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A generalization of Einstein's gravitational theory is discussed in which the spin of matter as well as its
mass plays a dynamical role. The spin of matter couples to a non-Riemannian structure in space-time,
Cartan's torsion tensor. The theory which emerges from taking this coupling into account, the U4 theory of
gravitation, predicts, in addition to the usual infinite-rhnge gravitational interaction mediated by the metric
field, a new, very weak, spin contact interaction of gravitatiorial origin. %'e summarize here all the
available theoretical evidence that argues for admitting spin and torsion into a relativistic gravitational
theory. Not least among this evidence is the demonstration that the U4 theory arises as a local gauge
theory for the Poincare group in space-time. The deviations of the U„ theory from standard general
relativity are estimated, and the prospects for further theoretical development are assessed.
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This article is based in part on talks given by F. W. H. ,
G. D. K. , and J. M. N. at the Seminar on "Spin, Torsion, and
Gauge Groups in General Relativity" held at the Institute for
Advanced Study, Princeton, N. J. on October 5, i974.
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l(Sections of this article which, taken together, comprise a

short course in U4 theory.

Of the fundamental interactions known to modern
physics, the gravitational interaction is the weakest
and, at a microscopic level, the least well understood.
All available evidence from experiments in macrophys-
ics attests to the validity of Einstein's general theory of
relativity as a description of this interaction. Why,
then, is it worthwhile to propose alternative or more
general gravitational theories'? An empiricist might
argue that it is better to wait for new experimental re-
sults and then, only under the challenge posed by possi-
ble contradictions to general relativity, to revise or
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modify Einstein's theory or propose an alternative.
There is, however, a dichotomy in theoretical physics

at present. Strong, electromagnetic, and weak interac-
tions find their most successful description within the
framework of relativistic quantum field theory in flat
Minkowski space-time. These quantum fields reside in
space-time but are separate from it. Gravitation, ac-
cording to Einstein, deforms Minkowski space and in-
heres in the dynamic Riemannian geometry of space-
time. One branch of fundamental physics is highly suc-
cessful in a flat and rigid space-time, but gravitation
requires a nonflat and dynamic space-time. This state
of affairs seems, at least from an epistemological point
of view, to be unsatisfactory.

It is not our purpose here to try to express one con-
ception in the framework of another, as is attempted in
the flat space-time approach to gravitation (everything
expressed a.s fields in a flat space-time background) or
in the so-called unified field theories of the general rel-
ativistic type (everything expressed as non-Euclidean
geometry). Rather, we would like to extend the con
cePts ofgeneral relativity to the micxophysical realm in
order to facilitate a comparison and possibly a link to
the theories of the other interactions. General relativi-
ty was originally formulated as a theory valid for mass
distributions on a macroscopic, as opposed to atomic
scale and for classical electromagnetic fields. The di-
chotomy in geometrical frameworks alluded to above
might be due to the different domains of applicability of
the respective theories. Accordingly, forms of gravita-
tional theories for microphysical processes, theories
which should go over to general relativity in some mac-
rophysical limit, should be studied as possible roads
towards the unified space-time picture we desire.

The gravitational interaction is extremely weak, and
there is little hope at present for direct measurements
of gravitational effects between elementary particles.
Therefore, to some degree, we ought to argue heuris-
tically and even to speculate, and leave the final word to
future experiments.

B. Spin and gravitation

Spin angular momentum of matter, occurring in na-
ture in units of h j2 (where h is Planck's reduced con-
stant), is the physical notion which seems pertinent and
necessary for a successful extension of general relativ-
ity to microphysics. The constituents of macroscopic
matter are elementary particles which obey, at least
locally, quantum mechanics and special relativity theory.
As a consequence, all elementary particles can be clas-
sified by means of irreducible unitary representations
of the Poincare group and can be labeled by mass m and spin
s. Mass is connected with the translational part of the
Poincare group and spin with the rotational part. Mass
and spin are elementary notions, each with an analogous
standing not reducible to that of the other. Distributing
mass-energy and spin over space-time leads us to the
field-theoretical notions of an energy —momentum ten-
sor Z,-,. and a spin angular momentum tensor s;& of
matter.

In the macrophysical limit, mass (or energy-momen-
tum) adds up because of its monopole character, where-

as spin, being of dipole character, usually averages
out. (The so-called spin of planets or of billiard balls
is of an orbital origin and has no direct relation to the
intrinsic spin we discuss here. ) Because spin averages
out in the large, the dynamical characterization of a
continuous distribution of macroscopic matter can be
successfully achieved by energy-momentum alone.
Einstein's general relativity has taught us that the en-
ergy-momentum tensor of matter (the "momentum cur-
rent") is the source of the gravitational field. This cur-
rent is coupled to the metric tensor g,-,- of a Riemannian
space- time continuum.

When we venture forth into the microphysical realm of
matter, we find that spin a,ngular momentum (the "spin
current") also comes into play and characterizes matter
dynamically. The hypothesis is near at hand that spin
angular momentum is the source of a field, too, in fact
the source of a gravitational field. By a gravitational
field we mean here a field inseparably coupled to the
geometry of space-time. We expect that, in analogy to
the coupling of energy-momentum to the metric, spin is
coupled to a geometrical "state quantity" of space-
time, a quantity which should relate to rotational de-
grees of freedom in space-time. In this way we are led
not to the Riemannian space-time of general relativity
but to a slightly more general space-time, the 4-di-
mensional Riemann-Cartan space-time U~. The non-
Biemannian part of the affine connection characterizing
a U~ is the contortion tensor K,:,: defined in Eq. (2.11)
below, which sould be coupled to the spin. The spin cur-
rent finds a dynamical basis in this extended framework,
the so-called U4 theory of gravitation. Sometimes U,
theory is also called the Einstein-Cartan-(Sciama-
Kibble) theory For .a guide to the relevant literature
see Sec. I.D.

C. Organization of the article

In Sec. II we shall recount in a fashion as elementary
as possible the development of the Riemann-Cartan
geometry of space-time. There we shall mainly follow
the guidelines laid down so beautifully by Schrodinger
(1960). We use the mathematical formalism and the
conventions of Schouten (1954). We start from an af-
finely connected space L, with an asymmetric connec-
tion I';,. and impose a (symmetric) metric tensor field

g;,. on it. In order to guarantee a local Minkozvski
structure, we will postulate ~~g;; =0 and deduce the
mathematical consequences of this postulate.

In Sec. III we shall develop a field theory of gravita-
tion which is in many ways reminiscent- of Einstein s
general relativity. The field of spinning matter will be
minimally coupled to the U, space-time. Then we shall
couple the non-Riemannian part of the connection, the
contortion tensor K,', to spin, and the metric g;,. to
energy-momentum of matter. We shall set up the total
action function of the matter field interacting with grav-
itation, first generally, and then with a specific gravi-
tational Lagrangian. By Hamilton's principle, we will
derive the gravitational field equations by means of in-
dependent variations with respect to metric and torsion.
These field equations will be expressed in several al-
ternative forms.
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Torsion in U4 theory supplies an additional contact in-
teraction of spinning matter which leads to deviations
from general rela, tivity only in extreme situations (big
bang, gravitational collapse and microphysics). For the
time being, one is forced to judge the relative merits of
U, theory according to the available theoretical evi-
dence. In Sec. IV we prove that U4 theory is the local
gauge theory of the Poincare group in space-time. Be-
lief in the validity of special relativity with respect to
loca/ inertial systems as represeoted by tetrad frames,
leads to a Biemann-Car tan space-time U4; the more
restricted Riemannian space-time doesn't fit as natu-
rally into this gauge scheme. This derivatj. on, though
more demanding of the reader's time, may appear more
satisfactory than the one in Sec. III; it supports what is in
some ways a more pleasing theory than Einstein's ver-
sion of general relativity. For Sec. IV, we claim some
originality as to the proper interpretation of the local
Poincare transformation, in particular its translation-
al part, and as to the rigor and completeness of the ar-
guments. We regard the question of identifying the
Poincare gauge theory with the U4 theory as having been
set tied her e.

In Sec. V, we discuss the very slight deviations of U4
theory from conventional general relativity. In particu-
lar we recognize that torsion is tied to matter and leads
to new effects only in extreme situations such as the
big bang in cosmology. The specific couplings of some
matter fields (scalar, Maxwell, Yang-Mills, Proca,
Dirac, neutrino) to the U, are studied. Some numbers
in a typical cosmology with spinning matter are esti-
mated.

In Sec. VI, we first compare the geometrical ap-
proach of Secs. II and III with the gauge approach of
Sec. IV. Then, within a U4 space-time, possibilities
for a more general dynamics for the gravitational field

,are explored. Next we sketch the new idea of hypermo-
mentum which requires a, spacetime (I ~, g) equipped
with an affine connection and an independent metric.
Finally, we put forward some speculations.

When no t s tated other wis e, the mathematical conven-
tions are those of Schouten (1954), the physical conven-
tions those of Landau —Lifshitz (1962). The holonomic
indices i,j,k. . . andtheanholonomic indices o., P, y. .. run
from 0 to 3 and summation over repeated indices is im
plied. Symmetrization and antisymmetrization are de-
noted by () and I. 1, respectively. 5J is the Kronecker
symbol and &'" = —1 is one component of the totally an-
tisymmetric Levi-Civita symbol.

A fair understanding of general relativity, such as
presented in Einstein (1955), is all that is required for
the "short course in U, theory" (those sections of the
article denoted by "~~" in the Contents). For the rest of
the article, we would recommend as extremely helpful
Schrodinger (1960) and Sec. 19 of Carson (1953).

D. Guide to the literature

We have tried to make this article self-contained and
to present all material needed for understanding the
foundations and the theoretical framework of U4 theory.
We will select here some references in order to give an
idea of the history of this theory and to suggest further

readings. These references, together with the works
cited in them, should embody all work relevant to U4

theory.
The notion of an asymmetric affine connection was

casually mentioned by Eddington (1921) in discussing
possible extensions of general relativity (see also Ed-
dington, 1924, Secs. 91 and 98). He was aware that in-
finitesimal parallelograms were broken in a space-time
with an asymmetric connection. He pointed out that ap-
plications in microphysics are conceivable, but he did
not develop his idea.

Torsion as the antisymmetric part of an asymmetric
affine connection was introduced by Elie Cartan (1922,
1923, 1924, 1925), also in the context of a study of gen-
eral relativity. He recognized the tensor character of
torsion and developed a differential geometric formal-
ism. He had some idea that the torsion of space-time
might be connected with the intrinsic angular momentum
of matter and that it should vanish in matter-free re-
gions. Cartan provided only the rudiments of a theory
of intrinsic angular momentum and torsion in general
relativity.

The possible link between torsion and intrinsic angu-
lar momentum was forgotten later on, probably because
the modern concept of spin had its breakthrough only
with the discovery of the spin of the electron (1925—26),
and because Cartan's work seems not to have been
widely read by relativists. ' The concept of an asym-
metric affine connection reappeared in the context of
different attempts of a unified field theory of the gener-
al relativistic type. This is of no direct interest to us
since U4 theory is a dualistic theory in which matter
and geometry are kept separate. For the general
framework of these theories, see for instance Einstein
(1955), App. 2, Schrodinger (1960), or Tonnela. t (1955,
1965).

In the forties it became increasingly clear from the

work of Costa de Beauregard (1942, 1943, 1964), Weys-
senhoff and Raabe (1947), and Papapetrou (1949), that

the energy-momentum tensor of massive spinning
fields, say the Dirac field, must be asymmetric. ' This
result, together with Einstein's field equation, can be
taken to imply the insufficiency of standard general rel-
ativity for fields with spin.

At about the same time or later there appeared sever-
al articles with appealing ideas that suggested some
sort of a general relativistic space-time with torsion in

a, dualistic framework: Stueckelberg (1948), Weyl
(1950), Finkelstein (1960, 1961), Rodichev (1961), Ivan-
enko (1962), and Pellegrini and Plebanski (1963).

Continuum physicists also appreciated the notion of
Cartan's torsion. Mainly from the work of Kondo

In May f929, E. Cartan wrote a letter to Einstein. Cartan
pointed out that his studies on torsion might be of physical
relevance to general relativity. In particular he argued that
Einstein's teleparallelism theory is but a special case of a
theory with torsion. According to his answer, it seems that
Einstein suspected only a claim for priority by Cartan in re-
gard to the discovery of torsion. He did not enter into a phys-
ical discussion of Cartan's papers.

For a recent article uniting the arguments for an asymmetric
energy-momentum tensor, see Hehl (1976).
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(1952), Bilby, Bullough, and Smith (1955), and Kroner
(1960), it became clear that torsion plays a central role
in the continuum theory of crystal dislocations. If we
describe by differential geometric methods the deform-
ation of a continuum where dislocations are allowed,
Cartan's torsion can be shown to be equivalent to the
dislocation density (compare also Kondo, 1955, 1958,
1962, 1968; Bilby, 1960; Kroner, 1964). The relation of
continua with dislocations to the polar continua of mod-
ern continuum mechanics and their generalized stress

, states, is discussed in Kroner (1968) and Truesdell and
Noll (1965).

U, theory proper begins with Sciama. (1962, 1964) and
Kibble (1961). Their gauge approaches to gravitation
will be examined in detail in Sec. IV.C.3. Both Sciama
and Kibble arrived at the same set of field equations
(3.21, 3.22) and laid down the basic structure of U, theo-
ry.

Later, the geometr ical framework of U4 theory was
set up, the affine connection was written down explicit-
ly, and the formalism presented here in Secs. II and III
was developed (Hehl and Kroner, 1965; Hehl, 1966; Hehl,
1970 ). The canonical energy-momentum tensor was
split in the U~ framework and the combined field equa-
tion (3.23) which facilitates comparison of U, theory
with general relativity was derived. For further devel-
opments see Hehl and von der Heyde (1973), Hehl, von
der Heyde, and Kerlick (1974), and von der Heyde and
Hehl {1975).

In the meantime Trautman (1972a, b, c; 1973a, b, d;
1975) worked out a beautiful mathematical analysis of
U4 theory based on modern differential geometric tech-
niques and the theory of tensor-valued differential
forms. He inquired in particular into. the compatibility
of the affine and metric structures of space-time. His
variational principle was discussed in Kopczynski
(1973b, 1975) and Trautman (1975). Trautman (1973b, c)
also proposed that the singularity behavior of U~ theory
could differ from that of general relativity.

We believe that the foundations and the theoretical
framework of U4 theory have by now been well estab-
lished (compare Kerlick, 1975a, and Salam, 1975).

Trautman's conjecture about singularities was taken
up by several authors. Kopczynski (1972, 1973a) first
demonstrated the bouncing of certain simple cosmologi-
cal models with torsion (see also Tafel, 1973, and Kuch-
owicz, 1973). For reviews on this development see
Kerlick (1976), Kuchowicz (1975a., b, c), Tafel (1975),
and Sec. V.3.

Kibble's (1961) paper and an earlier paper by Utiya. ma,
(1956) were the starting points for various gauge ap-
proaches to gravitation. As we will outline in Sec. IV,
we believe that the Poincare group actively interpreted
leads to the most plausible classical field theory of
gravitation. This is more or less in accord with Haya-
shi and Bregman (1973). Translationa. l gauge theories
were developed by Ha, yashi and Nakano (1968), Utiya, ma

~The tetrad formalism used by Sciama mas taken from Weyl
(1929).

Part of this article appeared translated and in a slightly re-
vised version in Hehl (1973, f974).

and Fukuyama (1971), Cho (1976), and others; rotation-
al (Lorentz) gauge theories by Carmeli (1974), Lord
(1971), and others. For some highly interesting dis-
cussions on gravitation and gauge theories see Kaempf-
fer (1965), Diirr (1971,1973), and Yang (1974). Earlier
papers advocating the use of Poincare gauge invariance
include those of Brodski, Ivanenko, and Sokolik (1962)
and Ivanenko (1962, 1972).

II. THE RIEIVIANN-CARTAN SPACE-TIME U4

A. Differential manifold

We will assume that space-time has the properties of
a continuum, that it is a four-dimensional differential
manifold X4. Any point of it can be labeled by real co-
ordinates x~ with k = 0, 1, 2, 3, where 0 refers to the time
coordinate, and 1, 2, 3 to the space coordinates. A re-
naming of the coordinates (coordinate transformation in
the passive sense) does not change the continuum under
consideration. On an X~, using the pattern laid down by
the transformation properties of coordinate differentials
and gradients of scalar fields, we can define contra-
and covariant vectors, and subsequently general tensors
and tensor densities.

dc" =-r",, (x)c'dx'. (2 1)

Here, in the sense that "in the infinitesimal everything
is linear, " 0Q~ is assumed to be bilinear in C' and dx',
the set of the 64 coefficients I'~, is the affine connection.
An X~ equipped with a I' is called a linearly connected
space or I ~.

The antisymmetric part of the affine connection
& (Fk Fk ) Fk (2.2)

in contrast to the symmetric part, transforms as a ten-
sor. It is Caftan's torsion tensor, a purely affine quan-
tity. If one builds up infinitesimal parallelograms in an
L,4, it turns out that they do not close in general, the
closure failure being proportional to the torsion tensor:
torsion breaks infinitesimal yarallelograms.

In an I.~, the torsion with its 24 independent compo-
nents can be covariantly split into a traceless part and
a trace. Therefore it will not be surprising in later ap-
plications to find that both of its parts enter with differ-
ent coefficients. The modified torsion tensor

S),.
'

+2&g S,j, (2 3)

which differs from the torsion S&',. in its trace, will be
particularly useful.

The parallel transport law (2. 1) can be extended to
higher rank tensor fields and densities, and it is pos-
sible to define their covariant differentiation V'=—r with
respect to I'. Now it makes sense to state that "a field

B. Connection

In order to do physics in such a space-time, we
should have additional structures on the X~. In an X~ it
does not make sense to say "a (nonzero) vector field is
constant. " To give Such a statement meaning, one must
introduce the notion of parallel transfer of vectors.
Parallelly displaced from x to x +dx, a vector Q"
changes according to the prescription

Rev. Mod. Phys. , Vol. 48, No. 3, July 1976
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is constant over spacetime. " In this case its covariant
derivative has to vanish.

Parallel transfer is a path-dependent concept. If we
parallelly transfer a vector around an infinitesimal
area back to its starting point, we find that its compo-
nents change. This change turns out to be proportional
to the Biemann curvature tensor

2sgl ~ jb +2 I ts I ~ I Ic» (2 4)

The Riemann tensor in an I,~ obeys a differential iden-
tity (Bianchi's identity) and four more algebraic iden-
tities, which are somewhat more compI. icated than in a
Riemannian space (see Sehouten, 1954, pp. 144 ff.).

ds' = -g„(x)dx'dx' . (2.5)

A corresponding invariant for a covariant vector field
can be built up by means of the contravariant metric
fieldg"" which is defined byg, ~g'" =5",. We assume that
gj,. has the signature +2. Then locally in suitable co-
ordinates, gj, can always be expressed in the Minkow-
ski form

g,, = drag(-1, +1, +1, +1) . (2.6)

C. Metric

Now we introduce an assumption motivated by special
relativity: In the L~ at any point there exists an inde-
pendent metric tensor field g, , =g&, (x) in order to allow
for local measurements of distances and angles. Such a
space is called an (Lc, g). The square of the infinitesi-
mal interval ds between gk and xk + dxk is then deter-
mined by

(L g) Q=o P 8=0 y R=o ~ (2.12)

In a U~, as well as in a V~, the curvature tensor is
antisymmetric not only in the first two indices, but also
inthe last two indices. Hence ina U4, the Ricci tensor Ajj. :=
Rkj,.

" remains the only essential contraction of the curv-
ature tensor. The Ricci tensor «,, .is asymmetric in
general, as is the Einstein tensor of a U~ which is de-
fined according to the usual prescription

1 ~kG":=«jg —.gj;&k ~ (2.13)

Its antisymmetric part, by means of the second alge-
braic identity of the curvature tensor, can be repre-
sented by the modified divergence (v„:=V„+2Sb",')

I

constraining the general connection (2.8) by the metric
postulate (2.10),

Z4 (bj A''b. g 'b. S 0+S'b Sb — If'b

(2.11a,b)

The quantity f,",), the Christoffel symbol computed from
the metric gj, , is familiar and established by Einstein's
general relativity. The contortion tensor'K, :,.'" (the non-
Hiemannian part) has 24 independent components and
depends on metric and torsion. Tensor indices are
raised and lowered by means of the metric. An I ~ with
the most general unit-preserving affine connection (2.11)
is a Biemann-Cartan space-time U4. If torsion vanishes,
w'e recover the Riemannian space-time V4 of general rel-
ativity and, if the curvature additionally vanishes, the
Minkowski space-time «4 of special relativity,

In an (L~, g), by means of the tensor of nonmetricity ~ -k (2.14)
r

Q;,„:=—v;g (2.7)

and the torsion tensor (2.2), we can establish the iden-
ti

~tj =& +jh (& Sa Rbc gcC ab +~Z Qabc) r

where we define the permutation tensor by

~abc, ~a gb ~c + ~a gb ~c ~a ~b ~cjjl — j i l i f j l j i ~ (2.9)

Q„.„=0 (nonmetricity = 0) . (2.10)

The metric postulate (2.10) guarantees that lengths, in
particular the unit length, and angles are preserved un-
der parallel displacement. This local Euclidean, or
rather Minkowskian structure of space-time is estab-
lished by all experiments supporting special relativity.
The metric postulate is an a Posteriori constraint which
reflects in a precise manner the results of numerous
experiments. A space-time where Q,» vanishes can be
pictured as a set of Minkowskian "grains" glued to-
gether by means of the affine connection, obtained from

D. Local Minkowski structure
The interval defined by Eq. (2.5) becomes invariant

under parallel transfer and therefore a useful concept
in ordinary space-time physics only when we adopt an
additional idea from special relativity: We require the
metric field gj, to be covariantly constant, thereby con-
straining the connection in a certain way

Notice that for a contravariant vector density '0' we
have v;Q' =g ~ j.j

ds ' ds ds (2.15)

Observe that only the symmetric (but torsion dependent)
part I&&;&

= (&b&$+2Sb~, &&
of the connection enters (2.15).

Extremal curves (shortest or longest lines) are those
curves which are of extremal length with respect to the
metric of the manifold. According to (2.5), the length
between two given points depends only on the metric

In German "Verdrehungstensor. "

E. Autoparallels and extremals

When we discuss the preferred curves in a Biemann-
Cartan space-time U„we must distinguish between two
classes of curves, both of which reduce to the "-geode-
sics" of the corresponding Riemannian space V~ when
we set torsion equal to zero.

Autoparallel curves (or straightest lines) are those
curves over which a vector is transported parallel to
itself according to the connection I k„. of the manifold.
We start from Eq. (2.1) which defines the parallelism,
choose a suitable affine parameter s and obtain the dif-
ferential equation of the autoparallels
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field (and not on the torsion). Therefore the differential
equation for the extremals can be derived from 5fds=
61(-g„.dx'dx') ~2=0 exactly as in the corresponding
Riemannian space and we are led to

cPx (g) dx dx
gs 'J ps gs (2.16)

In a U~ the autoparallels and the extremals coincide if
and only if the torsion is totally antisymmetric S,-,.~ =

8«,.», that is, the dual of an axial vector. This can be
proved by taking the symmetric part of F~,. in (2.11).

Let us anticipate a result of Sec. V.D.3: the trajec-
tories of test particles in U4 theory are neither auto-
parallels nor extremals in general. Neither notion is
central to U~ theory. Nor is the deviation equation for
neighboring autoparallels, the analog of the geodesic
deviation equation in a V4, endowed with any direct
operational signif icanc e.

F. Orthonormal tetrads as anholonomic coordinates

In a Riemann-Cartan space-time U~, just as in the
Riemannian V~ of general relativity, we may introduce
a (pseudo-)o~thono~maE basis of vectors e„=e'„s; (a
"tetrad" —Greek indices a. , P, y. . .=0, 1,2, 3 number
the vectors) and the dual basis 8"=e;"dx' of one-forms
("co-frames") at each point of space-time as anholo-
nomic coordinates. It should be understood that the tool
of anholonomic coordinates has the same standing in a
U~ as in a V~: it is necessary when one wants to intro-
duce sPinovs in a U~ (or a V4), and it is convenient
when one looks for the operational interpretation of
quantities appearing in the formalism.

The components e'„and their reciprocals e,- satisfy

where g„& is the Minkowski metric (-1, 1, 1, 1). All
quantities may be referred to these anholonomic coor-
dinates. The object of anholonomity

0 ~ e eg&~By:=e n e B~t-eg" i ++By:= +n8 (2.16)

measures the noncommutativity of the tetrad basis. The
U~ connection expressed in these anholonomic coordi-
nates is

~0'.By ' +~8+6 y +cx8y + +8yn +ycxB +n8 y
I ny8 ~

(2.19)

Observe that the Christoffel part has vanished here be-
ca,use g„B is constant and that I'~B has 24 independent
components. The parallel transport of an orthonormal
tetrad basis e„ is given by

de8 =(-F&ae, "dx') e&=(-F&88") e. &-—.—~?'~ e&. (2.20)

The connection one form co&& (u &=~& &j) describes the
y y

rotation of the parallelly transported tetrad relative to
the given tetrad system. This rotation consists of two
pieces, the Ricci rotation u. B due to the Riemannian
metric and depending on Q„s (see Eq. 2.19), and an
independent "added twist" K) 8.= K~SR" proportional to
the contortion. The tetrad vectors in a U~ thus have new
degrees of freedom —independent rotations not specified

by the metric structure. For more information on this
see Schouten (1954) and Misner, Thorne, and Wheeler
"MTW" (1973).

Trautman (1973b) bases his study of the U~ theory on
the calculus of tensor valued differential forms, in
which the local basis of forms 8 at each point, the ex-
terior product A, the exterior derivative, and the con-
nection one-form cuyB=y8-Ay8 play a fundamental role.
His formalism is equivalent to the formalism used here.
The torsion two-form e~ and the curvature two-form
Q.

y
in Trautman's work are given in terms of the quan-

tities used by us by

O'= S 'e ~0' n' =+-'Z'''e ~e8n8 ~ y 2 (XSy (2.21)

We have seen that the presence of contortion in a U~

supplies space-time with new rotational degrees of free-
dom. We know that matter possesses spin angular mo-
mentum in general, and, in the spirit of general rela-
tivity, we would like space-time to reflect the proper-
ties of matter. In the next section we will achieve this
result by coupling the contortion of space-time to the
spin of matter. Henceforth, we will consider space-
time to be a U4 whose affine connection is given by Eq.
(2.11).

The holonomic formalism to be developed in this section can
be extended without difficulty to include spinor fields by intro-
ducing orthonormal tetrads as anholonomic coordinates ac-
cording to the procedure described in Sec. II.F (see Hehl,
1973, 1.974). Spinor fields have no special relationship to
torsion. This is because energy-momentum and spin angular
momentum are tensors for material spinor fields as well as
for tensor fields and because the effect of matter on space-
time is mediated by energy-momentum and spin. In the gauge
formalism of Sec. IV, which we shall show to be equivalent to
the formalism of this section, spinor fields will be included
right from the beginning.

III. THE FIElD EQUATIONS OF U4 THEORY

A. Matter action function and rninirnal coupIing to
gravitation

We start with the flat Minkowski space- time B4 of spe-
cial relativity. The group of motions is the Poincare
group (four-dimensional rotations and translations). Let
us imagine a classical matter field P(x~) embedded in the
B4. It is supposed to transform as a tensor with respect
to the Poincarb group. ' The special relativistic Lagran-
gian density of matter in Cartesian coordinates
8(g, 8$; q) is assumed to depend on the constant Minkow-
ski metric g, the matter field, and the gradient of the
matter field.

Now imagine that gravitation is "switched on. " Then
the special relativistic Lagrangian has to be coupled to
gravity ("geometry") in the sense of the equivalence
principle. This requires us to substitute the U4 metric
g(x) for the Minkowski metric 7l and to couple minimally
the U, connection I" to the matter field g. Thus we a.r-
rive at

(3.1a, b)

leading from the realm of Minkowski space-time to the
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U4 with the connection (2.11).7 The minimal substitution
(3.1b) will be applied only to matter fields, but not to
gauge fields of internal symmetry groups, such as Max-
well's field (see Sec. V.B.2).

After the minimal coupling procedure, the action func-
tion of the matter field i[/ interacting with gravitation
reads

W = (1/c) f d'xg(46ig), ,

C. Canonical tensors and conservation laws

5Q/5~[/= 0 (matter equation) (3.9)

is fulfilled, these identities supply the identifications

The action function (3.2) has to be a scalar. By means
of Noether's theorem, this property leads to identities
for the Lagrangian density. If the equation

= (I/c) d x Q(it/, Bi[/, g, Bg, S) . (3.2)
(3.10)

Here c is the velocity of light and d'x the coordinate
four- volume element. The action function depends on
the independent variables

P, g;; (10 components), S;&k (24 components) . (3.3)

According to (2.11), we could take, instead of the tor-
sion S, the contortion K=K(g, S) as an independent va, r-
iable. The choice (3.3) is the more fundamental one,
however, since S (unlike K) is a priori independent of
the metric.

eo" .'= 25Q/5g, , ; e[i„":=5Q/5S; " (3 4) (3 5)

Observe that Eq. (3.4) must be evaluated for S;.ik held
constant.

According to our considerations in Sec. II.F, spin
should couple to contortion rather than to torsion. We
need only use Eq. (2.11b) and simple algebra to show
that the spin angula, r momentum tensor

e w'" '= 5 Q/5K"
k ij (3 6)

can be expressed in terms of the spin energy potential
ijk +[ji3k. '+ijk ijk jki kij (3.7)

We need still one more definition before we can link
the geometry up to more familiar quantities. The vari-
ation of the torsion as well as that of the metric contri-
butes to the total energy of the matter field. We intro-
duce the asymmetric total energy-momentum tensor

pii. &ij v +ijk &ii+ v (&iik &Jki+ &ki j)k k

which will be justified in the next section.

(3.8)

Should the matter Lagrangian depend on second or higher
derivatives of the matter field or should a nonminimal coupling
to gravitation be allowed, we would still be able to arrive at a
consistent theory within the framework of a U4 space-time.
However, the dualistic character of the theory, that is, the
strict separation of matter and geometry, would be lost. This
supports our belief that, in a dualistic framework, elementary
matter fields have first-order Lagrangians. Thus the equiva-
lence principle, and hence minimal coupling according to Eq.
(3.1), applies to these matter fields. For a detailed discussion
of the equivalence principle in U4 theory and the coupling pro-
cess see von der Heyde (i975b) and the end of Sec. IV.B.4.

e:= [—det(g; )]'/; BQ(Q, BQ)/6Q:= BQ/BQ —8 [BQ/8(SkQ)j.

B. Dynamical definitions of energy-momentum and spin

When we vary metric and torsion independently, we
can define the me@ ic energy-momentum tensor o and a
tensor p, which has the meaning of a spin energy poten-
tial (see Eq. 3.8 below) as follows':

e~i jk I I jig8 gc

s(e„y)
(3.11)

and the conservation laws of energy-momentum and an-
gular momentum

(3.12)

(3.13)

In Eq. (3.11) the quantities h" a,re the representation
matrices of an infinitesimal coordinate transformation
appropriate to P. Equations (3.10) and (3.11) reveal Z;.J

and Ti jk as the canonical energy-momentum and spin
angular momentum tensors, respectively, which are
well known from special relativistic Lagrangian field
theory (see also Sec. IV.A.4). Accordingly, the defini-
tions (3.4), (3.5), (3.6), and (3.8) are reasonable in the
light of our experience with special relativity. In parti-
cular, the definition (3.8) allows us to decompose the
(asymmetric) canonical energy- momentum tensor into
the metric one, which is symmetric by definition, and
into a term supplied by spin. The interpretation of Z;.
as the total energy-momentum tensor leads to an under-
standing of the usual symmetrization procedure of the
canonical energy- momentum tensor. 9

D. Total action function

Comparison with general relativity suggests that we
equate the action function of the field, that is the a,ction
function of the space-time continuum with the connection
(2.11), to an integral over an effective field Lagrangian
density U/2k:

W~= (1/e) fS'xuy, ag, S, 8S)/2k (3.14)

W= (SA)fr x[8(itai, g, 8g, S)+'(i/ak, )u(~, eg, S, 8S)].

(3.15)
E. Field equations

We vary the total action function (3.15) with respect to
the independent variables (3.3). First we get the matter

. . . and to a solution of the localization problem of energy-
momentum for massive matter (compare Hehl, 1976).

(k:= 8wc 'G; G = Newton's gravitational constant). As in
general relativity (see Landau —Lifshitz, 1962), u has
the dimension (length) '. No new coupling constant is
necessary in order to accommodate torsion in this action
fun ctl on.

Adding up matter and field contributions (3.2) and
(3.14) leads to the total action function of the interacting
system
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equation (3.9) and then the 10 plus 24 independent field
equations

—O'U/6g, J
——beer",

—O'U/5S;;. ~ = 2ke p,~" .

(3.16)

(3.17)

If we introduce as sources the canonical tensors as de-
fined in Eqs. (3.8) and (3.6), we have

established. What is left to do is to understand U, theory
better and to consider the physical consequences. Sec-
tion IV gives an alternative derivation of the field equa-
tions in terms of the principle of local gauge invariance
with respect to the Poincare group. Readers whose pri-
mary interest lies in the consequences of the theory may
wish to skip to Sec. V.

(6~/6g, ,) (g'*/2) v„(5~/6S;. ) = I eZ*',

(g'"/2) (6u/6S. ') = t e ~""
(3.18)

(3.19)

IV. LOCAL GAUGE THEORY

FOR THE POlNCARE GROUP

The antisymmetric part of (3.18) is satisfied identically
(see Eq. 3.13).

Now we have to specify 'U. Because the Ricci tensor
is the only essential contraction of the Riemann tensor
in a U, (as in general relativity), the density of the cur-
vature scalar 5:=egin, j suggests itself as the most
natural choice. A divergence can be split off

(2egkL jgi 3)

0= 9|(g, ag, S):=2eg" (I', &,I'„'&,. —I",,S;.'„) .
(3.20)

G"=kZ" (1st field equation),

T""= 07" (2nd field equation),

or, in words,

Einstein tensor = 0 x energy- momentum,

modified torsion = k & spin angular momentum .

(3 21)

{3.22)

Equation (3.21) is a. generalized Einstein equation, Eq.
(3.22) an algebraic relation linking spin and Cartan's
torsion.

Because the second field equation is algebraic, one is
able to substitute everywhere spin for torsion and cast
out effectively torsion from the formalism. For this
purpose we split the Einstein tensor G" of the U, into its
Riemannian part G'~(( ]) and its non- Riemannian part.
The torsion terms in the latter part are substituted by
means of Eq. (3.22). This yields

6"((])= ka" (combined field equation)

with the combined energy-momentum tensor
pij . ~ij ~ pl 47ik ijl = 27ikl T~ + 7kli 7

~j
~ ~ Lg ~ ~ k) ~ kl kl

+lg"(4&"~~™.j+ & "& .r)]

(3.23)

(3.24)

which is symmetric by definition and which obeys the
conservation law vjoi j =Q. We have formally eliminated
torsion, but only by sacrificing the interpretation of Eq.
(3.1b) as a minimal coupling. Now Eq. (3.1b) has to be
applied with

With respect to the Riemannian connection ( ], the sub
stitution (3.1b) looks nonminimal.

The fundamental framework of U4 theory has been

Just as in general relativity, R can be taken as an ef-
fective field Lagrangian: O'0 = 587 = 5$. The computations
of the variation of R with respect to g and S are straight-
forward but involved (see the Appendix). If we substi-
tute the results into (3.18) and (3.19), we have

We have already alluded in Sec. I to the fundamental
role of the Poincare group in the characterization of
elementary particles and its close connection with the
U4 theory. We shall show in this section that to require
the invariance of a special relativistic theory of matter
under local space-time rotations and translations (inde-
pendent a.ction of the Poincare group at every point)
leads inexorably to the introduction of torsion and curva-
ture. In view of the fundamental significance of the
Poincare group for physics, and of the local gauge ap-
proach in general, we take such a derivation as the
strongest evidence that the geometry of the physical
world is indeed a Riemann —Cartan geometry.

For physical reasons, as well as reasons of presen-
tation, we shall not follow too closely the original expo-
sitions of Sciama (1962) and Kibble (1961), although we
shall discuss these works in due course. We wish to
emphasize here two crucial points which are usually
overlooked ln discussions of the Polncare transforma-
tion s.

We first wish to clarify the distinction between coox-
diygate systems and systems of oxtkonoymal xefexevce
fumes (tetrads) in space-time. We employ {holonomic)
coordinate systems x' in the usual manner, merely as
a means for labeling events. A frame of reference,
comprising an orthonormal basis (tetrad, vierbein) of
vectors e„will be given a more important, operational
meaning: it will represent in principle our standard
apparatus for measurements in space and time.

Our second point for emphasis is that, in analogy to
the usual procedure in local gauge theories of internal
symmetry groups (Yang and Mills, 1954; Utiyama,
1956), a Poincare transformation will be interpreted as
an active transformation of the matter fields. That is,
coordinates and frames will be regarded as fixed once
and for all, while the matter fields [here given the col-
lective designation P(x')] are replaced by fields [Ilg](x')
which have been rotated and translated with respect to
g(x'). It is, of course, to be expected that a comple-
mentary, passive interpretation of II (the sa.me matter
field viewed from transformed frames of reference) will
always be possible, and we shall discuss this at the end
of Sec. IV.B.3. In this section we put c= l.

A. Special relativistic kinematics

1. Coordinate transformation

Suppose that we start with the usual interpretation
(e.g. , Kibble, 1961) of an infinitesimal global Poincare
transformation as a transformation of the global Car-
tesian coordinates in Minkowski space
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x'- x'=x'+ (d"x'+ 6'j (4.1)

where co, , = ~&, ,&
and & are both infinitesimal constant

parameters. The components of the matter field g(x')
with respect to the coordinate basis ei, orthonormal in
Minkowski space, transform under (4.1) as

t(x) - '0('x) = (1+~"f;;)4(x) . (4.2)

Here, the constant quantities f,, =f&,,, are the represen-
tations of the generators of the Lorentz group [Eq. (4.8),
below] associated with the fields P.

Further, suppose that we now require, as is usual,
that the action function W= fI, (g, 8$) d'x, — which is invar-
iant under transformations (4.1}and (4.2), be required
to exhibit invariance under a local gauge transforma-
tion, where the constant parameters m and & are re-
placed by the arbitrary functions Pu(x) and «(x). But then
the rotational part of (4.1) loses its status as an inde-
pendent part of the gauge group, since it can now be ab-
sorbed into a redefined function «'(x). What was once a
ten-parameter global transformation has been reduced
to the four-parameter group of general coordinate
transf ormations

x' - 'x' = x'+ « '(x) . (4.3)

What happens above is plausible from a mathematical
point of view, but our physical experience tells us that it
is inadequate. We know that there exist in nature, cor-
responding to the rotations and translations in Eq.
(4.1), independent and irreducible currents of spin w,'.,'.~
and of momentum Z,.'. The spin current 7 cannot be re-
duced to the form gf an orbital angular momentum.
Neither, then, should we expect loca.l rotations to be re-
duced to local translations. A local gauge theory based
on Eq. (4.1) can yield no independent concept of spin,
and can only make sense for spinless matter, or for
matter approximated as spinless. Fermions, in parti-
cular, are described by spinor representations of the
Lorentz group, but general coordinate transformations
have no spinor representation.

e eB=g B
——diag( —1,+1,+1,+1}. (4 4)

2. Frames of reference

In order to maintain the independence of the rotational
gauge transformations, we must first recall the opera-
tional meaning of a Poineare transformation in special
relativity. The global Cartesian coordinate system in
which the transformation (4.1) is defined represents, at
least in principle, a global network of standard clocks
and standard measuring rods (see, for example, Taylor
and Wheeler, 1966, Ch. 1). A Poincare transformation,
in this context, is no mere renaming of points, but a
relation between measurements. A transformation (4.1)
presupposes the existence of standard lengths (and
angles) which are independent of position and direction.

To implement this physical aspect of a Poincare
transformation, we choose at each point of the rnatter
distribution a. set of orthonormal vectors (tetrad basis)
with respect to which all measurements of the "physical
eornponents" of the matter field are made. This tetrad
basis will be denoted by e, where the Greek letters
label the vectors of the basis (0, 1, 2, 3). Thus,

The tetrads 8 dual to e ("co-frames") are given in a
differential manifold with metric by 8~ e = 6~. In a
Minkowski space B4, the tetrad bases e and the Car-
tesian coordinate bases ei coincide according to

R4 R4
e =6ie . 8 =5.e'.

u u i & i (4.5)

Henceforth we shall regard the matter fields g (except
gauge potentials, see below) as having components with
respect to such an orthonormal frame.

3. Global Poincare transformation

In order to avoid the problems associated with Eq.
(4.3) and to make explicit the active interpretation of a
Poincare transformation, we start now from the global
gauge transformation

g(x) -[lip](x):= (1+ &u BfB —«r&r)g(x); (4.6)

+(d 5 xR i (4.7a, b)

Here, «and Pu are the same parameters as in (4.1), but
referred now to an orthonormal basis, and claim the in-
terpretation of measured lengths and angles. The re-
presentations of the generators of rotations f„B and of
translations 8~= 6~~,. satisfy in an B4 the well known
commutation relations of the Poincare group,

[&uB~frB] =&rLafB3B gBE~fB3r &

[f B er]=grL. BB~

[9,BB]= 0.
(4.9)

(4.10)

4. Matter Lagrangian and conservation theorems

Let the material system be specified by a Lagrangian
of the form

It may seem at first glance that nothing has been
gained, for [Iig](x) in (4.6) is via Eqs. (4.7), (4.5), (4.1)
identical with P(x) in Eq. (4.2). The essential difference
is that, even when the parameters & and cu are general-
ized to arbitrary functions, II in Eq. (4.6) still makes
physical sense, and the rotational part ~ remains inde-
pendent of the translational part.

This formulation also offers the advantage that we can
now regard the transformation (4.6) as an active gauge
transformation of all the matter fields g at a fixed co-
ordinate xi measured with respect to a fixed tetrad e .
The process prescribed by Eq. (4.6) is this: Replace
the fields P at a point x' by fields which have first been
rotated by an amount —&u, that is, g(x) [Ag](x)
= (1+ uf)P(x), and then have been translated by an amount
+«=«+m x, that is, [Ag](x)-[II/](x)=[A/](x —«). Then,
as experience shows, matter distributions II/ and g are
physically equivalent. Apart from their relative orien-
tation and position, there are no measurable properties
by which the distributions ean be distinguished.

The translation generators in H do not cause a rota-
tion of $ because the orthonormal frames e are paral-
lel throughout Minkowski space. One must notice, how-
ever, that the magnitude of the translation, i.e. , the
parameter q, is not completely independent, inasmuch
as it contains, according to Eq. (4.7a), a rotation-in-
duced part co x as well as the independent part &. This
fact is closely related to the existence of orbital angular
momentum.
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where IIQ is the volume 0 translated by an amount
+ e(x). We calculate

i
~

i~

~ ~
~

iI

~ ~i! ~
~

8L 8L 8L
8 ~8 8,.$

(4.13)

The first term in parentheses vanishes by reason of the
Euler —I,agrange equation satisfied by the matter field

Since Eq. (4.12) must hold for arbitrary volumes 0,
the divergence term in (4.13) must also vanish. Taking
into account the definition of 5P from Eq. (4.6) and the
relation 8,.&~ = co' ~5; obtained by differentiating Eq.
(4.7a), we find as coefficients of the independent con-
stants ~ and & the conservation laws of angular momen-
tum and energy-momentum

9 eT g Zp~pg C (4.14a)

(4.14b)

Here, the canonical currents of spin angular momentum
&'~' and of energy-momentum Z~' have been defined by

BL
0.8 '

8(8 y)

fager

&

8LZ':=5 I —
( )

8 P.

(4.16a)

(4.16b)

In Eq. (4.14a), the term —Z&„z, = 8,.(x,.5~&„Z&I), the diver-
gence of the orbital angular momentum, results from
the rotation-dependent part ~'x of the total translation

Having finished this detailed exposition, we are now
prepared to proceed in the generalization of this globally
Poincare invariant theory to a theory invariant under
local Poincard transformations.

B. General relativistic kinematics

(4.11)

Except for the matter field P, all other quantities (the
Kronecker delta 5', the Dirac matrices y, the Min-
kowski metric g 8, etc. ) are invariant under II.

Equivalence of physical measurements as defined
above demands the invariance of the action function
W= fLd'x under II

or, using Eq. (4.7),

5&= —ei(d ~ &~'+ ~,&~ —cog"6~] Z' d x. 4.16b

88/8e, ."= Z„",

(4.18a)

(4.18b)

(4.19a.)

(4.19b)

That these relations [(4.18), (4.19)] can only hold in the
weak field limit can Qe readily seen from the definitions
(4.15) of the canonical tensors & and Z: A coupling which
exactly produces (4.18a) and (4.19a) necessarily alters
the canonical tensors and their conservation laws (4.14),
whose validity is presupposed in the derivation of (4.16).
Thus we are led to expect a highly nonlinear coupling as
the fin@1 result.

In order to proceed further without ad hog assump-
tions, we will try to obtain a more exact picture of the
structure of this coupling by clearing up the physical
meaning of the gauge potentials and of the compensation
process. For this purpose we will deduce a condition
from the Poincare transformation which makes quanti-
tative the notion of "equivalent matter distributions"
without reference to an action principle.

In Eq. (4.16a), the gradients of the independent param-
eters u and e act upon total angular momentum J:=&

+x Z and energy-momentum Z, respectively. Corre-
spondingly, the currents J and Z ought to be the sources
of their respective gauge fields. But J cannot couple to
a gauge potential as.a dynamical current in a Poincare
invariant manner for it is not a translation-invariant
property of matter. We must rather identify the inde-
pendent tensors v and Z of (4.16b) as the dynamical cur-
rents of matter.

In order to obtain Poincare gauge invariance under
local transformations II(x), we couple six rotational
gauge potentials I', "~= I', ~ ~'(x) and four translational
gauge potentials e,."(x) to the matter fields, that is,

(4.17)

Then the variations 5I', 5e of the gauge potentials under
II(x) contribute to the change in the action function.
These var'iations compensate for the terms in (4.16) in
the limit of weak fields provided

't. Currents and potentials

Suppose that we now define a local Poincare gauge
transformation by allowing the hitherto constant param-
eters ~ and e to vary freely over space-time. Within
the framework of special relativity, to each g(x) is as-
signed a, matter distribution [II/](x) which is no longer
measurably equivalent, in the sense of Sec. IV.A. Ap
plying the. conservation laws (4.14) leads to the following
nonvanishing term in the variation (4.13) of the action
under II(x)

2. R igidity condition and coupling
. The global gauge transformation (4.6), (4.7) may be

completely characterized by two important properties:
it changes neither the distance between events nor the
relative orientation of neighboring matter fields.

We may state this more exactly as follows: let
g'(x) = 5' g (x) be an infinitesimal vector field which we
imagine to be bound with the matter field. Then a sim-
ple calculation shows that the Poincard transformation
(4.6), (4.7) with constant parameters co, 4 leads to

&q„'i+x~& ' + ia &' 4 x, (4.16a)
(4.20)

The meaning of this relation is clear: It makes no dif-
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ference whether (a) we compare field amplitudes g at
nearby points before the transformation TI and trans-
form the result, or whether (b) we compare the trans-
formed amplitudes II/ at the corresponding points
shifted with the material continuum. Were this not so,
we could distinguish experimentally between II/ and g.
Because the matter field behaves like a rigid body under
such a global transformation, we call Eq. (4.20) a
'Yzgzdztg co'pldztzoR.

For a local transformation with position-dependent
parameters &u(x) and 4(x), we obtain instead of Eq. (4.20)
the relation

by the operator 8 in Minkowski space. The Poincare
transformation (4.6), (4. 'I) ought therefore to be viewed
as the special relativistic limit of the local gauge
transformation

q(x) - [lip](x):= (1+ (u ~
f~ —e'D „)y(x), (4.26)

where D:=e'~Di The symbol II is used in order to
stress that the group of rotations and parallel txansla
tions in Eq. (4.26) has, in the mathematical sense, a
more general group structure than the original Poincare
group. The commutation relations of this group are
given by Eq. (4.8) and, instead of Eqs. (4.9),(4.10), by

or, by comparison with (4.18b, 4.19b),
(4.21)

II(g'a,.g) =(II) )5„'8,.(llg)+ g'[(- a, u ~)f~„+(8;e~—(u'~6;}a ]g, [f.„D,] =g„.D„,

where the quantities

(4.27)

(4.28)

Il(g*a y) =(II~")(6*+68' )(a,. + 6r,."f„)(lip).
Here, the reciprocal quantities e'„(x) satisfy

(4.22) —2(a z ra+ I ayl. Bag ) ~ ~ sy
i j ' Ei R fi j 1 ng ij

E; := .2( a„.e, ,'+Fr,. 'es~ g 8)=2D~se~~ ~

(4.29)

(4.30)
1 Bee' = — e'=det(e. ) ~ e' e."=5'. e' e.'=5'.

CX i j j~ ~ i a
i

(4.23)

From the viewpoint of special relativity, Eq. (4.21)
would have to be interpreted as an irregular deforma-
tion of the matter field; the distributions II/ and P would
be measurably different. Special relativity is no longer
an adequate framework as soon as we demand, in the
sense of a gauge theory, that local Poincard transfor-
mations should lead to measurably equivalent matter
distributions. Just how to leave special relativity is
strongly suggested by Eq. (4.22).

Interpreted as a rigidity condition, Eq. (4.22) tells
us that two changes are required, namely:

(a) an adjustable connection between the orthonormal
frames e [which still satisfy Eq. (4.4), however] and
the coordinate bases ei,

6,. —e, (x); 5' - e' (x), (4.24)

I

(b) an adjustable relative rotation dx'1,.8 (x)e of the
tetrads ez at neighboring points xi and x'+ dx' which in-
duces a change in the derivative operator,

a, D,. := a. ;+ I'; ~(x)fg„. (4.25)

3. Local Poincare transformation

According to its definition (4.25), the oper'ator D gen-
erates rotation- free parallel trans]. ations, where par-
allel" is locally defined in the same way as in Minkow-
ski space and is verifiable in principle by the same
local measuring device as before. The operator D as-
sumes the operational significance formerly possessed

The operator D,. is defined in such a way that the connec-
tion coefficients I operate only on Greek (anholonomic)
indices. The connection I' does not couple to gauge po-
tentials of internal symmetries such as the electromag-
netic potential A, . Were this not so, we would have to
admit the possibility of breaking of internal symmetries
by the action of the gravitational field.

are the rotational and translational gauge fields, re-
spectively (compare Trautman, 1975). Equation (4.28)
shows us that the parallel translations no longer form
an Abelian group as soon as the gauge fields appear.
Such nonlocal behavior distinguishes parallel transla-
tions from other symmetry operatioris.

Equation (4.22) is the limiting case of the rigidity con-
dlt ion

11(('D,.q) = (fig )(e'„+ 6e' )(D + 5I',~ f )(II/) . (4.31)

Together with Eqs. (4.23), (4.26), (4.29), and (4.30),
Eq. (4.31) yields the transformation properties of the
gauge potentials under II

~g D ~g +yFO o ~g
yi r

5e =u' e '-D & —&yF'i y i i yi

(4.32)

(4.33)

which should be compared to (4.18) and (4.19). It is
understood that Latin and Greek indices can be inter-
changed by transvection with e'„or e,.', e.g. , F,",

0 ~ Ql

=F&i e,.
Finally, we point out how a passive interpretation of

these gauge transformations can be given. With help
from Eqs. (4.29) and (4.30), the transformations for the
potentials take the following form:

61 0'8 6„Z «a (~IB &Ji «) (a.&J)Z' 0'~ (4 34)

ne,. = 6„. e; —(a,.e~)ej (4.35)

4. Conservation theorems revisited

So far we have made no use of the definition (4.7a).
This is in fact not necessary since Eq. (4.33) now guar-

The homogeneous variation 5„,„:=(u f- c D) yields ten-
sorial relations under II according to Eq. (4.26). The
additional terms are the real compensating inhomoge-
neities. Equations (4.35), (4.34), and (4.26) may now be
interpreted as a transformation of the tetrad system and
coordinates during which the matter field is held fixed.
Equation (4.35) is then interpreted as a parallel trans-
port of the tetrads by an amount -&(x), followed by a
rotation + &u(x) as well as a transformation of the coordi-
nates from x' to 'x' =x'+ &'.
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BQ 9$«8 '=
ai, my= —

a(a ~)fuge ) (4.36)

antees invariance under transformations with co 40,
where & vanishes, that is, under local rotations without
induced translations. This was not permitted in special
relativity, for according to Eq. (4.16b), a separate con-
servation for orbital angular momentum would have been
implied. From now on, u(x) and e(x) may be regarded
as completely independent.

In analogy with Eqs. (4.12), we now require the inva. r-
iance of the action W= f gd'x under the local gauge
transformation jl(x). Then Eqs. (4.26), (4.32), and (4.33)
lead to the following identities as the coefficients of the
independent quantities D,.w, D,.&, u, and &

now demonstrate that the geometry which results is the
Riemann-Cartan geometry described in Sec. II.

According to Eq. (4.25), dx'I', . Be& is the relative ro-
tation encountered by a tetrad e in going from x to x
+ dx. From this we can calculate that the relative ro-
tation of the respective coordinate bases e,. = ej"e is
dx'(a, e, ". +I', a e,. a)e„=dx'(D,.e,.")e e„. In a, holonomic
coordinate system, the parallel transport is thus given
by

(4.41)

where A represents the generator of coordinate trans-
formations for tensor fields. The components of the co-
variant derivative of a tensor Q in a coordinate basis
are given with respect to its tetrad components by

BQeZ'„':= =—e' 8 —
{ ~)D g, (4.37) (4.42)

(e~.~*) —~~-o~ -=0 (4.38)

(4.39)

It can be shown that by means of finite gauge transform-
ations the potentials at a fixed point X can be locally
transformed to the form I";"~(K)»0 and e; (Ã)» 6,", and
that the Lagrangian density Q(2C) and the currents T(2C),
Z(Ã) then reduce to their special relativistic form. This
property may be recognized as the realization of the
equivalence principle: the properties of matter in a
gravitational field cannot be distinguished locally from
the properties of special relativistic matter. We would
like to point out that the nonvanishing force density
{DZ)(Ã) in Eq. (4.39), absent in special relativity, does
not contradict the validity of the equivalence principle.
From its definition, this principle can be applied only to
local (first- order) quantities. Because the energy-mo-
mentum tensor Z contains derivatives of the fields, how-
ever, the special relativistic energy momentum conser-
vation law (4.14b) is of second order, and thus a non-
local concept (von der Heyde, 1975b).

5. U4 geometry recognized

The discussion of the rigidity condition in Sec. IV.B.2
suggests that the gauge potentials describe geometrical
properties of space-time. A nongeometrical interpre-
tation as special relativistic fields is problematic,
since the global Minkowski geometry can be verified by
measurement only when the gauge fields vanish. We can

As we had hoped, the dynamically defined currents 7
and Z agree with the special relativistic quantities as

' coupled according to Eqs. (4.24), (4.25). The angular
momentum conservation law (4.38) is essentially the
same as occurs in special relativity (4.14a), in that the
gauge fields exert no torques on the matter distribution.
The conservation law of energy-momentum (4.14b) is
altered, for (4.39) implies that both gauge fields act upon
the corresponding sources.

From Eqs. (4.23), (4.24), (4.25), (4.36), and (4.37) we
obtain the explicit form of the material Lagrangian den-
sity

I, ($, 6'„a,.p;g ~, y )-Q(p, ag, I', e) =eI. (g, e'~D,.g; g„~,y ) .
(4.40)

The concept of parallelism with respect to the coor-
dinate ba, sis as defined in Eq. (4.41) is by construction
locally identical with Euclidean parallelism, as is mea-
sured in a local tetrad. In a similar way, the local
Euclidean angle and length measurements define the me-
tric in a coordinate basis

(4.43)g, , (x):= e, "(x)e,.8(x)g„8.

From the antisymmetry I',- 8=I", ~ 8~ in its definition
(4.25) and from (4.42) results

Dzg 8-0 ~ v,.glk-o (4.44)

and the metric postulate (2.10) which restricts the ge-
ometry (I.„g) to a U, is fulfilled. Moreover, Eqs.
(4.41), {4.29), and (4.30) identify the rotational gauge
field as curvature and the translational gauge field as
torsion in a Riemann —Cartan space, as defined in (2.4),
(2.2),

~o»» g O g» ~ » g»»Q 1 Q ~ ~ Q=~I & aI' g (4.45a,b)

C. General relativistic dynamics

1. F ield equations

In order to complete the gauge theory, we must find
a gauge-invariant Lagrangian density 8&

——Qz(I', aI', e, ae)
for the fields I', g which is as simple as possible, and
which in its macroscopic limit does not contradict ob-
servation. In gauge theories of internal symmetries
(at least for semisimple groups), the simplest such La-
grangian is quadratic in the gauge fields +. In the case
of the space-time symmetries considered here, how-
ever, it is possible to find a nontrivial line~ Lagr ang-
ian. Indeed this is a choice which leads to Einstein's
theory in the absence of spin, and so we follow Sciama
and Kibble in setting

Q~(r, al', e) = {e/'2k)e' e'aran;"8. {4.46)

By varying the total action W = f (8 + Qz)d'x with re-
spect to the independent potentials I' and e, and keeping
in mind the definitions (4.36), (4.37), we obtain the field
equations

(4.47)

'Ihe gauge theory of the Poincare group leads in this way
to U~ geometry.
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Df s+gk]
+ ~ Q 8 ~ ~ ~ Q@fk+ya] —e f + n] 8 ~

(4.49a)

(4.49b)

By means of the relations (4.45), (4.30) the field equa-
tions (4.47), (4.48) can be shown to coincide with the
formulation (3.22), (3.21). From a, purely gauge-theo-
retical pointof view, the choice (4.46) for Qzandthe equa-
tions (4.47), (4.48) are somewhat problematic. We shall
return to this point in Sec. VI.B.

2. Relation to the Riemannian structure

A difference between alternative formulations of the
U, theory persists. It is characteristic of a gauge ap-
proach that it leads directly to U4 geometry without vis-
ible reference to a Riemannian structure. For purposes
of comparison of U, theory with Einstein's theory, keep-
ing in mind the field equation (3.22), the torsion S;.J
suggests itself as a more convenient ind'ependent vari-
able than I',."~. Equation (4.30) with (4.45b) may be
solved for the Riemann-tartan connection

(4.50)

where 0;.;.8: = a&;ej&8 is the object of anholonomity (see
Sec. II.F) and K;.~"(g, S), which depends on torsion and
metric, is defined in Eq. (2.11).

The connection (4.50) may then be interpreted to con-
sist of two independent parts: the Ricci rotation coef-
ficients I'(0) [in parentheses in Eq. (4.50)j, and the con-
tortion tensor K. The -Ricci rotation coefficients depend
on the tetrad components alone and in holonomic coor-
dinates equal the Christoffel symbol. The contortion
tensor describes an additional non-Riemannian tetrad
rotation. Substitution of (4.50) in the preceeding equa-
tions of this section allows a separation of Riemannian
and non-Riemannian contributions.

Clearly, a, variation of I'(Q, K) in Eq. (4.50), with the
tetrads e, held constant, is equivalent to a variation
with respect to K,.&~. The dynamically defined spin
(4.36) is thus identical with the spin defined in Eq. (3.6).
In a variation with respect to e;, keeping torsion fixed,
the connection I',."8 now contributes to the tetrad varia-
tion. The corresponding dynamical current is the met-
ric energy-momentum tensor cr'~ defined in Eq. (3.4),
where the difference o —Z in (3.8) is generated from the
variation of F(O).

3. The Sciama and Kibble approaches reconsidered

Finally, we wish to comment briefly upon the assump-
tions made by Sciama (1962) and Kibble (1961).
Sciama's approach is that of a gauge theory of the homo-
geneous Lorentz group starting from a Riemannian
background, that is from Einstein's theory formulated
in terms of tetrads, with an affine connection I'(0) given
by (4.50) for the ca.se K=0. Since I'(0) carries the total
inhomogeneity of 1 (0, K) with respect to local tetra. d ro-
tations, Einstein's theory is manifestly gauge invariant
under the local Lorentz group. Notwithstanding, the
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(4.48)

These dynamical equations are supplemented by the
identities

Riemannian connection I"(0) cannot in itself be identified
as an independent gauge potential, because it is com-
pletely determined by the tetrad components.

Led by analogy between spin and electric charge, Sci-
ama argued that the independent current 7. corresponds
to an independent gauge potential I'. Replacing I'(0) by
r' in the total Lagrangian density for general relativity
then leads to the field equations (4.47), (4.48) of the U»

theory.
Kibble starts from Minkowski space and a passive in-

terpretation of the Poincare transformation. Going
from a global to a local transformation, the total trans-
lation e is interpreted as in (4.3) as a. general coordinate
transformation, but an independent active rotation w of
the matter field -is defined in addition

'0(x) = (1+~ fg —~'a;)0(x) (4.52)

does not describe a rotation-free translation of the mat-
ter field in curved space-time, because the rotation of
the field g is composed of &u and the tetrad rotation & I'.
This should be compared with Eq. (4.26), where the in-
dependence of rotational and translational deformations
of the material continuum, exhibited by a global Poin-
care transformation, is guaranteed also for local trans-
formations.

Formally, Kibble's transformations can be derived
from those discussed here by addition of the local tetrad
rotation, u ~-m ~+a-'I',. ~, and going over to a passive
interpretation of translations. For instance, Eq. (4.35)
then implies 'e,. ('x) = e, (x) + &uP e,.~ —(a,&')e,. which
shows that in Kibble's formulation the interpretation of
e,. as a gauge potential is not obvious, because e,.
transforins homogeneously under (4.51).' Since the the-
ory which results is invariant under local rotations,
both formulations lead to the same geometry. That is,
the invariance of the U» theory under (4.26), and thus
under local rotations and parallel translations, implies
invariance under general coordinate transformations.

V. CONSEQUENCES OF U4 THEORY

We assume throughout this section that matter fields
with first-order Lagrangians are minimally coupled to
the torsion, and that the field equations (3.21), (3.22),
which result from choosing the scalar curvature for the
field Lagrangian, hold. Theories with more general
field Lagrangians will be dealt with in Sec. VI.B.

g(x) —'g('x): = (1+co 8 (x)f8„)g(x); x' —'x': = x' + e ' (x).

(4.51)

Formally, the system (4.51) agrees with the active
transformation (4.6), (4.7). Still Kibble's theory seems
to us tobe a gauge theory of the homogeneous Lorentz
group which is required to be invariant under general
coordinate transformations rather than a gauge theory of
the Poincare group Per se. The splitting into indepen-
dent total translation and rotation seems well motivated
only after introducing the gauge potentials e,."(x). For
example, special relativity is not invariant under a
transformation (4.51) with & = 0, u = const 4 0. Moreover,
the transformation (4.51), interpreted actively,
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A. A new spin contact interaction

1. Torsion does not propagate

The second field equation (3.22) is an algebraic rather
than a differential relation between torsion and spin. The
consequence of this fact is clear: In the U4 theory,
tkeye can be no torsion of space time -outside the spin-
ning matter distribution itself. Torsion is inextricably
bound to matter and cannot propagate through the vacu-
um as a torsion wave or via any interaction of nonvan-
ishing range.

Outside the matter distribution, spin makes itself felt
only by means of its influence on the metric tensor. The
effect of spin on the metric is, however, of higher or-
der in the gravitational coupling constant than the effect
of mass on the metric. That both spin and mass play a
role in the generation of the metric is particularly clear
from the combined field equation (3.23). On the left-
hand side of this equation, the same second-order dif-
ferential operator as in general relativity acts on the
metric tensor; only the sources on the right-hand side
are redefined. This redefined source, the combined
energy-momentum tensor 0... contains both explicit and
implicit spin contributions (Sec. V.A.2, below). Thus a
change in the spin distribution T"~ implies a change in
cr" which via the field equations causes a change in the
metric tensor that propagates through space and time.
It is possible, for example, to envision the generation
of ordinary gravitational waves from a time-varying
spin distribution. "

The effect of spin on metric geometry has been studied
in the linear approximation by Arkuszewski, Kopczyn-
ski, and Ponomariev (1974) [compare also von der
Heyde and Hehl (1975), Sec. 9]. Using this simplest
approximation (linear in both metric and torsion so
that the spin contact terms are neglected) one finds
that distant observers, who measure only the metric
field, cannot distinguish between a (ferromagnetically)
polarized source of spinning matter (which causes tor-
sion locally) and a rotating distribution of matter with
the same total angular momentum (which nowhere causes
torsion) [compare also Adamowicz (1975)"].

2. Short-range behavior

We have already shown that the only spin-spin inter-
action mediated by torsion is a contact interaction. A
detailed examination of this interaction begins with a

We hasten to point out that such processes are only of theo-
retical interest. Typical values for spin associated with
astronomical objects are very much smaller than typical val-
ues of orbital angular momentum. For example, a completely
polarized neutron star of one solar mass with a rotational
period of one second has approximately 10~6 times as much
orbital angular momentum as spin (see also Kerlick, 4973).
The strength of gravitational waves produced by processes in-
volving spin are thus of no significance for astronomical ob-

servationn.

We disagree with the conclusion of Adamowicz that "torsion
appears as a by-product of the process of averaging of General
Relativity. " In our article the spin is meant to be the spin of
elementary particles, therefore torsion exists'already on an
elementary level (see Sec. I.B}.

~ ~')K"&/2 = y(7 . .&~~ } /2+ 7 .'."T (& ~ y' )
g «) (5.3)

for the non-Riemannian contribution to the Lagrangian.
Thus the U4 theory predicts, without further assump-
tion, that in addition to all the gravitational interactions
between particles that occur in general relativity" and
which are derivable, from W((]) there is a new, very
weak, universal spin contact interaction of gravitational
or lgln.

From the above analysis, we can conclude that al-
though the behavior of the U4 theory matches that of
general relativity at large distances, the behavior at
short range is distinctly different. The magnitude of
this difference is the subject of our next discussion.

3. Critical density and matter creation-

Before analyzing the details of the spin contact inter-
action as it applies to matter fields, we can estimate
its strength and predict the physical regimes in which
we should expect significant deviations from the pre-
dictions of Einstein's theory.

First, we re-emphasize that spin, in the context of the
U4 theory, means intrinsic spin, that is the irreducible
spin of elementary particles which occurs in nature in
units of h/2, and not the rotational motion of planets or

These include the spin contact interactions of conventional
general relativity (at least in a quantum version thereof) re-
ported by O' Connell (1973).

splitting of the action (3.14) for the U, theory. into Rie-
mannian and non-Riemannian parts. We choose as in-
dependent geometrical variables the metric tensor g„.
and the contortion K " (because spin couples to contor-
tion).

The Lagrangian density for matter can then be split
as follows:

Q(g, vg, g) = 8(g, ~v'(t, g)+ er„'"(g, vP, g)K;.; +eZ. (P, vg, g, K).

(5.1)

Varying with respect to K, , gives us adifferential equa-
tion for Z. The minimal coupling assumption, along
with the field equation (3.22), here guarantees that Z,
when not identically zero, is of higher order in the gra-
vitational coupling constant than is the term em~"K;, ~.

The curvature scalar density 5 can also be decom-
posed into Riemannian and non-Riemannian parts and a
divergence. Hence the total action W(I') may be decom-
posed,

}}'(I')= w([ ])+ ((/c) f d'x e[(7"' —T"'/2):}sc:+z]'.
(5.2)

In the lowest order in k, there appears a spin-contor-
tion and a (modified) torsion-contortion coupling. The
explicit spin square terms in the combined energy-mo-
mentum tensor P' of Eq. (3.24) originate in the torsion-
contortion term (from the field pa, rt of the non-Rieman-
nian contribution to the action). The U, spin corrections
implicit in o" (and thus also in o") derive from the mat-
ter part (v ~K, ,"+Z) of the non-Riemannian contribution.

Applying the second field equation (3.22) to Eq. (5.2)
for vanishing Z leads, in first order in k, to the form
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of galaxies which is sometimes called "spin" but is
really reducible to an orbital motion.

Matter in the U, theory i.s treated as a continuum. The
masses and spins of the elementary particles which
constitute matter are smeared out into continuous func-
tions over space-time, so that the concepts of an ener-
gy-momentum tensor and a spin angular momentum ten-
sor are meaningful ones".

Consider such a continuum made up of elementary
particles so that its number density ~ is a continuous
function. The mass density is then p = m~, where m is
the particle ma. ss, and the spin density is s = hii/2. (We
assume that all the spins within a volume element are
polarized; however, the argument which follows can al-
so be extended to the case of randomly oriented spins
by an averaging procedure —Sec. V.B.7.)

The combined field equation (3.23) tells us that the
mass density receives corrections due to the spin con-
tact interaction which are of order ks', so that we can
expect spin effects to be of equal importance with mass
terms whenever the number density rs, = m/kh' or the
c'vzHcQl wlQss deRsztg

Wlp=
A@2

= I 1047 gcm ' for electrons
10'4 gcm ' for neutrons (5.4)

&m =mxP$$, (5.5)

and signals the onset of particle creation whenever 4m
exceeds 2~. Not surprisingly, this occurs when the

~3First quantized fields which can be represented by con-
tinuous wave functions are not excluded by this treatment.

Our definition of l differs from the definition of MTW
(1973) by the factor (87t.)

is achieved (Hehl and von der Heyde, 1973). Here
the reduced Compton wavelength is 4:=h/mc and the
Planck length" is f:= (Sck)' '. The huge mass densities
(5.4) may well be unphysical, especially since we have
ignored nongravitational interactions. Still, even higher
densities are encountered in cosmological models and in
discussions of quantum gravity.

The differences between U4 theory and Einstein's the-
ory come about because the Planck length f has entered
the dynamics of the theory in a consistent way as a sort
of "cutoff parameter" for short distances. Correspond-
ingly, the critical density p acts as a cutoff for densi-
ties, beyond which the behavior of the theory is mar-
kedly diff erent.

Certainly, the size of p indicates that U~ corrections
are totally negligible even at nuclear densities. Spin
corrections need only be considered in connection with
the ultrahigh densities near the final singularity in gra-
vitational collapse, near the big bang in cosmological
models, and in the study of quantum gravitational pro-
cesses.

Quantum processes like particle pair creation are
characterized by the Planck length f and the critical
density p, as can be seen from the form (5.14) of the
Dirac equation in a U4. A nonlinear term of axial vec-
tor type corrects in first approximation the mass term
by

mass density reaches the critical density p (Kerlick,
1975b).

9. Matter fields in a U4

We shall now examine the consequences of minimal
coupling of the torsion in a U~ to matter fields.

1. Scalar field

Scalar matter has no spin and should neither feel nor
produce torsion. That this is indeed the case is obvious
from the minimal coupling prescription, for in any af-
fine space the covariant derivative of a scalar field is
identical with its partial derivative.

B„.E,.„=O s sik=(47i/c)Q' [8 +k=0] (5.8)

where 5'"= e g"g"™E,, may be rewritten in terms of U4

covariant derivatives as (compare Prasanna, 1975c)

haik+ S''i Pki (4+/c) cubi. [ e Qk 0] (5 7)

but doing so offers no fundamental new insight.
Because the Maxwell Lagrangian is not minimally cou-

pled to geometry, photons in the U4 theory are unaffec-
ted by the presence of torsion. The causal structure of
a U4, based as it is on light signals, isdeterminedcom-
pletely by the (conformal) metric structure of that space-
time.

Gauge fields which arise from local invariance with
respect to a, non-Abelian symmetry group (Yang —Mills
fields) share with Maxwell's field this exemption from
minimal coupling. They can be minimally coupled to
torsion only at the cost of breaking the gauge symmetry
(see also the end of Sec. IV.B.2).

3. Proca field

The Proca field (ma, ssive Maxwell field) has spin one
(see Corson, 1953). Since it has a mass, the problem
of gauge non-invariance of the spin that we encountered
in the case of electrodynamics does not appear here.
The minimal coupling procedure for this field yields the
Lagrangian density"

9 = —(kcl2) e[V,U, ,V~'Ui' —(m c./5)' U,U'].(5.8)

Splitting this formula into Riemannian and non-Rieman-
nian parts allows us to compute the canonical spin angu-

Compare also Rochev ('i974).

2. Maxwell and Yang —Mills fields

U we would try to perform the minimal coupling pro-
cedure for Maxwell's field in a U4, we would obtain as
a result the spin angula, r momentum tensor 7'"~=A~'I"'~~

which is not U(1) gauge invariant. Preserving this
gauge invariance forbids us to apply the minimal cou-
pling procedure in this case. We observe that Max-
well's equations are geometrically rather special: they
can be expressed in terms of exterior derivatives which
are already covariant objects on any differenti. a,l mani-
fold X~. Of course, Maxwell's equations,
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lar momentum tensor

7~,; = (Kc/2)[U„V), U, )
—U, V)„U;j]

= T„,, (U,vU) + «S; L., '
U~)U, . (5.9)

The important new feature here is that spin depends on
torsion. Thus when this tensor is substituted into the
second field equation (3.22), one finds a relation (omit-
ting indices)

[sTjsS —l2U']S = l'Ucurl U . (5.10)

4. Dirac field

The introduction of Dirae spinors into a U, geometry
is in every way as straightforward as their introduction
into general relativity, requiring only the introduction
of orthonormal tetrads as anholonomic coordinates (see
Sec. II.F). The minimally coupled Dirac Lagrangian in
a U~ is (see Lenoir, 1971; Datta 197la, b; Hehl and
Datta, 1971)

The term in the brackets is an algebraic operator on
the 24 components of the torsion tensor. This operator
might become singular when U'=l ', that is at the num-
ber density UBU=(AP) ' corresponding to the critical
density p. The nature of such a "torsion singularity"
has not yet been investigated. "

The spin of a neutrino (and therefore its torsion) pos-
sesses a special feature: it is a dual of a lightlike axial
vector field. This means that the spin contact term in
Eq. (5.14) vanishes, and that the paths of neutrinos (in
the absence of other spinning matter fields) are, like
photons, still null extremal curves of the metric.

Letelier (1975) has studied the problem of "ghost neu-
trinos" in a U4. He finds that such "ghost" solutions
(neutrino fields which generate no contribution to curva-
ture and are therefore problematic in general relativity)
do not exist in a U4. This fact seems to argue the
greater plausibility of the U4 theory.

6. Semiclassical spin fluid

The semiclassical "spinning dust" matter distribution
(see Weyssenhoff and Raabe, 1947; Weyssenhoff, 1958;
Halbwaehs, 1960; and also Maugin, 1974) generalizes
the "perfect fluid" of general relativity to the ease of
nonvanishing spin. As such, it is an attempt to model
on a classical level the Dirac electron. Unfortunately,
there seems to be no satisfactory Lagrangian for this
distribution, and therefore no unambiguous road to a
minimally coupled theory. Rather, we must postulate
the following convective foams for the energy-momen-
tum and spin angular momentum tensors (c = 1):

I

&(I ) = («/2)e[(V p)y "g —Fjry V g —2(rnc/5)(&]

8((])+e~ 8)'K
8 (5.11)

Z; ' =P~u'+ P(u, u'+ 5', ),
k

I:iA

(5.16)

(5.17)

where the conventions used are those of Jauch and
Rohrlich (1955). The canonical energy-momentum ten-
sor for a Dirac field is

~.8
= («/2)-[(V. q)»e qy8V.—q) . (5.12)

The canonical spin angular momentum tensor for a
Dirac field is totally antisymmetric (dual to an axial
vector) and given by

Yn8y = [~T8y=)(«/4)+by8yyj (5.13)

The Dirae equation in a U, (5Q /5$= 0), after using the
second field equation, takes the form

y v g + 8 l (+~@ Q)y5y P + (nEc/k)g= 0 . (5.14)

The nonlinear term, which represents a spin contact
interaction (or self interaction), repulsive for aligned
spin (Kerlick, 1975b), is an axial vector interaction
with characteristic length l. The combined energy-mo-
mentum tensor for the Dirac field in a U4 is

o u8 ~(n8) (f.B &Su8~+ +Pe), . (5.15)

5. Neutrino field

6Preliminary investigations seem to show that such a sin-
gularity fails to appear in homogeneous cosmological models
of Bianchi Types I and IX.

Neutrinos in the U4 theory obey the Dirac equation
(5.14) in the limit of zero mass. They are invariant
under the same duality rotation g-(1+ y, )g, under which
they are invariant in special relativity. Solutions of the
neutrino equation in a cosmological context have been
studied by Kuchowicz (1974).

Here, p, and u' are the momentum density and velocity
of the fluid, P is the hydrostatic pressure, and y, , is
the spin density. In order to insure that the equations
of motion for the particles be integrable, it is neces-
sary to further restrict the spin by requiring z, , &'= 0,
where the timelike vector p' is usually taken to be the
velocity u' (see Frenkel, 1926) or the momentum p'
(see Tulczyjew, 1959; Dixon, 1964, 1965).

The combined energy-momentum tensor for this dis-
tribution is

o "= (p+ P —2us')u'u'+ (P —us')g"

+ 2(u u —5~ )v~(T 'u' )+ 7'(25' u~ - 'u5)'r'„u

(5.18)

Here, the "polarization current" is given by 7, := v, „u",
and the scluare of the spin density s':= q.»q ' is positive
for either restriction mentioned above on v, ,

7. Macroscopic average

For all the spinning matter fields that we have dis-
cussed, we expect that in most macroscopic situations
spins are not polarized but are randomly oriented, their
polarizations undergoing rapid fluctuations with time.
When we want to apply the field equations in the macro-
scopic domain, we are obliged to perform a space-time
average of the combined energy-momentum tensor 0".
Indeed the spins and the gradients of spin may cancel
out when such an average is performed. However,
many of the spin eorreetions embodied in 0" are quad-
xatic, so that they do not average out to zero. Thus we
expect, even in the macroscopic limit of the U, theory,
nonvanishing deviations from general relativity.
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In the application of the field equations to studies of
gravitational collapse or to cosmological models, we
would like to know how these quadratic corrections
scale with volume. Certainly, the density of spin-
squared for a completely polarized fluid scales as the
inverse square of the volume. It is consistent with our
view of spinning matter as a continuum to assume such
a scaling for randomly oriented particles as well. Of
course, such an assumption must be ju'stified physically.

We ought to bear in mind that taking any of the matter
distributions above to represent matter at high densities
can at best be regarded as a very naive approximation
to physical reality, since we have neglected nongravi-
tational interactions. Keeping this in mind, it is never-
theless interesting to examine the U4 theory for its de-
viations from general relativity in model cosmologies.

1. Global considerations

For cosmological models endowed with polarized (as
opposed to random) spin, the distribution of that spin
strongly determines the allowable symmetries of the
metric tensor, as witness the following two examples:

(a) Kopczynski (1973) first observed in an anisotropic,
spatially homogeneous cosmological model with metric

-ds'=-dt'+ g a dx'dx',
g,g= 1

(5.19)

that the direction of spin polarization must be an eigen-
vector of the spatial metric a~. For nonvanishing spin
in the x' direction, the metric reduces to

-d s' = —dt'+ a„((dx')'+ (dx')') + a„(dx')'. (5.20)

Similar restrictions have been encountered in other
spinning dust models as well as models with a Dirac
field as source of torsion (Kerlick, 1975a).

(b) In a, study of Misner's (1969) Mixmaster Universe,

C. Cosmotogical modeis with spin and torsion

Cosmological models with torsion were first studied
in the hope that the singularities so ubiquitous in the
solutions of Einstein's equations might be averted.
This hope has dimmed by now, since only under rather
unrealistic circumstances (practically no shear or elec-
tromagnetic radiation, spinning matter at high densities
described by a semiclassical spinning dust) can we ob-
tain singularity-free solutions of the U, field equations.
Nevertheless, these cosmological solutions retain their
importance as an important proving ground for the U4
theory, for here is one of but few places where we can
expect matter densities high enough to cause significant
deviations from general relativity.

We will not attempt a comprehensive review of all
solutions here (see rather Kerlick, 1976; Tafel, 1975;
and Kuchowicz 1975a, c), but will focus on several fea-
tures common to all models. We will discuss singular-
ity aversion in terms of violations of the energy condi-
tion of the Hawking-Penrose singularity theorems.
Then we will look at the Friedmann-like equation for a
typical model to estimate the orders of magnitude of
shear, vorticity, and magnetic field effects, and check
for possible consequences to observation.

Kerlick (1975a) found that the closed topology of that
universe precludes any homogeneous polarized spin
distribution whatsoever.

Clearly, then, a study of the compatibility between
metric and spin that is exacted by the field equations is
prerequisite to a systematic study of cosmological mo-
dels with torsion. Studies of these conditions for non-
rotating models with spinning dust, based on the Bianchi
classification of homogeneous spatial geometries, have
been carried out by Tafel and by Kuchowicz in the
papers cited earlier.

2. , Modified singularity theorems

Having found a model whose metric and spinning mat-
ter distributions are compatibl, we now ask whether
that model will become singular. The theorems of
Hawking, Penrose, and others show that under a wide
variety of conditions on a spacelike hypersurface, and
subject to a reasonable energy condition on that hyper-
surface, solutions of Einstein's equations must inevitab-
ly develop singularities. (For details about these theo-
rems and their proofs, and their domains of applicabil-
ity, we refer the reader to the treatise of Hawking and
Ellis, 1973.)

It is easy to reutilize these theorems for the U~ theory.
One need only notice two facts: First, spinless (scalar)
test particles and photons, which determine causal
structure also in a U~, are insensitive to torsion (Sec.
V.B) and follow extremal curves of the metric tensor;
it is incompleteness of extremal curves which defines
a singularity in these theorems. " Second, the U4 theory
may be recast into the quasi-Einsteinian form (3.23)
with the combined energy-momentum tensor o„replac-
ing the energy-momentum tensor of Einstein's theory.

Furthermore, the kinematic variables (shear, vor-
ticity, convergence) used in constructing singularity
theorems represent deformations of the cosmological
fluid seen by Fermi-propagated observers comoving
with the cosmological fluid. Here, too, the Riemannian
connection has the appropriate operational meaning
(Kerlick, 1976).

The singularity behavior of a cosmological model with
torsion can be deduced from the generalization of the
Raychaudhuri (1955) equation to a U, (Stewart and
Hajicek, 1973):

ru', z = —v,u'+ z'/3+ 2(o' —(u')+ kZ . (5.21)

The vector u'(u, u»= -1) is the four-velocity of the cos-
mological fluid. The acceleration u':=u~ v.,„u' of the
fluid is due both to gravitational and nongravitational
interaction. It vanishes for the simple spatially homo-
geneous models we will consider here. The shear cr

and vorticity u& are defined and explained in Ellis (1971).
They describe how a unit sphere of cosmological fluid
shears and rotates as it propagaies forward in time.
The convergence z (negative of Ellis's volume expan-
sion 0) measures the rate at which worldlines of the
cosmological fluid approach each other. Clearly, a
positive definite right-hand side of Eq. (5.21) means

Only singularities in the metric are considered here. For
possible singularities in torsion compare Sec. V.B.3.
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that z increases without limit, and that a singularity
ensue s.

The quantity E:=(o',, -g, ,o~~/2)u'u' in Eq. (5.21) rep-
resents the contribution of matter, and occurs in the
strong energy condition of the generalized Hawking-
Penrose theorem, E» 0. Subject to the other require-
ments of these theorems, positivity of E is sufficient
to ensure that a singularity will occur.

For a Weyssenhoff fluid, the ansatzes (5.16), (5.17)
and the definitions of o.„[Eq. (3.24)] and of E lead to

E~„„=(p+ 3P)/2 —2ks' —27~'B&„M,
&

—v~7~, (5.22)

where p:= -p,.u' is the mass density, the next to last
term is an interaction between spin and vorticity, and
the last term is the divergence of the polarization cur-
rent (which we expect to be small or vanishing). When
pressure, vorticity, and polarization currents all van-
ish, E becomes negative whenever 4ks' exceeds p,
which is near the critical density p. The prevention of
a singularity in spinning dust models with torsion can
therefore be explained by the presence of an effective
negative combined energy density E which depends on
the postulated form of the canonical energy. -momentum
and spin angular momentum tensors (Hehl, von der
Heyde, and Kerlick, 1974). It may well be argued (Ker-
lick, 1976) that these forms are unreasonable, parti-
cularly at high densities. Effects of shear, vorticity,
and magnetic fields are examined in greater detail in
the next subsection.

If the spinning matter is described by a homogeneous
solution g= g(xo) of the Dirac equation (5.14), we find
that

+ —,hcQ'gy, yog —4 g Q's, . (5.23)

Here s":=-e" & vs ~/3!, and 0:= —e" & QB ~/3! is
computed from the anholonomic object (2.18). The
third term vanishes in Bianchi Type I and some other
types, and the last term is again a spin-rotation term.
For the simple case of Bianchi Type I, both remaining
terms are positive definite. The spin-squared terms
here exacerbate rather than alleviate the singularity
problem (Kerlick, 1975b).

0 kp~p p kp„pgp 20'p Qo k sp go+ +a Q ~4 Q 0 (5.24)

where the numerators in each term are constants.
The simplest model universe in U, theory has no

3. Orders of magnitude in a typical cosmology

Consider once more the spatially flat anisotropic met-
ric (5.20), and let there be a polarized spinning dust
distribution with present mass density p, and spin den-
sity s„as well as electromagnetic f'ields and radiation
with present density p„p, and let the present value of
the shear be 0, and the present radius of the universe
be ap. Then the equation for the radius parameter
a:= (a„)'~'(a»)'~' [compare Eq. (5.20)] has the form of
an "effective potential equation"

shear and no electromagnetic radiation. If we estimate
the present radius ~p= 1,2x10" cm and take for the
mass density (of neutrons) p, = 2x10 "gem ', and for
the spin density so= p, (5/an~), thenwe find that this ef-
fective "potential" has a minimum at a,„=1 cm and

p,„=p= 10'4 gcm '. Allowing ordinary hydrostatic
pressure proportional to the density does not change
this picture much.

Allowing the slightest amourit of shear makes the mo-
del singular, as was pointed out by Steward and Hajicek
(1973). Present observed upper limits on shear (Ellis,
1971) are of the order 10'4 times greater than neces-
sary to kill off spin-torsion effects.

Even for models with vanishing shear, the presence
of the 3K blackbody radiation implies a present electro-
magnetic radiation density of p p 10 "gcm '. That
much radiation brings the minimum radius of the uni-
verse in Eq. (5.24) down to the order of 10 " cm, or
less than the neutron Compton wavelength. At such di-
mensions, a study of the nonquantized gravitational
field loses all validity (see also Raychaudhuri, 1975).

A simple metric like (5.20) allows no vorticity ~, but
we can still estimate the sizes of two additional terms,

o ap kG)osoao4 5

0 5 (5.25)

to be added to the left-hand side of Eq. (5.24), which
would appear in rotating models. Hawking (1969) has
estimated a present value ~,= 10 "radyr '. In the
presence of shear or blackbody radiation, neither term
can prevent a singularity within the domain of validity
of this nonquantized approach.

Alas, it seems that even under the most favorable of
circumstances, if torsion causes a "bounce" of the uni-
verse at all, it does so. at much too early a time to have
left any directly observable and easily accessible trace
in the cosmic blackbody radiation or in the relative
abundances of the elements. The effects of torsion are
of significance only during a much earlier regime,
namely the era of quantum geometrical effects and pair
creation by gravitational forces.

We have mentioned (Sec. V.A.3) the possibility of pair
creation via spin-spin interaction for densities greater
than 10' gem '. It should be noted that this density is
much less than the 10"gcm ' or so required for pair
production via curvature (Zel'dovich, 1970). At least
in the realm of matter creation, th6 presence of torsion
makes a crucial difference.

Compare Prasanna (1975a, b).

D. Further consequences

't. Junction conditions

A clear consequence of the discussion of the critical
density p in U~ theory (Sec. V.A. 3) is that spin-torsion
corrections are of absolutely no significance for the
physics of stars (even neutron stars). Nevertheless,
studies of static solutions of the 04 equations for spin
Quid distributions are of theoretical interest for the
light that they shed on the structure of the field equa-
tions. " In this regard, the most interesting consequence
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is the form that the junction conditions have between the
Bicci-flat Riemannian geometry outside matter and the
Biemann- Cartan geometry within. Arkuszew ski, Kop-
cyzriski, and Ponomariev (1975) have studied this prob-
lem using Lichnerowicz's formalism of tensor-valued
distributions. They have derived conditions on the spin-
ning matter which must be satisfied to ensure regular
solutions of the vacuum Einstein equations outside the
matter.

The singularity theorems discussed in Sec. &.C.2 are of
course valid for collapsing stars as well. Indeed, the
final singularity for a collapsing sphere of Weyssenhoff
fluid is avoided, "but only after it haspassedthroughthe
event horizon. Unsolved questions here are whether a
"bounce" or destruction of the event horizon occurs at
some future time. Also unsolved is whether a spin fluid
may provide an interior solution to match an exterior
Kerr solution in general relativity.

2. initial value problem

The decomposition of the Einstein field equation into
space-plus-time form (Arnowitt, Deser, and Misner,
1962), of crucial importance to a canonical quantization
of the gravitational field, has been extended to the U4

theory by Alvarez (1974). An alternate method of gen-
eralization would rely on the combined field equation
(3.23), and substitute the combined tensor 0';z for the
energy-momentum tensor of Einstein's theory wherever.
it occurs. The solution of the initial value problem, at
least for nonquantized matter fields, should present no
additional problem when so corrected for torsioneffects.

3. Equations of motion

We have already indicated that photon and spinless test
particles sense no torsion. A test particle in U4 theory,
one which could sense torsion, is a particlewithdynam-
ical spin like the electron. Its equation of motion can be
obtained by integrating the conservation law of energy-
momentum (3.12). In so doing, we obtain directly the
Mathisson-Papapetrou type equation" for the motion of
a spinning test particle (Hehl, 1971; Trautman, 1972c)."
Adamowicz and Trautman (19'75) have studied the pre-
cession of such a test particle in a torsion background.
All these considerations seem to be of only academic
interest, however, since torsion only arises inside
matter. There, the very notion of a spinning test par-
ticle becomes obscure (H. Gollisch, 1974, unpublished).
Only neutrinos, whose spin self interaction vanishes,
seem to be possible candidates for U4 test particles.

Vl. DISCUSSION AND PROSPECTS

A. Approaches to U4 theory compared
We have presented two different but equivalent ap-

proaches to U4 theory: the geometrical approach of

Arkuszewski, Kopczydski, and Ponomariev (1975) claim
that a sphere of Weyssenhoff fluid collapses to a singularity so
long as the effective energy density E remains positive. But
in their example, this quantity indeed becomes negative and
prevents the singularity.

Mathisson (4937), Papapetrou (195k); see also Bailey and
Israel (1975).

See also Liebscher (1973).

Secs. II and III and the gauge approach of Sec. IV.
In Sec. II, starting from an (L4, g), .we constrained

space-time to be a U, by the postulates (2.6) and (2.10'),
that is, by assuming a local Minkowski structure. In
Sec. III, matter was embedded in the space-time arena
U4, where the independent geometrical variables of the
action principle are metric and torsion [see Eq. (3.3)j.'2

The gauge approach of Sec. IV starts with a global
Minkowski space-time and maintains it locally. As can
be expected, the general relativistic kinematics is once
again realized in a U4 and described by tetrads and a
tetrad connection. In any case, the local Minkowski
structure of the U~ is the cornerstone of U4 theory.

Each approach has its advantages and disadvantages;
they are in a certain way complementary. The geomet-
rical approach may be suggestive to general relativists,
since it is reminiscent of and patterned after the con-
ventional presentation of Einstein's theory in holonomic
coordinates.

The gauge approach may appeal in particular to ele-
mentary particle physicists, for it reveals those aspects
which gravitation shares with other interactions. The
underlying gauge idea is simple, but its application en-
tails a great deal of detailed and refined thought. The
conceptual framework required for this approach is con-
siderably more complicated than in the geometrical ap-
proach. This can also be inferred from a look at the
literature on this subject, where no concensus as to the
true Poincare gauge theory has yet been achieved.

The Biemannian structure within a U4 is concealed in
the gauge approach; but it is readily seen in the geomet-
rical approach. This has a practical value when a com-
parison with Einstein's theory is desired. If the U4 the-
ory were indeed the correct one, however, thiswouldbe
ir r elevant.

The gauge approach deals with well-defined special
relativistic notions like matter fields, currents, lengths,
and angles. In the geometrical approachthe correspond-
ing notions have to be identified afterwards in order to
link up with special relativistic experience. For ex-
ample, the definition (3.8) of the asymmetric energy-
momentum tensor appears to be ad hoc. Only later is it
justified in Eq. (3.10) by identification with the canonical
tensor from special relativity.

As we can see, each of both approaches has its merits.
Since the theory which results is the same, we can al-
ways switch from one formalism to the other one when
it is convenient.

Trautman (1972 a, b, c; 1973 a, , b) has provided an ef-
fectively equivalent approach to U4 theory. His beauti-
ful formalism is developed in an (14, g) space-time. He
carries out a variational procedure with metric and
connection as independent geometrical variables. After-
wards the metric postulate (2.10) is assumed. Traut-
man then proves that the U4 field equations result when
the matter Lagrangian satisfies certain constraints. If

Sandberg (1975) ha, s criticized torsion theories because of
the metric postulate (2.10). The possible inconsistencies that
he suspects are not present in our work he cites or in this
article. His alternative theory, based on the (physically un-
motivated) requirement of projective invariance for the matter
Lagrangian, does not seem convincing.
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these constraints are not satisfied, it is still possible
to redefine the Lagrangian suitably and to remedy this
defect, as shown by Kopczynski (1973b, 1975) and
Trautman (1975). Naturally, Trautman must also as-
sume, for physical reasons, the metric postulate (2.10),
and hence a U, space-time.

B. More general field Lagrangians?

The U4 theory is a dualistic theory in which the con-
cepts of matter and geometry remain segregated. Cor-
respondingly, in both approaches the construction of the
theory is executed in two independent steps.

The first step, based on a simple postulate (the met-
ric postulate in Sec. II, local Poincare invariance in
Sec. IV), leads to the kinematics of the theory, that is,
to the embedding of the matter fields in a Biemann-
Cartan space-time. Since these postulates are based
directly on. special relativity, they are valid wherever
the local Minkowski structure of space-time is experi-
mentally verifiable. Thus the U4 kinematics for dis-
tances greater than typical nuclear distances must be
rega, rded as an unalterable part of the theory. (A grav-
itational theory which may be useful atshorter distances
is suggested in Sec. VI. C, )

In the second step, the dynamics of the U4 is estab-
lished by means of the choice of the scalar curvature &&

for the field Lagrangian. Lovelock (1969) has shown in
general relativity that this choice is unique up to the
cosmological term in the following sense: the field
equation (as Euler-Lagrange equation resulting from a,

second-order Lagrangian) is required to contain no
higher than second derivatives of the metric; see also
Bund and Lovelock (1972). In extending this theorem to
a U„von der Heyde (1975b) has shown that besides the
cosmological term, only terms quadratic in torsion
could be. added. Such terms do not alter the dynamics
in an essential way. The extended theorem is based on
the assumption that the field Lagrangian density 'U is a
polynomial in S and in the derivatives of S and g, and
that, except for Einstein's gravitational constant 0, no
new dimensional coupling constants are admitted. Any
change in the dynamics of the theory must violate at
least one of the above assumptions.

There are, in fact, a few indications which may sug-
gest a generalization of the dynamics:

(a) If one proposed to quantize the gravitational fields
in a U4 by presently available methods (see van Nieu-
wenI1uizen 1975 and also Deser and vaQ NieuweQhulzeQ
1974), new problems, besides those familiar from gen-
eral relativity, appear. The torsion field does not pos-
sess a conjugate momentum because the effective La-
grangian 8 in Eq. (3.20) contains no derivatives of the
torsion. Correspondingly, the gauge transformation
(4.32), (4.33) could not be represented according to the
postulates of Schwinger (1970). Furthermore, the spin-
spin contact interaction (5.3), (5.14) is of vanishing
range, and, in analogy to the conventional coupling in
the weak interaction, nonrenormalizable.

(b) From a gauge theory point of view, choice (4.46)
for the field Lagrangian seems to favor the rotational
gauge field R;J ~ and to shut out the translational gauge
field J',:"(torsion). [Torsion, remember, is not con-

tained a Priori in E;,' so long as I'; is considered
an independent variable, and has not yet been decom-
posed. according to Eq. (4.50). ] Consequently, the field
equations (4.47), (4.48) appear io relate the gauge po-
tentials to the wrong currents.

(c) In the limit of special relativity, the variation in
Eq. (4.16a) of the rotational gauge potential F; ~ (the
term &~) acts upon the total angular momentum L It
might therefore be expected that, besides the spin,
some remnant of orbital angular momentum(though cer-
tainly nothing which depends explicitly on position), say
the spin of the translational gauge potential, could enter
the field equations. A related remark is already found
in Kibble (1961).

(d) The kinematics of the U, theory proclaims that
spin is an independent concept, on an equal footing with
energy-momentum. Nevertheless, the algebraic char-
acter of the second field equation (3.22) seems to hinder
the complete emancipation of spin. By going to the com-
bined field equation (3.23), the first field equation (3.21)
is made to incorporate torsion and the concept of spin is
subsumed under the concept of energy-momentum. It is
unexpected to find that spin and torsion have no more
profound role in physics than to serve as strange-look-
ing source terms in an Einstein-like theory.

All of these indications point to one "solution": One
could supplement the field I,agrangian density 8& =9I/2k
by some quadratic functions of the gauge fields accord-
ing to the pattern (indices are omitted)

9& =hce[o.R +PS /I ]. (6.1)

The dimensionless tensors o. and P of eighth and sixth
rank, respectively, depend only on the metric. Note
that 5 has now been introduced into 8& in order to main-
tain dimensional consistency.

In a (quantized) theory derived from an action prin-
ciple with an extended field Lagrangian density contain-
ing Q&, one would find, besides the familiar graviton, a
new boson which one could call a tozdion. . The spin-
spin interaction in this extended theory mould result
from a tordion exchange. Details of the theory depend,
of course, on the choice of n and P in Eq. (6. 1), but the
tordions would in any case be very massive and tightly
bound to matter.

Similar particles were introduced by Ivanenko (1964),
but, only under the assumption that torsion was the gra-
dient of some other field. Hehl (1966, 1970) considered
the addition of a quadratic term AL;zjA '~ = (P'8) to R.
General quadratic Lagrangians in the U4 theory were
studied by Hayashi (1968) and Hayashi and Bregman
(1973), but in order to attain general relativity as a lim-
it, the curvature-squared terms were eventually dropped.
Lopez (1975) suggests terms like (6.1) which are formal-
ly analogous to the Lagrangian of the Maxwell field.

To our knowledge, there exists no formulation of dy-
namics in a U4 which is simple and established from
physically transparent assumptions, which agrees with
experiment, and which is also free of the "problems" a
through d. Such a dynamics for the U~ theory would be
accessible to the quantization and renormalization meth-
ods developed by 't Hooft and Veltman (1972), DeWitt
(1975), 't Hooft (1975), and others. As the true gauge
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theory for the Poinearb group, the U, theory may pave
the way towards a solution of' some unsolved problems
in quantum gravity.

C. Hypermomentum
1

In modern continuum mechanics three-dimensional
elastic polar continua are studied. '3 These continua al-
low, in addition to the usual concept of a (force) stress,
the concept of "hyperstress"; such a stress character-
izes intrinsic double forces with and without moment.
Space-time can be interpreted as a four-dimensional
elastic continuum. Accordingly, Hehl, Kerlick, and
von der Heyde (1976a) proposed that matter, besides
being endowed with an energy-momentum tensor Z,.
(analogous to force stress in elastic continua), may also
be endowed with a "hypermomentum" tensor &" (anal. —

ogous to the hyperstress mentioned above).
The antisymmetric part 7":= &~"~ of this tensor is

already familiar as the spin angular momentum of mat-
ter. The trace of this tensor ~":= &, '~ can be identified
with the intrinsic part of the dilation current, which is
important in the high-energy "scaling limit" of el.emen-
tary particle physics. The traceless proper hypermo-
mentum Z":=Bi"' —g "&"/4 is something new.

The space-time description appropriate to a matter
field bearing both momentum and hypermomentum is the
linearly connected manifold with metric (I„g) whose
connection is given by Ecl. (2.8) (Hehl, Kerlick, and von
der Heyde, 1976b). The nonmetricity tensor (2.7) can
be split into a trace Q, and a traceless part Q,

(6.2)

An (L„g) with vanishing Q is called a Y~ or a Weyl
space with torsion. The connection in a Y~ preserves
the light cone under parallel transport. In such a
space-time, we find that the dilatation current & ean
be dynamically related to the Weyl vector Q~. A Y,
theory ought to be the local gauge theory for the Weyl
group (Poincare group plus dilatation) and should be
meaningful in the "sealing limit" mentioned above. Re-
sults of this type, some of them for torsionless con-
nections, are scattered throughout the literature. "

If additionally a nonvanishing Q;, ~ is admitted, it
would couple to (and dynamically define) the traceless
proper hypermomentum &" . The currents & and

would then serve as new sources of the gravitation-
al. interaction (Hehl, Kerlick, and von der Heyde, 1976c).

D. Further speculations

The geometrical framework of U4 theory couM be also
extended in another direction. If space-time turned out
to be locally anisotropic, we would have to consider for
its description a Einslex geometry with the line element
ds=f(x, dx), homogeneous of first degree in dx. In

3See, for example, Eringen (1962), Jaunzemis (1967),
Kro'ner (1964, 1968), Truesdell and Noll (1965), and Truesdell
and Toupin (1960). See also Maugin and Eringen (1972).

2 See, for example, Agnese and Calvini (1975), Bregman
(1973), Charap and Tait (1974), Freund (1974), Kasuya (1975),
Lord (1972), Omote (1971), Utiyama (1973), and references
given there.

such a space-time, the concept of length still. survives.
Most interesting among such attempts is the work of
8ogos lowskii (1974).

-The U, theory comprises both the conventional. gravi-
tational interaction and the contact interaction mediated
by spin and torsion. Because of the current-current
nature of this interaction, we could try to understand it
as a prototype of the weak interaction of elementary
partic le physics. "

Only interactions with a high degree of universality
like gravitation (which acts between all particles) and
the weak interaction (which acts between all fermions
directly and between all massive bosons indirectly)
have a chance of being "geometrized" in the sense of the
general relativity theory of 1915. Furthermore, strong
and electromagnetic interaction (when we take k = c = 1)
both have dimensionl. ess eoupl. ing constants, whereas
weak interaction and gravitation have coupling constants
with the dimension of a length, the weak interaction
length" I„=(G~/hc)'~ =10 " cm, and the Planck length
l =(Mc)'i2= 10 3' cm. Is there a chance to link up both
coupling constants after quantizing the matter field in a
U, frameworks This would be a necessary prerequisite
for a possible relation between Meak interaction and
torsion (and the intermediate boson and the tordion),
which should be investigated.

The dual resonance models in elementary particle
physics have been quite successful in describing had-
ronic phenomena. "The dual. theory. . . is the spinning
particle theory par excellence" (D. Olive in Jacob,
1974). In certain dual model theories, Yoneya (1974),
Scherk and Schwarz (1974a), and others have tried to
obtain in a suitable limit massl. ess spin-two quanta in-
terpreted as gravitons. They found Einsteinian struc-
tures and later al.so additional. torsion-like contributions
(Scherk and Schwarz, 1974b), which, however, only
formal. ly resemble the torsion discussed in this work.
In a dual theory, one introduces Poincare invariance at
the beginning. If a dual theory is a correct model. of
nature, then the gravitational theory that comes out
should also carry a torsion structure.
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APPENDIX: VARIATION OF THE CURVATURE
SCALAR DENSITY

Start with a manifold (I„g) with contravariant metric
tensor density p":=eg" and curvature scalar density

.g:= g "A,, The variation of 9( is given by

5g = ~% =R,, 5g" + 0" 5A, , (A1)

Using Eq. (2.4), we get the generalized Pa, latini formula

(A2)

Furthermore

Substitute Eqs. (A3) and (A2) into Eq. (A1) and get,
apart from an uninteresting divergence,

(I/e)6Ã = —G" 5g, , + 2P»" 5I .. .
with

(A3)

(A4)

In a U4, Eq. (A4) reduces to

(A5)

The variation of the connection 5I' in (A5) can be ex-
pressed in terms of 5g and 5S (or 5K) via Eq. (2.11).
Using the indentity (2.14), we finally have

(1/'e)58?/5g, , = —G,, + v~ (T ""—T' '+ T~'"),

(1/'e )5%/5S;. „'
' = —2 (T ~

"—T '. ". , + T '.
~
') .

From Eq. (A7) we can derive the equivalent relation

(I/e )5%/5K, ,'. "= —2 T „' ".

(A6)

(A 7)

(A 8)
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