Rotational motion in nuclei*
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The exploration of nuclear structure over the last
quarter century has been a rich experience for those
who have had the privilege to participate. As the nu-
cleus has been subjected to more and more penetrating
probes, it has continued to reveal unexpected facets and
to open new perspectives. The preparation of our talks
today has been an occasion for Ben Mottelson and my-
self to relive the excitement of this period and to recall
the interplay of so many ideas and discoveries coming
from the worldwide community of nuclear physicists,
as well as the warmth of the personal relations that
have been involved.

In this development, the study of rotational motion
has had a special role. Because of the simplicity of
this mode of excitation and the many quantitative re-
lations it implies, it has been an important testing
ground for many of the general ideas on nuclear dynam-
ics. Indeed, the response to rotational motion has
played a prominent role in the development of dynami-
cal concepts ranging from celestial mechanics to the
spectra of elementary particles.

EARLY IDEAS ON NUCLEAR ROTATION

The question of whether nuclei can rotate became an
issue already in the very early days of nuclear spec-
troscopy (Thibaud, 1930; Teller and Wheeler, 1938).
Quantized rotational motion had been encountered in
molecular spectra (Bjerrum, 1912), but atoms provide
examples of quantal systems that do not rotate collect-
ively. The available data on nuclear excitation spectra,
as obtained for example from the fine structure of «
decay, appeared to provide evidence against the occur-
rence of low-lying rotational excitations, but the dis-
cussion was hampered by the expectation that rotational
motion would either be a property of all nuclei or be
generally excluded, as in atoms, and by the assumption
that the moment of inertia would have the rigid-body
value, as in molecular rotations. The issue, however,
took a totally new form with the establishment of the
nuclear shell model (Mayer, 1949; Haxel ef al., 1949).

Just at that time, in early 1949, I came to Columbia
University as a research fellow and had the good for-
tune of working in the stimulating atmosphere of the
Pupin Laboratory where so many greatdiscoveries were
being made under the inspiring leadership of I. I. Rabi.
One of the areas of greatactivity was the study of nuclear
moments, which was playing such a crucial role in the de-
velopment of the new ideas on nuclear structure.

Today, it is difficult to fully imagine the great impact
of the evidence for nuclear shell structure on the phys-
icists brought up with the concepts of the liquid-drop
and compound-nucleus models, which had provided the
basis for interpreting nuclear phenomena over the pre-

*This lecture was delivered on the occasion of the presenta-
tion of the 1975 Nobel Prizes in Physics. © The Nobel Founda-
tion 1975.
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vious decade (N. Bohr, 1936; N. Bohr and Kalckar,
1937; Weisskopf, 1937; Meitner and Frisch, 1939,

N. Bohr and Wheeler, 1939; Frenkel, 1939).) I
would like also to recall my father’s reaction to the
new evidence, which presented the sort of dilemma that
he would respond to as a welcome opportunity for deep-
er understanding. In the summer of 1949, he was in
contact with John Wheeler on the continuation of their
work on the fission process, and in this connection, in
order to “clear his thoughts,” he wrote some tentative
comments on the incorporation of the contrasting evi-
dence into a more general picture of nuclear constitu-
tion and the implications for nuclear reactions (N. Bohr,
1949). These comments helped to stimulate my own
thinking on the subject, which was primarily concerned
with the interpretation of nuclear moments.?

The evidence or magnetic moments, which at the time
constituted one of the most extensive quantitative bodies
of data on nuclear properties, presented a special chal-
lenge. The moments showed a striking correlation with
the predictions of the one-particle model (Schmidt,
1937; Mayer, 1949; Haxel ef al., 1949), but at the same
time exhibited major deviations indicative of an impor-
tant missing element. The incomparable precision that
had been achieved in the determination of the magnetic
moments, as well as in the measurement of the hyper-
fine structure following the pioneering work of Rabi,
Bloch, and Purcell, was even able to provide informa-
tion on the distribution of magnetism inside the nucleus
(Bitter, 1949; Bohr and Weisskopf, 1950).

A clue for understanding the deviations in the nuclear
coupling scheme from that of the single-particle model
was provided by the fact that many nuclei have quadru-
pole moments that are more than an order of magnitude
larger than could be attributed to a single particle.®

IThe struggle involved in facing up to the new evidence is
vividly described by Jensen (1964). Our discussions with Hans
Jensen over the years concerning many of the crucial issues in the
development provided for us a special challenge and inspiration.

2The interplay between individual particle and collective mo-
tion was also at that time taken up by John Wheeler. Together
with David Hill, he later published the extensive article on
‘“Nuclear Constitution and the Interpretation of Fission Phe-
nomena’ (1953), whichhas continued throughthe years toprovide
inspiration for the understanding of new features of nuclear
phenomena.

3The first evidence for a nonspherical nuclear shape came
from the observation of a quadrupole component in the hyper-

. fine structure of optical spectra (Schiler and Schmidt, 1935).

The analysis showed that the electric quadrupole moments of
the nuclei concerned were more than an order of magnitude
greater than the maximum value that could be attributed to a
single proton and suggested a deformation of the nucleus as a
whole (Casimir, 1936; see also Kopfermann, 1940). The prob-
lem of the large quadrupole moments came into focus with the
rapid accumulation of evidence on nuclear quadrupole moments
in the years after the war and the analysis of these moments on
the basis of the shell model (Townes et al., 1949).
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FIG. 1. Coupling scheme for particle in slowly rotating sphe-
roidal nucleus. The intrinsic quantum number 2 represents
the projection of the particle angular momentum along the nu-
clear symmetry axis S, while R is the collective angular mo-
mentum of the nuclear core and is directed perpendicular to
the symmetry axis, since the component along S, which is a
constant of the motion, vanishes in the nuclear ground state.
The total angular momentum is denoted by I. The figure is
from Bohr (1954).

This finding directly implied a sharing of angular mo-
mentum with many particles, and might seem to imply
a breakdown of the one-particle model. However, es-
sential features of the single-particle model could be
retained by assuming that the average nuclear field in
which a nucleon moves deviates from spherical sym-
metry (Bohr, 1951a). This picture leads to a nuclear
model resembling that of a molecule, in which the nu-
clear core possesses vibrational and rotational degrees
of freedom. For the rotational motion there seemed no
reason to expect the classical rigid-body value; how-
ever, the large number of nucleons participating in the
deformation suggested that the rotational frequency
would be small compared with those associated with the
motion of the individual particles. In such a situation,
one obtains definite limiting coupling schemes (see
Fig. 1) which could be compared with the empirical
magnetic moments and the evidence on the distribution
of nuclear magnetism, with encouraging results (Bohr,
1951a, 1951b).*

In the meantime, and, in fact, at nearly the same
point in space, James Rainwater had been thinking
about the origin of the large nuclear quadrupole mo-
ments and conceived an idea that was to play a crucial
role in the following development, He realized that a
nonspherical equilibrium shape would arise as a direct
consequence of single-particle motion in anisotropic
orbits, when one takes into account the deformability of
the nucleus as a whole, as in the liquid-drop model
(Rainwater, 1950).

On my return to Copenhagen in the autumn of 1950, I
took up the problem of incorporating the coupling sug-
gested by Rainwater into a consistent dynamical system
describing the motion of a particle in a deformable
core. For this coupled system, the rotational motion
emerges as a low-frequency component of the vibrational
degrees of freedom, for sufficiently strong coupling.
The rotational motion resembles a wave traveling across
the nuclear surface, and the moment of inertia is much
smaller than for rigid rotation (see Fig. 2).

4The effect on the magnetic moments of a sharing of angular
momentum between the single particle and oscillations of the
nuclear surface was considered at the same time by Foldy and
Milford (1950).
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FIG. 2. Velocity fields for rotational motion. For the rotation
generated by irrotational flow, the velocity is proportional to
the nuclear deformation (amplitude of the traveling wave).
Thus, for a spheroidal shape, the moment of inertia is

9=9 g (AR/R)?, where 9 rig 1S the moment for rigid rotation,
while R is the mean radius and AR (assumed small compared
with R) is the difference between major and minor semi-axes.
The figure is from Bohr (1954).

Soon, I was joined by Ben Mottelson in pursuing the
consequences of the interplay of individual-particle and
collective motion for the great variety of nuclear phe-
nomena that was then coming within the range of experi-
mental studies (Bohr and Mottelson, 1953a). In addi-
tion to the nuclear moments, important new evidence
had come from the classification of the nuclear isomers
(Goldhaber and Sunyar, 1951) and beta decay (Mayer
et al., 1951; Nordheim, 1951), as well as from the dis-
covery of single-particle motion in nuclear reactions
(Barschall, 1952; Weisskopf, 1952). It appeared that
one had a framework for bringing together most of the
available evidence, but, in the quantitative confronta-
tion with experiment, one faced the uncertainty in the
parameters describing the collective properties of the
nucleus. It was already clear that the liquid-drop de-
scription was inadequate, and one lacked a basis for
evaluating the effect of the shell structure on the col-
lective parameters.

THE DISCOVERY OF ROTATIONAL SPECTRA

At this point, one obtained a foothold through the dis-
covery that the coupling scheme characteristic of
strongly deformed nuclei with the striking rotational
band structure was in fact realized for an extensive
class of nuclei. The first indication had come from the
realization by Goldhaber and Sunyar that the electric
quadrupole transition rates for the decay of low-lying
excited states in even—even nuclei were, in some cases,
much greater than could be accounted for by a single-
particle transition, and thus suggested a collective mode
of excitation (Goldhaber and Sunyar, 1951). A rotational
interpretation (Bohr and Mottelson, 1953b) yielded
values for the nuclear eccentricity in promising agree-
ment with those deduced from the spectroscopic quadru-
pole moments.

Soon after, the evidence began to accumulate that
these excitations were part of a level sequence with an-
gular momenta I=0, 2,4, ... and energies proportional

. to I(I+1) (Bohr and Mottelson, 1953c; Asaro and

Perlman, 1953); examples of the first such spectra are
shown in Fig. 3. For ourselves, it was a thrilling ex-
perience to receive a prepublication copy of the 1953
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FIG. 3. Rotational spectra for »*®Pu and '®Hf. The spectrum
of 8Hf (from A. Bohr and Mottelson, 1953c) was deduced from
the observed vy lines associated with the decay of the isomeric .
state (Burson ef al., 1951). The energies are in keV, and the
numbers in parenthesis are calculated from the energy of the
first excited state, assuming the energies to be proportional to
II+1). The spectrum of *¥Pu was established by Asaro and
Perlman (1953) from measurements of the fine structure in the
a decay of *2Cm. Subsequent evidence showed the spin-parity
sequence to be 0+,2+,4+, and the energies are seen to be
closely proportional to I(+1).

compilation by Hollander, Perlman, and Seaborg (Hol-
lander et al., 1953) with its wealth of information on
radioactive transitions, which made it possible to iden-
tify so many rotational sequences.

The exciting spring of 1953 culminated with the dis-
covery of the Coulomb excitation process (Huus and
Zupancic, 1953; McClelland and Goodman, 1953), which
opened the possibility for a systematic study of rotation-
al excitations (Heydenburg and Temmer, 1954, 1955).
Already the very first experiments by Huus and Zupan-
¢i¢ (see Fig. 4) provided a decisive quantitative test of
the rotational coupling scheme in an odd nucleus, in-
volving the strong coupling between intrinsic and rota-
tional angular momenta.®

This was a period of almost explosive development in
the power -and versatility of nuclear spectroscopy, which
rapidly led to a very extensive body of data on nuclear
rotational spectra. The development went hand in hand
with a clarification and expansion of the theoretical
basis.

Figure 5 shows the region of nuclei in which rotational
band structure has so far been identified. The vertical
and horizontal lines indicate neutron and proton numbers
that form closed shells, and the strongly deformed nu-
clei are seen to occur in regions where there are many
particles in unfilled shells that can contribute to the de-
formation.

The rotational coupling scheme could be tested not
only by the sequence of spin values and regularities in
the energy separations, but also by the intensity rela-
tions that govern transitions leading to different mem-
bers of a rotational band (Alaga et al., 1955; Bohr

*The quantitative interpretation of the cross sections could be
based on the semiclassical theory of Coulomb excitation devel-
oped by Ter-Martirosyan (1952) and Alder and Winther (1953).
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FIG. 4. Rotational excitations in !®'Ta observed by Coulomb ex-
citation. In an odd-A nucleus with intrinsic angular momentum
Q (see Fig. 1), the rotational excitations involve the sequence
I=Q,Q+1,Q+2,..., all with the same parity. In the Coulomb
excitation process, the action of the electric field of the pro-
jectile on the nuclear quadrupole moment induces E2 (electric
quadrupole) transitions and can thus populate the first two ro-
tational excitations. The observed energies (Huus and Zupandic,
1953) are seen to be approximately proportional to I(I+1). The
excited states decay by E2 and M1 (magnetic dipole) transitions,
and the rotational interpretation implies simple intensity rela-
tions. For example, the reduced E2 matrix elements within
the band are proportional to the Clebsch—Gordan coefficient
;920 lIf Q), where I; and I; are the angular momenta of ini-
tial and final states. The figure is from Bohr (1954).

et al., 1955; Satchler, 1955). The leading order in-
tensity rules are of a purely geometrical character de-
pending only on the rotational quantum numbers and the
multipolarity of the transitions (see the examples in Fig.
4 and Fig. 10).

The basis for the rotational coupling scheme and its
predictive power were greatly strengthened by the re-
cognition that the low-lying bands in odd-A nuclei could
be associated with one-particle orbits in the deformed
potential (Nilsson, 1955; Mottelson and Nilsson, 1955;
Gottfried, 1956). The example in Fig. 6 shows the spec-
trum of 2*°U with its high level density and apparently
great complexity. However, as indicated, the states can
be grouped into rotational bands that correspond uniquely
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FIG. 5. Regions of deformed nuclei. The crosses represent
even—even nuclei, whose excitation spectra exhibit an approxi-
mate I(I+1) dependence, indicating rotational band structure.
The figure is from Bohr and Mottelson (1975), and is based

on the data in Sakai (1970,1972). The curves labeled S, =0 and
S, =0 are the estimated borders of instability with respect to
neutron and proton emission.
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beled by the quantum numbers of the available single-particle
orbits (see Fig. 7), with particle-like states drawn to the right

FIG. 7. Neutron orbits in prolate potential. The figure (from
Bohr and Mottelson, 1975) shows the energies of single-

of the ground-state band and hole-like states to the left. The particle orbits calculated in an appropriate nuclear potential by
bands beginning at 638, 921, and 1053 keV represent quadrupole Gust'afson, LaTnm, Nlls.son,_ and ‘NIISSOI’I_(1967.), The single-
vibrational excitations of the ground-state configuration. particle energies are given in units of Zw, which represents the

separation between major shells, and, for **°U, has the approx-
imate value 6.6 MeV. The deformation parameter 6 is a mea-

to those expected from the Nilsson diagram shown in sure of the nuclear eccentricity; the value determined for °U,
Fig. 1. from the observed E2 transition moments, is 6 ~0.25. The
The regions of deformation in Fig. 5 refer to the nu- single-particle states are labeled by the “asymptotic” quantum
clear ground-state configurations; another dimension is numbers [Nz; AQ). The last quantum number £, which repre-
associated with the possibility of excited states with sents the component js of the total angular momentum along the

symmetry axis, is a constant of the motion for all values of 6.
The additional quantum numbers refer to the structure of the
orbits in the limit of large deformations, where they represent

‘equilibrium shapes quite different from those of the
ground state. For example, some of the closed-shell

nuclei are found to have strongly deformed excited con- the total number of nodal surfaces (N), the number of nodal sur-
figurations.® Another example of shape isomerism with faces perpendicular to the symmetry axis (n3), and the compo-
associated rotational band structure is encountered in nent of orbital angular momentum along the symmetry axis (A).
the metastable, very strongly deformed states that oc- Each (?rbit is doubly degenerate (j;==+), and a pairwise filling
cur in heavy nuclei along the path to fission (Polikanov . of orbits _contribuztgs no net angular momentum al?nzf% the sym-
metry axis. For “°U, with neutron number 143, it is seen that
et al., 1962? Specht et al., 1?72)‘ . the lowest two configurations are expected to involve an odd
New possibilities for studying nuclear rotational mo- neutron occupying the orbits [743 7/2] or [631 1/2], in agree-
tion were opened by the discovery of marked anisotro- ment with the observed spectrum (see Fig. 6). It is also seen
pies in the angular distribution of fission fragments that the other observed low-lying bands in %3°U correspond to
(Winhold et al., 1952), which could be interpreted in neighboring orbits in the present figure.
terms of the rotational quantum numbers labeling the
individual channels through which the fissioning nucleus passes the saddle-point shape (Bohr, 1956). Present

developments in the experimental tools hold promise of

®The fact that the first excited states in %0 and "°Ca have providing detailed information about band structure in
positive parity, while the low-lying single-particle excitations the flss?on channels and f:hereby <0n rotational motion
are restricted to negative parity, implies that these states under circumstances radically different from those
involve the excitation of a larger number of particles. It was studied previously.
suggested (Morinaga, 1956) that the excited positive parity
states might be associated with collective quadrupole deforma- CONNECTION BETWEEN ROTATIONAL
tions. The existence of a rotational band structure in %0 was AND SINGLE-PARTICLE MOTION

convincingly established as a result of the 2¢c(aa) studies
(Carter et al., 1964), and the observation of strongly enhanced The detailed testing of the rotational coupling scheme
E2-transition matrix elements (Gorodetzky et al., 1963). and the successful classification of intrinsic spectra
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FIG. 8. Nuclear moment of inertia from cranking model. The
Hamiltonian H describing particle motion in a potential rotating
with frequency w about the x axis is obtained from the Hamilto-
nian H, for motion in a fixed potential by the addition of the
term proportional to the component J, of the total angular mo~
mentum, which represents the Coriolis and centrifugal forces
acting in the rotating coordinate frame. The moment of inertia
is obtained from a second order perturbation treatment of this
term and involves a sum over the excited states ¢. For inde-
pendent-particle motion, the moment of inertia can be ex-
pressed as a sum of the contributions from the individual par-
ticles.

provided a firm starting point for the next step in the
development, which concerned the dynamics underlying
the rotational motion.

The basis for this development was the bold idea of
Inglis (1954) to derive the moment of inertia by simply
summing the inertial effect of each particle as it is
dragged around by a uniformly rotating potential (see
Fig. 8). In this approach; the potential appears to be
externally “cranked,” and the problems concerning the
self-consistent origin for the rotating potential and the
limitations of such a semiclassical description have
continued over the years to be hotly debated issues.
The discussion has clarified many points concerning the
connection between collective and single-particle mo-
tion, but the basic idea of the cranking model has stood
its tests to a remarkable extent (Thouless and Valatin,
1962; Bohr and Mottelson, 1975).

The evaluation of the moments of inertia on the basis
of the cranking model gave the unexpected result that,
for independent-particle motion, the moment would
have a value approximately corresponding to rigid ro-
tation (Bohr and Mottelson, 1955). The fact that the
‘observed moments were appreciably smaller than the
rigid-body values could be qualitatively understood from
the effect of the residual interactions that tend to bind
the particles into pairs with angular momentum zero.
A few years later, a basis for a systematic treat-
ment of the moment of inertia with the inclusion of
the many-body correlations associated with the pair-
ing effect was given by Migdal (1959) and Belyaev
(1959), exploiting the new concepts that had, in the
meantime, been developed for the treatment of elec-
tronic correlations in a superconductor (Bardeen,
Cooper, and Schrieffer, 1957a, 1957b; see also Mot-
telson, 1975).
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The nuclear moment of inertia is thus intermediate
between the limiting values corresponding to rigid ro-
tation and to the hydrodynamical picture of irrotation-
al flow that was assumed in the early models of nu-
clear rotation. Indeed, the classical pictures involv-
ing a local flow provide too limited a framework for
the description of nuclear rotation, since, in nuclear
matter, the size of the pairs (the coherence length)
is greater than the diameter of the largest existing
nuclei. Macroscopic superflow of nuclear matter and
quantized vortex lines may occur, however, in the
interior of rotating neutron stars (Ruderman, 1972).

While these developments illuminated the many-body
aspects of nuclear rotation, appropriate to systems with
a very large number of nucleons, a parallel develop-
ment took its starting point from the opposite side.
Shell-model calculations exploiting the power of group-
theoretical classification schemes and high-speed elec-
tronic computers could be extended to configurations
with several particles outside of closed shells. It was
quite a dramatic moment, when it was realized that
some of the spectra in the light nuclei that had been
successfully analyzed by the shell-model approach could
be given a very simple interpretation in terms of the
rotational coupling scheme.”

The recognition that rotational features can manifest
themselves already in configurations with very few par-
ticles provided the background for Elliott’s discovery
that the rotational coupling scheme can be given a pre-
cise significance in terms of the SU, unitary symmetry
classification, for particles moving in a harmonic oscil-
lator potential (Elliott, 1958). This elegant model had a
great impact at the time and has continued to provide an
invaluable testing ground for many ideas concerning nu-
clear rotation. Indeed, it has been a major inspiration
to be able to see through, even in this limiting case, the
entire correlation structure in the many-body wave
function associated with the collective motion. Thus,
for example, the model explicitly exhibits the separa-
tion between intrinsic and collective motion and implies
an intrinsic excitation spectrum that differs from that
of independent-particle motion in a deformed field by
the removal of the “spurious” degrees of freedom that
have gone into the collective spectrum.

This development also brought into focus the limita-
tion to the concept of rotation arising from the finite
number of particles in the nucleus. The rotational
spectrum in the SU; model is of finite dimension (com-
pact symmetry group) corresponding to the existence of
a maximum angular momentum that can be obtained
from a specified shell-model configuration. For low-
lying bands, this maximum angular momentum is of the
order of magnitude of the number of nucleons A and, in
some of the light nuclei, one has, in fact, obtained evi-
dence for such a limitation in the ground-state rotation-

"In this connection, a special role was played by the spectrum
of ¥F. The shell-model analysis of this three-particle config-
uration had been given by Elliott and Flowers (1955) and the
rotational interpretation was recognized by Paul (1957); the ap-
proximate identity of the wave functions derived by the two ap-
proaches was established by Redlich (1958).
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al bands.? However, the proper place of this effect in
nuclear rotations is still an open issue due to the major
deviations from the schematized SU,; picture.

GENERAL THEORY OF ROTATION

The increasing precisionand richness of the spectro-
scopic data kept posing problems that called for a frame-
work, in which one could clearly distinguish between
the general relations characteristic of the rotational
coupling scheme and the features that depend more
specifically on the internal structure and the dynamics
of the rotational motion.® For ourselves, an added in-
centive was provided by the challenge of presenting the
theory of rotation as part of a broad view of nuclear
structure. The viewpoints that I shall try to summarize
gradually emerged in this prolonged labor (Bohr and
Mottelson, 1963; Bohr, 1974; Bohr and Mottelson,
1975).

In a general theory of rotation, symmetry plays a
central role. Indeed, the very occurrence of collective
rotational degrees of freedom may be said to originate
in a breaking of rotational invariance, which introduces
a “deformation” that makes it possible to specify an
orientation of the system. Rotation represents the col-
lective mode associated with such a spontaneous sym-
metry breaking (Goldstone boson).

The full degrees of freedom associated with rotations
in three-dimensional space come into play if the de-
formation completely breaks the rotational symmetry,
thus permitting a unique specification of the orientation.
If the deformation is invariant with respect to a sub-~
group of rotations, the corresponding elements are part
of the intrinsic degrees of freedom, and the collective
rotational modes of excitation are correspondingly re-
duced, disappearing entirely in the limit of spherical
symmetry. )

The symmetry of the deformation is thus reflected in
the multitude of states that belong together in rotational
families and the sequence of rotational quantum numbers
labeling these states, in a similar manner as in the
symmetry classification of molecular rotational spectra.
The nuclear rotational spectra shown in Figs. 3, 4, and
6 imply a deformation with axial symmetry and invari-
ance with respect to a rotation of 180° about an axis
perpendicular to the symmetry axis (D, symmetry
group). It can also be inferred from the observed spec-
tra that the deformation is invariant with respect to
space and time reflection.

The recognition of the deformation and its degree of

8The evidence (Jackson e al., 1969; Alexander et al., 1952)
concerns the behavior of the quadrupole transition rates,
which are expected to vanish with the approach to the band
termination (Elliott, 1958). This behavior reflects the gradual
alignment of the angular momenta of the particles and the as-
sociated changes in the nuclear shape that lead eventually to a
state with axial symmetry with respect to the angular momen-
tum and hence no collective radiation (Bohr, 1967; Bohr
and Mottelson, 1975).

°In this development, a significant role was played by the
high-resolution spectroscopic studies (Hansen ef al., 1959)
which led to the establishment of a generalized intensity rela-
tion in the E2 decay of the y-vibrational band in *Gd.
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symmetry breaking as the central element in defining
rotational degrees of freedom opens new perspectives
for generalized rotational spectra associated with de-
formations in many different dimensions including spin,
isospin, and gauge spaces, in addition to the geometri-
cal space of our classical world. The resulting rota-
tional band structure may involve comprehensive fami-
lies of states labeled by the different quantum numbers
of the internally broken symmetries. Relations between
quantum numbers belonging to different spaces may
arise from invariance of the deformation with respect
to a combination of operations in the different spaces.

The Regge trajectories that have played a prominent
role in the study of hadronic properties have features
reminiscent of rotational spectra, but the symmetry
and nature of possible internal deformations of hadrons
remain to be established. Such deformations might be
associated with boundaries for the regions of quark con-
finement. .

The condensates in superfluid systems involve a de-
formation of the field that creates the condensed bosons
or fermion pairs. Thus, the process of addition or re-
moval of a correlated pair of electrons from a super-
conductor (as in a Josephson junction) or of a nucleon
pair from a superfluid nucleus constitutes a rotational
mode in the gauge space in which particle number plays
the role of angular momentum (Anderson, 1966). Such
pair rotational spectra, involving families of states in
different nuclei, appear as a prominent feature in the
study of two-particle transfer processes (Middleton and
Pullen, 1964; see also Broglia et al., 1973). The gauge
space is often felt as a rather abstract construction but,
in the particle-transfer processes, it is experienced in
a very real manner.

The relationship between the members of a rotational
band manifests itself in the simple dependence of matrix
elements on the rotational quantum numbers, as first
encountered in the I(I+1) dependence of the energy spec-
tra and in the leading order intensity rules that govern
transitions leading to different members of a band. The
underlying deformation is expressed by the occurrence
of collective transitions within the band.

For sufficiently small values of the rotational quantum
numbers, the analysis of matrix elements can be based
on an expansion in powers of the angular momentum.
The general structure of such an expansion depends on
the symmetry of the deformation and takes an especially
simple form for axially symmetric systems. As an ex-
ample, Fig. 9 shows the two lowest bands observed in
5Fmr, The energies within each band have been mea-
sured with enormous precision and can be expressed as
a power series that converges rather rapidly for the
range of angular momentum values included in the fig-
ure. Similar expansions can be given for matrix ele-
ments of tensor operators representing electromagnetic
transitions, B decay, particle transfer, etc. Thus, ex-

104 well-known example is provided by the strong-coupling
fixed-source model of the pion-nucleon system, in which the
intrinsic deformation is invariant with respect to simultaneous
rotations in geometrical and isospin spaces resulting in a band
structure with I =7 (Henley and Thirring, 1962; Bohr and
Mottelson, 1975).



Aage Bohr: Rotational motion in nuclei

A E=AL(I+N+BIXI+DI+CI3(I+1° + DI“(I+1)“+ -
+A -DHI-NDII+N(I+2) §(K,2)+ -
166
r
155571 - sE
1500 -
- 1376.00 -
L
x
z 1215.93 6+
&
@ 1075.26 -
Z 1000+ 21
w 956.2 L+ 911.2
z 859.39 3+ 8+
o
e 785.90 >4
p K=2
[S)
>
Y A =12.43 keV 545.4 6 +
500 |- B=-106 eV
C =~ 10 meV
A, = 008eV ‘
2650 .
80.56 -
o- 0+
K=0
A = 13507 keV
B =-13.4 eV
C=x 30 meV
D~300P.ev

FIG. 9. Rotational bands in %Er. The figure is from Bohr

and Mottelson (1975) and is based on the experimental data by
Reich and Cline (1970). The bands are labeled by the component
K of the total angular momentum with respect to the symmetry
axis. The K =2 band appears to represent the excitation of a
mode of quadrupole vibrations involving deviations from axial
symmetry in the nuclear shape.

tensive measurements have been made of the E2 transi-
tions between the two bands in *®Er, and Fig. 10 shows
the analysis of the empirical transition matrix elements
in terms of the expansion in the angular momentum
quantum numbers of initial and final states.

Such an analysis of the experimental data provides a
phenomenological description of the rotational spectra
in terms of a set of physically significant parameters.
These parameters characterize the internal structure
of the system with inclusion of the renormalization ef-
fects arising from the coupling to the rotational motion.

A systematic analysis of these parameters may be
based on the ideas of the cranking model, and this ap-
proach has yielded important qualitative insight into the
variety of effects associated with the rotational motion.
However, in this program, one faces significant un-
solved problems. The basic coupling involved in the
cranking model can be studied directly in the Coriolis
coupling between rotational bands in odd-A nuclei as~
sociated with different orbits of the unpaired particle
(Kerman, 1956). The experiments have revealed,
somewhat shockingly, that this coupling is, in many
cases, considerably smaller than the one directly ex-
perienced by the particles as a result of the nuclear ro-
tation with respect to the distant galaxies (Stephens,
1960; Hjorth et al., 1970; see also the discussion in
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FIG. 10. Intensity relation for E2 transitions between rotation-
al bands. The figure, which is from Bohr and Mottelson (1975)
and is based upon experimental data in Gallagher ef al. (1965),
Glinther and Parsignault (1967), and Domingos et al. (1972),
shows the measured reduced electric quadrupole transition
probabilities B(E 2) for transitions between members of the

K =2 and K =0 bands in ¥¢Er (see Fig. 9). An expansion simi-
lar to that of the energies in Fig. 9, but taking into account the
tensor properties of the E2 operator, leads to an expression
for (B(Ez))“z, which involves a Clebsch-Gordan coefficient
(I;K;|2 —2I; K;) (geometrical factor) multiplied by a power
series in the angular momenta of I; and I; of the initial and
final states. The leading term in this expansion is a constant
and the next term is linear in I, (I, +1) — I;(I; +1); the experi-
mental data are seen to be rather well represented by these
two terms.

Bohr and Mottelson, 1975). It is possible that this re-
sult may reflect an effect of the rotation on the nuclear
potential itself (Migdal, 1959; Belyaev, 1961; Hamamo-
to, 1974; Bohr and Mottelson, 1975), but the problem
stands as an open issue.

CURRENT PERSPECTIVES

In the years ahead, the study of nuclear rotation holds
promising new perspectives. Not only are we faced with
the problem already mentioned of a more deep-going
probing of the rotational motion, which has become pos-
sible with the powerful modern tools of nuclear spectro-
scopy, but new frontiers are opening up through the
possibility of studying nuclear states with very large
values of the angular momentum. In reactions induced
by heavy ions, it is in fact now possible to produce
nuclei with as much as a hundred units of angular mo-
mentum. We thus encounter nuclear matter under quite
novel conditions, where centrifugal stresses may pro-
foundly affect the structure of the nucleus. The chal-
lenge of this new frontier has strongly excited the im-
agination of the nuclear physics community. '

A schematic phase diagram showing energy versus
angular momentum for a nucleus with mass number
A= 160 is shown in Fig. 11. The lower curve represen-
ting the smallest energy, for given angular momentum,
is referred to as the yrast line. The upper curve gives
the fission barrier, as a function of angular momentum,
estimated on the basis of the liquid-drop model (Cohen
et al., 1974). For I =100, the nucleus is expected to
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FIG. 11. Nuclear phase diagram for excitation energy versus
angular momentum. The yrast line and the fission barrier rep-
resent estimates, due to Cohen, Plasil, and Swiatecki (1974),
based on the liquid-drop model, with the assumption of the
rigid-body value for the moment of inertia.

become unstable with respect to fission, and the avail-
able data on cross sections for compound-nucleus
formation in heavy ion collisions seem to confirm the
approximate validity of this estimate of the limiting
angular momentum (Britt ef al., 1975; Gauvin et al,,
1975).

Present information on nuclear spectra is confined al-
most exclusively to a small region in the left-hand cor-
ner of the phase diagram, and a vast extension of the
field is therefore coming within range of exploration.
Special interest attaches to the region just above the
yrast line, where the nucleus, though highly excited,
remains cold, since almost the entire excitation energy
is concentrated in a single degree of freedom. One thus
expects an excitation spectrum with a level density and
-a degree of order similar to that near the ground state.
The extension of nuclear spectroscopy into this region
may therefore offer the opportunity for a penetrating
exploration of how the nuclear structure responds to the
increasing angular momentum.

" In recent years, it has been possible to identify
quantal states in the yrast region up to 722025, and
striking new phenomena have been observed. An ex-
ample is shown in Fig. 12, in which the moment of in-
ertia is plotted against the rotational frequency. This
“back-bending” effect was discovered here in Stockholm
at the Research Institute for Atomic Physics, and has
been found to be a rather general phenomenon.

In the region of angular momenta concerned, one is
approaching the phase transition from superfluid to nor-
mal nuclear matter, which is expected to occur when
the increase in rotational energy implied by the smaller
moment of inertia of the superfluid phase upsets the
gain in correlation energy (Mottelson and Valatin,
1960). The transition is quite analogous to the destruc-
tion of superconductivity by a magnetic field and is ex-
pected to be associated with an approach of the moment
of inertia to the rigid-body value characteristic of the
normal phase.

The back-bending effect appears to be a manifestation
of a band crossing, by which a new band with a larger
moment of inertia and correspondingly smaller rota-
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FIG. 12. Moment of inertia as function of rotational frequency.
The figure is from Bohr and Mottelson (1973) and is based on
the experimental data of Johnson, Ryde, and Hjorth (1972).

The rotational frequency is defined as the derivative of the ro-
tational energy with respect to the angular momentum and is
obtained by a linear interpolation in the variable I( + 1) between
the quantal states. The moment of inertia is defined in the
usual manner as the ratio between the angular momentum and
the rotational frequency.

tional frequency for given angular momentum, moves

onto the yrast line. Such a band crossing may arise in
connection with the phase transition, since the excita-
tion energy for a quasiparticle in the rotating potential
may vanish, even though the order parameter (the bind-
ing energy of the correlated pairs) remains finite, in
rather close analogy to the situation in gapless super-
conductors (Goswami ef al., 1967). In fact, in the ro-
tating potential, the angular momentum carried by the
quasiparticle tends to become aligned in the direction
of the axis of rotation. The excitation of the quasi-
particle is thus associated with a reduction in the angu-
lar momentum and, hence, of the energy that is carried
by the collective rotation (Stephens and Simon, 1972).

It must be emphasized that, as yet, there is no quan-
titative interpretation of the striking new phenomena, as
exemplified by Fig. 11. One is facing the challenge of
analyzing a phase transition in terms of the individual
quantal states.

For still larger values of the angular momentum, the
centrifugal stresses are expected to produce major
changes in the nuclear shape, until finally the system
becomes unstable with respect to fission. The path that
a given nucleus follows in deformation space will depend
on the interplay of quantal effects associated with the
shell structure and classical centrifugal effects similar
to those in a rotating liquid drop. A richness of phe-
nomena can be envisaged, but I shall mention only one
of the intriguing possibilities.

The classical centrifugal effects tend to drive the ro-
tating system into a shape that is oblate with respect to
the axis of rotation, as is the case for the rotating
earth. An oblate nucleus, with its angular momentum
along the symmetry axis, will represent a form for ro-
tation that is entirely different from that encountered in
the low-energy spectrum, where the axis of rotation is
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FIG. 13. Collective rota-
tion contrasted with align-
ment of particle angular
momenta along a symme-
try axis.

perpendicular to the symmetry axis (see Fig. 13). For
a nucleus spinning about its symmetry axis, the average
density and potential are static, and the total angular
momentum is the sum of the quantized contributions
from the individual particles. In this special situation,
we are therefore no longer dealing with a collective ro-
tational motion characterized by enhanced radiative
transitions, and the possibility arises of yrast states
with relatively long lifetimes (Bohr and Mottelson,
19'74). If such high-spin metastable states (super-dizzy
nuclei) do in fact occur, the study of their decay will
provide quite new opportunities for exploring rotational
motion in the nucleus at very high angular momenta.

Thus, the study of nuclear rotation has continued over
the years to be alive and to reveal new, challenging di-
mensions. Yet, this is only a very special aspect of the
broader field of nuclear dynamics that will be the sub-
ject of the following talk.
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