequency interval of the ‘“down” transition [Eq. (58)
with 6,=0] for different values of the anomaly, a. The abscissa
variable is a scaled frequency, x= v(1+16a%/81)71/2. The num-
bers adjacent to the curves are the values of a. The total trans-
ition probabilities are very different for different values of a;
the curves have been normalized to unit area to facilitate com-
parison of their shapes. The dashed curve is the asymptotic
spectrum (|a | — «) of Eq. (14).
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sult for the total transition probability for a spin-flip
transition is

w =2L%{[ipl(a)e—ﬁ—zlal +-ﬁl«‘2(a)]<1 +c20526 )

+Fy(a) sin®0, + F,(a) cos 90} , (60)
where '
F@= 1 8 a- o~ a1 )
_ E% . I—Zl A +8a-Ya - La e,
(61)

F,(a) = E% (1 +2a+8a® +2a® +24a* +24°%),

Fya) =% (T-2a+22a?). )

Equation (60) is a generalization to arbitrary g factor of
the result (2) of Baier and Katkov (1967a). It was first
obtained (explicitly for 6,=0, 7) by Derbenev and Kondra-
tenko (1973), using a standard method that bypasses the
differential spectra in angle and frequency, and goes
directly to the total transition rate.

The polarization of an initially unpolarized beam grows
in time according to Eq. (1), but with a mean life 7 ob-
tained by summing the rates for 6,=0 and 6,=7." This
yields a characteristic time,

-1
T =TO[F; (@)e~Vr2lal 4 li F;(a)] .

a] (62)

The asymptotic polarization (in the negative z direction
in Fig. 3, or in the direction of 8X3) is
P=F2(a)/[1~;(a)e‘“ﬁ|“| +I—Z’|F2(a)]. 63)

The growth time 7 in units of 7, is shown as a function
of a or g in Fig. 5. It decreases as |a|~® for large |qa],
in conformity with the elementary result Eq. (11), but
exhibits a maximum at ¢ =-0.498 (g =1.004) where 7/7,
=4,76. The polarization P as a function of a or g is
shown in Fig. 6. For large |a|, the polarization ap-
proaches +1 or -1, in accord with the ideas of a spon-
taneous transition from “upper” to “lower” energy level
of the spin system. But for modest |g|, the interplay of
orbital and spin motion causes drastic departures. At
g=0, for example, where there is no splitting between
the hypothetical levels, 7=~1.587, and P ~-0.98. In fact,
for the range of g factors, 0<g<1.2, the “wrong” spin
energy level is preferentially populated.

V. ANGULAR AND FREQUENCY DISTRIBUTIONS
FOR g=2

The only physically relevant g factor is g=2, appro-
priate for electrons and positrons. The total transition
rate for spin-flip synchrotron radiation has been dis-
cussed in the Introduction. Here we examine the angu-
lar and frequency distributions of the radiation. These

'See the solutions for the temporal behaviors of the com-
ponents of the polarization vector given by Baier (1971a,b),
Sec. 3, especially Eq. (3.23) ff.
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are of academic interest only because, as we observed
in connection with Eq. (3), the energy radiated in the
spin-flip transitions is negligible compared with the or-
dinary synchrotron radiation provided y <y,.

A. Angular distributions of photons
and of radiated power

The starting point is Eq. (57), specialized to a =0, for
the doubly differential transition rate in angle and fre-
quency

dPw  3V3
dQdw ~ 4073

v3(1 +12)
T2 W,

x {sin?6,K2,(n)

+3(1 +c0s20,)(1 +12)[K2,(n) +K2(n)]
+2c086,V1 +12 K, (K s ()} . (64)

Here we have changed from Airy functions to modified
Bessel functions. The argument of the latter is

._E s _ YV 2Y3/2
=5 (2o =5 (L+2)%,

The aﬁgular distribution of photons (number of photons
per unit time per unit solid angle®) is obtained by inte-

* gration over frequencies. Making use of formula
6.576.4, p. 693, of Gradshteyn and Ryzhik (1965), we
find

FIG. 5. Characteristic time 7 for growth of transverse polar-
ization in units of the electron-positron time 7, Eq. (ic), as
a function of anomaly a (top scale).or g factor (bottom scale).

8Strictly, the number of photons per unit time is not an in-
stantaneous rate but actually the number of photons per pas-
sage of the particle times the repetition rate wy/27. Similarly,
the radiated power is energy per passage times wp/27,
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dw 167/

a0 = a5rE (1 +12)78 {sinzeo +5(1 +cos26,)(1 +12)

105vV3 7

2
256 V1 +t cos@o}. (65)

Recall that the angle variable ¢ is, for small 6, y times
the latitude with respect to the z axis of Fig. 3, that is,
the angle between the direction of emission and the in-
stantaneous plane of the orbit. It is the traditional syn-
chrotron radiation angle, called ¥ by Schwinger (1949)
and 6 by Jackson (1975).

The angular distribution of radiated power (energy per
unit time per unit solid angle) is obtained by multiplying
(64) by Zw and then integrating over frequenc ies. The
result is®

ae 113y
aQ  256rn

——T——Q (1 tz)’m/z{smze +12(1 +cos26,)(1 +12)
o
13
323 r V1 +£2 cos6, }
(66)

These angular distributions can be compared with the
angular distribution of radiated power for the ordinary
(nonflip) synchrotron ‘radiation

ACordinary _ bl (’7+12t2) ©17)
ao 327 p2 A" ¢

We see that in the relativistic domain all the angular
distributions are confined to angles of the order of y!
away from the instantaneous orbital plane, with =7y as
the natural variable. The spin-flip angular distributions

10 T ] ]
0.8 —
06| 4 |
o4t 1 i
0.2~ + 1

P o TZ*H‘H_"'T'_“_/ O i
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-0.8 . |
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FIG. 6. Asymptotic transverse polarization P as a function of
the anomaly a or g factor. Positive values of P correspond to
a preponderance of spins in the direction of ,@XB (the direction
of the guiding magnetic field for e >0). For 0 < g<1.2, the par-
ticles’ magnetic moments end up preferentially opposite to the
magnetic field, contrary to naive expectations. This range is
indicated by the horizontal arrow.
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are somewhat narrower than the nonflip, the power de-
creasing as |f|~'! compared to |£|~® at large |{|. This

is a reflection of the harder photon spectrum of the spin-
flip, magnetic radiation with an overall additional factor
of w? in its frequency spectrum relative to that emitted
by a charge. Similarly, the difference in ¢ dependence
between the number distribution (65) and the energy
distribution (66) is explained by the fact that the softer
photons have a broader distribution in angle than the
harder ones. :

B. Total transition rate and total spin-flip power radiated

The total transition rate of Baier and Katkov is ob-
tained by specialization of (60) to a =0 or integration of
(65) over angles with d2 =y"1dtd¢’. The result is Eq.
(2), averaged over the azimuth of £, which in the present
notation is

.1 1gin2 8 ]
w= ar, [1— & sin?6, + 575 C0Sbo |- (68)
The total spin-flip power, from (66), is
16 YHiw [ 35V3
s = =7 —2 |1 = sin?6, + cos@].
spin-flip 5‘[3_ To 12 [¢] 64 (]
(69)
The ordinary radiated power is
2 /e
®ordinary = 3 (7{3) Yiw,. (70)

This leads to'a ratio of spin-flip to ordinary power of
® i 2 \2
sl _ 3 ( Ty > [1 -+ sin290+324£ coseo] (71)

® ordinary mcp
in agreement with (3) for cosf,=+1,

C. Frequency distributions

The frequency spectrum can be found by integrating
(64) over angles. The necessary integrals are those of
Aspnes (1966). Since these are given in terms of Airy
functions in the Appendix, it is appropriate to abstract
the result from the general expression, Eq. (58). Upon
converting the Airy functions to Bessel functions, we
find

dw 9 2 [1 - f""
—— =—— —|3sin?0, | K,,(s)ds
av ~ 107 1, L2 o), Kual
+3(1 +cos20,)K (V) +cos 90K1/3(V)} . (12)

The corresponding expression for the spin-flip power
radiated per unit interval in v is

d(ngjn_ﬂjp _ 27 y%wo 3[L s 2 *
av " zor \ )v 3 sin’ 9°fu K, (s)ds

+3(1 +c0s26,)K,/; (V)
+cos90K1/3(u)] . (73)

This can be compared with the frequency spectrum of the
ordinary synchrotron radiation,

d® o4 W3
ﬁ"ﬂ =(Puxdinary [ET— VL Ks/s(s)ds] (74)
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FIG. 7. Normalized frequency spectra Ty dw/dv for the number
of photons emitted per unit interval in the dimensionless fre-
quency variable v=2w/3y3w;. The dominant “down” transition
corresponds to a spin-flip from cos6;=+1 to cosfy=—1 (spin
finally in the direction opposite to £x ). The small “up”
transition is in the reverse direction.

with the total power given by (70).

The normalized frequency distributions of the number
of photons emitted per unit time in spin-flip transitions
are shown in Fig. 7 for the “down” transition (cosé,
=+1) and the “up” transition (cosf,=~1). The spectrum
for the predominant “down” transition peaks around
v=1.5 and extends to well beyond v =4. The weaker
“up” transition consists of somewhat softer photons,
with a maximum at ¥ =0.7. The areas are, respective-
ly, 0.962 and 0.038, the “down” transition being 25.25
times as probable as the “up”.

A graphical comparison of the separately normalized
power spectra for the spin-flip and the nonflip synchro-
tron radiations is given in Fig. 8. For the ordinary ra-
diation the quantity plotted is the coefficient of ®gginary in

| T T T T T

Nonflip

Flip "down"

Flip "up

Normalized power spectrum

IO‘?’ 1
1072 jo~! | 10

FIG. 8. Log-log plot of separately normalized ordinary (non-
flip) and spin-flip power frequency spectra as functions of the
dimensionless variable v=2w/3y%w,. The actual spin-flip
power is much smaller than the ordinary power provided
v<v, [see Eq. (3) or (7T1)]. At low frequencies (v <1), the
nonflip distribution varies as v'/3, while the spin—flip distri-
butions vary as »7/3, At high frequencies (v>1) all spectra
vanish exponentially (times dlifferent powers).
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(74). For the spin-flip radiation it is 27v3v3/1287 times

the square-bracket in (73) with cos6,=+1. All the power

spectra fall exponentially for large v, but for v <1 their
behaviors are very different. The ordinary synchrotron
radiation spectrum is proportional to ¥® for small v,
while the spin-flip spectra vary as V™8, The spin-flip
radiation involves harder photons, as already mentioned
in discussion of the angular distributions. The presence
of an extra factor of w? in the frequency distribution of
radiation arising from a magnetic moment in motion as
compared to that for a charge in motion is a general
feature, classically and quantum mechanically,

VI. SUMMARY

The primary purpose of this paper is didactic: to pre-
sent as intuitive an interpretation as possible of the gra-
dual transverse polarization of electron and positron
beams as they orbit in storage rings. A simple intuitive
description of the process, utilizing a moving inertial
frame, is shown to be deficient, even though it appears
superficially to give roughly correct answers for elec-
trons and positrons. The basic reason for its failure
(and hence the absence of a truly simple description) is
that the spin system cannot be treated in isolation be-
cause it is imbedded in a virtual continuum of states as-
sociated with the mechanical motion of the particle.
Only for large g factors is the spin precession rapid
enough that the magnetic-moment-spin system effective-
ly decouples from the orbital motion. Then the simple
treatment becomes valid.

A semiclassical description of the radiative process
is given by analogy with the well-known semiclassical
treatment of radiation by a charged particle. The clas-
sical relativistic equation of motion for a spin in arbi-
trary motion in electromagnetic fields (the Thomas—
BMT equation) yields an effective Hamiltonian for the
coupling of a spin to electromagnetic fields. In analogy
with the substitution

> - - -
ef - Acxternal ~ €8 Aphoton s

in the conventional transition to emission process in the
interaction Hamiltonian for a charged particle, we re-
place the external E and B fields in the Thomas-BMT
effective Hamiltonian with the corresponding fields for
a photon. Perturbation theory then yields an essentially
classical expression for the transition probability with
quantum mechanics entering only via the matrix element
of the particle’s spin operator.

Some new results are derived concerning the differen-
tial angular and frequency distributions of the spin-flip
_ synchrotron radiation. The results of Derbenev and

Kondratenko (1973) for the characteristic time 7 and the
asymptotic polarization P for a charged particle of spin-
% and arbitrary g factor are confirmed. Since electrons
and positrons are the only particles likely to show de-
tectable polarizations by this mechanism, these results
are of no practical interest. They serve a pedagogic
purpose, however, since they permit the upsetting of
one of the key concepts of the naive description, namely,
that the polarization arises from spontaneous emission
as the spin moves from its “upper” to its “lower” state
in the magnetic field. It is found that for 0<g<1.2 the
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opposite is true.

The angular and frequency distributions of numbers of
photons and of radiated power are presented for the
physically interesting circumstance of g=2. They are
compared with the corresponding spectra for the ordi-
nary synchrotron radiation. This again is of limited
practical value because of the minuteness of the spin-
flip radiation, but may serve a pedagogic end.

The reader may, with justification, feel that the author
has wandered endlessly in a labyrinth of Airy functions
without coming to grips with the minotaur, the mysteri-

-ous and peculiar 8/5vV3 ! Why is the polarization for

electrons so large, and yet not complete? I have no
compelling answer. Inspection of Fig. 6 shows that
8/5vV3 is only one from a continuum of possible values,
depending upon a. Since there is nothing special about
a =0 in the effective Hamiltonian (40) that serves as the
basis for the calculation, there seems no reason to put
special emphasis on the particular value of P that em-
erges when ¢ =0. Admittedly, the Thomas—-BMT equa-
tion and the effective Hamiltonian are simpler when a=0.
To those who focus on that fact let me observe that or-
dinary synchrotron radiation, as well as spin-flip,
abounds in square roots of 3. They can be traced to the
Airy integral, Eq. (A1) whose 3 in the exponent can be
attributed to the expansion of sinf=~6—- 6°/6+«++, that
is, the approximation of a small segment of the trajec-
tory by the arc of a circle! I personally believe that at
least the v3 in 8/5V/3 has no more mysterious origin.
Prove me wrong!

Finally, we note that our concern has been with the
basic phenomenon and mechanism of transverse polar-
ization by spin-flip synchrotron radiation. Important
practical aspects of the secular motion of spins in e*e~
storage rings and of various mechanisms of detection of
the transverse polarization can be found in the papers by
by Baier (1971a,b), Derbenev and Kondratenko (1972,
1973), Derbenev, Kondratenko, and Skrinskii (1971),
Ford, Mann and Ling (1972), Schwitters (1974), and the
references cited therein.
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APPENDIX

The Airy functions Ai(x), Ai’(x), and'Ail(x) are defined
by

oo 3
Ai(x) =7lrf cos<—% + xt) dt
o

(Al1a)
_i ® it3/3 +ixt
=5 f_w e at
and
Ai'(x)=dAi(x)/dx (A1b)
and
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Ai(x) =f°° Ailx’) dx . (Alc)

The Airy function Ai(x) satisfies the differential equa-

y"—xy=0. (A2)

Various formulas for Airy functions, including asymp-
totic expansions for large positive and negative argu-
ment, can be found in Abramowitz and Stegun (1964), p.
446 ff.

In the integration of Eq. (57) over angles the following
classes of integrals arise:

Fy0= [ AL A ) (A3a)

G,(x)= f—— PIAL (u+ x)]? (A3b)

Hp(x)=f —j—%u”Ai(u+x)Ai'(u+x) s (A3c)
0 .

where p=0,1,2,.... This type of integral has been
evaluated by Aspnes (1966). Although he gives recursion
relations, for convenience we exhibit explicitly the rel-
evant results.

Folx)=3A1,(y) , A

1/3
F1<x>=—38—[Ai'<y>+yAil<y>] :

R =222 4 [A1(y)+yA1'(y)+y2A11(y)]

21/3
Golx) = ———[3Ai"(y) +yAi ()] ,

g (Ad)

610 = 2 [581(3) + y AL () + AL, OF

Ay =-E Aily)

Hl(x)=—‘é—A11(y) . .)

Here y=22/3y,

In the integration of Eq. (58) over frequencies, after
introduction of a new variable s =(3v/2)'/3 and some in-
tegration by parts, the remaining integrals are of the
form

19@= [ as s3"“Ai<s2 d:%q> , (A5)
)

with 2=0,1,2,3. For definiteness, we consider a>0.
The results for negative a can be obtained by interchange
of the roles of 7{*’ and I{. By use of the differential
equation (A2) it is possible to show that the I, satisfy a
recursion formula

a d? 3In+l d (+)

- ————— — . A6
[4 ] ) (46)
Thus, .only /$*’(a) need be evaluated. From (Ala) the
Airy function in (A5) can be written
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t
A1<s i—zsﬁ>=——f dtexpz[T +<9 i%)/].

A change of variable, ¢=sz, leads to

A1<s + %): —~j dz expz[ (—231 +z> :t2az] . (A7)

If this now inserted into. (A5) for » =0, the integration
variable s is replaced by # =s3, and the orders of inte-
gration are interchanged, we obtain

. . i
1@ =g [ dz et 0 duexpi[<% +z>u].
' (A8)

Here it is necessary to give z a small positive imaginary
part in order to give meaning to the u integral at its
upper limit. In terms of a contour integral in z it means
that the contour goes above the origin.

The u integral in Eq. (A8) is elementary and leads to

10@=5= [ a

where € is a positive infinitesimal. This remaining in-
tegral can be done by contour integration. The denomi-
nator has simple zeros at z, =—i€,z,=iV3,2,=—-iV3.
For the positive sign (and a>0) the contour is closed
with impunity in the upper half plane, enclosing the pole
at z =¢V3. The result is :

i:ZIaZ

(z+ze)(z +3)° (49)

§7@)= 4 ez, (A10)
Similarly, for the negative sign, the contour is closed
in the lower half plane, with residues at z =—¢¢ and
z =—1iV3, yielding

I (@)= L = L g Vize, (A11)
With (A10) or (A11) and the recursion formula (A6), the
necessary values of I{*’(a) can be generated. For nega-

tive a, we have
13 (=lal) =17 (al) . (A12)

For positive x, the Airy function and its derivative are
related to the modified Bessel functions according to

Ai(x)=—71-r<§>1/2 K, /5(n) -

(A13)
-1

Ai'(x)=— % 2/3(77)
where

n=5x%2. (A14)
We also have, for x>0,

. 1 *°
AL () =7 fn K, /s’ dn’ (A15)
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