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Two-body matrix elements of the residual nucleon-nucleon interaction are extracted from experimental
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I. INTRODUCTION

P ractically all microscopic calculations in nuclear
structure use a "residual" or "effective" two-body inter-
action between valence nucleons. Because one has a
many-body problem that cannot be treated exactly, the
residual interaction between valence nucleons used in
most calculations is not the same interaction as the one
obtained from fitting the experimental data of two freely
interacting nucleons (Bohr and Mottelson, 1969).

The many-body aspect of the problem forces several
restrictions and approximations on any practical calcu-
lation of nuclear structure. All systems have an infinite
number of degrees of freedom and one usually expresses
this fact by using an appropriate infinite set of basis
states; in practice these must be truncated to a finite
set. This truncation is usually performed so as to re-
tain those states which are expected to play the most
important role in describing the nuclear energy levels
being studied. The extent of the truncation is also gov-
erned by the size and speed of the computers used in the
calculations. In addition, the Hamiltonian of the system
is usually approximated by replacing the sum of the two-
body interactions between all the nucleons by a common
single-particle potential (which includes a spin-orbit
term) and a two-body residual interaction acting between
the "active valence nucleons. "

The introduction of this single-particle potential into
the Hamiltonian and, more importantly, the truncation
of the infinite set of basis states causes the effective
nucleon-nucleon interaction to be changed from the
free-nucleon case. There are several approaches which
are usually used. One approach is to try and take into
account the effect of truncation by using the reaction ma-
trix approach (Kuo and Brown, 1966; 1968; Kuo, 1974;
Macfarlane, 1969; Lawson, 1971; Herling and Kuo,
1972; McGrory et al. , 1970; Ko et al , 1973). T.ypical
calculations using this approach have been done by Kuo
and Brown (see above references). Another approach is
to use a phenomenological force for the residual inter-
action between nucleons. Typical calculations using this
approach have been done by Kim and Rasmussen (1963,
1964), Harvey and Clement (1971),Vary and Ginocchio
(1971), and Ma and True (1973). Both approaches have.
their "good points" and their "bad points" and use sever-
al parameters which are adjusted to give the best fit to
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the experimental data. The reaction matrix approach is
basically more appealing in that it is on firmer theoret-
ical grounds. However, calculating the matrix elements
using the reaction matrix approach is more difficult and

the matrix elements are usually evaluated by taking the
first few terms in an infinite series. It is not clear at
this point whether important contributions to these ma-
trix elements have been. neglected because not enough
terms in the infinite series were retained (Osnes and

Warke, 1969; Barrett and Kirson, 19VO; Goode, 1974;
Goode and Koltun, 1972; Barrett, 1975). A third ap-
proach, that is applicable in a few restricted regions of
the periodic table, is to do a least-squares fit to a se-
lected set of experimental data, which are assumed to
belong within one configuration. Usually the data fitted
consists of the energies of the nuclear states, with the
matrix elements of the residual interaction treated as
free parameters which are varied to give best fit. Once
such matrix elements are determined, the resultant
wave functions can be checked for "further" consistency
by seeing how well they describe other nuclear phenom-
ena such as moments, and electromagnetic and beta-de-
cay transition rates. Alternatively, if one determines
the matrix elements for two particles in a given j shell,
they can be used with fractional parentage coefficients
to predict the matrix elements for n particles in that
shell. Typical calculations, utilizing these methods have
been done by Meshkov and Ufford (1956), by Talmi and
collaborators (Talmi and Thieberger, 1956; Goldstein
and Talmi, 1957; and Talmi, 1957),by Cohen and Kurath
(1965), by Cohen et aL (1967), andby Arima et aL (1968).

In selected nuclei throughout the periodic table, it is
possible to determine reasonably well from experimen-
tal data the value of the diagonal matrix elements of the
residual interaction, generally by relying on transfer
reactions to determine the excitation energies, angular
momenta, parities, configurations, and admixtures of
relevant states.

For example, consider the ' Bi(d, p) ' Bi reaction.
Since the 0 Bi ground state is essentially a lh, ~, proton
outside the '"Pb core, ' the (d, p) reaction with angula. r
momentum transfer j is expected to populate strongly
those levels in "0Bi which have a

~ Zh9~2 jJ) configura-
tion. Here Ijj'J) represents a particle with an angular
momentum j vector coupled to another particle with j',
to form total angular momentum J.

Using the binding energies of Bi Pb and ' Bi
relative to o Pb, and the single-neutron excitation en-
ergies for orbits with angular momentum j in 2o9Pb, it
is possible to calculate the excitation energy Eo at which
the multiplet ~1h9~2 j) would appear, in the absence of a
residual interaction, in ' Bi:
~.(&,~., j) -=$~f'"»]-~["'Pb]) (B['"Pb'(j)]-~['"Pb]]-

—(&['"
—fl[209B~] + Qf 209Pbg( j )] Q[210Bi] Q[209Pb]

(I.1)

~To the extent that the 2o~gi ground state and 20~Pb single-
particle states involve "core polarization, " in some sense, it
is the residual interaction of nucleons in these "clothed" single-
particle states that one extracts from the data.

R[ ] is the total binding energy of the particular nucleus
described in the bracket. The two-body residual inter-
action removes the degeneracy of the multiplet that
mould have been expected at excitation energy Eo. The
actual excitation energies of the levels E~~ then depend
on J and, provided that one has a pure configuration,
the difference E~ =E~ —Eo is a measure of the two-body
matrix element. This procedure makes sense if the
states in "Bi can indeed be identified with the pure

~
IA9 ~2 jJ ) configura, tion.
In a few cases, as will be discussed in See. Q, a, given

~
jj'J) configuration is distributed among two or more

actual levels. ' However, with sufficient experimental
data, it is possible to deduce the energy centroid of the
unperturbed two-particle configuration and thus one is
still able to determine the value of the two-body matrix
element.

A particle missing from an otherwise filled shell (i.e. ,
2 j particles in a shell j) may be regarded as a "hole. "
Two holes or a hole and a particle with respect to a
closed core can also be used to determine two-body ma-
trix elements. Two holes can be treated in exactly the
same manner as two pa.rticles and the matrix elements
can be determined directly from the experimental data.
If one knows the matrix elements of a given hole-
particle configuration,

~ j, j2Z), it is possible to con-
vert the hole-particle matrix elements into the particle—
particle matrix elements by using the relation

Z", "(j,j,)=-g[Z']W(j, j,j,j,;ZZ)E,P, "'(j,j,),
(I.2)

where E'~( j,j,) —= (j,j, 8'~ V
~ j,j,2), W (abed; ef ) is the

Racah coefficient, and [J'] is used to denote (2J'+1).
Equation (I.2) is often called the "Pandya transforma. —

tion" (Pandya, 1956; Goldstein and Talmi, 1956). For
a more general treatment of spectroscopic relationships
see Koltun (1973).

This method of determining the two-body diagonal ma-
trix element from the experimental data works well pro-
vided that the states are quite pure with little or no con-
figuration mixing, or that the fragmentation is known a.nd

the eentroids are used.
Data collected in this way have been analyzed in ear-

lier papers. In Moinester et al. (19691, data then avail-
able, mostly of the mixed isospin n —p type, were tabu-
lated and similarities were noted in the corresponding
multipole coefficients. All the n-p data were fitted quite
well by a delta-function force with an exchange mixture;
the agreement was not so good for the j, =j data. The

The test for such admixtures is in the cross section to mem-
bers of the multiplet. For the example of OBi{d,p} Oai, each
member of the 7rlh&y2v2g&g2 multiplet should have {28+1}/
{2j2+1){2jg +1}times the cross section of the Bpb{d,p} ~pb
reaction to the 2g&y2 ground state of ~pb {except for small cor-
rections due to kinematics). If there is some admixing with
other states, then this cross section will be further fragmented
in proportion to such admixtures. If the spins and the trans-
ferred l and j values are known, then the unperturbed energies
may be computed. The cross sections thus give a reliable test
of the purity of a two-nucleon multiplet relative to the adjacent
single-nucleon state.
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interpretation was carried somewhat further by Schiffer
(1971a and 1971b). When more data became available for
multiplets in different isospin states, the data were reanal-
yzed in terms of different components of a central inter-
action (Schiffer, 1972; Anantaraman and Schiffer, 1972).
Since that time additional data have been collected and
the present work is a systematic reanalysis of the data
available by approximately mid 1975. A slightly earlier
version of these results appears in Schiffer, 1975.

Unfortunately, there are not enough reliable experimen-
tal data available at the present time to determine the
off-diagonal elements from the transfer reactions. If
enough data were available to treat these more complex
cases, one would then be able to also determine off-
diagonal matrix elements between two different config-
urations from the experimental data. This has been pos-
sible in a few cases, but not enough systematic data
exist for a convincing treatment. ' A few comments on
the behavior of 0+ states in the Pb region are included
in Sec. III. G.

In Sec. II, the experimental data used and the experi-
mental two-body matrix elements deduced from them
will be discussed. Section III will describe how a resid-
ual two-body interaction was determined and how well
different residual interactions worked. A discussion of
the results and conclusions will be given in Sec. IV.

l l. EXPE R IIVlENTAL DATA

The selection of the experimental data used in obtain-
ing the two-body matrix elements is clearly important
in determining the results of a survey such as the pres-
ent one.

Since different components of the residual interaction
contribute to the T =0 and T = 1 matrix elements, it is
convenient whenever possible to separate the T =0 from
the T =1 matrix elements. The neutron-proton multi-
plets have contributions from both the T =0 and 7 =1
parts of the interaction. However, if one knows the
T =1 matrix elements, which can be determined from
the proton-proton, neutron-neutron, proton-proton-
hole, or neutron-neutron-hole data, one can then calcu-
late the T =0 matrix elements since

The matrix elements extracted from the data are given
in the Appendix.

A. Selection of experimental data

The criteria used in selecting experimental data involve
considerable judgment and ultimately have a subjective
component. Whenever possible, results from one-
nucleon transfer were taken, since in this reaction the
configurational purity of nuclear states is measured
through the spectroscopic factor. About 80% of the ma-
trix elements used here have been determined through

3Heusler and Brentano have extracted a set of particle-hole
matrix elements, from isobaric analog data, for Pb (Heusler
and Brehtano, 1973). The uncertainties in this procedure
caused us not to include their matrix elements in our survey.

such reactions. The remainder were attained from (a)
shell-model fits to a, region of the periodic table, (b) the
('He, f) reaction, which seems to have a certain amount
of configurational selectivity, and (c) in one case the
('He, p} reaction. A fair amount of information was ex-
cluded even where matrix elements are quoted in the
literature but, in the authors' view', some substantial
questions still exist. No cases were used where only
two members of a, (j,j,)z multiplet are known. In the
following are some of the more detailed considerations
regarding the experimental data.

1. The (1pu2)' »d (Ip», 1p,&, ) multiplets

These data were taken from the work of Cohen and
Kurath (1965). Their shell-model calculations fit the
data in the 1p shell remarkably well and have repeatedly
demonstrated their accuracy by predicting not only en-
ergies but matrix elements for electromagnetic transi-
tions and transfer reaction strengths. We included their
matrix elements labeled "(8—16}2BME "; the alternate
sets of matrix elements were not significantly different.

2. T&e (1d5~2)2 matrix eiements

Data on these are summarized in Table I for A. =18,
and in Table II for A =26 (which may be regarded as two
holes in a, complete Id5~, shell), and the comparison is
made in Table III.

In A =18 most of the data comes from Polsky eI; al.
(1969) and Wiza et al. (1966). The ' O(d, p)'80 experi-
ment was recently also reported (Li et aL, 1975) and
the results of that analysis are given. Some obvious
difficulties will be apparent. In particular the 0+ ma-
trix element has shifted because of an additional 0+

state with an appreciable spectroscopic factor at 5.329
MeV in "O. Considerable uncertainty exists in the 1+

strength: The one state with a clear 1 =2 transition is
too weak to exhaust the sum rule limit, and two other
known 1+ states have not been analyzed in the one rele-
vant experiment (Polsky et a/. , 1969). There is like-
wise an uncertainty about the inclusion of a known 4+

state at V. 114 MeV in "0, which Li et al. (1975) assign
as belonging to the (Id, ~, Id», ) configuration. Clearly,
polarization measurements would be of some help here.
The uncertainty in the E = 2 spectroscopic factors for the
0.937 MeV and 3.357-MeV 3' states likewise presents
an uncertainty in the 3+ matrix elements.

For A =26 somewhat analogous uncertainties exist.
The T =1 matrix elements are apparently fairly well
known from the ~7AI(d, SHe)'SMg data of Wagner et al.
(1969). The only uncertainty is in the V.25-MeV state.
For the T =0 transition, the '7AI(p, d)'6Al data of Kroon
et al. (1973) were used. In both cases the renormalized
spectroscopic factors are split among the different J
states very nearly in proportion to (2Z&+ 1}, indicating
reasonable consistency.

The comparison of ihe two sets of matrix elements is
made in Table III. The level of agreement is gratifying.
The disagreement is worst for the 1+ state, w'here the
A =18 data are especially shaky. For the 0+ state the
level of agreement w'as spoiled by the recent work of Li
et al. (1975). All one can say is that since these transi-
tions are weak (because of the statistical factor) the un-
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TABLE I. (1d~g2) matrix elements in MeV from 80—BF.

17O(3He d)18F a

J (T=0)

TABLE II. (1d5~2) matrix elements in MeV from Mg —6Al.

27Al (d 3He) 26Mg a

C2s

0.0
0.937
1.122
1.701
3.357
3.724
4.119

1+
3'
5+
1'
3+
1'
3'

Matrix elements from centroids
e G I

0.37
&0.42
1.83
(o.o2) '

((0.06) d

(&0.01)
0.88

Sum rule

0.0
1.809
2.938
3.588
4.320
4.835
5.474
6.127
7.25

Q
+

2'
2+
Q

+

4+
2'
4+
2+
(4') b

27Al(P d)26Al c

0.27
,

' 0.92
0.19
0.01
1.95
0.36
0.32
0.14
0.34

Q
+

1'
2+
3'
4+
5+

2 ~ 77
-5.O1 (-4.19) '
—1.06
—1.69 (—0.89) g

—0.36 (0.08)
—3.89

0.34
O.37 (O.49) '
1.53
1.67 3:

2.89 (3.13)
1.83

0.33
0.50
1.67
1.17
3.00
1.83

0.0
1.058
1.851
2.365
2.545
3.405

5+
1'
1'
3+
3'
5 +

1.37
0.33
0.07
0.39
0.39
0.27

These data are from Polsky et al. (1969), the excitation en-
ergies from Ajzenberg-Selove (1972).

For stripping G:—I.J~]C S/[J;], where J; and Jf are the initial
and final spins, C is the isospin Clebsch, and S is the spectro-
scopic factor (see Macfarlane and French, 1960 and Schiffer,
1969).

Spectroscopic factors normalized to this value.
Limits on l =2 spectroscopic factors were based on states

whose spins are now known, on the basis of Fig. 1 of Polsky
et al. (1969), which shows a 10 spectrum. These numbers
were used only to set limits on the centroids.

T =1 matrix elements from Li (1975) in O with Ep =3 ~ 904
MeV. T =0 matrix elements are from 8F with E'p ——5.008 MeV.

Value obtained by assuming that the higher 1 states were
populated with the maximum spectroscopic factors allowed by
the experimental limits.

~ The first value is computed assuming that the G.for the
0.937-M&V state is 0.29, the value needed to bring the sum up
to the limit of 1.17. The value in parentheses corresponds to
the 4.119-MeV state being the (1d&&2) 3+ state.

"Value obtained by assuming that the l =2 spectroscopic
factor for the 7.114-MeV 4+ state in 0 is due to a 1d5&2 trans-
fer.

' Values are for the (d,P) reaction for T =1 states and the
(3He, d) reaction for T =0 ones. The (d,P) spectroscopic fac-
tors are renormalized so that the overall sum of them is equal
to 5.0, the sum rule limit.

G c G (sum rule limit)

0 +

1'
2+
3+
4+
5 +

—3.65
—2.92
—0.71
—1.66

O.81 (1.17) f
—3.56

0.31
0.50
1.79
0.97
2.52 (2.90)
2.04

0.33
0.50
1 ~ 67
1.17
3.00
1.83

~ Spectroscopic factors from Wagner et al. (1969). The en-
ergies are from Endt and Vander Leun (1973).

The spin assignment of the 7.25 state is not known. Per-
haps it may be taken as 4 because it decays by gamma emis-
sion to 2 and 3+ states and not to 0 states.

Spectroscopic factors from Kroon et al. (1973) and energies
from Endt and Van der Leun (1973).

d Energies computed from Eq. (I.1) with ~p ——3.315 MeV for
6Mg and 4.119 MeV for 6Al. The 6Mg matrix elements are

corrected for Coulomb interaction; they are actually
&J"' —=Ez —E'~'" . &J "' was calculated with oscillator wave
functions (&=0.293 fm ); the values were 0.461, 0.389, 0.362
MeV for J=Q, 2, and 4, respectively.

For pickup reactions G:—C S. The G'values were nor-
malized separately by requiring g G for T = 1 to be equal to
5, and 3.5 for the (P,d) reaction to T =0 states.

The values in parentheses include the 7.25-MeV state.

certainties are large. There is also some, less serious,
discrepancy in the 4+ energies where some doubts exist
in assignments. Table III gives some recommended
values which are the weighted averages of the above.

included for that reason. The details of Mairle's anal-
ysis are not reproduced here, and only the Pandya
transform of his results is included in the Appendix.
This multiplet was included with a very low weight in the
fitting procedure.

3. The (1p,q21d, ~2) matrix elements

These data have been taken from the "O(d, t) "0 and
"O(d, 'He)~'N data of Mairle (1972) (see also Mairle,
1974). In this, the /=1 transitions were analyzed, many
of them to states of undetermined spin. Making very
tentative assignments, with heavy reliance on shell-
model calculations for prediction of admixtures, Mairle
extracted the relevant particle-hole matrix elements.
These should be regarded with considerably more cau-
tion than other data used in this study. On the other
hand, it is the lar gest multiplet known for A&34 and is

4. The (1ds~2 ) matrix elements

The data on these matrix elements were taken from
Crozier (1972), where the data from "S(d,p)' S are
evaluated together with the "S('He, d) "Cl data of
Erskine et al. (1971). A comparison with other sources
of (Id3&2)a matrix elements is given in those papers.

5. The (1d&~2 1f7g2 ) matrix elements

These were taken from the same references as the
(Id, &,)' matrix elements. It is interesting to note that
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more recently the "Cl results have been shown to be
consistent with those for A =38 (Fink and Schiffer,
1974). Even in oCR, where the "K('He, d)'cCR data
(Erskine, 1966; Seth et a/. , 1967; Forster et a/. , 1970)
have been inconsistent with the A = 34 results (Crozier,
1972), recent work on 'Ca(d, /}'oCR (Cline et a/. , 1974;
Betts e/ Q/. , 1974) has shown additional stR'tes which
tend to reduce the discrepancies. Although the ' Ca odd-
parity states are widely quoted as "the" (1d, /, 1f, /, ) par-
ticle-hole states, the strengths of the transfer reactions
indicate that the configurations are fragmented and that
substantial fractions of the strength are still unidentified
(e.g. , the 3, T =0 strength&.

6. The {'lf7/2)2 matrix elements

There had been some controversy regarding the ap-
propriate values to use for this case. Data have been
available for some time for two nucleons outside ~'Ca
in "Ca and "Sc and the lowest states of each spin had
been taken as representing the (1f,&2)' multiplet
(Schwartz, e/ a/. 1967). But the values disagreed with
those derived from the spectrum of "Sc, which may be
regarded as a hole in a complete (lf,/2)8 neutron shell
coupled to a single 1f,/2 proton (Ohnuma 8/ a/. , 1970).
Differences in the matrix elements are apparent as
shown in Table IV, and arguments can be made in favor
of "Sc on the basis of "Ca being a better closed core
than Ca, and on the basis of a comparison of the aver-
age interaction in T = 0 and T = 1 states with the values
derived from the ground-state masses of Ca, 'Ca,
and "Ni (Moinester et a/. , 1969). The significance of
the differences between "Sc and "Scwas also analyzed
by West and Koltun {1969).

Unfortunately neither spectrum was accessible to
single-nucleon transfer reactions. Recently, however,
with the advent of a 'Ca target, the A. = 42 spectra have
been reexamined (Hansen e/ a/. , 1975; Void et a/. , 1974)
and it was found that much of the "CR(d, p)"Ca and
~'Ca(8He, d)~2SC /= 3 strength was fragmented into higher
states. Using the centroids of energies in A. = 42, the
agreement with the Sc data 3.s much lmprovedq as may
be seen in Table IV. Since the& = 42 information be-
came available only recently, the matrix elements from
A. = 48 were used in the fitting procedure. The differ-
ences are not sufficient to alter the results in any case,
and uncertainties in the A. = 42 centroids are likely to be
of the same order as the differences between A. = 42 and
A. = 48 matrix elements.

8. The {1g9&2 2d»2 ) multiplet

These matrix elements are taken as they appear in
Farm e/ a/. (1973). In that work the n-p matrix ele-
ments, from the particle-particle spectrum of "Nb
(Ball and Cates, 1967; Zisman and Harvey, 1972;
Bhatia e/ a/. , 1971), Rnd confirmed by the particle-hole
spectrum of ~Nb (Comfort e/ a/. , 1970) as shown in
Table V, is combined with the T= 1 (neutron-particle—
neutron-hole) spectrum obtained from the
"Zr('He, o. ) QoZr reaction. The two n-p spectra are com-
pared in particle-hole form; the agreement is almost
perfect except for the 2+ state, where one might expect
some admixtures. This difference is distributed among
all J states of the particle-particle spectrum by the
Pandya transformation.

TABLE IV. (1fYg2) matrix elements in MeV.

2Sc 2CR 26c c ~{48Sc
Closed shell

masses

0 +

2'
4+
6+

f
@even

(—3.18)
(-1.59)
(—0.36)
( o.o6)
—0.49

—2.59
—0.94
—p.26
+0.08
—0.31

—2.89
—1.10
—0.26
+0.07
—0.35

2 0 13
—0.81
+0.06
+0.28
—0.0 7 —0.25

42Sc a "Sc' (48Sc) d
Closed shell

masses e

1+

.
3'
5 +

7'
f

(—2.56)
(—1.68)
(—1.66)
(-2.56)

2 011

—1.68
—0.82
—0.80
—2.56
—1 61

2 % 11
—1.04
—0.87
—2.28
—1.59

7. The {1f7&22p3/2) matrix elements

These data come from the low-lying levels of "Sc
which were determined primarily from the
"Ca('He, P)'oSC reaction (Ohnuma e/ a/. , 1969). Since
this reaction does not distinguish configurations, the
principal justification of this identification is the wide
separation between the ground state and first-excited
state, in both 48CR and ~'Sc. Since the proton is 1f,/2
and the neutron 2P,&„ this is an n-p multiplet. The ex-
pected purity of the configuration receives some support
from, shell-model calculations, where the calculated
admixtures are -5% (Kuo, 1968).

&8F 26Al 26Mg b
Recommended

value

p +

1+
2'
3'
4+
5+

—2.77
—5.01 (—4.19)
—1.06
—1.69 (—0.9)
—0.36 (0.08)
—3.89

—3.65
—2.92
-0 ~ 71
-1.66
+0.81 (1.17)
—3.56

3 02

3 % 3
—0.9
—1 6
+0.3

307

From Table I.
From Table II.

TABLE III. Summary of (1d5~2) matrix elements in MeV. Values obtained by assuming that single states in 4 Sc rep-
resent the (1f&~2) configuration, as was done by Schwartz
et al. (1967). The more recent energies Endt and Van der Leun
(1973) were used; Eo ——3.175 MeV.

"Hansen et al. (1975). E'0=3.110 MeV.
c Vo].d et al. (1974).
The Pandya transform of the (v1f7&&) (71&f&y2) spectrum from.

single states in 8Sc. The energies and spins of Ohnuma et al.
(1970) were used, E0=-0.178 MeV.

Values computed from the ground-state masses of 40Ca,
~Ca, Sc, Ca, and 56Ni as discussed in Moinester et al.
(1969).

X'~en«d are the (2J+1)-weighted average matrix elements
for 4= even, odd (or T = 1 and Ol, respectively.
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TABLE V. Comparison of the (1g&&224&&2) n—p multiplets in
MeV derived from ~2Mb and 96Nb.

2
(geiZ)

2'
3+
4+
5'
6+
7'

0.136
0.286
0.480
0.357
0.500
0.0

0.630
0.180
0.142
0.043
0.0
0.233

0.987
0.418
0.388
0.268
0.232
0.451

@~(92Nb) a ~~(96Nb) b P P-h(82~~ c ~P-h(96Nb) d

0.866
0.416
0.378
0.279
0.236
0.469

( 2+)

!y

&o
gg

0.691
-0.401

—0.236
+0.400 I.O

Energies from Kocher and Horen (1,972); see also Sheline
et al. (1,964).

b Energies from Medsker (1972).
Pandya transform of the first column with Eo subtracted.
The excitation energies of the second column, with Ep sub-

tracted.
Computed from the ground-state binding energies of ~ Zr,

"Nb, and "Nb.
~ Computed from the ground-state binding energies of ~5Zr,

"Nb, and "Nb.
g The (2J+1)-weighted centroid of the excitation energies

with &o subtracted.
7+
6+

(2 , I+)
Q+

6+, 7+
8+

9. The {1g9&2}' multipiet
These data are taken from "Nb, where the relevant

states were observed in a very clear pattern in the
~Zr('He, t)~Nb reaction (Bearse et al. , 1969). This
reaction does seem to have a special selectivity for
particle-hole excitations, as was already discussed in
the analogous case of "Sc. Some worries exist as the
ground state of Zr is not a good closed proton shell.
Admixtures of (2P, &2) '(Ig9t2) (-40%) and (2P, t2) (1g9t2)
( 20lo) seem to be required (Courtney and Fortune,
1972). This may imply some admixtures of, for in-
stance, (rig,&,)'(vlg, t,)

' in "Nb and (n'1g,&,
)' in the

single-particle energy in "Nb. That such admixtures
do not seem to alter the results significantly is sup-
ported from two sources.

The first is an experimental study of "Y (Comfort
and Schiffer, 1971), a nucleus which should be the same
as "Nb but without the troublesome proton pair; indeed
Z = 38 seems a better closed shell than Z = 40. This
nucleus has the additional experimental advantage that
it is accessible to proton transfer reactions from the
stable (vlg@,) ' ground state of "Sr. Both the ('He, d)
and (o. , t) reactions were studied from this target togeth-
er with the "Sr('He, t)"Y reaction. Unfortunately, the
accidental proximity of several levels and the fragmen-
tation of others makes this a less simple case to inter-
pret than Nb, but the results are certainly consistent,
as may be seen from Fig. 1. The second confirmation
comes from shell-model calculations in this vicinity.
The results of Serduke et al. (1975) indicate that the
matrix elements obtained in a least-squares fit are in-
deed close to the ones we obtained directly from "Nb.

10. The (vr1h9t2v{3p3)2, 2fst2, 2'/g 1/y3/z)
' }np-

multiplets
These are all from "'Bi, obtained from neutron pick-

up reactions on 'o'Bi. The first two multiplets were

88

FIG. 1. Comparison of data on the (1g&~2) matrix elements
from Nb with partial data from Y (Comfort and Schiffer,
1971).

first identified by Erskine (1964). All four were seen
by Alford et al. (1968 and 1971) and Crawley et at.
(1973). The spin assignments for many of the lower
states have been confirmed by gamma-ray measure-
ments. The level of agreement among the measure-
ments is good; Crawley et at. (1973) assigns some of
the members of the (Ih,&,li»&, ) multiplet differently from
the earlier work. Vfe adopt the later measurements.
The transfer reactions indicate all these multiplets to
be remarkably pure (& 95% in terms of. the correspond-
ing states in "'Pb) and free of admixtures. The energies
corresponding to these multiplets are listed in Table VI.

11. The {7t1h9&2v2g~&2) n pmuitipiet—
This multiplet has been known for some time (Erskine

et at. , 1962) from the "'Bi(d, p)"'Bi reaction. The
multiplet appears to be pure and subsequent measure-
ments have left the original assignments unchanged.

12. The {1h9&,1i»&. ) and {1h9&22f,t2)T=1 multiplets

These data come from the "'Bi('He, d)"'Po and
"'Bi(o., t)"'Po reactions, in a regrettably unpublished
experiment (Lanford et at. , 1971). In independent gamma-
ray experiments, Fant (1971), apparently unaware of
Lanford's work, confirmed many of his assignments.
The "'Bi(o., t)" Po reaction has been studied by Tickle
and Bardwick (1971) with lower resolution; no unique
assignments could be made though the results are con-
sistent with Lanford s-

Rev. Mod. Phys. , Vol. 48, No. 2, Part l, April 1976
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Since the two T = 1 multiplets in "'Po involve two
protons, the Coulomb interaction between these has to
be subtracted. This ip done in Table VII. These g = 1
matrix elements then may be combined with the n-p
matrix elements of 'o Bi to yield the T = 0 matrix ele-
ments as well.

13. The (1h9t2)2 and (2g9/Q)2 T= I multiplets

These are known quite well from the low-lying spectra
of "OPo (Lanford et al. , 1971) and "OPb (Bjerregaard
et al. , 1968). The difficulty is that the 0+ ground states
contain large admixtures of other configurations because
of pairing correlations and so their energies are signif-
icantly lower than those of pure (2g, &,)', or (lh, &,)', states.
In fact, the "OPb ground state is used as a prototype of

TABLE VI. Multiplets in MeV derived from 0 Bi.

the pairing-vibration model (Bohr, 1968; Nathan, 1972).
In principle, transfer reactions could identify the

other relevant components of this configuration scat-
tered among the 0' states at higher excitation, but this
does not work in practice since the one-nucleon trans-
fer statistical factor insures that only -2%%uq of the sin-
gle-particle strength is contained in the 0' states in the
first place, and the relevant higher 0 states have not
so far been identified. The 2+ state may likewise suffer
from collective admixtures, but the higher spin mem-
bers of these multiplets are likely to be increasingly pure.
The results are given in Table VIII. For '"Pb, no sin-
gle-neutron transfer reaction is practical; "'Po was
studied by proton stripping on "'Bi. These matrix ele-
ments were included in the fitting procedure with sub-
stantially reduced weight.

14. Multiplets based on {v3p, &2 mj)

Configuration

1AQ/23Pj / p

1~9/23+3/2

E b

—0.085

0.812

0.063
0.000

1.070
0.960
0.887
1.096

EH-P d
J

0.148
0.085

0.258
0.148
0.075
0.284

En-P e
J

—0.079
-0.142

-0.304
—0'.119
—0.100
-0.222

Doublets with such configurations have been identified
in "'Bi by Alford et al. (1971) through the 'O'Pb('He, d)
and (n, t)"'Bi reactions. These doublets were included
with a very low weight of 0.1; thus they play effectively
no role in the fitting procedure. They are included in
Table VI.

1@9/22'/2

0/2 f7/2

0.484

2.255

2 0.926
3+ 0.634
4' O. 6O3
5+ 0.629
6+ 0.510
7 0.650

1+ 2.892
2 2.508
3+ 2.464
4+ 2.391
5 2.391
6+ 2.415
7 2.346
8+ 2.668

0.442
0.1 50
0.119
0.145
0.026
0.166

0.637
0.253
0.209
0.136
0.136
0.1 60
0.091
0.413

—0.264
-0.063
-0.060
—0.140
—0.043
—0.291

—0.670
—0.429
-0.208
-0.210
—0.116
—0.184
-0.058
—0.340

1@9/21~&3/ ~ 1.548 2
3

5
6
7
8
9

10

2.901
1.925
1.844
1.708
1.721
1.721
1.664
1.792
1.571
2.434

1.353
0.377
0.296
0.160
0.173
0.173
0.116
0.244
0.023
0.886

—1.563
0.727
0.367

-0.312
-O.147
—0.229
—0.080
-0.279
-0.052
-0.678

2'/23~1/2

13/23~1/2

0.811

1.523

2.737

3+ 0.939
4+ 1.038

6 1.630
7 1.673

2+ 2.945
3+ 2.890

0.128
0.227

0.107
0.150

0.208
0.153

-0.239
-0.140

-0.1 53
-0.110

-O.144
—0.199

From Alford et N. (1971) and Crawley et cd. (1973).
From the binding energies of the relevant states in Pb

and '"Bi.
Energies are for the low-lying states Lewis (1971), other-

wise from Alford or Crawley. In the few cases where the latter
two disagree in assignments, the latter has been followed.

Particle-hole energies.
Pandya transform of the previous column.

15. Other multiplets in ~'0 Bi

The (lh,~,li»&, ) multiplet was identified via the (n, y)
reaction (Motz et al. , 1971) though the (n, y) reaction
has no particular selectivity for such a configuration.
The calculations of Kim and Rasmussen (1963) were
used as a guide in this identification. A study of the
20'Bi(d, P) "OBi and ~'Bi(n, 'He)"'Bi reactions was car-
ried out by Cline et al. (1972), who identified a number
of l = 6 (1h,&,li»&,) and l = 7 (1k&,lj»t, ) transitions as
well as the l = 4 (1h&,2g,t,) and l = 2 (lh, t,3d,t,) and
(lh,~,3d,l,) levels, with some admixing between the l = 4
and l = 2 transitions. To assign spine, Cline et al. (1972)had
to assume a riumber of unresolved doublets, and they
also seem to have relied to some extent on the shell-
model calculations of Kim and Rasmussen (1963) and
Kuo and Herling (1971). These assignments seem more
tentative than most we have accepted in the present
study. There is little correspondence between the as-
signments of Motz et al. (1971) and Cline et al. (1972);
these multiplets are not included here.

8 General features in the experimental matrix
elements

Several comparisons. of the experimental matrix ele-
ments seem worthwhile before embarking on detailed
analyses. To gain a qualitative impression of spectra
we adopt plots of matrix elements as a function of Oy2,

the classical angle of orientation between the two angu-
lar momentum vectors j, and j2 coupled to t which gives
a measure of the overlap of their orbital wavefunctions.
8» is defined by

(n. 2)

In Figs. 2 and 3 we see the data plotted for which
j,= j,. The matrix elements were divided by the average

Rev. Mod. Phys. , Vol. 48, No. 2, Part 1, April 'l976
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TABLE VII. The (1~9/22fv/2} and (ihe/21iis/2) multiplets in
MeV,

b ECoul ET=f En-p e ET=0C cl

J J' J J

1I e/2»~/2

1 2.284
(-2.400)

0.41 (0.3) 0.243 -0.032 —0.670 —1.308

-2.4oo g

(2.284}
(o.5) o.23o 0.097 —0.429 —0.955

2.409 0.58 (0.7) 0.216

2.383 1.04 (0.9) 0.210

2.403 1.46 (1.1) 0.203

2.325 1..33 (1.3) 0.204

2.438 1.46 (1.5) 0.203

0.120 —0.208 —0.536

0.100 -0.210 —0.520

0.127 —0.116 —0.359

0.048 —0.184 -0.416

0.162 —0.0 58 —0.278

2.188 1.72 (1.7) 0.230 —0.115 —0.340 —0.565

9 / 21 ~l3/ 2

2.849 ~

(3.oio)

3.oio j

(2.849)

(0.5) 0.248

(o.v) o.23o

—0.182
(—o.o2o)

—0.002
(-o.163)

—1.563 -2.944

—0.727 —1.452

3.072

3.O2V ~

(2.9v)

0.7 (0.9) 0.215

(k) (1.1) 0.209

0.075 —0.367 —0.809

0.036
(—0.024)

—0.312 —0.660

9 I

io- '

11

3.123

3.013

3.138

3.000

3.182

2.849

1.2 ' (1.3)

3.1. (1.5)

1.7 (1.7)

0.200

0.198

0.194

1.5 (1.9) 0.199

2.3 (2.1) o.199

0.140 —0.147 —0.433

0.036 —0.229 —0.494

0.162 —0.080 —0.322

0.019 —0.279 —0.577

0.201 —0.052 —0.305

3.0 (2.3) 0.233 —0.166 —0.678 —1.190

~ From Lanford eI, A. (1971).
" G —= [(2Jf+ 1)/(24;+ 1)]~2S. The values represent those of

Lanford et at. (i97i), normalized such that QzGz is equal to
the sum rule limit. For the ih&/22f&/2 multiplet, both ( He, d}
and (G. , t) results are available, and the average was used. The
expected value of G for each value of & is given in parentheses.

Coulomb matrix elements were calculated with oscillator
wave functions using &=0.1578 fxn

EJ =EJ—Eo —EJ', where Eo ——2.073 and 2.782 MeV, re-
spectively, for the iraq/22f)/2 and ih&/21i~3/2 multiplets as cal-
culated from the binding energies of the appropriate state in
209 Bi

Pandya transform of the particle-hole multiplets of Table
VIII.

Computed from EJP= 2(EJ + EJ ).
~ The excess strength in G under the known 4 and 5+ states

at 2.383 and 2.409 MeV (0.5) is the correct amount for the
missing 2+ state. The possibility that the 1+ and 2+ assign-
ments are interchanged still cannot be ruled out, as is in-
dic ated.

"These states are only partially resolved in the transfer re-
actions.

' Sfates and spins identified in gamma-ray measurements
(Fant, 19V1).

' The 2 and 3 assignments are based on excess strength in
G observed under the 11 state (0.7) and the 9,7, 5 group
(&1.2), at 3.000, 3.016, 3.027 MeV. The 2 and 3 states could
be inverted. Two 5 states were identified by Fant (1971) at
2.910 and 3.026 MeV. On the basis of population of these states
in electron capture he suggests that the former is primarily the

interaction energy Z =g, [ZjE~/Q~[ rajas th'is provides
a natural scaling to account for the different size of the
matrix elements. The behavior we see is characteris-
tic of a short-range attractive force where for 1'= 0 the
matrix elements become large when 0» approaches 0
and 180 (J has its maximum and minimum value). In

these limits the orbits are nearly coplanar, and thus
the overlap of the orbits is maximal. For the T = 1 ma-
trix elements in Fig. 3 this is true toward 0=180
(J = 0') but not for the high spin states toward low 8.
The reason for this is that for high J, T =1 implies ap-
proximate spatial-antisymmetry; even though the orbits
become coplanar, the particles may be thought of as
rotating in the same sense but out of phase with each
other, the separation between them is always large,
and thus the interaction matrix element approaches
zero with a short-range force. For the 0' state the
rotation is of course in opposite directions; thus the
overlap is large. The j,= j, data are replotted in Fig. 4
multiplet by multiplet, for later comparison with cal-
culations.

The similarity in the behavior of the various multiplets
is indeed striking, considering that they span nuclei
from the 1p-shell where A. = 12 to A. = 90. The major
apparent discrepancy, -in Fig. 3 is in the relative energies
of the various 0' states. Closer inspection reveals
that these are, in fact, ordered by j. The (1g9t,),'+ ma-
trix element in Fig. 3 is the largest and the (ld@,),'+ and

TABLE VIII. The (ihg/2) and (2'/2) T =1 matrix elements in
MeV from A = 210.

(2g~/2)
bJ

(1@
Ecoul

0 +

2'
4+
6 +

8

0.0
0.795
1.091
1.194
1 ~ 273

—1.244
-o.449
—0.153
—0.050

0.029

0.0
1.180
1.426
1.472
1.552

0.268
0.230
0.207
0.196
0.195

—1.442
—0.224

0.045
0.102
0.183

~ Energies and tentative spin and configuration assignments
from Lewis (1971).

With respect to Eo ——1.244 MeV.
Energies from Lewis (1971). Configuration and spin assign-

ments from Tickle and Bardwick (1971) and Lanford eI al.
(19V1}.

Two-body Coulomb energies calculated with oscillator wave
functions using v= 0.157 86 fm

E ~ Eco l E with E =1.174 MeV.

TABLE VII (continued).

5 excited state I3,198 MeV of Pb coupled to the ground-state
proton configuration of Po (1A&/2)oj But Lanford sees a state
at this energy with G =0.5, — suggesting a strong mixing between
these 5 levels. The centroid of the two energies adopted here
gives a 58-keV lower value for the 5 excitation energy (2.969
MeV) than is obtained with the Lanford —Fant assignment for
the 3.026-MeV state.

~The 5, 6, and 8 states are known from gamma-ray work.
The split of spectroscopic strength between 6 and 8 states is
based on partially resolved lines in the (~, t) spectrum.

The 7 and 9 states are known from gamma-ray work.
The split of spectroscopic strength between 7 and 9 states is
based on partially resolved lines in the (&,t) spectrum.
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0

j =j, J=ODD, T=O

ILLI

LLI

3/2
0 I d5/2
+ l ~7/2

I

90
l2

I IG. 2. Comparison of data from various multiplets vrith j& =j2
and T =0. The values of the matrix elements are divided by
E=gz[J]E—~/Q z[J] to display the similarities in the J depen-
dence (or 0 dependence) of the various multiplets.

I
l

I

j,=j, J= EVEN, T= l

h Ip
3/2

3/2

5/2
+ l f7/2
" lge/2

(1p,~,)02~ the smallest. This is precisely the behavior to
be expected from a short-range force; the higher the j
value, the better defined the orbital planes and the
better the overlap of the wave functions when coupled to
0+.

Next we consider cases where j,&j,. The six such
multiplets, in which matrix elements for all J values in
both isospins are available, are shown in Figs. 5 and 6.
Though there are some similarities, the pattern seems
to be changing with increasing atomic weight. The in-
verted U shape of the T = 0 matrix elements persists in
general, but the T = 1 matrix elements vary consider-
ably, except in that their centroids are always repulsive
(positive) and the matrix elements for the minimum and
maximum J' values are generally attractive (negative).
Qualitatively this pattern indicates a T = 1 effective in-
teraction that on the average is slightly repulsive but
has a short-range attractive component which wins out
over the repulsive component when the overlap between
the two wave functions is good. The T = 1, j,= j, orbits
also show this trend; the high-J matrix elements are
always repulsive but an attractive interaction wins out
for the 2+ states and completely dominates the 0' ones.
In general, the average interaction in T = 1 is weaker
than in T = 0; the difference becomes more pronounced
in the heavy nuclei. The data for multiplets where only
the isospin-averaged n-p matrix elements are known,
are plotted in Fig. 7.

1. The trends in the average (monopo]e) interaction

To study the average size of matrix elements one may
compute Z for the various multiplets. The trend is for
the matrix elements to become smaller with increasing
A, which, of course, is to be expected because the size
of the orbits becomes larger while the interaction has
constant range. The orbit size depends on three factors,
the radius of the potential well, the binding of the orbit,
and the quantum numbers of the orbit. In an oscillator
potential the mean-square radius of an orbit is given by
(I ') = v '[N+ 3/2], hwer Ne= 2(n —1)+ f. More realistic
finite wells show approximately the same dependence.
The orbits we are concerned with are valence orbits so
their binding energy is about constant and the radius of
thy relevant nuclei changes relatively slowly. In Fig. 8,
ihe average T = 0 energies are plotted as a function of

. the sum N, + N, for the two orbits; this sum approxi-
mately increases with increasing A. . The points fall on
a remarkably smooth curve with the points for j,= j,
and jj &j2 mu ltiplets exhibiting the sarne trend.

A similar plot for the T= I data in Fig. 9 shows a
different smooth behavior, but with a definite difference
between the identical-orbit and the nonidentica1-orbit
multiplets. The T = 1 trend is consistent with two com-
peting ranges: for light nuclei the short;-range attrac-
tion wins out; this is overcome by the longer-range re-
pulsion in medium-weight nuclei, but the magnitude of
the repulsion decreases slowly as the orbits become
even larger.

I

l80
l2

I

60 2. Multipole decompositions

FIG. 3. Comparison of data from various multiplets with j»
=j2 and T =1. The values of the matrix elements are divided
by E = Qz[i]Ez@z[J] to display the similarities in the J de-
pendence (or 0 dependence) of the various multiplets.

To study the more complex aspects of the shape of the
spectra one can perform a multipole decomposition
following Racah (1942). The notation of Moinester et al.
(1969) will be used here.

The multipole coefficients
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FIG. 4. I'Iots of the various j& =j2 multiplets. The data (crosses) are compared to calculations (circles for T =0 and squares
for T = 1) with the 12-parameter interaction of Table XVII ()'2 ——2.0 fm). The solid points for the (lgy2)2 multiplet represent cal-
culations with the purely central five-parameter interaction of Table XIII.

( 1)i).+ J2
[i,i.]

~ P (-1) [J]l((~,~.~,~.;«)&,,,(~,~,)

may first be defined separately in the two isospin states.
Alternatively one can define multipole coefficients with
a Racah coefficient that takes isospin explicitly into
account. The resulting coefficients, a«, are simply
related to the y~~ by

~Ko= -'(yK. +»K)) ~d ~K. = 2(yK, -yK.) .

Thus Ag 0 and a~, may be called the iso scalar and iso-
vector multipole coefficients. For the n-p multiplets

1
yK., = —.(yK. + yK.»

and for the particle-hole multiplets
(P-h) (P-P) ( 1)K + ).

JC flp E, lip

yg(-h) )
( y(P-P) +3y(P-P) )( 1)K+)

yg(-h) ——' (y (p-p) + y(p-p) ) ( 1)K + &

Several features of the multipole coefficients should be

noted. The rate of falloff of the even coefficients with
increasing K is a measure of the range of the interac-
tion. The longer the range the larger the monopole co-
efficient, compared to the higher multipoles, while
for a delta function interaction all coefficients contri-
bute with yK-[K] '~'. The odd coefficients (without
isospin) are a direct measure of the spin dependence of
the interaction.

The multipole coefficients for the multiplets with more
thag. two matrix elements in each isospin are given in
Tables IX and X. In general, their detailed behavior has
not been especially helpful, except in providing qualita-
tive insights. One such insight is illustrated in Fig. 10
where the isospin dependence of the interaction is
plotted in terms of the even isovector coefficients for
the four multiplets in which j,&j, and both isospin states
are known. One should note that for the lighter nuclei
the isovector monopole coefficient completely domin-
ates, while in the Pb region the higher even-K isovector
coefficients also take on finite values, indicating a
finite range to the isospin dependent interaction.

Unfortunately the j,.= j, coefficients cannot be sub-
jected to the same multipole analysis a,s the ones where
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strengths used are given in Table XII.
The central terms in the interaction were assumed to

be sums of no more than two Yukawa shapes

U(x) = V,e "'/x, + V,e "'/x

where

x„x/r„=
with x, fixed at the one-pion-exchange value of 1.415 fm.
For the noncentral interactions only one Yukawa shape
was used with r, = 1.415 fm, giving a total of twelve
parameters. The quantity

P w,. (P v, E,, —
Z~)

j
was obtained where the various interactions j, with unit

strength, have matrix elements e, , for a given state i,
the experimental energies are E, , and the weights at-
tached to them are W, The strengths of the interactions
V,. corresponding to the minimum value of X' were ob-
tained by solving the 12&12 determinant from the con-
dition sy'/sV, . = 0.

A. Properties of calculated interactions

The nucleon-nucleon interaction may be separated
into two classes: central and noncentral. In Sec. III.B
we will describe the methods used in this work in com-
puting matrix elements to fit the experimental data;
in the present section we discuss some of the properties
of the computed matrix elements.

The central interaction can conveniently be decom-
posed into four parts and there are three equivalent
representations which are normally used in practice.
One such representation is the signer-Majorana-
Bartlett-Heisenberg representation:

0 2—
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O
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ILU I— 0—
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I I i I I i I

2 4 6 8 IO

N, +N

FIG. 8. The average interaction energy for T =0 plotted against
N&+N2, where N =—2n+L —2. The crosses represent j& ——j2, the
circles j& & j2 multiplets. -The line is drawn to show the average
trend.
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FIG. 9. The average interaction energy for T =1 plotted against
N& +N2. The symbols have the same meaning as in Fig. 8.
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TABLE IX. Multipole coefficients for T =0.

Multipl et 'A, o (MeV) &i,or ~0,0 +2,0/ 4,0 ~3,0/ +0,0 4,0/ &0,0

P3/2 5/ 2

(1d5/2)

1d3/21f ~/2

(1f7/2)

1g~ / 22d 5/ 2

(1' / 2)

1&S/2@'~/2

'9/2 13!2

—3.33

. —2.58

—2.00

—1.46

—0.90

-0.79

—0.50

—0.70

0.80

—0.08

—0.20

0.34

0.24

—0.19

—0.20

0.31

0.33

0.34

0.13

0.39

0.64

0.28

-0.07

—0.10

0.04

—0.01

—0.08

-0.10

0.10

0.15

0.41

These were extracted from the data using Eq. (II.3). Only
the first four coefficients are given. For j& =j2 multiplets, the
higher coefficients were constrained to zero.

—0.4—
CD

0.2—

~ I d l f (x I/4)

o ~ hgrz f5zz

9/2 I 5/2

V = Uyr)+ U (r)P"+ U (r)P'+ U„(r)P"P 0

+ U (r)P + U (r)PTE, (111.5)

where I' I' P and P are the singlet-odd,
singlet-even, triplet-odd, and triplet-even projection
operators, respectively.

In Eqs. (111.3)-(111.5) above, all the local potentials,
U„(r), may have different radial dependences and
strengths and their shapes may be more complicated
than a single Yukawa or Gaussian form.

As the experimental data separates naturally into the
T = 0 and 'E = 1 matrix elements, the triplet-singlet
even —odd representation in Eq. (III.5) will be used in
this paper. Only the singlet-even and triplet-odd com-
ponents will contribute to the T= 1 matrix elements,
while only the singlet-odd and triplet-even components
will contribute to the T = 0 matrix elements. The

TABLE X. Multipole coefficients for 2'= 1 (MeV).

Mul tipl et

1~3/21 d5/2

I d3 s 2&&7& 2

1'/21d5/2

1Izs/22f v/2

1z&3

72,i 73,1

1.20—0.03

0.040.32

0.17o.14

0.056 -0.051

-0.33

—0.53

-0.19

—0.062

0.12

—O. i. 2

—0.01 —0.02

—0.027 —0.046

0.043 —0.022 —0.085 —0.02 6 —0.060

These were extracted from the data using Eq. (II.3). Only
the first four coefficients are given.

where P" and I' are the space and spin exchange opera-
tors.

Another representation is the spin-isospin represen-
tation with

VcEN = Uo(r)+ U~(r)o, o,+ U, (r)7, 7',

+ U„(r)(o, ~ o,)(T., ~ 7,) .

The third representation, the triplet-singlet even-
odd representation, is given by

VcE„= U~o (r)PS + U~E (r)Ps~

-o.l
I s I

2 4
K

I i I

6 8

FIG. 10. Even isovector multipole coefficients for the j& & j2
data.

radial dependence of all U„(r)'s were taken to be sums
of no more than two Yukawa shapes. Any spin depen-
dence will be represented by the inequality between
the appropriate singlet and triplet components.

Of the possible types of noncentral interactions,
only two were considered here. They are the tensor
interaction

&( o, ~ r)(o, ~ r)- r'( o, ~ o,)
Tensor Tensor ~Ps 2

and the two-body spin-orbit interaction

V„= U„(r)L (111.7)

where S= —', ( o, + o,) and L is the relative orbital angular
momentum between the two interacting nucleons. Both
of these noncentral forces will act only in the spin-trip-
let state (S = 1) and consequently only the odd components
will contribute to the T =1 matrix elements, while only
the even components will contribute to the T =0 matrix
elements.

To demonstrate some of the features with a central
interaction, Fig. 11 shows the T = 0 and T = 1 matrix
elements for the (1h, &,2f,&,) and (1h~,2f,~,) multiplets
computed with a pure Wigner admixture (Uso = U~E
= UTo = UTE) and a single Yukawa interaction having
ranges of 0.1, 1.0, or 5.0 fm with v =0.1578 fm '. For
T =0, the matrix elements show' a strong curvature for
the shortest range which becomes less and less pro-
nounced as the range becomes comparable to the size
of the wave functions. The pattern is similar for the
two multiplets, throughout. For the T =1 matrix ele-
ments, on the other hand, the pattern is very different
for the two multiplets for a short-range interaction.
The matrix element with the minimum J is largest
(most negative) for the Ih~~, 2f,~, multjplet, while the
lh9~, 2f, ~~ matrix element is largest for the maximum
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tials and a signer interaction {Vs&pg)p& Vf ip]+1 gyp„V, dd). The lines are used to emphasize the trends in the matrix elements.

J. This lopsided behavior is still present with 1 fm
range in the interaction but has disappeared for 5 fm.
For this long range the matrix elements vary only
slightly with J, this variation is very similar in the two
multiplets, and the matrix elements are also nearly the
same in the two isospin states.

The difference in the two multiplets is also shown in
Fig. 12, where (@~~ —Q& v & )/(@ ~g & + @~' &) ls
plotted for r = 1.0 fm. In other words, this is the pat-
tern of the matrix elements for the spin-dependent part
of the interaction, and the pattern depends on whether
j,= E, + 2 and j2= 12+ ~ or j,= $, +2, and j2= $2+ 2.

An alternative way of expressing these patterns is in
terms of multipole coefficients, as is done in Fig. 13.
Here we see that ihe even coefficients decrease with
increasing jC. As the range becomes larger the higher
multipole coefficients decrease compared to the mono-
pole. The odd coefficients show a similar decrease with
the sign depending on the relative spin orientations in
the two orbits, and the decrease in magnitude with in-
creasing & is less pronounced.

Another feature is shown in Table XI. For the short-
range interaction the even components of the force
dominate. For a medium range (1.0 tm) interaction, the
triplet-odd matrix elements become larger but the
singlet-odd is still small compared to triplet-even.
Qnly at 5 fm does the singlet-odd become appreciable.
For a delta function force the odd pari of the interaction
has no contribution; for long-range the even and odd
contributions become equal and the singlet-triplet
ratio is 1:3.

CL
1

)LaJ

I-
4l
CL

lLI- ~
La]

I
I-
4l
49

LLJ

I h9/~ 2f5/
00—

0

/2 7/2

r = I.4 I 5 fm

0
l80

I

I 20
6IZ

I

60

FIG. 12. The difference between calculated singlet and triplet
matrix elements {isospin averaged) for the {1hg/22/'y/2) and
{&@a/22f5/2) multiplets emphasizing the sensitivity of the
j=l +s and j=l —s nature of the orbits to any spin dependence
in the interaction.

Finally the pattern of matrix elements for the
1k~,2f,i, and lh, &,2f,&, multiplets with noncentral inter-
actions is shown in Fig. 14. It is clear that the tensor
interaction can fit features of the data that the other
components cannot fit well; it can change the pattern of
low- J matrix elements more than that for states with
higher J. Whether the LS interactions can fit data not

Re@. Mod. Phys. , Vol. 48, No. 2, Part I, April 1976



J. P. Schiffer and W. W. True: Effective interaction between nucleons 205

l.0—

I

~ hs/2 2f7~2, 2f5~2
r= 0 I fm o

l.0 frn o a
5.0 fm

LaJ)
LLJ

II

0.5—

0 l

0

0.5—

k 5
I

2

C$

E3

X

I80

9/2 7/2
1 "9i2 ~'sr2

TENSGR L- S
0 X

0
Cl

C)
II

bc 0
0
0 FIG. 14. Calculated matrix elements with noncentral forces.

-0.5 I

5

FIG. 13. Multipole coefficients for the (1h&&22f&&2) and
(lh9/92f9qtl multiplets. The even coefficients are uz=—c.z „„/

Q il p where 2 nQ = ~Q(1~9/2+ 7/2) +~Q (1~ot22j5n~ - The odd coeffi-
(+&,sing/et +g, trip|et) ~ + ~g, singlet O'g, tflp/et fOr

odd E with a %Signer force. In both cases, the rate of decrease
in the coefficients with increasing E changes with the range of
the interaction.

fit by other terms in the interaction is not clear from
the qualitative features.

TABLE XI. Relative average strength of matrix elements with
a central force and no spin dependence (signer Inixture).

Z (fo)

Range
(fm)

Singlet
odd

Triplet
even

Singlet
even

Triplet
odd

O. l
1.0
5.0

0
25
36

The lo contribution to E„&from the various components of
the interaction are given. The values are for the i&9~22@'7j2
multiplet, but any large multiplet will give similar results.

B. Calculation of the matrix elements

The calculation of the two-body matrix elements was
done in a conventional manner. In the jj-coupling
scheme, the 1' =1 matrix elements were required to be
antisymmetric io space and spin, the T =0 matrix ele-
ments were required to be symmetric, while the neu-
tron-proton matrix elements had no explicit symmetry.

First, the jj-matrix elements were transformed to
the I.S-coupling scheme and the corresponding I S ma
trix elements were then evaluated. These I S matrix
elements were expanded in the usual manner in terms
of Slater integrals and an angular matrix element in-
volving Clebsch-Gordan and Racah coefficients (de-
Shalit and Talmi, 1963).

The necessary Slater integrals were evaluated by using
the Talmi coefficients and the Talmi integrals (Ford
and Konoplnskl~ 1958).

An alternative and equivalent method of evaluating the
Slater integrals is to transform to the relative and cen-
ter-of-mass coordinates using the Moshinsky brackets
(Moshinsky, 1958; 1959; Brody and Moshinsky, 1960;
Brody et a/. , 1960). The matrix element in the r elative
coordinate system can then be evaluated and combined
with the appropriate Moshinsky brackets to give the
desired Slater integral. This alternative approach was
used to evaluate the matrix element:s of the two-body
spin-orbit interaction given by Etl. III.V).

In all cases, the radial part of the single-particle wave
function was assumed to have a harmonic oscillator
shape. Harmonic-oscillator radial wave functions fall
off more rapidly at large & than do, for example, radial
wave functions in a%'oods-Saxon well. For short-range
potentials, this difference at large & is not important, as
most of the contributions to the matrix elements for
bound particles come from the ioterior region a,nd it is
believed that this choice of wave functions gives a fairly
good estimate of the radial part of the matrix element
(True ef al. , 1971).

C. Weighting of the matrix elements in the fitting,
procedure

The choice of the relative weight factors had to be
made with some caution. The point is that substantial
differences in magnitude exist among the matrix ele-
ments, as seen in Figs. 8 and 9, for instance. The en-
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ergies get smaller rapidly with increasing atomic
weight. There is also a substantial difference between
the T =0 and T =1 matrix elements, particularly around

Pb. While the T =0 and T =1 data could be fit inde-
pendently, since in the representation. used six terms in
the interaction contribute only to T =0 and six to T =1,
the n--p matrix elements force a correlation. It would
also have been meaningless to assign weights in the
usual fashion from experimental errors, since these
play a relatively minor role in the true uncertainties.
As another extreme it would have been equally meaning-
less to weight each matrix element by its size
(W,. ~1/E;), since this would have required that values
of E, that are zero or near zero be fit exactly no matter
what happens otherwise.

The procedure adopted was to take the average absolute
value of the matrix elements (~E~)„ for each (j,j,)r mul-
tiplet, in order to avoid difficulties in cases where
(E, )„,was near zero, and use W, = ((~E,.~)„„) '. The
weights g, were reduced below this value for matrix ele-
ments that were judged to be less well determined than
others. The weights were also reduced for n-p multi-
plets to minimize the influence that the large T =0 con-
tributions would have on the components of the T =1 in-
teraction. The values of the w'eights used are given in
Table XII.

The total contribution to y2 of the T = 0 and T =1 ma-
trix elements should thus be roughly the same for the

TABLE XII. Oscillator constants and assignment of weights for
the least-squares procedure. Unless otherwise indicated, the
same weighting W; was used for both the T =0 and T =1 matrix
elements.

same level of fit in the relative magnitudes of matrix
elements. The contribution to y2 from the n-p data
should be smaller. To repeat, the increased weight
given to the T =1 matrix elements is not an expression
of their greater accuracy, but is a device to allow them
to balance the influence of the much larger T =0 matrix
elements which would dominate even the T =1 terms in
the interaction by way of the correlation introduced in
fitting the n —p data.

D. The need for various components in the interaction

The apparent need for two ranges in the T =1 matrix
elements has been discussed earlier. To explore this
need as well as the need for noncentral forces system-
atically, the least-squares procedures were carried out
first with only one term in the interaction for each iso-
spin, finding the ones that gave the lowest y2, then in-
troducing a second term finding the one that improved
y2 most, etc. , until all 12 components were included. A

typical set of results from such calculations is given in
Table XIII for &, = 1.415 and r, = 2.0 fm.

The combination of two ranges listed in the table needs
some explanation. It was found, not unexpectedly, that
the strength of the two components V, and V, correspond-
ing to Yukawa potentials with ranges &, and &„ were
strongly correlated. That is to say, the values of V, and

V, fluctuate rather strongly with relatively minor chang-
es in the other constraints. Possibly a more useful way
of stating the results is in a combination of the param-
eters where this correlation is removed. This was ap-
proximately accomplished by defining

Confi gur ation

(1P3/2) (1P3/21 pi /2)

(id5/ p)

(id5/~1 p3/2)

(id3/~)'

(id' / ~if7/ &)

(ify/2)

(if7/22P3/2)

T=0, 1 0.37

0.293T=O, 1

T=0, 1
T = 0 0.283
T=i
T=0

0.245
n—p

0.1
0.2 '
0.05

0.3
0.2
0.6
0.3
0.5
0.2

0,3

0.4
0.01

0.6
0.4
0.3
0.5
0.5
0.1

Level of
& (fm ) TV; confidence x1

UB -=VB
X1

2—A
X2

(m. s)

V„=V, +~V„V =-~V, (111.9)

where n is calculated in such a way that the average ma-
trix element of UB over all the states calculated here is
zero (E' ' =0). In other words o.= Qs"'/Qe"', where
e"' and e"' are the matrix elements calculated with unit
strength of V, and V„- and the sum is over all states. Of
course, -

UToTAL =U1 +U2 U~+UB' V1 and V2

lated to V~ and VB by

(ig9/2)

0.213

0.6
3.0

0.5
1.0 and inversely

V, = V~ + Ve, V, = Vs/n ~—
(1g9/ 22d5/ 2)

0.9
3.0

0.75
0.75

(1"9/ ~1~(3/ ~)
(1Is/22f v/2)

(1@8/2))
(3P&/»)
(1&g/ p)', (2'�/g)'

1.4
7 0

0.1 578

0.1

1.0 '

1.0
1.0

0.3
0.03
0.3

This reflects the factor by whichthe 1/((E( ) was multiplied
to get 8;. It represents the subjective component in assigning
weights in the least-squares fitting procedure.

R'; = 0.i. for the 0+ and 4+ matrix elements.
~ W;=3.5 for the 2, 3, 5, 1+, and 2+ matrix elements.

W; =0.3 for the 0+ matrix elements.

The errors expressed for V~ and VB are more nearly
independent, while the errors in V, and V, tend to be
strongly correlated.

Several features should be noted in Table XIII. For
the T =0 data, the triplet-even interaction alone accom-
plishes most of the fit, almost entirely from a single
range. The remaining components of the interaction im-
prove the fit only slightly [the tensor-even part of the
interaction helps primarily with the low-J matrix ele-
ments, as expected from Fig. 14, e.g. , the 0 member
of the (1@a~, 2g9~, ) multiplet, noted. by Kim and Rasmussen
(1963)]. A second range did not improve matters much.

For the T = 1 fit, on the other'hand, , a second compo-
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TABLE XHI. Hesults of least squares fitting with constraints for x& =1.415 fm and r2 =2.0
fm. V (MeV).

Constraints on 2'=0 only ~

S. G.A S. O. p Tr. E.A Tr. E.B" Tens. E. LS. E. X2 c

17.6

1V.V
3.7 122

—57
—59
-58
—59
—55 -0.4

10 3(18 8 22 4) d

1.19(1.27, 2.82)
1.1 5(1.20, 2.91)
1.OS(1.12, 1.42)
1.04(1.06, 1.33)
i.oo(i.oo, i.oo)

Constraints on 7=1 only ~

S. E.A S. E.p Tr. O. A Tr. O.g Tens. O. LS. G. X

-15.5
-1.6

-18.8
-12.0
-13.6
-13.5

-88
—70
-36

5.4
10.2
5.8

19.3
15.8
16.5
1 5.2

—194
-162
—163
—171 —6.1

2.7
3.4

S.2(9.7, 1.44) '
5.0(9.2, 1.31)
3.5(6.3, 1.19)
2.4(3.9, i.o8)
1.41(1.84, 1.35)
1.24(1.47, 1.30)
1.1o(1.19,1.45)
1.00(1.00, 1.00)

Constraints on non-central forces
S. E.A S. E.B S. O. A S. O. p .Tr. E.A Tr. E.B Tr. O.A Tr. O. B

—12.0
-12.0
—12.0
-11.7

-88.9
-88.6
-88.9
—65

16.3
10.1
3.1

62.7
126

—57
—59
—58
-56

—12.i.
-58

15.9
15.9
1 5.9
14.8

-161
-161
-161
—168

1.42(1.27, 1.47, 3.25)
1.4O{1.19, 1.47, 3.5)
1.39{1.19, 1.47, 3.5)
1.18(o.93, 1.37, i.oo)

The remaining interactions, relevant to the other isospin, were allowed to vary. They
changed only minimally.

The VA, VB parameterization used in the table is defined in terms of V~ and V2 in Eq. (III.9).
The values of a were 2.75, 2.30, 2.32, 2.76 for the singlet-odd, triplet-even, singlet —even and
triplet —odd interactions, respectively.

is normalized to 1.0 for the 12-parameter fit, the values in parentheses are the partial
for the isospin in question, and the n-p data normalized in the same way. For absolute

values of X see Fig. 15.
d All terms in the interaction with the re1,evant isospin kept at zero. This X gives the scale

of the size of the matrix elements.
Both tensor and LS interactions constrained to zero, except for the last line, where the LS

interaction only was kept at zero and the tensor force became -41.4 and -4.5 MeV for the even
and odd components. The values in parentheses are the partial X for T=0, &=1, an«-p data.

TOTAL

T=l
X

2 —0
T=O

—X—0

l

0.2
t l i ~ i i I I I

0.5 l.O 2.0 5.0
r (fm)

FIG. 15. Values of X for full 12-parameter fits as a function
of the second Yukawa range (x2) of the central interaction, with
&& =1.415 fm. The absolute scale of X is not meaningful be-
cause of the weights used. The relative contributions for
T =0 and T =1 are correctly shown; the n —p contribution to X

is about 0.2 on this scale.

nent is crucial in the triplet-odd interaction. A second
component helps somewhat in the singlet interaction
(-20% in y ) and the inclusion of the LS interaction im-
proves X'-10'%%uo. The odd tensor force improves the
level of the fit another 7'.

The pattern is generally similar for other choices of
&~, except that for T =0 the improvement for a second
range becomes noticeable for small values of &,.

E. Search on the range of interactions

As has already been stated, the interactions were al-
ways composed of Yukawa shapes. For each term of the
central interaction, one of the Yukawa components was
fixed at the one-pion exchange range (r, =1.415 fm), as
was the single component for the tensor and spin-orbit
terms. The value of y' as a function of the range of the
second component in the interaction is shown in Fig. &5.
We see that the curve is rather flat and perhaps a small
(r, =0.1 fm) value of r, is preferred, primarily by the
T =0 matrix elements. But any &, & 2.0 fm is about
equally good. One should note, as was stated above,
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TABLE XIVXIV. Parameters of the centra ~o e central interaction in MeV" we with various choices of r

r) (fm) S. E.A S. E.g S ~ OA S. O. B Tr. E.A Tr. E.p Tr. O. A Tr. O. 8

0.1

0.3

1.0

2.0

5.0

—14.3

-14.1

-13.5

11.8
(0.611 xio ')

1 3i3
(1.54x10 2)

41.0
(0.415)

—9.7
(165.7)

3.2

3,7

-31.6
(0.143 x 10 ')

—35.2
(2.70 xio 3)

-116
(O.325)

122
(2.75)

29.9
(244)

—55.1

-55.2

—55.5

—56.4

27.6
(0.692 xio ')

30.0
(1.69xio ~)

76.4
(o.421)
—62.6
(2.30)

—14.5
(161.6)

15.0

14.7

16.1

33.5
- (0.143 x io )

39.5
(2.71 x 10 )

150.7
(0.325)

—61.9
(250)

4.93

5.03

5.08

5.05

5.51

~ The tensor and LSS interactions were al "

even and odd tensor corn on
e a so varied but remained rea

b The
or components and -0.7 +0.3 and

maj. ne reasonably constant at —4

c Th

or corn on . . an 3.3+0.6 MeV for th LS '

e at 1.415 frn.
e inter action.

a —2 ~3 and —5+1 Mev f thor e

e values of ~ al o
the VB values.

owj.ng conver sion to

es

o o the V~ —V param t

Values

o &
me erization b Eo m '

y q. (III.9), are iven i

es of g for aH the data. The a

m . , g en in parentheses under

e absolute scale is mean'is meaningless because of tho e weighting factors.

that a second rond range is only mildl re uond r mi y required for T = 0 but
for &, =&, not shownere is a singularity in ' = own

A delta functction mteraction (& =0'
fit the T =1 data s

y cleaIly wouM not
a a since the matrix ele

state interaction b
elements of the odd-

c &on ecome identicall zero

ble XIV. For r 8 1 0
n or he even and odd iinteractions in Ta-

fm the values of
same, for x =0 3 f

e are nearly the
2

= ' m ~even
~ ~

, whsle it becomes =40
m. his reflects the enorm

V, (=10' MeV) f thol ls range.
e enormous values of

The stren tg hs for the various choic

V~ are quite const t
e see, as expected th at the values of

ns an while the values of B
p ding on whether~ c anges de end

ere is not ver
function of & .nor d

y much difference as a
2~,nor dHi lt make much diff erence when &1

was fixed at a va value other than 1.415 fm.
In Figs. 16 and 17 the various interac talons correspo d-

e entries in Table XI
th t' l t- dd tan eraction, where the n

e one, it is clear thata e various com-
e, sn act, rather similar w'

save ong-range corn onen,
roughly cancelling th

ponent, the two

plotted to make thi
ing xn the volume inte

a e is featur e clear. For th
arne eature is seen tam t ', though not quite

~ e or the T =0 corn one
range zs barely n.ceded and th '

- e e inedn.ee ed and the shape is not -well defined

F.. Errors and recammended valoes

As has alreadady been mentioned, the erroad, e errors are best
ms o ~ and V. Onm» . One such case ~s given
e errors correspond to th0 e Rrbltr ary

250

SINGLET ODD

200—

I50—i

E

O
IOO—

50—
/

0

FIG. 16. Plot of the central
components of the interaction
for T =0 wit various choices
of the range for the second
Yukawa (~2). The curve
labeled H.J. is the Hamada-
Johnson interactio n wit out
the hard core). Note that
r2U(&} is plotted, not U(&}, to
emphasize the contributions to
the volume integrals (and ap-
prox~~ately the matrix ele--),.-.i ..-""":

regions

1
1

il I

0 2

2.0~

6 8 0
r (frn)
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FIG. i7. Plot of the central
components of the interaction
for T =1, mith various choices
of the range for the second
Yukawa (&2). The curve
labeled H.J. is the Harnada-
Johnson interaction (without
the hard core). Note that
&2U(x) is plotted, not U(&).

—IO

-20
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-40—
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-80—
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choice of a change of l% in y'. Correlations tend to be
small (%0.5}. Similar errors are obtained for the vari-
ous constraints and the other choices of ranges.

%That choice of interaction to take as "best" is a mat-
ter of taste and convenience. In many cases,ses the slight
improvements obtained by inclusion of the noncentral
components of the interaction may not be worthwhile.
In Table XVI therefore the parameters for two choices
of &, are given without the noncentral components. For
an even. simpler form, with only five parameters in the
central interaction, one should consult the first line
under noncentral constraints in Table XIII; this gives a
total X' of 8.9, to be compared to the other two values in
Table XVI.

One should note that these relatively small changes in
y' are not very significant. The calculated matrix ele-
ments with a full 12-parameter fit for &, =2.0 fm, as
given in the appropriate lines of Table XIII and in Table
XVII, are shown along with the data in Figs. 4-7 and in
the Appendix. The calculated matrix elements using only
the five parameters of the central interaction are also

h for some cases in Figs. 4 and 6. The 32 o deter-
ioration in y' is not apparent on visual inspection. e
fit with r, = 2.0 fm is used since the fits with small &„
though marginally better in y', result in absur y igdl hi h
values of V, .

G. Shell-model calculations

Standard shell-model calculations have been done on
several nuclei in the lead region using some of the in-
teractions obtained in Sec. III.E.~ ~ ~ he first set is that
with &, =2.0 fm, as given in Table XVII, except that the
spin-orbit force w'as assumed to be equal to zero. The
second set w'as for & =0.1 fm, as given in Table XVI,2

~ ~

with the same tensor force as the first set, and again
no spin-orbit force.

As has been seen in Table XIV and Fig. 15, y' varied
slowly as the second range &, was changed with the
s orhorter ranges being slightly preferred; this preference
came en ire y rot I from the T =0 matrix elements. As wa
seen in Fig. 4 and in the Appendix, the g, =g» 4=0, T =1
matrix elements tend to be fit well; the measured ma-
trix elements tend to be larger than the calculated ones.
A reasonable guess is that the configuration mixing in-
troduced by pair correlations may be the source of this
systematic trend.

Tables XVIII-XXI compare the results of shell-model
calculations of the low-lying 7.' =1 levels in 2IOPb

'Pb with the experimental values. In Tables XVIII and
XX, one sees that the first interaction, w ith & = 2.0 fm,
causes very little configuration mixing for all levels.
The second interaction, with smaller &„ results in

stren ths in MeV with r& =1.415 fm and ~,ABLE XV. Typical errors in the interact&on s reng
~ 2=2.0 fm for a 1' change in X .

T=O
S. O. A S. O. B Tr. E.A Tr. E.B Tens. E. LS. E.

3.7 +9 -63 +20 —0.4+2

T=1
S. E.A S. E.B Tr. O. A Tr. O. g Tens. O. LS. Q.

—13.5 +1.2 15.2 + 1.1 -171+12 -6.1 +1.4 3.4 + 0.8
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TABLE XVI. Some values of interaction potentials in MeV using only central interactions.

y2 S. EA S. E.B S. O. A S. O. g Tr. E.A Tr. E.B Tr. O. A Tr. O. g

2.0
0.3
0

—12.0
—14.8
-15.0

—88.9
22.0
18.6

10.1.

6.9
6.0

62.7
—25.2
—23.8

—58.2
—56.4
—56.1

—12.1
18.4
18.3

15.9
16.4
16.5

—161
39.2
33.4

7 ~ 04
6.79
6.63

r2 S. E,( S. E.2 S. O.) S. 0.2 Tr. E.( Tr. E.2 Tr. O.( Tr. 0.2

2.0 —100.85 38.36
0.3 7.26 —1428
0.1 3.65 —30 514

72, 82
—18.33
—17.74

—22.84
9351

1 661 151.

—70.30 5.27 -144.94 58.37 7.04
—38.04. -10.84 + 55.61 —14 470 6.79
—37.81 —26 503 49.91 —2 328 444 6.63

much more configuration mixing for the 0' levels. This,
of course, is the well-known origin of a "pairing force"
deduced as a consequence of an attractive short-range
interaction. There is very little change for the higher
spin levels. Not only does the shorter-range force have
larger diagonal matrix elements (E~ in the tables) for
the 0' levels, it causes more configuration mixing, re-
sulting in better agreement with the experimental vaIues
than is the case when' the first force is used. In fact, a
value for &, of 0.1 fm may be too small and 0.2 or 0.3
fm would probably give better fits. The other levels are
only slightly changed as r, is varied.

Tabl. es XIX and XXI compare the squared amplitudes
of the various components in the ground-state wave func-
ions of "OPb and '06Pb with experimentally measured

values. These tables also indicate that the shorter range
is definitely preferred for 0+ ground states.

Shell-model calculations have also been done on the
low-lying T =1 levels of "Po with both forces. In this
case, the results show similar effects for the 0' ground
states. All other higher states are very pure and there
is very little difference in the matrix elements of the
two forces.

It should be noted that the correlations for 0' states
tend to favor a short range for the T =1 interaction. The
slight improvement in y' for small x, that is noted in
Fig. 15 was due entirely to the T =0 data, and primarily
the triplet-even component. There is no data where
off-diagonal T =0 matrix elements may be tested; shell-
model calculations for the mixed isospin" Bi case are
consistent with the data.

IV. DISCUSSION

A. Other attempts to fit matrix eIernents

There has been considerable success in fitting nuclear
data with shell-model calculations that assume a delta
function (or surface delta) interaction (Glaudemans et al. ,
1967). When more than n-p data a,re involved, it has of-

ten been found necessary to use a "delta function plus
isospin-dependent monopole" interaction. These results
are qualitatively consistent with the findings described
here, in that two interaction ranges are required, espe-
cially in T=1.

A more extensive attempt, covering most of the data
described here, has been published by Molinari et al.
(1975). Semiclassical expressions were used for the ma-
trix elements and coefficients for a "delta function plus
monopole, plus dipole, plus quadrupole" force were ob-
tained. These coefficients were determined independent-
ly for at least eight groupings of the data, depending on
T, on whether j,=j„and on whether j,+j,+ J is even or
odd for jy 4 jg All in all, not counting those coefficients
which failed to significantly improve the fit and were thus
left at zero, four coefficients were needed to fit the j,=j,
data for the E~/E values, and four more for the j,4j,
n-p data. When the j,4j, data (not including the 1g,~,2d, ~,
multiplet) were considered separately by isospin, seven
coefficients were needed. The values of E were not fit.
Altogether, if only the separate isospin data are consid-
ered, eleven independent parameters were obtained to
fit a substantial subset of the data considered here. Per-
haps the principal conclus'ion regarding the relation of
this work to ours is that a simple "delta function plus
quadrupole" interaction is inadequate, that substantial
monopole components are required, and that the para-
meterization of the data separately by the types of orbits
replaces the spin and isospin dependent interactions of
our work.

Another attempt at fitting matrix elements with an ef-
fective interaction is that of Mairle and Wagner (1972). He
used experimental matrix elements applying somewhat dif-
ferent criteria from those used here and using data from
transfer reactions in the s-d shell. The values of the ma-
trix elements used are similar to the values adopted here,
though significant differences exist in some of the selec-
tions of what to include. AQ the data were fit by a single-
range effective interaction and only the relative magni-

TABLE XVII. Parameters in MeV for the 12-parameter fit with && =1.415 fm and &2=2.0 fm.

S E-A S. E.p S. O.A S. O. B Tr. E.A Tr. O. A Tr. G.B Tens. E. Tens. O. LS. E. LS. G.

—13.5 -35.8 122 —55.5 15.2 —171 —42.52 -0.43

S. E.( S. E.2 S. O.g S. 0.2 Tr. E.
&

Tr. E.2 Tr. G.
&

Tr. 0.2 Tens. E. Tens. O. LS. E. LS. O.

—49.32 1 5.47 125.53 —44.37 -118.09 27.27 —155.82 62.06 -42.52 —0.43 3.42
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TABLE XVIII. Comparison of "effective" matrix elements in Pb from a shell-model cal-
culation. (Amp. i is the absolute value of the amplitude of the given configuration after diag-
onalizafion. E'D is the diagonal matrix element and E& is the energy eigenvalue after diago-
nalization. Force 1 and Force 2 correspond to two choices of the second range in the inter-
action as described in the text. The experimental values are taken from Table VIII.

Force 1 (&2=2.0 fm)
Configuration J i Amp. i ZD

Force 2 (r&=0.1 fm)
i Amp. / En E~ +exp

2g 9/2
2 0+

6+
1

0.973

0.995

0.998

0.998

0.998

0.010

0.057

0.116

0.001

0.049

0.109

—0.527 -0.644

—0.120 —0.142

0.886

0.990

0.997

0.998

0.998 0.082 0.074 0.029

—0.932 -1.369 -1.244

-0.259 —0.300 -0.449

-0.069 -0.083 -O.153

-0.003 -0.012 -0.050

tude of the various components of the central interaction
were varied. The fit was made multiplet by multiplet,
as well as for all the data put together. The level of fit
in the latter case is significantly worse than the level of
fit in the present work.

A natural, more limited, extension of the present in-
teraction is to the coupling of nucleons in Nilsson orbits
in odd —odd (or even-even) deformed nuclei. The infor-
mation available from such nuclei is, of course, very
limited because in each case there are only two possible
couplings yielding two matrix elements. For the odd-
odd nuclei these are of the n-p mixed isospin type and
thus do not add much information. They are quite well
fit even by a delta-function interaction (Jones et aL,
1971). In the even-even case, the meaning of the abso-
lute energies is somewhat dubious because of uncertain-
ties due to blocking by two identical nucleons. The split-
ting has been looked at and appears to be consistent mith
the interaction proposed here (Katori and Weller, 1972;
Weller, 1973).

A more general area of possible' future investigations
may be in the transitional region, where the quasiparti-
cle model has had considerable success. One may well
imagine in the Sn isotopes, for instance, where a partic-
ular neutron orbit is gradually filled as neutrons are be-
ing added, that multiplets based on the corresponding
quasiparticle state will gradually change from the par-
ticle-particle to particle-hole types. This will cause a
given multiplet to change from the inverted U shape to
an upright U shape, with the multiplet essentially degen-
erate when the orbit is half filled (U,'. =0.5). To our
knowledge no such data are presently available.

B. Other properties of two-nucleon states

1. Magnetic moments

Recent years have allowed measurements of magnetic
moments in several two-nucleon spectra. This permits
an independent test of the purity of the wavefunction
whatever the effective moment of the one-particle state,
it should be reflected in the magnetic moments of the
two-particle spectra. When both orbits are the same
(j,=j,) this means that the two-particle states should
have the same g-factors as -the one-particle state. If
core-polarization effects were to change, this would lead
to inconsistencies in the g factors.

In A. =42 the g factor of the 6+ state in "Ca is —0.415

a 0.015' and it is —0.456 for the "Ca ground state (Young
et aL, 1975). The purity of the (lf, ~, )' states was dis-
cussed in Sec. II.A. 6; some admixtures do exist in A=42.
In "Nb the g factors for the 6' and 8+ states are 0.620
a 0.004 and 0.6176+ 0.0005, respectively (Holland et aL,
1975; Hagn et a/. , 1974); these are remarkably consis-
tent and support the purity of these configurations. In
recent work Faestermann (1974) and Baba et aL (1973)
find the g factor of the 8+, 1h~y, state in '"Po to be 0.912
+ 0.011, and that of the 6+ state to be the same within one
percent; the '"Bi ground state has g= 0.910. In '"Bi
Faestermann finds the 5 and V members of the
1h,~,2g, ~, multiplet to have g= 0.309~ 0.007 and 0.304
a 0.006, respectively. For "K two magnetic moments
are known, belonging to the 3 and 4 members of the
(vlf, &,mid, ~, ') multiplet. The magnetic moments of "Ca.
and "K ground states may be used to compute the expect-
ed g factors. The values are —0.43 +0.03 (—0.456) for the
3 state and —0.3245 + 0.0001 (—0.3123)for the 4 ground
state; the values in parentheses are the predicted ones
(Brandolini et aL, 1974). This latter case was already
interpreted in a very similar context by de-Shalit (1961).
All available magnetic-moment data thus support the re-
sults derived from transfer reactions regarding the pur-
ity of the two-particle spectra. It is beyond the scope
of this paper to attempt the calculation of the g factors
for the various single-particle states.

2. Gamma-ray transition probabilities

A question to be mentioned is the electromagnetic tran-
sition rates between members of two-particle multiplets.
Within a multiplet Ml transitions mill tend to predomi-
nate; between multiplets this is not necessarily the case.
Absolute transition probabilities with a few percent ac-
curacy are generally difficult to come by, but even when
such data are available they are subject to a number of
uncertainties in interpretation. Competing electric and
magnetic transitions, varying effective charges and mo-
ments, and small admixtures from nearby collective ex-
citations that may alter transition probabilities by dis-
proportionate amounts, all introduce large uncertainties.
No attempt is made here to review the state of knowledge
for such transitions.

This result is inconsistent with the value of g = —0.50 + 0.03
of Nomura et aI.. (1971).
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TABLE XIX. Comparison of the calculated squared amplitudes of the various configurations in
the ground state of 2~0Pb with the experimental values. Force 1 and Force 2 are described in
the text, and the experimental values are taken from Igo (1971).

2& &/2
2

1214 /2
2

1 5/2
2

C onf igur ation
3d~/2 4s( /2

2 .2 2 3d3 /2

Exp er iment
Force 1 (r2 = 2.0 fm)
Force 2 (r& = 0.1 fm)

0,67
0.947
0.784

0.16
0.015
0.088

0.17
0.024
0.078

0.01
0.007
0.025

0.0015
0.001
0.004

0.015
0.004
0.015

0.0035
0.001
0.005

C. Conclusion

A reasonably satisfactory over-all fit is obtained to
well over one hundred experimental matr'ix elements
from nuclei throughout the periodic table. The interac-
tion has 12 parameters, though all but the last 32/o in y'
is accomplished by only five parameters in the central
interaction. The need for a two-range interaction, with
a shorter range attraction and a longer range repulsion
is necessary for T= 1. There is little sensitivity to the
exact range; the change in sign of the potential occurs
at 2-3 fm, as may be seen in Fig. 1V. For the T=0 in-
teraction the need for a second range is much less clear.
The tensor term in the interaction improves the fit for a
few specific matrix elements, while the L-S term seems
to improve the level of fit in a more general way. All in
all, the noncentral terms in the interaction account for
a -30/g improvement in y'.

A comparison of the present interaction with the inter-
action between free nucleons (Hamada and Johnston,
1962) was shown in Figs. 16 and 17. The T= 0 parts of
the interaction are reasonably similar in magnitude and
shape, but the T= 1 part is quite different. A compari-
son of various free nucleon —nucleon interactions (Mor-
avcsik, 1972) shows some fluctuations in the detailed
shapes, but none approach the present result for the
T= 1 interactions.

An attempt has been made by Elliott (1968) to extract
matrix elements of the nucleon-nucleon interaction di-
rectly from the phase shifts without the intervention of
a potential. These so-called Sussex matrix elements

have been used in shell-model calculations but it is not
clea.r how a meaningful comparison could be made be-
tween this work and the present one.

Of all the possible matrix elements between valence
nucleons which can occur throughout the periodic table,
this investigation has only considered diagonal matrix
elements; there is not enough reliable data available
from transfer reactions to extract off-diagonal ones.
We have not made use of the diagonal and off-diagonal
matrix elements obtained by least-squares fit to experi-
mental energy level data (the third approach in Sec. I)
except for those of Cohen and Kurath (1965). Not all pos-
sible diagonal matrix elements were considered because,
in many cases, the configurations are strongly mixed
with other configurations and the data from reactions
are not sufficient to sort out admixtures uniquely. For
example, the 3p', ~„3pa~„and 2f ', ~a configurations in
the lead region are strongly mixed and it is at present
not possible to experimentally resolve the appropriate
matrix elements except for 0+ ground states. One can
hope that if a single residual interaction is a valid con-
cept, then this interaction should also be applicable to
those diagonal and off-diagonal matrix elements where
considerable configuration mixing occurs. The shell-
model calculations described in Sec. III.G offer some
encouragement in this direction.

Golin and Zamick (Golin et a/. , 1974; Golin and Zam-
ick, 1975) have used a previous version of our interac-
tion to calculate the dipole giant resonance, the energy
of the isobaric analog resonance, and the change in sin-
gle-particle energy spacings in the f-p shell as the lf7~a

TABLE XX. Comparison of "effective" matrix elements in 6Pb from a shell-model calcu-
lation. (Amp. ~

is the absolute value of the amplitude of the given configuration after diago-
nalization where 1.000 means a number slightly less than 1.0. ED is the diagonal matrix
element, and Ez is the energy eigenvalue after diagonalization. Force 1 and Force 2 are
described in the text, and the experimental values were deduced froxn Manthuruthil et al.
(1972).

Force 1 (F2=2.0 fm)
Configuration J I Amp I

Force 2 (r2 ——0.1 fm)
) Amp. ) En Es Eexp

3pi /2
2

3p& /22f 5/2

0+ 0.963

2g 0.933

—0.218 -0.304

-0.034 -0.105

0.851

0.948

-0.385 —0.696 -0.640

—0.075 -0.144 -0.407

3P i /23P 3 /2

2f 5/2

0.999

1.000

2g 0.941

0) 0.942

23+ 0.972

4g 0.925

0.108 0.9990.111

0.121 0.121 1.000

0.940

0.808

0.944

0.099 0.063 0.943

-0.163 -0.180

-0.432 -0.497

-0.009 —0.014

0.101

0.038

0.099

0.037

0.130

0.170

-0.085

0.056

—0.088 0.008

0.020 —0.096

—0.238 —0.289 —0.080

-0.712 —0.827 —0.612
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TABLE XXI. Comparison of the calculated squared amplitudes of the various configurations
in the ground state of 6Pb with the experimental values. Force i and Force 2 are described
in the text.

2f 5/2

C onf igur ation
3~3/2 i 13/2 2f 7/2

Exper iment
Exper iment b

Force i (r2 = 2.0 fm}
Force 2 (x&

——O. i fm}

0.54
0.65
0.927
0.724

0.20
0.25
0.036
O. i47

O. i2
0.20
0.029
0.076

O.i2

0.004
0.030

0.003
0.0i5

0.00i
0.007

Mukherjee and Cohen, i962.
Richard et al. , i968.

shell is filled. Their conclusion is that an interaction
of the present form comes much closer to fitting these
quantities than more "realistic" (e.g. , Kuo-Brown) in-
teractions. It is the monopole part of the present inter-
action that plays the major role in these quantities. They
have also suggested that the origin of the repulsive term
in our interaction is due to the requirement of transla-
tional invariance, a constraint that need not be present
for all core-polarization effects. Golin and Zamick
(1975) use an interaction in which the long-range part is
restricted to the S= 1 (triplet) terms and the results are
not seriously affected. This is consistent with the pres-
ent result discussed in See. III.E; in Table XIII it was
clear that the second range was most important in the
triplet-odd interaction.

It thus may be hoped that the above interactions will be
more generally useful in structure calculations. Simi-
larly, it remains to be seen whether the present residual
interaction will be useful when applied to reaction calcu-
la,tions.

An important question is the relation of the present
empirical results to our theoretical understanding of an
effective interaction. There is certainly little in the
present theoretical perspective that would lead one to
expect a single effective interaction to have general va-
jidity. The matrix elements from the free nucleon-
nucleon interaction require substantial modification to
fit the energy level data, as has been amply demonstrat-
ed by Kuo and Brown (1966), Herling and Kuo (1972), and
others. Does the present result imply a theoretical sim

plification? Does nuclear matter behave as a dielectric
medium, modifying the free nucleon-nucleon interaction
in a uniform way? Or is the present pattern a more or
less accidental consequence of more complicated aspects
of the problem? The answers to these questions remain
for the future.
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APPENDIX

Table A.1 presents a list of particle-particle matrix
elements in MeV determined from experimental data
and values from fit.

TABLE A. 1. The following is a list of particle-particle matrix elements in MeV
determined from experimental data' and values from fit. "

0
1
2
3

1
2

1Pj, /2 1P3/2

Configu ration J
(lp. g.)'

-7.2
—6.2
-4.0

&z, x=0

-9.0
-8.8

-3.2

+ 0.9
—1.0

-0.6
—1.6

&J, n-p

(ld, g, )' 0
1
2
3

5

-3.3 -2.2
-0.7

0.1
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TABLE A. 1 (Continued)

Configuration

1P3/21d5/2

(1d, /, P

dg/g 1f7/g

(1f,/, )'

1f7 /g 2pg /g

0
1
2
3

2
3

5

0
1
2
3
4

6
7

0.4
-2.0
—1.0
-7.1

-2.2

-2.7

-3.0
-1.7
-1.6
-2.1

-2.11

-1.04

—0.87

—2.28

J', T =0

-2.1
-3.5
-0.5
-7.9

-2.8
-5.1
-2.8
—1.4
-3.5

—1.45

—1.09

-2.65

-2.6
-0.9

0.2
1.2

-2.9

0.2

-0.4
0.3
1.1
0.0

-2.13

-0.81

0.06

0.28

+Z, T=i

-2.2
0.0

-0.8
0.9

-2.0

-0.4

-0.4
-0.2

0.3
-0.5

—1.78

-0.51

0.0

0.24

-0.64
-0.57
-0.14
—0.90

-0.84
-0.60
-0.12
—1.15

(1gg/. &

1g9 /2 d5/2

1@9/23Pi/2
d

1Itg / g 3pg / g

1kg /g 2fg/g

0
1
2
3
4
5
6

'7
8
9

2
3
4
5
6
7

2
3

5
6
7

-0.63

-0.44

-0.59

-1.49

-0.56
—0.69
-0.40
-0.96
-0.79
—1.46

-0.54

-0.53

-0.73

-0.92
-0.75
-0.29
-0.81
-0.25
—1.87

—1.84

-0.67

-0.04

0.16

0.23

-0.54
-0.08

0.0
0.34
0.41
0.17

—1.58

-0.44

-0.01

0.14

0.28

-0.58
0.07
0.06
0.27
0.29
0.33

-0.079
-0.142

-0.304
—0.119
-0.100
-0.222

-0.264
-0.063
-0.060
-0.140
-0.043
-0.291

-0.100
-0.194

-0.332
-0.098
-0.044
-0.205

-0.380
-0.122
-0.072
-0.142
-0.020
-0.436
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TABLE A. 1 (Continued)

Configuration J0 T=O

1@9/22fv/a

1~9/2 «~13/2

1~9/2 2g9/2

3pi /22f5/2
d

Px/2 fvlv,
d

Pl /2 ~13/2

189/2)~

(2g9/. )'

Total number
of matrix
elements

1
2
3

5
6
7
8

2
3

5
6
7
8
9

10
11

0
2
4
6
8

0
2

6
8

-1.308
-0.955
-0.536
-0.520
-0.359
—0.416
-0.278
-0.565

-2.944
-1.452
-0.809
-0.660
-0.433
-0.494
-0.322
-0.577
-0.305
-1.190

60

-1.420
-0.843
-0.561
-0.486
-0.313
-0.423
-0.190
-0.637

2 312
-1.215
-0.827
-0.768
-0.454
-0.642
-0.287
-0.682
-0.211
-1.207

-0.032
0.097
0.120
0.100
0.127
0.048
0.162

-0.115

-0.182
-0.002

0.075
0.036
0.140
0.036
0.162
0.019
0.201

-0.166

—1.44
-0.22

0.05
0.10
0.18

—1.24
-0.449
-0.153
-0.050

0.029

50

-0.028
-0.003

0.147
0.078
0.149
0.052
0.161

-0.076

-0.221
-0.072

0.119
0.056
0.124
0.044
0.130

-0.001
0.195

-0.202

-0.84
-0.17
—0.01

0.04
0.12

-0.58
-0.113

0.038
0.091
0.154

-0.606
—0.653
-0.333
-0.306
-0.152
-0.220
-0.106
-0.220
—. 0.027
-0.375

-0.144
-0.199

-0.239
-O.140

-0.153
-0.110

-0.739
-0.665
-0.363
-0.268
--0.141
-0.175
-0.058
-0.180

0.002
-0.363

-0.208
-0.336

-0.330
-0.243

-0.168
-0.090

'These numbers are the ones discussed in Sec. II.A. The first entry in this table
is the experimental value.

"The second entry in this table is the calculated value of the matrix element with
the 12-parameter fit values given in Table XVII with x, = 1.415 fm and x2 =2.0 fm.
These calculated values are plotted in Figs. 4-6.

'These data were included in the fitting procedure with significantly reduced
weight ("level of confidence" ~ 0.3).

These data were effectively excluded from the fitting procedure ("ievei of con-
fidence" c 0.1).
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