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Since approximately 1950 an increasing portion of experimental solid state physics research has been
concerned with studying defects in crystals. This trend might appear to be a rather belated recognition that
most of the materials we come into contact with have a random structure. In fact the theoretical
understanding and controlled preparation of compounds with defects or random structure has been very
slow in developing. The present paper examines and reviews our knowledge of the lattice vibrations
associated with defects. The coverage is extremely broad, as shown by the table of contents. It includes
localized and resonant modes of isolated defects as well as the modes in highly disordered mixed: crystals
and glasses. It is primarily a review of experimental work but theoretical results are included where the
latter explain or predict significant features. In order to be self-contained several sections of the paper deal
entirely with theoretical matters. There is a chapter on explicit solutions of the linear chain vibration
problem and a short chapter on Green’s function methods. The review emphasizes the infrared absorption
and Raman scattering of defects. This is simply because other techniques have not yielded nearly so much
information. Neutron scattering and electron tunneling are referred to only where they have shed light on
certain systems. Extensive tables of defects and mode frequencies are included for each type of solid. The
major solids which are reviewed include semiconductors, ionic compounds, organic compounds, and
amorphous insulators.

We dedicate this review to the memory of Bernd Fritz who pioneered in this field and whose very productive efforts
were cut short by his untimely death.
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I. INTRODUCTION

A. Historical background

Since approximately 1950 an increasing portion of ex-
perimental solid state physics research has been con-
cerned with studying randomly spaced defects or irreg-
ularities in crystals. This trend might appear to be a
rather belated recognition that most of our environment
and most of the materials we come into contact with
have a random structure. In fact the theoretical under-
standing of random systems has been very slow in de-
veloping. Where technology has needed new or improved
materials it has had to proceed by mainly empirical or
“cut and try” methods. Elliott, Krumhansl, and Leath
(1974) have reviewed some of the background leading up
to the recent growth in theoretical understanding. The
major developments they list are the discovery of so-
phisticated perturbation techniques in many-body theory,
particularly the use of Green’s functions, and the de-
velopment of computers powerful enough to calculate re-
sults for reasonably large models. Since these develop-
ments date from about 1950, it is apparent that the in-
terplay between theory and experiment has been impor-
tant in the growth of this field of disordered solids.

A count of the articles contained in various bibliogra-
phies shows that if we restrict our attention to optical
studies of the vibrational properties of disordered sol-
ids, the publication rate has grown from about one paper
per year in 1950 to about one hundred per year in 1974,
Papers dealing with the related theory show about the
same numbers; both groups exhibit a doubling time of
four years. These numbers show the need for a broad
review to survey the field. In no sense does this review
close the field or present experiments which answer all
questions one might ask about optical properties. This
area of experimental research will remain active for
many years. The authors hope, however, that this re-
view will direct attention to areas that need deeper
study.

The present paper examines and reviews our knowl-
edge of the lattice vibrations associated with defects.
Our viewpoint is that the lattice vibrations of perfect,
pure crystals are reasonably well understood. In many,
though not all cases, the introduction of defects can be
viewed as causing shifts in the vibrational states of the
pure crystal. This viewpoint is also used to some ex-
tent even when the crystal is one hundred percent defec-
tive, as, for example, in amorphous solids. The new
vibrational states, whether they are in fact only slightly
perturbed crystalline states or are completely new
modes, serve as tools for examining both the defects
and the host lattice. A wide range of defects have been
studied and we use the broad term disordered solid in an
attempt to cover the many situations which are encount-
ered in practice.

The investigation of the electronic properties of de-
fects in crystals has actually been an active field of re-
search since Goldstein’s original work on color centers
in alkali halide crystals in 1896. One should note that
even before this, man has shown strong interest’in the
optical properties of defects as evidenced by the high
esteem he has had for gems. Colored jewels and “star”
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gems result from optical effects associated with local-
ized defects.

In the nineteen twenties when the infrared region of the
electromagnetic spectrum became readily accessible,
the internal vibrational modes of molecular impurities
in alkali halide crystals was investigated by Maslakowez
(1928) and the first observation of defect-induced lattice
absorption was obtained in type 1 diamond by Robertson
et al. (1934). The correct interpretation of these spec-
tra had to wait until the 1950s for the reasons mentioned -
above. The alkali halide crystal has proven tobe awell-
suited medium in which to study the vibrational proper-
ties of crystal defects because of its exceedingly simple
electronic and lattice structure. In addition to this ba-
sic fact there are new impetuses to encourage an even
better understanding of these materials. In recentyears
it has become possible to unidirectionally solidify com-
binations of metal halides under controlled growth con-
ditions (Batt ef al., 1969). The most interesting optical
properties of these eutectics stem from microstructures
which contain periodic arrays of one component em-
bedded in the other (Sievers, 1973). An interpretation
of the vibrational properties of such superlattice struc-
tures requires a detailed knowledge of the defect-acti-
vated vibrations in each component in order to identify
the vibrations associated with the interfaces.

Because of the need for windows and lenses for high- -
power CO, lasers, there has been a great deal of inter-
est in the absorption processes of infrared radiation in
alkali halides in the 10 u wavelength region (Sparks and
Sham, 1973; Deutsch, 1973). At the present time in the
most pure material (KC1), bulk impurities and surface
impurities provide equal contributions to the absorption
coefficient at 10.6 1. The relative contribution of dif-
ferent impurities to this absorption has not yet been de-
termined. Since each alkali halide presents its own
chemical purification problems this lack of information
about specific impurity-induced absorption processes
presents a serious drawback to any generalization of the
KCl1 success to other window materials.

B. Localized and resonant vibrational modes

The effect of certain kinds of defect or disorder on the
normal mode vibrational frequencies of a system of parti-
cleswas first studied theoretically in the 1890s by Lord
Rayleigh. One principal result of interest here was the find-
ing that under the right circumstances a vibrational
mode could split away from the band of modes and exist
above the maximum frequency of the unperturbed sys-
tem. This type of special mode was first observed ex-
perimentally by Schéfer in 1958. Figure 1 shows the
mode due to a hydrogen ion impurity in potassium chlo-
ride. In addition to having a narrow width and high fre-
quency this mode is “localized,” that is, its eigenvector
does not have a sinusoidal or wavelike dependence in
space but is strongly peaked at the impurity atom and
falls off rapidly one or two lattice sites away. Theoret-
ical consideration of this type of defect situation shows
that the unique property of localization is concomitant
with the fact that the mode frequency is well away
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FIG.1. Absorption spectrum of KCl1 at frequencies above the
maximum phonon frequency w, . The addition of H™ (U centers)
causes a sharp localized mode in the region of very low ab-
sorption near 500 cm ™, w, . peak taken from Schifer (1960).

from the band of normal frequencies of the host crystal.
This result has led to the terminology localized mode.
Since Schifer’s experimental observation, many kinds
of localized modes associated with defects have beenob-
served. These now include low-frequency localized
modes which lie within the band of normal frequencies.
Such modes were a somewhat unexpected development
and they still cause difficulty in visualization for the be-
ginner. They are called resonant modes. Resonant
modes have recently been invoked in astrophysics. The
temperature of interstellar grains is controlled by their
emissivity in the far infrared. The presence of low-
frequency resonant modes would increase the emissivity
and control the formation of a frozen hydrogen mantle
and the processes of molecule formation and ultimately
the gravitational collapse (Aannestad and Purcell, 1973).
Localized modes -of both the high-frequency type and
the resonant type have an intrinsic interest, but in addi-
tion hold special promise as probes of the impurity atom
or defect and its nearest-neighbor surroundings. Some
localized mode studies have been used as a diagnostic
method to identify the impurity, both its type and actual
location in the lattice. As the concentration of impuri-
ties increases, new features appear which begin to
bridge the gap between the case of the isolated impurity
in a crystal and the case of disordered solids and alloys.
A major part of this review deals with such studies of
localized modes. Studies of nonlocalized modes, and of
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modes in highly disordered systems where the degree of
localization has not been established are also reviewed.
The modes in disordered solids are important to our
basic understanding of these solids; however, the use of
these modes as probes of the structure is still in its in-
fancy.

C. Scope of review

It is clear that, in spite of the large body of work re-
viewed here, much more remains to be done in the field
of defect vibrational modes. One viewpoint is that the
method couples spectroscopic techniques to the dynam-
ics of a solid at the microscopic level. While many
cases of single defects have been delineated, the study
of interacting pairs of defects, of more extended defect
clusters, and of amorphous solids is just beginning.
The present paper reviews experimental results up to
early 1975. It is a review of experimental work and is
written principally for experimentalists. In spite of this
approach a sizeable fraction of the paper deals with theo-
retical matters. There is a chapter on explicit solu-
tions of the linear chain vibration problem and a short
chapter on Green’s function methods. The reason for
this is inherent in the subject itself. A full appreciation
or even a full description of the results of an experi-
mental study of the disordered solid depends on using
theory beyond that normally employed for the evaluation
of bulk properties of crystals. For example, the spe-
cial property of localization is not apparent directly in
a spectrum such as Fig. 1. The intuitive (and correct)
argument can be made that a high-frequency mode such
as that observed in Fig. 1, if it involves the impurity at
all, must be localized, since there are no lattice modes
up at this frequency to carry the energy away from the
impurity. Such an argument is not quantitative, how-
ever, and detailed models are necessary to appreciate
the localization of the mode and to allow prediction of
the behavior as either the host crystal or the impurity
is changed, as pressure is applied, or temperature or
some other parameter is varied. The models presented
in the theoretical sections are elementary, in the sense
that they will provide an intuitive understanding without
introducing excessive mathematics. They do not repre-
sent the state of the art in defect theory. They will al-
low the appreciation of more practical and detailed mod-
els which are used in the primary literature. These
more detailed models will be referred to where appro-
priate in the various experimental sections.

Many short reviews of localized vibrations have ap-
peared in the past ten years, principally in conference
proceedings. These reviews will be referred to in sub-
sequent sections. A major experimental review has
been written by R. Newman (1969). Newman’s review
should be regarded as complementary to the present pa-
per. He emphasizes the local anharmonic oscillator
model of the impurity with a full treatment using group
theory applied to the impurity and its nearest neighbors.
He treats in detail hydrogen and deuterium impurities
in the alkaline earth fluorides and impurities in semi-
conductors, most especially silicon and germanium.
The present paper deals less fully with these topics
since the review by Newman is quite complete and up to



Il. MODEL CALCULATIONS

A. The one-dimensional diatomic chain with
perfect regularity

In this section we calculate in detail the vibrational
modes of a linear chain. Figure 2 shows the chain to be
considered. We take all force constants % to be identi-
cal, but use alternating masses M and m. Using cyclic
boundary conditions and taking the total number of atoms
N to be even, the equations of motion are

M3, =k(x; %)) +k(xy = X,) + F,,
mx,=k(x,-x,)+k(x, —x,)+ F,

Mx,=k(x,—x,)+k(x,~%,) +F,,

mEy=R(x%, —xy)+R(Xy_, —xy)+Fy. 2.1)

Here F; is an external force applied to the jth atom.
While it is difficult in practice to apply a force such as
F to one particular atom, it is mathematically conve-
nient to include the F; for later discussions of response
functions for the chain. '

The above equation can be written in a very compact
form using matrix notation. In this notation the lattice
vibration problem can be written:

MX = —kX + F. (2.2)
For the diatomic chain shown in Fig. 2 the mass and
force constant matrices are:

r N
M 0 0
0 m 0 =«
M= |0 0 M )
- J
— -
%k -k 0 0 =+ - -0 —k
k2% -k 0
0 -k 2 -k 0 - 0 0
k= 1o o0 -k 26 -k .
=% J

The mass matrix is of diagonal form and the force con-
stant matrix has entries on the principal diagonal as
well as on diagonals one above and one below the prin-
cipal diagonal. Obviously, second-neighbor forces
would put entries on the diagonals two above and two be-
low, etc. The displacements and forces are simply col-
umn vectors with the jth entry describing the jth atom.
Assuming simple harmonic time dependence for each

S6

variable, we now change notation and use x; and F; to
describe thetime-independent amplitudes; i.e., displace-
ment of j atom =x; cos(wt +®), etc. The equations of
motion become

—WEMX =—kx + F.

(2.3)

In this section we use computer solutions of Eq. (2.3).
Analytic solutions are easily obtained, however, for the
pure chain by exploiting the periodicity and forming
solutions of the type

x,~exp(iqna/2). (2.4)

Here na/2 fixes the position along the chain, and q is the
wave vector which is to be determined. Kittel (1968)
has given examples of this type of solution for the mon-
atomic and diatomic chains with no defects. Dean (1967)
and Genzel (1969) have extended this type of solution to
chains with defects.

Returning to (2.3), we now set F =G and define the
matrix ,

r———=-= |
I ]
{
® MN-OW--W-ON-@
] 2: 3 4[ 5 6 7 8
[, J
UNIT CELL
'y
o
oL
<
ceev 00 e, OPTIC MODES
o’ e,

.. ’.
8_..‘ ....
o
IE N
L
o
58'.0 0..
E ) °
=1 o °

[ ]
mg_ . °
= . ° ACOUSTIC
° . MODES
o L ]
L ] L]
é 1
0] (o] T/a

WAVE VECTOR ¢

FIG. 2. Diatomic linear chain with nearest-neighbor force
constants. The dispersion curves are shown in the lower part
of the figure. These modes arise from a 48-atom chain with
periodic boundary conditions (see Table II.1 under GaP for

parameters). The 48 modes fall into acoustic and optic bands
separated by a frequency gap. Here 44 of the modes occur as
doubly degenerate pairs which are plotted here as left and right
(+q and -g) traveling waves.

li.e., we solve for the free vibrations.
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date in these matters.

The present review emphasizes the optical studies of
defects simply because other techniques have not yielded
nearly so much information. Neutron scattering does
not yet possess the sensitivity to deal with very low con-
centrations of defects and also does not possess the res-
olution to study fine structure. Electron tunneling and
luminescence studies have also had only limited useful-
ness in this area. All of these methods will be referred
to where appropriate in succeeding sections in the cases
where they have shed light on certain systems. The
reader is assumed to have some knowledge of the opti-
cal properties of solids, including the concepts of oscil-
lator strength, effective charge, and classical oscillator
representation of modes. Such ubiquitous solid state
physics concepts as phonon dispersion curves and the
Debye model of a solid are also assumed. An outline of
the paper may be seen in the list of contents above. In
many cases the division into sections may appear arbi-
trary, which it is from the point of view of the theoreti-
cal development. However, the special crystal prepa-
ration requirements and methods of taking spectra dic-
tate such a division of topics for the experimentalist.

In Sec. II model linear chain calculations are used to il-
lustrate in detail the local mode, both where it occurs
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well above all modes of the host lattice and where it oc-
curs in a gap in the host crystal spectrum. The reso-
nant mode, which is much more difficult for the begin-
ner to grasp, is also treated in detail in the context of
the linear chain model. Section III presents an intro-
duction to Green’s functions at a level sufficient to de-
velop the basic equation which determines the new vi-
brational frequency when the mass of an atom is changed
in a crystal (the mass defect or isotope model). The
next five sections (IV-VIII) deal with localized vibra-
tions in semiconductors, ionic crystals, van der Waals
and special organic crystals. The last two sections
deal with disorder of a different sort. Here, rather
than having point imperfections, the entire crystal is
involved in the disorder. Section IX deals with a crys-
tal whose spacing is still more or less regular but in
which the atomic species occupying each lattice site
varies in a random way. The final section deals with
the somewhat complementary situation of vibrations in
systems (no longér called crystals) where the atomic
spacing is random though the atomic composition may
be fixed. The variable spacing can lead to some ion
positions being occupied but unstable. This allows the
possibility of low-frequency modes best described as
tunneling transitions.
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TABLE II.1. Standard data for linear chains.

Chain parameter GaP GaAs

M cation mass (amu) 70 70

m anion mass (amu) 31 75

Z cation charge (e) 2 2

z anion charge (e) -2 -2

k force constant (dyne/cm) 0.87x10° 0.87x10°
" a cell length (&) 3.42 3.42

V cell volume (A3) 40.0 40.0

Highest frequency 2 optic mode (cm™) 370 285

Gap in mode spectrum (cm™) 205-308 198-205

Dielectric parameters for a solid composed of chains

€oo

W P (em™)
wio? (em™)

S mode strength

€ =€ +S

9.0 9.0
370 285
402.8 310.3
1.667 1.667
10.667 10.667

2 We use wave number frequency units ¥=w/2mc where c is the velocity of light. 1 cm™!

=3x101"Hz =0.477x10!% rad/sec.

> Real GaP (GaAs) has wyo =366 (268) and w;, =402.8 (291) cm™ at room temperature.

M2 0 0 . .
m2 0
0 0 MV

M-2 =

Multiplying M~¥2 into (2.3) yields
— W2 = —M"Y2km 'I/ZEE—DG, (2.5)

where

Mg, (2.6)

Equation (2.5) shows that the problem of solving for u
(or x) is simply a diagonalization problem

(D_ wzl){;:O,

>
u=

2.7

where the eigenvalues are the allowed values of w?, and
the eigenvectors are the displacements 4. The displace-
ments 1 may be transformed to actual atom motions by
making use of (2.6). Our procedure is to construct the
matrix D from k, M, m and to insert D into a matrix
diagonalization routine in a digital computer.

To illustrate the form of typical solutions, we have
used the parameters given in Table II.1. The solutions
are shown in the bottom part of Fig. 2 and several suc-
ceeding figures for the case of 48 atoms. )

From Fig. 2 we note that there are 48 modes. The
modes are grouped into two bands; 24 modes in the -
range O to 2052 cm™!, and 24 modes in the range 308
to 370°cm™!. These groupings are called the acoustic

2Throughout this review we use the spectroscopists frequency
- units em™! (wave numbers). These units are sometimes given the
symbol v and the conversion is v=w/27c. In many places,
however, we lapse into the common practice of writing w but
giving wave number units.
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and optic bands, respectively. Except for four special
modes (including the highest and lowest frequency), the
modes occur in doubly degenerate pairs. Dean (1967)
has given a discussion of the effect of different boundary
conditions which can lift the degeneracy.

The eigenvectors of each mode in this pure chain are
found to have a sinusoidal spatial dependence, as was
anticipated in the analytic approach [Eq. (2.4)], allowing
a-unique wave vector g to be associated with each mode
frequency. In Fig. 2 we have plotted the 48 mode fre-
quencies against their wave vectors in a dispersion
plot. For the model used here we may choose standing
waves, or left and right traveling waves for the solu-
tions (Dean, 1967). Figure 2 displays the modes as
traveling waves with each pair of degenerate solutions
separated into a +¢ and —¢ mode and plotted separately.
Figure 3 shows some of the mode eigenvectors. The
displacement vector for each atom is drawn perpendicu-
lar to the chain, for clarity in Fig. 3 though the real
displacements are along the chain for this model. From
Fig. 3 we see that four modes stand out as having very
simple eigenvectors. At w=0 all atoms move together.
At the top of the acoustic band ¢ =7/a and only the heavy
atoms move. At the bottom of the optic band g =7/a
with only the light atoms moving, and finally the high-
est-frequency mode has g =0 and the ion pairs move
against each other with identical displacements in each
cell.

Since we lose the sinusoidal spatial dependence [Eq.
(2.4)] in many cases for the defect chain, it is desirable
to display the modes of Fig. 2 in a ¢-independent way.

This may be done using the density of states. The total
number of modes is
N- [ g@yao- [ c(w)ae, (2.8)
o 0
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FIG. 3. Mode eigenvectors for the 48-atom chain described
in the preceding figure. Position along the chain is plotted
horizontally and ion displacement vertically. Modes 24 and 25
occur on either side of the gap between the acoustic and optic
bands.

where g(w)dw is the total number of modes in the range
dw, i.e., g(w) is the density of states or frequency dis-
tribution function. In writing (2.8) we have gone over to
the continuous variable w. This is appropriate as N -
causing the modes to become infinitely closely spaced.
Here G(w?) is often particularly useful, being the dis-
tribution of squared frequencies. Both G(w?) and g(w)
can be derived analytically for the perfect linear chain
(Maradudin et al., 1963; Dean, 1967). The problem
with the finite chain is that G(w?) and g(w) are really a
series of delta function peaks. To get a useful picture
of G which avoids the singular peaks we can use a his-
togram method. Figure 4 shows the histogram for the
48-atom diatomic chain. The histogram interval must
be quite coarse for only 48 modes; however, it clearly
shows the acoustic and optic bands (of Fig. 2), as well
as the gap between them where there are no modes. The
histogram also shows a peaking up of states at the edge
of each band. In the bottom part of the figure sketches
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FIG. 4. (a) Density of states histogram for the N =48 atom

chain of the preceding figures. In part (b) the analytic result
for the same chain as N approaches infinity is shown. Part
(c) shows the result of part (b) plotted in the linear frequency
space.

of G(w?) and g(w) are shown in the limit N~ for the
diatomic chain under discussion [see Dean (1967) for
explicit formulas]. The analytic forms of the distribu-
tion function of Fig. 4 clearly show infinities or critical
points at the band edges. Maradudin et al. (1963) and
Bilz (1969) have given extensive discussions of critical
points. Van Hove (1953) was the earliest worker to
clarify the significance of these singularities in G(w?) or
its derivatives, as well as to show they must always
occur for a periodic lattice. We do not discuss critical
points further here but merely note two of the ways they
can be important in vibration spectra. First, the addi-
tion of an impurity can cause all modes of a crystal to
become absorbing. The spectrum of an impure crystal
may show a (possibly weighted) image of g(w) and its
critical points in absorption or in Raman scattering.
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Second, the addition of a finite concentration of impuri-
ties modifies all modes and may remove sharp features
such as critical points. This effect is well known in
electron energy band structure where random impurities
can remove a sharply defined band gap by causing tailing
of states into the energy gap region, which is forbidden for
the perfect crystal. Examples of both these types of be-
havior will be given below.

B. The TO-LO splitting and optical spectra

1. Infrared absorption

In this section we discuss the coupling of the optical
probe to the chain model. Infrared absorption is con-
sidered first. Since power absorption is a bulk (volume)
effect, some consideration must be given to represent-
ing a real three-dimensional solid. Many identical lin-
ear chains can be imagined to represent a solid with the
sodium chloride structure shown in Fig. 5. This is, in
fact, a poor model of the solid in certain respects since
it is unstable (i.e., has zero restoring force) if one
chain is moved parallel to its neighbors. This feature
arises because we have used only stretching force con-
stants. Bending force constants can be added (Barker,
1970); however, this takes us too far afield into three-
dimensional modes and eigenvectors. Since the insta-
bilities mentioned above do not occur in the modes re-
sponsible for optical absorption, we continue to use the
chain model extended as shown in Fig. 5. The results

O o O

E
H
2 2 _ .2
. Swip . _Swlwy —wf)
€=t 3 2 2 o2
Wi~ w Wio— W
8-FUNCTION v | 8-FUNCTION
© BN o
E E
! > 1 1 = - 1 i —
300 400 7 (cm) 300 400 7(cm)

FIG.5. Athree-dimensional diatomic solid composed of
chains. The chains are taken to lie along the direction of the
electric vector of the infrared beam. Below are shown the
dielectric function and the transverse and longitudinal mode
spectra when the atoms are taken to be charged. The spectra
are drawn for the GaP model parameters in Table II.1.
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obtained are valid for optical absorption and have the
correct form for real crystals.

If a transverse-plane electromagnetic wave is applied
to the crystal (Fig. 5), it can couple to modes which
cause a dipole moment. From Fig. 3 we note that if the
two kinds of atoms are oppositely charged, the ¢ =0
optic mode at 370 cm™! is the only mode which possesses
such moments simultaneously in many unit cells. The
optical absorption resulting from the coupling to the di-
pole moment is conveniently described by the dielectric
function of the crystal. The reader is referred to stan-
dard texts on optical properties of solids (Born and
Huang, 1954; Moss, 1959).

For the present lmear diatomic cham we find

€ =Sw2, /(wio— w?), (2.9)
where

S =4nZ?%/(amwiy) (2.10)
is the dimensionless strength,®

"'-"To=(2k/,771)1/2 (2.11)

is the transverse optic mode frequency (370 cm™ in our
example), and

‘m=Mm/(M +m) (2.12)
is the reduced mass of the ions.

The dielectric function has a pole at wyo, the optic
mode frequency. As is usual in problems of frequency
response functions, we must include real and imagi-
nary parts, which we write

e=€e'+ie",

where €’ is understood to be the principal valued part of
(2.9), and

€” =Im(€) =1/2 woS[6(w = wpy) = 6(w + W)

describes the absorptive part of €. Table II.2 relates €
to the index of refraction and to the power absorption
coefficient a,

Since no damping has been put into the model, the
mode spectrum Im(€) shows an absorptive line of zero
width (a delta function) at +wpo. The lower part of Fig.
5 illustrates the mode structure. In succeeding sec-
tions, the mode spectra (Ime) are plotted for linear
chains with defects. For defect chains, € contains a
sum of delta functions occurring at many frequencies in
addition to Wwyo. We wish to study both the mode fre-
quency and mode strength of these defect modes for sev-
eral kinds of defect chains.

To complete the description of the infrared absorption
some account must be taken of the polarizable electrons
which surround each atom in a solid. This may be ac-
complished by adding a real, frequency-independent

3The present approach avoids explicit inclusion of local field
effects which would cause factors like (€, +2)/3 to appear.
This in no way limits the usefulness of the model. The reader
interested in pursuing these matters is referred to Lax and
Nelson (1971).
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TABLE II.2. Optical parameters, absorption strength, and Raman intensity.

Index of refraction n +ik
Dielectric constant

Power absorption coefficient

Dimensionless mode strength 2

€=¢ +i€”[=(n +ik)? in an isotropic material]

« =47k /A [A infrared wavelength in cm]

s_gfwe”dw _2¢c (“nodw
)y w7 Jp w?

For a weak absorption band o =2Tve” /n
~1a
at frequency v, cm . f wdu
T°Vy Jband

Absorption strength for N
one-oscillator defects per
cubic centimeter ®

Absorption strength per defect
(For €’ =1,m =16 amu, z =1).

Raman scattering intensity
for Stoke’s scattering with
frequency shift w

f adv
band

1
Oloc =17

_mwN(ze) (e +2 )2
e m 3

adv=0.30x10"1€ cm
band

I(w)cc[n (w)+1]Im(e) for transverse modes

I(w) < [n (w)+1]Im(~1/€) for longitudinal modes

2 In these formulas w and v represent frequency in units of rad per sec and cm™!, respectively.

b This formula assumes a fully localized charge of ze on the oscillator and the Lorentz local-
field correction (given by the right-hand factor) appropriate to a cubic or random array of oscil-
lators. The range of integration is over the defect band only.

¢ The Stoke’s scattered light will emerge from the crystal with frequency w, =w, —w, where w,
is the laser or pump frequency. These formulae depend on simplifying assumptions which are
described by Barker and Loudon (1972). The Stoke’s factor z (w)+1 contains the quantum
mechanical thermal factor » () =[exp (tiw/k gT) —1]71,

term* €., to (2.9). Once €. has been added to the dielec-
tric function, the solid shown in Fig. 5 has a second
optical mode described by a peak in the function Im(-1/€).
This resonance is also shown at the bottom of Fig. 5 for
€, =9. This second mode corresponds to longitudinal
plane waves in the crystal with £ along the chain axis.
The new frequency, designated wio (for longitudinal
optic mode), is higher than 370 cm™ because of anelec-
tric stiffening effect. The electrostatic forces which the
ions exert on each other add to the original spring con-
stants when the ions are moved in a longitudinal-plane-
wave pattern. Note that w;o does not exist or have
meaning for a single linear chain. Our approach is to
use the linear chain model to calculate wro. Charges
are then assumed for the ions and € is constructed for
the model solid using (2.9) with €., added.

To summarize the infrared effects, €(w) may be in-
serted into standard formulas to predict transmission
and reflection spectra (Moss, 1959). Table II1.2 gives
the interrelation of €, the index of refraction, and the
absorption coefficient @. The infrared absorption spec-
tra of very thin crystals in special orientation can show
peaks at Wy and w;o, allowing assignments of these
modes. When additional impurity or defect resonances
are present, infrared transmission is usually the best
method of detecting the defect modes which appear as
additional weak absorption peaks. The dielectric func-

‘e, will be frequency dependent and have a significant imag-

inary part at optical frequencies where w begins to approach
the energy of electronic transitions or the band gap energy in
a semiconductor. In the infrared region near wyg it is con-

stant for most insulators and semiconductors.
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tion contains all the information for determining the ab-
sorption. Its form in a defect crystal is discussed in
succeeding sections.

2. Raman scattering

For the chain model illustrated in Fig. 2 to exhibit
Raman scattering by the vibration modes, two new in-
gredients are needed. First, polarizable electrons must
be included whose polarizability depends on the ion mo-
tions. Second, the center of symmetry, which exists at
each atom in the chain model of Fig. 2 must be removed.
Figure 6 shows a chain model which has the center of
symmetry removed from each ion. This model may
have two different force constants, %, and %,, one for
the short bond and one for the long bond. The diatomic
chain now can serve as a model of a zinc blende struc-
ture crystal, such as gallium phosphide, which has no
inversion center. If we set the charges equal to zero
and the masses equal, it serves as a model of silicon,
germanijum, or diamond. The Raman effect arises from
the lattice motion changing (i.e., modulating) the elec-
tronic polarizability and hence the optical index of re-
fraction. This modulation produces sidebands at fre-
quencies W, + Wyg and W, — Wyo when a laser beam of fre-
quency w,; passes through the medium (for a review see
Barker and Loudon, 1972). In a three-dimensional zinc
blende crystal (charges not equal to zero) there are two
Raman-active modes, one at Wro and one at W o because
of the TO-LO splitting in these crystals. The Raman
spectrum shows both these sidebands. A fairly simple
model shows that the Raman spectrum depends essen-
tially on the spectra Im(€) and Im(~1/€) shown in Fig. 5
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(Barker and Loudon, 1972). The Raman spectrum cori-
tains, therefore, information on the normal modes of
the crystal. In a crystal containing defects the Raman
spectrum also contains peaks due to the defect vibra-
tions. Because of the special symmetry requirements
for Raman scattering, certain defect modes may show
up only in Raman scattering, so that the Raman and in-
frared spectra for a defect crystal often contain com-
plementary information. Table IL.3 lists the optic modes
and their activity for some common crystals. Note that
there can be optic modes which are neither Raman nor
infrared active in some crystal structures.

C. The case of one substitutional defect; the localized and
resonant modes

1. The localized mode

We now turn our attention to the linear chain shown in
Fig. 7. First, the single mass defect is introduced by
replacing the light atom 7 by a new atom of mass m’
bound to its neighbors by the same force constant as be-
fore. This is called an isotopic substitution. Some real
isotope experiments are possible, e.g., LiH with some
deuterium added in place of H. In practice many non-
isotopic substitutions, e.g., P,, in GaAs,® Sig. in Ge,
etc., are analyzed using the isotopic model. The justi-
fication is that the model is much simpler (there are not
adjustable force constants to parametrize) and that it
works fairly well in many cases. For m’'<m, a new
mode with frequency greater than 370 cm™! appears when
the linear chain equations (2.1) are solved. This mode
is localized spatially. Its eigenvector shows the im-
purity ion moving with large amplitude, the neighbors of
the impurity moving with considerably less amplitude,
etc. Thus the eigenvector does not have simple har-
monic spatial dependence as described by (2.4). Figure
7 shows some of the 48 eigenvectors for a chain con-
taining one defect with m’ =20, Mode 1 is identical with
mode 1 of the unperturbed chain (Fig. 2). Modes 2 and
3, and 4 and 5, etc. are no longer degenerate. In fact
all the double degeneracies of the unperturbed chain are
now lifted. The presence of the one impurity (m’ at m)
leaves only a single reflection plane at m’ so that there
must be even and odd (symmetric and antisymmetric)
solutions. From Fig. 7 we see that for the even® solu-
tions m’ has no motion so that the mode has exactly the
same frequency and wavelength as before (Fig. 3). The
odd® solution (mode 5) now has a slightly higher fre-
quency of 44.7 cm™! and a slightly shorter wavelength.
This mode is no longer pure sinusoidal right at m’, as
is discussed below. Mode 24 was an even-symmetry
mode of the pure chain so it remains unperturbed with
the impurity remaining stationary and not participating
in the dynamics of the motion in any way. Note that the
bonds attached to m’ do participate in all modes. Thus
for a force constant change, all modes (not just odd-
symmetry modes) would have changed frequencies and

5We use the subscript notation B to denote a B atom occupy-
ing an A site. B; means a B atom at an interstitial site.

6For the reader puzzled by these even/odd designations it
must be recalled that the vibrations are along the chain but are
drawn perpendicular to the ¢hain axis for clarity.
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FIG. 6. (a) Diatomic chain with unequal spacing which leads
to piezoelectricity and the Raman effect. (b) Because of the
polarizability being modulated by TO and LO optic modes a
laser beam of frequency w; is modulated and acquires side
bands on passing through the crystal as shown.

eigenvectors for the defect chain. Mode 47 is the new
long-wavelength optic mode wyo. It has low amplitude at
the impurity but still has positive ions moving to the
right and negative ions moving to the left in every unit
cell. This mode still has the largest dipole moment.
For an N-atom chain, as N—=, this mode wouldasymp-
totically approach the same dipole moment and fre-
quency as the perfect chain. Finally we come to the
unique defect mode—the 48th mode at 416.4 cm™!, This
is the localized mode. It has a nonsinusoidal eigenvec-
tor with amplitude which falls towards zero far from
m’. All other mode eigenvectors remain nonzero far
from m’. Figure 8 shows schematically the density of
states spectrum G(w?) for an N-atom chain with one iso-
topic defect m’<m, The local mode appears as a delta
function well above the optic band of modes.

There are several points worth emphasizing regarding
the local mode. First, one might question how the non-
sinusoidal mode pattern arises. A rough argument
which is often given is that the light particle m’ wants
to vibrate at a high frequency w,,.. This frequency is in
the stop band (forbidden band) of frequencies above the
optic band so that sinusoidal (i.e., bandlike) motions of
the neighbors of m’ are not possible at frequency Wi .
A more mathematical approach is to try solutions (2.4)
x,~exp(igna/2) for the defect chain. One finds that the
secular equation for the chain cannot be satisfied unless
q is complex, indicating a damped wave solution whose
amplitude approaches zero for large x (Kittel, 1966).

A second property of the local mode is that it becomes
more localized as m’ —~ 0., Figure 9 shows the local
mode displacement pattern for m’ =25, 20, then 5 amu
replacing the m=31 amu atom in our linear chain. We
introduce a quantitative measure of localization by spe-
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TABLE I1.3. Zone center optic mode frequencies of some crystals with simple structures.

The Diamond Structure [0} Fd3m]

wrg =W o =wg degenerate and Raman active only

“r References®
(¢ 1332 cm™ 1
Si 520 2
Ge 301 3

The Zincblende Structure [T2 F43m]

Modes infrared and Raman active

@10 “Lo References®
AlSb 318 345 4
CdTe 140 167 5
GaAs 269 292 6
GaP 366 402 7
GaSb 225 236 8
InAs 219 243 4
InP 307 351 4
InSb 174 183 9
SiC 794 962 10
ZnS 271 352 11
ZnSe 209 250 4
ZnTe 190 210 4

The Wurtzite Structure [C}, P63mc]

4 Modes ir and R active, 2 modes R active, 2 modes inactive

Elc Elc
wro wio wro =~ WLo wg wg References P

GaN 533 744 560 746 145 568 12
. 13

Cds 228 305 235 305 44 252 14
CdSe 166 211 172 210 a a 15
SiC 790 962 794 962 a a 16
~ ZnoO 380 574 407 583 101 4317 17

The Rocksalt Structure [0} Fm3m]
wTo Wio References®

LiH 590 1120 18
LiF 307 662 18
LiCl 191 398 18
LiBr 159 325 18
Lil 144 a 19
NaF 239 414 18
NaCl 164 264 18
NaBr 134 209 18
Nal 117 181 19
KF 192 330 19
KC1 142 214 18
KBr 113 165 18
KI 101 139 18
RbF 156 286 18
RbCl 116 173 18
RbBr 88 127 18
RbI 75 103 18
AgCl 106 196 20
AgBr 79 138 20
Agl 108 a 20
MgO 403 - 716 ’ 19
CaO 295 577 21
SrO 227 487 21
BaO 132 425 22
CoO 349 546 23
NiO 401 580 23
PbS 71 212 24
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TABLE IL.3. Zone center optic mode frequencies of some crystals with simple structures. (Continued).

Model calculations

The CsCl Structure [0} Pm3m]

Wg wro References®

CsF 127 a 19
CsCl 99 165 18
CsBr 73 112 18
Csl 62 85 18

TIF 148 a 25
TiC1 63 158 18
T1Br 43 101 18
TII 52 a . 25

The Fluorite and Antifluorite Structures [0} Fm3m]
wro wio wg References”

CaF, 257 463 321.5 26
. { 27
SrF, 217 374 286 26
' {27
BaF, 184 326 241 : 26

' ‘{27 :
EuF, - 194 347 a 28
GeMg, 207 ~250 265 29
ThO, 281 568 a 30
U0, 281 556 445 {30
31

2 Denotes modes whose frequency has not yet been measured or reported.
b The references for Table II.3 are the following:
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FIG.7. 48-atom linear chain with a light-atom isotopic sub-
stitution. Many of the modes are perturbed very little. Com-
pare for example modes 4 and 5 with Fig. 3. Note the new high-~
frequency mode (number 48) with its localized eigenvector.

cifying the component of the eigenvector of each mode
at the site m’. The eigenvectors U (2.6) are normalized
to 1 so that the component of U at a particular site is
usually between zero and 1/VN for any band mode in an
N-atom chain. If for some mode u#;=1, then obviously
all other components u,(R# j) are zero to preserve the
normalization. In Figs. 7 and 9 the component «,, is
shown. In Fig. 9 we note that «,, approaches 1 as the
mode becomes more localized. In many figures below
we specify the component of U at the impurity to save
drawing the complicated and detailed displacement pat-
tern for all the atoms.

We note from Fig. 9 that by the time m’ =5 there is
practically no motion of any atoms but the impurity it-
self. This situation suggests the approximation

Wioe =V2R /M’

for the local mode frequency. We will call (2.13) the
one-oscillator model of a localized vibration. Table
I1.2 gives the absorption strength for the one-oscillator
resonance,

Figure 10 shows the local mode frequency for m — m’
as a function of the dimensionless defect parameter

(2.13)
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DIATOMIC CHAIN 2N ATOMS
WITH m—>m' ON ONE SITE
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FIG. 8. Sketchof the density of states for the linear chain
of 2N atoms, one of which is replaced by a light impurity.

€=1-m'/m.

€ =0 implies a perfect crystal. Finite positive values of
€ result in a local mode whose frequency is shown by the
solid curve above the optic band. The one-oscillator
solution (2.13) shown as a dashed curve is obviously a
very good approximation as € approaches 1.

2. Band modes

Before leaving our first example of a chain with a
mass defect we wish to examine the detailed nature of
the band modes. For the linear chain, half of these
modes are unchanged from the pure chain and the other
half are slightly perturbed with new wavelengths. Fig-
ure 11 shows in detail two modes from a monatomic
chain (M =m) when a light defect mass (m’ =0.1m) is in-
troduced. The mode picked for detailed examination had
the wavelength A =3a, before the impurity was intro-

- LOCAL MODE DISPLACEMENTS

. IMPURITY ION
l

m  e=-m/m w, u(m) —

[ I S | —

25  .195 376.7 0.66 .,.r.vf‘I‘T*‘,‘,.
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20  .354 416.4 088 ... .es, | s el
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5 .839 781.0 098 . ...... .
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FIG. 9. Eigenvectors for the highest-frequency (localized)
mode for three isotopic substitutions on the m =31 site. Note
the extreme localization for a substituent of mass 5.
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FIG.10. Localmode frequencies for the diatomic linear
chain for both light and heavy isotopic substitutions on the
m =31 site. Note that the approximate formula breaks down
quite badly for negative mass defect parameter.

duced. A monatomic chain was used so that only one
amplitude function is needed for the description of all
particle motions., We draw this function rather than plot
its value at each atom as is done in other figures.. For
the defect chain the even mode has unchanged frequency
since m’ does not move. The odd mode has a slightly
increased frequency and an abrupt change in phase (of
the spatial sinusoidal function) at the impurity. Note
that this mode pattern is exactly what is needed to bal-
ance the forces on the neighboring atoms. Atom 4, the
right-hand neighbor of m’, must have the bond %,
stretched just the correct amount to give it the motion it
would have in a regular sinusoidal mode. Since the mo-
tion of atom 3 does conform to this sinusoid, atom 4 vi-
brates contentedly and obviously does not care about
atom 2. Similarly, atom 2 is entirely free to vibrate as
part of a regular band mode since it sees the neighbors
to which it is bonded moving in a pattern characteristic
of a regular band mode. Note that if this mode were a
perfect sinusoid through atom 3, as indicated by the
dashed line (Fig. 11), atom 4 would be giving a tremen-
dous stretch to the %,, bond. This stretch is not needed
in the defect chain because atom 3 is much lighter and
thus needs much smaller forces to accelerate it. For
this special model (linear chain with nearest-neighbor
forces) the band modes look much like the unperturbed
chain modes except for the jump in phase at the impurity
atom. In particular, the impurity atom does not have
any extra amplitude. This mode behavior is to be con-
trasted to the resonant modes discussed below.

The question often arises as to whether there is a val-
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FIG.11. Eigenvector of two low-frequency acoustic modes
which were formerly degenerate. A light impurity m’ has
been substituted for atom 3 in the lattice. The odd mode is
perturbed by acquiring a phase shift in its spatial wave pattern
at atom 3. Because of the phase shift its wavelength is no
longer 3a as in the pure lattice. The lower part of the figure
shows by a dashed line the displacement atom 4 would have had
if the impurity were not present.

id g-space description for the vibrations of the defect
chain. Figure 11 shows that for the band modes there is
a regularity over the whole chain described by a single
wave vector ¢, plus a jump in phase at the impurity.
Thus in a special qualified sense there is a unique q
state for each band mode. In two and three dimensions
the band modes become much more complicated, with
mixing of many unperturbed g states to form the new’
band modes of the defect crystal. In these latter cases
there is no unique g but at best a range of ¢ values which
describes the band modes.

3. Local mode and band mode absorption

In Sec. II.B the dielectric function for the pure chain
was discussed. Figure 12 shows the spectrum Im(€) for
the defect chain of Fig. 7, where m'=20 amu. Since
Im(€) is a series of delta functions, we plot a series of
vertical bars whose height is the integrated strength S
of each delta function. S is defined in Table II.2. The
striking feature of Fig. 12 is that there are now 24 trans-
verse modes (delta functions) in the Im(€) spectrum
arising from vibrations with odd.symmetry about the
impurity. These are divided into a cluster of 11 acous-
tic band modes, 12 optic band modes, and the one local
mode removed to higher frequency. The mode at 370
cm™! is by far the strongest with S =1.30. This strength
represents a decrease of about 20% from S =1.667 for
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FIG. 12. Mode strengths for the 48-atom chain with one defect at atom site 2. Since Im(€) is a series of delta functions, the inte-
grated strength S of each mode is plotted (see Table II.2). In (a) and (b) the light atom is replaced by a lighter atom, causing a
high-frequency local mode as well as absorption throughout the acoustic and optic bands. The charge of the impurity is taken equal
to that of the atom it replaces (Table IL.1). In (c) and (d) only a charge defect is introduced on atom 2. In (c) this charge is neu-
tralized on the two nearest neighbors and in (d) it is neutralized over the entire chain.

the mode wto of the pure chain. Note that our 48-atom
chain has 24 unit cells, so that adding one impurity atom
corresponds to 100/24 =4.2 at.% defects. This is a very
heavy doping compared to the 107*% typical of many
local mode experiments. This large concentration
causes all the new impurity modes to appear very strong
and reduces the strength of the original lattice absorp-
tion, since its strength is “borrowed” by the impurity
modes.

The impurity-mode strengths scale directly with con-
centration; thus the strengths shown in the figures may
be scaled to predict the results for other concentrations.
Figure 12 shows that the entire acoustic band and optic
band have become active in infrared absorption. The
acoustic band modes are weak for the mass defect m’
=20, but become stronger for m’=5. In a realistic N-
atom model, we expect the delta functions shown in Fig.
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N

12 to merge as N—« giving continuous bands of absorp-
tion in the acoustic and optic band regions. The local
mode will remain a delta function unless some specific
mechanism is included in the model to couple it to the
rest of the modes. Genzel (1969) has given an analytic
treatment for the diatomic chain and derived the con-
tinuous absorption spectra for certain cases of both
mass and force constant defects.

The broad bands of absorption discussed above will
occur for many of the cases of defect chains studied be-
low. We call this “band mode absorption.” Its shape is
always characteristic of the density of pure chain modes
of appropriate symmetry. For infrared absorption the
odd symmetry modes appear in the spectrum. Raman
scattering selects even-symmetry modes. In addition
the shape is modulated by a (generally) slowly varying
function of frequency, which depends on the method of
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coupling to the defect.

In the calculations for the mode strengths of the defect
chain in Fig. 12(a) and (b) we have used z'=2e. That is,
the impurity has the same charge as the ion it replaces.
In real crystals the charges are seldom this simple.
With the introduction of a defect there may be consider-
able rearrangement of charge on the defect and its
neighbors. . Leigh and Szigeti (1968) have considered this
effect in detail. The importance of charge transfer and
short-range polarization effects is illustrated by the
experimental fact that Ge impurities in Si have five
times the local mode absorption strength of B~ inSieven
though the simplest point charge model suggests that
the Ge should have zero charge. Such a simple model
can be improved by putting z on the Ge atom and —z on
the nearest host Si atom. The local mode then has finite
absorption proportional to 22 (see Table I1.2). In Fig.
12(c) and (d) two cases of charge defects are shown for
a GaP chain with no mass or force constant defects. The
mode frequencies and wavelengths remain as shown in
Fig. 2 but there is now band mode absorption. Figure
‘12(c) shows the characteristic absorption shape in the
acoustic band seen in the figures above. In Fig. 12(d)the
charge defect is neutralized not at the nearest neighbors
but by distributing the neutralizing charge uniformly
over the entire chain. Here the low-frequency modes
are strongly emphasized. This latter case is rather un-
physical but does serve to emphasize the effects which
can be associated with the charge distribution around the
impurity.

4. The gap mode

We now consider the effect of replacing the light atom
in the linear chain by a heavier “isotope.” If we continue
to use the mass defeect parameter € =1 — m//m, then €
takes on negative values for such a substitution. Figure
10 shows the result of the calculation for the 48-atom
linear chain. A new mode appears in the gap for any
negative value of €. This mode asymptotically approaches
the top of the acoustic band as the substituted mass be-
comes very large. This particular behavior is changed
if a different model is used. As discussed below, more
realistic three-dimensional models show this mode
dropping and entering the acoustic band when 7’ is made
sufficiently large. A one-dimensional or three-dimen-
sional model with no gap in the spectrum shows no new
localized modes for negative € except for possibly a
quasilocalized resonant mode to be discussed below.
Figure 13 shows the atom displacement patterns for
three of the modes for m’ =62 amu. Mode 25 is the gap
mode. In this mode, the impurity has most of the am-
plitude. Note that although the details of the motion are
different, this mode, like the local mode of Fig. 7, con-
sists principally of the impurity moving against its
neighbors. There is a major difference in limiting be-
havior between the local mode and the gap mode, which
should be noted. For m’ -0, the local mode became
completely localized at the same time that its frequeney
was pushed far above all band modes. The gap mode is
constrained to lie in a finite frequency region and cannot
be moved arbitrarily far (in frequency) from adjacent
band modes. This feature prevents localization of all
the mode amplitude on the defect. The bottom part of
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Fig.:13 shows the dielectric spectrum for the defect
chain with m’ =62. As in Fig. 12, half of the band modes-
have become infrared-active and there is in addition a
delta function absorption peak at the gap mode frequency.

5. Gap and local modes for heavy-ion replacement

All the modes discussed up to this point arise from
replacing the light ion by an isotope. Figure 14 shows
the effect of replacing the heavy ion (M ="70) by a lighter
isotope. In this case two new localized modes appear
simultaneously. We continue to call the lower-frequency
localized mode the gap mode, since it occurs in the gap
between the acoustic and optic bands, and the higher-
frequency mode the local mode. For € approaching 1,
the local mode rises to very high frequency, as one ex-
pects intuitively. The gap mode, however, shows unex-
pected behavior. It approaches the center of the gap;
thus its frequency cannot be related to the one-oscilla-
tor approximation w=v2k/M’. Figure 15 shows the atom
motions for M’ =5.6 amu., i.e., €=0.92. Mode 48 is the
local mode. Its frequency of 760 cm™! is well above all
modes of the perfect chain. Its eigenvector is very sim-
ilar to the local mode eigenvectors studied earlier in
Fig. 9. Mode 24 is the gap mode. We note from the
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FIG. 13. Eigenvec.tors and absorption spectrum for a heavy
substituent on the » =31 site which causes a localized mode in
the gap (mode number 25).
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FIG. 14. Localized modes for substitutions on the
M =70 site of the GaP linear chain (Table II.1). For this case )
two localized modes occur at once. The approximate solution
is only useful for giving the higher-frequency mode near e=1.

eigenvector that the impurity mass plays almost no role
in this type of motion. The impurity atom merely fol-
lows the ion on each side. It is easy to show that for the
linear chain model in the limit of small M’ the gap mode
approaches the center of the gap in the w? (rather than
w) spectrum. The gap mode of Fig. 15 should be con-
trasted with that of Fig. 13 arising from substitution on
the lighter-ion site. Both are localized modes; how-
ever, the displacement pattern is quite different in de-
tail for the two kinds of substitution.

6. Resonant modes

, Substitution of a heavier isotope for the M =70 atom in
the linear chain with hearest—neighbor forces results in
no localized modes. The band modes become slightly
infrared-active but no new absorption appears at high
frequencies or in the gap. We now must emphasize the
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FIG. 15. Eigenvectors for the twokinds of localized modes for a
light-atom substitution on the M =70 site. M’ =5.6 corresponds to
€=0.92 of the preceding figure. The localized mode which oc-
curs in the gap is about four times less well localized than the
high~-frequency local mode. Reducing M’ further does not in-
crease the localization of the gap mode—its eigenvector and
eigenfrequency change very little even in the limit M’ — 0.

fact that the linear chain with nearest-neighbor forces
and isotopic substitutions does not exhibit one very in-
teresting class of defect modes—the resonant modes.
This mathematical anomaly of the linear chain in fact
delayed the recognition of these low-frequency modes
which lie within the acoustic band.

Dawber and Elliott (1963) have shown that resonant
modes arise in a three-dimensional model when an atom
is replaced by a much heavier isotope. We can exhibit
the same type of mode in the linear chain only by reduc-
ing the force constants on each side of one atom. Taking
the linear chain of Fig. 2 we reduce the force constant
on each side of atom 2 to 2’ and define the force constant
defect parameter

y=1=Fk'/k.

Figure 16 shows the new modes which result. As vy in-
creases from 0 to 0.66, a localized mode drops from
the lower edge of the optic band into the gap. Its eigen-
vector is very similar to the gap mode in Fig. 13 (mode
25) which resulted from replacing 7 =31 ion by a heav-
ier isotope. As v increases above 0.66, distinctly new
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FIG.16. The defect modes for a force constant reduction on
the m =31 atom. As vy increases, a gap mode is formed which
decreases in frequency, then changes its character and enters
the acoustic band. Once within the acoustic band, there is a
group of eigenvectors or modes which have large amplitude
near the impurity. The width in frequency of this group is
given by the vertical bars. Such a group of modes is called a
“resonant mode.”

behavior occurs. A band of closely spaced modes within
the acoustic continuum all have partially localized be-
havior. Vertical bars are used in Fig. 16 to show the
width of the band. Figure 17 shows the atom motions for
v=0.85. The vibrational amplitude does not die out far
from the defect. The defect atom, however, has extra
amplitude. These modes are localized in a special
sense. All atoms vibrate in a sinusoidal pattern, but
there is extra amplitude on the defect atom. For ¥
=0.85 the extra amplitude is a maximum for modes near
125 em™, which we call the frequency of the resonant
mode.

Figure 17 clearly shows that there is not one but many
localized modes. A probe which couples to some prop-
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vectors. Note the relative amplitude reversal near the peak of
the resonance as one passes from the eleventh to the thirteenth
mode,

erty of the defect will usually not be able to resolve in-
dividual modes, however, so that a measurement will
show a broad response peaked near 125 cm™!, This
broad response is called “the resonant mode.” It is not
broad because of damping, but because it consists of an
envelope of modes in each of which the defect vibrates
with significant enhanced amplitude. Figure 18 shows
the amplitude of vibration of the defect atom relative to
the amplitude of the same atom type in a location re-
moved from the defect, where the sinusoidal envelope is
at 2 maximum. Again we note the “resonant” or “damped
mode” appearance of the spectrum near 125 cm™, At
higher frequencies inthe optic band there is very little
motion of the defect. The broad resonance shown in
Fig. 18 is to be contrasted with the delta function peaks
obtained earlier for the localized modes. Figure 19
shows the absorption strength spectrum for the reso-
nant mode in a 48-atom chain. There is approximately
a one thousand-fold increase in absorption strength in
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FIG. 18. Amplitude of defect atom relative to amplitude of
atoms far removed for the case y=0.85. This function is only
defined for even-symmetry modes. Note that finite amplitude
exists in both the acoustic and optic band regions but there is
a strong peak near 125 cm~! connected with the resonant mode.

the acoustic band compared with all preceding calcula-
tions for mass defects. As might be expected from Fig.
18, the absorption shows a broad peak near 125 em™
plus some weak activity in the optic band.

The resonant mode exhibited by the linear chain model
becomes much more narrow and moves to lower fre-
quency as y approaches 1 (Fig. 16). Li substituted for
K in KBr is an example of a force constant defect (and
mass defect simultaneously) which comes close to
v=1.0. The weak binding of Li is found to cause a sharp
absorption peak near 16 cm™!, i.e., at very low fre-
quencies near the lower edge of the acoustic band. Since
very heavy substituents which might be expected to
cause resonant mode behavior are usually tightly bound,
most observations of resonant modes actually require
significant softening of the force constant. Genzel, Renk,
and Weber (1965) have presented linear chain calcula-
tions of resonant mode behavior for atoms which are
both mass and force constant defects.

D. Vacancies and interstitials

Figure 20 shows two linear chain models which illus-
trate vacancy and interstitial defects. There is no sim-
ple physically realistic model for these defects which is
comparable to the isotope model. The vacancy is de-
noted (. The simplest vacancy model consists of re-
moving a host atom and its bonds to create a vacancy,
then altering the nearest remaining bonds because of the
static lattice relaxation which occurs about the defect.
Mitani and Takeno (1965) have evaluated a similar model
for a three-dimensional lattice. For the linear chain
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FIG. 19. Absorption spectrum for the resonant mode shown
in preceding figures.

this model is attractive since it has only one parameter,
the force constant defect y =1 — k’//k. We assume that the
charge which has been removed is compensated for by
small equal charge defects spread over the entire chain.
There has been insufficient experimental work to con-
firm whether such a model is at all adequate. Figure 21
shows the localized and resonance modes which occur
for a single vacancy on either a Ga-ion site or a P-ion
site, i.e., for Og. or O,. For increased forces (nega-
tive v) the P-vacancy mode lies somewhat higher than
the Ga-vacancy mode. For Og, in GaP the large ampli-
tude is localized on the two lighter ions (P ions) nearest
the defect. For very long chains the modes occur as

k:k k’: :k' k

?

O (VACANCY)

(a)

( INTERSTITIAL)

(b)

FIG. 20. Chainmodel of (a), avacancy, and (b), an interstitial '
defect. The interstitial ion is drawn below the chain axis
to avoid the bond k.
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degenerate pairs which can be taken to have symmetric
and antisymmetric vibrational amplitudes about the va-
cancy. For the finite chains used here the degeneracy
is lifted as soon as the amplitude becomes nonlocalized
to the extent that there is finite amplitude at the chain
ends which are connected by the periodic boundary con-
ditions. For the 48-atom chain the splitting is negligibly
small for all modes except the resonant modes. Note
that a bond linking the nearest neighbors of the vacancy
would split the degeneracy for a chain of any length. In
Fig. 21 we have shown the antisymmetric (infrared-ac-
tive) mode frequencies and eigenvectors. As in the case
of the isotope defects discussed in earlier sections, the
closer a defect mode comes to the band edge, the less
localized it becomes.

For the vacancy on the Ga site when the force constant
next to the defect is weakened, a gap mode appears which
drops and penetrates the acoustic band, becoming a
resonant mode. The vertical bars in Fig., 21 roughly
delineate the breadth of the resonant mode. The eigen-
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vector for one component of the resonance at y=0.8 is
shown as an inset in the lower part of Fig. 21. The
largest amplitude mode within the resonance occurs at
110 cm™!. We plot the mode at 84 cm™ and note the
sinusoidal, i.e. bandlike behavior of all ions except the
nearest neighbors of the vacancy. For U, when y>0
a gap mode approaches the center of the gap and simul-
taneously a broad resonance appears at low frequencies.
The resonant mode is resolvable only for ¥ >0.7 for this
case. Aside from details of the vibrational amplitude
the vacancy model gives no generically new modes. Sim-
ilar local modes, gap modes, and resonant modes have
all been encountered in the earlier sections. This sim-
ilarity makes the positive identification of vacancy
modes from spectroscopic evidence alone quite difficult.
In Fig. 20 a model of a single interstitial is depicted.
The interstitial ion is taken to lie between ions 3 and 4.
It is evident that a reasonable parametrization requires
the mass of the interstitial as well as several force con-
stants (e.g., &, k,, ;). With so many parameters it be-
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comes tedious to present general graphs of the modes.
We have calculated several cases and find the same gen-
eral conclusion as outlined above. For the interstitial
there can be localized modes, gap modes, and resonant
modes. In each case the large localized amplitude re-
sides on the interstitial or in some cases on the lighter
neighboring ion., While one or two cases of interstitial
modes have been identified, very little model fitting has
been carried out to date because of the complexity of
this defect in the real three-dimensional case.

E. The case of many defects; the mixed crystal
chain model

1. Introduction

In this section we continue our approach of using the
linear chain to illustrate vibrational modes. For con-
creteness the masses appropriate to the mixed crystal
GaAs,P,_, are used, since this crystal has been much
studied by infrared and Raman spectroscopy. i

At the outset it must be stressed that there have been
a disappointing lack of tractable theoretical models for
describing mixed crystal vibrations. The situation here
is very similar to that in the theory of the band struc-
ture of mixed crystals and of amorphous solids. In both
problems there are exact techniques for describing the
effect of one impurity atom. These techniques are then
extended to mixed crystals by approximations which are
questionable in many cases. For both band structure
and lattice vibrations there is also the virtual-ion crys-
tal model which replaces the individual host and impurity
ions by a single “average” ion. For example, in
GaAs,. P, s the virtual ion would have a mass of 0.5
(70 +31) amu. This model is conceptually simple, and
once the properties of the virtual ion are fixed, one has
a pure crystal problem in either band structure or lat-
tice vibrations to solve. The coherent potential approxi-
mation (CPA) shows much promise in principle for pro-
viding models of mixed crystal vibrations. Elliott ef al.
(1974) have given an extensive review of this and other
methods. Taylor (1973) has done a detailed approxi-
mate calculation using the CPA for two specific mixed
crystals. Apart from these and other analytic techniques
there has been a considerable effort in the mixed crys-
tal lattice vibration problem using exact calculations on
finite models. The linear chain model we use is one ex-
ample. It suffers from being a one-dimensional model
and from neglect of long-range forces and short-range
polarization effects. The equations can be solved exact-
ly, however. Dean has pioneered in this area, having
considered chains containing as many as 200 000 atoms,
and also having obtained solutions for some two- and
three-dimensional structures. Hass et al. (1969) have
presented some solutions for 40-atom chains which in-
clude the important feature of mode strength as well as
frequency.

We will continue with our diatomic chain model, solv-
ing for mode frequencies, eigenvectors, and infrared
strengths. We assure the reader that the model exhibits
all the major effects that other more sophisticated mod-
els have shown and also that it is very useful in showing
the way towards two other simple models which are
most used in fitting experimental data.
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2. The mixed GaAs-GaP linear chain

Figure 13 shows the effect of replacing one P ion in
GaP by a much heavier ion. A gap mode of considerable
strength appears, and some strength is also spread over
adjacent formerly inactive modes. We will find that as
more and more P ions are replacedby As ions and the gap
mode increases in strength and finally becomes domi-
nant. The modes near 370 cm™ decrease in strength
and finally become a P-ion local mode when only one P
ion is left in our 48-atom chain. Since the impurity
modes are all quite strong in the mixed crystal, they
cause measurable effects in reflectivity, and we now
compute the reflectivity spectra from the model to make
closer contact with experiment. To conserve space
many of the weaker modes, such as those below200cm™
in Fig. 13, will not be shown in some of the plots. Fig-
ure 22 shows the modes for a 48-atom chain for several
cases of moderate concentrations of impurities. For
simplicity the force constant is fixed at 0.87X10° dynes/
cm as used in most of the previous calculations (Table
I1.1). When this force constant is used with the masses
appropriate to a GaAs linear chain, the TO mode occurs
at 284 cm™! (Fig. 22, top). This frequency is 14 cm™
higher than wto of real GaAs because of our choice of
force constant. The figure shows the effect of adding
one P ion, then three P ions, and finally the effects of
three, then one As ion in GaP. From the figure we note
that for 12.5% P in GaAs, there are three local modes.
They are very closely spaced, however. The total
strength of the three (ZS =0.35) is approximately three
times the strength of the single local mode for the
GaAs . 455P; .04 chain (S =0.12), as might be expected.
For the model we have been using there is an exact sum
rule on the mode strengths S;

zS,=1.661.

Thus as the local modes become stronger the main band
must lose strength.' In the lower part of Fig. 22 we note
how the As gap mode increases in strength at the ex-
pense of the main GaP band in the GaAs,,,, P, ¢, Mmixed
crystal. Figure 23 shows the calculated reflectance
spectra for the same crystals. To obtain realistic
spectra each mode has been given a width of Aw;
=0.025w;. While this is an arbitrary choice, such widths
are often measured in mixed crystal spectra. The fig-
ure shows that pure GaP and pure GaAs each have one
reststrahlen band. Here 4.2% impurity causes a second
weak band to appear near the local or gap mode fre-
quency. At 12.5% impurity the subsidiary reststrahlen
bands acquire more strength, and in addition there is
strong “fine structure” near these bands. Note that the
reflectivity spectra are insensitive to very weak modes.
In Fig. 24 the dielectric loss spectra are plotted for
pure GaAs and for GaAs, g.,5P,.,35- Since there is appre-
ciable splitting of the transverse and longitudinal compo-
nents of the principal mode and the main local modes,
both the transverse [Im(e)] and longitudinal [Im(-1/€)]
spectra are plotted. Here again finite linewidths have
been inserted to give realistic spectra. Twomainmodes
plus considerable fine structure are very evident in
both the € and 1/€ spectra for the mixed crystal.
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3. Two-mode behavior

If we ignore the weaker fine structure in the spectra
shown in the preceding figures, a simple plot of mode
frequency versus concentration may be constructed as
shown in Fig. 25. The peaks of the strongest modes in
the € and 1/€ spectra are plotted using the data in pre-
vious figures plus some data from additional calculations
on 96-atom chains. The gross behavior shown in Fig.
25 has been termed “two-mode” behavior, since at any
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finite concentration there are two TO modes and two
LO modes. Correspondingly, in the reflectance spectra
there are two reststrahlen bands. The 48-atom chain
shows, however, that even at 12% concentrations there
is significant strength in other modes besides the main
modes plotted in Fig. 25. To continue the diagram to

» =0.5 many more modes would have to be added to the

figure, destroying its simplicity. We will return later
to simpler models which show two-mode behavior for
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in the text. Note the considerable fine structure for the mixed
crystals in (c) and (d).

all ¥, but note here that experiments clearly show fine
structure like that described above, suggesting that two-
mode behavior is an approximation and that any com-
plete model must be able to exhibit more than two modes
for a mixed crystal.

4. Dependence of modes on ion distribution

The figures discussed above with impurity concentra-
tions up to 12.5% show several features which are spe-
cifically mixed crystal or high-concentration effects.
The spectra deserve extra comment on two points re-
lated to the validity of the actual model used here.
First, we stress that the calculation for Fig. 22(c) and
Fig. 24 are based on a 48-atom GaAs chain with three
As ions replaced by three P ions. Three localized
modes appear. We could have achieved 12.5 %P by using
a 96-atom GaAs chain with six P ions, in which case
there would be six local modes. The longer chain would
reveal a very similar dielectric spectrum near the
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FIG. 24. (a) Dielectric spectra of pure GaAs calculated using
€,=9.0 and the damping described in the text. (b) Dielectric
spectra of a mixed chain showing two main modes plus many
weaker peaks in both the transverse and longitudinal spectra.

main mode and the local mode, however, once broaden-
ing was included. There would be more peaked struc-
ture below 220 cm™. The 48-atom chain has individual
modes about 20 cm™! apart in this acoustic band region.
The broadening we have chosen does not cause such
widely spaced modes to merge into a continuum of ab-
sorption which calculations on much longer chains show
must exist. Genzel, Renk, and Weber (1965) have
studied the linear chain with one defect analytically and
find continuous absorption in the acoustic region in the
limit of a very long chain. Their paper contains graphs
of the absorption for various combination of mass de-
fect, force constant defect, and charge defect in a NaCl
linear chain model. In Fig. 26 their results for the di-
pole moment of the NaCl chain are reproduced for sev-
eral cases of mass and force constant defect on the Na-
ion site. Localized modes are ignored; only the band
absorption is plotted. The continuous absorption within
the acoustic and optic bands is clearly shown. A second
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point concerning the linear chain results has to do with
the impurity-ion distribution. In one dimension as soon
as two P ions are introduced, they partition the chain
creating an “island” or cluster of GaAs between them.
In three dimensions such islands are much less proba-
ble. “Island effects” are important and are predicted in
three-dimensional mixed crystal models (Hori, 1968).
Their probability of occurrence is far different in two-
and three-dimensional systems. We merely stress at
this point the importance of actual three-dimensional
atomic arrangement in a detailed understanding of mixed
crystal behavior.

A study of linear chain results for various composi-
tions, various ion distributions, and various chain
lengths suggests the following conclusions which are
summarized in Fig. 27. For 12.5% P in GaAs the strong-
est mode is near 280 cm ™ and has an eigenvector which
consists of Ga ions vibrating against As ions in all re-
gions where As ions are two to three lattice spacings
from P jons. The strong local mode at 349 cm™ has an
eigenvector which consists of the isolated P ions moving
against their Ga neighbors in a localized mode, much as
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depicted in Fig. 7. The next strongest mode at 270 cm ™
is not highly localized but has largest amplitude for Ga
vibrating against As in an island separated from the
rest of the crystal by P ions. As Fig. 27 shows, the two
most important islands are P-Ga-As-Ga-As-Ga-P
and a P-Ga-As-Ga-P island with resonance near 250
cm™!. Hori (1968) and his collaborators have discussed
extensively the occurrence of islands and the spectral
peaks which result from their vibrations. Our main
point here is that these peaks are a characteristic mixed
crystal effect, since it takes many impurity ions to iso-
late islands of host material. Some of the less localized
modes have eigenvectors which resemble modes 24 or
25 in Fig. 3, i.e., the zone boundary modes of the per-
fect crystal. These kinds of modes may be described
as perturbed zone boundary modes made active by the
impurity-induced disorder. Finally, many of the weaker
peaks below 200 cm™ in Fig. 27 are characteristic of
the short chain used here. These peaks can be expected
to merge into a smooth absorption continuum in more
realistic models, as has been mentioned above.

To conclude our discussion of the 12.5% mixed crystal
we note that for the calculations presented thus far the
ions'were carefully distributed with always at least one
As ion between adjacent P ions. If two P ions are al-
lowed to fall on neighboring anion sites, there is a
strong interaction between the ions, causing the local
mode peak near 349 ecm™! (Fig. 27) to split. For two
neighboring P-ions and a third more distant P-ion there
are three peaks at 332, 349, and 360 cm™'. The highest
peak at 360 cm™! contains two-thirds of the local mode
strength and is a pair mode with the two P ions moving
in phase. The isolated P ion still gives a mode at 349
cm™'. The second member of the pair mode is infrared-
inactive and is repelled to a frequency of 332 cm™! well
below the isolated local mode frequency. Dean (1967)
has given an analytic treatment of pair modes for the
monatomic chain. Figure 28 shows a plot of localized
mode frequency for both the isolated atom defect and the
two adjacent-atom defect. If two impurity atoms are in-
serted into the chain many lattice spacings apart, they
can both vibrate independently in localized modes and
both will have the same frequency given by the dashed
curve in the figure. The strong repulsion of the two
eigenfrequencies when the two isolated defects are
placed together is evident from the figure.

The large effects associated with adjacent-pair defects
and the island modes discussed above show that in form-
ing a mixed crystal model we must carefully consider
the distribution of ions, i.e., their order. Kittel (1968)
has given a discussion of order under the heading “Ele-
mentary Theory of Order” in his Solid State Physics
text. Space does not permit a discussion here of atom
arrangements in three dimensions, but we will briefly
consider possible structural configurations of a real
GaAs,P,_, mixture. We take the Ga sublattice to be per-
fect, and so we are really discussing the binary alloy
As,P,_, whose atoms must be distributed over an fcc
lattice. Two extremes of behavior are at once apparent.
There can be complete segregation where all of the As
atoms cluster in one region and all the P in a second
region. All second-neighbor anion-anion bonds in the
alloy are then As—As or P-P except for the few across
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the interface separating the regions. For this extreme
of behavior the word “alloy” is inappropriate. The other
extreme of behavior is the alloy with perfect long-range
and short-range order for which y=0.25 or y=0.75 and
cubic symmetry is preserved. The available sites di-
vide into two unique groups: the face centers and the
cube corners. Putting As ions on all face centers and P
ions on all cube corners gives GaAs, ;;P,.,s. This struc-
ture can repeat indefinitely in space. In this structure,
half of the anion—anion second-neighbor bonds are As—
As and half are As—P. There are no P-P bonds. These
are far different proportions than for the segregated
mixture of the same composition described above. fcc
alloys of Cu, ,sAu, ,; have been studied and found to ex-
hibit the type of order described here, but with a transi-
tion to a more disordered state as the temperature is
raised.

The partially disordered state covers the considerable
intermediate ground between the extremes mentioned
above. The appropriate parameters used for its de-
scription are short-range order probabilities. For ex-
ample, if we pick a P ion in the As, ,;P, ,; ordered al-
loy, the probability of finding an As ion as nearest
neighbor is 1.0, and as second-nearest neighbor is 0.

In the segregated mixture these probabilities are both
zero. We can picture an almost random alloy where this
probability approaches 0.75 for far-distant neighbors.
There is not enough energy gained from this configura-
tion to force the whole crystal into this pattern. Proba-
bility considerations such as these play an important
part in models for GaAs,P,_, developed by Verleur and
Barker (1966). . The atomic arrangement of a real crys-

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fall 1975

tal may depend on conditions of-growth as well as on the
thermodynamic energies of certain configurations. For
example, GaAs,P,_, can be grown by vapor transport
utilizing P, and P, molecules. It is easy to visualize
localized clusters of P ions if a P, molecule arrives at
the growth interface and the growth continues at a high
rate with insufficient annealing to allow ion motion and
exchange. Because of the dependence of the vibration
frequencies on atomic arrangement, lattice spectra pro-
vide an important tool for studying atomic order.

F. Other mixed crystal models

1. The virtual-ion model

Figure 29 shows a linear chain virtual-ion model for
GaAs,P,_,. There is no disorder since in this model
all the anions are identical virtual ions with mass;

m =(y)75+(1 - y)31 amu. (2.14)

At the bottom of the figure the mode frequencies are
plotted as a function of concentration. At each concen-
tration there is one doubly degenerate transverse mode
and one longitudinal mode, i.e., one reststrahlen band.
The mode frequencies decrease monotonically from pure
GaP to pure GaAs with a downward curvature. The vir-
tual-ion model is not applicable to GaAs,P,_, since ex-
perimentally this mixed crystal shows two main rest-
strahlen bands. The model does qualitatively fit the
spectra of mixed Ba,Sr,_,F,. For a detailed fitting in
this latter case the virtual ion is described by an aver-
age mass (2.14), as well as averaged force constants
and averaged effective charges, since these latter pa-



Model calculations

GaAsgrsP 25

48 ATOM LINEAR CHAIN

— e— —e e —e -

103 Ga As Ga As Ga As

MAIN GaAs MODES

W 102 |SLAND MODE .
E

L=l

=z

=4

5 o— LOCAL MODES
S0, L. . . e e e ]
w Ga As Ga P As Ga P Ga As
o

= ISLAND MODE —

2

P}

w100

[=]

o'

1
400

1072 1 1
100 200 300

FREQUENCY (cm~1)

500

FIG. 27. Modes and eigenvectors in a mixed GaAs—GaP
chain model. Besides the main GaAs-like mode and three
almost degenerate and identical P-ion local modes (only one
local mode eigenvector is shown), there are two strong island
modes.

rameters are not the same in BaF, and SrF,. A linear
chain model of a mixed crystal where the two compo-
nents have almost equal mass shows one main band of
absorption at all concentrations plus weak subsidiary
structure. The virtual-ion model is therefore a useful
approximation for such cases if the weak structure can
be ignored. .

2. Isodisplacement models

A slightly more complicated model which gives two-
mode behavior and can thus predict the gross behavior
of GaAs,P,_, has been proposed by Chen, Shockley, and
Pearson (1966). To motivate this type of model, we note
that in a diatomic crystal with perfect regularity equa-
tions for the long-wavelength (¢ =0) modes can be writ-
ten

(2.15)
(2.16)

MeXy==R(X,=%,)+ 2, E,
MmpXy==R(Xy—=%,)+ 2, E,

We choose notation appropriate to gallium phosphide,
write one-dimensional equations, and absorb local field
effects into the coefficients so that E is the macroscopic
electric field. x, is the displacement of the Ga ion in
every unit cell. The Ga ions all have the same displace-
ment (“isodisplacement”) since this is the definition of
the ¢ =0 mode to which we have restricted ourselves.
For the mixed crystal GaAs,P,_, the equations of the
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FIG. 28. Localmode frequencies for both a single and two
adjacent light impurities in a monatomic chain calculated for
the isotope model. The highest-frequency mode is symmetric
and hence Raman-active but infrared-inactive, while the other
local mode has reversed activity.

isodisplacement model are

M5y =—(VVy(Xy = %) = (L= ¥ep(x, = %,) + 2, E, (2.17)

Mg Xy=—=Ry(X,=%g)= (1 =Yy (X~ %,) + 2, E, (2.18)
m.b';ékz_kp(xp_xg)"ykz(xﬁ'—xa)'*'ZpEs (2-19)
P - xgzg+(y)xaz.a+(1 —Y)X,2, .‘ 2.20)

ion V
Here P, is the lattice mode contribution to the polariza-
tion, and V is the unit cell volume. These equations are
arrived at by assuming that Ga ions, P ions, and As
ions are still isodisplacive in the mixed crystal. The
force constants are weighted in the obvious manner by
(») or (1 —9) corresponding to the number of bonds each
ion sees (Verleur and Barker, 1966; Chen et al., 1966;
Barker, 1968b). Equation (2.18) can be multiplied by (),
and (2.19) multiplied by (1 —¥) to obtain a more natural
set of equations with a symmetric force matrix. Note
that 2, is a second-neighbor (anion—anion) force con-
stant which must be included to obtain a reasonable fit
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to the measured spectra of GaAs,P,_,. Figure 30 shows
the modes obtained for GaAs,P,_, using (2.17) to (2.20)
with €, =9. The force constants are given in the figure.
For simplicity we have chosen k, =%, just as we did for
the mixed crystal chain model. The parameters of Ta-
ble II.1 are used and the optic mode frequencies eval-
uated from the poles and zeros of €. The weak high-fre-
quency mode observed as ¥ —1 near 350 cm™ (Fig. 30)
has been called the phosphorus local mode (Verleur and
Barker, 1966; Chen et al., 1966). Strictly speaking, a
localized mode cannot be defined within this model since
there are no significant spatial coordinates. The eigen-
vector at ¥ =0.99 for the highest-frequency mode is
(%¢,%,,%,)=(0.008,-0.002,~1.384), which fits our intui-
tive picture of the localized mode—predominantly P
vibrating against Ga. Similarly, the 225 cm™' mode
near ¥ =0 is suggestive of an As local mode, though the
model is not complete enough to verify that this mode is
localized, nor can we calculate whether thismode comes
within a gap in the GaP density of states.

Chen et al. (1966) have given arguments for making the
force constants in (2.17)—(2.19) depend on concentration
because of the dilation of the average cell dimension as
As is added to GaP. This procedure is necessary to ob-
tain good fits in many cases. Verleur and Barker (1966)
have noted that %, in (2.18) and (2.19) arises from in-
cluding local field effects as well as from short-range
forces. The actual short-range second-neighbor forces
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FIG. 30. Transverseand longitudinal mode frequencies of
GaAs, Py, calculated with a three-coordinate isodisplacement
model. In this simple example the force constants are fixed at
the values shown in the figure, independent of concentration.
Note that a larger value of &, raises the end points (“local
modes”) of the curves but not the main modes of pure GaAs or
pure GaP. The lower part of the figure gives the transverse
mode oscillator strengths of each band.

are found to be negative in shell models used to fit pure
GaP and pure GaAs, while &, is usually positive in fits
to actual mixed crystals. The above points merely em-
phasize that the force constants and charges in (2.17) to
(2.20) are effective constants which may be difficult to
relate to microscopic parameters. A major point worth
emphasizing here is that this isodisplacement model
exhibits two TO modes. It can exhibit no more since
there are only three coordinates, and hence three de-
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grees of freedom.” Verleur and Barker (1966) original-
ly considered this model, then proposed a generaliza-
tion of the model with more coordinates. They distin-
guish five different isodisplacive Ga-ion sublattices de-
pending on whether a Ga ion is surrounded by four,
three, two, one, or zero As ions. With ‘many more
coordinates they find many more modes and can thus fit
the fine structure discussed previously. Their model
simplifies to the model presented here if the five Ga
coordinates are set equal by artificially joining all Ga
ions with rigid rods so that there is only one unique Ga
ion displacement, and similarly for the P ion and As ion
coordinates. Because of the complexity of the model
some later authors have called it a cluster model and
mistakenly described it as being different from an iso-
displacement model.

3. Five models of the mixed crystal

We conclude this introductory section on mixed crys-
tals by computing the spectrum of a 50:50 mixed crystal
by five different methods. The reflection spectra are
shown in Fig. 31. In (a) a 48-atom chain has been used
with the occupancy of anion sites determined by tossing
a coin (heads—a P ion; tails—an As ion). We call this
random occupancy. There are 46 active modes though
some are negligibly weak. Modes which occur in forbid-
den regions between or above the band phonons of pure
GaAs or GaP are somewhat localized. A few of the
modes can be identified as vibrations of islands of GaAs
or GaP. The spectrum clearly shows two main rest-
strahlen bands plus fine structure. Next a chain was
generated using a conditional probability which favors
different anions being next to each other. The actual
anion sequence is given in the figure, with a and p used
to represent As and P ions respectively. There are now
four strong reststrahlen bands plus some additional weak
structure as shown in (b). In Fig. 31(c) the spectrum of
an ordered 48-atom chain has been calculated. Here the
anion occupancy is As—-P-As—-P-As—P, etc. Such a
chain may be viewed as a model of a crystal of perfect
regularity with a four-atom primitive cell. There are
three long-wavelength optic modes, two of which are in-
frared active, hence the two reststrahlen bands shown.
The fourth model of the mixed crystal we consider is a
virtual-ion model. The anion has a mass which is the
average of the As- and P-ion masses. One mode obtains
as was discussed for Fig. 29. Finally, in part (e) of
Fig. 31 the isodisplacement model, discussed in the
preceding section, is solved at ¥ =0.5. Two transverse
and two longitudinal modes obtain causing two reststrah-
len bands as shown in the figure. Models related to all
five types in Fig. 31 have been used to fit vibrational
spectra in mixed crystals.

G. Models for amorphous solids

Linear chain calculations may be used to model an
amorphous or glasslike solid. Here the composition
is regular but there is positional disorder. A study of
(2.1) shows that in fact these equations, where x, refers

"The model actually gives three modes, one of which corre-
sponds to the ¢ =0 acoustic mode and has zero frequency.
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to displacement from equilibrium, do not depend on the
disorder in equilibrium positions. The disorder must
enter the equations through a distribution of force con-
stants k. Two atoms which are close together would be
expected to have a large force constant for the bond
linking them, while two neighboring atoms which are
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FIG. 31. Five different models for the reflection spectra of
GaAs ;P 5. In (a), (b) and (c) a linear chain model is used with
the ions distributed with different kinds of order as indicated in
the figure. (d) shows the virtual-ion result and (e) the isodis-
placement model result of the preceding figure. Some damping
has been added to each mode in the figure to give: realistic
spectra.
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FIG. 32, Fifty-atom diatomic chain model with force constants
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and masses and charges of GaP. (a) shows a portion of the
chain and four eigenvectors. The high~frequency modes are all
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here when the forces are varied. (c) The density of states
shows many low frequency modes and no gap (c.f., Fig. 4).
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much farther apart than the average spacing must be
linked by a weak force constant. In Sec. X we discuss
the situation where the bond presents a tunneling bar-
rier rather than a harmonic barrier to motion of an
atom. Such an anharmonic bond cannot be included with-
in our techn{que, which assumes simple harmonic time
dependence to allow the matrix inversion for the modes.
Dyson (1953) has presented one of the earliest studies
of the effects of random masses and random force con-
stants on the dynamics of a linear chain. That work
emphasizes exact calculation of frequency distributions,
but does not examine eigenfunctions or mode strengths.
Calculations for 50-atom chains with a range of force con-
stantsusing Eq. (2.1) immediately show several facts.
First, all modes become active in optical spectra. Figure
32 shows the infrared spectrum for a 50-atom diatomic
chain. Second, the spectral pattern of mode activity
(infrared or Raman) is exceedingly complex. It appears
impossible to factor the optical spectra into a density-
of-states factor times a slowly varying optical matrix
element factor. Third, the lower-frequency portion of
the spectrum consists of entirely delocalized modes,
while the high-frequency region is entirely localized.
The high-frequency modes typically consist of an island
of three or four atoms vibrating against each other, with
all other atoms remaining almost stationary.

We have used a table of random numbers to generate
a set of force constants for the GaP chain. Forces be-
tween 0.01X10°% and 0.87X10° dyne/cm are allowed.
Spectra of real materials show that amorphous solids do
possess a range of force constants. The solid does not,
however, have any significant number of force constants
above a certain upper limit—typically the equivalent
force constant in the related crystalline modification.
Figure 32 shows a calculated spectrum. Four eigen-
vectors are shown to depict the localization described
above. Calculations with different choices of force con-
stants only confirm the points made above. The linear
chain allows unphysical features to appear, as has been
noted earlier in Sec. II.LE.4. There, islandswere created
by mass defects. Here a small force constant can parti-
tion the chain. We note the unusual effect of the weak
force constant £=0.01X10° on mode 3 (see figure). Such
effects would be rare in three dimensions. The linear
chain model appears useful only to introduce the subject
of vibrations in amorphous solids. More realistic mod-
els must be much more complex. Unfortunately, the
additional complexity usually makes rather tedious the
examination of eigenfunctions in detail as we have done
for the various chain models. Such models are dis-
cussed more fully in Sec. X.



I1l. GREEN’S FUNCTIONS FOR THE LATTICE VIBRATION PROBLEM

A. The simple two-atom lattice

1. The perfect lattice

In this section we give an elementary discussion of
classical Green’s functions for the lattice vibration
problem. The use of Green’s functions is essentially a
method of solution for the equations of motion such as
given in (2.1). The methods have been developed by
Lifschitz, by Montroll and Potts, and by Maradudin and
co-workers. A review article that is convenient for our
purposes has been written by Elliott (1966). Of the sev-
eral types of Green’s function, we discuss only the clas-
sical Green’s function or response function for the lat-
tice. The full treatment of the Green’s function method
for lattices with defects lies properly within the scope
of a theoretical review article. Such treatments may be
found in the article by Elliott and in the recent review
by Elliott, Krumhansl, and Leath (1974). There is a
close correspondence between some of the aspects of
the Green’s function method and certain physicgl pro-
cesses in a lattice vibration problem. We wish to il-
lustrate these relationships and to derive the basic
mass defect equation here using a very simple, but use-
ful model.

We specialize the equations (2.1) to two particles with
fixed boundary conditions. The model is shown at the
top of Fig. 33

(3.1)
(3.2)

mx, =—kx, - k(x;— %)+ F, ,
mxy =—kx, — k(x, — x,)+ F, .

Assuming simple harmonic time dependence we search
for solutions of the form x,exp(-iwt), x,exp(—iwt), with
the forces

F,=fexp(-iwt), F,=fexp(-iwt).

Setting f, equal to zero we may solve for x, and substi-
tute this in (3.1) to obtain

k2
x1=f1/|:2k-mw2— —‘—-2k—mw2] .

We define the classical Green’s function as the mechani-
cal response per unit force.® For the force applied to
particle 1 we obtain

2
g(l,1,w)=x1/f1=1/[2k—mw2— Ekf—mwg} . (3.3)
Note that the Green’s function g(1, 1, w) is actually one
element of a matrix. For the present simple model
2(2, 2, w) has exactly the same form and represents the
response of particle 2 to a force applied to particle 2
(f,=0 and f, finite). The off-diagonal components of the
Green’s function response matrix simply represent the
response of particle 2 to a force applied to particle 1
and vice versa. Figure 33 shows two of the Green’s
functions for the present system.

8In contrast to the previous section, g and G are used here
for Green’s function in the perfect and in the perturbed
lattices, respectively.
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The Green’s function g specifies the response of the
system to a stimulus of arbitrary frequency. The natu-
ral modes of the system occur at the poles or reso-
nances of g. From (3.3) there are two resonances which
occur where )

2k —mw? — B2 /(2k — mw?) =0. (3.4)

It is easy to show that (3.4) is identical to the result ob-
tained by setting the determinant of coefficients of x; in
(3.1) and (3.2) equal to zero. We do not pursue the de-
terminant method since it avoids the introduction of g
and lacks the extension to defect cases discussed below.
It is important to realize that the response function g
has real and imaginary parts.. For the simple model,
specified by (3.1) and (3.2), the imaginary part of g con-
sists of 6-functions centered on the resonant fre-
quencies. To illustrate some of the points to be dis-
cussed below it is convenient to introduce a small
amount of damping of the form —y»ex; in (3.1) and (3.2).
Such damping terms broaden each 6-function into a peak
which is more easily plotted. Figure 33(b) shows the
imaginary part of the Green’s function for the case
where y is chosen to be approximately 1/10 of the reso-
nant frequency. Finally, we note that the spectrum of
the imaginary part of the Green’s function in fact gives
information on the density of states of the vibrating lat-
tice. That is, it yields a peak at each normal mode of
the lattice. From Fig. 33(b) it is apparent that the peaks
are not properly normalized in the Green’s function, the
low-frequency peak appearing with greater weight than
the upper peak. A weighting factor of w corrects this
feature and we find that the density of states is given by®

v(w) =Cmw/m)Im[g(1,1, w)] . (3.5)

Since the Green’s function is a response function, its
real and imaginary parts are connected by the Kramers—
Kronig relations (Kittel, 1958). Thus from (3.5) a
knowledge of the density of states of the lattice allows us
to recreate the entire Green’s function, both real and
imaginary parts.

2. Defects in the two-atom lattice

For the simple two-particle model considered in the
above section we may change any mass or any force con-
stant and solve exactly for the new frequencies. To il-
lustrate the Green’s function method, however, we sep-
arate out the change in mass or force constant as a de-
fect. Let us consider a change in mass of particle 1 by
an amount dom

m—~m’,
(3.6)

Conceptually, we regard the 67 term as an additional

m'=m +dm.

%Some authors include the mass in the definition of g so that
m does not appear explicitly in the density of states expres-
sion. In three-dimensional problems, g has vector subscripts
describing the direction of x; and f;. In that case a trace over
the vector subscripts is required in (3.5).
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force which is driving the otherwise perfect lattice. As-
suming simple harmonic time dependence, as before, the
response of particle 1 is given by

x, =f / [Zk —mwz——-——’—ez——— émwz] . 3.7

1/ 2k — mw?

The value of separating m’ into m plus the defect om is
now apparent; except for the & term the denominator
can be identified with the Green’s function for the un-
perturbed lattice. Taking advantage of this identification
we write (3.7) in the form

a) 1 2
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FIG. 33. Green’s function for a one-dimensional two-atom
system. The model is shown in the inset. (a), (b) show the
Green’s function g(1, 1, w) which exhibits two resonances at
wy =122 cm™ and wy=T0.4 cm™, (c) shows the response
£(2,1,w) of atom 2 to a force applied to atom 1. This and the
following figure use £ =5000 dyne/cm and m =17 amu.
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% =1 /[1/8(1,1, w) - omw?] . (3.8)
From (3.8) we can immediately write the condition for a
resonance of particle 1 (i.e., the pole in the response)
as

g(1,1, w)=1/muw?®. (3.9)

Note that (3.9) is exact. It does not result from a pertur-
bation expansion. It has the correct form for ém -0
which causes reversion to the unperturbed lattice prob-
lem. For finite values of &m (positive or negative) the
new resonances occur where the unperturbed lattice
Green’s function g(1, 1, w) crosses the “mass defect
curve” 1/8mw?. Here (3.9) is the equation for modes in
the defect crystal based on the mass defect or isotope
assumption. In order to make contact with the literature
we introduce the mass defect parameter € which was
used in Sec. II (€ = -&m/m) and rewrite (3.9) to obtain the
commonly quoted form

1+ mew®g(1,1,w)=0. (3.10)

Given the Green’s function of a lattice, solutions of
(3.10) describe all the new modes which occur when a
mass defect described by € is introduced at one atom
site. While the details of Green’s function calculations
may often be extremely complicated and tedious in their
intermediate steps, there is clearly some direct physi-
cal content in (3.9) and (3.10). The unperturbed Green’s
function (3.3) tells us how soft the lattice is at a certain
atom site. It gives the stiffness (mechanical impedance)
of that site as a function of frequency. We can imagine
measuring such a stiffness by reaching into the lattice
with microscopic tweezers, shaking the atom, and ob-
serving the force required. The right side of (3.9) is the
required stiffness of a defect mass &m if it is to vibrate
at a given frequency. These two stiffnesses must match
if the defect is to have a natural resonance.

Figure 34(a) shows a graphical solution of (3.9) for two
cases of mass defects in the two-atom model. The dot—
dash line in the figure is the mass defect curve for a
heavy atom replacing the host atom on site x,. We note
that (3.9) is satisfied at two frequencies which are dis-
placed below the original host lattice modes. That is,
the graphical method has found two frequencies where
the stiffness of the host lattice matches the stiffness of
the heavy atom. Therefore, as expected, the addition
of a heavier atom lowers the normal mode frequencies
of the lattice. There can be only two resonances because
our equations possess two degrees of freedom. Note that
no. matter how heavy the defect atom is made, the higher
of the two new modes can never be displaced below the
unperturbed lattice resonance near 70 cm™'. The pin-
ning of the new modes between the modes of the original
unperturbed lattice was first discussed by Lord Rayleigh
and is precisely stated in one of the many Rayleigh theo-
rems on the vibrations of a collection of particles
(Maradudin, Montroll, and Weiss, 1963). Note that for
a heavy substitution one mode can be displaced all the
way down to zero frequency for this model.

The dashed line in Fig. 34(a) results from considering
a light substitution on the x, lattice site. The curve is
drawn for 6m=-0.75 m. Again there are two new modes
and again all the modes but one are pinned (Rayleigh’s
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theorem). Note that the highest mode for increasingly
large |6m| can be made to resonate at an arbitrarily
high frequency.

Figure 34(a) appears to show four solutions, i.e.,
there are four crossings of the curve 1/&mw? with the
real part of the Green’s function. The Green’s function
g(1,1, ) has real and imaginary parts as noted above,
and this fact must be recognized in evaluating the reso-
nance condition (3.9) or (3.10). Neglect of this point has
sometimes led to erroneous results and the prediction
of localized modes which cannot possibly exist. We re-
call from (3.7) that our procedure was to search for
resonances in the system. Equation (3.9) was the reso-

Re [g(1,l,w]

5 FOR HEAVY MASS

NEW MODES

|
~— _FOR LIGHT MASS
Smw?

()]
1
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1m [6(1,1,w)]

N
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FIG. 34. Mass defect modes in the two-atom system. (a) A
heavy mass with é6m =3m gives the dot-dash defect curve. The
new modes occur at 41.7 cm™! and 103.7 cm™! where the defect
curve intersects the pure crystal Green’s function g. The
dashed defect curve corresponds to ém =—0.75m and gives
modes at 83.5 cm™ and 207.4 cm™. The intersection marked
n (and the other similar intersection) yields no modes, as
discussed in the text. (b) The Green’s function for the defect
crystal with atom 1 replaced by an atom with 622 =-0.75nz.

The new resonances correspond to the dashed curve in (a).
Note the large strength and narrow linewidth of the high-fre-
quency mode, which is quite localized in the sense that atom 2
participates very little in the motion.
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nance condition which leads to a pole in the response of
particle x,. This equation is complex, so that Fig. 34(a)
which shows a plot of the real part does not tell the
whole story. When searching for sharp resonances, the
free variable w at the solution point must. be real or at
most have a very small imaginary part. Consider the
crossing of the two curves at the point » in Fig. 34(a).
At this point we have a solution for the real part of (3.9).
Note, however, that the Green’s function g at the fre-
quency z# has an extremely large imaginary part shown
in Fig. 33(b). The imaginary part of (3.9) has no solution
near the point n. The potential solution suggested by the
graphical method based on drawing the real part of g
must therefore be discarded. This is a quite general
rule for graphical solutions based on the real part of the
response function; the crossing of a solution curve with
nearly vertical portions of the Green’s function does not
result in a solution. This point can be further reinforced
by going to the full Green’s function for the perturbed
lattice. From (3.7) we obtain directly for the Green’s
function G for the lattice with the defect included on
atom site x,

£@,1, )
-0mwg(l,1,w) ’

G(1,1, w,0m) =~ (3.11)

The resonances of the defect may be examined by plot-
ting G rather than examining only the resonance condi-
tion (3.9) which arises from setting the denominator
equal to zero. Figure 34(b) shows a plot of the imagi-
nary part of G. We plot the case 0m =-0.75 m (i.e., a
light impurity atom). Only two modes appear and we
note that they occur where the mass-defect graph 1/
6mw? intersects the curved portions of the Green’s func-
tion g. There is no mode structure at the other cross-
ings discussed above. .

Figure 34(p) illustrates the general result that for a
light atom substitution the localized mode lies at a fre-
quency above all the original modes of the host lattice
and also becomes extremely narrow. The linewidth of
the mode for the present model is naturally dependent on
the way the damping was introduced. In our calculations
we have included damping from particle x, only. Quali-
tatively, however, the behavior is correct. As a local-
ized mode splits off from the band of lattice modes, it
participates less and less in the band vibrations and less
and less in the damping processes as its mass decreas-
es. It is an easy matter to show that the eigenvector of
the high-frequency mode in the case of the light substi-
tution deviates from the eigenvector (x,,x,)=(1, -1) of
the host lattice and approaches (1, 0) in the limit of de-
fect-atom mass approaching zero. In this limit there is
perfect localization.

The equations for determining the defect vibrations
which we have exhibited in (3.9) and (3.10) have an ex-
tremely simple form. This simple form is retained only
for a single mass defect. Intuition suggests that dis-
turbing the mass of particle 1 should only require the
introduction of the Green’s function for particle 1, as
we have found in (3.9). Changing a force constant be-
tween particle x, and x, disturbs the dynamics of both
particles, and we can expect that the equation for the
new resonances in the lattice must include g(1,1, w) and
£(2,1, w). This turns out to be the case. For the pres-
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ent simple model the response of particle 1 for a force
constant change can be written down explicitly, but the
resonant denominator now contains complicated combi-
nations of the two Green’s functions mentioned. We do
not illustrate any further solutions of defect problems
here but merely note two points in constructing such
solutions. First, the more localized the defect the sim-
pler we can expect the structure of the equations to be.
A defect which involves interactions between atom 1 and
atoms up to five lattice sites away obviously involves a
great many of the unperturbed lattice Green’s functions,
including £(1,1, w) up to g(1,5, w). Therefore, the more
localized a defect the simpler the Green’s function meth-
od becomes. Secondly, the method, while exact in prin-
ciple, may require expansions or truncations in practice
to obtain solutions. In spite of these practical restric-
tions on the method, it remains the most important theo-
retical tool in analyzing defect problems. It is worth
noting that neutron scattering from crystals, Raman
scattering, and infrared absorption may all be expressed
in terms of Green’s functions (Cowley, 1966). In cases
where the unperturbed Green’s function g may be im-
possible to calculate from first principles, it may be
derived from one or more experiments. This g may
then be used in equations such as (3.9) or (3.10) to cal-
culate the properties of a lattice with defects.

B. Extension to the infinite chain and to real crystals

In Sec. III.A we have shown that a two-atom lattice has
a Green’s function matrix with two resonances. The
diagonal element g(1, 1, w) was written down explicitly in
(3.3). By setting the denominator of g equal to zero we
find that the two resonances occur at

W?=k/m,
W= 3k/m.

The Green’s function (3.3) may be rewritten using these
normal mode frequencies in the form

1

&(1,1, @) =5 [1/(wf - ®) +1/(wf - &?)]. (3.12)

The factor 1/2 arises from the fact that there are two
atoms. It is fairly easy to show that for a chain of N
equivalent atoms the generalization of (3.12) is

1 & 1

L Lw=%—2, =,

(3.13)
= i-w

i.e., the Green’s function is simply a sum over the N
resonances of the chain (Spitzer, 1971; Elliott, 1966).
The weighting factor 1 for each resonance arises be-
cause all particles are equivalent. In three dimensions
the form of (3.13) is essentially preserved and the mass
defect problem again takes the simple form

1+mew?g(l, 1, w)=0. (3.14)

For lattices more complicated than the monatomic case,
the weighting factor for each term in the sum (3.13) de-
pends on the eigenvector of each mode. Such a depen-
dence is easily illustrated for a zone boundary mode in
the diatomic chain. At this mode frequency one type of
atom does not move (see Fig. 3, mode 24). If this is a
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type 1 atom, then the weighting must be zero for this
mode in the sum for g(1,1, w). Elliott (1966) and others
have given the expression for g for a general lattice.

To illustrate the mass defect local mode in more de-
tail we examine the case of g(1,1, w) for N=10. We also
remove the fixed boundary conditions of the model of
Fig. 33 and use periodic boundary conditions. In this
case the lowest mode frequency is zero. Figure 35(a)
shows the Green’s function g. If a mass defect is intro-
duced at one of the lattice sites, the curve 1/0mw? is
superimposed on the figure, and intersections are read
off to obtain the new modes as before. For 0m positive
or negative, ten new modes are obtained. As with the
two-particle case, all but one of the new modes are
pinned between the perfect lattice modes. In the case of
a light atom substitution, one intercept lies above the
highest mode of the perfect lattice (here 100 cm™!) and
may be pushed up without limit by increasing the magni-
tude of |8m| towards m. This mode is the localized de-
fect mode which we expect intuitively for a light sub-
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FIG. 35. Green’s function for the perfect 10-atom lattice. In
(b) and (c) sufficient damping has been included to merge the
lattice modes and thus smooth the Green’s function.
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stituent atom.

We now wish to discuss the case of N— =, Schemati-
cally the concepts of Fig. 35(a) still hold. For 6m nega-
tive (a light mass) there are N -1 intersections of the

mass defect curve with g below 100 cm™! and there is in -

addition one high-frequency (local mode) intersection.
The mathematics involved in dealing with the dense
cluster of poles as N— = is extremely difficult. A more
intuitive picture is obtained by making N fairly large
but adding some damping to each mode to smear out the
rapid oscillations in g. Figures 35(b) and (¢c) show the
effect of such damping for N=10. Re[g] and Im[ g] are
now fairly smooth functions. A mass defect curve
drawn on the Re[ g] graph yields two intersections for
6m negative, only one of which is of interest. This in-
tersection will occur above 100 cm™! where Im[ g] is
small so that we obtain a valid solution to (3.14) yielding
a sharp local mode. We lose information on the dense

cluster of band modes below 100 cm™ using this method.

In many cases the closely spaced band modes are not of
interest, so that the method is practical and useful.

Figure 35(b) and (c) can be imagined to arise from real
damping or merely from a computational method (based

on an undamped model) which samples the mode spec-
trum using a finite resolution. Such a technique results
in histogram plots (see Fig. 4) which can be smoothed
to obtain graphs like those shown in Fig. 35() and (c).
The monatomic linear chain represents one of the few
models in which the limit N+ can be carried analyti-
cally for many of the calculations. The Green’s function
is
1
mavar— o,

Figure 36 shows the real and imaginary parts of g for
the chain with the same force constant # and mass m as
the case chosen for N=10. The close relationship of
Figs. 35 and 36 is obvious. From Fig. 36(a) we obtain
two results for local modes in the linear chain. First,
for a light mass defect, there is a solution of (3.14) as
sketched in Fig. 36(a). Since all the curves in the fig-
ure have known analytic form we obtain for the inter-
section point

w?=wh/(1 —€?),

This simple formula gives the local mode frequency in

g,1, w)= (3.15)

(0<e<1). (3.16)

-10 | LIGHT IMPURITY I

Smw 2\7/

Im [g(1,1,w)]

FIG. 36. Green’s function for
the infinite linear monatomic
chain. The real part of g is
plotted in (a) together with the
mass defect curve for a sub-
stitution impurity lighter than
the host atoms. . One impurity
localized mode is produced at
the intersection frequency
labelled in the figure. (b)
shows the imaginary part of g
and (c) the density of states

derived from (b).

)
DENSITY OF STATES

w/T Im [g(l,l,w)]

0 L 1 I ! 1 1
100 -

FREQUENCY (cm™")

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fall 1975

200



S36

terms of the maximum frequency of the lattice w,, and

the mass defect parameter €. Secondly, for heavy sub-
stituents, there is no localized mode solution, as is ob-
vious from the figure.

Dean (1967) has given the result (3.16) and also the
Green’s function equation for the case for two localized
modes which occur when two identical light defects are
placed on adjacent sites in the chain. Mazur, Montroll,
and Potts (1956) have given expressions equivalent to
(3.16) for localized modes and gap modes associated
with mass defects in a linear diatomic chain. These
formulas represent the only cases where (3.9) can be
solved analytically. Green’s functions are known for
some models of three-dimensional crystals; however,
Eq. (3.9) or (3.10) must be evaluated graphically or nu-
merically.

We have noted above that there is no low-frequency in-
band mode for a heavy atom substitution in the linear
chain. This same result was found in Sec. II by direct
calculation—a low-frequency mode could be obtained
only by weakening the force constants. This is a special
result associated with the linear chain and may be viewed
as arising from the form of g in one dimension. Figure
36(c) shows the density of states for the linear chain.
The one-dimensional system retains a finite density of
states in the w— 0 limit. In three dimensions we recall
that at low frequencies (the Debye region) the density
must vary as «?. In three dimensions, therefore, g has
a far different form from that shown in the figure. Fig-
ure 37 shows the Green’s function calculated for three-
dimensional silicon. The figure is taken from the work
of Elliott and Pfeuty (1967), who define Re[ £] to have the
opposite sign from that adopted here. The mass defect
curve for a light impurity is also shown in Fig. 37(b).
Note for this three-dimensional case the mass defect
curve for a heavy atom can intersect the Green’s func-
tion at low frequencies (below 100 cm™') and moreover
the imaginary part is small in this region [unlike Fig.
36(0)], allowing a sharp mode which is in contrast to the
case of the linear chain. Elliott and Pfeuty have used
the diagonal Green’s function shown in Fig. 37, as well
as certain other Green’s functions for silicon, to calcu-
late the localized vibrations of pairs of defects in sili-
con connected with mass changes and short-range force
constant changes.

Figure 38 shows the modes to be expected for a light
atom (carbon) substitution in silicon and for a heavy
atom (germanium) substitution. The figure is taken
from a review article by Maradudin (1966a). The Green’s
function is calculated by a Kramers—~Kronig transform
of a density of states supplied by Dolling which is based:
on experimentally observed phonon dispersion curves.
Maradudin has effectively multiplied (3.9) through by w
so that the mass defect curves are hyperbolas 1/0mw.
The plotted curves appear different from Fig. 37 both
for this reason and because the Green’s functions used
in the two figures are slightly different. From Fig. 38
we note that a carbon impurity yields one mode near
x =1.2 which is well above the maximum lattice fre-
quency w,. The heavy germanium impurity yields one
solution near x =0.86. This should be a reasonably sharp
mode since Im[ g] is small here. There are three other
near crossings at lower frequencies. In these regions
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the approximate graphical method based on plotting

Re[ g] is not very informative. Equation (3.9) obviously
has damped solutions at these near intersections. The
strengths and widths of these modes must be examined
by plotting the Green’s function of the defect (3.11). In
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FIG. 37. (a) density of states of silicon and (b) the real part
of the Green’s function calculated by a Kramers—Kronig trans-
form of the data in (a). The mass defect curve for a light im-
purity is sketched in the figure. Two localized modes are pre-
dicted; one just above TA near 150 cm™! and the other at an
extremely high frequency off the figure to the right. From
Elliott and Pfeuty (1967).
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this connection it is appropriate to recall that the infor-
mation to determine the defect mode spectrum is con-
tained in (3.11). Figures 37 and 38 represent a simplifi-
cation based on examining the resonance condition using
only the real part of the denominator of (3.11).

C. Summary

In the above sections we have examined the Green’s
function method in detail for the solution of the isolated
mass defect problem. Elliott and Taylor (196'7) have ex-
tended the method to crystals containing a finite concen-
tration of defects. After making certain approximations
and retaining only the terms of lowest order in concen-
tration the results may be expressed in the form (3.9)
but with a second term on the right which is proportional
to concentration. In the case of light substituents the
effect is to cause a band of impurity modes. Elliott
et al. (1974) have given a general review of all methods
used to attack the more general problem of disordered
systems. The interested reader is referred to that ar-
ticle for the current status of the theoretical methods.
In general the Green’s function method depends on find-
ing the function g of the perfect lattice. This function
contains all the information on the dynamical response
of each atom in the lattice. When a disturbance such as
Om is introduced, the response of the perturbed system
depends on £ and on the parameters describing the dis-
turbance. The new modes can be found from the reso-
nances of the perturbed system. The method of solution
involves finding the Green’s function of the perturbed
system [for example (3.11)] and perhaps approximation
methods or graphical solutions to study the resonances
or modes. Some of these methods will be treated in de-
tail in the following chapters for specific impurity sys-
tems. '

Finally, we must give a word of caution related to the
application of these purely mathematical results to real
crystals. The simple examples given above show that a
light impurity gives a high-frequency localized reso-
nance, while a heavy impurity is needed to produce a
low-frequency defect mode. This simple picture arises
from the mass defect approximation. In practice a light
atom is a small atom. When it is placed in the lattice,
we can imagine it to fit poorly (be “loose”) and to cause
relaxation of the positions of the nearly surrounding
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FIG. 38. Mass defect modes in silicon. w times the Green’s
function is plotted using a different model from that used in the
preceding figure. The mass defect curve for a substitution
carbon atom predicts a mode near x =1.2. The heavy substitu-
tional germanium atom gives four potential resonance solu-
tions, all of which can be expected to be damped. From
Maradudin (1966).

atoms. These two concepts of loose fit and lattice re-
laxation are hard to quantify and insert into a Green’s
function approach in a simple way. Their importance

is clear, however, as will be seen in succeeding chap-
ters where, for example, the light atom Li in KBr and
Ne in solid argon produce low-frequency resonant modes.
The Green’s function method can predict such resonant
modes by using weakened force constants. Unfortunate-
ly, such models usually need more parameters than can
be fixed by experiment. To give a balanced view, the
theoretical methods have been very useful for many
cases of substitution where the substituent has close to
the required ion size and valence. They have not been
very helpful for many other defect systems, and it is
perhaps here that experiment will show theory the di-
rection which must be taken.



IV. DEFECT MODES IN SEMICONDUCTORS

A. The problem of crystal growth and charge
compensation

This chapter must begin with a warning to scientists
who attémpt studies on impure or doped crystals. The
physical chemist or crystal growth expert often cringes
when an experimenter talks of making a crystal of sili-
con doped with lithium, or of CaF, doped with a trivalent
rare earth ion, and then describes the spectra on the
basis of the simple isotope substitution model. In CaF,
doped with Er3* at least eight distinct types of Er im-
purity centers have been observed. They are distin-
guished by the exact position of compensating charges
which lower the symmetry and change the environment
of the impurity. These are all thermodynamically re-
lated and their relative abundance depends on certain
thermodynamic parameters and on the thermal history.
This latter is particularly important since two crystals
grown from the same “recipe” can be vastly different
if one is cooled much more quickly than the other to
room temperature. Thus the statement that a crystal A
is doped with B is at best ambiguous and at worst may
represent a situation which no one else will be able to
duplicate. The most important factors to be considered
when substitutions are made are ion size, charge, and
electronegativity (Nassau, 1971). Fortunately, many of
the semiconductors which have been studied do allow
direct substitution on ion sites with little complication.

For most semiconductors and insulators, if the size
of the impurity ion allows reasonable solubility, then
the problem of charge compensation must be considered
when substituting an impurity for a host ion in a crys-
tal. If one considers U centers such as H™ for F~ in
CaF,, or C for Si in silicon, then local charge neutrality
is maintained. Substituents like these are often called
isoelectronic substituents. In the case of rare-earth
ions on Ca?* sites in CaF,, the impurity ions may be
present as either divalent or trivalent state. In the
trivalent state, charge compensation may occur through
the formation of F~ interstitials or, if heated in hydro-
gen, by H™ interstitials leading to several distinct types
of center as described above.

In semiconductors the charge compensation process
for nonisoelectronic substituents is usually different
from the process in an insulator, being accomplished
most often through the introduction of free carriers. If
a Group III or V element is introduced as a substitutional
impurity in a Group IV semiconductor host, the impurity
is often an acceptor or donor with a very small ioniza-
tion energy. Examples include B or Al in Si (acceptors)
or P, As, or Sb in Si (donors). In each of these cases,
the impurity state is sufficiently shallow (few hundredths
of an eV) that the excess charge (electron or hole) ac-
companying the impurity is ionized at room temperature
and the sample is electrically conductive. Thus charge
compensation automatically occurs by the reaction
D=D" +e” for donor impurities and A= A” +e* for ac-
ceptor impurities. The presence of the free carriers
(e~ or e”) poses a serious problem in semiconductors
when one attempts to measure vibrational mode absorp-
tion associated with the D* or A~ impurity.
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The source of the difficulty in semiconductors is eas-
ily seen when one realizes that the absorption cross
section for free carriers can be as much ~10° times
larger than the local mode absorption cross section.
The -evaluation of free carrier absorption (Moss, 1959)
can be a rather involved function of the energy band
structure and the momentum conserving carrier scat-
tering mechanism, and it is not our purpose to review
it here. We instead consider a specific case for illus-
tration. The free carrier absorption in p—fype Si in the
spectral range 500sv <700 cm™! is @ (free carrier)
=500 to 1000 cm™! for a hole concentration [e¢*]=10®
cm™3, It will be seen shortly that the peak @ of the
local modes of substitutional B in Si is ~2 em™ for a
concentration [Bg;]~10' ¢cm™3. The local mode fre-
quencies for both 1°B and !B isotopes are within the
spectral range specified above for the free carriers. It
therefore is important that the carrier concentration and
thus the carrier absorption be reduced without reduc-
tion of the [Bg;]. One suggestion might be to lower the
temperature sufficiently that almost all of the carriers
are frozen out, i.e., A" +e* —A; however, one has re-
placed free carrier absorption with photoionization in
the spectral range of interest. The ionization threshold
energy of B in Si is 0.045 eV or 360 cm™!. The photo-
ionization absorption is comparable to that of free car-
riers, so that the situation is not substantially improved.

The removal of free carriers may be accomplished by
electrical compensation in three different ways. The
first method involves double doping during growth of the
crystal. If exact compensation is achieved, the reaction
isD*+e” +A” +e" =D +A”, If one’s intent is to study
the high-frequency modes of a light Group III impurity
such as Bg;, then a heavy Group V impurity such as P,
As, or Sb can be used (Newman and Smith, 1968; An-
gress et al., 1965; Tsvetov ef al., 1967; 1968) for com-
pensation, so that the compensating element does not in-
troduce its own mode in the region of interest. Unfor-
tunately, it is usually impossible by this method to ob-
tain better than order of magnitude compensation for a
substantial portion of the ingot. It is therefore general-
1y necessary to use one of the two remaining methods
to complete the compensation.

The second method involves the use of particle irra-
diation, usually bombardment by electrons or protons
(Newman and Smith, 1968; Spitzer et al., 1969a). Cau-
tion must be used in the interpretation of the resulting
vibrational absorption, however, as the defects pro-
duced by the bombardment damage can themselves in-
troduce new spectral features (Devine and Newman,
1970).

The third method involves compensating by diffusion
under conditions where the solubility of the diffusant is
controlled by the impurity to be compensated. The dif-
fusant must be capable of diffusing distances of the or-
der of a millimeter in experimentally reasonable times
and at temperatures where the original dopant does not
outdiffuse or precipitate. Si and GaAs, with band gaps
greater than 1 eV, are likely candidates, while InSb and
InAs, with much smaller gaps, would be very unlikely
candidates for diffusion compensation (Spitzer, 1971).
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One feature which has been omitted from the discus-
sion thus far is ion pairing. That is, the D" ion and the
A~ ion may take up nearest-neighbor positions. The D*
ion is then no longer an isolated impurity in the host
semiconductor, but a perturbed impurity at a site of low
symmetry because of the nearby A~ impurity. In all
three methods of compensation there exists the possi-
bility that pairing will occur when the sample is held at
temperatures where the defects or impurities are mo-
bile. Indeed Fuller (1959) found ample evidence for ion
pairing prior to the local mode observations of recent
years. The prevalence of pairing, particularly when Li
is used as the compensating diffusant, explains the large
number of ion pair defect entries in Table IV.1.

Finally we note that most of the difficulties described

TABLE IV.1. Localized modes in semiconductors and metals.

above apply to direct absorption measurements by in-
frared methods. Raman scattering has been success-
fully carried out in silicon doped with hole concentra-
tions [e*] ~102° ¢cm™3 and the boron local modes detected
(Cerdeira et al., 1974). In this measurement the car-
riers do, however, modify the measured spectrum,
causing unusual mode shape and mode shifts, so that
their presence must be taken into account for an ac-
curate analysis.

B. Group |V crystals

1. Introduction

A great deal of the early defect mode studies were
done in the Group IV semiconductors, and some of the

Mode frequency (temperature)

Host and Impurity °K Defect symmetry, Method of observation, 2 References, b Comments
Diamond

N? 1340(300) T, %A, 6
Silicon

g 644(300), 646 (80) T,,A,1,5,7,9,14,15,16; R,67

g 620 (300), 622 (80), ~230(300) T,,A,1,5,7,9,14,15,16; R,67; T, 79

0p_TLi 681, 584, 522 (300); 683, 586, 523 (80) Cs5A,1,5,14,17

0p_81i 683, 584, 534(300) CyysA,1,14,17

Up_Tri 655, 564, 522 (300); 656, 566, 523 (80) Cyy,A,1,5,14,17

Hp_81i 657, 564, 534(300); 659, 566, 536 (80) Cy,,A,1,5,14,17

g_lig 615, 552.3(80) D3s,A,2,3

lop_10g 570 (80) D3;,A,2,3

g_tig 560 (80) Cs,5A,2,3

bp_p 622,653 (80) Cyy,A,3,5

Hp_p 600, 628(80) CysA,3,4,5

0B_As 625, 662(80) Cs,»A,3

HB_-As 604,637(80) Csy,A, 3,4

10g8_gh 635, 668(80) Cs»As3

1B_sb 612,643(80) Cs,,A,3,4

As 366 (80) Reson. T:,A,6

P 441 Reson., 491(80) Reson. T,,A,6

Ga-fLi 521(300) Reson.? Cyp i A, 8

Ga-TLi 515(300) Reson. Cs,,A,8

Al-SLi 525(300) Reson. ? Csy A, 8

Al-TLi 520 (300) Reson. Cy,,A, 8

e 570(300), 573 (80) T,,A,3

B¢ 586 (300), 589 (80) T4,A,3

2c 605(300), 680 (80) T4,A,3

O Bands neélr 30, 500,1100, 1200 10,11 Interstitial oxygen in bent Si—O—Si molecule.

12¢_160 1103.9(4.2), 586 (300), 637(300), A,12, 13{883)1?;5:3:{?1@ may be rotational as well as

684(300), 589(80), 640(80), 690 (80)
12C +irrad. 922, 932(88) Axial, A, 18, carbon probably interstitial

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fall 1975



S40

A.S. Barker, Jr. and A.J. Sievers

TABLE IV.1. Localized modes in semiconductors and metals. (Continued)

Mode frequency (temperature)

Host and Impurity °K Defect symmetry, Method of observation, 2 References,? Comments
Germanium
Si 389 (300) T;,A,19; R, 20; neutron, 87
Si-Si 476, 448(300) bgd R, 20
180 855 (300), 862 (4) Cyy A, 21
80 818(?) Cyy s A, 22
g 571(80) T,,A,23
g 547(80) T4,A,23
VB_Li 518.5, 610(80) Cs,,A,23
UB_Li 497, 582.5(80) Cs,,A,23
Ga-°Li 379, 405(80) Cy,,A, 24
Ga-TLi 356, 380(80) Csp A, 24
Ga-P ~343, 350(80) Csp,A, 24
3tp 343 (80) T4,A,24
sic
N 635(4) Csy, R, T, 25
Hg; 2977(1.3) Axial, 73.
Dg; 2210(1.3) Axial, 73
Impurity— 536 (45) Resonant mode, 74
vacancy
GaAs
Al 362(80) Ty,A,Refl., 27,42
~371(4.2) T,;,T,85
P 355(80), 353(300) T4,A,R,Refl., 27,40, 41, 58
~363(4.2) Ty, T,85
SLi 350,389, 401, 409.5, 426, 452 (80) ?,A, 29,30 | Lpe Li defect is now known to
be complex involving two or more
"Li 364, 389, 394, 379, 383, 421(80) ?,A,29,30 | Li atoms and a native defect.
Te-SLi 419, 510(80) Csy»A, 29,31
Te-"Li 391, 475(80) Cs1A,29,31
Mn—*Li 391,413,419 (80) Cyy, A, 32
Mn—"Li 365, 386, 391(80) Cyy s A, 32
cd-*Li 377,401, 423(80) Cyy,, A, 29,32
Cd-"Li 354, 375, 395(80) Cyy s A, 29,32
Zn-8Li 361, 385, 404, 433(80) ?,A,29,32
Zn-"Li 340, 361, 379, 405(80) ?,A,29,32
Siga 384(80) T4,A, 33,34, 35,36
Sipg 399 (80) T,,A,33,34,35,36
Siga—Sias 367, 393, 464(80) Cs, A, 33,34,35,36
- Sig,=fLig, ‘374, 379,405,470, 480, 487(80) C,, A, 33,34,35,36
Siga—"Lig, 374,379,405, 438, 448, 455(80) Cs, A, 33,34,35,36
Sig,—Cug, 374, 376, 399(80) C,,A,33,34,35,36
Sig, —Znga 3178,~382,395(80) Cs:A,37
Mg-"Li 318, 338, 348, 366, 377, 392(80) ?,A, 38, %Li also studied
Mgga 326 (80) T4,A,38
1B, 'Bg, 517(77); 540(77) T4,A,68
Lc; B3¢ 582(77); 561(77) T4,A,68
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TABLE IV.1. Localized modes in semiconductors and metals. {Continued)

Mode frequency (temperature)

Host and Impurity °K Defect symmetry, Method of observation, 2 References,” Comments
GaP v
Al 444.7(77) T,;,A,R, 50,51, 52
Sig, 465(80) T,,A,39,50
Sig,—Sip 455.7(80) T,,A,39,50
g 569.7(77) T,,A,R, 50,51, 52
og 593.8(77) T,,A,R,50,51,52
Uy 493(4.2) T,,L,A,53
0, 1005(80) T,,A,69
Op 199, 229(1.6) S, L, 84; Isotope shifts done
Op? . 464(77) T,,A,50
c 606 (20) Ty,A,57
As 272(300) T, ,Refl., 58
Sp wy o —6(20) Bound phonon, L, R, Refl., 63, 64
Tep 193(1.6) {S, L, 80, 82
wro=-10(20) Bound phonon, L, R, Refl., 63, 64
Siga w10—-10(20) Bound phonon, L, R, Refl., 63, 64
Sng, {72(5) {/S, L, 83
a w1o=—19(20) Bound phonon, L, R, Refl., 63, 64
Sep wyo="1(20) Bound phonon, Refl., 64
cd 56(20.4) S, L, 81, Complexed with a neighboring oxygen
Zn 48(1.6) S, L, 81, Complexed with a neighboring oxygen
Cp wro=—10(20) ‘Bound phonon, assignment uncertain, Refl., 67
Beg, 629 (20) A, 70
GaSb
Alga 316.7(77) T4:,A,47,48
InSb
Al 296 (77) Ty,A,43,44
P 293(77) T;,A,45
AlAs
Ga 252(300) T, ,Refl., 46
InP
10g; 11 543.5(77); 522.8(77) T4,A,T7
Asp 223(300) Refl., 75
InAs
Gay, ~240(300) T4, Refl., 50
Py 303(300) Refl., 75
Ccds
fLi 4174(100) ?,A,59
"Li 4517(100) ?,A,59

I, transition
unknown impurity
I

BeCd

Seg

wpo—19, —26 (1.2)
446(|)), 453 (1) (100)
182()), 186 (L) (300)

Anisotropic bound phonon, L, 65
G, +A,R,66
Cs, ,»Refl., 60,71
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TABLE IV. 1. Localized modes in semiconductors and metals. (Continued)

Mode frequency (temperature)

Host and Impurity °’K Defect symmetry, Method of observation, > References,? Comments
CdSe »
Beg, 411(]}), 420(1) (100) G;,,A, 66
Teg, 153(293) S, Refl., 86, this mode may lie in a gap
Sge 269(])), 270 (1) (15) Refl., 60, 71
CdTe
Zncy 167(293) S, Refl., 86
Be 391(4), 61(4) Reson. T,;,A,55,56
Ser, 170(300) T,,A,54,Refl., 86
Li(?) 270(?) ?,A,54
N. ZnS
Be 490(100), 486 (300) R,A,76
Se 220 Refl., R, 64
ZnSe
"Li 353(77),336(%7),328(77),318(’77) ?,A, 60
Al 359(77) T,;,A,61
Al-Oz, ? ?,A,61
Be 450(100), 447(300) S,R,A, 76, 88, 89
S 297(100) S, A, Refl., R, 60, 62, 72
ZnTe
Cdg,, 153(293) S, Refl., R, 86, this mode may be in the gap
S 270 S, Refl., 72
Be 415(100), 411(300) S,A, 76
Metals
In in Pb © 77(0.83) S, T, 78, Localized mode band (host crystal
has w,,=73 cm™)
Au in Cu 80(300) S, Neutron scattering, 90, well-defined resonant mode
in acoustic band for 3% Au
W in Cr Broad resonance S, Neutron scattering, 91, resonant mode

2 Key: A =absorption, R=Raman, Refl. =reflectivity, T =electron tunneling, L=Iluminescence, S=substitutional.
b The references for Table IV.1 are the following:

1.
2.
3.

~

16.
17.
18.

Spitzer, W. G., and M. J. Waldner, 1965, Appl. Phys. 36, 2450.

Newman, R. C., and R. S. Smith, 1967, Phys. Lett. A 24, 671.

Newman, R. C., and R. S. Smith, 1968, in Localized Excitations in Solids, edited by R. F. Wallis (Plenum, New York),
177. ,

Tsvetov, V., W. Allred, and W. G. Spitzer, 1968, in Localized Excitations in Solids, edited by R. F. Wallis (Plenufn, New
York), 185.

Tsvetov, V., W. Allred, and W. G. Spitzer, 1967, Appl. Phys. Lett. 10, 326.

Angress, J. F., A. R. Goodwin, and S. D. Smith, 1968, Proc. R. Soc. Lond. A 308, 111.

Angress, J. F., A. R, Goodwin, and S. D. Smith, 1965, Proc. R. Soc. Lond. A 287, 64.

Devine, S. D., and R. S. Newman, 1969, J. Phys. Chem. Solids 31, 685.

Newman, R. C., and R. S. Smith, 1967, Solid State Commun. 5, 723.

Newman, R. C., 1969, Advances in Physics 18, 545 for review.

Bosomworth, D. R., W. Hayes, A. R. L. Spray, and G. D. Watkins, 1970, Proc. R. Soc. A 317, 133.

Newman, R. C., and J. B. Willis, 1965, J. Phys. Chem. Solids 26, 373.

Newman, R. C., and R. S. Smith, 1969, J. Phys. Chem. Solids 30, 1493.

Balkanski, M., and W. Nazarewicz, 1966, J. Phys. Chem. Solids 27, 671.
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Smith, S. D., and J. F. Angress, 1963, Phys. Lett. 6, 131.
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78.
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best comparisons with rigorous theories have been made
here. From the list of defects and host crystals con-
tained in Table IV.1 it is clear that some selectivity
must be exercised in the discussion of this topic. There
will be no attempt to discuss all the cases, but rather

a few examples will be selected to illustrate the nature
of the results and observed the effects. In some cases,
the choice reflects the personal bias of the authors,
while in other cases the examples omitted here have al-
ready been discussed extensively by Newman (1969) in
his recent review. The latter category includes the
important cases of O, (C-O) pairs, and B-substitutional
donor pairs in Si.

It is of interest to note the difference in the experi-
mental situation for the insulators and semiconductors.
The insulators show many cases of gap modes and reso-
nant modes, but only a few defects give high-frequency
localized modes. In the semiconductors there are rela-
tively few cases observed of in-band or resonance mode
absorption, and the cases observed are frequently not
well understood. However, as indicated in Table IV.1,
defects giving rise to high-frequency localized modes
are numerous.

The Group IV semiconductors, which include germa-
nium and silicon, are of the diamond structure which
consists of face centered cubic sublattices with a rela-
tive displacement of § the body diagonal. There are two
atoms in the primitive cell. The nearest-neighbor con-
figuration for each atom is tetrahedral (I point group),
and there is a center of inversion midway between any
pair of nearest neighbors. The vibrational spectrum of
the perfect lattice consists of six branches of which
three are optical (two transverse and one longitudinal)
and three are acoustical. Symmetry requirements im-
pose a number of conditions on the frequencies at cer-
tain points and along symmetry lines of the Brillouin
zone. An illustration is given in Fig. 39 where the dis-
persion curves for the normal modes of vibration of Si
are shown. The degeneracy of the optical branches at
q =0 (T point), the degeneracy of the LO and LA branches
at the X point, and the twofold degeneracy of both the TO
and the TA branches along certain high-symmetry direc-
tions are examples of these restrictions. The degen~
eracy at the X point corresponds to the degeneracy of
modes 24 and 25 in Fig. 3 when M =m in the linear chain.

Infrared absorption and to a somewhat lesser degree
Raman scattering of the pure crystals have been the sub-
jects of several studies (Johnson, 1965). Since the crys-
tals cannot have a first-order electric moment for the
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q~0 optical modes, single phonon absorption is forbid-
den and the crystals do not have a reststrahlen band.
The modes are Raman allowed, however, and have been
observed. The relatively weak absorption observed in
the infrared in these crystals has been shown to be due
to multiphonon processes and therefore need not concern
us further here.

2. Localized vibrational modes of isolated impurities

Figure 40 shows the density of states of silicon calcu-
lated by Johnson (1965). Because of the degeneracy of
the LO and LA branches at the X point, there cannot be
a forbidden frequency region between the optical and
acoustical branches, and hence no localized gap modes
are possible in the Group IV materials. Dolling and
Cowley (1966) have calculated and intercompared the lat-
tice vibrations of diamond, germanium, silicon, and
gallium arsenide. The latter three have very similar
densities of states. In all these crystals localized modes
must have frequencies above the top of the unperturbed
frequency spectrum. There are several examples of
high-frequency modes listed in Table IV.1. These in-
clude the cases of an isolated substitutional impurity
(B, C, and Si in Ge); interstitials such as O in Si and
Ge; paired impurities such as Li—-B in Si, Li-B in Ge,
B~As, B-Sb, B-P, and B-B in Si.

The simplest cases to discuss are those of the isolated
substitutional impurities. These cases also contain
some interesting contrasts. Carbon in silicon is a Group
IV impurity in a Group IV host. Because of the match-
ing valence of the impurity one expects that it should be
assigned zero charge in a point charge model and hence
should show little or no infrared absorption strength.
Relatively strong infrared modes have been reported by
Newman and Willis (1965) for 12C, 3C, and C isotopes.
Figure 41 shows an absorption spectrum for Si.doped
with '2C and 3C. The observations are consistent with
the previous evidence that C is a substitutional impurity
in Si (Newman, 1969). A single frequency is expected
for a given C defect as the symmetry is T; (tetrahedral),
so that the vibrations along three orthogonal axes are
degenerate. The local mode frequency calculated for
14C using the Green’s function method (Sec. III) applied
to the mass defect model (Dawber and Elliott, 1963a,
1963b) is 610 cm™, compared to the experimental value
of 573 ecm™!, Thus a decrease in force constant is re-
quired to obtain better agreement. An interesting fea-
ture, however, is the value of the absorption cross sec-
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tion!® given by 0y, = fband a,(v)dv/N, where @,(v) is the
absorption due to the band with the pure sample back-
ground subtracted and N is the defect concentration. The
experimental value of 0, for carbon in siliconis 3X107'7
cm, where V is in units of cm™! (Newman and Willis,
1965). 'As will be seen, this is a larger value than that
obtained from most other impurities in Ge or Si, in-
cluding B§; which is a charged acceptor. This result
can be understood using the theory of Leigh and Szigeti
(1967, 1968), which shows that the absorption is deter-
mined not only by the ionic charge on the impurity, but
also by internal field effects. The point charge model
used by most authors, in which the impurity carries a
charge ¢ in an uncharged lattice, is too simple for use
in calculating the absorption strength. Recall that the
one-oscillator model with a fully localized charge of | el
and a mass of 16 amu gave 0, =3X107!7 cm (Table II.1).
A first principle prediction of the carbon local mode ab-

Wy

L 1
0-03 004

W (eV) w——e

I
0 0-01 0-02

FIG. 40. Density of states for silicon. Some critical point
energies are shown. From Johnson (1965).

10The cross section defined here is not conventional, how-
ever, it is a practical quantity which can be related to model
calculations. See Table IL2 for the value of 0),, in the point
charge one-oscillator model.
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sorption strength cannot yet be given.

The case of the B local mode in silicon has received
considerable experimental and theoretical work. B is
the lightest of the simple donor or acceptor atoms which
can be dissolved in the Group IV hosts, and thus should
produce the most spatially localized impurity mode.
When B is introduced as an impurity in the Si lattice, it
is substitutional (a shallow acceptor) and must be elec-
trically compensated for in absorption studies. Compen-
sation techniques have already been discussed. In order
to observe the isolated Bgs; species of T; symmetry, the
compensation technique must employ species which do
not readily ion pair with the boron. The method usually
employed has been doping during growth with a donor and
then completing compensation either by electron irradia-
tion or by Li diffusion. Figure 42 shows some experi-
mental results of Angress et al. (1964). The absorption
cross section for the boron is approximately 0.2 that of
the carbon. As in the case of carbon, the calculated
frequency (mass defect model) of 664 cm™ for Bill is
substantially higher than the observed value near 620
cm™!,

The dependence of the Bg; local mode frequency upon

-
= SILICON +C'2 +c'®
& 6 T=77°K
)
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[
W
8T 41
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S—= 3
E 3
[r 2=
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o) ! |
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FIG. 41. Differential absorption spectrum of silicon doped
with 43% 12C and 57%%C compared with zone refined silicon.
The total carbon concentration is approximately 1018/cc. The
two local modes occur at frequencies slightly below those pre-
dicted by the Dawber—Elliott calculations. From Newman and
Willis (1965).
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force constant changes has been investigated by Elliott
and Pfeuty (1967), who include nearest-neighbor force
constant variations in their Green’s function calculations
and show that it is possible to fit experiment by reduc-
ing the B-Si force constants.

Two methods which avoid the compensation problem
are Raman scattering and electron tunneling. Cerdeira,
Fjeldly, and Cardona (1974) have recently observed the
boron local modes by Raman scattering. Their results
are shown in Fig. 42. The presence of 4X102° carriers
(holes) causes a significant shift of the local modes to
lower frequency and also Fano-type lineshape anomalies
which depend on the wavelength of the exciting laser ra-
diation. The tunneling method has detected the boron
local mode but involves some complications in interpre-
tation and the practical difficulties of making a suitable
junction. A tunnel junction spectrum is shown in Fig.
42(c). While the local modes show clearly here, other
similar systems do not show local mode structure in
their tunneling spectrum. The factors which control the
strength of these features in tunneling spectra are not
understood at present.

Until recently there was no report of infrared absorp-
tion by isoelectronic impurities other than C in a Si or
Ge host. However, Raman studies of Ge,Si, ., alloys by
Feldman et al. (1966) showed a mode which was inter-
preted as the Sig.local vibration for x close to unity.
Figure 43 shows some of the spectra. The frequency for
x=0.985 is 389 cm™!, which is very close to the calcu-
lated value of 394 cm™'. In addition, for x <0.95, Raman
lines were observed at 448 and 476 cm™!, both of which
are greater than the maximum unperturbed Ge phonon
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FIG. 43. Raman spectra of germanium-silicon alloys for
several compositions. The instrumental resolutionis indicated
by the vertical lines. The isolated Sig, local mode occurs at
389 cm™!. From Feldman et al. (1966).
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frequency (305 cm™'). These bands were attributed to
the two Raman-active modes of the Sig.—Sice nearest-
neighbor pair defect (D,, symmetry). Later Raman stud-
ies by Brya (1973) and by Renucci et al. (1971) suggest,
however, that the 476 mode is not associated with iso-
lated defect pairs. Wakabayashi ef .al, (1971) have ob-
served the local mode near 380 cm™! by neutron scat-
tering. Their samples contain 9.2% Si, so that concen-
tration broadening is significant. Some very recent ab-
sorption measurements by Cosand and Spitzer (1971)
for 0.88 <x<1.00 show the local mode band near 390
cm™!, Figure 44 shows their infrared results for sev-
eral concentrations of Si. The absorption cross section
Oloc ~1%X1072° ¢cm is essentially constant over the indi-
cated range of x, as expected for noninteracting defects.
The mass defect € and the mode eigenvectors are simi-
lar for Cg and Sige. We note, however, that the 0, in
the latter case is 10® smaller for Cg; in Si, in spite of
the fact that each is an isoelectronic impurity in a homo-
polar crystal. There are a number of significant factors
which could cause major differences for the two cases.
The electronegativity values of Ge and Si are almost the
same, while that for carbon is quite different; the tetra-
hedral covalent radii are similar for Si and Ge (7g; /7.
=0.96), while C is again different (o/%; =0.65). 1t is
well known that Si and Ge form a uniform solid solution
over the entire range of mixtures, while C isonly slight-
ly soluble in Si and in large quantities forms the SiC
compound. These differences point up the fact that the
bonding and charge distributions are different in the two
cases, requiring more detailed models than are present-
ly available.

The case of Ge impurities in silicon tending to form
resonant modes is discussed in Sec. 4 below. Several
of the studies mentioned above include a wide range of .
concentrations of the Ge,Si,_, alloy and will be referred
to again in Sec. IX.

3. Localized vibrational modes of defect pairs

B-Li pairs in Si were the first case in which localized
modes of a defect pair were the subject of a detailed

FIG. 44. Absorption coefficient at 80 K for the Si local mode
in Ge-rich Ge—Si alloys. The background absorption has been
subtracted off. In order of increasing strength the alloy com-
positions are 0.6%, 1.5%, 2.5%, 4.5%, and 12.0% silicon. From
Cosand and Spitzer (1971).
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investigation, and remain today as the most thoroughly
studied case in any semiconductor. The B is in a sub-
stitutional site and the Li is presumed to be in an inter-
stitial site (Reiss and Fuller, 1956). Figure 45 shows a
substitutional B impurity and one possible interstitial
Li site. The Coulomb attraction and the mobility of Li
favor the formation of Bg;—Li; pairs as shown in the
figure. Experiments by Balkanski and Nazarewicz
(1966), Spitzer and Waldner (1965a and b), Waldner

et al, (1965), and Chrenko el al. (1965) show that when
"Li compensated samples are measured, the 620 cm™!
band for isolated 'B is replaced by bands at 655, 564,
and 522 cm™', Analysis of the bands is carried out by
using °B in place of !B and by compensating with ¢Li
in place of "Li. A typical absorption spectrum is shown
in Fig. 46, which illustrates the various isotope effects.

An early interpretation of the pair mode spectrum
suggested that the effective force constant between the B
and Li was small, causing the triply degenerate modes
to split into two modes, one singly degenerate axial
mode and a doubly degenerate mode at higher frequency
orthogonal to the B—Li axis. This result now appears
questionable, and Cosand (1971) has summarized vari-
ous models for the mode separation and its relation to
the Bgi—Li;’ ion spacing in the lattice.

The detailed calculations for B-Li pairs were done by
Elliott and Pfeuty (1967) and by Pfeuty (1968), by use of
a Green’s function analysis. They find that reasonable
results can be obtained with the substitutional B-inter-
stitial Li defect pair model if one makes a number of
assumptions concerning force constants. Terms are
included representing a harmonic but anisotropic inter-
action between the B and Li. It is also necessary to
lower the force constant for the B—Si bond opposite the
Li and the second-neighbor force constants between the
B and those Si atoms which are also nearest neighbors
of the Li. The model has a predominantly Li vibration
near 522 cm™! for “Li, and near 534 cm™! for ®Li. With
these assumptions and force constant changes, quite
good agreement is obtained between calculated and ex-
perimental values, as shown in Table IV.2.

The Li participation in the pair modes is not yet well

FIG. 45. Animpurity site (Bl) in a diamond lattice with its
four first neighbors (2—5), twelve second neighbors (6—17),
and a tetrahedral interstitial site (18). From Cosand (1971).
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understood. One might expect two Li modes, an axial
and a doubly degenerate transverse mode, similar to
those of the B. The small isotope shift between the ob-
served "Li and ®Li bands is qualitatively understood by
noting that the maximum phonon frequency for pure Si is
between 520 and 525 cm™, Therefore the Li modes are
not highly localized and considerable motion of the
neighboring Si must be involved. Indeed, the 522 cm™
band for "Li may be a resonant mode lying within the
silicon optic band. One is forced to conclude that either
the Li modes are not significantly split by the interac-
tion or that the other, presumably axial Li mode, is at
a lower frequency and has not been observed, perhaps
because of a high density of band modes at its frequency.

The B-Li defect model has recently been extended by
Cosand (1971) to Si-rich Ge-Si alloys. The presence of
the Ge causes an asymmetric broadening of the B modes.
The broadening effects could be explained as the result
of second neighbors to the B being randomly distributed
between Ge and Si atoms, which changes the B-Si force
constants. Some weak split-off bands were also ob-
served which were attributed to B with a Ge first neigh-
bor. This small observed strength may be an indication
that B and Ge tend to avoid nearest-neighbor sites
(Cosand, 1971).

4, In-band and resonant modes

Several defects have been shown to produce band mode
absorption (i.e., absorption in the range of the host lat-
tice phonons) in Group IV materials. For the present
purposes we will discuss the Si host, as it is the one
most extensively studied. The simplest (though by no
means completely understood) case is probably that of
Ge—Si alloys at the Si-rich end of the composition range
(Cosand and Spitzer, 1971). The introduction of Ge pro-
duces pronounced bands near 125, 405, and 485 cm™! as
shown in Fig. 47. There is some question as to whether
these peaks represent resonant mode frequencies or
simply density of states peaks in the silicon phonon
spectrum shown in Fig. 40. All three bands lie close to
peaks in the density of states function; however, two of
the bands (125 and 485 cm™) also lie close to resonance
or near-resonance positions as calculated by Maradudin

TABLE IV.2. Comparison of B—Li pair mode frequencies in silicon. 2

Defect

Mode

Observed
frequency (cm™)

Calculated
‘frequency (cm™1)

10B-—-6Li, “B-—-sLi
10p 71 10_T14
10B_6Li (10B__7Li)

WB_GLi (10B_7Li)
IiB_GLi(ﬁB_’ILi)

“B—-sLi (“B—7Li)

Prim'arily Li
Primarily Li
Primarily B
transverse mode
Primarily B
axial mode
Primarily B
transverse mode
Primarily B
axial mode

534 533

522 522
683(681) 678(678)
584(584) 584(584)
657(655) 655(651)
564 565.5

a2 From Pfeuty (1968).
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(1966a) for Ge in Si (see Fig. 38). Dawber and Elliott
(1963b) have calculated the mode spectrum for As in Si.
Since As has a mass close to that of Ge, this calculation
is also relevant to Geg; and is shown in Fig. 47. Both
theoretical calculations show some similarities to the
measured spectra. At the present time this lack of
close agreement appears typical of most resonant mode
experiments.

Angress et al, (1964, 1965, 1968) have observed band
mode absorption in Si containing B plus a heavy substi-
tutional donor, either P, As, or Sb, and with final com-
pensation produced by electron irradiation. They also
studied P-doped Si compensated by neutron irradiation.
Some of their results are shown in Fig. 48. The most
prominent band was near 441 cm™!, which was attributed
to a phosphorous resonance.’ A number of weaker bands
were observed and some attributed to impurity reso-

- nances, while others were related to impurity activation
of lattice modes. In general it was found that the “in-
band” absorption due to B was in reasonable agreement
with the predictions of Dawber and Elliott [Fig. 48(c)],
while P and As absorption were not in agreement. In
view of the later work of Leigh and Szigeti, the lack of
success of the impurity point charge model used by
Dawber and Elliott for Pg; is not unexpected.

A particularly interesting case is the recent prediction
of a near-resonance absorption at 225 cm™! for B-doped
Si. In this calculation, Bellomonte and Pryce (1968)
used a density of states for Si obtained from an analysis
by Johnson and Loudon (1966) of the neutron results of
Dolling (1963). This density of states is significantly
different from others in the literature and leads to a
boron resonance absorption, as opposed to boron’s
merely activating the regular band modes of the silicon.
Angress et al. (1965, 1968) independently observed a
small peak near 227 cm™! (see Fig. 48). This result il-
lustrates the necessity of having accurate information
concerning the density of states for reliable resonant-
mode calculations. -

Finally we wish to note one possible class of localized
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modes which is conspicuous by its absence. In Fig. 21
vacancy modes for the linear chain were illustrated.
Corresponding modes must exist for Og; (vacancy on a
Si site) in silicon, though probably only the low-frequen-
cy solutions (resonant modes) would occur in a real
crystal. The silicon vacancy is observed in electron
spin resonance experiments, is mobile above approxi-
mately 100°K, and can exist in several charge states
(Watkins, 1972). Since the vacancy is perhaps the most
basic intrinsic defect, there is considerable theoretical
interest in band strengths and lattice relaxation about
this defect. Note that the fundamental breathing mode

of the neutral vacancy would be Raman active, but other
motions, as well as modes of the charged vacancy,
would be infrared active. It would be extremely valuable
to detect these localized vibrations by optical methods.

C. 1l1-V compound semiconductors

1. Introduction

The compound semiconductors have proved to be a
rich field for localized mode studies, but there are very
few experimental results of either resonant modes or
band absorption. The III-V compound crystals usually
crystallize in the zinc blende structure A;;By, which is
produced by placing the Group III element on one sub-
lattice of the diamond structure, called A, while the
Group V element is placed on the other, or B, sublat-
tice. Thus each atom is tetrahedrally coordinated with
four atoms of the other type. Since there is no longer a
center of inversion as in Si, a first-order electric mo-
ment is allowed and the TO modes near q =0 are active
in infrared absorption as well as in Raman scattering.
The TO and LO mode frequencies near =0 are now
split, and the LO-LA degeneracy at the zone edge in the
(100) direction (X point) is lifted, allowing the possi-
bility of a gap in the phonon spectrum. Figure 49 shows
the phonon dispersion curves of GaAs. Comparison with
Fig. 39 shows the splittings referred to at high-symme-
try points. The dispersion curves of GaP are very sim-
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ilar in shape to GaAs, but there is a wide gap between
the acoustic branches and the optic branches. Figure

50 compares GaAs and GaP. From the figure it is evi-
dent that gap modes will be possible in some of the III-V
compounds.

In the case of the isoelectronic substitution of a Group
III or Group V impurity in a III-V material, the defect
will not contribute free carriers, and hence electrical
compensation is not a problem. This is why the reader
will note a number of such cases given in Table IV.1,
for example, Al or P in GaAs, GaSb, and InSb; Al and
B and N in GaP. When one introduces impurities from
the II, IV, and VI columns, then the impurities are gen-
erally electrically active, i.e., they are donors or ac-
ceptors, and reduction of the carrier concentration is
required for infrared absorption measurements. In
many cases impurity compensation isnot easy to achieve.
In some cases, particle irradiation does not tend to
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produce well compensated material. A happy exception
is GaAs, and this explains the rather long list of defects
observed in that material. The energy gap of GaAs is
1.4 eV, which is larger than that for Si, allowing Li
diffusions to be done at temperatures up to ~1000°C
(Spitzer, 1971). Samples a millimeter thick can be uni-
formly Li diffused in a few hours at 600°C. In addition,
both electron and neutron irradiation tend to produce
defects which compensate for any impurity originally
present.

The materials GaAs and GaP are excellent hosts for
the study of high-frequency local modes for a number of
additional reasons. Both Ga and As are fairly heavy,
and hence there are a large number of relatively light
impurities which are candidates for introducing local
modes. In many cases the impurities have large enough
solid solubilities that detection by infrared absorption
is relatively easy, and in some cases correlation with
transport properties also becomes possible. The mass-
es of Ga and As are sufficiently close that for theoreti-
cal purposes one can approximate this diatomic system
by a monatomic system. In addition, the phonon spectra
of pure GaAs and GaP have been measured and the den-
sity of states fairly well established (see Fig. 50).

For the above reasons we will restrict our discussion
to GaAs and GaP. We will not discuss all the defects,
but will concentrate on the details of several cases of
particular interest. As will be seen, the studies are not
complete and in some cases interpretations in the liter-
ature of the last few years are obviously in error.

2. Models for localized modes in diatomic crystals

It is appropriate here to review models for the fre-
quencies of localized modes since there are very few
detailed model calculations for the III-V semiconductors.
In contrast with the case of the Group IV semiconduc-
tors, the diatomic structure causes far more param-
eters to be needed for realistic models of the host crys-
tal even before the defect is introduced into the problem.
Beginning with the simplest possible model we have the
one-oscillator approximation discussed in Sec. II (2.13):

Wioe = W10 m/ml- (4.1)

In the equation 72’ is the mass of the impurity, and the
one “parameter” which is a force constant has been
written as two parameters, here wro and m. In the
spirit of the mass defect model we hope that this param-
eter may be evaluated from some knowledge of the pure
host crystal. In fact an examination of actual local mode
frequencies observed in several III-V semiconductors
shows that there is no unique choice for the parameter.
An easy choice which is.correct in the limit of very
small m’ is to choose the transverse optic mode fre-
quency for wrg and the reduced mass of the two consti-
tuent host atoms for m. Consideration of a range of ex-
perimental results shows that the model gives results
which are 10 to 20% low in typical cases. As might be
expected, there are several immediate objections to
such a simplified model. One is simply that the form
presented here does not distinguish whether the substitu-
tion is taking place on the A or B sublattice. In spite of
this objection an extension of the one-oscillator model
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forms the basis for most of the detailed analyses of
local modes in many defect systems. The defect poten-
tial implicit in (4.1) is V(x)=Ax2. The most common
extension of the model is to make it three-dimensional
and to add anharmonic terms. For a defect atom at a
site of tetrahedral symmetry the potential is (Elliott

et al., 1965)

V =A(x% +y2 +22) + Bxyz +C, (x* +3* +2%)

+C,(¥222 + 2242 £ x2y2) 40 - ¢ 4.2)

For only A nonzero, a single local mode frequency is
calculated as given by (4.1). The anharmonic terms al-
low the second and third harmonics to have a finite in-
frared strength. In particular, if the second harmonic
is observed, it establishes the presence of the term
Bxyz in V, confirming that the defect site has tetrahe-
dral symmetry. Elliott et al. (1965) have given detailed
results for the potential (4.2), including the calculation
of the temperature dependence of intensities, of line
shifts and widths, and the appearance of sidebands. This
three-dimensional anharmonic form of the one-oscilla-
tor model is thus capable of correlating and predicting
a great many results on local modes. The parameters
A, B, C,, C,, etc. are not derived from first principles
or from properties of the host. They are fit to some of
the data. The use of (4.2) goes well beyond the mass
defect model—it actually establishes the form of the
short-range defect potential once it has been fit to suffi-
cient data on the fundamental, second, and third har-
monic absorption. Note that since even the parameter
A is fit to experimental results, (4.2) is not usually used
to predict the occurrence of localized modes.

Returning to harmonic mass defect models, Allen
(19'70) has suggested a two-parameter (two-oscillator)
model to evaluate local mode frequencies in the III-V
semiconductors. He derives the model from considera-
tions of an impurity mass vibrating against some other
mass which represents the nearest neighbors in the
actual lattice. The parameters are evaluated by actually
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fitting to some observed local mode frequencies. Quite
reasonable predictions are thén made for other local
mode frequencies using the model. The equation for the
local mode is given by

w2 =A(/m' +1/Bm,,), (4.3)

where m,, is the mass of an atom neighboring the im-
purity, and A and 8 are the parameters of the model.
This model does distinguish between A and B sites
through m,,. Note that (4.1) and (4.3) give the same be-
havior for very light mass impurities, but different
limiting behavior for large mass impurities.

As the impurity mass increases from very small val-
ues, the mode must be much more extended in real
space as the frequency of the local mode approaches the
frequencies of band modes of the host. Models like those
discussed above can be expected to become poor ap-
proximations in this limit (large m’), since they do not
contain the band modes. In order to obtain more realis-
tic models one is naturally led to the linear chain cal-
culations such as those presented in Sec. II. In fact the
simple models described by (4.1) and (4.3) can be shown
to correspond to special one-atom and two-atom linear
chains. Linear chains which contain more atoms can
naturally have more parameters; for example, second-
neighbor and third-neighbor forces. Multiatom chains
allow the spatial extent of the localized mode to be eval-
uated as well as the local mode frequency.

Lucovsky ef al. (1970) have proposed using a diatomic
linear chain with one type of force constant between
nearest-neighbor ions. If the masses in such a chain
model are chosen to be the masses of the real crystal
then this is a one-parameter model. The authors write
down the analytic form for the localized mode frequenc-
ies which have been derived earlier by Mazur, Montroll,
and Potts (1956). The analytic form can be expressed
as simple combinations of two parameters. Lucovsky
et al. now abandon the original linear chain and treat
these two parameters as basic, relating them to the
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measured Wy and W frequencies of the real host crys-
tal. In this way they have a procedure which can predict
local mode frequencies using only data on the host. The
new ingredient which is used in applying the model is the
assumption that localized modes will not actually be ob-
served if the mode predicted in this manner lies inside
the optic or acoustic band of the real crystal. In this
way they surmount one shortcoming of the linear chain
model: it predicts a local mode for any light substitu-
tion on a host ion site contrary to the results for three-
dimensional crystals. Other difficulties of the linear
chain model remain, however. For example, resonant
modes cannot appear in the model. Using the model the
authors are able to establish a large list of predictions
for local mode frequencies which in many cases are
quite close to observed modes and in other cases can
serve as predictions where no local mode has yet been
observed.
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Barker and Berman (1974) have also used a diatomic
linear chain model to predict local mode frequencies.
They use the masses of the crystal being modeled as
fixed parameters and choose three force constants as
three adjustable parameters. The forces chosen are
those between nearest neighbors, those linking anions,
and those linking cations. The three force constants
are chosen to actually fit some observed localized modes
in the crystal. Figure 51 shows the results of this lin-
ear chain model for local modes in GaP. The sugges-
tion of Lucovsky ef al. has been included by drawing in
the experimentally observed band edges in the figure.
The occurrence of a sharp spectral feature is to be ex-
pected only where the local mode solution curve emerges
from the band. Note that there is a gap mode for heavy-
ion substitution on the Ga site. This is in contrast to the
simple nearest-neighbor force constant linear chain
where no such mode can exist. This mode occurs in the
gap of the chain but falls inside the optic band of real
GaP. It is not clear at this stage whether modes of this
type will be observable. Substitutional local modes
which have been observed in GaP are included in Fig. 51
as solid points.

The absorption strength of the localized mode can be
evaluated from the chain model once a charge is assigned
to the impurity, and the localization can be evaluated
from the eigenvectors. Figure 52 shows the mode
strength for the localized and gap modes assuming iso-
electronic defect ions in the Barker—Berman chain mod-
el. The band modes will also acquire infrared activity
which can be calculated and was shown for several
cases in Sec. II using a model with nearest-neighbor
forces.

We now briefly describe a more detailed model for
prediction of localized mode frequencies in several III-
V and II-VI compounds. Gaur et al. (1971) have used a
rigid ion model to describe the host crystal. The pa-
rameters of this model are fixed by knowledge of the
three elastic constants and the wWro and the Wy optic
mode frequencies. The model is therefore more detailed
than a linear chain model but certainly much simpler to
handle than a shell model which must have neutron dis-
persion curves to determine the parameters. The im-
purity ion is assumed to be a mass defect only. Figures
53(a)—(c) show the results of some of these calculations
for several semiconductors with the zinc blende struc-
ture. The calculations give localized modes above the
optic band when the mass of the impurity is less than
some critical mass. This fact explains the termination
of the solution curves at the low € end in the figures. It
is interesting to note the close correspondence of the
two localized mode solutions for cases where the host
crystal is nearly “monatomic.” For example, in gal-
lium arsenide the atomic masses are within 7% of each
other. The approximation is often made for purposes
of calculating w, that the lattice vibrations of GaAs are
very similar to those of silicon except for a frequency
scaling factor (Lorimor, Spitzer, and Waldner, 1966;
Verleur and Barker, 1966). Using such an approxima-
tion, substitutions on the gallium sites and the arsenic
sites are equivalent. The validity and the degree of ap-
proximation resulting from this assumption can imme-
diately be tested using the figures.
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well-localized modes cannot exist here.

Little work has been done on more fundamental im-
purity mode models in any of the compound semicon-
ductors. While new knowledge is being gained at an in-
creasing rate because of the technical importance of
these materials, at the present time a fundamental mod-
el of the host requires too many unknown parameters.

In addition, a fundamental model of the host crystal is
not sufficient for many of the situations of practical in-
terest. This is because the localized modes correspond
not to simple substitutional mass defects but to force
constant plus mass defects or more complicated inter-
stitial defects or combinations of several defects. An
example of the latter situation is the Li-Li-O defect
cluster in GaP. The localized modes associated with
this center have been studied by photoluminescence
(Dean, 1971). At least three force constants, which are
unique to this defect, must be introduced to explain
some of the modes observed. In a similar fashion we
find that, for many other compound semiconductors, ex-
perimental studies of localized modes have led to rather
specialized models which introduce ad hoc force con-
stants and which involve only the defect and the nearest-
neighbor atoms rather than the entire crystal. Talwar
and Agrawal (1975) have made a study of the force con-
stant changes needed to make a particular model agree
with known local mode frequencies. The force constant
changes needed are as large as +60% in some cases and
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appear unrelated to any obvious impurity atom param-
eter.

3. Gallium phosphide

Gallium phosphide is one of the most important com-
pound semiconductors from the point of view of light-
emitting electronic devices. In the “as-grown” form, it
usually has a rich luminescence spectrum which exhibits
many localized modes as sidebands on electronic tran-
sitions. These modes often result from the unintention-
al inclusion of impurity atoms during growth. At pres-
ent the most important impurities from the point of view
of the manufacture of light-emitting diodes are Zn, O,
and N. Using the mass defect model, it is apparent that
O and N can cause localized modes (see for example
Figs. 51 and 53). It is worth noting at this point that in
spite of great interest in the O local mode and in spite
of tremendous efforts to find this mode, it has not posi-
tively been identified to date for the substitutional posi-
tion Op in the GaP lattice. O at an interstitial site has
been identified and is of technical interest, since this
form of O is inactive in the light-emitting process and
hence robs the crystal of active O while it is being
doped.

It is now well established that GaP has a wide gap be-
tween its acoustic.and optic bands. This is clearly il-
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lustrated for the shell model of Fig. 50 and the one-di-
mensional model of Fig. 2. GaP is therefore a good host
for the study of gap modes.

Spitzer et al. (1969b) made one of the earliest studies
" of vibrational modes of defects in GaP. While several
impurity species were considered, positive identifica-
tion was made of !B and !°B. The method of identifica-
tion illustrates the importance of isotopes in local mode
studies. The two local modes resulting from the two
isotopes of B are well separated and maintain a strength
ratio of about 4 to 1. This is exactly the ratio of the
natural abundances of these two isotopes, giving a strong
indication that the correct assignment is B. Some of the
other assignments made by Spitzer et al. have proved to
be correct, while other peaks observed by them have
not been assigned to any known impurity even to this
date. A listing of the known localized modes which have
been connected with specific impurities is listed in
Table IV.1. Figure 54 shows both localized modes and
gap modes for the two isotopes of B in gallium phosphide.
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Hayes, MacDonald, and Sennett (1969) have also seen
combination bands consisting of the simultaneous excita-
tion of a gap mode and a local mode. These are shown
in the bottom part of the figure. Lightowlers (1972) has
carefully measured the B local mode absorption and the
concentration of boron in several gallium phosphidé
crystals. For the B local mode, he finds [adA=0.6
X107¢ for 10'® impurities per cc or 0, =0.19X107% cm,
This measurement of the absorption coefficient is the
most accurate to date in a compound semiconductor.
The value is about three times larger than for B in sili-
con and in fact is close to the model value given in
Table I1.1 which neglects local field effects.

Hayes, MacDonald, and Sennett (1969) have made cal-
culations of the local and gap mode frequencies of Bg,
using the Green’s function method and the mass defect
model of Sec. III. Certain approximations are made in
the characteristic equation (3.10), including using Debye
functions for the acoustic mode density of states and a
single delta function to represent the entire optical band
density of states. The authors predict frequencies that
are about 12% high for the local mode, and 15% low for
the gap modes. It is typical of the situation in the com-
pound semiconductors that this model, based on a so-
phisticated Green’s function method, yields less ac-
curate predictions than the simple linear chain model
illustrated in Fig. 51.

The spectra of both Spitzer ef al. and Hayes el al.
show a sharp mode at 606 cm™! [see Fig. 54(a)l. This
mode has been shown by Hayes, Wiltshire, and Dean
(1970) to be the local mode of 12C. The mode shifts to
564 cm™! for the *C isotope. These local modes are be-
lieved to arise from carbon on the P lattice site.

Barker et al, (1973) have made a search for oxygen
local modes in gallium phosphide. Typical undoped
crystals grown from the melt show as many as 20 to 50
impurity vibration bands. The problem in this system
is not in finding local modes but in assigning them. A
major sharp peak near 1000 cm™ has been assigned to
O;. Figure 55 shows a pair of nearest-neighbor Si
atoms in pure silicon connected by a [111] bond. It is
fairly well established that oxygen can break this bond
and form the Si—O-Si system pictured to the right of the
figure. Newman (1969) has discussed the O; localized
vibrational mode in both Si and Ge. By analogy with the
Si—-O-Si system and also with the stable GaPO, crystal
form, we expect that the Ga—O-P impurity configura-
tion can occur in the GaP lattice (Barker et al., 1973).
Figure 55(b) shows the absorption of two crystals which
are known to contain oxygen. In addition to the 1000
cm™ mode assigned to the interstitial oxygen, many
other high-frequency modes appear in the region of a
prominent three-phonon band centered near 1100 cm™.
Some of these modes have been tentatively assigned to
pair vibrations involving oxygen together with other light
impurities by Barker ef al. Models of the isolated O;
local mode and of the pair local modes developed by the
authors all involve ad hoc assumptions about force con-
stants. While the force constants are reasonable in
comparison with other semiconductors, a definitive test
of the model requires measurement involving the 20
isotope. Attempts to introduce 20 into the GaP crystals
have proved unsuccessful thus far.



Defect modes in semiconductors

Sb5

(a) +(b) (c)
- & eor 4 _ -40
~ n As [8)
g 150+ o 120} @ 65
= L o A S
o 120 S ol s//in o
[} - ~ =
= 920 3 40 L =< 55
o 60 3 ol 03 0,5 07 0.9 =
s o o2 04 06 08 .o. 8
— < 150F 3 45
S 150p o tn Sb -100 -50 00 05 10
< Ga As x 12.0F In €(Ga)
m ©
e - 9.0} €(S)
2 loof 2 sb 210 -05 0005 1.0
x X eok T A o —
3 g S 50F % Zns
3 = 3.0 1 o 50F Zn n
°%5 02 o4 06 08 10 3 ~01 03 05 07 09 3
3 3 N
L 160 3 150 9 i S
% 12.0 Gasb e 12.0} CdTe = *e 7
o |20k i x
= ©3/ /s % 90r Cdfre g W L]
8 8.0f . 60 3 42 ) N
3 40 — 2 30 . o -00 -50 00 05 IO
~“0 02 04 06 08 10 3 701 03 05 07 09 €(zn)
€
3
4000 o L1950 zns 5 -l20 1.0
3 2500}F %, 120} s ® 576
~ —4 ~ :
= 1000} X 90 Zn =
500} s 5,504
O s 3 % o3 05 07 09 X 432
0 20 40 60 .80 ol - %
w (X104 r/sec) 6.0 3 36
4 - —~ 1601
500 b Zn Se 3 2.88 —rfap——
3 3000p  GaAs 2ol -100 -50 00 05 10
= 1000F " 7n €(sh)
500} S sof Se
(o) = 1 h 1 ~ -
O .0 20 30 40 .50 8 40 — . R 0__05 1.0
w (X10" r/sec) 3 ‘0l 03 05 07 09 - 2 375
5000 - N Ga Sb
__ 4000 Ga Sb S 150+ = 3.55
3 & Zn Te °
& 1000 o 1201 o 2335
o 9.0} z
500 = Te o 315
o = 6.0F ° ]
0 1020 30 40 50 5 30— N ° 2Aggoo 00 00 05 10
w (X10" r/sec) 0l 03 o,5€o.7 09 -200 -100 00 O :
FIG. 53.

(a) Localized mode frequency as a function of mass defect parameter for substitutions in GaP, GaAs, and GaSb. The

calculations are based on a modified rigid-ion model and the mass defect approximation is used. The three histograms show the

calculated frequency distributions of the host crystals.

from the model described in Fig. 53(a).

4. Gallium arsenide

The measurement and assignment of local modes in
gallium arsenide has proceeded faster than in other
compound semiconductors. This is probably because
compensation can be achieved for both donor and ac-

ceptors by lithium diffusion or by electron bombardment.
Since there are two readily available isotopes of lithium,

this flexibility has allowed the detailed study of any par-

ticular local mode complex by several different methods.

One of the benefits of the local mode studies has been to
give insight into the nature of various lithium defects.
We discuss below the case of manganese—lithium modes,
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From Gaur et al. (1971).
CdTe, ZnS, ZnSe, and ZnTe from the model described in Fig. 53(a).

. (b) Localized mode calculations for InAs, InSb,
(c) Gap mode calculations for GaP, ZnS, AlSb, and GaSb

The curves are marked by the ion being replaced.

silicon local modes, and the modes due to lithium com-
plexes in gallium arsenide. Considerable additional
local mode work in gallium arsenide may be found by
referring to various specific cases listed in Table IV.1.
Neutron diffraction studies of the phonon dispersion in
GaAs are shown in Fig. 49. The figure shows that the
highest frequency of the lattice occurs at the zone cen-
ter. At room temperature this frequency is w, =291
cm™!. The figure shows also that, unlike gallium phos-
phide, gallium arsenide has no gap in the phonon density
of states. Figure 50 shows a density of states histogram
based on a model fitted to the dispersion curves of the
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FIG. 54. Local modes, gap modes, and overtone modes of B
in GaP. (a) Optical density at 20 °K of 1 mm thick (1) Malvern
and (2) BT crystals of GaP containing boron. The spectra are
not corrected for variation in background due to instrumental
effects. (b), (c) Optical density of a 1 mm thick Malvern crys-
tal of GaP at 20 °K containing boron. The top energy scale
refers to (b) and the bottom energy scale to (c). The broken
line on (b) represents an estimated optical density for pure
GaP in the gap mode region. From Hayes etal. (1969).
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previous figure. The histogram appears to show a nar-
row gap in GaAs; however, an examination of Fig. 49
shows that the density of states cannot go to zero any-
where in the range O to w,. Sharply localized gap modes
are not to be expected therefore in GaAs.
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FIG.55. (a) Si—Si pair joined by a [111] bond in pure silicon
(left), and a sketch of an interstitial oxygen (right) between the
two silicon atoms or between a Ga—P pair in GaP. (b) (1) Ab-
sorption spectrum of an oxygen-doped LEC sample of GaP.

(2) Spectrum of an undoped LEC GaP sample. The prominent
peak near 1000 cm™ is assigned to interstitial oxygen. (3)
Composite spectrum of several samples chosen to exhibit low
absorption. This curve probably represents the intrinsic ab-
sorption of pure GaP. From Barker gtal. (1973).
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a. (Mn-Li) pairs

Manganese is known to be a relatively deep acceptor in
GaAs with an ionization energy of ~0.1 eV, and it is gen-
erally assumed to be substitutional on the Ga sublattice
(Chapman and Hutchinson, 1967). When diffused with Li,
the resulting material is well compensated. Infrared
measurements by Lorimor and Spitzer (1967b) show
three principal bands of nearly equal strength, as shown
in Fig. 56. All of these bands show an isotope in chang-
ing from "Li to ®Li which is close to Av/v=~AM/2M
where AM and M relate to the Li masses. This is sim-
ply the one-oscillator result (2.13) which implies com-
plete localization at the Li. The predicted and experi-
mental shifts for the 391 cm™! band are both 28 cm™.

Since the Li is a donor, most studies have assumed
the species to be interstitial, Li; +e~. The Li;, being a
highly mobile species at temperatures only slightly above
room temperature, is expected to be ion paired with the
Mng,. There are two different types of tetrahedral inter-
stitial positions for the Li;, one with four Ga nearest
neighbors and the other with four As neighbors. Thus
the possible simple pairs are Mng,-Li; (Ga) and Mng,-
Li; (As). Lorimer and Spitzer (1967b) proposed models
involving the second choice and distortion of the As cage
in an attempt to fit the observed spectra. They had only
fair success. )

Recent EPR measurements (Title, 1969) of the Mn
center in Li-compensated GaAs:Mn and GaP:Mn support
a Mn-Li pair model, although the principal symmetry
axis observed at the Mng, site in these measurements is
in the (110) direction. This direction corresponds to
neither of the above pairs. Title has shown that the ob-
servations are consistent with a Mn-Li pair axis cor-
responding to the second pair if one assumes that the
symmetry at the Mn site is determined primarily by a
special type of distortion of the As neighbor configura-
tion.

Title has also pointed out that the published infrared
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and EPR data are explicable in terms of a center
(Mng, -2 Li;)* where the two Li each occupy an intersti-
tial site coordinated by the Mng, and three Ga atoms.
In this case the EPR spectrum can be explained without
invoking significant lattice distortion. If the Li were
weakly coupled, then the lack of axial symmetry would
lead to three identical absorption lines for each Li.
Subsequent attempts to observe new modes in ®Li+"Li
diffused samples were unsuccessful, in agreement with
a model where the Li motions are essentially indepen-
dent of one another.

There are several objections to the two-lithium model
of the defect center. One concerns the donor nature of
such a center. Another is connected with the unexplained
results for Zng,~Li; (Lorimor and Spitzer, 1967b). In
this case four Li bands are observed. Recent results
for GaAs with Mg-Li pairs suggest that one Li per de-
fect is the most likely situation (Leung ef al., 1972).
While the exact form of these particular pair defects has
not yet been confirmed, the work serves as a good ex-
ample of the considerations necessary for an experi-
mentalist to make a firm assignment to the spectra. It
should be obvious that one set of absorption spectra on
one crystal can seldom establish the nature of a defect
center.

b. Si impurities

A large number of high-frequency localized modes
have been observed in infrared absorption for Si in
GaAs. Spitzer (1971) has recently reviewed the absorp-
tion Spectra. The unusual electrical behavior as a func-
tion of silicon concentration has led to the speculation by
Queisser (1966) and Kressel (1968) that Si can exist in
different defect states, i.e., Sig,, Sias, and Sig,~Sias
nearest-neighbor pairs, The first should be a shallow
donor, the second a shallow acceptor, and the third
possibly a deep acceptor or electrically inactive. When
Li compensation is used there is the possibility of
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Sig,—Lig, pairs. It is clear that a complicated system
of local modes is possible for the compensated Si-doped
samples.

A prominent band at 384 cm™! has been attributed to
isolated Sig,. It is the only band appearing at low Si
concentration, and its frequency is independent of wheth-
er Li or Cu is used for compensation. - The estimated
frequency for the local mode Sig. with T, symmetry is
378 cm™!, obtained by scaling the Green’s function re-
sults for the Si lattice. As the Si concentration is in-
creased, a new band appears at 399 cm™! which is in-
terpreted as Si,; acceptors. The increase from 384 to
399 cm™! is only partially accounted for by the change
in mass defect, and therefore the force constant of the
Siga defect must be slightly lower than that for Sias.

When samples with Si concentration greater than 10'®
.cm~? are measured, several new bands appear. One
suggested defect center is the Sig,—Si,, nearest-neigh-
bor pair. This center has C,, symmetry and hence does
not have a center of symmetry. The modes are illus-
trated in Fig. 57. Application of the Elliott and Pfeuty
(1967) theory leads to four infrared-active frequencies
with w, > w,> w,;> w,. Using the mass defect theory, the
predicted frequencies for Sig,—Sias are 419, 390, 369,
and 327 cm™'. The 390 and 369 cm™! are in reasonable
agreement (1%) with observed modes. The 419 cm™! is
quite low compared to a mode at 464, but this mode is
very sensitive to the Si~Si force constant which has not
been adjusted in the calculation. The low-frequency
mode calculated to be 327 cm™! falls close to the w,,
=295 cm™! and may not have been observed yet (Spitzer,
1971). .

Additional modes observed in GaAs:Si are all sensitive
to the choice of the compensating species and are at-
tributed to the Sig,—Xg, defect shown in Fig. 58, where
X is ®Li, "Li, or Cu. This defect has lower symmetry
than that of Fig. 57 and hence six bands are expected as
all degeneracies are lifted. Table IV.3 shows the as-

1
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Wy > Wy > Wy >w,

4

FIG. 57. Modelfor (Sig, —Sias ) pair defect in GaAs. Approxi~
mate displacement vectors for the localized modes are shown.
Modes 2 and 3 are doubly degenerate. From Spitzer and
Allred (1968).
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FIG. 58.

A model for an undistorted (Sig, —Lig,) pair in
GaAs showing nearest neighbors to the substitutional impuri~-
ties. From Spitzer and Allred (1968).

signments of Spitzer and Allred (1968). Spitzer (1971)
has listed several additional experiments and arguments
for the mode assignment. It is clear that many of the
mode assignments have been made on the basis of plau-
sibility. Defects like Figs. 57 and 58 are entirely rea-
sonable, however, and can be expected in other com-

- pound semiconductors.

c. Li impurities

Hayes (1965) was the first to study the high-frequency
vibrational modes of Li in GaAs. He found that when Li
was diffused into undoped GaAs at temperatures between
750 and 850°C, a series of bands were observed above
w,. All of the prominent bands showed approximately a
full Li isotope shift. They were tentatively attributed
to various Li defects such as Li;, Lig,, and complexes

TABLE IV.3. Impurity modes in GaAs doped with Si and
compensated with lithium or copper. 2

Mode
frequency
(em™1)
Band

no. Defect Impurity 8Li Cu

1 Alg, Al <.+ 362

2 Li-lattice 352

3 defects Li 389

4 406

5 470

6 Lig, 480

7 Siga—Lic, 487

9 374
11 Sica} 379
15 405

9 374
10} Sig,~Cug, Sica} 376
14 399
12 Sig, Sicq 384
14 Sijg Sige <. 399

8 -+ 367
13 Sig,—Sias Sig,—Sias .-+ 393
16 <. 464

2 From Spitzer and Allred (1968).
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involving vacancies and oxygen. This work was extended
by Levy et al. (1968), who showed that there were seven
bands and that for diffusions in the range 700-1000°C
the largest bands followed a dependence of

j adv® aexp(—E/kgTy),

where E~1.0 eV, and 7T}, is the Li diffusion tempera-
ture. These authors concluded that there were at least
four types of Li defects. One was identified as that due
to Li; with T; symmetry.

It is now known that the defect assignments mentioned
in the above paragraph are wrong. Levy and Spitzer
(1973) have conducted an extensive series of experi-
ments using simultaneous diffusion of ®Li and "Li. The
importance of doing such experiments is easy to illus-
trate. Consider a double lithium defect which consists
of two lithium sites near to each other but inequivalent.
If this lithium complex had been responsible for one of
the modes observed in the studies mentioned above,
then changing the doping from °Li to "Li would merely
shift the observed mode to a new frequency, which would
correspond approximately to the simple mass defect
formula. Doping simultaneously with ®Li and "Li causes
four modes to appear, the ®Li—®Li mode, the "Li-"Li
mode, the °Li-"Li mode, and the "Li-°Li mode. If the
two lithium sites had been equivalent, the two latter
modes would coalesce into one, yielding a three-mode
spectrum. A complex consisting of three lithium sites
obviously gives an even more complicated series of
lines when simultaneous diffusion is used. In addition
to observing the number of modes, the strengths can be
correlated with the structure of the complex. For ex-
ample, in the case of the two Li sites given above, it is
obvious that if the two sites are equivalent, the two
equivalent ways of obtaining the °Li-"Li local mode vi-
bration cause this absorption mode to be approximately
twice as strong as either the 8Li-°®Li or "Li—-"Li mode
complex. In addition to carrying out the double diffu-
sions, Levy and Spitzer have made careful studies of the
effects of the temperature at which diffusion is done and
of the effects of long annealing and rapid quen'ching, both
with and without lithium sources present. One important
result of this latter study is to show that lithium itself
is responsible for the defect center. A high-tempera-
ture anneal without lithium, plus a subsequent lithium
diffusion, does not produce the defect center responsible
for the local modes. Five types of complex have been
noted in the GaAs:Li system. The local mode bands
have been arbitrarily assigned the numbers 1 to 5 and a
prime is used to designate the mode that results when
the "Li is replaced by ®Li. New mixed modes which ap-
pear when double diffusion is used are denoted by adding
the letters a or b. Figure 59 shows the spectrum of a
GaAs sample diffused with equal amounts of ®Li and "Li.
If we pick complex type 4 for example, we see from the
figure that it exhibits three modes. The mode 4a is the
new feature which has been revealed by the studies of
Levy and Spitzer; it suggests that the complex responsi-
ble for mode 4 consists of two Li atoms in equivalent
positions. Figure 60 shows a two-dimensional model for
the acceptor complex thought to be responsible for mode
type 4. The two Li atoms are bound by springs to the
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FIG. 59. Absorption of GaAs at liquid nitrogen temperature
after simultaneous diffusion with éLi and "Li. The solid curve
results from a fitted set of Lorentzian resonances which
is used to evaluate the mode strengths, frequencies, and
linewidths. From Levy and Spitzer (1973)."

host lattice and also to the native defect. The native de-
fect is known to be present at each complex but has not
been identified. The major conclusions of this study,
based on using simultaneous diffusion of the two Li iso-
topes and on various temperature and quenching cycles,
are the following. Five major absorption bands occur in
Li-diffused GaAs which is originally undoped. Each of
these bands arises from a localized vibrational mode of
a different Li complex. Each complex involves two or
three Li atoms. Finally, the quantitative measurements
of the amount of Li present imply that there are always
other Li defects present which do not contribute to the
absorption measured in this spectral range.

FIG. 60. Two-dimensional spring and point-mass model of
the acceptor complex with two equivalent Li sites (band 4 of
Fig. 59). The symbols «, v, and ¢ denote spring constants.
Both the host lattice (shown as a cross-hatched wall around
the complex) and the native defect are assumed immobile.
From Levy and Spitzer (1973).
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D. 11-VI Compound semiconductors
1. Introduction

When we consider the semiconductor systems starting
with the Group IV crystals, then the III-V compound,
and finally the II-VI compounds, we find increasing dif-
ficulty in preparing the pure materials, increasing dif-
ficulty in introducing known impurities, and increasing
difficulty in achieving charge compensation. In the II-VI
compound semiconductors we also find a more complex
crystal system, since most of the compounds crystal-
lize in the wurtzite structure. This crystal structure
belongs to the hexagonal system, so that infrared ab-
sorption or reflection studies must be done on oriented
crystals. We can expect the local mode frequency for an
isolated substitutional impurity to have one value for vi-
brations along the ¢ axis and another value for vibra-
tions in the ad plane. Because of the difficulties con-
nected with crystal growth, most of the studies to date
have involved isoelectronic substitutions in the II-VI
system. In particular, a great many of the studies have
been concerned with substitutions among the Group VI-A
elements S, Se, Te. The ease of substitution within this
group of elements is illustrated by the fact that one of
the early studies of CdSe:S was performed on a crystal
which was thought to be CdSe (Verleur and Barker,
1967a). The sulfur was an unintentional contaminant
apparently contained in the source of Se. In the sections
below we discuss substitutions in CdSe and CdS, which
are wurtzite crystals, as well as in CdTe which is one
of the few II-VI compounds which has the zinc blende
(cubic) structure. At the present time the chemistry of
these cadmium compounds must still be regarded as
being in a primitive state. Many absorption lines and
luminescent lines which occur reproducibly are still
labeled as being due to unknown impurities. While we do
not discuss in detail any other II-VI compounds, some
other known modes are listed in Table IV.1. The known
modes occur principally in the zinc compound semicon-
ductors, which are probably the next most thoroughly
investigated class after the cadmium compounds.

2. CdSe and CdS

The mixed crystal CdSe,S,_, has been investigated by
several groups and is discussed thoroughly in Sec. IX.
In a low-temperature reflectivity study, Verleur and
Barker (1967a) found the local mode of Sg, due to a 1.5%
contamination of S in a nominally pure CdSe crystal.
Figure 61 shows the reflectivity spectrum at 15°K for
vibrations parallel to the ¢ axis. A weak mode is easily
detected near 270 ecm™!. The authors find that scaling
the Dawber and Elliott result for silicon predicts a Ss.
local mode at 285 cm™. Since the silicon model gives
an isotropic result, no prediction could be made of the
expected anisotropy in the local mode frequency. Ex-
perimentally, Verleur and Barker find the local mode
vibration perpendicular to the ¢ axis to be about 1.0
cm™! higher than the vibration parallel to the ¢ axis. In
addition to this anisotropic splitting of the local mode,
the concentration of S is sufficient to cause the trans-
verse wave to split off from the longitudinal wave local
mode. A careful Kramers—Kronig analysis of the re-
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FIG. 61. Theoretical fit, based on model (solid line) of far-
infrared reflectivity spectrum of CdSe; ¢555) 015 at 15 °K with

E l(c-axis). Open circles are experimental points. From
Verleur and Barker (1967a).

flectivity shown in Fig. 61 shows that the TO and LO
components are split by about 1.5 cm™! for the case
shown in the figure. This TO-LO splitting can be ex-
pected to go to zero as the concentration of S goes to
zero. Verleur and Barker have also measured a CdS
crystal with 23% Se present. While this is hardly a low
enough concentration to be considered a suitable crystal
for local mode studies, the fitting of the whole range of
crystals and the data from this concentration extrapolate
to give an impurity mode near 185 cm™! for Seg. Bal-
kanski and Beserman (1968) have made a more detailed
study of the impurity mode for Seg vibrations in CdS.
They find a sharp mode at 182 ecm™! for vibrations paral-
lel to the ¢ axis and 186 cm™! for vibrations perpendicu-
lar to the ¢ axis. The authors suggest that CdS has a
very small or vanishing density of states in this region
so that the impurity modes may be gap modes.

Manabe et al. (1973) have measured local mode ab-
sorption lines due to Be in CdS and CdSe. Unlike the
studies mentioned above, these local mode measure-
ments were made in absorption and by Raman scatter-
ing. The authors see the fundamental and second har-
monic absorption frequencies as shown in Fig. 62 for

CdSe:Be —Ellc
100°K ----Elc
= FUNDAMENTAL 2ND HARMONICS -0.20 —~
e 15 Be 0.4mol % Be 1mol % e
£ Ho.15 €
10+ ] ]
° & —40.10
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oL—-r '“f‘" g 2 L= 1: s L 1o
400 420 440 780 810 840 870

FREQUENCY (cm~1)

FIG. 62. Infraredabsorption spectrum of Be-doped CdS at
100 °K for two different polarizations of light. The anisotropy
of the localized mode and its harmonic is easily detected.
From Manabe et al. (1973).
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CdSe. From the observed anisotropy splitting and the
appearance of the second harmonic, a local oscillator
model is constructed including potential terms up to
third order in the Be ion displacement. While a unique
fit is not possible from the measured data, a set of po-
tential coefficients is obtained which predicts the lines
generally to within 1 cm™ . The anharmonic coefficients
are found to be substantially smaller in CdSe than in
CdS. Further progress in understanding localized vi- .
brations in this crystal and in most of the other II-VI
compounds must await other developments, particularly
more knowledge of the host crystal dispersion curves.

3. CdTe—Anharmonic effects and sidebands

Table IV.1 shows that two or three localized modes
and one resonant mode have been identified in CdTe.
While many of the fundamental properties of CdTe are
not accurately known, a considerable effort has gone
into understanding the mode connected with Be impuri-
ties. This has included detailed fitting of temperature
effects on local mode linewidth and line shift and also
on the strength and shape of sidebands. Studies of this
type had previously been carried out only in ionic crys-
tals. Such studies will be discussed in Sec. V in con-
siderable detail. Since anharmonic theories have gen-
erally not been applied to semiconductors, we indicate
‘here areas of agreement and disagreement between
the experiments and such a detailed theory in the
case of CdTe. Hayes and Spray (1969) have measured
the infrared absorption of CdTe doped with Be. They
find the fundamental local mode at 391 cm™ at 4°K.
They observe the second and two third harmonics of the
local mode as well as sideband structure on the high-
frequency side of the local mode. Figure 63 shows the
local mode and sideband structure at 4°K. In a related
study Sennett et al. (1 969) find in addition a resonant
mode at 61 ecm™! connected with Be impurities. These
authors construct a shell model for the lattice vibra-
tions in CdTe, based on the q =0 lattice vibration fre-
quencies which are known and on the measured elastic
constants. In addition the high- and low-frequency di-
electric constant are used to determine the effective
charges in the model. Using the shell model and the iso-
tope approximation for the Be impurity, the Green’s
function method is used to predict the local mode fre-
quency. Figure 64 shows the appropriate Green’s func-
tion (A) and the mass defect curve (B). Localized modes
will occur where the two curves cross or nearly cross
as described in Sec. III. To the far right of the figure
(not shown) a crossing occurs at 417 cm™!. This must
be considered good agreement with the experimental
value of 391 cm™ for the localized mode, since the mod-
el has been based on host crystal properties unconnected
with the local mode and the isotope approximation has
been used. Figure 64 also shows a near crossing near
60 cm™!. This is the resonant mode and is in good
agreement with the measured frequency. Another solu-
tion near 160 cm™! gives a very weak resonance when
the imaginary part of the function is included in the cal-
culation.

Hayes and Spray use their measured frequencies of
fundamental, second, and third harmonic modes to fit
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FIG. 63. (a) The fundamental of the local vibrational mode
of Be in CdTe at 4 K with high~energy lattice sidebands. The
sharp lines near the fundamental are due to Be-ions in sites
perturbed by other lattice defects. From Hayes and Spray
(1969). (b) Shape function g(w)/w? calculated from the density
of states of a shell model. This function gives a reasonable fit
to the sidebands shown in (a). From Sennett ef al. (1969).

the four potential parameters of a localized anharmonic
oscillator. Once this has been done, the intensity ratio
of the second harmonic to the fundamental can be calcu-
lated. It involves in the numerator the cubic anharmonic
potential coefficient squared and is calculated to be
1/130. The measured value is much larger, being 1/217.
This discrepancy is thought to be due to the neglect of
coupling between the impurity and the lattice modes in
the model. Using the method of Elliott et al. (1965) the
authors then include coupling between the local oscilla-
tor and the lattice oscillators. The latter are assumed
to have a Debye spectrum. This coupling still gives too
small an intensity ratio. An approximate argument
which involves the second-order dipole moment mecha-
nism is shown to be able to account for the measured
intensity ratio.

The cubic anharmonicity which allows the observation
of the higher harmonics discussed above also causes
the sideband absorption shown in Fig. 63. Using the
theory of Elliott ef al. the integrated intensity of the
sideband structure has been calculated and reasonable
agreement with experiment has been obtained. A sepa-
rate calculation of the shape of the sideband absorption
has been carried out by Sennett ef al. (1969). Using the
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FIG. 64. A: Principal part of the Green’s function for the Cd
site in CdTe. B: Mass defect parameter (eMw?) ™! for a Be im=-
purity as a function of w. The ordinate is arbitrary. Crossings
or near crossings of A and B give defect mode resonances.
From Sennett ef al. (1969).

Debye approximation for the host crystal phonons, the
sidebands should have a shape given by g(w)/w, where
g(w) is the vibrational density of states. Timusk and
Klein (1966), using a more detailed model appropriate
to KBr:H, find that the band mode contribution should
have a shape determined by certain projections of the
perturbed density of states divided by w®. The CdTe ex-
periments suggest that the shape is approximately g(w)/
w?, Figure 63 shows this shape function for CdTe. Rea-
sonable agreement is seen to exist when Fig. 63(a) and
(b) are intercompared. The success of such a simple
functional form is surprising in view of the extremely
complicated form of the theoretical expressions. Sec-
tion V presents a case where only even symmetry lat-
tice modes couple to the impurity to produce sidebands.
Finally, the cubic anharmonicity also causes a tempera-
ture dependence of the strength of the local mode funda~
mental. The theory for this effect has been discussed
by Takeno and Sievers (1965) and involves the Debye-
Waller factor. The measured temperature dependence of
the local mode fundamental of Be is found to agree quite
well with this theory and to predict a Debye temperature
of 290°K as compared with the value 200°K obtained
from specific heat measurements.

The theory of Elliott ef al. predicts that the frequency
of the fundamental and harmonics of the local mode
should be temperature dependent and depend on the
fourth-order anharmonic coefficient. Hayes and Spray
have given a rough evaluation of this effect for CdTe:Be
using the theory and find that the fourth-order coeffi-
cient is considerably larger than the coefficient needed
to explain the value of the energy levels in the anhar-
monic potential. The authors point out that the decrease
in local mode frequency as the temperature is raised
may be connected more directly with the thermal expan-
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sion of the crystal, which has not been included in the
anharmonic theory. Other sources of both positive and
negative mode shifts which depend on anharmonicity are
possible. An assessment of the relative importance of
each is difficult at the present time. Finally, the an-
harmonicity of the binding of the impurity atom can also
cause a temperature dependence in the linewidth of the
local mode. In the case of Be in CdTe this process must
occur through a fourth-order anharmonic process. For
such a process the limiting behavior at high tempera-
tures is predicted to give a linewidth going as T?2. The
experiments do show this dependence for temperatures
above 100°K. Hayes and Spray note that band phonons
scattering off the defect can also give a T? dependence
to the linewidth; however, they suggest that the fourth-
order process is dominant. In conclusion it should be
noted that the rather detailed application of models to
CdTe, though not one hundred percent successful, has
allowed the development of a shell model with asso-
ciated Green’s functions as well as anharmonic local
potentials which will be useful in the interpretation of
future work on impurity vibrations in CdTe and other
related compounds.

E. The bound optical phonon localized mode

A new type of localized mode has been observed by
Dean, Manchon, and Hopfield (1970) in GaP by Raman
scattering. Figure 65 shows this mode for S, Te, and

GaP + DONOR

EFFECTIVE
SLIT WIDTH

T = 20°K
w; n=406cm™!
Lo =50.3 meV

BOUND PHONON s
MODES

~ SCATTERING INTENSITY

46 47 48 49 50
ENERGY (meV)

FIG. 65. Raman scattering of 5145 A laser light from GaP
containing ~10'® neutral Sn, Te, or S donors. The bulk =0
LO phonon is off scale at this gain setting. The small peaks
are the new localized modes. From Dean ef al. (1970).
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FIG. 66. Sketch of neutral donor giving rise to a bound optic-
al phonon. At the top a S atom replaces a P atom in GaP with
little mass change. Below, the donor wave function is
sketched—it emcompasses several nearby ions of the host.
The spring constants within the wave function are effectively

.reduced, leading to a new optic mode inside, which has a low-
er frequency than the bulk optic mode.

Sn impurities substituted for P. The mode occurs with-
in the optic band of the host at energies slightly below
w.o, the zone center longitudinal optic (LO) mode. The
authors describe this mode as an optical phonon bound
to the impurity center. They give a quantum theory for
this binding based on the hydrogenic levels of the donor
impurity. The important point to note is that the local
mode frequency is not directly dependent on the mass of
the impurity. Figure 66 presents this concept heuristi-
cally. The impurity ion S is a donor and has an extended
electronic wave function associated with the loosely
bound electron which influences the surrounding host
lattice. In the real three-dimensional crystal the elec-
tronic cloud of the impurity extends over approximately
100 GaP unit cells and modifies the binding forces of all
these host atoms. Such large impurity wave functions
can be expected to occur in narrow gap semiconductors.
In the linear chain pictured in Fig. 66 we could modify
all the force constants within the electronic cloud to
simulate this effect. The linear chain then has new op-
tic modes. The local mode consists of ion motions
principally within the electronic cloud. For most cases
observed to date the modified force constants would
need to be 4 to 6% lower than the unperturbed force
constants. Barker (1973) has developed a simple ma-
croscopic dielectric theory for the sphere of modified
GaP within the donor electron cloud. The theory gives
the bound phonon local mode frequency and linewidth.
Good agreement is obtained with infrared and Raman
studies of such modes in GaP.

Figure 67 shows the bound phonon local mode for Si
in GaP in an infrared spectrum. The mode is seen as a
prominent dip on top of the reststrahlen band in the re-
flectivity spectrum. Kramers—Kronig analysis allows
the derivation of the absorption spectrum. For a wide
range of impurities the local mode frequency is indepen-
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FIG. 67. Infrared spectrum of GaP doped with Si. The re-
flectivity data of the top shows the bound phonon localized mode
as a dip. A Kramers—Kronig analysis shows TO and LO com-
ponents as small peaks near 394 em™. From Barker (1973).

dent of the mass of the impurity, as required by the
theory. If one compensates the crystal, removing the
electron from the region of the impurity but leaving the
impurity ion present, the mode disappears as expected
on the basis of the above theories. Bound phonon local
modes have also been observed for certain impurities in
CdS by Reynolds ef al. (1971).

F. Conclusions

The work discussed here on the semiconductor systems
is not complete but is a representative sample. Almost
all of the discussion centers on absorption, as little
Raman work has been done. It is expected that in the
future there will be an increased effort to correlate the
results of different experimental techniques with infra-
red measurements. An example is the EPR work on the
GaAs:Mn-Li system. The authors believe that the local
mode measurements are a diagnostic tool of significant
value. In a number of cases such as B-Li, B-B, O,
and C in Si, detailed information concerning the defect
composition and symmetry are obtained which help in
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establishing reasonable defect models. It should be
stressed here that a resourceful experimenter is a key
ingredient in defect mode assignment. In most cases
the mode is identified with a defect configuration by
making tests—changing the impurity isotope, changing
the lattice, making stress measurements, using results
from EPR, etc. In almost no case is comparison with a
first-principles calculation a convincing proof of an as-
signment,

In this section we have seen the first effects of leaving
the isolated defect and proceeding towards the fully dis-
ordered solid. Cosand (1971), for example, found new
modes due to different nearest-neighbor environments
and also broadening effects due to random variation in
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more distant neighbors in the Ge-Si alloys. There are
several areas in which the diagnostic possibilities have
not yet been fully exploited. The use of high-frequency

" local modes for measuring impurity segregation coeffi-

cients (Skolnik, Allred, ans Spitzer, 1971), irradiation-
induced damage centers (Devine and Newman, 1970),
and ion-implanted impurities (Skolnik et al., 1972) has
already been demonstrated. A new and critical role for
defects has been found in the utilization of defect vibra-
tions to promote a defect reaction such as diffusion
(Weeks, Tully, and Kimerling, 1975). Defect spectros-
copy could lead to important results here which have a
direct connection with the lifetime of semiconductor de-
vices which fail because of defect diffusion.



¢

V. IONIC CRYSTALS—LOCAL AND GAP MODES

A. Introduction

Experiments on the defect states in ionic crystals be-
gan with work on the electronic properties (Hilsch and
Pohl, 1933, 1936, 1938). About 20 years after the elec-
tronic transition of the substitutional hydride ion was
discovered, Schaefer (1960) observed defect-induced
lattice absorption from the same center (Fig. 1). Since
that time many investigators have been drawn to the
study of the lattice defect problem in alkali halide crys-
tals, mainly because these crystals have been easy to
grow and purify. Consequently the alkali halide crystal
has become the “fruit fly” for the study of lattice im-
purity modes. A vast literature of experiment and theo-
ry has grown up around these crystals and a number of
reviews have already been written.

Maradudin et al. (1963) first presented a theoretical
review of the defect problem. Then Maradudin (1963,
1965) presented more specific theoretical reviews of the
effects of point defects on the dynamical properties of
crystals. Finally Maradudin (1966a, 1966b) reviewed
in some detail both the theoretical and experimental as-
pects of the effects of defects on the vibrations of crys-
tals. About the same time Ludwig (1967) reviewed lat-
tice dynamics theory with about 100 pages devoted to the
defect problem. Fritz (1968a) reviewed the experiments
on the U center, and Klein (1968) has described the ex-
perimental and theoretical progress on impurity modes
up to 1967. Sievers (1971) surveyed the experimental
situation in 1968. Most recently Maradudin et al. (1971)
have reviewed the theoretical aspects of the lattice dy-
namics of solids, with about 150 pages devoted to a gen-
eral theoretical description of the effects of defects,
and Biuerle (1973) has reviewed U-center modes in
alkali halides. Sherman and Wilkinson (1973) have re-
viewed experimental data with emphasis on polyatomic
defects in alkali halides.

In this section we shall concentrate mainly on the
spectroscopic results that have been obtained on spatial-
ly localized vibrational modes in ionic crystals. Some
successful studies have been reported on impurities in
silver halides (Hattori et al., 1973), the rare earth tri-
fluorides (Jones and Satten, 1966), and the II-VII com-
pounds (Elliott ef al., 1965; Shamu et al., 1968; Har-
rington ef al., 1970; Jones ef al., 1968; Chambers and
Newman, 1969); but most measurements have dealt with
the hydride ion in alkali halide crystals. Some investi-
gators have studied the substitutional H™ and D~ ion
(Schéfer, 1960; Price et al., 1960; Mitsuishi and Yo-
shinaga, 1962; Mirlin and Reshina, 1964; D&tsch et al.,
1965; Fritz ef al., 1965; Timusk and Klein, 1966;
Sievers and Pompi, 1967; Bduerle and Fritz, 1967;
Détsch, 1969; D6tsch and Mitra, 1969; and Montgomery
et al., 1972). Other investigators have looked at inter-
stitial H™ impurities (Fritz, 1962; Biuerle and Fritz,
1968; Diirr and Biuerle, 1970) or pair spectra (Mirlin
and Reshina, 1966; Barth and Fritz, 1967; de Souza
et al., 1970 and 1973). The frequencies associated with
all these lattice defect combinations are recorded in
Table V.1,

With the discovery of a local mode, the experimental
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approach is to vary as many experimental parameters
as possible, one at a time, to characterize the particu-
lar lattice-defect combination. By varying isotopic
mass, crystal strain, temperature, or polarization
some information on the dynamics of the impurity and
the local impurity potential can be determined. We
shall begin with experiments which indicate that the
local mode acts as a simple oscillator and then consider
experiments which demonstrate the anharmonic effects
associated with the local mode.

B. The impurity potential

1. Local mode isotope effects

The simplest potential which one can use to describe
the local mode in the static lattice is a quadratic form
consistent with the defect symmetry. For O, or T, sym-
metry the potential has spherical symmetry

V(r)=Ar2 =3 M*w?r2, (5.1)

where M* is the defect mass. This is just the one-os-
cillator expression (4.2) restricted to harmonic terms
only. An isotope-induced frequency shift of the local-
ized mode which varies inversely as the square root of
the isotopic mass would be a clear indication that the
vibrational motion is indeed associated only with the
impurity, i.e., that (5.1) is appropriate.

By examining Table V.1 we can determine how ac-
curately Eq. (5.1) describes the experimental situation.
The smallest isotope shift has been observed in AgCl:Li",
namely 1.043 compared with the value v7/6 =1.080 pre-
dicted by Eq. (5.1). The rather low value implies con-
siderable motion of the atoms neighboring the defect, as
was illustrated for several cases in Figs. 2—8. The ab-
sorption coefficient for the AgBr:Li* data is shown in
Fig. 68. The absorption spectrum of AgBr containing
natural Li is shown in curve (a). The clearly visible
localized modes lie 60 cm™! above w,, =135 cm™!. The
spectrum consists of two distinct peaks with Lorentzian
shape, corresponding to the two isotopes of Li. The
ratio of the integrated absorption intensity of the low-
frequency band to the high-frequency band is 92/8, which
is very close to the natural abundance of the two lithium
isotopes. Here the isotope shift is 1.074, indicating a
much more localized mode. When natural Li is replaced
by enriched Li (Fig. 68), the high-frequency band be-
comes stronger and the low-frequency band becomes
weaker, confirming the assignment to Li impurities.

The local mode associated with the H™ ion is two or
three times the maximum phonon frequency of the lat-
tice, in contrast to the Li case. Therefore, better
agreement between the measured isotope shift and the
one-oscillator model of (5.1) is to be expected. Inspec-
tion of Table V.1 indicates that the predicted frequency ratio
(V2/1) is within 5% of the measured values for all of
the ionic crystals. Note that the isotope frequency ratio
is different for the different crystals. Even if we re-
strict our attention to alkali halide crystals the mea-
sured frequency ratio is not a constant. Although the
measurement of a frequency shift due to an isotopic
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mass change is usually a straightforward experiment,
the interpretation of the small differences between al-
kali halide crystals is still not completely understood.
Below we examine whether these differences can be ac-
counted for within the framework of the harmonic ap-
proximation.

When the H™ or D™ ion replaces the heavy ion in an
alkali halide crystal (see Table V.1) the ratio of the hy-
dride to deuteride frequency is without exception small-
er than when H™ or D™ replaces the light ion in the lat-
tice. In the former case the local mode originated es-
sentially from the top of the acoustic branch, while in
the latter case it started at the bottom of the optic branch.
In the second case the H™ and D™ modes end up further
from the normal lattice modes, are better approximated
by an isolated Einstein oscillator, and produce a fre-
quency ratio closer to v2/1 =1.414. The formalism as-
sociated with this statement can be found in Maradudin
et al, (1963). Such a behavior is a characteristic prop-
erty of a harmonic local mode in a diatomic lattice.

- Proper calculations of local mode frequencies require
a knowledge of the eigenfrequencies and eigenvectors of
the host crystal vibrational modes as well as the mass
and force constant changes introduced by the impurity
ion. The isotope shifts can be easily calculated within
the harmonic approximation by using a simple three-
dimensional model exploited by Mitani and Takeno (1965).
This model is extremely useful when extensive three-
dimensional shell model calculations are not available.

Mitani and Takeno calculated the frequencies of.local
modes for a substitutional defect in a diatomic simple
cubic lattice of the NaCl type with host ion masses M,
and M,. A relatively simple equation for the eigenfre-
quency of the infrared-active local mode can be obtained
if central and noncentral force constants are set equal
to each other. When the local mode frequency is much
larger than w, an analytic solution can be obtained (as
contrasted with the graphical method described in Sec.
III). Only one parameter, K’, the nearest-neighbor
force constant for the impurity ion, appears in the solu-
tion. This parameter can be eliminated by fitting the
hydride local mode frequency. The deuteride frequency
is then predicted and compared with experiment.

pm
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FIG. 68. The isotope shift for the AgBr:Li* local mode.
After Hattori et al. (1973).



lonic crystals: Local and gap modes S71

The Mitani-Takeno model has been solved by Nolt
et al. to give the eigenfrequency of the infrared-active
mode in the following form:

i) SR

with w, equal to the frequency of the top of the acoustic
branch and M, the heavier mass in the diatomic lattice,
so M, <M,. g,((w/w,)?) is the real part of the Green’s
function defined by Mitani and Takeno, and € and y are
mass and force constant defect parameters (Sec. II).
Equation (5.2) is comparable to the mass defect equa-
tion (3.9) except now both mass and force constant pa-
rameters enter the defect term on the right side. For
the high-frequency region of interest here where cu/w1
>>1, Sievers and Pompi (1967) have shown that the as-
ymptotic expansion of the left-hand side of (5.2) is

mets(@) ) el ble () )
(-

(5.3)

where a=w,/w,, with w, equal to the top of the acoustic
branch, and w, equal to the bottom of the optic branch.
The right-hand member of (5.2) contains the defect pa-
rameters, so that a mass change of the impurity ion
changes the right side of (5.2) but not the left, while a
mass change of the host lattice has the opposite effect.

We now calculate the hydride—-deuteride frequency
ratio for NaCl using the model described above. By
fitting the experimentally determined local mode fre-
quency for NaCl:H™ from Table V.1, we determine the
effective force constant ratio to be K'/K =0.32, indi-
cating a large softening of the lattice around the impur-
ity. This is perhaps to be expected because the H™ ion
has a smaller ionic radius than the C1” ion that it re-
places. The impurity mass is then changed by a factor
of 2, and the D™ frequency ratio is calculated. The re-
sult is

w(H")/w(D™)=1.409.

(5.2)

The ratio is less than the ratio given by the one-oscil-
lator model, but still not as small as the experimental
value of 1,384, /

The lattice-defect system can be investigated from
another point of view by studying the H™ frequency shift
due to an isotopic mass change in the host crystal lat-
tice. So far it has only been possible to obtain isotopi-
cally pure °LiF and "LiF. By fitting the experimentally
determined local mode frequency for "LiF:H", the ef-
fective force constant ratio is found to be K’'/K =0.25
from (5.3). As no gap occurs between the optic and
acoustic branches, the zone boundary frequencies are
set equal to each other (w, =w,). The calculated fre-
quency ratio for the change in host crystal is 1.0011,
which is much too small to account for the experimental-
ly measured ratio of 1.0038. Apparently anharmonic
contributions, though not large, must play a significant
role in determining the local mode frequency. This con-
clusion is substantiated by more complete local calcula-
tions (MacDonald, 1966).
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When long-range electrostatic forces are taken into
account, it has been shown by Jaswal and Montgomery
(1964), using the rigid-ion and deformation-dipole mod-
els, by Fieschi el al. (1965, 1964), using the shell mod-
el, by Page and Strauch (1967), using the breathing shell
model, and by Striefler and Jaswal (1969a), including
relaxation, that the central force constant between the
impurity and its nearest neighbors has to be decreased
by about 50% to obtain agreement with experiment. Most
of the model calculations lead to a H™ /D~ isotope fre-
quency ratio of 1.40 (Fritz, 1968).

Before turning to anharmonic properties of local modes
it should be noted that a number of calculations have
been carried out on the dynamics of isotopic substitution
in LiH and LiD mixed crystals (Benedek, 1967; Hardy,
1962; Montgomery and Hardy, 1965; Elliott and Taylor,
1967; Jaswal and Hardy, 1968; and Striefler and Jaswal,
1969b), but as yet only one experimental result has been
published on these systems (G. Wolfram et al., 1972),

2. The static anharmonic potential

A number of the spectroscopic properties of the U-
center local mode both in alkaline earth fluorides and in

" alkali halides have been accounted for by using the ex-

tended one-oscillator model described in (4.2). That is,
the H™ ion is assumed to reside in a static anharmonic
potential having the symmetry of the host lattice at the
impurity site. For the alkaline earth fluorides Elliott
et al, (1965) used a Hamiltonian

H=A72 + Bxyz + C, (x* +3* +2%) + C, (x?y? + %22 1 2%x2)
(5.4)

which is a Taylor’s expansion of the energy to fourth
order in the displacement of the impurity ion. This
adiabatic approximation is physically reasonable since
the local mode frequency is about three times the larg-
est lattice mode frequency, suggesting that the impurity
samples the average lattice. For the low-lying energy
levels, the effects of B and C will be small. The spheri-
cal oscillator where only A #0 has equally spaced levels
at E=%u(n +3/2), with degeneracies 1, 3, 6, 10,... etc.
In the tetrahedral potential these degenerate levels are
split. For the sites of cubic symmetry, O,, B =0 but
again the cubic potential terms split the degenerate
levels of the spherical oscillator.

The energy relative to the unperturbed ground state
has been found by Elliott et al. (1965) to be

£ \? AT)Bi?
2M*w/ T 24M*3 ot

(5.5)

E(T) =nltw + 1, (T)C, +uz<r)c2]<

The positions and forms of the first few vibrational
levels for T; and O, symmetry are shown in Table V.2.

The energy level diagrams for the lowest states are
shown in Fig. 69. For T; symmetry electric dipole
transitions are allowed from the singlet A, ground state
only to the T, triply degenerate excited states. As shown
in Table V.1 transitions to all four 7, states have been
observed in CaF,, enabling the constants w, B, C,, and
C, in (5.5) to be determined (Elliott et al., 1965). Al-
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TABLE V.2. Positions and forms of the lower vibrational energy levels for T; and O,
symmetry (after Elliott et al ., 1965). The wave functions are designated by the quantum
numbers of the harmonic oscillators in the x, y, and z directions. The last two lines of this

‘table form a complete set.

T, O,

n Symmetry Wave functions My My A

0 Ay Ay [ 000) 9 3 1

1 Ty, Ty | 100) 21 7 5

2 Ay Ay 1//311200) +]020) +[002)] 45 15 21

2 E E 1/AZ[]200) — | 020)] 45 9 3

2 T, Ty |o11) 33 15 13

3 Ay Ay, [111) 45 27 25

3 Ty Ty, 1/V2]]102) —|120)] 57 21 15

3 T, T4 {1/&“102) +|120>]} 57 0 ) ( 25 2@) ( 27 Mé)
3 Ty Ty | 300) 0 81 26 15 6V6 13

though the A,, 7,, and E transitions should be active in
Raman scattering, only the A, and 7, have been observed
(Harrington et al., 1970), These measurements confirm
the infrared results. The Raman scattering spectrum
for H™ in BaF, is shown in Fig. 70.

For O, symmetry electric dipole transitions are al-
lowed from the singlet A,, ground state to the T, triply
degenerate excited states. Only the lowest transition to
the first 7;, state has been observed. Complementary
Raman scattering measurements (Montgomery et al.,
1972) on the lowest A,,~A,,, A, ~T,,, and A,,~E,
transitions provide the necessary information to evaluate
the coefficients in (5.5). The coefficients for CaF, and
for KI are given in Table V.3.

The anharmonic potential can also be probed by the
addition of an applied dc electric field to the sample.
The perturbation Hamiltonian is then

Ky =—e(E 7). (5.8)

The local mode infrared absorption in CaF, has been
measured in the presence of an external electric field by
Hayes and MacDonald (1967). They found the electric
field Hamiltonian to be

s - IE, .e*B

2= T o M (£,M,Mg +LaMgM, +EgMy75), (5.7)

where e* is the effective charge of H™, and Ej, is equal
to the Lorentz local field correction times the applied
electric field. The applied dc field is considered along
an arbitrary direction (¢,, &,, §,) relative to the crystal
axes. Here (n,,n,,7,) refers to the motion of the charged
impurity and hence to the polarization of the incident
infrared field. Although individual H™ ions occur in sites
which lack inversion symmetry, the crystal as a whole
has a center of symmetry. There are as a consequence,
two H™ ions in the electric unit cell. They give identical
energy level patterns, symmetric about the unperturbed
line, when E is in the [001] and [110] directions. How-
ever, when E is in the [111] direction they give rise to
separate energy levels which still maintain the symme-
try of the perturbation pattern about the unperturbed
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line. The calculated splitting of the 7, states by an elec-
tric field in the [111], [110] and [100] directions is shown
in Fig. 71.

With the electric field along the [111] direction Hayes
and MacDonald (1967) were not able to resolve the mode
splitting. With a spectral slit width of 1.5 cm™ and a
natural linewidth estimated to be about 0.5 cm™! they
found that the line broadened by less than 20% in a 90
kV/cm electric field. From these measurements the

HARMONIC ENERGY
(n) (cm-1)
T —— 2912.2
3 T —— 2886.4
Ay ——— 2862.5
T2 2825.6
IR
IR ENERGY
(cm-1)
E 1943.6 Eg —x 767.9
2 T 1919.8 A1g 759.9
Ay W 1894.1 Tag T 753.1
IR R R
R RR
1 Tp 965.6 Ty 382
IR R IR
O A1 O A1g O
(Tg) (Op)

FIG. 69./ Energy level diagram for the H™ ion in CaF,(Ty)
and also in KI(0,). The observed infrared- and Raman-active
modes are indicated by the full vertical lines.
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FIG. 70. Raman spectra of
BaF,:H™ at 16 °K. (a) Fund-
(@) amental Ty transition, (b)
Second harmonics of Ay and
T, symmetry. (The second
harmonic of E symmetry
which is not observed is pre-
dicted to occur at 1617 cm™1,
Instrumental resolution is in-
dicated for each trace.) Af-
L. ter Harrington ef al. (1970).
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coefficient of the cubic term is estimated in Table V.3.
This value was obtained assuming e* to be one electron
charge.

Although no electric field measurements have as yet
been made on the U center in alkali halide crystals, the
energy changes have been calculated (Clayman ef al.,
1971). For O, symmetry the defect site has inversion
symmetry, so a linear electric field effect will not be
possible. It has been noted that the second-order elec-
tric field effect operator has the same symmetry and
even parity as does the uniaxial stress operator (Geb-
hardt, 1967). This leads to the same selection rules for
both perturbations. The Hamiltonian for this second-
order electric field effect, which is a symmetric expres-
sion in the direction cosines &; and 7;, is

ne*2E | 4C c
o= S %(401“31) +(ch_ .—3‘)

(25 - £F - £5)(2n3 — nf — n3)

+3(62 - £2)(n? - n2)) +2(=3C, + 2C,)

X (185 My +E585MyM, + &35, 1151, )} . (5.8)

In (5.8), ¢, refers to the external field, and n; refers to
the polarization of the incident radiation with respect to
the crystal axes. The calculated splittings of the T,
state by an electric field in the [111], [110] and [100]
directions are shown in Fig. 71. For the dc field along
[100] the T,, state splits into an A, and an E state. For
the applied field parallel to [110] the degeneracy is com-
pletely removed as the levels split into A,, B,, and B,
states. Hence from the slopes of the infrared absorption
as a function of (E)? the anharmonic potential coefficients
can be obtained.

In this section we have seen that the anharmonic one-
oscillator model can describe the measured impurity
mode spectra quite well. With this model we can re-
examine the frequency ratio for the isotopic mass sub-
stitution. The previous section showed that the harmonic
models gave frequency ratios greater than the experi-
mental frequency ratios. From (5.5) and Table V.2 the
anharmonic A,, to 7}, mode transition energy is

B =Tw+ (3C, +C,)(B/Mw)?. (5.9)

From Table V.3 (3C, +C,)>0. An examination of (5.9)
shows that the anharmonic isotope effect will be larger
than the harmonic isotope effect calculated earlier. This

TABLE V.3. The coefficients of Eq. (5.5) determined from spectroscopic measurements on
U -centers. Both alkaline earth fluorides and alkali halide values are given.

Host w . Cy Cy
crystal (cm™1) 10*12 erg/cm? 10!? erg/cm? 10¥ erg/cm? Reference 2
KBr:H™ 444.6 0 0.986 -2.30 1
KBr :D™ 318.2 0 0.986 -2.30 1
KI:H™ 377.8 0 0.576 —-1.356 1
KI:D™ 272.3 0 0.576 -1.356 1
CaF,:H™ 981.1 7.87 —-2.32 -1.01 2
SrF,:H™ 907.4 6.20 © -1.80 -2.19 2
BaF,:H™ 827.2 3.98 -1.70 -8.5 2

2 The references for Table V.3 are the following:
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FIG. 71. Calculated splittings of the lowest-frequency infra-
red local mode transition with an electric field. For T; sym-
metry the splitting parameter a is e*E . B/ mw? as given in
(5.7). For O, symmetry the splitting parameters are
B =Cy7(e*E, )2 /2m3w’ and v= Cyli(e*E),.)2/2m3w® as described
in (5.8). -

important discrepancy between theory and experiment
has not yet been resolved.

C. Anharmonic coupling to the lattice
1. Sidebands of the H™ iocal mode

In addition to the main U-center absorption band,
Schifer (1960) also observed sidebands in his original
work. Fritz (1964) first proposed that these were caused

~———— wavelength (1)

0 2 26 2% 2 20 ) 3

A.S. Barker, Jr. and A.J. Sievers

by anharmonic coupling between the local mode and per-
turbed band modes. The temperature-dependent absorp-
tion spectrum in the frequency region of the local mode
is shown for KBr:H™ in Fig. 72. At room temperature
there is one broad and relatively structureless band.
This sharpens up considerably as the crystal is cooled.
At 90K a prominent peak exists in the center of the
spectrum, plus a broad region of sidebands one to three
orders of magnitude lower than the peak intensity in the
main band. At lower temperature a great deal of side-
band structure can be resolved. Experimental investi-
gations on sidebands have been carried out by Fritz
(1965), Elliott ef al. (1965), Mitra and Brada (1965),
Détsch et al. (1965), Fritz et al, (1965), Timusk and
Klein (1966), Fritz et al. (1968), Dttsch (1969), and
MacPherson and Timusk (1970).

The experiments establish two main facts: (1) The
difference between sideband and main band frequencies
is not affected by D~ substitution, and (2) the sidebands
are almost symmetrically displaced from the main band
to higher and lower frequencies. The low-frequency
component freezes out completely at low temperatures,
as shown in Fig. 72,

Physically the processes can be described in terms of
two-phonon absorption. A local mode quantum is virtual-
ly excited by one absorbed photon. This state decays
into a final state in which one local mode quantum is
created and one lattice mode quantum is either created
(summation or Stokes band) or destroyed (difference or
anti-Stokes band). In this framework any peak in the
density of phonons at w;, provided that there is strong
enough coupling of the local mode to these phonons,
would lead to sideband peaks at roughly

wy =W +w; Stokes sideband,
and

W. = Wy, — w; anti-Stokes sideband.

a1

1=300°K
2= 90°K
3= 55°K
\ 4= 21°K
5= 15K

. \L

FIG. 72. Impurity-induced
absorption in KBr:H™ as a
function of temperature. The

relotive absorption constant (log.)

VAN

absorption constant is given
on a logarithmic scale. After
Fritz et al. (1965).
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Figure 63 showed the Stokes sideband of a local mode
in CdTe. Figure 73(a) shows the high-frequency side-

band structure of KI:H™ (MacPherson and Timusk, 1970)."

Figure 73(b) shows the phonon density of the pure mater-
ial as obtained from neutron scattering data (Dolling

et al., 1966). The general decrease of absorption in the
sideband with increasing frequency is quite striking. We
recall that in CdTe:Be the phonon density of states had
to be weighted by approximately w~ %2 to fit the observed
sidebands. KI:H™ also shows a sharp localized mode in
the region of the phonon gap near 94 cm™!,

Theoretical studies of the sideband spectra have been
made by Elliott et al. (1965), Timusk and Klein (1966),
Nguyen Xuan Xinh (1966, 1967), Bilz et al. (1966), Page
and Dick (1967), Gethins et al. (1967), and MacPherson
and Timusk (1970). A concise review of the progress on
this problem up through 1967 has been given by Klein
(1968). It was found that the theory developed by Timusk
and Klein (1966), which attempts to explain the shape of
the sideband spectrum in terms of the anharmonic cou-
pling of the H™ ion to its nearest neighbors, was quali-
tatively correct. The sideband spectrum could be cal-
culated by taking an anharmonic coupling term of the
form Q2%q; where the local mode coordinate is denoted by
Q and the rest of the lattice normal modes by {q,}. The
agreement with experiment was achieved without the use
of any parameter fitted to sideband shape. The single
adjustable parameter of the model—the nearest-neighbor

(a)
KI:H™ SIDE BAND
i~ f OBSERVED -----
= i CALCULATED —
.
5 AW
z[ [
o Yo\ i
Q| [ \
N a
1 \ ]
s N\
g "‘"\ ’// l:
/ .‘\
T R T N LAl D e |
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(b)
3 1251
o
> 1001
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»n 0751
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)
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&
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z 0 | |
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FIG.73. (a) Observed and calculated sideband absorption

(MacPherson and Timusk,
(Dolling et al.,

of the H™ ion localized mode in KI.
1970). (b) One-phonon density of states for KI.
1966).
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force constant—is fitted to the local mode frequency it-
self.

The Timusk-Klein model has been extended by Gethins
et al. (1967) to allow for lattice relaxation around the
impurity. Because the H™ ion has a smaller ionic radius
than the halide ion it replaces, the neighbors of the H™
ion move until counteracted by an exchange repulsion.
Because the forces between ions are not perfectly har-
monic, this change of position results in a change of
force constants. The change will be largest (apart from
the change between the H™ ion and its nearest neighbors)
for the interionic distances which are most changed;
namely, between the nearest neighbors of the H™ ion,
and their nearest neighbors in the direction away from
the H™ ion. These are the fourth neighbors to the H™ ion
and are shown in Fig. 74. The change in force constants
coupling the H™ ion to its second and third neighbors can
be expected to be small, because these force constants
are themselves small.

Using the above model, MacPherson and Timusk (1970)
have calculated the sideband spectra for the H™ in KCl,
KI, NaF, NaCl, and NaBr, and fitted these calculations
to their experimental results by varying the force con-
stant Ag (Fig. 74). Figure 73 shows the calculated fit
they obtained to their experimental measurements. Al-
though some small discrepancy still remains between
the widths and relative strengths of the predicted peaks,
they conclude that the salient features of the sideband
spectrum of the H™ local mode in the sodium and potas-
sium halides can be explained in terms of a simple shell
model for the defect. This fact indicates that the effects
of breathing shell modes (Schroder, 1966), charge
changes at the defect site, other force constant changes,
and anharmonic corrections should be relatively minor.
It is important to note from Fig. 73 that while the side-
bands do reflect some features of the density of states

5

Y
Q
O

FIG.74. The “molecule” of force constant changes introduced
by insertion of the H™ ion, an alkali halide crystal. The ion
at the center is the H™. Its first-neighbor (alkali) atoms are
shown, as well as its fourth-neighbor (halide) atoms. The
spring constant Af is determined by the local mode frequency;
the spring constant Ag is an adjustable parameter. After
Gethins et al. (1967).
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Z(w), simply scaling g(w) by a factor like w™2 or w™3
does not give a detailed fit to the sidebands. The reason
for this effect in the infrared sideband spectrum of an
alkali halide is simply that even lattice modes are effec-
tive at modulating the local mode, while odd lattice
modes are not. Thus certain components of g(w) (the
odd modes) do not appear in the sideband envelope.

2. Intensity of the local mode peak

In discussing the intensity of the integrated absorption
due to a local mode it is important to be quite clear as
to how much of the absorption spectrum is being dis-
cussed. If the potential energy is purely harmonic the
spectrum consists of a single line at w,,.. The integrated
absorption coefficient is temperature independent (Wil-
son et al., 1955). When anharmonic terms are included
this line may shift, broaden, and change in strength, but
in general the anharmonicity would also induce other
lines to appear elsewhere in the spectrum. These lines
may be described in the language of molecular spectro-
scopy as combination bands, overtones, etc. or in solid-
state terms as sidebands, two-phonon transitions, etc.
The original line near w,, would then be referred to as
the fundamental or as the “zero-lattice-phonon” (ZLP)
line. We are concerned with the intensity of this line
only, and not with the complete absorption spectrum as-
sociated with the local mode. For the complete absorp-
tion spectrum there exists a sum rule

foz(w)dw =const.

This result has been derived by Strauch (1969) for an
anharmonic system with a linear dipole moment using
‘the anharmonic one-phonon Green’s function. Since this
is a very useful result, we give an alternative simple

proof (Alexander ef al., 1970).

The Hamiltonian for the harmonic local mode Q is
3C(®) and for the harmonic lattice mode ¢, ¥(g) so that
the total Hamiltonian may be written

H=3@) +3@) +3¢' @, 9),

where 3¢’ (@, q) describes the anharmonic part of the po-
tential. The dipole moment is M =e*Q, where e* is the
effective charge. Allowing for negative contributions
from stimulated emission, the absorption coefficient
may be written as
(@) =Av, 2 (1Ml ep; 0 wpil - ) (5.10)
where 7w, is the transition energy E; — E;. Here |i)
and | f) are eigenstates of ¥ with eigenvalues E; and E;,
and Av; indicates a thermal average over the states |¢).
By expanding the commutator [@, [H,Q]] one finds that

AN
2. & - EJKSIRIDI = 557,

(5.11)

for all ¢, where M, is the mass associated with the local
mode. This may be recognized as a disguised version of
the Thomas—Reich—Kuhn J sum rule of atomic spectra.
Combining (5.10) and (5.11) it follows that

©

ﬁe*Z
a(w)dw =
J 27,
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=constant. (5.12)
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In contrast with the above sum rule, which is exact
for an anharmonic system with a linear dipole moment,
we are interested in the temperature dependence I(T")

~ of the more restricted spectrum given by

[(T):f a(w)dw. (5.13)
ZPL

Measurements by Fritz (1968) on the U center in KC1
indicate that I(T') drops by about 20% between 4K and
300K. A similar decrease in intensity is observed for
the U center in CaF, by Elliott ef al. (1965). A number
of investigators have identified the intensity change with
a “Debye—~Waller factor” (Takeno and Sievers, 1965;
Mitra and Singh, 1966) analogous to the well-known cases
in x-ray, neutron scattering, the Méssbauer effect, and
electronic optical absorption by defects (Maradudin,
1966a; Silsbee and Fitchen, 1964). The reason behind
the application of the Debye—Waller factor has been that
the anharmonic coupling term which produces the side-
bands involves linear coupling to the lattice modes and
by analogy will result in a Debye—Waller factor for the
zero-lattice—phonon mode. The temperature dependence
has the form (Alexander ef al., 1970)

oo s () [ )

where S, =9w%/4Mv2iiw} contains a cutoff frequency w,
which is less than the Debye frequency w,. Here 0,
=liw,/kg, v is the Debye velocity, and M the average ion
mass appropriate to the Debye modes. For O, symme-
try, the strain coupling parameter A is made up of the
coupling coefficients A, B, C for the three symmetry
types as follows

— A%2(A,.) B*E,) 3C%*(T,,)

ST TR T

(5.14)

(5.15)

The validity of the above approach has been examined
by Hughes (1968). He concludes that the Debye—Waller
factor is applicable in the vibrational case when the local
mode frequency is much greater than the frequency of
the anharmonically coupled lattice modes and when the
temperature dependence arises from coupling terms of
the form Q?2¢; in the Hamiltonian. Hughes’ calculations
are compared with the experimental data in Fig. 75. In
Fig. 75(a) the calculated temperature dependence from
the Debye—Waller factor is given by curve A for the
anharmonic coupling constant determined by Bilz et al.
(1966) for KC1:H™ and is given by curve B when the cou-
pling constant is reduced by a factor of 2. The points
are the experimental data. The calculated curve is
compared with experiments on CaF,:H™ in Fig. 75().
The solid curve is the calculated temperature depen-
dence from the Debye-Waller factor using the anhar-
monic coupling constant determined by Elliott ef al.
(1965). Again the experimental points are the circles.
With appropriate coupling constants the calculations are
successful,

3. The effects of lattice strain

The Grilineisen constant y for a mode with frequency w
is a dimensionless number given by
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dlnw
vE= dlnV ’ (6.16)

1 [ow

-2 (7).
where measurements are performed at constant temper-
ature, V is the crystal volume, and X is the bulk crystal
compressibility. From theoretical models of the depen-
dence of the frequency on interionic spacing, the Griin-
eisen constant can be calculated from (5.16), and from
experimental measurements of the frequency shift as a
function of pressure the Griineisen can be calculated
from (5.17). One assumes that the U-center local mode
obeys a relation similar to (5.16) so that a local mode
Griineisen constant may be defined

(5.17)

Yloc = —d lnwloc/d h1Vloc . (5.18)

Some calculations have been made on the relation be-
tween the local volume change around the defect and the
volume change in the lattice (Benedek and Nardelli,
1968). But most investigators have assumed that the two
quantities are identical. In this case (5.18) simplifies to

-A Wige= c")loc‘y(AVv/V )9

—AQAV/V). (5.19)

For small frequency shifts a linear relation exists be-
tween the shift and the lattice strain. In the previous
two sections a linear coupling to lattice phonons has
played a central role in understanding the experimental
results. If one assumes that the linear coupling to dy-
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FIG.75. (a) Calculated curves of I(7)/I(0) versus tempera-
ture for KC1:H™: (A) The Debye-Waller factor; (B) The
Debye-Waller factor with an anharmonic coupling constant
one-half the size of that in (A). The points are experimental
data. (b) Calculated curve of I(T)/I(0) versus temperature
for CaF,;:H™. The circles are experimental data. After Hughes
(1968).
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namic strains (phonons) is the same as to the static
strain of the same symmetry, then an independent mea-
sure of the anharmonic coupling coefficient is available
by using (5.19).

Local mode frequency shifts have been measured by
Shotts (1973) for the H™ ion in NaCl, KC1, and KBr with
crystal strains of up to 1%. These strains are large
enough to observe that (5.19) breaks down as shown in
Fig. 76. The hydrostatic coupling coefficients A(A,,)
are recorded in Table V.4.

The presence of foreign alkali or halogen ions in the
crystal has been observed to perturb the local mode fre-
quency. In mixed crystals new lines appear which are
shifted to both higher and lower frequencies with respect
to the main U-center absorption line. Groups of these
new lines have been identified with perturbed U centers
which have foreign ions in one of the nearest three shells
of neighboring ions (Merlin and Reshina, 1966; Barth
and Fritz, 1967). In addition to these secondary absorp-
tion lines which are identified in Table V.1, the entire
absorption spectrum undergoes a concentration-depen-
dent frequency shift and broadening which is related to
the change in the average lattice constant of the mixed
crystal.

The lattice constant dependence of the main local mode
absorption has been obtained by Barth and Fritz (1967).
They studied the concentration-dependent shift and
broadening of all lines in KC1:H™ and KC1:D~ doped with
Rb. The position of the local mode absorption versus
doping concentration is shown in Fig. 77. The frequency
wy,. measured at 20°K is a linear function of the Rb con-
centration. On the top of Fig. 77 a lattice parameter
scale is also given, which is based on the findings of
Gnidinger (1953), who showed that the lattice constant
in this system at room temperature follows closely. the

20 _ .
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FIG.76. Frequency shift of the U~center mode versus hydro-
static strain. The sample temperature was 41 °K. After
Shotts (1973).
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-TABLE V.4. Anharmonic coupling coefficients for U centers with O, (T,) symmetry in

ionic crystals.

s

Host lattice A (em™!/unit strain)

B (cm™!/ unit strain)

C (cm™!/unit strain) Reference ?

NaF 940+ 60 510 +30 150+5 1
NacCl 6802 2
KCl1 T72+2 2

840+ 80 270 +30 120 +10 3
KBr 7302 2

750+ 75 240 =20 220 +20 4
KI 310+ 50 130 £25 220 +£50 3
CaF, 940 + 35 105+35 1120 +35 4

2 The references for Table V.4 are the following:

1. Dotsch, H., 1969, Phys. Status Solidi 81, 649. Compliance factors from Vallin, J.
K. Marklund, J. O. Sirkstrom, and O. Beckman, 1966, Ark. Fys. (Sweden) 32, 515.

2. Shotts, W. J., Ph.D. Thesis, Cornell University, 1973. Compressibility from Sharko,
A. V., and A. A. Botaki, 1971, Sov. Phys.-Solid State 12, 1796.

3. Fritz, B., J. Gerlach, and U. Gross, 1968, in Localized Excitations in Solids, edited
by R. F. Wallis (Plenum, New York), p. 504. Source of compliance factors not given.

4. Diirr, U., and D. Biuerle, 1970, Z. Phys. 233, 94.

5. Hayes, W., and H. F. MacDonald, 1967, Proc. R. Soc. Lond. A 297, 503. Compliance

factors given.

Vegard relation (Vegard, 1921)
(5.20)

In this equation, a, and @, are the lattice constants of the
two components KC1 and RbCl, and x is the molar con-
centration of component 2. From their measurements
Barth and Fritz (1967) deduced a relation between fre-
quency shift Aw,,. and the average lattice constant change
Ad, Using the relation AV/V =3Aa/a we can express
their result as

—-Aw, =555(AV/V) cm™ .

a=a,+(a,—a)x.

This independent measure of the hydrostatic coﬁpling
coefficient is in reasonable agreement with the hydro-

LATTICE PARAMETER (A)— =

6.25 ) 6.26 6.27
502177 T T T T T T T T T T 7
KCl + RbCI
T 500 —
£
L
498
8
3
496 —
|
494 o

Rb+ CONCENTRATION IN THE CRYSTAL (mol %)=
FIG. 77. Positionof the H™ local mode peak in KC1 doped

with RbCl at 21 °K. The lattice parameter is interpolated
using a Vegard relation. After Barth and Fritz (1967).
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static coupling coefficient recorded in Table V.4. Har-
rington and Walker (1971) have given a different inter-
pretation of H™ and D™ local mode perturbations in BaF,.
They explain the concentration dependence c2 observed
in the linewidth as a mass perturbation of the host lat-
tice rather than a lattice constant perturbation.

The hydrostatic pressure dependence of the U-center
sideband in KBr has been measured by Shotts and Sie-
vers (1973) to deduce the pressure dependence of struc-
ture in the density of states. They observed a linear
dependence with pressure of a sideband feature which
arises from a localized region of the Brillouin zone, a
saddle point at [0.6, 0.6, 0] on the longitudinal acoustic
branch (Ward and Timusk, 1972). The experimentally
determined Griineisen constant is

7(0.6,0.6,0)=1.93 +0.1 (expt).

Although in a simple calculation this constant is the
same for all phonons, a detailed calculation in three
dimensions results in different Griineisen constants for
different regions of k space. Using a shell model poten-
tial adjusted to fit neutron diffraction data, Cowley and
Cowley (1965) have calculated the Griineisen constant
for the saddle point to be

7(0.6, 0.6, 0) =1.91 (theory),

giving excellent agreement between theory and experi-
ment.

The A, type strain (hydrostatic pressure) is only one
kind of distortion which can perturb the T}, local mode
excited state. To identify all other lattice distortions
which will influence the local mode we need to examine
the appropriate matrix element for the excited state,
which is

Aw = (YT NHD(T,) . (5.21)

For these matrix elements to be invariant under all sym-
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FIG.78. Calculationof the splitting of the Ty, (T'y) states with

applied stress in the [100], [110], and [111] directions. The
polarization of the electric dipole absorption from the ground
state is given. After Nolt and Sievers (1967).

metry operations of the octahedral group O,, they must
transform like the A,, representation (Tinkham, 1964).
Thus the stress perturbation must transform according
to the representations contained in the direct product of

L XLy =A +Eg +T,

28

showing that the only modes which interact with the ex-
cited state of the resonant mode are the long-wavelength
distortions of A,, (spherical), E, (tetragonal and orthor-
hombic), and 7,, (trigonal) symmetry. Three coupling
coefficients, A(A,,), B(E,), and C(T,,), determine the
dependence of the local mode frequency upon the strain
components. For the case of T; symmetry only modes of
symmetry A,, E, and 7, couple to the excited state of
the local mode.

‘qualitatively similar in KC1 and KI.
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The form of the general stress Hamiltonian coupling
to degenerate electronic states has been discussed by
Schawlow et al. (1961) and Gebhardt and Maier (1965). .
Similar considerations apply to the vibrational problem
treated here.

The stress Hamiltonian may be written as (Hayes and
MacDonald, 1967)

3¢, =P{A(S,, +2S,,) +B(S,; —S,,)
x[(2& - & - £)(2n3 —nf - 13) + 3(&¢ — £)ni
+CS 44 (8,8, M, + £, Em,M + E3€, 151, ),

n2)|
(5.22)

where the light ion has displacement with direction
cosines (1,,n,, 'r)s), and the stress P has direction cosines
(§,€,8,) relative to the crystal axes. The parameters

S;; are compliance factors appropriate to the impurity
environment. The term A shifts the center of gravity of
the T, states (or in T; symmetry the 7, states); this
term will also affect the position of the ground state.

The degeneracy of the T,,(T,) states is raised by the
terms in B which have tetragonal and orthorhombic sym-
metry, and by the terms in C which represent a shear.
The calculated splittings of the local mode for stress
applied along different crystal axes is summarized in
Fig. 8.

The measured stress-induced shifts in KC1:H™ for the
different stress and polarization directions are shown in
Fig. 79(a). From the slopes of these lines, the coupling
coefficients in Fig. 78 can be determined. These cou-
pling coefficients are given in Table V.4 for NaF, KCI,
KI, and CaF,.

The measured shifts in KI:H™ are shown in Fig. 79(b).
The main band shifts measured in the [100] direction are
The dotted curve
shows the stress effect on the sideband gap mode shown
in Fig. 73(a). From these measurements the symmetry
of this mode has been identified as A;,. For the H”
centers of T; symmetry in CaF, the splitting of both the
fundamental and second harmonic T, modes have been
measured. In addition, with the application of a shear
strain, Hayes and MacDonald (1967) have observed new
transitions which correspond to an admixture of the 7,
states with the infrared inactive A, and E levels belong-
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FIG.79. Splitting of the U-
center local mode bands under
uniaxial stress. The side
band corresponds to the
excitation of a gap mode
at 93.7 cm™!, After Fritz
et al . (1968).
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ing to n =2,

One comparison of the effective anharmonic coupling
coefficient, as obtained from thermal measurements,
with that determined from applied lattice strain results
has been reported. The effective anharmonic coupling
coefficient A can be obtained directly from the Debye—
Waller factor which describes the temperature depen-
dence of the zero lattice phonon peak I(T')/1(0) (5.14).
From the measurement of Fritz ef al, (1968), Alexander
et al, (1970) find that

A (thermal) =350(cm™!/unit strain).

From uniaxial stress measurements using bulk elastic
compliances they find using (5.15)

A(stress) =150(cm™! /unit strain).

They conclude that this is reasonable agreement justify-
ing the concepts involved in correlating the two types of
measurements.

4. Temperature dependence of the local mode frequency
and linewidth

The contribution of anharmonic terms in the potential
energy to the broadening and shift of the absorption
lines due to localized modes has been discussed widely
in the literature (Maradudin, 1966b; Elliott et al., 1965;
Klein, 1968; Ivanov, 1966; Bilz, 1966; Kiihner and
Wagner, 1968; Ipatova, 1968; and Gethins, 1970). To
interpret the available data we follow the discussion by
Klein.

The various processes contributing to the width and
shift can be divided into two types: decomposition pro-
cesses and scattering processes. Both can be regarded
as broadening the absorption line by limiting the lifetime
of the excited local mode state, and although this ap-
proach to the problem does not give detailed line shapes,
etc., it does provide a simple framework for discussing
features such as temperature dependence.

In a decomposition process the local mode excited
state decays into one or more phonons. One-phonon de-
cay can result from anharmonic terms such as @3¢, and
schematically we can represent these by a transition

D)~ 07 +1) .

Conservation of energy requires w,,, =w, which cannot
occur for a localized mode above the band mode spec-
trum, Two-phonon decay of the local mode originates
from coupling terms such as Qqq’. For these the re-
laxation rate can be written as (Klein, 1968)

L. ¥

T =
2 Wi = Wt W,

Ag,q" YA +72, +72,), (5.23)
ql

where A is the appropriate coupling coefficient, and 7
denotes the equilibrium value of the phonon occupation
number at temperature 7. The limiting temperature de-

pendences for two-phonon decay rates are
1/7,~const. (low T),
1/7,~T (high T). (5.24)

Similarly, three phonon decays have the limiting tem-
perature dependence
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1/7,=const. (low T),

1/7,=T2 (high T). (5.25)

Scattering processes were first proposed by Elliott
et al. (1965). They broaden the absorption line by limit-
ing the lifetime of the over-all excited state of the form
| . My .>. Schematically, the transition involved is’
of the type

(] .. .0, 7,

st s =Dl £ m F1, 000,

and can be brought about by anharmonic terms like

@3q (taken to second order in perturbation theory) or
Q32qq’ (taken to first order). In either case these transi-
tions give a relaxation rate (Klein, 1968)

1. Z Clqq' m (i, +1).

Tsc =
Wq uql

(5.26)

Using a Debye approximation for the phonons, McCum-
ber and Sturge (1963) and McCumber (1964) treated pro-
cesses like those above to obtain the linewidth

x8¢*

AL =T(T) - T'(0) :3(%)71)9‘”—(—— dx

Foqpd, (627

where R0,/ is an effective cutoff frequency. This for-
mula exhibits the limiting behavior

AL ~T7 ) T
s T c (].OW ) ’ (5.28)
AL ~T2, T>6, (highT).
- The scattering process also gives rise to a frequency
shift
T\* 8%/T x3dx
Awoc:woco = Wi (T =6<__'> f Tx 1) 5.29
1 1 ( ) 1 ( ) ec o (er_l) ( )
which has the limiting behavior
A ~T4 T
Wioe (10W ) ’ (5.30)
Awe,~T  (high T) .

In the above expressions, B is positive but 0 may be
positive or negative.

In addition to the two-phonon process given by (5.29),
there will be a frequency shift from the anharmonic
terms which give rise to thermal expansion. This con-
tribution can be estimated through the hydrostatic strain
coupling coefficient A by

Awy =AlAaa/a(0)], (5.31)

where a(0) is the low-temperature lattice parameter,
and Aa =a(T') - a(0).

The temperature dependence of the center frequency
and linewidth of many local modes have been measured
(Elliott et al., 1965; Fritz ef al., 1965). The measure-
ments by D6tsch (1969) on LiF and NaF illustrate the two
possible limiting examples. The temperature dependence
of the half-width of the local mode of H™ and D~ in these
two alkali halides is shown in Fig. 80. The low-tem-
perature half widths are very different for these two
materials. Because of the small mass of lithium, the
local mode frequency in LiF:H™ is close enough to the
maximum frequency of LiF that a two-phonon decay pro-
cess is possible. That is w,,.<2w,,. The damping is
found to be very large and the half width can be resolved
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easily at low temperatures. In fact two-phonon decay is
possible for three out of the four defect-lattice combina-
tions shown in Fig. 80, namely, LiF:H™, LiF:D”, and
NaF:D~. From (5.23) one obtains the approximate rela-
- tion

L, ~ ctnh(fwy- o-/4kT)- (5.32)

In Fig. 80(a) the experimental data are given by curve 1
and curve 2. The temperature dependence described by
(5.32) is given by curves 3 and 4. Curve 5 is obtained
by subtraction and refers to the scattering process
(5.27).

For NaF:H™ shown in Fig. 80(b) Détsch found a three-
phonon decay scheme necessary because w,,.>2w,,. The
absence of a two-phonon decay contribution explains the
smaller half-width of the H™ band. Although the three-
phonon decay scheme has the correct limiting tempera-
ture dependence (T?) at high temperature (5.25), the
scattering process described by (5.26) is believed to
play the dominant role here (Fritz, 1968). In Fig. 80(b),
L. (5.27) is fitted to the experimental data points of
NaF:H~ with a 6,=350°K (curve 1). From specific heat
6, =400°K. It has been observed for most alkali halide
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FIG. 80. (a) The temperature dependence of the half widths
of LiF:H™ and LiF:D”. Curves 3,4,5 are theoretical fits.
(b) The temperature dependence of the half widths of NaF:H™
and NaF:D~. Curves 1, 2 are theoretical fits. After Dotsch
(1969).
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crystals that 6,< 6, , presumably because of a preferred
coupling of the local mode to long-wavelength acoustic
phonons (Bilz ef al., 1965). The fit of curve 1 using this
reasonable value for 6. is excellent. Curve 2 shows the
two-phonon decay of NaF:D~ according to (5.32).

One-shell model calculation has been made by Gethins
(1970) on the temperature-dependent linewidth of U-cen-
ter local modes in KBr. Gethins calculated the linewidth
from parameters adjusted to fit the U-center sidebands
in an anharmonic Green’s function calculation. The ex-
pressions are related to the results of McCumber and
Sturge; however, in this calculation the exact phonon
density of states is used and there are no adjustable pa-
rameters. The linewidth resulting from the calculation
is a factor 6 too small in the high-temperature (T'2?) re-
gion (Shotts, 1973).

The temperature-dependent shift of local mode bands
has been observed by several investigators (Elliott et al.,
1965; Fritz et al., 1965; Dotsch, 1969). It is usually ob-
served to be linear at temperatures near room tempera-
ture, as would be suggested by (5.31) rather than (5.29).
Figure 81 indicates that the situation is not simple.

Both increases as well as decreases in the mode fre-
quency are observed when the temperature is lowered.
Even a reversal of sign can take place, as shown in
Fig. 81. Presumably scattering contributions such as
(5.29) as well as thermal lattice expansion play a role
here.

D. Pair modes

In a number of alkali halides, high concentrations
(~1 mole %) of impurities have been found to result in
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vibrational modes involving pairs of impurity ions. The
first such mode discovered (de Souza et al., 1970;

de Souza and Liity, 1973) was due to pairs of U centers
(H™ and D~ ions) in KC1 and resulted in three infrared-
active modes near the single U-center line at ~500 cm™?,
The pairs are oriented along the [110] crystal direction.
The frequencies and strengths of these and all the other
pair modes discovered to date are presented in Table
V.1,

For a model of the U-center pairs, de Souza and Luty
proposed two harmonic oscillators, coupled to the rigid
lattice by the same “springs” that act on the single U-
center. The two ions are coupled to each other by a
spring whose three parameters are fitted from the three
pair mode frequencies. The frequencies of the D™D~ and
some of the H"D™ pair modes predicted by the model are
in good agreement with observed values.

E. Gap modes from monatomic impurities
1. Gap mode measurements

Our review of local modes in ionic crystals has demon-
strated that (with a few exceptions, which are listed in
Table V.1) the defect must consist of an H™ or D ion in
order to produce an infrared-active localized mode at
frequencies that are larger than the maximum frequency
w,, of the host lattice. In contrast with this situation,
lower-frequency localized modes have been observed for
a variety of impurities at frequencies corresponding to
the gap region between optic and acoustic phonon branch-
es (gap modes). Only five alkali halide crystals have
such a gap, LiCl, NaBr, Nal, KBr, and KI. Gap modes
have been observed in all but LiCl. Some of the early
work has been described in the reviews listed at the be-
ginning of Sec. V. In addition measurements on gap
modes up through 1966 have been reviewed by Hadni
(1967), Sievers (1968, 1969), and Genzel (1969). The
experimental results on gap modes are brought up to
date in Table V.5. :

One of the first observations of a gap mode was made
by measuring the electronic emission spectrum asso-
ciated with rare earth ions in alkali halide host lattices
(Wagner and Bron, 1965). The emission spectra of Eu?*
and Yb2* consist of broad bands which arise from transi-
tions of the type 4/"=4f""'5d. Many of these broad bands
show a long series of sharp vibronic lines when mea-
sured near liquid helium temperatures. One such spec-
trum is shown in Fig. 82. The important vibrational
frequencies are obtained from the interval between suc-
cessive lines of the vibronic series. For this particular
example the frequency is 79 cm™'. The gap in KI ex-
tends from 69.7 to 96.5 cm™! so the important lattice
vibration is a gap mode. Wagner and Bron have con-
cluded the following: (1) The rare earth vacancy im-
purity has C,, symmetry, (2) the electronic transitions
can be coupled only to normal modes of A, symmetry,
(3) the local lattice is strongly distorted, and (4) a
strong electron-lattice coupling is present. These mea-
surements first illustrated that it is possible to measure
gap modes even when they do not have an electric dipole
moment or when their frequency does not occur in a
transparent region of the host crystal.
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- Gap modes have also been observed by measuring vi-
brational sideband spectra. For monatomic impurities,
gap modes have been discovered in this way in KI:H™
(Fritz et al., 1965; Timusk and Klein, 1968; and Mac-
Pherson and Timusk, 1970), in KBr:H; (Diirr and-
Biuerle, 1970) and in KI:H; (Buerle and Fritz, 1968).
The sideband spectrum for KI:H™ is shown in Fig. 73(a)
with the gap mode at 93 cm™ . Note that the sideband
spectra obey the Raman selection rules. This means
that a symmetric or even symmetry gap mode couples
strongly to the impurity to create a sideband. Uniaxial
stress measurements on this gap mode by Fritz et al.
(1968), shown in Fig. 79, indicate that this mode belongs
to the A, irreducible representation of the O, symmetry
group. This result has been confirmed by Raman scat-
tering measurements by Montgomery et al. (1972).

Their experimental results are shown in Fig. 83. In
order to determine the presence or absence of the A,
gap mode, one needs to subtract the two-phonon scat-
tering from the host lattice. The difference spectrum
shows a distinct peak near 95 em™.

Most gap modes have been discovered by absorption
spectroscopic techniques with the sample at low tem-
peratures, as indicated in Table V.5. The reason for
this is that alfhough the host ionic crystal is opaque for
frequencies less than the transverse optic mode at room
temperature, the crystal becomes remarkably trans-
parent as the temperature is decreased. This is just the
well-known “freezing out” of the two-phonon absorption
which usually dominates the spectral region near the gap.

2. Gap mode isotope effects

The most complete experimental investigation of in-
frared-active gap modes has been on the systems KI:Cl1~
(Sievers, 1965; Sievers et al., 1965; Nolt et al., 1967,
Shotts and Sievers, 1974) and KI:e~ (Biuerle and Fritz,
1968; Biuerle and Hiibner, 1970). The C1~ gap mode in
nominally pure KI was observed at about 77 cm™, as
shown in Table V.5. As the sample temperature is in-
creased to 15°K the sharp doublet does not change ap-
preciably except to appear on a broad background ab -
sorption. This background absorption becomes strong
enough by 15°K to dominate the absorption in this fre-
quency region. It results from two-phonon difference
band absorption described in the previous section.

Sievers ef al. (1965) treated the substitutional C1~ im-
purity as a mass defect and calculated the gap mode for
potassium iodide. The calculation of the eigenfrequenc-
ies and eigenvectors of the perfect lattice was based on
Karo and Hardy’s deformation dipole model (1963) of
ionic crystals, which gave an incorrect gap for KI ac-
cording to later inelastic neutron scattering data (Dolling
el al., 1966). Later a high-resolution study by Nolt
et al. (1967) showed that the local mode was really a
doublet due to the two stable chlorine isotopes, *Cl and
37C1. A high-resolution study by Shotts and Sievers
(1974) of this frequency region is shown in Fig. 84. The
points are the experimental data and the solid curve rep-
resents the superposition of three Lorentzian line
shapes. The isotope shift is 0.33 cm™'. These three
lines have been explained by a model first described by
Benedek (1970), which includes the splittings resulting
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TABLE V.5. Gap modes in alkali halide crystals.

Irreducible Temp.
representation, °K

Mode frequency(
Crystal (cm™) Defect symmetry, Method of observation, 2 References, ? Comments

¢~ (substitutional)

KBr 99.60(T,,1.2) 0,,A,1,2
KBr 99.07(—,1.2) CiprA,1,2
KBr 98.50(~,1.2) Dyy,A, 1,2
KI 82.62(Ty,,1.2) 0,,A,1,2
KI 81.98(—,1.2) CprA,1,2
KI 81.19(~, 1.2) Dyp,A, 1,2
H™ (substitutional) '
KI 93.7(A4, , 90) 0,,V,3,4,5;R, 6
Na'* (pair)
KI 76.02, 84.14(—, 4.2) A,
Cl™ (substitutional)
Nal 82.9(Ty,,1.2) 0,,A,8,9
KBr 95(T'y,4.2) 0,,A,10,20
Ki:3%Cl 77.10(T4,,1.2) 0,,A,11,12,13
KI:3'C1 76.79(Ty,,1.2) 0,,A,11,12,13
C1~ (pair)
KI 217.02, 80.26, 82.84 AT
Br~ (substitutional)
KI:"Br 88.94(Ty,,4.2) 04,A, 7
KI:8Br 88.47(Ty,,4.2) 0,,A,7
Br~ (pair)
KI 73.8(—,4.2) A,7
Cs* (substitutionai)
KI 83.5(T 1y, 1.2) 0,,A,11
A, * (substitutional)
KI 86.2(Ty,,1.2) 0,,A,13
At (?)
KI 78(—,1.2) A,14

H] (interstitial)

KBr 98.7(T5, —) T, A, V,15
KI 86.7(T,, —) T4,A,V,16
e” :Na*
KI 80(—,1.2) A,2
Rare earth vacancy
KI: Eu?* 79(A, 10) Cyy s 5,17
KI:Yb?+ 79(A, 10) Cyy 5 5,17
OH™ (substitutional)
NaBr 129 (—, 7) Cyu»r V.5
KI 86.2, 86.9, 89 (—, 6) Cyu»A,18,19 The assignment of these lines

has been questioned by Ref. 20.

OD™ (substitutional)

KI 82.5, 86.2, 88.8, 8, 94.3(—, 6) CypyA,19 The assignment of these lines
has been questioned by Ref. 20.
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TABLE V.5. Gap modes in alkali halide crystals. (Continued).

Mode frequency( Irreducible Temp.) Defect symmetry, Method of observation, 2 References,? Comments

representation, °K

Crystal (cm™1)
~ (substitutional)
NaBr 110,123 (-, 7) Vv, 30, 31
Nal ) 72,74,94(-,1.2) A,21
93(—, 7) . Vv, 30, 32

KI 81(—,4.2) A, 21,22,29

83(—, 7) - Vv, 30,27
NCO™ (substitutional)

NaBr 117,123,127(—, 100) Cs,» V, 30

Nal 91,105(—,100) Cs,, v, 23,30

KBr 97.4,99.7(—,100) Cs,,V,23,30

KI 77.8, 82.2(—,100) Csp,» V, 23
78.8(—, 4.2) Cs, A, 29
78,82(—,100) ' Cs,, V,30

O, (substitutional)
KI 88(—,100) v, 31
N;~ (substitutional)

NaBr 124(—~, 100) Vv, 31
Nal ‘ 105(—,100) V, 31
KBr 97(—=,100) VvV, 31
KI 80(—, 100) V, 31
NO,~ (substitutional)
NaBr 109(E, , 6) 0,,R, 28
NaIl 84,93 (—, 2) A, 21
KI 71.0(—,2), 719.7(—, 2) S, 24; A, 25, 26; V, 27
76 (E, ,6) 0,,R,28
NCS~ (substitutional)
NaI 89,101(—, 40) Vv, 30
KI 79, 83(—,40) Vv, 30
NO;~ (substitutional)
NaBr 105, 113,128(—, 77) . Vv, 32
Nal 86 (—, 77) Vv, 32
KBr 95(—, 77) Vv, 32
KI 73.3, 78.4, 88.2(—, 2) A, 22,25
74 89(1,100) Vv, 31
73 88(=, T7) V, 32,27
CO;~ (substitutional) .
KI 94.1(~—, 6) A, 20

2 Key: A =absorption, R=Raman, S=electronic sideband, V=vibrational sideband.
b The references for Table V.5 are the following:
"1. Biuerle, D., and B. Fritz, 1968, Solid State Commun. 6, 453; 1968 Phys. Status Solidi 29, 639.

2. Biuerle, D., and R. Hiibner, 1970, Phys. Rev. B 2, 4252.

3. Fritz, B., U. Gross, and D. Biuerle, 1965, Phys. Status Solidi 11, 231.

4. Timusk, T., and M. V. Klein, 1968, in Physics of Color Centers, edited by W. B. Fowler (Academic, New York), p. 521.

5. MacPherson, R. W., and T. Timusk, 1970, Can, J. Phys. 48, 2176.

6. Montgomery, G. P., W. R. Femer, and M. V. Klein, 1972, Phys. Rev. B 5, 3343.

7. Ward, R. W., and B. P. Clayman, 1974, Phys. Rev. B 9, 4455.

8. Hadni, A., G. Morlot, and R. Casarotto, 1967, Compt. Rend. 265, B767.

9. Timusk, T., and R. W. Ward, 1969, Phys. Rev. Lett. 22, 396.

10. Nolt, I. G., R. A. Westwig, R. W. Alexander, and A. J. Sievers, 1967, Phys. Rev. 157, 730.

11. Sievers, A.J., 1965, in Low Temperature Physics, edited by J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yagub
(Plenum, New York) LT9, Pt. B, p. 1170.

12. Sievers, A. J., A. A. Maradudin, and S. S. Jaswal, 1965, Phys. Rev. 138, A272.
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TABLE V.5. Gap modes in alkali halide crystals. (Continued).
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13. Kirby, R. D.,
14. Kirby, R.D.,
15. Diirr, U., and D. Biuerle, 1970, Z. Phys. 233, 94.
16. Biuerle,

1971, Phys. Rev. Lett. 26, 512.

18. Renk, K. F.,

19. Grisar, R. G. J.,

20. Becker, C. R., 1970, Solid State Commun. 8, 337.

21. Lytle, C.D.,

22. Sievers, A. J.,
p. 220.

1967, Z. Phys. 201, 445.

I. G. Nolt, R. W. Alexander, and A. J. Sievers, 1968, Phys. Rev. 168, 1057.

D., and B. Fritz, 1968, Phys. Status Solidi 29, 639.
17. Wagner, M., and W. Bron, 1965, Phys. Rev. A 139, 223.

K. P. Reiners, K. F. Renk, and L. Genzel, 1967, Phys. Status Solidi 23, 613.

1965, M. S. Thesis, Cornell University, Materials Science Center Rt MSC No. 390.
1969, in Elementary Excitations in Solids, edited by G. Nardelli and A. A. Maradudin (Plenum, New York),

23. Decius, J. C., J. L. Jacobson, W. F, Sherman, and G. R. Wilkinson, 1965, J. Chem. Phys. 43, 2180.
24, Timusk, T., and W, Staude, 1964, Phys. Rev. Lett. 13, 373.

25. Sievers, A. J., and C. D. Lytle, 1965, Phys. Lett. 14, 271.

26. Renk, K. F., 1965, Phys. Lett. 14, 281.

27. Narayanamurti, V., W. D. Seward, and R. O. Pohl, 1966, Phys. Rev. 148, 481.
28. Evans, A. R., and D. B. Fitchen, 1970, Phys. Rev. B 2, 1074.

29. Shotts, W. dJ., 1973, Ph.D. Thesis, Cornell University.

30. Cundill, M. A., and W. F. Sherman, 1968, Phys. Rev. 168, 1014,
31. Cundill, M. A., and W. F. Sherman, 1966, Phys. Rev. Lett. 13, 570.

32. Metselaar,

from both the C1~ isotopes and the K* nearest-neighbor
isotopes.

Nolt et al. (1967) tried to compare the experimental
results for the isotope shift with the predictions of the
simple lattice model described by Mitani and Takeno
(1965) [see (5.2) and (5.3)]. They calculated the fre-
quencies of the gap modes for a lattice system consist-
ing of a point defect with mass and nearest-neighbor
force constants taken to be different from those of the
host lattice. Long-range interaction forces which in-
troduce coupling between the components of motion, as
well as polarizability effects and lattice distortions, are
not considered in this model. With the lattice coupling
confined to nearest neighbors only and with central and
noncentral force constants set equal to each other, a
solution for the eigenfrequency of the infrared-active
gap mode is found using (5.3). Only a knowledge of the
frequencies at the top and bottom of the gap are required
to determine the form of g,((w/w,)?) in this region. The
impurity mode frequency of 77 cm™! is reproduced with

| L

R., and J. Van Der Elsken, 1968, Phys. Rev. 165, 359.

(5.3) if the impurity nearest-neighbor force constant is
38% of the host lattice force constant. The internal con-
sistency of this fit can be tested from the isotope shift
data. The shift in frequency associated with the chlorine
mass change and the force constant given above is 1.74
cm™! compared to the measured value of 0.33 cm™!, This
lack of agreement is disappointing. One must conclude
that the isotope shift data is a sensitive probe of the lat-
tice defect system, hence the lattice defect model. The
simple chain model (Fig. 13) showed that gap modes are
not well localized, reinforcing the implication that more
than nearest neighbors must be included in a good model
of the defect.

The more rigorous calculations of Benedek and Mara-
dudin (1968) support the above conclusion. They used a
refined model of the impurity ion which takes into ac-
count the mass difference, the change in nearest-neigh-
bor central forces, and also the change in nearest-neigh-
bor noncentral forces. They also use more reliable
models for the dynamical properties of the host crystal,

3

ENERGY

4250 4300

4350 4400

WAVELENGTH (R)

FIG. 82, Major and minor vibronic intervals observed on the lowest energy emission band of KI:Yb?* at 10 °K. The gap mode

frequency of 79 cm™!
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is obtained from the interval between successive lines of the vibronic series.

After Wagner and Bron (1965).
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such as Cowley’s shell model III (Cowley ef al., 1963)
and the deformation dipole model of Karo and Hardy
(1963), but with the position and width of the gap adjusted
to fit the inelastic neutron data. They found that neither
the deformation dipole nor the shell model calculations
can correctly predict the experimental isotope shift with
only nearest-neighbor force constant changes. From the
calculations Benedek and Maradudin conclude that the
position of the gap mode must be very sensitive to the
range of the perturbation in the host crystal. Because of
elastic relaxation around the defect, force constant
changes should be included for other than nearest neigh-
bors. In addition anharmonicity of the interionic forces
is expected to contribute a small shift to the frequencies
of gap modes calculated in the harmonic approximation,
and to make a small contribution to the isotope shift.
Benedek and Maradudin do not estimate the magnitude

of this latter effect.

More recently Biuerle and Hiibner (1970) have shown
that the gap mode frequency and isotope shift for C1~
can be fit with a model similar to that used by Gethins
et al. (1967), where changes in both nearest-neighbor
and fourth-nearest-neighbor force constants are allowed.
(This model has been described in connection with the
U-center local mode and is shown in Fig. 74.) Unfor-
tunately, the calculation represents a two-parameter
fit to only two separate pieces of experimental data.
This comparison does not yet test the accuracy of the
model.

Gap modes associated with /' centers (an anion vacancy
occupied by an electron) in KBr and KI give complemen-
tary information to that obtained for the KI:Cl1™ gap
modes, in that isotope shifts associated with a mass
change in the host lattice can be resolved. The physical
characteristics of the eigenvector associated with this
mode have been described by Biuerle and Fritz (1968) in
their original paper. As the impurity mass is decreased
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FIG. 83. Raman spectra of KI:H™ and pure KI at low frequency.
The large band between 80 and 120 cm™ is due to the two-
phonon scattering from the host crystal. Note the localized
A, gap mode at 95 cm™ in the doped sample. After Montgom-
ery etal. (1972).
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with respect to the heavy host mass in the crystal, the
gap mode frequency increases but approaches a finite
value (Fig. 14) for the limiting case of vanishing impurity
mass (i.e., e~ center). The displacements are such that
the nearest neighbors of the e~ center move with the
same amplitude while the fourth-nearest neighbors to
the defect move with somewhat reduced amplitude and
with the opposite phase (compare mode 24, Fig. 15). The
displacements are not localized at the defect center it-
self, as in the case of the localized mode. It is worth
noting that the corresponding gap mode for the H™ ion
has been searched for but apparently does not exist
(Sievers, 1968). :

Benedek and Mulazzi (1969) have calculated this F
center gap mode absorption using Hardy’s deformation
dipole models for the lattice phonons. When they allowed
an inward elastic relaxation of the neighbors they were
able to fit the measured frequency given in Table V.5.

Recent measurements by Biuerle and Hiibner (1970) on
the isotope shifts associated with host lattice mass
changes provide more experimental data with which lat-
tice models can be tested. Their experimental measure-
ments on the F'-center gap mode in KI is shown in Fig.
85. Lines A, B, and C are associated with the F center.
The lower-frequency line at 80 cm™! is probably due to a
perturbation of the ¥ center by Na* ions (F, centers).
The ratio of the integrated absorptions of the three lines
is

I,:05:1:5~193:28:1 (expt).

Similar results have been obtained for E centers in KBr.
The frequencies and relative intensities of the individual
peaks of the F-center gap mode can be explained by the
presence of two isotopes in the host crystal, %K and
4K, which have a natural abundance ratio ®K:*'K =93:7.
The usual gap mode is associated with O, symmetry
for all nearest neighbors consisting of *K. Replace-
ments of 3°K by *'K on one or two of the six nearest-
neighbor sites will reduce the gap mode symmetry to
C,», Dy, or C,,. Within the model used, two *!K atoms
along the direction of vibration give the strongest per-
turbation to the mode and reduce-its frequency below the

15 — RESOLUTION

KI:Cy

ABSORPTION COEFFICIENT (cm™)

FREQUENCY (cm™)

FIG. 84. High~resolutiontrace of the gap mode absorption in
KI:C1™ between 76 and 78 cm™. The dots are the experimental
data and the solid curve represents the superposition of three
Lorentzian line shapes. The sample is at 4.2 °K. After Shotts
and Sievers (1974).
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A mode position. One *'K atom along the direction of
vibration reduces the frequency somewhat less.

The relative intensities are obtained by noting that the
probability of » F centers having ¢ 'K nearest-neighbor
ions can be written as

b(i)=3_ Pi(). (5.33)
For the natural abundance ratio of ¥K:*'K Biuerle and
Hiibner evaluate the probabilities P; in (5.33) and obtain
b(0)=65.5%; 6(1)=27.7%; and 0(2)=5.9%.

In order to compare the relative frequencies of these
three configurations with the relative intensities of the
measured lines, the polarization and the degree of de-
generacy in the modes must be taken into account. The
relative intensities for the three modes which corre-
spond to the various O, symmetry-breaking perturbations
are :

A =2b(0)+ %b(1)+}—§b(2),
B=2b(1)+320(2),

=2b(2). _ (5.34)
Inserting the values for 6(¢) yields

I,:15:1-=210:30:1 (theory)

S87

in good agreement with the measured ratios.

Biuerle and Hiibner have also fitted the gap mode fre-
quency by using the breathing shell model (Schroder,
1966) to describe the host lattice eigenvectors and ei-
genvalues. They find that the positions of the gap mode
depend strongly on the change in the force constant be-
tween first-nearest neighbors and fourth-nearest neigh-
bors. For any fixed value of the nearest-neighbor force
constant, the gap mode frequencies can be shifted over
the total gap region by a variation of the fourth-nearest-
neighbor force constant within reasonable limits. This
once again indicates that a realistic model for the de-
scription of defects can not be restricted in real space.
A large region around the center will be perturbed by
the relaxation of the surrounding lattice. This is ap-
parently true not only for the soft ' center and H™ center
but also for C1” ions in potassium iodide. The gap mode
with its somewhat extended eigenvector is a more sensi-
tive probe of these perturbations than a high-frequency
localized mode. -

3. Anharmonic coupling of gap-modes to the lattice

No significant measurements on the temperature de-
pendence of the jnfrared—active gap modes have yet been
made. The reason is not a lack of interest but rather

1.0 0.5
KI, 12°K
o8l - H —o4
F centers
v
S osl- —o3
> | | resolution
o . A FIG. 85. The F-center gap
.‘g // mode absorption spectrum in
S i B—\ 1 KI. The positions of the lines
h are given in Table V.5. The
;’ resolution is 0.1 cm™. After
el . .
g 0.4 doz Biuerle and Hiibner (1970).
o
©
L
a
o
—0.1
7 { 1 o)
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TABLE V.6. Anharmonic coupling coefficients for gap modes with O, symmetry in

potassium iodide.

Impurity A (cm™!/unit strain)

B (cm™! /unit strain)

C (¢ém™!/unit strain)  Reference ?

e” 125+ 40 3515 .. 1
Cc1- 11025 2
Ag* 220 = 50 2

2 The references for Table V.6 are the following:

1. Biduerle, D., and R. Hiibner, 1970, Phys. Rev. B 2, 4252,

(Used local compliances.)

2. Patterson, M., 1973, M. S. Thesis, Cornell University; Materials Science Center R.

MSC Number 2016.

that the temperature-dependent absorption coefficient
associated with the background “difference” processes
of the host lattice rapidly masks the impurity-induced
absorption in the gap region above about 15°K, as men-
tioned earlier.

A few measurements of the hydrostatic coupling coef-
ficient of the gap mode to the lattice (5.19) have been
reported (Patterson, 1973) and one uniaxial strain mea-
surement has been made on the F-center gap mode
(Bduerle and Hiibner, 1970). The measured parameters
are recorded in Table V.6. A comparison of the coupling
coefficients for gap modes (Table V.6) and for local
modes (Table V.4) indicates that the local modes are
coupled much more strongly (~5x) to the lattice than are
the gap modes. In fact, the gap modes have roughly the
same size coupling coefficient as does the transverse
optic mode for the pure crystal. For potassium halides,
Postmus et al, (1968) find that the hydrostatic coupling
coefficient for the ¢ =0 transverse optic modes is

A(TO)~110 (cm™!/unit strain)

in reasonable accord with the gap mode values listed in
Table V.6.

K1:0.63mole % CI™

—
N

(]

ABSORPTION CONSTANT (cm-1)
N

1 1 -l

70 75 80 85
WAVENUMBER (cm-t)

FIG. 86. Cl -induced gap modes in KI at 4.2 °K. The mode
at 77 cm™, which peaks off-scale, is a doublet due to isolated
37C1 and % Cl impurities. The three modes shown are pair
modes. The instrumented resolution is 0.21 cm™. After
Ward and Clayman (1974a).
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(Used compliances of the bulk crystal.)

4. Pair modes in the gap

Recently, several infrared-active pair modes have
been discovered (Ward and Clayman, 1974a) in the gap
region of KI (70-96 cm™). Three lines are due to C1~,
two due to Na*, and one due to Br~; all have strengths
proportional to the impurity concentrations squared.
The frequencies are given in Table V.5. The absorption
constant versus frequency for KI heavily doped with C1~
(0.63 mole %) is shown in Fig. 86. Three pair modes are
observed. To analyze the KCl:Na* pair Jaswal (1972)
has taken a molecular model consisting of the two Na™
ions and their 15 nearest neighbors, vibrating in an
otherwise rigid lattice. The reduction in force constant
required to fit the mode frequency was in fair agree-
ment with the results of a first-principles calculation by
Templeton (1973) of the lattice relaxation around the
Na* ions. The molecular model was extended by Ward
and Clayman (1974b) to describe successfully the pair
modes in KI:C1™ and KI:Na*. In both cases, the most
likely configuration for the defect has the impurities
lying along the [110] direction.

F. Gap modes from molecular impurities

1. Early work

The first studies of polyatomic ions isolated in alkali
halide crystals (Maslakowez, 1928; Keteloar et al., 1956;
Decius and Maki, 1958; and Price ef al., 1960) illus-
trated that the internal molecular modes were only
slightly modified by the matrix. More recent measure-
ments on samples at low temperatures have invariably
produced complex spectra. Almost all spectroscopic
techniques have been used to advantage on these defect
systems.

Timusk and Staude (1964) observed phonon structure
in the NOj electronic absorption at 400 myu wavelength
in the alkali halides at 4.2°K. For KI:KNO, and
NaBr:NaNO,, sharp structure was observed on the high-
frequency side of the electronic (or electronic plus mo-
lecular vibration) transition with a frequency shift cor-
responding to the gap region of the host crystals. At
about the same time, Narayanamurti (1964) observed
temperature-dependent sidebands associated with the
near-infrared stretching vibration of CN~ in KCl. The
sideband structure indicated that the CN~ molecular mo-
tion changed from hindered rotation, to libration, to
tunneling as the sample temperature was decreased from
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FIG. 87. The infrared spec—-
trum of NCO™ in KBr, show-
ing the gap and localized modes
in combination with the inter-
nal stretching vibration v;.
The sharp features on the low-
energy side of the main line
are due to small traces of the
various isotopic species of
NCO™ as they occur in natural
abundances. After Decius
et al . (1965).
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room temperature. In 1965 Decius el al. identified gap
modes by observing the sidebands associated with the
near-infrared stretching mode of NCO™ in KBr and KI.
The absorption curve for NCO™ isolated in KBr is shown

in Fig. 87. The sharp features about 20 cm™! to the low-

energy side of the main v, absorption line are due to
small traces of the various isotopic species of NCO™ as
they occur in natural abundance. The lines near +98
cm™! are due to gap modes, while the lines near +170
cm™! are due to local modes. Sharp absorption lines in
KI:NO, were observed directly in the far-infrared by
Sievers and Lytle (1965) and by Renk (1965). These ab-
sorption lines were tentatively identified as gap modes.

One unanswered question associated with all of this
early work was to what extent could one distinguish be-
tween librational motion of the molecule and the local-
ized mode motion of the molecule and its neighbors. If
such a distinction could be made, then to what extent
would a specific assignment for one molecular lattice
combination apply to the same molecule in a different
lattice? Recent studies have had to face this problem;
we review here mainly this later work.

2. CN™ gap modes

The CN™ molecule has been studied in a number of
alkali halide host lattices by Seward and Narayanamurti
(1966). They used near-infrared spectroscopy, thermal
conductivity, and specific heat measurements to obtain
a detailed picture of the motion associated with this mo-
lecular ion. Figure 88 shows some infrared results.
They found that most of features observed with CN~ in
alkali halides can be explained with the cosine potential
for angular motion first used by Pauling (1930).

V =(V,/2)(1 - cos26). (5.35)

The Schrédinger equation for this potential is known as
Mathieu’s equation and can be solved exactly. When

ET <V, the molecules occupy energy states below the
top of the barrier. (Here V,~25 c¢m™.) In the harmonic
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2250 2300 cM™!

approximation these librational energy levels corre-
spond to those of a harmonic oscillator.

The selection rules for the degenerate librator have
been worked out by Hexter and Dows (1956). They
showed that in the near-infrared vibrational spectrum

' the strongest transitions involve no changes in the li-

brational quantum number, i.e., they arise from the
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FIG. 88. Absorption spectra of KI:CN™ near the fundamental
stretching vibration. CN~ concentration is 4.8 x10!% cm™3,
After Seward and Narayanamurti (1966).
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transition Az =0 which is called the  branch. Because
of anharmonicity, weaker transitions An=+1,+2,...,
etc. are allowed. The An =+1 transitions are clearly
seen in Fig. 88 as weak sidebands on the Az =0 peak in
the low-temperature vibrational spectrum.

The eigenstates of (5.35) with energies large com-
pared to V, correspond closely to those known for free
molecules. The free rotor energy levels are given by

Rw;=BJJ +1),

where J is the rotational quantum number. Each level
is (2J +1)-fold degenerate. The selection rules for the
vibrating rotor are AJ =+1. The transitions with aJ =+1
and AJ =~1 give rise to the R and P branches, respec-
tively, while the transitions with AJ =0 (the @ branch)
are now forbidden (see also Sec. VII, Fig. 131).

The results of the above simple theory may be briefly
summarized as follows: at low temperatures (RT <V,),
the near-infrared spectrum should consist of a strong
@ branch with weak satellites separated from the funda-
mental by multiples of the librational frequency. At high
temperatures (k7 >V,), the spectrum should approxi-
mate that known for free molecules, i.e., it should con-
sist of P and R branches with a missing central @
branch.

Figure 88 shows this evolution as a function of tem-
perature. Below about 20°K the motion of the molecule
can best be described as librational. Between 20 and
85°K the molecule performs hindered rotational motion,
i.e., in this temperature range a significant number of
molecules occupy energy states both above and below
the barrier. Seward and Narayanamurti point out that
clear P and R maxima are to be expected in KI at high
temperature because the cavity at the missing I” ion is
large and hence the barrier to rotation should be low.
At high temperatures the rotational P, @, and R }
branches for the C—N stretching band in KI:CN~ merge to
form a single broad band in Fig. 88. This is analogous
to what is observed in liquids and is caused by rotation-
al diffusion. The rotating vibrator makes a collision be-
fore it turns more than a radian or so. This prevents
the rotational branches from developing. The role of
intermolecular rotational collisions in a liquid is pre-
sumably played in KI:CN~ by phonon emission or ab-
sorption processes that change the rotational state of
the CN~. Klein and co-workers have drawn this analogy
in their Raman work on NaCl:OH~ (Peascoe and Klein,
1973) and on KC1:OH™ and KBr:OH~ (Peascoe et al.,
1974). Among theoretical discussions of the liquid case
are papers by Kivelson and Keyes (1972) and Bratoz
et al, (1970).

At low temperatures Seward and Narayanamurti note
a sharp sideband absorption at 83 cm™ from the An =0
transition. They conclude that this line is caused by
either of the following two mechanisms: (1) Since the
CN~ ion possesses symmetry C.y two translational gap
modes of symmetry A, and E; should be allowed. The
absence of a second gap mode from the observed spec-
trum might be explained through rapid reorientational
motion of the CN~ ion about its two axes of inertia, which
causes it to behave like an ion of spherical symmetry.
(2) The center of mass of the ion may not coincide with
the center of the large highly polarizable I” cavity.
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Translational or librational motion around this off-
center position may be responsible for the absorption in
the gap region.

In far-infrared absorption measurements on KI:CN~
Lytle and Sievers (1965) observed a strong absorption
at 81 em™!. A high-resolution trace of this impurity-
induced absorption taken by Shotts (1973) is shown in
Fig. 89. The broad absorption at 81 cm™ is due to CN™,
the sharp absorption line at 78.8 is due to substitutional
NCO~ (see Table V.5). The linewidth for CN~ is about
10 times that of C1~ (Fig. 5-17) or NCO~. Evidently the
gap mode widths for CN™ .and NCO™ are governed by dif-
ferent couplings. We conclude that low-lying motional
states of the molecule can show up in the far infrared
as a simple broadening of the gap mode.

3. NCO™ gap modes

The near-infrared spectra from NCO~™ molecules in
many alkali halide crystals have been investigated in
some detail by Cundill and Sherman (1968). The mea-
sured frequencies of gap modes are given in Table V.5.
They have unravelled the eigenvectors of the gap modes
discovered by Decius et al. (1965) by measuring the fre-
quency shifts associated with isotopic substitution in the
molecule. Figure 90 shows schematically the local and
gap mode frequency shifts. The '2C to '3C shift in the
four bands is found to be very small. Oxygen substitu-
tion affects only the lower component of each doublet
while nitrogen substitution affects primarily the upper
components. Note that cases 1, 2, and 4 in Fig. 90
have identical total mass, which governs'the center of
mass motion.

The contribution of the defect neighbors to the gap
mode and local mode motion has been estimated by first
calculating the isotope shift associated with torsional
motion of a rigid molecule and then scaling down this
value to fit the experimentally measured number. One
scaling factor is associated with each of the four bands.
These scaling factors are then taken as a measure of the
delocalization of the motion. For example, for the 97.4
cm™! band the measured shift is 1/7 of the predicted
shift for a strictly localized torsional oscillator, thus
6/7 of the energy of the mode is associated with the mo-
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FIG. 89. Far-infrared gap mode for KI:CN~, The absorption
line at 81 cm™! is due to CN~, and the sharp line at 78.8 is due
to NCO~. Sample at 4.2°K. After Shotts (1973).
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tion of the neighbors. For the 183.6 cm™ band only 1/4
of the energy is associated with the neighbors, and so on.
Cundill and Sherman assume that the NCO™ molecule

is oriented in a (111) direction as shown in Fig. 91.
Their calculations of the force constants operating be-
tween the NCO™ and its neighbors when the NCO™ is ro-
tated indicate that the two, rings of nearest neighbors
play a dominant role. The 97.4 cm™ line is assigned to
torsional motion of the NCO™ about an axis perpendicu-
larly dividing the C-N band, accompanied by an in-
phase movement of the nearest neighbors (the potassium
rings) as shown in Fig. 91. The 99.7 band corresponds
to a large nitrogen amplitude, again with nearest neigh-
bors moving in phase. The 167.5 cm™ band is due to a
large oxygen amplitude torsional mode, with the nearest
neighbors moving out of phase, and the 183.6 cm™ band
is due to a large nitrogen amplitude motion. Figure 91
shows schematically the four vibrations which are de-
scribed above. The dotted lines in the figure represent
the planes of nearest- and next-nearest neighbors. Cun-
dill and Sherman have shown that their calculated modes
are self-consistent in that they can reproduce the ob-
served delocalization factors while satisfying the re-
quirements of zero net translation and zero net angular
momentum,

Cundill and Sherman have not carried out isotope
shifts on other alkali halide crystals doped with NCO™;
however, all the crystals with phonon gaps show similar
sideband spectra. They conclude that this motion is a
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general feature of the polyatomic impurity ion such as
NCO™, Nj, and BOj in alkali halide crystals. The gap
modes consist of a librational motion of the polyatomic
impurity, with the nearest neighbors participating in
the motion. The center of mass of the polyatomic ion
does not move.

It is possible to estimate the anharmonic coupling co-
efficient of the librational gap mode to the lattice from
the hydrostatic pressure measurements of Cundill and
Sherman (1968). The effects of pressures up to 50 kbars
on the sideband structure were measured using a modi-
fied Drickamer-type of optical cell at temperatures in
the range 90 to 500°K (Drickamer ef al., 1957; Sherman,
1966). From their measurements on KBr:NCO™ at 90°K
with pressures up to 20 kbars we calculate the hydro-
static coupling coefficient from (5.19) to be A =130 cm™Y
unit strain. This coefficient is about the same size as
has been determined for gap modes associated with
monatomic impurities (Table V.6) and for the transverse
optic mode at ¢ =0. It is interesting that the spherical
anharmonic lattice coupling coefficient is approximately
equal for librational and center of mass type gap modes.
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FIG. 91. (a) The KBr environment surrounding an NCO™ im-
purity. Its axis is oriented in a (111) direction and the sche=
matic representation is drawn to scale using Goldschmidt
radii. The small circles represent K* ions, the large circles
Br~ ions. Ions in the plane of the paper are presented as solid
circles; ions out of this plane are shown dotted. Note particu-
larly how the NCO™ is held between two rings of K* ions, each
composed of one ion in the plane of the paper and two out of
this plane. (b) The proposed eigenvectors for the gap and local
modes in KBr:NCO~. The dotted lines represent the planes of
nearest and next-nearest neighbors. After Cundill and Sher-
man (1968).
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4. NO3 gap modes

The nitrate molecule has a bent O-N-O form of C,,
symmetry and represents a more complex defect than
the linear molecules which we have considered above.

In the alkali halide crystal the symmetry axis of the NO;
molecule lies in a [110] direction and the molecular
plane is a (100) plane as shown in Fig. 92.

Spectral features in the gap of the lattice vibration
frequencies of KI have been observed by far-infrared
absorption (Lytle and Sievers, 1965; Renk, 1965); as
sidebands in the uv (Timusk and Staude, 1964; Avarmaa,
1968; Avarmaa and Rebane, 1969; Evans and Fitchen,
1970); as infrared sidebands (Narayanamurti ef al.,
1966; Metselaar and Van der Elsken, 1968; Cundill
and Sherman, 1968), and in the Raman spectra (Evans
and Fitchen, 1970). These features have been attributed

A.S. Barker, Jr. and A.J. Sievers

T <o)

FIG. 92. Probable equilib-
rium orientation of the nitrite
ion at low temperatures in al-
kali halides. In KI the ion may
be in an off-center position
displaced towards the halide
ion nearest the nitrogen atom.
After Evans and Fitchen (1970).
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variously to translational modes of the NOj ion in its
cavity, high-frequency librational modes, or perturbed
lattice modes of the host crystal. As Table V.5 indi-
cates, all spectral techniques have identified gap modes
of some sort.

Most measurements have been carried out on KI:NO;.
The uv absorption shows a gap mode at 70 cm™!; the
Raman scattering another mode at.76 cm™; the near-
infrared sideband work shows three modes at 71, 79,
and 80.5 cm™'; and the far-infrared two modes at 71 and
79.9. The highest-resolution measurements on KI:NO;
have been made in the far infrared by Hughes (1970).

His results are shown in Fig. 93. Peak (a) is a gap mode
due to NOj; peak (b) NO;Z; peak (c) unknown; peak (d)
Cl™; peak (e) NO3; peak (f) unknown, possibly an isdtope
effect or NCO™; peak (g) NO;; peak (h) unknown, possi-
bly due to F centers; peaks (i) and (j) unknown, possibly
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qu. 93. Far-infrared spectrum of KI:NO,™ at 1.2°K. After Hughes (1970).
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FIG. 94. Unpolarized Raman spectrum of KI:NO,™ at 6 °K. Insert shows part of the spectrum at higher sensitivity. After Evans

and Fitchen (1970).

due to OH™; peak (k) NOj.

The low symmetry of the NO; ion suggests that only
modes which transform according to the A, representa-
tion (both infrared- and Raman-active) couple with the
nondegenerate electronic transitions. One interpretation
of the experimental results is to identify the mode at
71 cm™! (Fig. 93) with the A, representation. To do this
we must assume the C,, symmetry of the impurity center
lifts the threefold degeneracy of the infrared-active T},
mode and produces three infrared-active nondegenerate
modes transforming as the A,, B,, and B, representa-
tions of the C,, point group. This model is appealing,
but the experimental results do not completely support
it. Three modes are expected in the far infrared but
only two have been observed; moreover, from group
theoretical arguments only two sideband modes are to
be expected in the near infrared, and three have been
observed. Narayanamurti et al. (1966) propose that
some of the gap modes must be of the librational type,
e.g., torsional motion about the center of mass, as oc-
curs for NCO".

The Raman scattering measurements have provided
complementary information which enabled Evans and
Fitchen to propose yet another model. The gap mode in
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KI:NO; as determined by Raman scattering measure-
ments is shown in Fig. 94. This unpolarized spectrum
shows that only one Raman-active mode occurs in the
gap region and the frequency of this mode (76 cm™!)
does not correspond with that obtained by any previous
spectroscopic measurements. It is known that for sub-

_stitutional monatomic defects in alkali halide crystals

the Raman-active modes and infrared-active modes are
mutually exclusive because of the inversion symmetry
of the site. Evans and Fitchen conclude from their
measurements that parity must still be a good quantum
number even with a C,, defect in the crystal. Because
of the small size of the NO; ion with respect to the I”
ion that it replaces, the molecule may not distort the
cubic symmetry of the cavity. Combining all the ex-
perimental information they propose that the Raman
peak corresponds to an E, gap mode and the other gap
modes must be associated with a translational motion
of the NOj; ion. Isotope shift measurements would ob-
viously provide the next step in understanding the dy-
namics of the bent molecule and resolving the question
of whether the NO, infrared-active gap modes are tor-
sional or translational in character.



VI. IONIC CRYSTALS: ACTIVATED BAND MODES, RESONANT MODES, AND TUNNELING STATES

A. Activated band modes

In an alkali halide lattice a substitutional monatomic
impurity is at a site of inversion symmetry. Odd-parity
band modes become infrared active, while even-parity
modes become Raman active. One might anticipate that
the defect-induced far-infrared absorption spectrum
would follow the density of T;, modes of the lattice,
while the defect-induced Raman spectrum would sil-
houette the density of A,,, E,, and 7,, modes of the lat-
tice. To some extent this does occur (for example, in
the case of an isotopic defect), but when the impurity-
lattice mismatch is large, low-lying resonances suffi-
ciently alter the absorption spectrum so that the unper-
turbed density of phonon states can no longer be directly
observed. For this latter case investigations have cen-
tered on delineating the anharmonic properties of the
low-lying resonances themselves., The dramatic spec-
troscopic properties of resonant modes and tunneling
states provide useful probes of the local lattice potential
at the defect site. We begin this section by describing
those experiments where measured activated band modes
have been compared with a harmonic lattice theory.

1. Activated band modes detected by far-infrared
absorption

The first experiments on activated band modes in al-
kali halide crystals have been reviewed by Maradudin
(1966a,b), Klein (1968), Genzel (1969), and Sievers
(1969). In most of these early experiments a detailed
comparison of theory with experiment was not yet prac-
tical. In the last few years quantitative models have
played a more important role, and the agreement be-
tween theory and experiment is now quite encouraging.
We shall first look at the work on the defect-activated
Van Hove singularities.

Ikezawa and Nasu (1973) have measured the isotope-
induced far-infrared absorption in NaCl and KC1 at
higher resolution (0.5 cm™) than previously done by
Klein and MacDonald (1968), and have clearly observed
absorption peaks associated with a number of Van Hove
singularities.

Ward and Timusk (1972) have made an extensive in-
vestigation of the far-infrared absorption of single
crystals of KBr containing small amounts of Li*, Na*, T1%,
Sm™*  Cl7, F~, OH", and O and also of crystals of
KCl containing Li*, Na*, Sm**, Eu"*, F~, Br™, I", and
O;. They find that the structure of the single-phonon-
induced absorption is essentially independent of the im-
purity used, depending mainly on the lattice dynamics of
the host crystal. Van Hove singularities characteristic
of the density of states have been observed for nearly all
the impurities used and have been found to agree very
well with those predicted by the potassium halide shell
model calculations.

The impurity-induced spectra for KBr are shown in
Figure 95. The calculated curves shown dotted are
based on the shell model of Cowley et al, (1963) for
KBr, and the defect model of Woll et al, (1968). Two
force constant changes are employed, the impurity to
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nearest-neighbor force constant change and the nearest-
neighbor to fourth-nearest-neighbor force constant
change shown as Ag in Fig. 74.

Shifts of Van Hove singularities with varying impurity
concentration have been observed. Extrapolations to
zero-defect concentration have provided the highest-
resolution measurements to date of phonon frequencies
in KBr and KC1 at liquid helium temperatures. The far-
infrared spectrum between 60 and 95 cm™! of KBr con-
taining two different impurity concentrations of Na* is
shown in Fig. 96. The discontinuities in the spectrum
are marked A, B, C, and D, and one can see from the
vertical dashed line at B that the positions of these dis-
continuities move to higher frequencies as the concen-
tration is increased. Detailed comparison of the experi-
mental spectra with impurity calculations based on the
shell model of the alkali halides has shown that, in the
absence of impurity resonances, the main features of
the induced absorption can be understood in terms of
the relatively simple model mentioned above. The mod-
el is unable to predict the correct absorption intensity
when low-frequency impurity resonances are present,
however. Recently Ward et al. (1975) have completed a
similar study of singular points in KI.

The impurity~induced absorption spectrum of NaCl
containing Ag”, Li", K¥, F~, Br™, and I” ions have been
measured by MacDonald et al. (1969) over a similar fre-
quency range but at a much lower resolution than Timusk
and Ward (1972). Although the Van Hove singularities
cannot be identified in these experiments, a number of
features of the absorption spectra can be fit quite well
with shell model calculations. MacDonald et al. used a
shell model similar to those used to fit neutron-deter-
mined dispersion curves (Woods et al., 1960, 1963;
Cowley et al., 1963; Dolling et al., 1968, 1966). A final
adjustment of the shell model parameters was made by
a comparison with the band mode absorption due to the
natural isotopes of chlorine in sodium chloride (Klein
and MacDonald, 1968). These shell model results were
used to evaluate the unperturbed Green’s functions of
the perfect lattice and a point ion model was used to de-
scribe the defect. Five point ion models were introduced
to fit the data of six chemical impurities. Although the
data does not fit the models in all cases, these calcula-
tions represent the first systematic probing of the
properties of the defect space and it is useful to sum-
marize some of their results.

For Br™ and I” MacDonald et al. found that a model
which included the central force constant changes be-
tween the defect and its six nearest neighbors and also
its 12 next-nearest neighbors gave good agreement with
experiment. The comparison between experiment and
theory for NaCl:Br~ is shown in Fig. 97. This model is
consistent with the expectations from a simple rigid-ion
substitution. The rigid-ion representations are shown
schematically in Fig. 98. In this picture both I and
Br~ are larger than C1°. Figures 98(a) and 98(b) show
the defect electron distributions almost overlapping with
those of the second-nearest neighbors. Both first- and
second-nearest neighbors should be affected in agree-
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ment with the defect model.

For the F~ impurity in NaCl the best fit to the experi-
mental data was obtained using a lattice relaxation mod-
el. This model takes account of changes in the nearest-
neighbor central force constants and in the central force
constant between the nearest neighbors and the fourth-
nearest neighbors of the defect. This more complex
model is consistent with our expectations from the rigid-
ion picture. The fluorine impurity, which is shown in
Fig. 98(c), is much smaller than the Cl~ it replaces,
and hence a reduction in the nearest-neighbor central
force constant is expected. This should be offset to
some extent by an inward relaxation of the nearest-
neighbor sodium ions, which would in turn lead to a re-
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duction of the force constant linking the nearest neigh-
bor with the fourth-nearest neighbor. The relaxation
model was first proposed by Gethins et al. (1967). The
comparison of theory and experiment for NaCl:F~, as
shown in Fig. 99, is quite good.

Although the other three impurity calculations by
MacDonald et al. (1969) do not fit as well with experi-
ment as the three we have outlined here, the rigid-ion
model stands out as a reasonable description of the de-
fect space. Also it is clear from this work that the
most widely used defect model in the past, which simply
involves changes in the central force constant coupling
the defect to its six nearest neighbors, is not realistic
for many lattice-defect combinations (Benedek and Nar-
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FIG. 95. Induced far-infrared absorption due to different impurity ions in KBr: (a) Na*, (b) Li*, (c) TI*, (d) F~, (e) Sm?*,
(f) OH™, (g) O,, and (h) C1”. The calculated curves shown dotted are based on a shell model. After Ward and Timusk (1972).
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FIG. 98. Rigid-ion representations of the substitutional

chemical impurities in NaCl.

After Macdonald et al. (1969).
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delli, 1968a).

Hayes et al. (1973) have measured the far-infrared
absorption of CaF, at 1.8°K doped with Co®*, Y3, La%",
Sm2*, and Tm®*. Figure 100 shows these results. A
simple model incorporating a lattice Green’s function,

a mass change at the impurity site, and a change of
nearest-neighbor central force constant has been used
to calculate the infrared absorption. Reasonable agree-
ment with experiment was found (see Fig. 100), with ion
size the dominant factor in determining the change of
central force constant required to obtain agreement with
experiment. The crystal field levels of the ground *H,
state of Tm?" have not been established in CaF,. There
may well be electronic levels of Tm®" in the low-fre-
quency region in addition to the phonon absorption. Such
levels may require high-resolution spectroscopy to be
observable. .

2. Activated band modes detected by Raman scattering

Raman scattering is caused by vibration-induced
changes in the electronic polarizability of the system.
Although the technique is less sensitive than far-infrared
absorption spectroscopy, it has two advantages in the
alkali halide host crystals. In the pure crystal, infrared
radiation is strongly absorbed in a first-order process
by the transverse optic phonon mode (w;,). This ab-
sorption masks all impurity absorption effects above a
certain frequency. Secondly, Raman scattering is for-
bidden in first order for the rocksalt structure because
all of the atoms are at centers of inversion and the
first-order polarizability derivatives are identically
zero. Impurity-induced scattering therefore has no
strong background to compete with.

When an impurity is introduced into the lattice, much
of the frequency region in the neighborhood of the trans-
verse optic mode is completely opaque to far-infrared
radiation. However, because the inversion symmetry is
now destroyed at the neighboring sites to the impurity,
certain atomic displacements of the neighbor atoms
have nonzero first-order polarizability derivatives. The
impurity also represents a departure from translational
symmetry. This implies that atomic displacements re-
sponsible for Raman scattering need not correspond to
optic phonons from the center of the zone. The first-
order Raman spectrum in a perturbed crystal is a con-
tinuum reflecting the density of states for those atomic
displacements rendered Raman-active by the presence
of the impurity. The Raman technique has proved to be
complementary to far-infrared absorption spectroscopy.

A number of the early studies were made on crystals
containing F centers (an anion replaced by an electron).
Raman scattering from F centers in KC1 and NaCl was
observed by Worlock and Porto (1965), and discussed
theoretically by Kleinman (1964), Benedek and Nardelli
(1967), and Henry and Slichter (1968). A combined ex-
perimental and theoretical investigation of I centers in
KF, NaBr, and RbF was made by Buchenauer ef al.
(1969). While one can see effects of the lattice phonons
in these studies, they are complicated by the large
force constant perturbations produced by the F center.
Further, the experiments were done with a resonance
enhancement arising from the coincidence between the
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exciting laser frequency and the absorption band for

the I center. This results in some subtle complications
in the spectra shapes. The same remarks pertain to the
Raman spectra of F,(Li) centers in KC1 observed by
Fritz (1968b).

First-order Raman scattering has been observed from
mixed KBr:KCl crystals by Hurrell ef al. (1968). The
induced scattering approximately silhouetted the pro-
jected density of states of A;, symmetry modes of KBr.
Kaiser and Mdller (1969, 1970a, 1970b, 1972) have
observed first-order impurity-induced scattering in
NaCl:Ag* both from isolated silver impurities and also
from impurity pairs, while the first-order Raman scat-
tering in gold-doped alkali halides has been investigated
by Jain and Sehgal (1970). Measurements of first-order
impurity-induced scattering in cesium halides have been
made by Buchanan ef al, (1974). Raman scattering from
the mixed crystal KC1,_,Br, (Nair and Walker, 1971)
and also from KBr,.,I,, KCl,_,I,, and K,_,Rb,CI (Nair
and Walkerv, 1973) has been observed and analyzed in
detail.

One of the most complete experimental and theoreti-
cal studies for a lattice-defect system with small force
constant changes is that by Harley ef al. (1971) on the
Raman scattering in T1"-doped alkali halides. Experi-
mental Raman spectra have been obtained for KCl, KBr,
KI, and RbCl1 doped with T1* ions. The experimental
E, and T, Stokes spectra for KI:T1" at 15°K is shown in
Fig. 101. All crystals show strong features of E, sym-
metry and rather weaker 7,, spectra. First-order A,
structure has not been observed. Figure 101 also shows
the results of theoretical calculations in which the host
lattice phonon frequencies and polarization vectors were
obtained from the breathing shell model of Schréder
(1966). No nearest-neighbor force constant changes
were required to fit the experimental data. The ab-
sence of A,, features would be explained by an acciden-
tal cancellation of two polarizability components.

Since the force constants are only weakly perturbed
for the above system, the defect-induced spectra can be
simply explained in a qualitative way. Harley ef al.
(1971) assume that the Raman process takes place via a
virtual excited electronic state of the T1" ion, and that
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FIG. 100. Measured (broken line) and calculated (full line)
absorption of CaF, doped with 0.1 at.% Tm?%'. The chain line
gives the absorption of undoped CaF,. After Hayes et al. (1973).
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only the motion of the nearest neighbors appreciably
modulates the T1" electronic wave functions. Therefore
the defect-induced Raman spectra should be most in-
tense in regions of the phonon spectrum where the near-
est neighbors of the T1" vibrate with large amplitudes.
This will be at frequencies in the acoustic phonon region
in KI, but in the optic phonon region in RbCl. The ex-
perimental spectra show these effects. In addition there
are gaps in which no Raman scattering occurs that cor-
respond well with the gaps between the acoustic and op-
tic phonon regions of the host lattice.

Harley et al. (1969) have also calculated the impurity-
induced far-infrared absorption spectra for the odd-
parity T,, resonances, using the T1" — K" mass differ-
ence and unchanged force constants. For polarizable de-
fects the use of the unperturbed force constants for the
odd-parity 7;, modes involves an additional assumption
beyond those used for the even-parity modes. For the
T,, calculations, they assumed that (in the language of
the shell model) the defect’s core—shell force constant
and core and shell charges were unperturbed. Recent
measurements by Kahan (1973) have shown that the mea-
sured 7;, resonance in KCIL:T1" is in good agreement
with these calculations. The data are shown in Fig. 102,
For a T1" concentration of 8.6 X10'%/cm?® with the crys-
tal at 1.2°K, a resonance is observed at 39 cm™ with a
half width of 9 cm™!, From the theory the resonance is
predicted at 43 cm™! with a width of 10 cm™ . Apparent-
ly T1" acts like an isotopic defect, since only a mass
change is required to fit the observed spectrum. Pre-
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FIG. 101. Experimental and theoretical Raman spectra for
KI:T1*: above E; component, below Ty component. The tem-
perature of the experiments was 15°K and the instrumental
gain was the same for both the doped and pure crystals and for
the E, and Ty, spectra. The theoretical curves are for zero
force constant change and were computed using 0°K breathing
shell model phonons. They have been normalized to reflect the
experimental intensities. After Harley et al. (1971).
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viously Pohl (1968) had argued that T1* was but one
among many possible isotopiclike defects in potassium
halides.

In contrast with the T1* impurity in potassium halides,
the Ag™ impurity in NaCl is more difficult to understand
and so better illustrates the complete lattice-defect
problem. Montgomery ef al. (1972) have made a detailed
experimental and theoretical study of the defect-induced
far-infrared and Raman spectra of the NaCl:Ag™ sys-
tem. The E, Raman spectra at three temperatures are
shown in Fig. 103, The room temperature spectrum is
in good agreement with previously published results by
Mbller et al. (1970). As the sample is cooled, the E,
resonance peak shifts to higher frequencies and narrows,
and additional structure is revealed. Low-temperature
Raman data reveal many singularities pertaining to pure
and perturbed phonons. Only a few of the singularities
can be assigned to particular phonon critical points.

The theoretical calculations are based on the lattice re-
laxation model described earlier (see Fig. 74). The
calculated unperturbed 7,, Raman spectrum fits the data
well. A large peak in the E, spectrum is explained as an
incipient resonance caused by relatively large decreases
in the central force constants. The infrared spectrum

is fit well by assuming somewhat smaller central force
constant decreases. The A;, Raman spectrum requires
an increase of the nearest-neighbor central force con-
stant. The results then imply that symmetry-dependent
Coulomb contributions to force constant changes must
result from the lattice relaxation. Unfortunately the
discovery of symmetry-dependent force constant changes
also introduces new parameters in sufficient number in-
to the defect—lattice problem so that a fit is always pos-
sible.

Impurity-induced Raman scattering in SrF, and BaF,
has been reported by Chase et al. (1973). Measure-
ments were made of the impurity-induced Raman scat-
tering spectra due to Eu?* impurities substituting for the
cations. Typical spectra are shown in Fig. 104, Chase
el al, found that the data could not be fitted to a nearest-
neighbor coupling model like that used previously to fit

»
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FIG. 102. Impurity-induced absorption spectrum in KC1:TT*.

The sample temperature was 1.2°K. The spectral resolution is
represented by the separation of the two arrows. After Kahan
(1973).
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successfully the T1¥ impurity in several alkali halides
(Harley ef al., 1971). They concluded that the nearest-
neighbor coupling model will give an adequate fit to the
impurity-induced spectra only in hosts in which all ions
in the unit cell vibrate with approximately equal ampli-
tudes in the optic-phonon region. The fluorite lattice
does not share the major advantage mentioned at the be-
ginning of this section for alkali halide crystals. The
large signal from the T,, mode in the E, and E,-plus-4,,
traces dominates the spectrum in the region around 250
cm™!, In addition some two-phonon scattering occurs at
higher frequencies in all three traces. Both of these in-
trinsic scattering processes interfere with observations
of the impurity-induced scattering.

3. Activated band modes seen in sideband spectra

A number of mechanisms can give rise to phonon
sidebands of a high-frequency transition. In Sec. V we
have already shown that anharmonic coupling of the U-
center local mode to the lattice produces sidebands.
Similarly coupling between an internal molecular vibra-
tion and a lattice mode can in the anharmonic approxi-
mation lead to a combination band in the infrared spec-
tral region. Broad bands are observed with an intensity
distribution related to the frequency distribution of lat-

T [ T ] T " T | T ' T [ T
I~ Nacl: Ag*
L 4
i 300K 7
5 F -
Z
Zr i
2 OF-(300K) 78k —
L
wo | A
z | —
<<
s
<< » -
@
O[-(78K) -
| 7K 4
O(7K) -
1 L1 | TR R 1 1 1 | 1
0 30 60 90 120 {150 180 210

WAVENUMBER (cm™)

FIG. 103. The E, Raman spectrum of NaCl:Ag* at three tem~
peratures. Each vertical division represents 400 counts/sec at
300°K, 200 counts/sec at 78 °K, and 100 counts/sec at 7°K.
The curves have been shifted vertically for easier viewing, and
the zero levels for each temperature are indicated. After
Montgomery et al. (1972). )
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tice modes (see for example Metselaar and Van der
Elsken, 1968, and Sherman and Wilkinson, 1973); how-
ever, no quantitative comparison of the experimental re-
sults with a realistic lattice model has yet been made.

The most detailed comparison between theory and ex-
periment has been carried out for sidebands to elec-
tronic transitions. Sidebands to forbidden transitions
have been observed by Bron and Heller (1964), Bron
(1965), Timusk and Buchanan (1967), Bron (1969),
Buchanan and Woll (1969), Kithner and Wagner (1970),
and Kiihner ef al. (1972). Forbidden transitions can be
made allowed by absorption or emission of a phonon;
the sideband produced in this way will in general reflect
some odd-parity projection of the phonon density of
states. The parent zero-phonon line is either absent or
very faint due to weak magnetic-dipole or defect-induced
electric dipole processes, and multi-phonon sidebands
are absent. The one-phonon sideband strength is calcu-
lated by second-order perturbation theory.

A good example of such a sideband is seen in the fluo-
rescence spectrum of Sm?* in KBr. On the low-energy
side of the °D,~"F, line at 6890 A is the distinct side-
band shown in Fig. 105. The 6890 A line is strictly for-
bidden in cubic symmetry for electric dipole radiation,
as it corresponds to a transition between two states of
even parity. The presence of electric fields, however,
would lower the symmetry and make the following tran-
sitions possible: the zero-phonon line, arising from the
static field from the positive ion vacancy, which is nec-
essary for electrical neutrality, and the sideband aris-
ing from the time-varying electric field of phonons in
the crystal. Timusk and Buchanan (1967) assume that
the electric field from the phonons is responsible for the
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FIG. 104. Raman spectra of BaF,:Eu**. The impurity-in-
duced scattering is partially obscured by the strongly allowed
Ty, vibration of the host near 250 cm™!. After Chase et al.
(1973).
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sideband, and a detailed shape is calculated by the use

of the phonons of pure KBr as determined from neutron
measurements. The electric field due to the phonons is
calculated by the Ewald method. The theoretical side-

band is also shown in Fig. 105. With the exception of a
few peaks that can be attributed to local modes, all the
important features of the observed sideband agree with
the curve given by the model.

Sidebands to allowed transitions have been observed by
Timusk and Staude (1964), Avarmaa and Rebane (1969),
Rebane and Saari (1971), and Rolfe et al. (1973). These
allowed transitions often exhibit strong multiphonon side-
bands corresponding to even-parity phonons. The side-
bands arise from transitions between harmonic oscilla-
tor states of the phonons with displaced equilibrium
positions. A characteristic of this Frank—Condon or
overlap mechanism is that the relative intensities of all
the multiphonon lines of a given mode are given by the
simple Poisson distribution.

The emission spectra of O, ions dissolved in alkali
halide crystals consist of a series of zero-phonon lines
separated by approximately 1000 em™', This frequency
corresponds to the separation of the vibrational levels
of the O; in the ground state. Each zero-phonon line is
accompanied by multiphonon sidebands. Rolfe ef al.
(1973) have made high-resolution measurements of such
emission spectra at 2°K in the alkali halides NaCl, KCI,
KBr, KI, RbCl, RbBr, and Rbl. The sidebands are
produced by the interaction of even-parity lattice modes
with the allowed T,- T, transition corresponding to O;
emission.

A spectrum of KBr:O; measured by Rolfe et al. (1973)
is shown in Fig. 106. They found that most of the side-
band structure can be explained by coupling with A,,
lattice modes perturbed by relatively small changes in
nearest-neighbor force constants. The calculated spec-
trum is also shown for comparison. In two other cases
(KC1 and RbC1) they found it necessary to add T,, mode
coupling, or to consider changes in other force con-
stants, to obtain better agreement between calculated
and observed sidebands. A residual spectrum at very
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FIG. 105. The theoretical sideband for simple ions compared
with the experimental sideband of K Br: Sm?*, The sample was
at 7°K. After Timusk and Buchanan (1967).
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low frequencies cannot be explained by the above hypoth-
esis and it is assigned to a second-order coupling to
librations of the O, ion.

In summary we have found that the harmonic lattice
models can readily describe the far-infrared absorp-
tion, Raman scattering, and sideband spectra asso-
ciated with the lattice-defect system for a variety of
cases. Now let us turn to examine those lattice-defect
combinations in which the impurity does not fit well into
the lattice in some sense and the harmonic approxima-
tion is no longer adequate.

B. Resonant modes

Some lattice-defect combinations have been discovered
which contain resonances near zero frequency. Exam-
ples are KBr:Li", Sievers and Takeno (1965); Nal:Cl~,
Clayman et al. (1969); NaCl:Cu", Weber and Nette
(1966); NaCl:Ag"®, Weber (1964); KI:Ag*, Sievers (1964);
and CsI:T1", Genzel el al. (1969). A complete listing of
resonant modes is given in Table VI.1. In all cases
where sharp low-frequency resonances have been ob-
served, the impurity ion has a smaller ionic radius than
the host ion it replaces. Matthew (1965) first showed
with an intuitively appealing model how such low fre-
quencies could occur for small ions in crystals.

Assume an impurity ion is surrounded by six nearest
neighbors (NaCl structure) at a distance a, and the other
ions in the crystal are at unperturbed lattice sites at
distance 7, from one another, where 7, is the interatomic
distance for the perfect crystal. Allions are rigidly fixed
except for the impurity ion which moves a distance x
from its normal lattice site along a cubic [100] axis.

The potential energy of the crystal V(x) has the power
expansion

V(x)=V0+Kx2/2 +Bx* 4 Cx8 4o, (6.1)

For normal cation substitutions, the term K/2 is large

and positive, providing a strong restoring force on the

particle to bring it back to its equilibrium configuration
at x =0. To estimate the magnitude of K/2 for small
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FIG. 106. The experimental and calculated (dashed) sidebands
in the emission spectrum of O3 in KBr. The sample is at 2 °K.
Coupling to A;, lattice modes and a slightly weakened nearest-
neighbor free constant is assumed. The coupling to librations
is very weak in K Br. After Rolfe et al. (1973).
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TABLE VI1. Resonant modes and tunneling states in ionic crystals.

Mode frequenc lireducibie
q y representation,
Crystal (ecm™1) Defect symmetry, Method of observation, 2 References,? Comments
8Li* (substitutional)
NacCl 45.3(T 4y, 1.4) 0;,A,1
KCl1 39.5(—,4.2) 0,,A,1;H,2;D,3; P, 4 (Transitions involving tunneling states)
1.15(T 4y, 4.2)
KBr 17.71(T 4y » 4.2) 0,,A,5,6
43.7,53.5(—, 4.2)
"Li* (substitutional)
NaCl 43.7(Ty,,1.4) 0,,A,1
KC1 42.1(—,4.2) 0,,A,1;H,2;D,3; P, 4 (Transitions involving tunneling states)
0.82(Ty,,4.2)
KBr 16.07(Ty, ,4.2) 0,,A,5,6
TLi * (pairs)
NaBr 35.6(—,4.2) A,7
8Li * (pairs)
NaBr 36.3(—,4.2) A,T
F~ (substitutional)
NaCl 59.2(Ty,, 2) 0y,A,8
NaBr 6x107%(—, 1) 0y, H,9
F~ (pairs)
NacCl 32.2,37.6,39.8,44.2,48,1(~,4.2) A,10 (Symmetry not yet determined)

F™K" (pairs)

16.5(—,4.2) A, 38
Na* (pairs)
KC1 44(—,4.2) Dy A, 11
35.5C1 ~ (substitutional)
MnF, 35.79(—, 2) A,12
Nal 5.438, 55(T 1y, 4.2) 0,3A,13
37Cl1 ~ (substitutional)
Nal 5.286,54.9(T 4, , 4.2) 0,,A,13
Cl1™ (pairs)
KI 36.2(—,4.2) A,37
K* (substitutional)
CsBr 86(T4,,6) 0y, A, 14
BCu * (substitutional)
NaCl 23.57(Tyy , 4.2) 0,,A,86
65Cu *+ (substitutional)
NaCl 23.20(Ty, , 4.2) 0,,A,6
Cu' (substitutional)
NaCl 40(E, ,10),48(Ay, + Ty, 10) <0y, R,15
Br~ (su]lostitutional)
KMnCl, 14.9(—, 2) 0,,A,16
I~ (substitutional)
KC1 52(—, 4.2) 0y, A, 24
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TABLE VI.1. Resonant modes and tunneling states in ionic crystals. (Continued).

Irreducible Temp.
representation, °K
Crystal (ecm™) . Defect symmetry, Method of observation, 2 References,” Comments

Mode frequency(

Ag* (substitutional)

NaCl 52.5(T 1y, 4.2) 0,,A,17,18
59.4(E, , )96 (E,, 7) 0,,R, 19, 20

NaBr 48.0(Ty,,4.2) 0,,A,8

Nal 36.7(Tqy,4.2) 0,,A,8

KCl1 38.8(T 1y, 4.2) 0,,A,8
45(E, , 110) 0,,R, 42

KBr 33.5(Ty,,4.2) 0,,A,8

KI 16.35(E, , 1.2) 0,,A,21

25(Ay,,1.2)

07Ag * (substitutional)
KI 17.837(T 1y, 4.2) 0,,A,6

109A ¢ * (substitutional)

KI 17.23(Ty,,4.2) 0,,A,6
Ag* (substitutional)
RbCl1 21.3,26.5,36.7(Ty,,1.2) Oy, A, 1 (Transitions involving tunneling states)

Ag* (pairs)
NacCl 47.2 R, 22

In" (substitutional)

CsBr . 11.0(Tyy, 6) 0,,A, 23
CsI 12.2(T4,, 6) 0,,A,23

I” (substitutional)

KC1 52(Tyy,1.2) 0,,A,24

T1* (substitutional)

KC1 39(T4,,1.2) Op, A, 24
RbBr 52(T 1y, 4.2) . 0,,A,25
RbI 47(Tqy,4.2) 0,,A,25
CsBr 16.95(T}, , 6) Op, A, 23
Csl 14.1(Ty,, 6) 0,,A,23

Y3* (substitutional)

CaF, 9.4(-,4.2) A,44

Eu’* (substitutional)
MnF, 16.05, 42(~—, 2) Dyy,A, 26

Eu’* +vacancy

NaCl 48, 210(—, 10) Cyy » S, 27
KC1 45,196 (-, 10) Cyy S, 25
RbCl 38, 183(—, 10) Cyy» S, 25
KBr 37,110 (-, 10) Cyy » S, 25
KI 19(-, 10) Cyp » S, 25

Yb?* + vacancy

NaCl 45, 208(—, 10) Cyy S, 25
KC1 44, 203(-, 10) Cyy » S, 25
RbCl 42,183(—, 10) Csy » S, 25
KBr 37, 108(—, 10) Cyy » S, 25
KI 19(—, 10) Cy, »S, 25
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TABLE VI.1. Resonant modes and tunneling states in ionic crystals. (Continued).

Irreducible Temp.
representation, °K

Mode frequency(
Crystal (cm™) Defect symmetry, Method of observation, ® References,? Comments

OH"™ (substitutional)

LiF 1.8 K, 28

NaF 0.4(T1,),0.2(Ty, —E,) H, 29

NaCl 2,9.3,10.2,12.2,15.6,22(Ty,, 4.2) 0,,A,1,K,30
3.2,21(E, ,4.2) ) O, R
11.5,13.’7—-14.2(ng,4.2) O, R

KC1 0.4(Ty,4.2),0.2(Ty, —E,, 4.2) 0,,P,32,33
32(=,1.7) A,41
25(—, 4.6) 04, V, 34,
32(Ty , 8) 0,,R, 40
37.5(—,1.7) A,41

KBr 30(—, 5) 0y, V, 34
36(Ty, ,8) 0,,R, 40

RbC1 27(—,4.5) V, 34
30(—,1.7) A,41

KI 3.7,8.2(—,4.5) V, 34

OD~ (substitutional)
KBr 35(—,1.7) A,41

CN~ (substitutional)

NaCl 58(—, 27) R, 39
KC1 1.2(T 1y, 4.5) 0;,V,35
16(Ty,,1.2) A, 24
12(~—, 4.2) Vv, 28
15.9(—, 20) R, 40
16.4,18.6(—, 5) * 42 Deduced from neutron scattering by coupled
defect-phonon modes
KBr 12(—, 2) v, 36
: 13.2(—,12) R, 39
KI 11, 38(—, 1.36) V, 36
0.49(Ty,,, 2), 0.25(Ty, —E,, 2) H, 28
RbCl1 19 Vv, 28

a2 Key: A =absorption, R =Raman, S=electronic sideband, V =vibrational sideband, P =paraelectric resonance, H=heat capacity,
D=dielectric constant, K=thermal conductivity.
b The references for Table VI.1 are the following:
1. Kirby, R. D.,,A. E. Hughes, and A. J. Sievers, 1970, Phys. Rev. B 2, 481.
Harrison, J. P., P. P. Peressini, and R. O. Pohl, 1968, Phys. Rev. 171, 1037.
Lakatos, A., and H. S. Sack, 1966, Solid State Commun. 4, 315.
Herendeen, R. A., and R. H. Silsbee, 1969, Phys. Rev. 188, 645.
Sievers, A. J., and S. Takeno, 1965, Phys. Rev. 140, A1030.
Kirby, R.D., I. G. Nolt, R. W. Alexander, and A. J. Sievers, 1968, Phys. Rev. 168, 1057.
Templeton, T. L., 1973, Ph.D. Thesis, unpublished, Simon Fraser University.
Sievers, A. J., 1969, in Elementary Excitations in Solids, edited by A. A. Maradudin and G. F. Nardelli (Plenum, New
York), p. 193.
9. Rollefson, R. J., 1972, Phys. Rev. B 5, 3235.
10. Becker, C. R., and T. P. Martin, 1972, Phys. Rev. B 5, 1604.
11. Templeton, T. L., and B. P. Clayman, 1971, Solid State Commun. 9, 697.
12. Biduerle, D., 1971, Phys. Rev. B 4, 2347.
13. Clayman, B. P., I. G. Nolt, and A. J. Sievers, 1969, Solid State Commun. 7, 7.
14. Becker, C. R., 1971, Solid State Commun. 9, 13. :
15. Ganguly, B. N., R. D. Kirby, M. V. Klein, and G. P. Montgomery, 1972, Phys. Rev. Lett. 28, 307.
16. Sievers, A. J., 1966, unpublished.
17. Weber, R., 1964, Phys. Lett. 12, 311.
18. MacDonald, H. F., M. V. Klein, and T. P. Martin, 1969, Phys. Rev. 177, 1292.
19. Kaiser, R., and W. Mdller, 1969, Phys. Lett. 28A, 619.
20. Montgomery, G. P., M. V, Klein, B. N. Ganguly, and R. F. Wood, 1972, Phys. Rev. B 6, 4047.
21. Kirby, R. D., 1971, Phys. Rev. B 4, 3557.
22. Moller, W., R. Kaiser, and H. Bilz, 1970, Phys. Lett. 32A, 171.
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TABLE VI.1. Resonant modes and tunneling states in ionic crystals. (Continued).

23. Prettl, W., and E. Siep, 1971, Phys. Status Solidi 44, 759.

24. Kahan, A. M., 1973, Ph.D. Thesis, Cornell University, Materials Science Center Rept. MSC No. 1906 (unpublished).
25. Shotts, W. J., 1973, Ph.D. Thesis, Cornell University, Materials Science Center Rept. MSC No. 2063.
26. Alexander, Jr., R. W., and A. J. Sievers, 1967, in Optical Properties of Ions in Crystals, edited by H. M. Crosswhite and

H. W. Moos (Interscience, New York), p. 391.

27. Wagner, M., and W, E. Bron, 1965, Phys. Rev. 139, A223.

28. Narayanamurti, V., and R. O. Pohl, 1970, Rev. Mod. Phys. 42, 201.

29. Harrison, J. P., G. Lombardo, and P. P. Peressini, 1968, J. Phys. Chem. Solids 29, 557.
30. Rosenbaum, R. L., C. K. Chau, and M. V. Klein, 1969, Phys. Rev. 186, 852.

31. Peascoe, J. G., and M. V. Klein, 1973, J. Chem. Phys. 59, 2394.

32. Dreyfus, R. W., 1969, Solid State Commun. 7, 827.

33. Peressini, P. P., J. P. Harrison, and R. O. Pohl, 1969, Phys. Rev. 180, 926.

34. Wedding, B., and M. V. Klein, 1969, Phys. Rev. 177, 1274.

35. Liity, F., 1974, Phys. Rev. B 10, 3667,3677.

36. Seward, W. D., and V. Narayanamurti, 1966, Phys. Rev. 148, 463.

37. Ward, R. W., B. P. Clayman, and S. S. Jaswal, 1974, Solid State Commun. 14, 1335.

38. Ishigama, M., C. R. Becker, T. P. Martin, and W. Prettl, 1972, Phys. Status Solidi 54, K81.
39. Callender, R., and P. S, Pershan, 1970, Phys. Rev. A 2, 672.

40. Peascoe, J. G., W. R. Fenner, and M. V. Klein, 1974, J. Chem. Phys. 60, 4208.

41. D. R. Bosomworth, 1967, Solid State Commun. 5, 681,

42. Moller, W., and R. Kaiser, 1972, Phys. Status Solidi 50b, 155.
43. Walton, D., H. A. Mook, and R. M. Nicklow, 1974, Phys. Rev. Lett. 33, 412.
44. Campbell, J. A., E. A. Schiff, and A. J. Sievers, 1975, Phys. Lett. 51A, 470.

ions in ionic crystals, Matthew (1965) assumes that four
interatomic forces need to be considered.
The first contribution to K /2 is from the point ion
electrostatic potential. Applying Laplace’s theorem to
a cubic array of point ions, the restoring force for a
displacement x of the impurity ionis zero, i.e., K,/2=0.
The second contribution is from the nearest-neighbor
repulsive interactions with a Born—Mayer potential

Viep =Ai_exp[=7,;/p] (i, J nearest neighbors).

The contribution to K/2 from this potential is

%"— =X, exp(—- %) [% - ;25} . (6.2)

The third contribution is from the electronic polariza-
bility. The nearest-neighbor ions to the impurity are
given a polarizability o, while the impurity ion is as-
sumed unpolarizable. The rest of the lattice with re-
gards to its electronic polarizability is treated as a
spherical cavity of radius \/77’0 and dielectric constant
€. If dipoles are induced in the lattice purely by the
ionic dipole ex at the impurity site, the dipoles induced
on the nearest neighbors are 2aex/a® along +{100], and
aex /a® along [0+10] and [00 £1]. These produce an elec-
tric field which tends to pull the ion away from the cen-
tral site. The contribution to K /2 from work done
against the reaction field is

—-Bae?
Kn.négol. = i‘: , (6 .3 )

due to the nearest neighbors and

Klatﬁcepol.:__ (6—1) e? (6 4)
2 112¢ 2273’ .

due to the rest of the lattice outside the spherical cavity.
The fourth and final contribution is from the deforma-
tion polarization. When the impurity ion moves a dis-
tance x it induces on the neighboring anions deformation
dipoles v(ex) opposite in direction to the electronic di-
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poles. If we neglect the deformation dipoles induced on
the smaller cation the contribution to K is
Kgﬁzz“/ez/aa . (8.5)

The various contributions to K/2 for KBr:Li* are
computed in Table VI.2. The contributions to K/2 for
K" in KBr are also computed for comparison in Model 1.
Models 2 and 3 illustrate that for Li* with zero and with
a small amount of nearest-neighbor relaxation, the re-
pulsive contribution is small enough so that the Li* ion
is unstable at the normal lattice site. Model 4 gives an
indication of just how far the nearest neighbors must
relax inward before the Li* ion is stable at the normal
lattice site.

From these admittedly rough calculations it is evident
that the balance between the repulsive forces (which
push the ion toward the center) and the polarization and
electrostatic forces (which pull the ion off-center) is
extremely delicate. The resulting net restoring force is
small, leading to low-frequency modes. More elaborate
calculations by Dienes et al. (1966), Wilson et al. (1967),
and Quigley and Das (1967, 1969) have confirmed these
ideas. On the basis of the above arguments, low-fre-
quency resonances or lattice instabilities are to be ex-
pected for a large number of small-ion substitutions. In
the linear chain model (Fig. 16), force constant reduc-
tions of 10 times or more were required to push the
resonant mode to low frequencies.

Table VI.1 indicates that a large number of sharp
resonances have now been observed experimentally.
Just why these resonant modes are so narrow can be
understood using a simple model developed by Sievers
and Takeno (1965). This model leads to an analytic
solution for the resonant frequency and the linewidth of
a low-frequency resonance. Although the model is not
applicable to ionic crystals where long-range Coulomb
forces are present, it does provide an intuitive feel for
the properties of resonances in general.
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TABLE VI.2. Calculated nearest-neighbor force constant for Li in KBr. After Matthews, 1965.
Model System a[A] (K/2) Rep (K/2) NN pol. (K/2) Lattice pol. (K /2) Def (K /2) Total
1 KBr:K"P 3.29 1.53 —0.45 -0.05 0.19 1.22
2 KBr : Li* ® 3.29 0.42 —0.45 -0.05 —0.08
3 KBr : Lit b 3.16 0.60 —0.57 —-0.05 —0.02
4 KBr : Lit P 3.06 0.79 -0.70 —0.05 +0.04

a2 Units of K =[cgsx10%].

b The following parameters from Born and Huang (1954) are used in these calculations:

79=3.29R, ap=4.13x107% cm?®, €=2.33,

K*—Br~ bond: A,_=3.93x107% ergs, p =0.334 &,

Li*—Br~ bond: A,_=0.82x10"? ergs, p =0.348 A.
Here vy was estimated to be 0.15 from Hardy {1962).

To derive the resonant frequency and the linewidth
we consider a diatomic lattice of the NaCl type contain-
ing a substitutional impurity. The masses in the host
lattice are M, and M,. They are connected to their
nearest neighbors by harmonic springs having central
force constant and noncentral force constant both equal
to K. The impurity of mass M, substitutes for a mass
M,. The springs connecting the impurity to its nearest
neighbors have central and noncentral force constant
equal to K’. Using the Green’s function methods de-
scribed in Sec. III we write the equation for the eigen-
frequency of the infrared-active resonance (Takeno,
1967)

D(«?)=0, (6.6)

where

e ) (5

A F - (- ) oo

6.7)
with g,(w) =g5(w) +i(sgrw)gy (w) and

, -3
go(w)=m ,

(o) 3T M /M) 0/
o 81‘41 ’

for (w/w,)?<<1, where w, is the frequency at the top of
the acoustic branch. '

If in Eq. (6.7) we assume that the resonance is sharp,
i.e., that Re[D(w?) is varying rapidly compared with the
magnitude of Im[D(w?)], then the resonant frequency is
obtained by setting

Re[D(w?)] =0.
To second order in K'/K (<1) (Page, 1974) this gives

1xy 0

1 M, K
2 K

(-4

2 M K

At very low frequencies wZ=6K’'/M; which is just the
one-oscillator result.
Again assuming a sharp resonance so only Re[D (w?)
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is varying rapidly near w,, we obtain the width T by

r

2 Re[D(w?)

70 =2 Im[D (w3)]. (6.9)

w= u)o

The width depends strongly on the relative magnitude of

(-1 % G152 (&)

If the first expression is larger, then

compared with

37 | M! M\Y2
= |11 22} o
8 | M, l(“ M1> W (6.10)
On the other hand, if the second expression is larger,
then
371 |/ K’ M M\ o8
I's —||{— = -0
8 (K 1) M, <1+ M1> s (6.11)

It is interesting to compare Eq. (6.10) and (6.11) with
the results for a simple mass defect, i.e., K’ =K in Eq.

(6.7). In this case
M 1_\_%
Ml

. P M. \Y2
Fmd = —8‘<1 + —Mf'>

If there is both a force constant change and a mass
change then I'~I5,4K’/K if Eq. (6.10) holds, while if Eq.
(6.11) holds the impurity is decoupled by another factor
of K' /K. For more realistic calculations of frequency
and linewidth which include Coulomb interactions, the
reader should consult articles by Klein (1968), Benedek
and Nardelli (1967), Benédek and Maradudin (1968),
Timmesfeld (1968), Prettl and Siep (1971), Martin
(1971), and Ram and Agarwal (1972).

The idea of a resonance consisting of a number of
perturbed phonon modes in which the impurity ion has a
large amplitude has not been particularly helpful in
understanding the experimental results because these
modes have a strong anharmonic character, as we shall
soon show.

The current approach has been to interpret the experi-
mental measurements on sharp spectral features at low
frequencies in terms of an effective oscillator Hamil-
tonian which consists of a harmonic component and an-
harmonic coupling terms like those used in Eq. (5.4)
to describe the U-center local mode. However there is
a fundamental difference between these two limits. In
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each case one starts by expanding the potential of the
crystal in coordinates @; which transform according to
some row of an irreducible representation of the sym-
metry group of the Hamiltonian centered on the impurity
ion. One of the ;’s, for example, is the infrared-ac-
tive 7,, mode. For the U center it is a normal mode of
‘the perturbed crystal, while for the low-frequency reso-
nant mode, the @r , is not a normal mode of the sys-
tem; instead the QT).u is a linear superposition taken
from the continuous spectrum up to the highest frequen-
cy of the crystal. Figure 17 shows such a resonant
mode situation. With a suitably large decrease in the
force constants, the QTIM resonant mode does approach
an eigenmode of the crystal with a well-defined fre-
quency.

The effective oscillator Hamiltonian of the resonant
mode problem has some close analogies with the effec-
tive spin Hamiltonian long used in the paramagnetic
resonance field. To relate the resonant mode @r,, with
the true normal modes dr, 1 of the perturbed crystal we
note that in general

Qrw=; Qr,, 1Dz 1, (6.12)
where the ar, 1 obey a harmonic oscillator Hamiltonian.

A picture of the eigenvector associated with resonant
mode vibrations can be obtained by examining Fig. 107.
In this figure the relative amplitudes for T}, resonances
in the asymptotic limit of zero frequency are shown. To
obtain these amplitude patterns, Page (1974) assumed
weakened nearest-neighbor longitudinal force constants
at the impurity and realistic host crystal phonons. The
relative amplitudes for impurity-induced 7T,, resonances
at zero frequency in various alkali halides, also calcu-
lated by Page (1974), are shown in Table VI.3. In all
cases the mode consists essentially of the impurity ion
vibrating against the rest of the crystal lattice. There-
fore, at least in this limit, the resonant mode is intui-
tively simple though the extent of the host lattice in-
volvement varies substantially from host to host. -

Probably the biggest advantage to treating resonant
modes as normal modes of the system is that analogies
can be made with the extensive work which has been
done on the normal modes of molecules in gases. For
example, the observation of resonant mode isotopic ef-
fects can lead one to look for an analogue of the Teller—
Redlich product rule, or the influence of anharmonicity
can lead one to look for Fermi resonances, overtones,
or combination vibrations (Herzberg, 1964). Just how -
far this analogy can be taken is still under investigation,
but the next few sections will provide some guidelines.

1. Isotope effects on odd-parity resonant modes

When a small impurity ion in an alkali halide is re-
placed by an isotopic ion of the same element it is rea-
sonable to expect that the potential energy function and
configuration of the atom are changed by only negligible
amounts. The vibration frequency may be appreciably
altered because of the change in mass involved. In par-
ticular, a mode of vibration in which the ion in question
is oscillating with a larger relative amplitude will give
a greater isotopic change in frequency than a mode in
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which the ion is moving with a small relative amplitude.
Consequently, the isotopic frequency ratios provide in-
formation on the extent to which the surroundings par-
ticipate in the motion.

Isotope shifts have been measured for four different
lattice defect combinations by Kirby et al. (1968) and
Clayman et al, (1969). The experimental results for
NaCl:Cu®, KI:Ag®, KBr:Li*, and NaI:Cl" are sum-
marized in Table VI.4. The resonance frequency for

the light impurity isotope in each of the four systems is

listed in the second column, and these frequencies are
each less than 15% of the maximum frequency of the
host lattice. The experimentally observed ratios are
given in column 3. Ratios appropriate to the one-oscil-
lator behavior are tabulated in the fourth column. Ex-
cept for KBr:Li+, the experimental ratios are very
nearly equal to the corresponding one-oscillator ratios,
which suggests that the defect is moving alone in these
systems. Sievers and Takeno (1965) obtained an Ein-
stein oscillator or one-oscillator isotope effect by using
a lattice model which involved equal nearest-neighbor
longitudinal and transverse force constants. Since the
force constants in this model are all positive and couple
to nearest neighbors, a low-frequency resonance may be
achieved only by reducing the nearest-neighbor force
constant so that the defect and host are decoupled. In
this situation an Einstein oscillator behavior neces-
sarily results.

Benedek and Nardelli (1967) and Klein (1968) have
used more realistic models to calculate the isotope
shifts for resonant modes in NaCl:Cu®, KI:Ag*, and
KBr:Li*. These authors employed the nearest-neighbor

A(Ox)=1 A(lx) A(2x) A(3x) A(4x)
(b) (c)
NaI: — Nacl:+
REL. T REL. T
ION ION
AMP. ALONG X . AMP. ALONG x
—_— —_—

-4 -3 -2 -1 1 2 3 4 -2 -1 1 2
o] !O

FIG. 107. Schematic representation of the relative ampli-
tudes in the vicinity of the impurity of Ty, resonances of zero
frequency. (a) Shows the mode and defines the four neighbors
listed in Table VI.3. Computed values of these amplitudes for
five different alkali halide systems are given in Table VL3.

In (b) and (c) the calculated relative amplitudes for ions along
the x axis are plotted to scale for negative and positive defects
in Nal and NaCl, respectively. After Page (1974).
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TABLE VI.3. Force constant weakenings and relative amplitudes for impurity-induced T,

resonances of zero frequency in alkali halides.

These quantities are independent of the sys-

tems’ mass and were computed with longitudinal nearest-neighbor force constants changed

using host lattice phonons of the breathing shell model. 2

The fractional force constant

changes 6, /k, listed here were obtained by dividing 6, by the value of the unperturbed near-

est-neighbor overlap (shell-shell) force constant of the breathing shell model.

The defect

displacement is unity. The neighbors are identified in Fig. 107. After Page (1974).

5, 6, /k,
System 104%3% A (1x) A (I'x) A (2x) A (3x) A (4x)
NaCl:+ -1.51 —0.560 —0.204 0.0443 —0.009 54 —-0.0144 —0.00156
Nal:— -1.13 —0.612 —0.732 0.115 —-0.266 -0.199 —0.0716
KCl:+ -1.46 —-0.597 —0.369 0.0691 —0.126 —-0.0939 -0.0377
KBr: + -1.33 —0.611 —0.310 0.0543 —0.108 -0.0778 —0.0336
KI:+ -1.19 —0.630 -0.262 0.0464 -0.103 —0.0740 —-0.0356

2 Schroder, U., 1966, Solid State Commun. 4, 347.

force constant perturbation while the host phonons were
obtained from the deformation dipole model (Hardy,
1962) and the shell model of Cowley et al. (1963), re-
spectively. The calculated shifts are much smaller than
the measured or the Einstein oscillator shifts. This
discrepancy comes about because a realistic lattice
model in an ionic crystal insures that the long-range
Coulomb interaction is present, so that the defect
neighbors can never be uncoupled from the defect itself.

Krumhansl (1968) and Krumhansl and Matthew (1968)
have argued that Einstein oscillator behavior may be a
rather general property of impurity resonances in the
low-frequency limit, but cautioned that this assumption
might not apply to ionic crystals.

Page (1974) has reviewed the entire problem and cal-
culated the above isotope shifts, as well as that for
Nal:Cl™, again employing the nearest-neighbor force
constant perturbation and the breathing shell model for
the host phonons, but using increased accuracy. His
calculated values are given in Table VI.4, column 5. In
his model the effective mass associated with the reso-

nance can be written as
M*=MI+F’ (6.13)

where M, is the impurity mass, and F is the mass en-

hancement term. Working in the zero-frequency limit,
he derived a model-independent expression for F in
terms of the host lattice masses and amplitudes. The
expression shows that F is always positive and hence
that Einstein oscillator or one-oscillator behavior is an
upper bound on the isotope shift in any harmonic model.
For the nearest-neighbor force constant change model,
F is a function of just the unperturbed host crystal pho-
nons, and Page’s computed values are given in the sixth
column of Table VI.4. His isotope shift expression is

_";’t_=<Mh+F>l/2

on \M4F (6.14)

where ! and % denote light and heavy substituents, re-
spectively. For ionic crystals in this model, the above
isotope shift is always substantially less than the one-
oscillator shift (2.13). The frequency ratios for
NaCl:Cu® and KI:Ag" are seen to be in agreement within
the experimental and theoretical uncertainties. On the
other hand, the agreement between theory and experi-
ment is very bad for KBr:Li* and NalI:C1~. The bad
agreement for KBr:Li* is expected since the measured
shift for this system is greater than the Einstein oscil-
lator limiting value of the harmonic approximation. As
we shall see in the next section KBr:Li" is indeed a very

TABLE VI.4. Ratios of resonant mode frequencies for impurity isotope substitutions. Sub-
scripts I and 2 denote light and heavy isotopes, respectively. Measured values of the fre-
quencies for the lighter isotopes are listed in the second column, ‘'while the experimentally
observed frequency ratios are given in column three. Ratios appropriate to Einstein oscil-

lator behavior are tabulated in the fourth column.

The calculated ratios listed in the fifth

column are based upon the defect-nearest neighbor force constant change model described
by Page (1974). In his model quantity F must be added to the impurity mass to obtain the
effective mass of the resonant mode. F is a function of the unperturbed host crystal phonons
and is given in the sixth column. After Page (1974).

w; (em™) (W /wp)r (W /wp)y
System (exp) (exp) (my, /m)V? (calc) F (amu)
NaCl: (Cu 63—65)* 23.6 1.016 £0.002 1.0157 1.0142+0.0006 6.97
KI:(Ag 107-109)* 17.4 1.008+0.002 1.0093 1.0072+0.0003 30.5
KBr : (Li 6-=T7)* 17.7 1.105+0.004 1.0801 1.015 +0.004 26.8
Nal: (Cl35-37)" 5.4 1.029 +£0.008 1.0282 1.008 +=0.003 97.6
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anharmonic system. The situation for Nal:Cl™ is clear-
cut, as the calculated ratio falls far below the range of
experimental values. The assigned experimental ratio
of 1,029 is very close to the Einstein oscillator value of
1.0282, and the large discrepancy between the computed
and observed shifts is reflected in the large deviation of
the calculated amplitude pattern from that for uncoupled
or Einstein oscillator behavior.

Page (1974) has also calculated the host isotope shift
for the same model. An example of such a system would
be the substitution of (C1®*) by (C137) in the NaCl:Cu"
system. The host isotope shift can be written as

Wy M, +[1 + (Am/m)F Ve
- o My T '

(6.15)

In this derivation A, the change in the host ion mass,
m, is assumed to be the same in both sublattices. This
approximation is strictly correct only for a monatomic
lattice. For a one-oscillator model where the impurity
is uncoupled (so that ¥ =0), no host isotope shift is ex-
pected to occur.
Kahan (1973) has measured the host isotope shift of

NaCl1%°%:(Cu®®) to NaCl1®":(Cu®®) to be

(w/wy)—1]=(0.8 £0.8)x1073 (experimental).
For Page’s model the expected shift is

[(wy/wy)=1]=2%x10"3% (theory).

Unfortunately the experimental errors are too large to’

determine whether or not the amplitude pattern in
Table VI.3 does describe the NaCl:Cu" lattice defect
system correctly. More precise measurements of all
isotope shifts must be obtained experimentally before
much more progress can be expected in this area.

2. Resonant mode anharmonic potential

A phenomenological resonant mode oscillator which
describes successfully all the experiments to date on the
Nal:Cl™ resonant mode has the following Hamiltonian
(Clayman et al., 1971):
p2 M*

=St g

>

w?(x2 +3% +22) + C, (x* 4% +2%)

+Cy(x2Y2 +3222 + 22x2), (6.16)

This Hamiltonian represents an anharmonic oscillator
in a site of cubic symmetry and has the same form as
Eq. (5.4), which was used to describe the U-center local
mode. Here M* is the effective mass of the oscillator,
and w is the harmonic resonant mode frequency. C, and
C, are the fourth-order anharmonic coefficients. High-
er-order terms have not been necessary. Unlike the
localized mode case, the atoms of the host crystal do
not provide a static potential at low frequencies in which
the impurity ion vibrates. They are all vibrating them-
selves. Consequently in Eq. (6.16) x, ¥, and z are in-
terpreted as normal coordinates rather than as particle
displacements. The lower the frequency w, the better
defined the mode becomes and the more exact is (6.16).
Small electric-field-induced frequency shifts of the
resonant mode have been used to probe the quartic an-
harmonic terms in (6.16). The Hamiltonian describing
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the motion of the resonant mode in the presence of the
external electric field is identified with (5.6). The ob-
served resonant mode peak in the infrared absorption
spectrum is due to the electric dipole transition from
the ground state of A,, symmetry to the triply degen-
erate (in the absence of the electric field) first excited
state of 7, symmetry. As the defect site has inversion
symmetry, a linear electric field effect is not possible.
The second-order Stark effect for the resonant mode

is shown in Fig. 108. Two polarization directions are
shown with the applied D. C. field along the [110] crys-
tal direction. Notice that the frequency shift varies
with the square of the electric field, as expected (Clay-
man et al., 1971).

The Hamiltonian for the second-order electric field
effect is given by (5.8). From measurements of the
electric-field-induced second-order shifts in the fre-
quency of the resonant mode for different experimental
geometries, the values of the quartic anharmonic coef-
ficients C, and C, can be obtained.

In terms of the model parameters of Eq. (5.5) the
transition energy is

EQ =hw+(3C, +C,) [/ M*w) . 6.17)

We use 2 for the mode frequency, which includes an-
harmonic effects, and w for the harmonic approxima-
tion. From the electric field experiment Clayman ef al.
(1971) find that the anharmonic contribution to the tran-
sition energy is 7%. It is small, confirming the validity
of the perturbation approach. With this degree of an-
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FIG. 108. Second-order Stark effect for a resonant mode.
E4 |l [110] and two polarization directions of the infrared radia-
tion are shown. The center frequency is at 5.43 cm™! for no
applied electric field. After Clayman et al. (1971).
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harmonicity determined for the one-oscillator model,
one can also predict the frequency shifts that result
from isotopic mass substitution. For Nal:Cl~ the value
obtained is

Q(35)/2(37) =1.030.

This is consistent with the value of 1.028 £0,008 re-
ported by Clayman et al, (1969).

A further test of the model has been obtained from
temperature dependence measurements by Clayman
(1971). He observed that the centroid of the absorption
line shifted to larger frequencies as the sample tem-
perature was increased from 4.2°K.

From Eq. (6.17), if (3C, +C,)>1, the transitions be-
tween excited states for different » values all occur at
higher frequencies than the 0—1 transition. This be-
havior can be readily understood by noting that the sign
of the anharmonic terms causes the resultant potential
to approach that of a square well at high excitation
energies. Although at low temperatures the 0~ 1 tran-
sition dominates the observed spectrum, as the tem-
perature is increased, the populations of the excited
states increase quickly and transitions between excited
states begin to dominate. The upward shift of the ab-
sorption frequency and the temperature dependence of
the relative strengths of the transitions is explicable on
the basis of thermal population effects for an anharmon-
ic oscillator.

The success of the anharmonic oscillator model in ex-
plaining the Nal:Cl™ experimental results suggests that
one try the same approach for KBr:Li*. Fourth-order
anharmonicity can cause the anomalously larger ®Li
—7Li isotope shift in BKr but the crucial test is whether
or not the anharmonic oscillator model can self-con-
sistently explain bo/Z the isotope shift and the electric
field shifts. Clayman et al. (1971) have found that the
quartic perturbation in Eq. (6.16) must be very large
(33%) to explain the isotope shift. On the other hand,
to explain the small electric field shifts in KBr:Li* the
quartic term must be 50 times smaller. Furthermore,
the value of (3C, +C,) is negative, which makes the iso-
tope shift smaller than that of an harmonic oscillator.
Equation (6.16) does not correctly describe the proper-
ties of the KBr:Li* mode.

Quigley and Das (1969) and Wilson et al. (1967) have
performed calculations to determine the minimum ener-
gy configuration of Li* in KBr. Their results indicate
that the potential-energy minima for the impurity ion
are displaced in the [111] direction from the center of
the host ion (K*) cavity. The barriers on the [110] di-
rections between adjacent equilibrium sites are small;
Quigley and Das find that they are smaller than the Li*
vibrational zero-point energy. Gomez (1968) has pointed
out that such a well can explain the large °Li— "Li iso-
tope shift in KBr. Clayman et al. (1971) have shown that
this type of potential also gives a small Stark effect as
well. They introduced the central barrier as a pertur-
bation to a harmonic well, fit the isotope effect, and
found the parameters changed the 0—1 transition energy
by 22%. This potential is shown in Fig. 109. Finally
they calculated the electric-field-induced shift in the
0—-1 transition energy to be 0.03 ecm™ for an external
field of 70 kV/cm. This value is compared with the ex-
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perimentally observed shift of 0.08 +0.03 cm™! (Kirby
and Sievers, 1968). Consequently a potential well which
has displaced energy minima, but barriers which are
small compared to the impurity zero point energy,
causes a large isotope shift but only a small electric
field shift. Although the potential in Fig. 109 may ap-
pear anomalous on first inspection, similar but differ-
ent potential functions have long been used to under-
stand the ring puckering vibrations of closed molecular
chains (Chan ef al,, 1966).

NaCl:Cu® has both a large impurity mass and a high
resonant frequency, so the expected electric-field-in-
duced shifts due to fourth-order anharmonicity which
varies as M* 3w [see Eq. (5.8)] would be only ~107*
as large as the Nal:Cl~ shifts. A shift this small would
be unobservable. The experimental results on NaCl:Cu*
show that no shift or broadening in excess of 0.005 cm™
occurs at 120 kV/cm. A potential similar to that which
explains the KBr:Li* results possibly could be used
here as well.

3. Even-parity modes, overtones, and combination bands

The far-infrared absorption spectrum of KI:Ag”* is
shown in Fig. 110 (Kirby 1971). The spectrum is com-
plicated with at least five Ag-induced absorption lines
in addition to the well known 7;, resonant mode at 17.3
cm™!, and a strong gap mode at 86.2 cm™'., The ob-
served absorption spectrum varies linearly in absorp-
tion strength with the Ag* concentrations; consequently,

\

=NV

X

(b)

FIG. 109. One-dimensional harmonic oscillator with a cen-
tral barrier. (a) Harmonic well with two lowest states. Dashed
curve shows the perturbing potential used. (b) Anharmonic
well with two lowest states. Parameters are appropriate for
KBr:Li*. After Clayman et al. (1971).
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pair modes, which we shall consider later, are not ob-
served here. By means of electric field shifts in the
far-infrared absorption spectrum, and also by means of
Raman scattering, Kirby has identified two even-parity
resonant modes. The E, symmetry Raman scattering
spectrum is shown in Fig. 111. The center frequency is
at 16.1 em™!, A self-consistent identification of the ab-
sorption spectrum is obtained with the absorption at
29.8 cm™ in Fig. 110 identified as the 7, + E, combina-
tion band, and the absorption at 44.4 cm™! as the
T,,+A,, combination band.

The near degeneracy of the T;, and E, resonances in
KI:Ag" produces a remarkable electric field effect on
the absorption spectrum. The odd-parity electric field
mixes the two modes of opposite parity, and both of the
mixed modes are seen in the infrared absorption spec-
trum. The frequency shifts versus external field are
shown in Fig. 112. The upper set of data correspond to
the T, ,-like mode, while the lower set correspond to the
E,-like mode. The solid curves were obtained using an
anharmonic oscillator model described below.

To estimate the properties and interactions of the one
odd and two even resonant modes, Kirby assumed that
each mode could be represented by a harmonic oscilla-
tor, so that the Hamiltonian for the entire system is
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where the effective mass of the 7}, mode is taken as the
silver ion mass, and the mass for the two even modes
is taken as the iodine mass. To include the effects of

FIG. 111. E, symmetry Raman scattering spectrum of KI:Ag*
at 8°K. The scattering geometry is 2(yx)y, with x| [110],
yl[110], yll[T10], and 2|/ [001]. The instrumental resolution is

anharmonicity he expanded the potential energy in pow- 2 em™!, After Kirby (1971).
ers of the harmonic coordinates. Because of the inver-
sion symmetry about the defect site, the 7},-mode coor-
dinates enter only in even powers. The cubic interac-
tion between the 7;, mode and the even-parity- modes is
written as ) v
W =VarQ, , +Vil(322 = 7)Qg, +V3 (2 =3y, ].
(6.18) 18-
The second-order perturbed energies for the anharmon- TE
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FIG. 112. Frequency vs external electric field results for the
Ty, and E, symmetry resonances in KI:Ag*. The solid curves
were fitted using the harmonic oscillator model described in
the text. After Kirby (1971).

Fig. 110. Far-infrared absorption spectrum of KI:Ag* at
4.2°K, The instrumental resolution is 0.25 cm™!, Combination

resonances appear at 29.8 and 44.4 cm™1, After Kirby (1971).
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ic oscillator model are recorded in Table VI.5.

Kirby (1971) determined V, and Vj by fitting the
strengths of the combination bands, since these quanti-
ties are independent of cubic and quartic terms not in-
cluded in (6.18). Unfortunately the fitted coupling coeffi
cients are so large that the anharmonic contributions to
the oscillator energies are of the same size as the har-
monic contributions, so that these perturbation calcula-
tions can provide only qualitative results.

The form of the coupling terms used in the perturba-
tion has been verified to some extent by the electric
field results. Since the E, and 7,, modes are nearly de-
generate, the application of an electric field (5.6) leads
to a mixing of the two modes and results in the field-
induced shifts

0 (E) = £(A2 + R2E2)2 | (6.19)

where the + and — signs are to be associated with the
T,, and E, modes, respectively, 2A is the zero field
separation, and )

R=2ehV;/Quwp— wg)wg Mp(My Mywpwg)V? .

The value of V; obtained from Fig. 112 is in good agree-
ment with the sideband fit described above.
Raman-active resonant modes and overtones have also
been observed in NaCl:Cu® by Ganguly et al. (1972). The
combined Raman spectrum is shown in Fig. 113. This
spectrum contains an E, resonant mode and also reveals
the three components of the first overtone of the 23.5
cm™! infrared-active resonant mode. The frequencies
of the E, resonance and the E, component of the over-
tone are shifted as a result of a strong anharmonic cou-
pling between them. Their line shapes and strengths
are considerably altered by an interference between the
Raman amplitudes. Additional evidence for strong an-

TABLE VI.5. Perturbed transition energies from the anhar-
monic oscillator model, where

I3 i 1/2
Us=Vs Mgy <2MEwE>

and
1/2
Ug=—tall (B V"
2Mpwp \M 4w 4

After Kirby (1971).

Final state Perturbed transition energy
2 2
| 100;00; 0) h’wT—-—4U§— 4Ui _8UL 203
' Wp 2wptwy wy 2wptwy
! 3U2 3U2
210 ws — E )3
| 000;10;0) LTS —wp Zoptap
3U; 3U;
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| 000;00;1) S Tre e Trw,
4UE 4U} 8U3
;105 n Rwy—atk %%k SU4
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harmonic coupling between modes is provided by the
existence of combination bands in the far infrared at 64
and 69 cm™! (Montgomery and Kirby, 1971).

‘Méller and Kaiser (1972) have observed a strong
Raman-active E, resonance at (45 +2) cm™ in KCl:Ag
at 110°K. The absorption coefficient of the 7;, activated
spectrum in KCl1:Ag at 5°K was observed earlier by
Sievers (1968). A strong resonant mode absorption at
38.6 cm™! was measured, as well as a weak absorption
at 78 cm™!, Kirby has noted that this 7,,+E, cm™! com-~
bination resonance again indicates strong anharmonic
coupling between odd- and even-parity modes.

4. Anharmonic coupling to the lattice

1. Lattice strain

An alloy of two alkali halides has an average lattice
constant intermediate to the lattice constants of the two
constituents (Havighurst et al., 1925). This method of
varying the lattice constant has been successfully ex-
ploited to study the U-center system, as has been de-
scribed in Sec. V. .

Clayman ef al. (1967) have alloyed KC1 or KI with
KBr:Li" to study the effect of the lattice constant change
on the resonant mode frequency. The dependence of
mode frequency and linewidth on lattice constant has
been found to be linear. The center frequency of the ab-
sorption versus fractional change of the lattice constant
is shown in Fig. 114. With the addition of KCl1 to the
lattice, the center frequency shifts to higher frequencies
and the line broadens; the center frequency shifts to
lower frequency and again the line broadens upon the
addition of KI. The frequency of the maximum optical
density is shown where it differs appreciably from the
centroid frequency. The average lattice constant @ is

5x 103
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FIG. 113. Combined Raman spectrum of NaCl:Cu* at moder-
ate resolution showing strong temperature dependence. The
copper concentration was 3 X10!8/cm?®. After Ganguly et al.
(1972).
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calculated from the measured alloy concentration by
Vegard’s relation [see (5.20). :

The linear dependence of mode frequency upon lattice
constant has been explained by Hughes (1968). He ap-
plied the strain broadening theory of Stoneham (1966),
and included the uniform dilation of the lattice neces-
sary to make the surface stresses vanish. The result
was a Lorentzian line whose frequency shift and width
vary linearly with lattice constant change. Using the
strain coupling parameters determined from uniaxial
stress measurements (Nolt and Sievers, 1968), he cal-
culated that

Aw=-440(AV/V) (calculated)

in good agreement with the experimentally determined
value

Aw=-470(AV/V) (experimental).

Hughes’ result for the strain broadening of the line is
too large by a factor of 2, but this can be explained by
the nonrandom distribution of impurities.

Another method of altering the lattice constant is to
use hydrostatic pressure. Using He gas as the pres-
sure medium, Kahan and Sievers (1971) and Kahan el al.
(1975) have made low-temperature hydrostatic pressure
measurements on a number of resonant mode systems.
Lattice constant changes of the same magnitude as for
the alloy experiments have been obtained with a higher
degree of accuracy because of the absence of disorder-
induced broadening. The measured stress coupling
coefficients are recorded in Table VI.6. Column 3 of
this table gives the hydrostatic coupling coefficients.
Because the frequency shifts for a 1% linear strain are
on the order of the oscillator frequency itself, Eq. (5.19),
which assumes that the frequency shift varies linearly
with strain, is not particularly useful here.

The above results can be described by the anharmonic
oscillator model of (6.18). That is, third-order anhar-
monic coupling is assumed to be important for all reso-
nant modes. The lowest-order coupling that will pro-

A.S. Barker, Jr. and A.J. Sievers

duce a hydrostatic pressure shift is of the form

3 =% Var€4, (6.20)

where V, is the coupling constant, and eAlg:AV/V, the
hydrostatic strain.

The Hamiltonian for the system becomes
JC:(P2/2M*)+§(kO— VAeAlg)yz , (6.21)

where %, is the force constant of the unperturbed oscil-
lator. The effective force constant in the presence of
hydrostatic strain is

kett =k, =V, €
¢ 0 A4

so
Ak w? — w?
2r =X =Y
7 Va€a,, o (6.22)

At zero strain the anharmonic coupling coefficient, V,,
is related to the hydrostatic coupling coefficient, A, and
the resonant mode Griineisen constant, ¥, (5.18) by

(6.23)

For a variety of resonant modes the force constant
does vary linearly with strain as illustrated in Fig. 115.
Here KI:Ag™ is anomalous in this respect, for in addi-
tion to the linear contribution the resonant mode con-
tains a large quadratic dependence on strain. From the
experimental data it is projected that the frequency shift
for KI:Ag"* will reach a maximum value at 6% lattice
strain and then decrease for large lattice strains (Kahan
et al,, 1975). If one assumes that coupling to dynamic
strains is the same as to static strains, then for most
resonant mode systems linear coupling is sufficient,
while for KI:Ag* one should include quadratic coupling
as well. .

With the application of uniaxial stress along crystal-
lographic directions, the coupling of the resonant mode
excited state to lattice distortions of different symmetry
can be distinguished (Nolt and Sievers, 1968; Subashiev,

Molar Concentration of KBr Alloy

11.3%KI 10% KCI
T N T T T
|
I 14
|
30 .
e Centroid Frequency : @
T L O @wmax !
g : - ) FIG. 114, Li* resonant mode
- I 4 absorption frequency in KBr
Z‘ 20+ KT ] S alloys. The average lattice
g : = constant is calculated by using
3 _ m the Vegard relation [see Eq.
o o 2
d B 1 0 4% Na Br E (5.20)]1. After Clayman et al.
w I o (1967).
| <
10+ 1 —_
| . 3
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<
- ] ~
I
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FIG. 115. Linear dependence of the resonant mode force con-
stant on lattice strain. After Kahan et al. (1975).

1970). These coupling coefficients can be estimated
from the slopes of the absorption frequency versus ap-
plied stress data if the stiffness constants of the crystal
are known. The stress coupling coefficients for dis-
tortions of spherical, A, tetragonal and orthorhombic,
B, and trigonal, C, symmetry are given in Table VI.6.
The stiffness constants of the pure host crystal at 4.2°K
have been used to obtain most of these values. The
stiffness constants for most of the alkali halides are
contained in Table VI.7. A problem which has received
little attention to date is associated with modifying the
stiffness constants to account for a softening of the lat-
tice in the neighborhood of the impurity (Benedek and
Nardelli, 1968b).

The influence of local stress fields on resonant modes
has also been observed for plastically deformed crys-
tals. Busse and Haider (1970) have attempted to use the
resonant mode frequency shifts in NaCl:Cu® to probe
the local lattice distortion near dislocations. Shifts on
the order of 1 cm™ have been resolved and related to
the deformation.

b. Temperature dependences of resonant modes

One simple explanation of the temperature dependence
of the resonant mode intensity lies in the anharmonicity

TABLE VILI.7. Compliance constants of some ionic crystals at 4.2°K.
Sy 25 Si1— Si Saa

Crystal 107 °(kbar) ! 10~ 3(kbar) ™! 10~ 3(kbar)~! References?®
LiF 0.4775 1.216 1.54 2
LiCl 0.9421 2.629 3.715 1
NaF 0.6481 1.168 3.449 1
NacCl 1.253 2.169 7.513 1
NaBr 1.477 2.622 9.346 1
Nal 1.867 3.375 12.80 3
KF 0.974 1.608 7.485 1
KC1 . 1.691 2.330 15.08 4
KBr 1.907 2.75 19.7 5
KI 2.618 3.16 27.2 4
RbCl 1.787 2.74 20.3 1
RbBr 2.078 2.951 24.48 1
RbI 2.544 3.509 34.2 1
CsBr 1.816 4.163 10.0 6
CsI 2.313 5.144 12.1 6
CaF, 0.350 0.85 2.783 7
SrF, 0.447 1.23 3.023 8
BaF, 0.533 1.876 3.931 9

2The references for Table VL7 are the following:
1. Lewis, J. T., A. Lehoczky, and C. V. Briscoe, 1967, Phys. Rev. 161, 877.

. .
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of the resonant mode itself, i.e., terms such as x* in
the potential. These have been shown to be important
for the interpretation of some electric field experiments
(Clayman et al., 1971). Terms such as these will break
down the regular spacing of the harmonic oscillator
levels so that the 0—1 transition does not coincide with
the 1— 2 and higher transitions. If the shift in levels is
larger than the linewidth of the individual transitions,
then only the 0—1 transition contributes effectively to
the line strength and its intensity will decrease as the
ground state is thermally depopulated. Assuming that
the anharmonicity is not too large, so that we can still
use the harmecnic oscillator partition function, we find
for a one dimensional oscillator that

I(T)/1(0)=[1 - exp(~Aw/kT)} .

The temperature dependence of the nondegenerate
resonant mode in MnF,:Eu®" follows Eq. (6.24) very
closely (Alexander et al., 1970). In addition the 1 -2
transition has been identified as a line appearing about
1.5 cm™! higher in energy than the 0—~1 line. The total
integrated intensity of the main line plus the sideband
remains essentially temperature-independent as pre-
dicted by Eq. (5.12). Thus for MnF, the anharmonicity
of the resonant mode itself gives a simple, satisfactory
explanation of the temperature dependence of the absorp-
tion strength.

For a three-dimensional oscillator which would be
appropriate for the alkali halide case, the first excited
state is threefold degenerate but only one state is im-
portant for each polarization, thus

I(T)/1(0)=[1 — exp(~Zw/kT))*.

Line strengths have been measured for a number of
resonant modes, namely: KBr:Li" and KI:Ag® (Takeno
and Sievers, 1965); NaCl:Cu* (Weber and Nette, 1966;
Weber and Siebert, 1968; Alexander ef al., 1970);
Nal:Cl1~ (Clayman, 1971); and CsBr:T1* and CsI:T1*
(Genzel et al., 1969; Prettl and Siep, 1971).

The temperature dependences of the resonant mode
absorption of CsI:T1* and CsBr:T1" are shown in Figure

(6.24)

(6.25)
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116. For both systems the absorption strength is nearly
independent of temperature. Figure 117 shows a plot of
the absorption strength versus temperature for three
other resonant mode systems, KBr:Li*, NaCl:Cu”, and
KI:Ag*. The solid line for a simple three-dimensional
harmonic oscillator 0—1 transition, as given by Eq.
(6.25). The temperature scale has been normalized by
setting Zw =kT,. The temperature dependence of the
NaCl:Cu® resonance is very similar to that observed
for CsI:T1".

For these systems it appears that the explanation in
terms of the resonant mode anharmonicity does not work
except perhaps for KBr:Li" and Nal:C1~. (Previously
we have noted that such a model was successful in ex-
plaining the temperature dependence of NaI:Cl~.) Since
stress-induced shifts of these systems, which give
another measure of the anharmonicity, suggest that the
resonances in Fig. 117 are rather similar, it is some-
what unsatisfactory to accept an explanation for KBr:Li*
which fails for the other two. Also there is no evidence
for a resolved 1 -2 transition in any of these systems.
It appears that anharmonicity of the resonant mode it-
self is not the answer for these three alkali halide
modes.

The problem of anharmonic coupling of the resonant
mode to the lattice modes has been investigated by
Alexander ef al. (1970). They assumed a linear coupling
of the resonant modes to a Debye spectrum of modes.
The assumption implicit here is that the linear coupling
to dynamic strains (phonons) is the same as to the static
strain of the same symmetry. Using Eq. (5.14) they
found that the measured strain coupling coefficients were
a factor of 10 too small to explain the temperature de-
pendence data. Thus it appears that this model cannot
explain the temperature dependence either.

Alexander et al. (1970) were the first to realize that
linear coupling between resonant modes of different
symmetries was the appropriate anharmonic coupling
mechanism for understanding the anomalous tempera-
ture-dependent properties of infrared-active resonant
modes. It was previously inferred from thermal con-

Csl:Tr? 6K

W
T

N
T

1

77K

csaremt 1%

FIG. 116. Temperature de-
pendences for TI* resonant
modes in CsI and CsBr. The
impurity concentrations were
1.5%1072 mole% T1* in CsI,
and 6.4 1072 mole% TI* in
CsBr. After Prettl and Siep
(1971).
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ductivity measurements that an impurity, can induce an
infrared-active resonant mode, as well as inactive
modes of similar frequency. Such modes were observed
in KI:Ag* (Bauman and Pohl, 1965), KBr:Li* (Bauman
et al., 1967), and NaCl:Cu" (Caldwell and Klein, 1967).

Assuming one even mode with resonant frequency wg
as the appropriate coupling agent, Alexander et al.
(1970) have found that the strength of the infrared-active
resonant mode is given by

1(T) =exp(—Pz)Z ,(Cg), 6.26)

where
Pp=S, (@i, +1),
and
Cp=Specsch(iwg /2RT).

In Eq. (6.26), 7% denotes the equilibrium value of the
even resonant mode occupation number at temperature
T, and Sy is a dimensionless linear coupling parameter.
Alexander ef al, have calculated the Sg from the strain
coupling coefficients by assuming that the even mode in-
volves motion only of the defect nearest neighbors, so
that one is dealing with one of the A ,, E,, T,, modes of
an octahedron. Making an identification between the

I (T/I(0)

1 1
© 4 8 1.2

T/ To

FIG. 117. Normalized absorption strength I(7)/I1(0) versus
normalized temperature (T/T,) for three resonant mode sys-
tems, where kT =%w. O—NaCl:Cu'; O-KBr:Li*; and O—
KI:Ag*. The curve is for the 0 —1 transition of the three-di-
mensional oscillator model described by Eq. (6.25). After
Alexander et al. (1970).
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strain at the defect site and the displacement of the
nearest neighbors, they calculate the way the energy of
the resonant mode transition depends on the even-mode
normal coordinates. This in turn gives the following
values for Sy, corresponding to an even mode of par-
ticular symmetry, namely,

3A2

SO = fraga (6.27)
65°
S () = mhwia®’ (6.28)
and
2c*
S(L,) = (6.29)

Smhwpa®’

where m is the mass appropriate to the even mode, and
a is the nearest-neighbor distance. For each of the
three systems considered there is some measure of
agreement with the value of S from the temperature-
dependent data.

This linear coupling model also produces sidebands at
w *+ wy with strength ~S; compared to the resonant mode
strength. Such sidebands have been observed by Kirby
(1971) and Montgomery and Kirby (1971). Kirby (1971)
has attempted to fit the temperature dependence of the
line strength of the 7;, mode in KI:Ag®. Using the values
of the anharmonic coupling coefficients determined from
the strengths of the combination bands, his perturbation
calculation predicts that the integrated absorption
strength of the 7}, mode at 15°K should be 66% of the
low-temperature strength, while the experimentally
determined number is 20%.

The even resonant modes can contribute to the scat-
tering mechanism for line broadening and frequency
shift since they are really many modes rolled into one,
and excitations could be scattered from one normal mode
to the others. In this limit the temperature dependence
of the linewidth (which is the analogue of (5.27) is

ATy =gsinh™2(T,/2T), (6.30)

while the temperature dependence of the center frequency
(which is the analogue of (5.29) is

Awg =0[coth(Tz/2T)-1]. 6.31)

Alexander ef al. (1970) have obtained good agreement
over the entire temperature range studied for the line-
widths and center frequencies of KBr:Li", NaCl:Cu",
and KI:Ag”. Thus there appears to be a great deal of
internal consistency in the idea that the infrared-active
resonant mode is coupled most strongly to other reso-
nant modes of even symmetry. Although the tempera-
ture dependences have been described here under
“Anharmonic Coupling to the Lattice,” the current evi-
dence for most infrared-active resonant modes is that
such coupling is weak and the coupling to even-parity
resonant modes determines the resonant modes anhar-
monic behavior.

5. Resonant pair modes

A number of defect systems exhibit resonant pair
modes when the impurity concentration is on the order
of 1 mole %. Raman scattering from silver pairs in
NaCl were first observed by Mbller ef al. (1970). A
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sodium pair mode has been observed in the far-infrared
absorption spectrum of KC1 by Templeton and Clayman
(1971), and a fluorine pair mode in NaCl by Becker
and Martin (1972). The frequencies associated with
these and other pair modes are given in Table V1.1.

A large number of pair-induced resonant modes have
been associated with fluorine pairs in NaCl. A high-
resolution spectrum of this system is shown in Fig. 118.
Kirby (1969) showed that these absorption lines did not
change with electric field and hence were not tunneling
transitions. Becker and Martin (1972) have found that
the five lowest-frequency lines in Fig. 118 vary quad-
ratically with the impurity concentration. They have
concluded that two pair configurations are required to
explain all of the absorption lines. One configuration
has the impurities aligned along the [110] axes (D,
symmetry) and the other has the impurities aligned
along the [100] axes (D,, symmetry). If only impurities
themselves are assumed to vibrate appreciably, then
the D,, symmetry center will contribute three lines, and
the D,, symmetry center will contribute two lines.

Using the Green’s function method with a nearest-
neighbor force constant change, Haridason et al. (1973)
have calculated the infrared-active and Raman-active
pair modes for both of the configurations described
above. With a weakened nearest-neighbor force con-
stant, a qualitative identification of the infrared absorp-
tion lines has been possible. Five different Raman-ac-
tive resonant pair modes are predicted for fluorine
pairs but none have been observed to date.

The only positive identification of a pair mode sym-
metry has been made by Templeton and Clayman (1972).
They applied uniaxial stress to KC1l:Na single crystals
along high symmetry directions and observed that the
Na*-Na* pair mode frequency shifted for polarizations
parallel and perpendicular to the stress direction. From
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the observed shifts and the known quadratic dependence
on the line strength on Na*-ion density, the site sym-
metry of the pair mode was deduced. The stress shift
for the [100] oriented crystal is shown in Fig. 119 for
two different polarizations. There are seven different
possible symmetry systems associated with a defect
pair in a cubic crystal. For each of the symmetry sys-
tems, Kaplyanskii (1964) has tabulated the splitting pat-
terns and intensity ratios of the various components for
stress applied to the crystal along the [100], [110], and
[111] directions. A comparison with the measured
splitting patterns enabled Templeton and Clayman (1972)
to make the tetragonal assignment. Another interesting
feature of Fig. 119 is the kink in the frequency shift
versus stress graph. A similar kink for the [110] orient-
ed crystal was found, but not for the [111] oriented crys-
tal. The smaller slope at large strain suggests that the
lattice has undergone some change which stiffens the
lattice around the pair.

Jaswal (1972) has approximated the KCl:Na* pair
system by a molecular model consisting of two Na* ions
and their 15 nearest neighbors vibrating in an otherwise
rigid lattice. The reduction in the force constant re-
quired to fit the mode frequency of Templeton and Clay-
man was in fair agreement with the results of a first-
principles calculation by Templeton (1973) of the lat-
tice relaxation around the Na* ions.

Resonant pair modes have also been studied in
NaBr:Li* (Templeton,1973), where an isotope has been
identified in NaCl:K* F~ (Ishizama et al.,1972), where
a mode at 16.5 cm~' was measured, and in KI:Cl- (Ward
and Clayman, 1974).

6. Resonant modes in other ionic crystals

Resonant modes have been observed in KMnCl,: Br-
(Sievers,1966), in MnF, doped with europium (Alexander,
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T=2°K ﬂ
i Resolution = 0.2 cm™! n

TE T

- - FIG. 118. Far-infrared ab-
S S sorption spectrum of NaCl

‘o 32.2 ‘S with 0.08 mole% fluorine. The
s L 4 = absorption by isolated fluorine
3 3 ions occurs at 59.2 cm™1, All
© -— o other absorption lines are as-
s S sociated with fluorine pairs.
- g The sample temperature was
e 1% 5 4.2°K. After Kirby (1969).

2 H

<< <<

- 4
o | 1 i 1 0
30 40 50 60

Frequency (cm~l)

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fall 1975



S118

1967), and in CaF;:Y** (Campbell ef al.,1975). Impurity-
induced absorption is observed for MnF, doped with any
rare earth ion. Crystals doped with La, Nd, Sm, Eu,
Gd, Tb, Ho, Er, Tm, and Yb have been studied between
5 and 50 cm-!. Figure 120 (a) summarizes the experi-
mental results (Alexander, 1968). The width of the bars
is proportional to the linewidth observed. The absorption
associated with the antiferromagnetic resonance of the
host is not shown. Also not shown in Fig. 120(a) is the
continuous absorption, which roughly follows the density
of unperturbed phonon states.

Here Nd, Gd, Tb, Dy, Ho, and Er are expected to be
present as +3 ions in MnF,. Sm, Eu, Tm, and Yb may
be present as either +2 or +3 ions. In these latter sys-
tems, no information exists as to the valence state of
the rare earth impurity.

The spectra associated with Tm and Eu in MnF, are
shown in Fig. 120(b). MnF,:Eu®* has been the easiest
spectrum to interpret. Two modes have been observed
(also see Table V1.1). Both modes are nonmagnetic and
have been identified with lattice resonant modes. The
ratio of the absorption strengths for the two lines is
found to vary from crystal to crystal. Also no polariza-
tion effect has been observed for those two lines. These
experimental results suggest that more than one type of
center is being observed.

The Eu®* free ion is in a ®S,,, state, so the ion ground
state will not be greatly influenced by the local crystal
field and there will be no low-lying electronic states.
The Eu®* free ion is in a “F, state, so the ground state
is nondegenerate and cannot be split by the local crystal
field. The next electronic state is several hundred wave
numbers above the ground state, so again there are no
electronic transitions below 100 cm-*. The absorption
lines which stem from lattice modes must be associat-
ed with more than one kind of center. Presumably, both
Eu?* and Eu®* are present. The Eu®*ion must have a
compensating vacancy close to the Eu®* site producing
a dramatic effect upon the Eu®* resonant mode frequency.
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FIG. 119. Frequency shift versus stress for pair modes in
KCl1:NaCl. The stress is along the [100] crystal direction for
light along [100] and [010]. The unstressed line frequency is
43.92 em™1, After Templeton and Clayman (1972).
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Because of the similarity in chemical properties and
mass of all the rare earth ions, defect-induced modes
are expected to be related throughout the series but
with the added complication that low-1lying electronic
states will also occur in this frequency range. We can
expect that interactions between electronic states and
resonant modes will be explored in systems such as
these by tuning the electronic states with an external
magnetic field.

C. Tunneling states in alkali halides

A number of defect-host combinations produce iso-
lated dipoles in alkali halide crystals. The impurities
divide naturally into two groups: (1) those which have
intrinsic dipoles such as OH™, CN~, or NO;, and (2)
those in which the defect—host combination itself pro-

(A)
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FIG. 120. (a) Schematic representationof impurity-induced

absorption lines in MnF, doped with various rare-earth ions,
The 5 to 50 cm™! region was investigated. After Alexander
(1968). (b) Upper: The impurity-induced absorption spectrum
of MnF,:Tm3" at 4,2°K. Three sharp absorption lines are
found at 12.42#+ 0.1 cm™?, 18.60% 0.1 cm™!, ‘and 36.5+ 0.1 ecm™1,
By 34 °K these lines are no longer observable. Lowev: The
impurity-induced absorption spectrum of MnFZ:Euer at 4.2 °K.
The sharp line is observed at 16.05% 0.1 cm™!, The antiferro-
magnetic resonance of the host MnF, is not shown. After
Alexander and Sievers (1967).
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duces an effective dipole such as for Li" in KC1, F~ in
NaBr, or Ag® in RbCl. A number of reviews on this
subject have already appeared in the literature. Smolu-
chowski (1969) considered the experimental and theo-
retical progress on the properties of off-center sub-
stitutional ions up through (1968), and Krumhansl (1969)
outlined the problems associated with interacting tun-
neling systems. A discussion of the vibrational sideband
data which supports the models of librating molecules in
alkali halide crystals has been given in a review by
Sherman and Wilkinson (1973). However, the most com-
plete review on tunneling states associated with molec-
ular impurities and off-center substitutional impurities
in alkali halides has been published by Narayanamurti
and Pohl (1970). Since this latter review was completed
a number of studies on off-center ions have appeared in
the literature. In addition a great deal of work on sub-
stitutional molecular dipoles is in progress (Beyeler,
1974a,b; Liity, 1974a,b,c). As our review is con-
structed to complement the review by Narayanamurti
and Pohl (1970) it will reflect the bias of the more re-
cent published work toward off-center ions. For com-
pleteness, however, the frequencies of both low-lying
states of ions and of molecules are recorded in Table
VI.1.

1. The statics of off-center ions

Lombardo and Pohl (1965) were the first to observe
an electrocaloric effect for an ionic crystal doped with
a monatomic impurity, namely, KCl:Li*. As a similar
effect previously had been observed in KC1:OH~ (Kuhn
and Luty, 1965), Liombardo and Pohl (1965) and also
Sack and Moriarty (1965) suggested that the small Li*
ion might not be stable at the normal lattice site. It
would sit off-center in the cage of the nearest neighbors,
thus providing a dipole moment. This hypothesis has
proved to be correct (Narayanamurti and Pohl, 1970).

The electrocaloric effect, which is the electric ana-
logue of adiabatic demagnetization, is still the most
sensitive probe for determining whether or not mobile
off-center ions exist in crystals. The technique is to
apply a large electric field to the crystal while it is in
thermal contact with a heat reserVoir, then remove
first the reservoir and second the electric field, in that
order, and measure the associated temperature drop in
the sample due to paraelectric cooling.

A search for off-center ions for a large number of
defect—lattice combinations has now been made using
paraelectric cooling as a test. The results are sum-
marized in Table VI.8. Most of the systems give nega-
tive results. So far only three systems, KCl‘:Li",
NaBr:F~, and RbCl:Ag®, appear to contain mobile off-
center defects.

Matthew (1965) showed qualitatively that when a small
impurity ion replaces a large host ion in an alkali halide
the large decrease in the repulsive potential can lead to
an instability at the normal lattice site (see Sec. VI.B).
More detailed calculations by Wilson et al. (1967) and
Quigley and Das (1969) indicate that there may be ex-
ceptions to this rule, since the actual position of the ion
depends primarily upon a delicate balance of repulsive
and polarization energies. A large repulsive interaction
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tends to keep the ion in place, while a high polarizability
will tend to move it off the normal lattice site.

The procedure for theoretically determining the off-
center susceptibility of a particular defect-lattice com-
bination is straightforward. It involves a calculation of
the variation of the interaction-energy for small dis-
placements. The total energy of the crystal depends
upon both the displacements of the impurity and the dis- -
placements of the host ion from their lattice sites. The
sign of the determinant, made up from second deriva-
tives of the energies with respect to the impurity dis-
placement and host ion displacement, indicates whether
a particular configuration is stable or not. If all ions
except the impurity are permitted to relax then the total
energy of the crystal can be minimized and the host ion
displacements determined. The sign of the determinant
calculated for these host ion displacements and a small
impurity displacement along a major crystallographic
direction indicates whether the impurity is stable on the
ideal lattice site in a relaxed configuration.

The most elaborate calculation has been carried out by
Wilson et al. (1967). Up to 24 displacement parameters
were employed to account for relaxation of the surround-

. ings of the impurity. This enabled the experimentors

to allow the impurity and 26 additional ions (the first-,
second- and third-nearest neighbors) to relax. The
polarization energy of an additional 66 ions was calcu-
lated, as well as the polarization energy of the relaxed
ions. Their predictions for off-center behavior are
compared with the paraelectric cooling results in Table
VI.8. The correlation is about 50%. One explanation for
this poor agreement between theory and experiment is
that the impurity ion could be “frozen” in an off-center
position. At least in one case, KBr:Li", this has been
shown by stress measurements on the resonant mode
not to be the case (Nolt and Sievers, 1968).

Quigley and Das (1967, 1969) have also calculated the
off-center behavior of KCl:Li* and KBr:Li*. They al-
lowed the impurity and the nearest-neighbor positions
to vary and assumed the other ions to be held rigid and
unpolarizable. They performed minimum energy con-
figuration calculations for a range of lattice parameters
and found that the configurations were rather sensitive
to the particular lattice parameter chosen. We show
their calculated values for the energies of the impurity
and its nearest-neighbor cluster as a function of [111]
displacement, ¢, of the impurity ion in Fig. 121. For
KBr:Li* at 2°K, the central barrier between diametri-
cally opposite [111] wells is 2 meV, and the barrier be-
tween adjacent wells is 0.7 meV. Thus in KBr the Li*
ion is not even quasilocalized in an off-center well,
since the ion has enough zero point energy (~2 meV) to
overcome all barriers. Plots of the KC1:Li* configura-
tion energy as a function of the impurity displacement
¢ are shown in Fig. 121(b) for four KC1 lattice values.

"The figure illustrates that the off-center well depth at

2°K is only one-third of the room temperature depth.
Although the 2°K KCl1:Li* configuration is not as strong-
ly off-center as the room temperature configuration,
the well depth is still large enough to give an off-center
configuration, in qualitative agreement with experiment.
Quigley and Das (1969) also predicted that 7 kbar hy-
drostatic pressure would be sufficient to establish a
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strong on-center KC1:Li" configuration. The experi-
mental measurements on the pressure dependence of the
isotope effect by Kahan et al. (1975) agree with this pre-
diction. From all the evidence it now appears that the

introduction of low-temperature lattice constants into

the calculations by Wilson et al. (1967) would have pro-

duced better agreement with the paraelectric cooling

results in Table VI.8.

A.S. Barker, Jr. and A.J. Sievers

2. Dynamics of off-center ions

The important features of the low-lying vibrational
states associated with off-center ions are easily enu-
merated with a simple one-dimensional model in which
we have tunneling between two wells. The impurity is
assumed to move in a double-well truncated harmonic
oscillator potential, Fig. 122(a), where

TABLE VI.8. Off-center (?) ions in alkali halide crystals.

System Theory (References) 2 Paraelectric cooling (References) 2
KCl:e™ No (1)
KBr:H™ No (1)
NaCl: Li* Yes (2) No (3)
KCl: Li* Yes (2,4) Yes (1)
NaBr : Li* Yes (2) No (5)
KBr : Li" Yes (2), No (5) No (6,3)
RbCl: Li* s No (3,7)
NaCl:F~ No (5)
KCl:F~ No (2) No (6)
NaBr:F~ Yes (2) Yes (5, 6)
KBr:F~ No (2)

RbCl:F~ No (5)
KC_l : Na* No (2) o
RbCl1: Na* No (7)
KC1:Rb* . No (1)
RbCl:K* No (5)
NaCl: Cu* Yes (8) No (3)
KCl1: Cu* Yes (8) No (5, 3)
KBr : Cu* No (5)
RbCl: Cu* Yes (8) No (5)
RbBr : Cut Yes (8)

NaCl:Ag* No (8)

KCl:Ag* No (8) No (1)
RbCl:Ag* Yes (8) Yes (9, 10)
RbBr:Ag* No (8) No (9,10)
RbI:Ag* No (5)
CsBr:Na‘t No (3)

»

The references for Table VI.8 are the following:

1. Lombardo, G., and R. O. Pohl, 1965, Phys. Rev. Lett. 15, 291.

Wilson, W. D., R. D. Hatcher, G. J. Dienes, and R. Smoluchowski, 1967, Phys. Rev.

Wilson, W. D., R. D. Hatcher, R. Smoluchowski, and G. J. Dienes, 1969, Phys. Rev.

2.

161, 888.
3. Kapphan, S., 1970, Ph.D. Thesis, University of Utah (unpublished).
4. Quigley, R. J., and T. P. Das, 1969, Phys. Rev. 177, 1340.
5. Rollefson, R. J., 1972, Phys. Rev. B 5, 3235.
6. Lombardo, G., and R. O. Pohl, 1966, Bull. Am, Phys. Soc. 11, 212.
7. Lombardo, G., 1971, Ph.D. Thesis, Cornell University (unpublished).
8.

184, 844.
9. Kapphan, S., and F. Luty, 1968, Solid State Commun. 6, 907.
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Fmw?(x +x,?, x<0,
V= v (6.32)
MW (x = x,, x>0,

where w is the frequency of the particle in a single well
and the rest of the lattice is assumed to be rigid. We
express the lowest states as linear combinations of the
ground states |a) and |6) of the unperturbed harmonic
oscillators. The energies are given by the secular
equation

E,-E H, -SE
=0,
H -SE E,-E
where E,={a|H|a) = (b|H|b), H, =(a|H|6) and S = (a|b).
We get one symmetric and one antisymmetric solution,
with energies

E,=(E,+H,)/(1%S).

If the barrier between wells is large compared to the
zero-point energy, then S<<1. In this case the solution
can be simplified to

(6.33)

E,y=hw+d, (6.34)
where
0 =fiwxy(mw /T2 expl- (mw/f)x2] (6.35)

and 20 is the energy splitting due to tunneling.
With a perturbation, A, applied so that the two wells
become inequivalent, the potential has the form shown

(a) KBr:Li + (b) KCI:Li+
04+ .04+ 3.070
3.23
3.26
= 3.27 0.00
2 000 3293 :
o
[Vu]
T -o04f -04
LN
i
-os} -08
1 1 1
00 1 2 3 00 1 2 3

IMPURITY DISPLACEMENT § (LP units)

FIG. 121. Energies of the impurity and its nearest-neighbor
cluster as a function of the [111] displacement ¢ of the impurity
ion. The energies are measured relative to those of the corre-
sponding centrosymmetric configurations (¢ =0). (a) KBr:Li*
energies for the four lattice-parameter values indicated (in
units of A). 3.293 is the room temperature lattice parameter,
3.26 is the 2°K lattice parameter. (b) KCl:Li* energies for the
four lattice parameters indicated. 3.147 corresponds to 300 °K,
while 3.117 corresponds to 2 °K, After Quigley and Das (1969).
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in Fig. 122(b). The secular equation can be written as

Egp—-E  —A
:0,
-A E

e — E
and the energy splitting € between the two lowest levels
is

€ =2(6% +AZ)2, (6.36)

The effect of a large perturbation, A >0, is to nearly
localize the particle in one well, with only a small frac-
tion 6/2A of the wave function in the other well and the
energy difference between the two states determined en-
tirely by the perturbation.

Gomez et al. (1969) have generalized this model to the
three-dimensional problem. Three types of off-center
minima are considered: (1) six wells along the six [100]
axes (XY,), (2) eight wells along the eight [111] axes
(XY,), and (3) twelve wells along the twelve [110] axes
(XY,,). Each well is assumed to have a three-dimen-
sional oscillator form. Thus a given well can be de-
scribed by its three curvatures or force constants and
its distance 7, from the central lattice site. Each well
by itself corresponds to a three-dimensional harmonic
oscillator. If the wells were infinitely deep then these

a)

b)

_.xo

FIG. 122. Double-well harmonic oscillator for tunneling cal-
culation. (a) Wells equivalent (b) wells inequivalent. After
Rollefson (1972).
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individual well eigenstates would represent the eigen-
states of the off-center ion and there would be »n-fold
degeneracy (because of the »=6, 8, or 12 identical wells
of the XY,, XY, and XY, models). These individual
well states are called pocket states. If the wells are not
infinitely deep, the actual states of the system will be
linear combinations of the product states. These linear
combinations must transform according to the irreduci-
ble representation of the O, group. The important fea-
ture of the three-dimensional case is that more energy
levels occur than for the one-dimensional case. This
model is usually referred to as the “GBK model.”

The kinds of experiments which can be used to probe
the potential can be most easily visualized with the one-
dimensional model. From (6.35), the transition energy
varies exponentially with the impurity mass and also
with the lattice constant, so isotopic mass substitution
and hydrostatic pressure are important variables in ex-
ploring the potential. From (6.36), we see that uniaxial
stress and dc electric field can be used to tune the tran-
sition energy. With these parameters the symmetry of
the defect and its effective elastic and electric dipole
moment can be determined.

a. NaBr:F~

Rollefson (1972) has made a systematic study of the
NaBr:F- system using specific heat, paraelectric cool-
ing, thermal conductivity, and dielectric relaxation
measurements. As yet no optical experiments have
been reported. He found from measurements of the
dielectric constant under applied stress that the fluorine
ion tunnels between potential minima displaced from the
lattice site in the (110) direction. The low-temperature
specific heat contribution is found to be much broader
in temperature than that given by the GBK model of
Gomez et al. (1967). In addition the relaxation rate of
the impurity ion is at least three orders of magnitude
slower in NaBr:F- (10° sec-?).than what had been
previously observed in KCl:Li* (Narayanamurti and
Pohl, 1970). By taking into account the effect of dc

A.S. Barker, Jr. and A.J. Sievers

lattice strains on the tunneling motion, Rollefson has
obtained good agreement with the NaBr:F~ specific
heat data. Thus NaBr:F- represents a tunneling sys-
tem in the limit of small tunneling probability, S, while
KC1L:Li* is characteristic of a system with a large
tunneling probability. )

b. RbCl:Ag*

Controversial results have existed for some time on
the properties of this lattice defect combination. Orig-
inally Dreybodt and Fussgaenger (1966) suggested that
displaced Ag* impurities could explain some features
of the temperature dependence of the Ag* uv absorption
band in RbCl. Nolt (1967) measured the infrared absorp-
tion spectrum of RbCl:Ag*, finding three absorption
lines at 21.3, 26.5, and 36.7 cm-'. He also observed
stress-induced dichroisms consistent with an off-center
defect. The stress effect for the pressure along a [100]
axis is shown in Fig. 123. The increase in the integrat-
ed absorption in the vicinity of 36 cm-~! is approximate-
ly twice as large as the decrease that occurs for the
two lower-frequency lines.

Paraelectric cooling was first observed in RbCl:Ag*
by Kapphan and Liity (1968). They concluded that the
defect had a [111] orientation. Bridges (1972) observed
the paraelectric resonance spectrum and obtained an
upper limit of 6~0.1 cm-?! for the tunneling splitting.

The far-infrared dichroisms associated with stress
and electric field were studied and analyzed by Kirby
et al. (1970) and found to be compatible with a [110] de-
fect rather than with a [111] defect. They found that the
system can be understood in terms of the classical
limit of the GBK model (Gomez et al., 1967). Because
the tunneling splitting is so small, it can be ignored in
considering the far-infrared absorption spectrum. One
treats the twelve equivalent pocket sites expected for a
[110] defect. In each of these sites the vibrational mo-
tion of the impurity occurs in a local potential well of
C,, symmetry, so that the first excited state consists of

T T T 1 T T
RbCl: AgCl
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FIG. 123. Stress-induced
dichroism in RbCl:Ag". The
increase in the integrated ab-
sorption in the vicinity of 36
em™!ig approximately twice
B as large as the decrease that
occurs for the two lower-fre-
quency lines. The sample
temperature is 2°K. After
Nolt (1967).
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three levels corresponding to A,, B,, and B, irreducible
representations of the C,, symmetry group. The optical-
ly active transitions between the ground state and these
three excited state levels give rise to the three absorp-
tion lines. The direction of field- and stress-induced
absorption changes in the three components of the far-
infrared spectrum agree qualitatively with the expecta-
tion of reorientation dichroism of [110] oriented elect-
ric and elastic dipoles.

The details of the dynamics of the above paraelectric
defect have been explored by Kapphan and Liity (1972)
using the electrodichroism of the Ag* uv absorption
both in RbC1 and in RbBr. The static electro-optic
measurements reveal for both systems paraelectric
behavior from [110]-oriented dipoles, with dipole moment
values of 0.78 and 0.95 eA for RbCl:Ag* and RbBr:Ag*,

field along [100], [111], or [110] was switched on, then
off, and decay curves measured for both RbCl:Ag* and
RbBr:Ag* function of temperature. Each point was ob-
tained from a time-dependent absorption curve by taking
thetime value at which the absorption had changed by 1/e.
The complex relaxationbehavior can be quantitatively ac-
counted for by a[110] dipole which is based on predomi-
nance of 90° reorientation over 60° reorientation. This
behavior, which cannot be explained for a dipole in an
octahedral crystal field, is attributed to dressing of the
dipoles by a strong E, lattice distortion, which allows
easy rotation within a {100} plane, but inhibits the change
of this plane by 60° dipole reorientation. The observed
temperature and field dependence of the relaxation rates
indicate reorientation by tunneling processes at T> 5°K,
and classical thermally activated reorientation at higher

respectively. Measurements of the time-dependent temperature.
electrodichroism after rapid changes of the electric "
field show the existence of two relaxation processes ¢. KCI:Li

whose rates differ by several orders of magnitude.
Figure 124 summarizes the results of a large set of
experiments in which the electrodichroism time depend-
ence of an optic band (A-band) was studied. An electric

The physical properties of the four-level tunneling
multiplet in KC1 :Li*. have been reviewed by
Narayanamurti and Pohl (1970). Some additional work
has been completed since that time and will be discuss-
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FIG. 124. Optical relaxation time of Ag* in RbBr and RbCl measured for different field directions and switching operations, as
indicated, as a function of temperature, plotted logarithmically against 1/7 (left-hand side) and against InT (right-hand side).
During temperature variation, the electric field strength was adjusted to keep approximately a constant Boltzmann factor over the
whole range (pE/kT=2.0%0.05 for RbBr, and pE/ET=3.0%0.7 for RbCl). After Kapphan and Liity (1972).
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ed here. Extending the work of Alderman and Cotts
(1970) on the stress-induced quadrupole splitting of
"LiNMR in KCl, Irwin and Cotts (1971) measured the
electric-field-induced quadrupole splittings of the
"LiNMR. The results are in agreement with the [111]
tunneling model of Gomez et al. (1967), with eight equiv-
alent off-center potential minima.

Larson and Silsbee (1972) investigated stress effects
in the paraelectric resonance spectrum and found that
the tunneling model with equal tunnel splittings adequate-
ly describes the experimental data. Kirby et al. (1970)
measured the °Li and "Li infrared absorption spectrum
for applied electric fields up to 130 KV/cm, producing
tunneling transitions on the order of 10 cm-*. In
all cases they found that the tunneling levels are well
described by the model of Gomez et al. (1967), assum-
ing a Li* dipole moment of 1.14 eA for both °Li and "Li.

Hetzler and Walton (1970, 1973a, 1973b) have measured
the energy spacing of the four-level tunneling multiplet with
an ingenious phonon spectrometer. They find that the four
energy levels associated with the multiwell potential
consisting of eight wells in the [111] directions are not
equally spaced, as had been previously assumed. If
tunneling along the cube edge predominates, then equal-
ly spaced levels are to be expected; however, if
tunneling along a face or body diagonal is important, the
level spacing will not be equal. These experimental
results were the first indication that tunneling through
the body diagonal was important for KCI1:Li*.

Excited state transitions of the KC1:Li* system around
40 cm-* were first observed by Sievers (1969). Kirby
et al. (1970) have studied the temperature dependence
and isotope effect of these excited states. The most
surprising feature of the higher levels in KCI1:Li* is
that they show a negative isotope shift. The experiment-
al data is shown in Fig. 125.

Kirby et al. have attempted to explain the double
feature in the absorption spectra of Fig. 125(a) by as-
suming the symmetry of the local oscillator is C,,.
Under these conditions the oscillator cannot be charact-
erized as spherical, so the resonant mode excited state
is no longer triply degenerate. The excited state con-
sists of two levels, a singlet A, and a doublet E. The
next step in the analysis is to take into account tunnel-
ing of the impurity ion between the equilibrium sites.

If the small tunneling rate (high barrier) approximation
is also assumed to be valid for the resonant mode ex-
cited state levels, then the tunnel transitions are as
shown in Fig. 125(b). This model explains some of the
temperature dependence features of the absorption
spectrum, but does not explain the negative isotope
shift.

Harrison et al. (1968) have used the Devonshire model
to describe the 40 cm~* band. This model is equivalent
to the resonant mode model if we consider only the en-
ergy levels in the v, excited state multiplet, in Fig.
125(b), presumably by assuming v, > v,. The use of the
Devonshire model has an advantage, namely that it can
take into account the changes in transition probability
which occur because the excited state is not in the ex-
treme tunneling limit. This model tends to make the
isotope shift smaller, but it does not make it negative.

Pandey et al. (1973, 1974) have attempted to explain
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these results by introducing a model in which the far-
infrared lines correspond to translational motion of the
impurity in the matrix cage. Any departure from the
single harmonic oscillator isotope effect they identify
with coupling of the impurity motion to the lattice motion
through the rotation—translation coupling effect (which
is described in Sec, VII) and through the anisotropic
part of the crystalline field. They are able to fit the
observed transitions, but in addition predict another
absorption line at 26.7 cm-'. They claim this transition
has been observed, but in fact no absorption line as-
sociated with isolated KC1:Li impurities has ever

been reported in this frequency region (Kirby et al.,

1970; Kahan et al., 1975).

The transition region where the Li* ion is at the
normal lattice site in KC1 has been studied by Kahan
et al. (1975). The frequency shifts produced by hydrosta-
tic pressure have been measured for both tunneling
and excited state modes. The tunneling mode (1.15 cm~!
for °Li at zero strain) increases to 30 cm-?! at 1.1%
strain. These results are shown in Fig. 126. A second
line close in frequency to the tunneling line is identified
with another transition within the tunneling multiplet,
indicating that the four tunneling levels in the ground
state manifold are not equally spaced, confirming the
results of Hetzler and Walton (1970). The 40 cm-*
absorption band splits into three lines with increasing
hydrostatic strain.

The isotope shift associated with the tunneling transi-
tion was also measured as a function of lattice strain
and is shown in Fig. 127. For large strains the isotope
shift in KC1:Li* is about the same magnitude, 8%, as has
previously been found for KBr:Li* at zero strain. For
KBr:Li* at high strain the isotope shift is less than 3%
(Kahan and Sievers 1971).

In analyzing their results Kahan et al. (1975) note that
the GBK model is inappropriate for handling states near
or above the potential barrier, as it relies on a pertur-
bation calculation employing the tunneling matrix ele-
ment between adjacent wells. Instead they use the same
double harmonic oscillator potential but calculate the
energy levels directly. This potential fails to describe
adequately the pressure dependence of the five absorp-
tion lines in Fig. 125, even at relatively low strains.
The potential becomes too close to a harmonic oscillator
too quickly to explain the higher-frequency lines as the
potential is adjusted to the frequency of the tunneling
mode. They find that it is possible to fit the data at
zero strain with almost any double well potential by
varying its parameters in an appropriate manner. The
presence of a large barrier is much more significant
than the details of the potential. They conclude that the
more anharmonic square well with a square barrier is
a better model, in that it fits the data over a larger
strain interval.

The square well model breaks down when the strain is
increased to 0.6%. The Li" ion in KCI1 is on-center by
this point, having achieved the new configuration at
roughly 0.5% strain. A detailed comparison of the ex-
perimental results for KC1:Li* and KBr:Li* demon-
strates that KCl:Li* at 0.65% strain is almost identical
to KBr:Li* at zero strain. The higher-frequency
transitions in this limit correspond to overtone transi-
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FIG. 125. (a) Isotope effect
for the resonant mode excited
state in KC1:%Li; "Li. (b) En-
ergy-level scheme resulting
from the extension of the [111]
tunneling model to the resonant
mode excited states. The ar-
rows indicate the optically ac-
tive transitions. After Kirby
(1969).
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FIG. 126. Strain dependence of the KC1:®Li absorption fre-
quencies. The three high-frequency lines are not resolved at
zero strain. The sample temperature is 4.2 °K. The error
bars show the estimated error in the pressure measurement.
After Kahan et al . (1975).

tions of an anharmonic oscillator.

No model has been found which fits the isotope shift
and the five transition frequencies over the entire strain
interval. Apparently this combination of experimental
probes is particularly sensitive to the specific form of
the potential. Experiments such as these could provide
a means of deriving a better semiempirical repulsive
potential.

The influence of electric dipole interactions for high
concentrations of Li in KC1 has been studied by Fiory
(1971). He observed a maximum in the dc dielectric
constant due to the dipoles at a temperature which is
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FIG. 127, Strain dependence of the KCl1:Li* isotope effect
for the lowest A;; — T, transition. Here Aw equals w(®Li)
—w("Li) and is divided by the average of the two frequencies on
the ordinate. After Kahan et al. (1975). .

proportional to the average interaction energy. A rem-
nant polarization is observed at low temperatures which
is caused by parallel-aligned pairs of dipoles experi-
encing a reorientation barrier. There is the possibility
of polarization waves analogous to spin waves, although
none have been observed; presumably they are heavily
damped.



VII. IMPURITIES IN VAN DER WAALS CRYSTALS

A. Introduction

In 1954 Norman and Porter and also Whittle et al.
proposed that argon and nitrogen be used as matrix sup-
ports for the isolating of molecules and photoproduction
of free radicals. In the ensuing interval a great deal of
effort has been directed along these lines. Although
matrix isolation has emerged as a general method, its
use in the spectroscopic determination of the structure
of free radicals is still the most important chemical
application. A complete discussion of the early studies
can be found in Bass and Broida (1960). Substantial
progress has been made in recent years in experimental
techniques (reviewed by Hallam and Scrimshaw, 1973),
infrared measurements on monomers, dimers, and
trimers, etc. (reviewed by Hermann, 1969, and by
Hallam, 1973), and in the theoretical understanding of
static matrix effects on molecular normal modes (re-
viewed by Hermann, 1969, and by Barnes, 1973). In
the large body of spectroscopic measurements describ-
ed above, most deal with a disordered specimen, that
is, the material under investigation was formed by con-
densing the molecular and the matrix gas on a cold sub-
strate at liquid helium or liquid hydrogen temperature.
The spectroscopic properties of the molecule stand out,
but the dynamics of the matrix defect system is not ob-
served. Our review will not treat this work, but instead
concentrate on a small subset of papers where some
evidence for local, band, resonant modes, or tunneling
states, have been found.

The noble gases form face-centered-cubic crystals at
low temperatures. This crystal binding is caused by the
weak short-range attraction between these atoms with
spherical charge distributions due to fluctuating multi-
pole or van der Waals forces. The 6-12 potential given

by

12 6
Ua,,=4e[(° ) —(" ) },
rab yab

where € and o are the Lennard-Jones parameters, has
been widely used as a representation of the attractive
(van der Waals) and repulsive interactions, respective-
ly, between two atoms separated by 7,,. Such a repre-
sentation has been used by Horton and Leech (1963),
Nijboer and DeWetle (1965), and Grindlay and Howard
(1965) to calculate the dispersion curves and frequency
spectrum of rare gas solids at 0 °K. Neutron scattering
techniques have been used to measure the phonon dis-
persion relations for a number of noble gas solids.
Measurements have been made on the dispersion curves
of krypton by Daniels (1967); of argon by Egger et al.
(1968) and Batchelder et al. (1970); of neon by Leake
et al. (1969); and of helium by Minkiewiez et al. (1968).

The density of states for argon calculated from the
results of the inelastic neutron scattering of Batchelder
et al. (1970) is shown in Fig. 128(a). Their dispersion
curve measurements were consistent with a Lennard-
Jones potential where the parameters were determined
entirely from other macroscopic measurements on ar-
gon.

(7.1)

B. Monatomic impurities

Jones and Woodfine (1965) first investigated the far-
infrared absorption in solid argon containing the heavier
atoms krypton or xenon as an impurity. They used sam-
ples up to 25 cm in path length, condensed from the va-
por in low-temperature absorption cells. Between 20
cm™ and 140 cm~! they found some frequency-independ-
ent absorption in pure argon, which they attributed to
scattering at bubbles or grain boundaries, but there was

e FIG. 128. (a) Density of
states calculated from the re-
sults of inelastic neutron scat-
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no selective absorption attributable to two-phonon or
multiphonon processes or to defect-induced absorption
caused by vacancies. However, in argon containing
fractions of 3 to 2% krypton or $% xenon there was ab-
sorption distributed over a broad frequency region a-
round 60 cm™. The absorption strength was roughly
proportional to the amount of impurity present, and
larger for the heavier impurity. These workers en-
countered considerable difficulty in growing and cooling
the large transparent specimens required for far-in-
frared transmission studies. More recently, measure-
ments have been made on specimens grown at high pres-
sure by Obriot et al. (1970). Quantitative comparison of
their results with the theoretical models is made diffi-
cult by the elevated temperature of their measurements
(77°K). Finally, Keeler and Batchelder (1972) have
measured the far-infrared absorption in solid argon
with krypton and neon impurities. The impurity-induced
absorption coefficient for 1% krypton in argon is shown
in Fig. 128(b). A comparison with the density of states
in Fig. 128(a) illustrates that the impurity produces a
weak infrared activation of the host phonon spectrum
due to the difference in polarizability of the defect and
host atom.

Detailed calculations of the impurity-induced absorp-
tion in rare gas matrices were first made by Hartmann
and Elliott (1967), who treated both the lattice and the
defect in the shell model approximation. They did not
change the nearest-neighbor force constant of the de-
fect, but only its core shell force constant and its mass.
Their calculated absorption curve is given by the dash-
ed curve in Fig. 128(b). Martin (1967) has calculated
the absorption coefficient for Ar:Kr by using a shell
model in describing the lattice dynamics of the host
atoms. The substitutional defect differs explicitly in its
mass and nearest-neighbor force constant. Martin’s
calculated absorption coefficient, shown in Fig. 128(b)
by the dash-dot curve, also is in fairly good agreement
with the experimental results.

Keeler and Batchelder (1972) have also measured the
absorption coefficient of 0.15% neon in argon at 2°K.
The absorption for this lightly doped specimen was

A.S. Barker, Jr. and A.J. Sievers

much smaller than for the krypton samples and no broad
absorption bands were observed between 10 and 100
cm~!. They did observe a strong absorption peak at 28
cm-! which is shown in Fig. 129, (A local mode had
been predicted by Hartmann and Elliott). In retrospect
it is possible to understand the position of this low-
frequency resonant mode if one assumes that the much
larger argon atoms do not relax in towards the smaller
neon atom. Cohen and Klein (1974) can get essentially
exact agreement with the experimental data by adjust-
ing the nearest-neighbor force constant of the impurity
atom. The resulting configuration is reminiscent of
that described in Sec. VI for KBr:Li, that is, a delicate
balance occurs between the repulsive forces, which
stabilize the neon atom at the normal lattice site, and
the polarization forces, which tend to destabilize it.

For neon almost complete cancellation occurs. Along
these lines it is interesting to note that no absorption
was observed for Ar:He between 10 and 100 cm~!. This
negative result can be easily understood if the He atom
resides in an off-center configuration, since tunneling
transitions appropriate to this configuration would occur
at frequencies much smaller than 10 cm~!. The reader
is referred to Sec. VI for a discussion of such tunneling
states in ionic crystals. Although the work on monatom-
ic defects in rare gas matrices is not so extensive as for
alkali halides, the same pattern is emerging, i.e., the
dominant factor which determines the frequency of local
modes, resonant modes, or tunneling states is the ex-
tent of the lattice relaxation around the impurity, not
the difference in mass between the impurity and the
host atom.

C. Molecular impurities
1. Homonuclear

The fundamental near-infrared absorption band of H,
and D, has been studied in dilute solutions of Ar:H, by
Kriegler and Welsh (1968) and of Ar:D, and Kr:H, by
DeRemigis and Welsh (1970). Transparent H,- doped
argon and krypton crystals, suitable for observing the
near-infrared spectrum, were produced by slow cooling
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Impurities in van der Waals crystals

of an absorption cell containing liquid argon or krypton
in which hydrogen had been dissolved under moderate
pressure. Samples 10 to 20 cm in length were prepared
in this manner.

The experimental results for krypton doped with 1.21
mole% H, is shown in Fig. 130. The instrumental re-
solution is 3 cm~!. The maxima in this spectrum are
grouped into three sets of lines, each falling in the -
region of one of the H, transitions, @, S(0), and S(1),
corresponding to the vibration-rotational transitions.
with J=0-J=0,J=0~J=2, and J=1-J =3, respective-
ly. The positions of the @(0), S(0), and S(1) transitions
for the free molecule are marked on the frequency axis.
The structure found from Ar:H, and Ar:D, is essentially
the same. Each of the three H, transitions gives rise to
the same symmetrical pattern of five lines, consisting
of a central component g, flanked by a higher-frequency
pair of components, ' and 7, and a lower-frequency
pair, p’ and p. The g components are associated with
purely H, transitions (zero phonon lines) and the other
components consist of combinations of the H, transitions
with transitions of the lattice vibrational spectrum.
Both local modes and resonant modes have been observ-
ed, and the frequencies are recorded in Table VII.1.

5129

The local mode isotope shift is

Wy MD 1/2
2 1 anf—=2 -
w5 =14 <Aﬁx ) 141,

2

in good agreement with the isotope shift expected for the
one-oscillator model. The resonant mode has a mass
shift of

1/2.
9Ax=133m(Mk0 -1.44.
Wkr Map

Again good agreement is found with a one-oscillator
model. There is another interesting feature associated
with the mass effect. The local mode shift given above
is that expected for a mode of odd symmetry, while the
resonant mode shift is that expected for a mode of even
symmetry. The observation of both symmetry types in
the same sideband spectrum implies that the impurity
site cannot have inversion symmetry, hence cannot be
at an argon site in a fcc. lattice. Kriegler and Walsh
(1968) have already noted that the inversion symmetry
at the impurity site cannot explain the presence of the
zero phonon lines, and they suggested that the structure
of solid argon may be hcp. in the neighborhood of the H,

Ol
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1 FIG. 130. (upper) Absorp-
tion band associated with the
fundamental vibration of hy-
drogen in solid krypton. The
Kr contained 1.21 mol% H,
and a 40 cm path. @, S(0),
and S(1) correspond to the vi-
bration-rotational transitions
for a free H, molecule with
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TABLE VIL.1. Impurity activated lattice absorption in noble gas matrices.

Mode frequency [Temp.
Matrix

(em™)

°K ) Method of observation, 2 References,? Comments

Ne (substitutional)

Ar 28 (2)

H, (substitutional)

Ar 22,112 (82)
Kr 16,106 (82)
D, (substitutional)

Ar 22,79 (82)

N, (substitutional)
Ar 39,70 (55)

HCI1 (substitutional)

Ne v 93 (--)
Ar 75 (12)
, 73 (--)
K 63 (12) -
62 (--)
Xe 45 (7)
© 49 ()
DC1
Ar 72 (--)
Kr 58 (--)
Xe 49 (--)
HBr
Ar 78 (12)
72 (--)

A,1; Resonant mode

V,2; Resonant mode, local mode
V, 3; Resonant mode, local mode

V, 3; Resonant ndode, local mode
V, 8; Band mode, local mode

; Deposition at liquid He temp.

,6; Average frequency
; Deposition at liquid He temp.

; Deposition at liquid He temp.

,7; Average frequency

A4

V,5

A4

V,5,6,7; Average frequency

A4

vV,6

A, 4; Deposition at liquid He temp.

A, 4; Deposition at liquid He temp.
A, 4; Deposition at liquid He temp.
A, 4; Deposition at liquid He temp.

5
,4; Deposition at liquid He temp.

o

1.
2.
3.
4.
5.
6.
44, 3216.
7.

Key: A =absorption, V =vibrational side band.

The references for Table VII.1 are the following:

Keeler, G. J., and D. N. Batchelder, 1972, J. Phys. C 5, 3264.

Kriegler, R. J., and H. L. Welsh, 1968, Can. Journ. Phys. 46, 1181.

De Remigis, J., and H. L. Welsh, 1970, Can. Journ. Phys. 48, 1622 (1970).
Katz, B., A. Ron, and O. Schnepp, 1967, J. Chem. Phys. 46, 1926.

Bowers, M. T., and W. H. Flygare, 1966, J. Chem. Phys. 44, 1389.

Verstegen, J., M. P. H. Goldring, S. Kimel, and B. Katz, 1966, J. Chem. Phys.

Keyser, L. F., and G. W. Robinson, 1966, J. Chem. Phys. 44, 3225,

8. De Remigis, J., H. L. Welsh, R. Bruno, and D. W. Taylor, 1971, Can. Journ.

Phys. 49, 3201.

impurity. Supporting evidence is based upon the observ-
ations of Barrett ef al. (1965, 1966), who found that
under certain circumstances, especially in the presence
of some impurities, a finite fraction of the argon crys-
tallized in the hcp. structure.

The near-infrared band associated with N, dissolved in -

solid argon has been studied by DeRemigis ef al. (1971).
The fundamental absorption band was measured for a
few different N, concentrations in the range 0.95 to 2.2
mole%. Typical profiles are shown in Fig. 130 for the
two extreme temperatures used, 55°and 81°K. The
spectrum at 55°K consists of four maxima @,, @, Qp
and QP) situated more or less symmetrically about the
calculated frequency of the band frequency v, for the gas
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phase. A weak central component @, occurs close to v,.
The nomenclature corresponds to that used above to de-
scribe H, and D,.

In order to determine whether or not rotational motion
of the N, molecule contributes to the sideband structure,
DeRemigis et al. have also examined the backscattered
Raman spectra from 20-cm long samples. They found
no evidence of a rotational spectrum in N,-doped argon
even though a very strong rotational spectrum was ob-
served when an equivalent amount of N, gas was put in
the cell. They conclude that the spectrum consists of
combination bands of lattice modes and the N, vibrational
transition. The two prominent features are identified
with a local mode at 70 cm~! and a band mode at 39 cm-?!.
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Again, to explain the appearance of the zero-phonon N,
vibrational line, it is necessary to assume that the local
symmetry around the defect is not fcc. but instead hep.

2. Heteronuclear
a. Near-infrared

The remaining investigations described in this section
have not used ordered rare gas matrices but instead a
dilute concentration of a molecular gas-rare gas mix-
ture deposited as a film on a low-temperature substrate.
The near-infrared transmission spectra of these films
have shown that many molecules still rotate to some
extent at low temperatures. Such molecules are methane
(Cabana et al., 1963; Cabana et al., 1965; Frayer and
Ewing, 1967; Hopkins et al., 1968), water (Catalano
and Milligan, 1959; Redington and Milligan, 1962, 1963;
Glasel, 1960; Robinson, 1963), HC1 and DC1 (Schoen
et al., 1962), NH, (Robinson and McCarthy, 1959), and
HF (Robinson and Von Holle, 1966; Bowers et al., 1966).
The rotational transitions observed for hydrogen halide
molecules trapped in noble gas matrices are given in
Table VII.2. An even larger number of trapped species
do not rotate in rare gas matrices (Hallam, 1973).

To decide qualitatively whether or not a molecule ro-
tates in the matrix, one makes an analogy with the gas
phase spectra. The energies for the vibrational-rota-
tional transitions in HCl gas are shown in Fig. 131(a).
At room temperature two bands, the P and the R band,
are observed as shown in Fig. 131(b). In the solid if the
molecule exhibits only small deviations from the P and
R branch of the gas phase then the crystal barrier op-
posing rotation can be assumed small. Molecules with
rotational energies much less than the barrier height
will exhibit a strong @ (no rotation) branch and weak P
and R branches. In the limit of a large barrier the ro-
tational energy levels must reduce to librational energy
levels, as was first indicated by Pauling (1930) and ex-
tended by Devonshire (1936) to diatomic molecules in an
octahedral cage.

One of the best illustrations of a trapped molecule
which still rotates at low temperatures was obtained by
Schoen et al. (1962). They measured the near-infrared
absorption spectrum of HC1 in solid argon matrices at
4°and 20°K and concluded that the observed spectral
features were consistent with the existence of quantized
molecular rotation in the matrix. Lines in the matrix
spectra which correlate with the R(0) and P(1) transitions
of gaseous HC1 were identified, and their reduced sep-
aration, when compared with the free molecular transi-
tion, seemed to imply a hindrance to free rotation as'a
consequence of a barrier created by the local environ-
ment. These preliminary results served as a starting
point for many experimental and theoretical studies of
hydrogen halides in rare gas matrices.

A number of papers have appeared in which the
stretching vibration frequency region of hydrogen ha-
lides has been measured with some precision. In the
first of these, Bowers and Flygare (1966) studied the
near-infrared spectrum of HCl1, DCl, HBr, and DBr;
Verstegen ef al. (1966) measured the spectrum of HC1
in Ar, Kr, and Xe; Keyser and Robinson (1966) mea-
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sured the infrared spectrum of HC1 and DC1 in Kr and
Xe, and Mann et al. (1966) obtained high-resolution
spectra on HC1, DC1, HBr, and DBr in Ar and Kr.

The spectrum of HC1 (with chlorine isotopes in natural
abundance) trapped in Ar at 20 °K and 4.2 °K is shown in
Fig. 132. The R(0) and P(1) transitions can be identified
from the temperature dependence of the spectrum. From
these and other more recent studies we have compiled
in Table VII.2 the measured 3[R(0) — P(1)] frequencies
for hydrogen halides. {For a free rotor the lowest-fre-
quency rotational transition, J=0—~J=1, is approximate-
ly equal to 3[R(0) —P(1)].} The predicted lowest energy
rotational transition from the near-infrared results is
compared in column 5 of Table VII.2 with the experimen-
tally measured far-infrared frequency (column 6) for
the molecule in a rare gas matrix.

b. Far-infrared

Far-infrared absorption studies have been made on
three of the hydrogen halides in rare gas matrices,
namely, HF, DF, and HCl. In the measurements on
HF and DF by Robinson and Van Holle (1966) and Mason
et al. (1971) it was found that the far-infrared absorption
frequency corresponded almost exactly to that expected
for a pure rotation spectra in Ne. As the experimenters
proceeded to heavier matrices the rotational transition
for HF increased in frequency, while for DF no such
systematic change was observed. Also in most of these .
heavier matrices the rotational transition was observed
to be split. (They also observed doublets of comparable
intensity in the mid-infrared vibrational spectrum as
well). One such far-infrared doublet is shown in Fig.
133 for Ar:HF. The frequencies of the rotational tran-
sitions are recorded in Table VII.2.

The far-infrared data on HCl is somewhat uneven.
Barnes ef al. (1969), in an interferrometric study of
small molecules in Ar matrices, determined the spec-
trum of Ar:HCI from 8 to 120 cm-!. They observed an
absorption line at 18.6 cm~! which they assign to the
J=0—-J=1 transition of HCl. This value is in good
agreement withthe near-infrared results recorded in Table
VII.2. Von Holle and Robinson (1970) have measured
the spectrum of HC1 in solid Ne, Ar, Kr, and Xe. In
Ar at 18 cm~! theyfind a doublet witha splitting of 0.8
cm™!, whileinKr theyfindabroadlineat19 cm-. These
experimental results are shownin Fig. 133. The Xe:HC1
spectrum showed one wing of a line that lies just below the
16 cm-~! limit of their grating spectrometer. No absorp-
tion was observedfor Ne:HCl. Inspection of Table VII.2
shows that qualitatively all of these results are consistent
with the near-infrared assignment of anearly free rotor.

A number of other absorption bands in Ar:HC1 have
been observed in the far-infrared. The interpretation of
some of these additional bands is still not clear. We
have brought together the different assignments which
have been proposed in Table VII.3. Much of the confu-
sion in the interpretation of spectra appears to arise
from H,O contamination. Mason ef al. (1971) have noted
that H,O lines always appear in premixed gas samples.
They eliminated this impurity by a simultaneous spray-
on technique in which rare gas passes directly from a
molecular sieve trap to the cooled window.
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TABLE VII.2. Rotational transitions of diatomic molecules trapped in noble gas matrices.

Matrix Near ir frequency (cm™?) References 2 Far ir frequency (cm™!) References 2
RO)-P(1)
R (0) P@1) 2 J=0—~J=1)

HF ‘
Gas 4000.94 3920.39 1 40.34 41.9 2
Ne 3992.0 [RX 1 XE 39.8 1
Ar 3962.0 3875.0 1,3 43.5 43.4 (Doublet) 1
Kr 3956.0 38617.0 1,3 44.5 45.4 (Doublet) 1
Xe 3953.0 3852.0 1,3 50.5 50.5 (Doublet) 2

DF
Gas 2928.01 2885.08 1 21.46 22.0 1
Ne 2924.9 ‘oo 1 cee 21.6 1
Ar 2896 .4 2859.4 1 18.5 19.8 1
Kr 2886.0 2855.9 1 15.05 24.6 (Doublet) 1
Xe 2870.0 1 1

HC1
Gas 2905.7 2864.6 4 20.55 (RN cae
Ne 2900.0 2872.0 5 14.0 No abs<16 6
Ar 28817.5 2853.6 5,7,8 17.0 17.6,18.6 (Doublet) 6,9
Kr 2872.5 2837.5 5,7,8 17.5 19 6

10,11
Xe 2858.0 2822.4 7,8,11 17.8 abs below 17 6

DC1
Gas 2100.9 2079.5 4 10.7 (X .
Ar 2088.9 2069.2 5,10,11 9.8 ..

Kr 2079.0 2058.3 5,8,10 10.3 .
11
Xe 2069.0 2048.5 5,8 10.2 . ..

HBr
Gas 2575.0 2542.1 4 16.4 . ..
Ar 2569.1 2550.1 5,12 9.5 . ..
Kr 2551.6 2532.0 5,10 9.8 .

DBr
Gas 1848.2 1831.3 4 16.4 . ..
Ar 1843.1 1834.3 5,8 4.4 . soe
Kr 1833.0 1821.5 5,10 5.7

HI
Gas 2242.4 2217.6 4 12.6 . .

2255.0
Ar 2246'0 oo 12 oo . e
Kr 2232.0 2214.0 12 9.0 ee °

»

The references for Table VII.2 are the following:
Mason, M. G., W. G. Von Holle, D. W. Robinson, 1971, J. Chem. Phys. 54, 3491.
Robinson, D. W., and W. G. Von Holle, 1966, J. Chem. Phys. 44, 410.

Bowers, M. T., G. I. Kerley, and W. H. Flygare, 1966, J. Chem. Phys. 45, 3399.
Tables of Wavenumbers for the Calibration of Infraved Spectrometers (Butterworths, London 1961).
Bowers, M. T., and W. H. Flygare, 1966, J. Chem. Phys. 44, 1389. .

Von Holle, W. G., and D. W. Robinson, 1970, J. Chem. Phys. 53, 3768.

Verstegen, J., M. P, H. Goldring, S. Kimel, and B. Katz, 1966, J. Chem. Phys. 44, 3216.
Keyser, L. F., and G. W. Robinson, 1966, J. Chem. Phys. 44, 3225.
Barnes, A. J., J. B. Davis, H. E. Hallam, and G. F. Scrimshaw, 1969, Chem. Commun., 1089.
10 Mann, D. E., N. Acquista, and D. White, 1966, J. Chem. Phys. 44, 3225.

11. Brunel, L. C., and M. Peyron, 1966, Compt. rend. 262, 1297.

12. Barnes, A.J., H. E. Hallam, and G. F. Scrimshaw, 1969, Trans. Faraday Soc. 65, 3159 (1969).
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FIG. 131. (a) Energy level diagram and transitions for the
vibration-rotation band of a diatomic molecule. The spacing
between the rotation levels has been exaggerated compared
with that between the vibrational levels. Transitions with
AJ=+1, counting from the J value of the lowest vibrational
state, correspond to the R branch and those with AJ=~1 belong
to the P branch. For large molecule-lattice interactions
AJ=0 is a permitted transition; such transitions belong to the
@ branch. (b) Schematic absorption spectrum of HCI gas at
300 °K corresponding to the transitions in (a).
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The absorption at 73 cm™! in Table VII.3 arises from
impurity-activated lattice phonons. From the density of
states shown in Fig. 128 it is apparent that this absorp-
tion is due to a local mode. This identification of a lat-
tice contribution confirms the original supposition of
Verstegen et al. (1966). They had proposed that the
high-frequency sideband of the near-infrared HC1
stretching vibration was a combination transition, in
which both the HC1 vibration and the translational local
mode quantum numbers changed by 1. The local mode
frequencies for HCl, DC1, and HBr are given in Table
VI.1. The far-infrared studies illustrate that impurity-
activated phonon absorption can be readily correlated
with the near-infrared measurements. Where both mea-
surements have been made the agreement is quite good.
Unfortunately, many of the near-infrared workers did
not publish spectra over a large enough frequency region
to include the frequency interval of interest here. Be-
cause the near-infrared measurements probe lattice
modes in the excited molecular vibrational state, while
the far-infrared measurements probe those associated
with the ground vibrational state, we can conclude from
the experimental results in Table VII.1 that the effect
from internal molecular vibration on the lattice spect-.
rum must be small.

D. Molecular impurity models

The near- and far-infrared spectroscopic data on di-
atomic molecules have provided some mysteries and
some answers concerning the motion of diatomic mole-
cules in a rare gas matrix. We have seen that:

(1) Doublet spectral lines appear in the near-infrared
vibrational band of HF, but not for DF or HCl.

R(0) -(37)-2885.9 cm™*
R(O)r(35)- 2888.2cm™!

R(0)(37)-2885.9cm™"'
R(c)f(as)—zeea.n cm™!

R(1)2896 cm™!

FIG. 132. The infrared spectrum of HC1 (chlorine isotopes in natural abundance), trapped in an argon matrix at 20°K and cooled

to 4.2°K. Ratio of HCl:argon, 1:1000. After Mann et al. (1966).
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FIG. 133. (upper) Double absorption line attributed to the
J=0—J=1 transition of HF isolated in an argon matrix. After
Mason et al. (1971). (lower) Spectra of HCI isolated in argon
and krypton matrices. Water impurity lines are also shown.
The 0.1% HCI curves are displaced downward so that the ordi-
nate scale applies only to the 0.2 % HCI spectra. After Von
Holle and Robinson (1970).

(2) Doublet spectral lines appear in the far-infrared
rotational spectra of HF, DF, and HCI in different
matrices.

(3) The rotational frequency of HF increases with in-

A.S. Barker, Jr. and A.J. Sievers

creasing matrix mass, while the frequency of DF does
not; and the frequency of HC1 decreases with increasing
matrix mass.

It may be that items (1) and (2) appear because the mat-
rix symmetry is hexagonal at the impurity site (Von
Holle and Robinson, 1970), but at present this explana-
tion does not consistently explain all the available data.
Item (3) is a direct consequence of the local dynamics of
the molecule, and we shall outline the partial solution of
this problem here.

The theory for the rotation of trapped molecules in
noble gas lattices has been considered by Devonshire
(1936), Cundy (1938), Babloyantz (1959), Friedmann
(1962), Flygare (1963), Friedmann and Kimel (1963,
1965, 1967), Keyser and Robinson (1966), Bowers et al.
(1966), Mann et al. (1966), and Pandey (1968). Rotation-
al shifts of the free rotor have been induced by means of
two perturbations: the electrostatic barrier perturbation,
hindering rotation, and a coupling between the transla-
tion of the molecule and its rotation.

The Hamiltonian which includes both of these effects
can be written as

3C=3C(trans) +3C(rot) + 3¢(xtal) + 3¢(rot—trans) (7.2)
where JC(trans) is identified with the harmonic oscillator
Hamiltonian appropriate to a local or resonant mode,
Je(rot) is the Hamiltonian of a free rotor, ¥C(xtal) de-
scribes the influence of the local crystal field at the free
rotor, and ¥¢(rot—trans) the mixing of the rotational
translational motions. In the barrier model where the
molecule is treated as a hindered rigid rotor only the
second and third terms of Eq. (7.1) are retained. Devon-
shire first calculated the rotational energy levels for a
diatomic molecule in a field of octahedral symmetry,
the symmetry possessed by the substitutional sites of
rare gas lattices, in 1936. This theory has been used by
Bowers and Flygare (1966) for hydrogen halides, but did
not give a consistent fit with all the near-infrared mea-
surements. In particular the isotope effect on

3[R(0) - P(1)] in Table VII.2 was not explained.

For the crystal field model, rotations occur about the
center of interaction rather than the center of mass;
this interaction point between the two atoms is identical
for all isotopic species. For a given crystal field

TABLE VII.3. Assignment of absorption mechanism in far ir spectrum of Ar : HCI.

Ar:HCI1
Absorption
frequency Katz et al.P Barnes et al . © Von Holle and
(cm-1)2 (1967) (1969) Robinson (1970) ¢
18 Freq. not measured HCI rotation HCI rotation
35 Observed—no assignment Imp. act. phonons H,O rot. at 33 cm™!
48 ~ Not observed Imp. act. phonons H,0 rot. at 47 cm™!
73 Imp. act. phonons Imp. act. phonons Freq. not measured

2 Barnes et al . have also observed two additional lines at 97 and 115 cm™~! which they have

identified as imp. act. phonons.

b Katz, B., A.Ron, and O. Schnepp, 1967, J. Chem. Phys. 46, 1926.
¢ Barnes, A. J., J. B. Davis, H. E. Hallam, and G. F. Scrimshaw, 1969, Chem. Commun.,

1089.

dvon Holle, W. G., and D. W. Robinson, 1970, J. Chem. Phys. 53, 3768.
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strength the perturbation on the rotational spectrum
should be greater for the isotope with the smaller rota-
tional transitions. Inspection of the data on HC1 and
DCl in Table VII.2 shows that the HCI rotational tran-
sition is perturbed more strongly than the DC1 rotation-
al transition, although the HC1 rotational transitions
are larger, a result which is not possible from crystal
field effects alone.

The introduction of rotational-translational coupling
explains qualitatively the data in Table VII.2. The
Hamiltonian of the system is now represented by terms
1,2, and 4 in Eq (7.2). The coupling between rotation
and translation comes about because of the difference
between the center of electrical interaction and the
center of mass for heteronuclear molecules. The
strength of this coupling term depends on the distance
between these two points. Using second-order perturba-
tion theory, Friedmann and Kimel (1963, 1965) first
calculated the perturbation upon the rotational energy
levels.

A more general solution to the problem of rotation
translation coupling has been obtained by Keyser and
Robinson (1966). They constructed a matrix Hamiltonian
which treats the translational modes of HCl1 and DC1 and
the strength of the translation-rotation as parameters.
The perturbed energy levels are found by direct diagon-
alization of the truncated matrix. They show that for a
heteronuclear diatomic rotor in a cubic lattice, the
translational-rotational states form a basis for the ir-
reducible representations of a group isomorphous with
D,,. This property allows considerable factorization of
the Hamiltonian matrix. These approaches have been
reviewed recently by Turrell (1972) and Barnes (1973).

Bowers et al. (1966) have interpreted the vibration-
rotation spectra of the substitutional HF in terms of a
translation-rotational coupling model different from
that given earlier. They claim that a term in the poten-
tial energy which accounts for the shift of the molecular
center of mass with respect to the center of the lattice
site is equivalent to the center of interaction model de-
scribed by Friedmann and Kimel. For HF they found
that the barrier hindering rotation in the lattice appears
to be much smaller than this rotational-translational
coupling. The interpretation based upon their model
shows two definite features: (1), the frequencies for the
molecular translational motions are very small in all
cases (about one half the rotational energy of HF) and
(2), the center of mass at equilibrium appears to be
further from the center of the lattice site as one pro-
ceeds to the larger rare gases. This latter point leads
to the interesting possibility of a potential maximum at
the center of the lattice site. Potentials of this form ob-
served for ionic crystals are described in Sec. VI.

The most convincing feature of the translation rotation
coupling model is that the red shifted rotational transi-
tions in DF-doped solids and the blue shifted rotational
transitions in HF-doped solids can be readily interpret-
ed. By coupling a translational mode to a rotational
mode, the energy difference between the new mixed
modes increases with respect to the difference between
the energy levels of the unperturbed system (mixing and
repulsion). If in the unperturbed system the vibrational
energy is larger than the rotational energy, then in the
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coupled system the rotational transition energy will be
decreased with respect to the unperturbed energy, while
if the vibrational transition energy is smaller than the
rotational transition energy the converse is true. The
dependence of the energy levels upon the translational
frequency has been worked out for HF by Bowers et al.
(1966) and we show their calculated mixed mode scheme
in Fig. 134.

Although no low-frequency translational modes have
been observed for HF, the far-infrared experiments on
Ar:Ne by Keeler and Batchelder (1972) give some evi-
dence to justify this approach. Ne and HF have the same
mass and roughly similar sizes, both much less than
the argon atom they replace. For Ne a resonant mode
is observed at 28 cm~! which is larger than the rota-
tional spacing of DF but smaller than HF. In terms of
Fig. 134 the normalized translational frequency for
DF would be greater than 1 and the rotational transition
(N=0,J=1) would correspond to a smaller frequency
in units of the rotational constant B than for HF, where
the normalized translational frequency would be less
than 1.

IN UNITS OF B

ENERGY

TRANSLATIONAL FREQUENCY

FIG. 134. Dependence of the energy levels upon the transla-
tional frequency of the molecule. Both energy and frequency
are given in units of the rotational constant B. These curves
were calculated for HF (R;=0.08 A). The energy levels are
labeled by a translational quantum number N (sum of the quan-
tum numbers for the three directions of motion) and by J, the
rotational quantum number. Not all of the levels are shown.
From Bowers ef al. (1966).
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Mannheim and Friedmann (1970) have extended the
rotational—-translational coupling model to include coupl-
ing of the diatomic molecule with the lattice vibrations
of the crystal. They recognized that polar molecules
can be used as a lattice probe since an indirect coupling
of the light with the lattice is produced by the rotational
translational coupling. Their mechanism is as follows:
the light couples to the rotation of the polar molecule,
the rotation couples to the translation, and the transla-
tion of the defect couples to the lattice vibrations. The
only lattice modes which are optically active are those
in which the defect is in motion.

In conclusion the rotational-translational coupling can
explain qualitatively the spectral features which are
observed experimentally for heteronuclear molecules,

" and at this stage one cannot expect more. The funda-
mental unsolved problem is that a priori the frequency
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of the translational mode cannot be theoretically calcu-
lated. Even for the simple problem of a monatomic de-
fect (Ne) in a rare gas lattice (Ar), theoretically a high-
frequency local mode was predicted while experimental-
ly a low-frequency resonance was observed (Sec. VII.B).
The degree of local lattice relaxation around the defect
is still an unknown quantity. Without being able to the-
oretically estimate the relaxation, one cannot predict
whether local modes, resonant modes, or tunneling
states should be assigned to the translational motion of
the impurity. To break out of this impasse we still need
to do a great deal of experimental work. Raman and
far-infrared spectra of good quality rare gas crystals
and also ionic crystals containing heteronuclear mole-
cules can provide the needed information on impurity
dynamics and lattice relaxation.



VIIL. IMPURITIES TRAPPED IN ORGANIC CLATHRATE STRUCTURES

A. Introduction

An example of impurities very weakly coupled to a
lattice occurs for gas atoms trapped in the organic cry-
stal B-quinol clathrate. When quinol C;H,(OH), is cry-
stallized from a solution containing a large concentra-
tion of trappable molecules, the 8 phase is formed.
This B-quinol clathrate has an open structure which
contains regularly spaced cavities of approximately 8A
diameter in which small foreign molecules can be trap-
ped during formation (Palin and Powell, 1947). The
actual preparation of these clathrates occurs by slow
crystallization from hot solutions of recrystallized
quinol in n-propanol in the presence of the appropriate
impurity gas under pressure (Parsonage and Staveley,
1959). Fractional cage occupancies can be varied from
about 7% to 80% depending on the applied gas pressure.

In these clathrates, which have a local trigonal sym-
metry at the cage site (Meyer and Scott, 1959), one
molecule at most can be trapped in each hole. The cry-
stal structure in the neighborhood of one of these holes
is shown in Fig. 135. The internuclear distance across
a diameter of the cavity is about 8A, but the physical
size of the electron wave functions associated with the
quinol molecules reduces the cage diameter to about 3
or 4A. The spacing between the cages is such that
there are two nearest neighbors along the ¢ axis at
5.5 A, whereas the next-nearest and third-nearest neigh-
bors lie at distances greater than 9A. There are three
cages per unit cell (Allen, 19686).

Although the clathrate lattice is indeed complex, the
analysis of the experimental data on the trapped species
has proven to be remarkably straightforward. This fact
may account for the sustained interest in the compound
over the years. A review of the infrared spectra of
clathrates was recently published by McKean (1973).
The reader is referred to this work for a discussion of
the near-infrared properties and mention of some pre-
liminary Raman work.

Clathrate crystals containing trapped atoms and mole-
cules first attracted widespread attention after the suc-
cessful analysis of some of the in room temperature
thermodynamic properties (van der Waals, 1956a; van

FIG. 135. Structure of a B-quinol clathrate cage containing
a trapped diatomic molecule (shaded). The heavy black lines
represent indirect bonds formed by hydrogen atoms between
neighboring oxygens (unshaded spheres), not direct bonds. The
hexagons represent benzene rings. From Burgiel et al. (1965).
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der Waals and Platteeuw, 1959). Using classical statis-
tical mechanics and a cell model for the local potential
(Lennard-Jones and Devonshire, 1937, 1938), van der
Waals and Platteeuw were able to calculate the room
temperature vapor pressure of the trapped molecules
and the heat of formation. Their predictions agreed with
experiments conducted near room temperature (Evans
and Richards, 1954; van der Waals, 1956b). Although a
variety of experimental measurements have been re-
ported since that time on clathrate compounds, the far-
infrared absorption measurements and the complemen-
tary heat capacity experimental results provide a fairly
clear picture of the impurity lattice dynamics. With
these two techniques, low-lying energy states associated
with impurity translation or translation plus rotation
were observed for the trapped molecules.

B. Resonant modes

The simplest case, that of rare gases trapped in
clathrates, was studied by Burgiel et al. (1965). They
measured the absorption spectra of the clathrates con-
taining Ar, Kr, and Xe from 15 to 85 em™. The ab-
sorption frequencies are recorded in Table VIII.1. The
temperature dependence of the absorption spectrum of
argon in B-quinol is shown in Fig. 136. The absorption
line at about 36 ecm ™ stems from the trapped argon
atoms, and the line strength arises through dipole mo-
ments induced by interaction between the gas molecule
and the clathrate cage. The strong absorption line at 67
cm™?! is due to the host lattice. The continuous absorp-
tion which occurs over the entire frequency range pro-
bably arises from the impurity-induced activity which
the host lattice modes acquire because of the breakdown
of translational symmetry.

When the temperature of the clathrate is increased,
the absorption line associated with an argon or krypton
impurity tends to broaden and shift to higher frequen-
cies. In contrast, the xenon clathrate spectrum is near-
ly independent of temperature. Another interesting fea-
ture is the shift of the strong lattice mode from 67 cm™
to 72 cm™! in the xenon clathrate. It is interpreted as a
stretching of the cage walls by the large Xe atom. A
summary of the temperature dependence data is given in
Fig. 136(b).

To test whether or not the low-frequency absorption
line can account for all the impurity-induced motion, the
optical results can be compared with heat capacity mea-
surements. An analysis of the motions of argon and
krypton in B-quinol from heat capacity measurements
has been made by Staveley and co-workers (Parsonage
and Staveley, 1960; Grey and Staveley, 1963), using
the cell model theory of van der Waals (1956a). This
model assumes a rigid cage or cell of 24 atoms, each
of which interacts with the trapped molecule via a
Lennard-Jones six-twelve potential. In the region above
120°K, good agreement between the experiments and the
theory was obtained using the parameters evaluated by
van der Waals from other experiments. Grey and Stave-
ley estimated the specific heat at lower temperatures
by evaluating the energy levels for the Lennard-Jones
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TABLE VIIL.1. |
ordered by mass.

Characteristic spectral features of trapped species.

A.S. Barker, Jr. and A.J. Sievers

Atoms and molecules

Absorption
Trapped peaks (cm™!)
species (Temp. °K) Remarks References 2
Ar 35.5(1.2) Trans. mode 1
K 36.0(1.2) Trans. mode 1
Xe 43.5(1.2) Trans. mode 1
H, —(1.2) No absorption between 15 and 85 cm™! 1
CH, 31, 82(1.2) Large impurity distorts cages 1
HCN 20—40(90) Weak, hindered rotation 2
N, 53.5(1.2); 52.5(90) Trans. mode 1,2
CcO 55.2; 81.5(1.2) Trans. mode; hindered rot. mode 1
NO 46.5; 33.0(1.2) Trans. mode; hindered rot. mode 1
O, 40(1.2) Trans. mode 1
CH3;OH 73(80) Trans. mode 3
HC1 52; 18(1.2) Trans. mode; rotational mode 4
H,S 75, 57; 22(10) Trans. modes; rotational mode 3,5
D,S 79,74,57; 20(10) Transtational modes; rotational mode 5
CO, 74(90) Trans. mode 2
SO, 32(1.2) Very broad absorption 1
NF, —(1.2) No absorption between 15 and 85 cm™! 1
HBr <16(1.2) 4
H,Se 74,57,44; 10(10) Trans. modes; rotational mode 5
D,Se 80, 75, 54, 44(10) Transtational modes 5
Pure a-quinol 42,60,67 Lattice modes, 67 em™! strong 1

a The references for Table VIIL.1 are the following:

Ol B W N

29A, 1695.

potential numerically. In Figure 137 this calculation,
the dashed curve, is compared with the experimental re-
sults for Kr trapped in g-quinol.

Burgiel et al. (1965) have also used the cell model.
They assign the single low-frequency absorption line to
the translational motion of the atom within its cell.
They use this absorption line and its temperature
dependence to evaluate the parameters of a one-dimen-
sional Poschl-Teller potential well. This model, while
more simplified then the Lennard-Jones model, has the
advantage of giving the energy eigenvalues in analytical
form and thus allowing a simple physical interpretation
of its parameters. The solid curve in Figure 137 shows
the calculated heat capacity using the infrared data and
the Poschl-Teller potential.

A comparison of the two calculations shown in Fig.
137 illustrates that they are equally good or bad depend-
ing on the temperature range in question. At high tem-
peratures both calculations fit the experimental heat
capacity date reasonably well. They give a value which
is less than the classical value for an Einstein oscilla-
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Burgiel, J. C., H. Meyer, and P. L. Richards, 1965, J. Chem. Phys. 43, 4291.
Davies, P. R., 1969, Disc. Faraday Soc. 48, 181.

Barthel, C., X. Gerbaux, and A. Hadni, 1970, Spectrochim. Acta. 26A, 1183.
Allen, S. J., 1966, J. Chem. Phys. 44, 394.

. Gerbaux, X., C. Barthel, A. Hadni, and M. M. Pradhan, 1973, Spectrochim. Acta.

tor, C/R~3, but larger than the classical value for a
free particle in a box, C/R~%. At low temperatures,
however, neither calculation fits the experimental heat
capacity data. This result is particularly striking with
the calculation by Burgiel ef al. because the far-infra-
red data provide the low-lying energy levels directly. To
improve the agreement between experiment and calcul-
ation, apparently the cell model must be modified.

Burgiel et al. have proposed that correlation between
motions of neighboring molecules may be important.
For a set of harmonic oscillators the heat capacity
rises approximately exponentially, while that of an as-
sembly of coupled oscillators with a Debye spectrum
rises more slowly. The high temperature limit is the
same in both cases. A correction for collective modes
of motion may improve the agreement between theory
and experiment, though such a correction cannot be cal-
culated from the infrared data.

A different approach which would improve the agree-
ment between the theoretical and experimental heat cap-
acity would be to use a resonant mode model instead of
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FIG. 137. Specific heat of
Kr trapped in S-quinol—data
of Parsonage and Staveley.
The solid curve was calculated
by Burgiel et al. from infrared
data using the Poschl-Teller
potential. The dashed curve
was calculated by Grey and
Staveley using quantum statis-
tics and Lennard—Jones poten-
tial. From Burgiel et al.
(1965).
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a.cell model. This model would include the impurity
motion which occurs in many lattice modes in addition
to the low-lying rattling model. Only some fraction of
the impurity atom degrees of freedom would then appear
as an Einstein or Poschl-Teller oscillator contribution
to the heat capacity; the remainder would appear as a
small additional contribution to the Debye-like spec-
trum of the host lattice.

The one approach assumes that impurity-impurity
cbupling is important, while the other treats isolated
impurities but removes the condition of a rigid lattice.
Which of these two different possibilities is the more
important for the 8-quinol clathrates has not yet been
resolved; for the present the simple rattling mode of the
impurity in a rigid cage remains the state of the art.

C. Molecular impurities

In addition to measuring the far-infrared spectra.of
trapped rare gases, Burgiel ef al. (1965) also investi-
gated the far-infrared spectra of a variety of trapped
diatomic and polyatomic 'gases in B-quinol. Their work
is complemented by that of Allen (1966), who studied in
some detail the far-infrared properties of trapped HCI,
and by Davies (1969), Barthel (1970), and Gerbaux et al.
(1973). A listing of the trapped molecular species and
the characteristic spectral features of each is given in
Table VIII.1. These investigators required two kinds of
transitions to explain the measured spectra of polar
molecules.

For polar molecules, which possess a permanent
dipole moment, infrared absorption occurs for both the
translational and rotational motion. On the other hand,
for molecules with no permanent dipole moment the in-
version symmetry of the cavity insures that no dipole
moment will be induced for purely rotational motion,
and the spectrum resembles that induced by monatomic
gases.
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As shown in Table VIII.1, there are absorption lines
for most of the diatomic molecules, and the frequency

decreases systematically as the molecular weight in-

creases. Burgiel ef al. have attributed these lines to
translational motion because they are observed in mole-
cules without permanent dipole moments. The lines
with maxima at 81.5 cm™ for CO, at 33.0 cm™ for NO,
and at 18 cm ™ for HCl are attributed to hindered rota-
tion. For HCl1 Allen found that the 52 cm™ line was not
changed by DCl substitution, but that the 18 cm™ line
was shifted appreciably.

For CO and NO, two gases with permanent moments,
Burgiel et al. were able to estimate the barrier height
of the potential which inhibits free rotation. These es-
timated barrier heights, 1240°K and 230°K, indicate
that tunneling processes may be important here. Parti-
cularly in the large barrier limit such processes will
influence both the low-temperature heat capacity and the
far-infrared spectrum. Measurements below 15 cm™
on these systems would be partivcularly valuable.

Unlike CO and NO, which are strongly hindered rotors
exhibiting librational oscillations, HCl has been found
by Allen (1966) tobe very nearly a free rotor with a rotation-
al spacing of 18 cm™, which is in fact less than the
free value of 21 cm™!. This red shift of 3 cm™ can be
explained by the translation-rotation coupling model of
Friedman and Kimel (1964). This model assumes that
the coupling arises in the solid because the molecule
does not rotate about the center of mass. For HCI in
the B-quinol clathrate Allen (1966) found that a differ-
ence between center of mass and center of rotation of
0.095+0.015 A successfully explains both the red shifted
rotational frequency and the enhanced absorption of the
translational mode. Allen also showed that the concen-
tration and temperature dependence of the HC1 rotation-
al frequency was due to dipole—-dipole interactions be-
tween the trapped molecules.



IX. MIXED CRYSTALS

A. Introduction

This section is less self-contained than many of the
preceding sections. The reader who wants to under-
stand the models and significance of many of the fine
features of the experimental work is expected to have
read Sec. II, where the mathematical models are dis-
cussed in detail. Some of the earliest calculations done
by Matossi (1950) are discussed, however, in the next
section. Original details on the isodisplacement model
(discussed in Sec. II) may be found in the two papers
where it was developed: Verleur and Barker (1966) and
Chen, Shockley, and Pearson (1966). Short reviews of
mixed crystal work have been given by Barker (1968b)
and Lucovsky et al. (1968) in the Proceedings of the
Conference on Localized Excitations in Solids. Several
other papers on experimental work on mixed crystals
also appear in the Conference Proceedings. Finally,

a more extensive review, including references and ex-
periments up through 1970, has been published by
Chang and Mitra (1971).

There has been a sustained interest in and a progres-
sion of experimental papers on mixed crystals since
the mid-1960’s. Aside from their intrinsic physical in-
terest, certain mixed semiconductors have recently
become important in the solid state laser field. In
constructing a junction laser it has been found import-
ant to profile the index of refraction in a specific way.
This may be done by controlling the mixed crystal com-
position as a function of distance. While we do not
review the electronic properties of mixed crystals, it
is clear that an understanding of the vibrational prop-
erties is increasingly important in this area. Finally
we note that mixed crystals can serve the function of
providing a bridge between the concepts and phenomena
of isolated impurities and the properties of amorphous
or fully disordered solids. Since the atomic composi-
tion x can be varied in many cases from 0% to 100%,
we can hope to see local modes evolve and broaden into
major lattice bands in a continuous way. In several sys-
tems this has been done for the optic g~ 0 modes by
optical studies, and in one or two systems some neutron
scattering data has begun to illuminate the behavior for
nonzero ¢g. For this subject concerning random defects
of significant (not low) concentrations, the experiments
are ahead of detailed first-principles calculations and
hence can provide very important guidelines.

B. Early work

Kruger and co-workers have reported one of the
earliest infrared studies of mixed crystals (Kruger et
al., 1928). This work was carried out before the mod-
ern methods of reflectivity analysis were available.
The motivation was the study of the microscopic struc-
ture of mixed alkali halides via the lattice vibrations.
Figure 138 shows their result for NaCl1+KCl. They
plot the infrared wavelength where maximum signal was
observed (probably close to the peak of the reststrahlen
band) versus the composition of the mixed crystal. In
the three systems studied (Table IX.3) these workers
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observed a smooth shift of this maximum with concen-
tration. For the system shown in Fig. 138 they also ob-
served a decay after 11 months of the maximum into two
maxima showing ion migration and reversion of the mix-
ed crystal into separate components. In the T1Cl+KCl1
system their spectra show subsidiary structure which
we now know to be important as a sign of possible two-
mode behavior. Matossi in 1950 used a periodic chain
model to analyze the results of Kruger et al. He used
the chain AC BC AC BC... with only nearest-neighbor
force constants to analyze the 50% mixed crystal

A B, ,C. Note that this model has perfect periodicity
with. a four-atom unit cell, so that it cannot describe

the random distribution of atoms in any way. His model |
can be regarded as a four-coordinate isodisplacement
model (see discussion in Sec. II). Because of the two
coordinates for the C sublattice and the inversion center
at B, Matossi obtains a Raman-active mode involving
relative motion of the two C ions in each cell. In addi-
tion there is a strongly infrared-active mode corres-
ponding to the obvious A and B versus C motion, and a
weaker mode involving predominantly A versus B.
Matossi was unaware of the fine structure and two-mode
behavior which have subsequently been measured in
some alkali halides. He therefore compares his strong
infrared mode with the experiments and somewhat neg-
lects the other modes. Since he does not indicate the
extension to concentrations other than y =0.5, we do not
use Matossi’s calculations as a mixed crystal model.
Nevertheless, his paper serves as an excellent intro-
duction to certain mixed crystal models and a complete
understanding of his solutions (both frequencies and
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FIG. 138. Wavelength of reflection maximum in the system
NaCl+KCl plotted against concentration. Note that this sys-
tem is unstable, as indicated by the spectrum taken after ele-
ven months. The appearance of a single peak which varies
smoothly with concentration typifies one-mode behavior for the
freshly prepared samples. From Kruger et al. (1928).
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TABLE IX.1. Mixed III-V crystals with zinc-blende structure, 2

GaP GaAs GaSb InP InAs InSb AlAs
GaP  366°,403  Verleur e al. d Lucovsky et dl. e ‘ d Ga;_ AL As;_,P,
Barker (1966) as7) e Lucovsky et al.
(1968a) Chen et al . Andrews ¢ dl . (1974)
(1966) (1972)T 3 modes plus
Strahm et al . ) 1 mode + structure structure
(1969)R
Andrews e d .
(1972)T
2 Mode
GaAs 268, 291 Lucovsky and e Brodsky et al. e Ilegems and
Haas Chen (1970) (1968) Pearson (1970)
(1967) 1-2 Mode Lucovsky and Andrews et al .
Cochran & dl. Chen (1970) (1972)T
(1961) 1—-2 Mode 2 Mode
GasSb 225,233 d e Brodsky et dal . e
Picus e dl . e (1970)
(1959) 1-2 Mode
InP 304,338 Oswald d c
Picus e adl. (1959) e
(1959) Kekelidze et al.
Haas (1973)
(1967) 2 Mode
InAs 209,233 Lucovsky and c
Haas Chen (1970)
(1967) 1-2 Mode
Picus et al .
(1959)
mSh 174,183 c
Haas e
(1967)
Picus et al .
(1959)
AlAs 360, 390

Ilegems and
Pearson (1970)

2 Nitrides and borides do not crystallize in zinc blende structure.

b o and wig at 300 °K for pure crystals.

¢ Al-In generally not miscible.

dSb—P generally not miscible.

€A quaternary compound. No work reported.

f All studies are by infrared except for those noted as R =Raman, T =electron tunneling.

eigenvectors) serves as a basis for the understanding of C. Optic modes observed in infrared and Raman spectra
the models, discussed in this review. We merely note

here that when second-neighbor forces are included, the 1. Two-mode systems

weak infrared mode identified by Matossi can be made Tables IX.1-IX.5 show all (both one- and two-mode)
to fall at frequencies higher or lower than the main mode systems which have been studied, subdivided in a fair-
and in fact can borrow enough strength to become the ly natural way by valence and crystal structure. Most,
main mode. His model when extended can therefore but not all, are of the A B,_,C type. InFig. 139 the in-
show the one- or two-mode behavior discussed in Sec. frared-active modes in the mixed III-V semiconductor
II. Ga,Al,_As are plotted. Ilegems and Pearson (1970)
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TABLE IX.2. II-VI mixed crystals (ternary and quaternary).

S143

Pure crystal
wg (em™) wio em™)

Mixed crystal: structure, references, and mode behavior .

CdSe Le-177 210
|| c-169 210
+
Cds Lc-242 307
| c-235 305
ZnSe 206 252
+
7ZnS 270 350
Cds See above
+
ZnS 1c-270 348
|| c~265 347
HgTe 116 ' 139
+
CdTe 140 - . 171
ZnSe 206 252
+
GaP 366 403
CdTe See above
+
MgTe ~235 ~320
Cds See above
+
ZnS See above
CdTe 141 166
+
ZnTe 172 204
CdTe See above
+
CdSe 167 210
ZnTe See above
+
ZnSe See above
CdSe See above
+
ZnSe See above

Wurtzite: ir, Balkanski et al. (1966);
ir + model, Verleur and Barker (1967a);
ir, R, Parrish e al. (1967); electron
tunneling, Lubberts (1971); 2-mode
behavior.

Zinc blende: ir, R, Brafman ¢ al. (1968);
2-mode behavior.

Wurtzite: ir, Lucovsky et al. (1967); 1-
mode plus fine structure.

Zinc blende: ir, Carter et al. (1971); R,
Mooradian ¢ al. (1971); ir, Baars and
Sorger (1972); data scanty for large Cd
conc.; 2-mode.

Zinc blende quaternary: ir, Barker and
Yim.

Zinc blende: ir, R, 2-mode studied 0% to
60% Mg, Nakashima et al. (1973).

Wurtzite: ir, 1-mode plus secondary
structure, Lucovsky et al. (1967); R,
Vavilov (1971).

Zinc blende: ir, 2-mode, Harada and
Narita (1971), also measure local modes
in the mixed crystals; Vodopyanov et al.
(1972), note 1-mode behavior at low Zn conc.

Zinc blende: ir, 2-mode, Vinogradov ef al.
(1973); Gorska and Nazarewicz (1974).

Zinc blende: R, l-mode plus weak structure
on TO, Nakashima et al. (1971).

Wurtzite near 50%, polytypes at other
concentrations, R, probably 1-mode,
Brafman (1972).

have measured the reflectivity spectra and analyzed the
‘results using the three-coordinate isodisplacement
model discussed in Sec. II. This type of model is often
denoted REI for “random element isodisplacement”
model (Chen et al., 1966). The fit of the model to the
measured points is good, considering the scatter in the
experiments. To obtain the fit the authors have includ-
ed a concentration-dependent term in the short-range
force constants. (A concentration dependence of the
long-range forces arising from the local field correc-
tion is explicitly included in the fundamental equations.)
Chen et al. (1966) have outlined a relationship between
the short-range forces and the lattice parameter involv-
ing the Gruneisen constant. For reasons indicated in
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Sec. II (see also Chang and Mitra, 1968), it appears
unlikely that there should be any such relationship which
is fundamental. The argument Chen et al. use is based
on the Gruneisen relation

Aw/ w=y(AV/V), (9.1)

where V is crystal volume, and y the Gruneisen constant.
If we identify w with the optic mode near ¢ =0 and intro-
duce a force constant 2 by the proportionality w2?~#Z,

we obtain

AR/k=6Y(Aa/a), (9.2)

where a~V/3 is a linear cell dimension. For GaAs, P
Chen et al. take y=0.97. Equation (9.2) then suggests

l-y
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TABLE IX.3. Alkali and alkaline-earth mixed crystals.

Pure crystal

wpo (cm™) wio (cm™) Mixed crystal: structure, references, and mode behavior
KC1 141 201 Unstable structure; ir, Kruger e al.
+ (1928), data scanty, probably 1-mode.
NacCl 164 260
KBr 113 157 Cubic; r-Nair and Walker (1971); ir,
+ Fertel and Perry (1969); 1-mode; zone
KC1 141 201 boundary Raman active modes; CPA theory,
Taylor (1973).
RbI 75 100 Cubic: ir, Fertel and Perry (1969); 1-2
+ mode; CPA theory, Taylor (1973).
KI 103 135
RbBr ~88 ? Cubic: neutron, Buyers and Cowley (1968);
+ 1-mode type behavior except in LA branch
KBr 113 157 near zone boundary.
KI 103 135 Cubic: R and x-ray, Nair and Walker
+ (1973). Single crystals not obtained
KBr 113 157 at many intermediate compositions. Zone
boundary vibrational features identified.
RbC1 ~118 ? Cubic: R, Nair and Walker (1973); ir,
+ Mitsuishi (1965); ir, Kruger & al. (1928);
KC1 114 201 probably 1-mode for infrared modes.
Raman spectra show strong E, feature
identified as TO (L point).
TiCl ~66 ~170 ir-Kruger et al. (1928), data scanty,
+ probably 2-mode. Note the pure compounds
KC1 141 201 crystallize in different structures.
LiD 450 835 Cubic: ir, Montgomery and Hardy (1965);
+ anomalous mode behavior; theory, Jaswal
LiH 580 ~1220 and Hardy (1968).
KI 103 135 Cubic: R, Nair and Walker (1973). One
+ : composition studied. Spectrum similar
KCl1 141 201 to KCl+ KBr; main feature an activated
mode.
BaF, 184(240 2) 326 Cubic: R, Chang e al. (1966); ir, Verleur
+ and Barker (1967b); ir, Barker and
SrF, 217(285 2) 374 Verleur (1967); R, Lacina and Pershan
(1970); 1-mode.
SrF, 217(285 2) 374 Cubic: R, Chang e al. (1966); ir, Verleur
+ and Barker (1967b); R, Lacina and Pershan
CaF, 257(322 2) 463 (1970); 1-mode.
AgBr 920 135 Cubic: ir and second order R, Bootz ¢t al.
+ : (1974); 1-mode.
AgCl 120 200

a force change of approximately six times the lattice
dilation in passing from y =0 to y =1. Table IX.6 shows
some collected results for crystals which have been
fitted by isodisplacement models. A factor near 6 is
seen to relate the force constant and lattice parameter
changes on passing from the y =0 to y =1 crystal for
many of the mixed systems, thus Eq. (9.2) does appear tobe
empirically useful. Ga,Al,_ As and Co,Ni, ,Oare seento
deviate considerably, thoughthe reason for the latter case
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may lie in the special requirements of mode degeneracy,
imposed by Chang and Mitra in analyzing this one-mode
system. The more complexisodisplacement model of
Verleur and Barker (1966) does not require the concentra-
tion-dependent force constants given by (9.2). This isbe-
cause the model introduces four different force constants
between Ga and As, depending on whether there are 0,1,
2, or 3 nearest-neighbor Al ions. Since thenumber of
nearby Al ions depends on the concentration, the same
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TABLE IX.4. Polar mixed crystals—oxides and fluorides.
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Pure crystal

wpo (cm™) wio (cm™) Mixed crystal: structure, references, and mode behavior
CoO 400 580 Cubic: ir, Gielisse e al. (1965); 1-
+ mode.
NiO 348 575
KNiF; 151 165 Cubic perovskite: ir, Barker et al.
242 306 (1968); 1-mode behavior for highest- and
439 527 lowest-frequency modes; 1-2 mode
+ behavior for intermediate modes.
KMgF; 164 192
296 360
446 550
KTaO, ~90 184 Cubic perovskite but phase change for
200 421 Na>0.7: ir, R, Perry and Tornberg (1969);
546 ' 838 1-mode behavior for most but not all bands.
+
NaTaOy Noncubic
KTaOy See above Cubic perovskite over part of composition
+ range: one composition studied; ir,
KnbO, Cubic only above 410 °C Barker (1967).

end result is obtained—mode frequencies shift with com-
position. This model, however, allows identification of
specific local environment of Ga, say, as opposed to
the one average environment described by the three-
coordinate model.

Chang and Mitra (1970) have also fitted the
Ga,Al _ As data in Fig. 139 and obtain the same results
with a similar model which omits local field corrections
by using effective force constants.!® From Fig. 139 the
upper mode branches are seen to extrapolate to 357
em-! for the local mode of Alg, in GaAs. This is in
reasonable agreement with the local mode frequency
of 362 cm~! measured at 80 °K (Table IV.1). Figure
139 is typical of the spectra of two-mode crystals where
the y =0 and y =1 host crystals have well-separated :
modes (cf. Fig. 30). The tables show other two-mode
systems.

2. One-mode systems and the question of the missing
modes

Figure 140 shows the reflection spectra of a mixed
crystal where the two pure crystals have almost degen-
erate mode frequencies. The spectra illustrate one-
mode behavior. There is evidence of weak (perhaps
second- order) bands in the 400—-450 cm-?! region in
CoO. The somewhat sharper weak bands in the y =0.50
mixed crystal suggest that the bands here might be a
mixed crystal effect. Figure 141 shows the analysis by
Gielisse et al. (1965) of the data in terms of the trans-
verse optic mode frequency wqo and the effective

1Chang and Mitra treat their polarization equation quite dif-
ferently than Barker (1968) or Ilegems and Pearson (1970).
Essentially they average z* while the latter authors treat the
charge z at the same level as the mass and force constants.
This latter method can be thought of as averaging z. In
Ga,Al,_, As the difference between the methods is quite small.
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charge g*. The decrease in w,,and increase in g*
with y combine to give a longitudinal optic mode
frequency near 575 cm-! (not shown) which is almost
independent of y. A virtual-ion model of the type de-
scribed in Sec. II can fit the data of Fig. 141 when both
the effective charge and force constant are taken to be
concentration dependent. The success of such a simple
model might have been expected from the close simil-
arity of Co and Ni with respect to mass and outer
electron configuration.

Barker and Verleur (1967) and Barker (1968a) have
discussed the application of a three-coordinate iso-
displacement model to spectra like those shown in Fig.
140. The application to a one-mode crystal is a test
of the model, since one hopes that a model which de-
scribes the presence of two types of cation (Co and Ni)
will fit one-mode crystals by merely varying some
parameters. For an appropriate choice of parameters
in the three-coordinate model, two transverse optic
modes occur but one is very weak for all concentra-
tions, yielding at most some fine structure above or
below the main transverse optic frequency. The fre-
quency of the weak mode is controlled principally by
the Co-Ni force constant used in the model, and this
frequency can be chosen to coincide with the structure
near 450 cm-! in the mixed crystal. The eigenvector of
the stronger mode in the model has Co and Ni moving
together in phase, confirming that the virtual-ion
model is indeed appropriate for the strong mode. The
weaker mode of the model consists of Co vibrating
against Ni with the O ion remaining almost stationary.
Such a mode has a very small infrared strength since
the two ions are positive and the net dipole moment
arises only from the small difference in their effective
charge and amplitude. This is essentially the same weak
mode discussed by Matossi (1950). Chang and Mitra
(1968) have taken a completely different approach in
using. the three-coordinate isodisplacement model to fit
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Pure crystals Modes (em™)

Comments and references

Bi 73,99 (Raman)

+
Sb 115, 155(Raman)
Ge 301 (Raman)

+

Si 520 (Raman)

Te Strongest 92 Lc

TO modes 86 ||c¢
+
Se Strongest 138 Lc
TO modes 104 | ¢
Pb Metal
+
In Metal
Hgl, 13,41,141(Raman)
+
HgBr, —, 59, 188(Raman)
CuBr 132 TO, 166 LO
+
CuCl 170 TO, 210 LO
HgCr,Se, 59,171,275, 289
+
ZnCr,Se, 86,226,276, 302
Pt Transverse acoustic
+ branch studied along
Ni (001) direction
Pdy 45 All acoustic branches
+ studied along

Nig 55 principal symmetry

directions

R, Zitter and Watson (1974); Lannin

( ) complicated 2-mode behavior;
modes are ir inactive.

R, Feldman & al. (1966); ir, Cosand

and Spitzer (1971); electron tunneling,
Logan et al . (1964); theory,
Barker (1968b).

ir and theory, Geick and Hassler

(1969); 1-mode behavior plus strong
extra mode for 0.2<y <0.8.

Electron tunneling, Rowell & al.

(1965); high-frequency indium modes
seen at low In concentrations.

R, Nakashima e al. (1974); layer

structure orthorhombic crystals;
complex mode structure with some 1-
and some 2-mode behavior.

R, ir, Murahashi & al. (1973); 2-

mode behavior plus anomalously
strong gap mode at CuCl end of concentration
range.

ir on powders—~Wakamura et al. (1973);

spinel structure; 5 principle modes
in 40—340 cm™! range; lowest modes
show 2-mode behavior; rest show 1-
mode behavior.

Neutron scattering for 5% and 30%

Pt. Kunitomi et al. (1973).
Resonance mode near 120 cm™! causes
gap in acoustic branch.

Neutron scattering, Kamitakahara and

Brockhouse (1972); one mode behavior
of all modes. Virtual-ion model
fitted to dispersion curves.

cases of one-mode crystals. They assume that such
systems do not have local modes or weak subsidiary
modes (see by contrast Te,Se, _, below) and they there-
fore force the second optic mode given by the three-
coordinate model either to fall at zero frequency or to
be degenerate with the first optic mode. This method
gives mathematically satisfying solutions which, how-
ever, are somewhat unphysical. The first method they
propose yields equations which cannot be approached in
a continuous fashion and it therefore appears unsuitable
for studying the transition from two-mode to one- mode
behavior. This solution requires the second-neighbor
force constant to be large and negative. Their second
method deserves more comment. The forcing of a de-
generacy on the system and thus in a sense eliminating
the second optic mode appears attractive for explaining
one-mode behavior. The degeneracy arises in the
limiting case of k,, =0 in the discussion given by Barker
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and Verleur (1967). In this limit the two modes have
eigenvectors which are not determined by the equations,
as is usual in a case of degeneracy. The driven re-
sponse has one peak or mode which selects the linear
combination of eigenvectors corresponding to the
“virtual-ion-like” motion, i.e., Co and Ni together .
vibrating against oxygen. If one has no independent
evidence of weak extra modes, the choice of whether

to choose a model with the second mode degenerate or
just very weak but nondegenerate cannot be resolved.
From Table IX.6 it may be noted that the degeneracy
condition in Co Ni,_,O requires quite large force con-
stant changes compared with the lattice dilation. This
might be taken as a warning that the degeneracy method
is not appropriate. A thorough investigation of the best
method of fitting the one-mode Co Ni,_ ,O system (or any
similar system) must involve checking any weak
structure near the main mode to see whether it is first
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FIG. 139. TO and LO mode frequencies as obtained from a
Kramers—Kronig analysis of the mixed crystal spectra, plot-
ted versus alloy composition. The solid lines are calculated
from the REI model. From Ilegems and Pearson {1970).

order (e.g., by temperature dependence). In addition
high-pressure experiments can be used to actually mea-
sure the coefficient in Eq. (9.2) which is applicable to
the system. Knowledge of this coefficient puts an add-
itional constraint on the force constants and can be used
to check any proposed model of the system. Additional
comments on the applications of the isodisplacement
model to one- mode systems are made below for other
crystals. .

Figure 142 shows a linear chain model of Co, ,Ni, ;O
with a random distribution of the cations. In part (a)
the eigenvector for part of the chain corresponding
to the strong infrared mode is shown. As in the isodis-
placement mode, Co and Ni both vibrate against O ions,
giving a large dipole moment. In part (b) one of the
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FIG. 140, Reflectivity spectra of the mixed crystal series
NiO+ CoO. From Gielisse et al, (1965).

weaker modes is shown. It corresponds roughly to the
weaker mode in an isodisplacement model of the usual
type, where the second optic mode has not been caused
to be degenerate or to fall at zero frequency. Note that
we cannot achieve an exact correspondence between the
isodisplacement model and the linear chain model since
one has three coordinates and three modes and the
other has N (=48 here). The point we now wish to
make is that the weaker mode [ Fig. 142(b)] can be
thought of as a zone boundary mode activated by the
disorder. In part (c) of the figure the zone boundary
acoustic mode of pure CoO (or NiO) is shown. It is ob-
vious that the weak infrared mode is a small perturba-
tion of this zone boundary mode. In fact, however, the
eigenvector of the weak infrared mode is a linear com-
bination of many modes of the unperturbed pure chain,
so that the identification with the pure chain zone

TABLE IX.6. Dependence of force constants on composition in isodisplacement models.

Lattice parameter

Force constant

Mixed crystal change change Reference
GaAs,P,_, 3.7% 21.6% Chen et al. (1966)
a
In,Gay—yP 8% 40%} Barker (unpublished)
50%
Ga, Aly_y As 0.1%° 0.6%}a . Ilegems and Pearson (1970)
34%
15% Chang and Mitra (1970)
ZnSe, S;_, 4.3% 18% Chang and Mitra (1968)
CdSe, Sy, 4.3%°¢ 13% Chang and Mitra (1968)
Biy Sby., 5% 30% Zitter and Watson (1974)
Coy Niy_,0 1.8% 25% Chang and Mitra (1968)

2The two values refer to two different force constants in the model.
bSomewhat uncertain because of the limited accuracy of the x-ray measurements.

©Average of ¢ axis and a axis changes.
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ARBITRARY UNITS

boundary mode is qualitative. In Fig. 27 some eigen-
vectors for the mixed crystal GaAs, ;,;P, 1,5 Were shown.
do o] In that case the eigenvectors were much more mixed

so that identification of weak optic modes with zone
boundary modes of the pure crystals was more difficult.

a Several authors have suggested that weak structure in

a mixed crystal spectrum might be a normally inactive
mode made active by the disorder. Usually there is a
lack of supporting arguments since the pure crystal
spectra throughout the Brillouin zone are unknown.
This is the case for CoO and NiO. An exception is a re-
cent study of KC1,Br,_, by Raman scattering (Nair and
Walker, 1971). Here the pure crystal phonon-disper-
sion curves are known in detail. A weak peak in the
mixed crystal spectra near 120 cm~! is identified as a
TO(X) zone boundary phonon. Further progress in
identifying and classifying weak structure in mixed
crystals must await detailed models which are more
realistic than the linear chain model. Some principals
emerge clearly, however, from the simple models
studied to date. First, labeling of mixed crystal spect-
ral features by pure crystal modes of sharp wave

NiO MOLE % Co

FIG. 141. Lattice constant (@), effective ionic charge (@%),

vector can only be done in a qualitative manner. In some
Co0 systems where the mass or force constant perturbations
are large, such labels are probably useless and im-
possible to verify. Secondly, the appearance of only

dielectric constant (€y), transverse optical mode frequency one peak in the infrared or Raman spectra should not
(wrp)s and center frequency (Vo) versus composition in the tempt one to completely eliminate or forget other possi-

series NiO+ CoO. From Gielisse et al. (1965).

ble modes. The atoms and hence the degrees of free-

LINEAR CHAIN MODEL

(a)
- —

-  — —

(b)

FIG. 142. Linear chain mod-
el for Coy ;Niy ;0. Only near-

—_ <+ G < —_— est-neighbor bonds are indi-

. cated for simplicity. In (a) the
WEAK I.R.—Q‘W—M—D—%—.—W—O—«r strongest infrared mode is
shown. In (b) the most promi-

(c)

—_ -— —_—

nent of the many weak infrared
modes is shown. (c) is the
zone boundary eigenvector of
the highest-frequency acoustic
mode of pure CoO.

(PURE CRYSTAL)

Co

Ni
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Mixed crystals

dom are really there in the crystal. We have seen how
accidental near cancellation of dipole strength makes
such modes weak—some other spectroscopic technique
should then be used if possible to search for the modes.

3. One-mode systems with structure

Figure 143 shows the Raman-active mode for two
related mixed crystals, Ba,Sr,_ ,F, and Sr,Ca,_,F,, from
the work of Chang, Lacina, and Pershan (1966). In the
pure crystals the infrared-active and Raman-active
modes belong to different irreducible representations
and hence are completely independent modes, unlike the
situation in the zinc blende structure semiconductors.
The Raman-active mode consists of the two F ions in the
primitive cell moving against each other as shown in
Fig. 144. This motion can occur independently along
each of the three cube axes giving a threefold degener-
ate mode. In the mixed crystal there is a surprisingly
linear variation of this mode frequency with composition
y. Figure 145 shows the mode linewidth as a function
of y;the mode approximately doubles its linewidth near

320
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\/(77")()
‘\
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FIRST QRDER RAMAN LINE SHIFT (cm

(300°K)

280

260

(300°K)

240 | | 1 |
o 20 40 60 80
X= % CONCENTRATION
FIG. 143. The first-order Raman frequency of mixed crys-
tals Ca;_,Sr F, and Sr;_,Ba,F; as a function of the concentra-
tion x. In the pure crystals, there is only one first-order
Raman vibration. From Chang, Lacina, and Pershan (1966).
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FIG. 144, Primitive cell of the CaF, (fluorite) structure con-
taining two F ions at the centers of metal-ion tetrahedra. The
structure is cubic, the standard x-ray cell of side a; contain-
ing four formula units. Arrows show the Raman mode eigen-
vector in (a) and the infrared mode eigenvector in (b).

9 =0.5. A search of the infrared spectrum (Verleur and
Barker, 1967b) at the Raman mode frequency (with
negative results) shows that the mixed crystal Raman
mode maintains to a considerable extent its orthogonal-
ity to the infrared modes in spite of the disorder.
Pershan and Lacina (1970) have described a Green’s
function theory which proceeds beyond the one-defect
method to include terms dependent on concentration.
While many approximations must be made, they predict
trends which are consistent with the mode frequency and
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FIG. 145. The total linewidth measured at half-intensity of
the first-order Raman-scattered light from the mixed crystals
Ca,Sry.,F; at room temperature. The instrumental linewidth
is 4.7 ecm~!., From Chang, ILacina, and Pershan (1966).
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linewidth.

Verleur and Barker (1967b) have studied the infrared
spectra of Ba,Sr, ,F, and Sr Ca,_,F,. Figure 146 shows
the spectra of one system. The spectra were taken at
90 °K to remove some temperature-dependent second-
order structure which hampers the search for weak
modes connected with true mixed crystal effects.

The data in Fig. 146 may be analyzed by a Kramers—
Kronig method and show one strong and one weak peak
in the Im(¢) and in the Im(-1/¢) spectra. These peak
frequencies are plotted in Fig. 147. The modes are
numbered wq,, for the weak mode, and w,5 for the
main mode, for consistency with the model discussed
below. The strengths S; and S; of the TO modes shown
in Fig. 147 shouldbe contrasted with the strengths S, and S,
shown in Fig. 30 for a two-mode crystal.

Verleur and Barker (1967b) have fitted 18-coordinate
isodisplacement models to the barium- strontium

A.S. Barker, Jr. and A.J. Sievers

fluoride and strontium-calcium fluoride mixed crystal
spectra. The smallest conceivable set of isodisplace-
ments would be four [#(Ba), u(Sr), «(F,), and u(F,)] in
Ba, Sr,_ ,F,, the two distinguishable F coordinates being
required to describe the Raman mode. Because of the
introduction of many more coordinates, the authors are
able to introduce more probabilities than the y and 1~y
terms which occur in a three-coordinate model. This
freedom allows the evaluation of an order parameter g8
as discussed in Sec. II (Verleur and Barker, 1966,
1967b). Figure 148 shows the infrared modes given by
the model and Fig. 149 the transverse mode strengths.
Note that a cluster of four closely spaced modes

(¢ =1 to 4) actually gives the structure called w,y, in
Fig. 147. Figure 150 shows the actual fit to reflectiv-
ity achieved for the y =0.5 crystal. The authors also
fit the Raman data of Chang et al. discussed above. The
parameter 8 must be set near zero for all fits, indicat-

SrF, (90°K)

80%

Ba 55T 75 Fp (90°K)

Ba g ST 5F, (90°K)

REFLECTIVITY (%)

Ba 4 ST 29 F, (90°K)

FIG. 146. Comparison of
experimental reflectivity spec-
tra at 90 °K of the pure crys-
tals BaF, and SrF, with three
mixed crystals of Ba,Sr;.,F,.
From Verleur and Barker
(1967b).

0%
P
BaF, (90°K)
0%
L
0%
l I I 1 l | |
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ing a near random arrangement of cations. An interest-
ing feature of this isodisplacement model is the predic-
tion of groups of modes below the frequency of the main
reststrahlen band. The predicted strength of these
modes is insufficient to cause measurable structure in
the reflectivity. A search has been made in transmis-
sion using very thin samples and low temperatures to
reduce the usual two-phonon absorption in the same
region. On comparing a mixed crystal with a pure crys-
tal it is found that there is considerable extra absorption
in the 50 to 150 cm~* frequency range, but it consists

of a broad band unresolvable into components. It there-
fore remains an open question as to whether the model
has correctly predicted this absorption. The model may
be showing the correct trend, but just as with the finite
linear chain model it can show only a few isolated modes
where a more complete model would show a continuum
of band absorption.

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fali 1975
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4. Two-mode systems with structure

Figure 151 shows the infrared reflectivity of
GaAs,P,_,. There are two main bands for each compo-
sition, one near 270 cm-! and the other near 360 cm-!.
Because these frequencies are near the TO frequencies
of pure GaAs and GaP these bands have been called the
GaAs band and GaP band. The gross appearance of the
spectra is like that of Fig. 139, i.e., a two-mode sys-
tem. However, there is considerable fine structure in
each band which is first order (Verleur and Barker,
1966). Figure 152 shows a Raman spectrum for a
y =0.15 crystal measured by Strahm and McWhorter
(1969), which confirms the presence of fine structure.
Chen et al . (1966) have fitted the transverse optic mode
frequencies with a three-coordinate isodisplacement
model. Barker (1968b) and Chang and Mitra (1968) have
extended this three-coordinate model to include ion
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charges, so mode strengths can be evaluated. This
allows the calculation of both transverse and longitudin-
al optic mode frequencies. The results of Chang and
Mitra are shown in Fig. 153. Verleur et al. (1966)
developed a thirteen-coordinate model in order to ex-
plain the main TO and L.O modes and the fine structure.
Since a thirteen-coordinate isodisplacement model
yields twelve optic modes, it might be argued that a
five- or six-coordinate model would be more appropriate
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FIG. 148. Infrared-active
g 200 mode frequencies for
- ' Ba,Sry_,F, versus composition
S (y) computed from the model
z - for 8=0. In this and succeed-
w R . .
2 80 ing figures the model is eval-
8 uated for T =90°K. From
o Verleur and Barker (1967h).
w Here w; is to be compared
with wygs of the preceding
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160 with wrg.
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to the spectra. Thirteen coordinates are suggested by
the different possible nearest-neighbor ion configura-
tions in three dimensions. To date no one has been able
to suggest how to pick the five or six most significant
coordinates (parenthetically we note that even the
Green’s function method faces the same essential
problem). Figure 154 shows the frequencies of the five
strongest TO and L.LO modes. Figure 151 shows the fits
achieved with the thirteen-coordinate model. The fit
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is quite good for the reflectivity. In contrast to the mix-
ed fluorite crystals, the order parameter g requires
large positive values for thefits, indicating a tendency for
neighboring anions to be of the same type. Strahm and
McWhorter (1969) have fit the same model to their
Raman data but criticized some of the details of certain
modes.

As in the case of the mixed fluorite crystals discuss-
ed above, there are some low-frequency (100-140 cm~?!)
weak modes predicted by the GaAs P, , model (Verleur
and Barker, 1966). It is of interest that Strahm and
McWhorter find weak Raman-active bands at 100 cm™!
and 210 cm~! in additon to those shown in Fig. 152. In
the thirteen-coordinate model of GaAs,P,_,, the eigen-
vectors of the modes near 100 ecm~! (Verleur and
Barker, 1966) consist of entire units of primitive cells

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fall 1975

vibrating against each other. This suggests that short-
wavelength (perturbed zone boundary) vibrations may
cause absorption in the 100-140 cm-?! range. Pure GaAs
and pure GaP have broad peaks in the one-phonon den-
sity of states near 100 cm~!. The low-frequency modes
may therefore be thought of as induced acoustic mode
activity, though it is premature to classify such modes
without a better model of the mixed crystal. Nearly

all the isodisplacement models developed to date define
coordinates which depend on nearest-neighbor config-
urations and are associated with long-wavelength vibra-
tions (see, however, Barker, 1968b). Such coordinates
are unsuitable for describing the shorter-wavelength
lattice vibrations, so that further progress in under-
standing the fine structure must be coupled to the devel-
opment of better models, as mentioned previously.
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FIG. 151, Infrared spectra of GaAs,P,.,. The points are the
measured reflectivity at 300°K. The solid curves are calcu~
lated from the listed modes which are predicted by a thirteen-
coordinate isodisplacement model. From Verleur and Barker
(1966).
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FIG. 152, Polarized Raman spectra of room temperature
GaAs, 15Pj, g5. The spectrum of LO phonons is expected in the
(L 1) configuration and of TO phonons in the (L]|) configuration.
Internal reflections of the laser beam and scattered light pro-
hibit complete separation. The strongest fine structure is
marked *. From Strahm and McWhorter (1969).

D. One-mode versus two-mode behavior

Lucovsky, Brodsky, and Burstein (1970) have attempt-
ed to establish criteria for predicting one- or two-mode
behavior in mixed crystals. Their procedure essential-
ly examines the behavior of each mixed system in the
y -0 and y —1 limit where local mode theories are

applicable. Using actual data for the local mode frequen.

cies or estimates based on a simple linear chain mass
defect model, they correlate their predictions and ob-
servations for a wide variety of mixed crystals. Fig-
ure 155(a) shows the simplest application of these ideas
for a case like GaAs P, _,. Inthe figure thelimitingfre-
quencies of the main reststrahlen band near y =0 and

y =1 are plotted by the open and solid points. Near y =0
there is a localized mode in the gap (whose existence
could be determined by measurement or by a model
calculation). Near y =1 there is a localized mode at
frequencies above the reststrahlen band of the y =1
compound. The solid lines show the most obvious inter-
polation scheme using four lines with no line crossings.
This leads to two-mode behavior, i.e., two main TO and
LO modes over most of the composition range. Note,
however, that there are many other possibilities and
extensions. Figure 155(b) is similar to Fig. 155(a) ex-
cept that near y =1 there is a strong local mode plus a
weaker pair mode, say, at slightly lower frequencies.
The pair mode is not predicted of course by three-
coordinate isodisplacement models. Simple probability
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arguments suggest that this mode would have a strength
which varies as y® while the local or gap mode strength
varies as y for small y. A six-line interpolation scheme
is shown in Fig. 155(b). The spectra near y =0.5 may
now look like two modes plus fine structure or three
modes, depending on the actual frequencies of the modes.
To date most mixed crystals which might fall into this
category can be classified fairly naturally as two-mode
plus weak structure. The criterion of Lucovsky et al.
depends on a comparison of the host crystal atom mass-
es with the mass being substituted at each end of the
composition range. Essentially, if a gap and a local
mode are formed near the end poirits as illustrated in
Fig. 155(a), then the mixed crystal is predicted to ex-
hibit two-mode behavior. Matsuda (1967) has suggested
a different criterion also based on the masses involved.
Chang and Mitra (1971) have reviewed the above criteria
and have proposed a more complicated criterion which
includes the force constant for the minor component as
well as the masses of all the atoms involved. Harada
and Narita (1971) have included more detail by con-
sidering the size of the second-neighbor force constant.
For the crystal A B, _,C their criterion includes the
force F,,. Essentially the criterion hinges on noting
that if F,5 is large, then the A and B ions must move to-
gether, which prevents two-mode behavior. Barker

et al. (1968) have noted the importance of certain forces
which can only be measured in the mixed crystal and
which can essentially control the formation of one or two
modes.

Elliott et al. (1974) have also considered the criteria
discussed above and note the rather crude nature of the
models (one-dimensional models, isodisplacement
models, etc.) used to derive the criteria. They propose
a criterion based on the coherent potential approxima-
tion applied to crystals of the type A B,_,C. Assuming
that the width of the optic band is given by w;o-wre

~and that the band has a parabolic density of states (and

also that the acoustic band can be neglected), they
derive the condition

€(0) - (=)

R ==

T (9.3)
for two- mode behavior over the entire composition
range. (Here u is the reduced mass of the host crystal,
and u' the reduced mass corresponding to the minor
constituent.) They apply (9.3) to a list of 21 crystals
and predict the observed behavior with only one serious
discrepancy. Because of the assumptions and inclusion
of the dielectric constants as determining parameters,
(9.3) cannot be applied to nonpolar modes. All of the
above criteria depend on the masses and most of them
depend on the force constants in some way. Equation
(9.3) attempts to introduce the width of the optic branch
which depends on its dispersion. . This may be the most
important feature of the force constants which should
be considered. Note that flat optic branches allow
localized eigenvectors with little extra energy cost.
The ability to localize allows B ions, for example, to
vibrate with large amplitude even in the presence of
many A ion second neighbors which are remaining sta-
tionary. Flat branches, therefore, favor two-mode
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behavior. In the limit of very narrow dispersionless
branches, the right side of Eq. (9.3) approaches zero,
so that for reasonable mass differences two-mode be-
havior will result.

Figure 155(c) shows a mixed crystal system with a
high-frequencylocal mode atboth y =0 and y =1. The four-
line interpolation scheme shown would be called one-mode
behavior, though it is possible for this mode configura-
tion to have a two-mode appearance near y =0.05 if the
upper mode has large strength. The Te Se,_, system
serves as an example (Table IX.5). Figure 156 shows
the strongest of the E|| c-axis modes in this system.
Geick and Hassler (1969) have measured the spectra
and applied an eighteen-coordinate isodisplacement

"model. The large number of coordinates arises partly
from the necessity of considering displacements in three
dimensions for this anisotropic crystal system. The
authors have presented the TO mode frequencies and
the mode strength. We have used this data to calculate
the LLO mode frequencies, shown as dashed lines, for
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better comparison with the previous figure. Geick and
Hassler conclude that the higher-frequency mode is
probably a local mode near y =0 and y =1 but has a very
mixed character involving motion of all ions near
y=0.5.

It should now be apparent that the designation “two-
mode” is somewhat arbitrary and can only be confirmed
by a study of the spectra at several concentrations.
Most authors have adopted the definition given by Barker
and Verleur (1967) which defines Fig. 155a as two-mode
behavior. There are two points worth noting in discuss-
ing figures like 155. First, TO and LO modes must
alternate (for polar modes), with the lowest-frequency
mode being a transverse mode. These modes will obey
the Lyddane—Sachs—Teller relation. Secondly, any pair
of lines which come close together represents a weak
mode. The TO mode is a pole in the dielectric function
and the LO mode a zero. ‘As the strength of a TO mode
goes to zero, the pole and zero coalesce. It is easy to
show from the isodisplacement model (Sec. II) that for
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the usual local or gap mode near y =0, its strength will
go as y and the frequency separation of the correspond-
ing TO and LO components will go as y also. Near

y =1, the same condition holds, but the dependence is
on (1-y). Maradudin and Oitmaa (1969) have given a
more microscopic derivation leading to the same re-
sult.

Finally we discuss one of the asymmetric possibilities
depicted in Fig. 155(d). Near y =1 there is a high-fre-
quency local mode, but near y =0 one TO-LO pair
coalesces to'a weak mode marked f within the reststrah-
len band of the y =0 host crystal. There seems no
reason that the mode at f cannot be a localized mode
even though it must vibrate at a frequency where the
dielectric function of the host crystal is negative. Such
a localized mode is known for the donor impurity case
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shown in Fig. 67. In practice the two-phonon damping
can be large for f because its frequency is not very
high. This mode might be expected to have a width
similar to the width of w., or w,, due to such process-
es. In the tables we have denoted the behavior being
discussed here [Fig. 155(d)] as “one-two mode.” Near

y =1 there are two reststrahlenbands in Fig. 155(d), but
near y =0 thereis oneband witha small dip on top due to the
mode f. Since the dielectric function near f is dominat-
ed by the strong w,, and w;, modes, infrared methods
are unsuitable for detection of this mode. More promis-
ing possibilities are Raman scattering or luminescence.
Barker et al. (1968), Brodsky et al. (1968), and Lucovsky
and Chen (1970) have discussed several one-two mode
mixed crystals (see Tables). Figure 157 shows one-two
mode behavior for the mixed alkali halide Rb K, _,I.
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FIG. 155. Schematic representation of some simple polar
mode patterns in mixed crystals. Part (a) shows two-mode be-
havior. Part (b) shows a more complicated two-mode behavior.
In part (c) there is one main TO-LO pair at all concentrations
plus a weaker mode at high frequency. (d) shows one-two mode
behavior.

Note that there is a trivial inversion of this data com-
pared with the example of Fig. 155(d). In Rb X, I

the pole and zero which coalesce outside of the main
LO-TO pair do so at lower rather than higher frequency
and near y =0 rather than y =1. The solid lines are the
result of a three-coordinate isodisplacement model fit
by Fertel and Perry (1969). The fit is good, though the
frequencies of the weaker modes have not been establish-
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FIG. 156. A, symmetry optic modes in TeySe;-,. For the
pure crystal, group theory predicts one infrared mode. The
points are taken from Geick and Hassler. The LO mode fre-
quencies have been calculated from their data and extrapolated
to other y values using the strengths given by their model.
Note that the high-frequency mode, though weaker, does cause
a prominent reststrahlen band in the reflection spectra, giving
two modes at y =0.5.

1.0

ed experimentally near y =0 and y =1. The data do
establish this crystal as a one-two mode system. The
center mode in KNi Mg,  F; shows exactly the same
structure as that shown in Fig. 157, while the higher
and lower-frequency bands show simple one-mode be-
havior. A six-coordinate REI model fit by Barker et al.
(1968) has established that it is the large mass ratio
Ni/Mg which causes the one-two mode behavior here.

A more complicated case of mixed mode system is
shown in Fig. 158 for Bi,Sb, _,. There are no infrared-
active modes. There are two Raman modes which can
be labeled TO and LO to designate atom vibration direc-
tions transverse and longitudinal with respect to the
crystalline c axis. It is clear from the data (Zitter and
Watson, 1974; Lannin, 1975) that two pure crystal modes
decrease in strength in the mixed crystal regime, while
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one strong mixed crystal mode appears between 10 and
95% Bi. The solid curves in Fig. 158 show a fit given by
an eight-coordinate isodisplacement model which must
include coupling between. TO and LLO modes in the mixed
crystal. The fit requires reasonable assumptions about
the Sb—Bi force constants. X-ray diffractometer studies
indicate some macroscopic inhomogeneities; however, a
simple analysis suggests a +17% composition spread
at most.

These last examples illustrate the point that there is
a wide variety of possibilities for optic mode behavior
beyond the simple one- or two-mode models used for
the cubic—diatomic mixed crystals. The work of Zitter
and Watson (1974) and of Geick and Hassler (1969) on
Te,Se,_, shows that the isodisplacement model can be
useful in understanding the gross behavior of such sys-
tems. The one-dimensional chain model is also useful
in examining the various situations which can arise,
since mode frequencies and strengths can be evaluated
easily and some assessment can be made of the signifi-
cance of weak modes. This latter point mustbe emphasized
since  the three-coordinate isodisplacement model is so
idealized that it allows little evaluation of the crystal
structure or ion distributions form the: model parame-
ters. Significant theoretical progress must await the
application of Green’s function techniques to three-
dimensional models or the solution of classical models
with many more degrees of freedom.
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E. More complex mixed crystal systems

Up to this point we have considered substitutions on
only one sublattice of the pure host crystal. Many more
general substitution schemes can be iinagined; however,
we will restrict our attention here to one subset of crys-
tals which has actually been grown. We can consider
mixing the diatomic crystal AB with another diatomic
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FIG. 158. Raman optical mode frequencies of Bi,Sby.,. The
data are shown by points. The curves are calculated from an
isodisplacement model. From Zitter and Watson (1974).
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FIG. 159. (a) A possible mode (three TO and three LO) graph
as a function of concentration for a quaternary mixed crystal.
Near y =0 and ¥y =1 there is one principal reststrahlen band and
two weak localized modes. Anti-crossings occur near the
points m. (b) Mode structure found in ZnySe,Ga;-yPi~y. Some
frequency regions could not be studied carefully because of
interference peaks in the thin samples used. From Barker
and Yim (unpublished).
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crystal CD. If A and C are cations, then we expect the
chemical formula A B,C,_,D,_,. If the compounds AB
and CD are very similar, we might expect the more
general mixed crystal A B,C,_,D,_,. Using the simplest
isodisplacement model point of view we merely have
to add one more equation to the set of equations (2.17)—
(2.19), as well as one extra term to the polarization
equation (2.20). The four equations for these four de-
grees of freedom will yield one zero-frequency mode
as before and three optic modes. From the types of
mode graph already illustrated in Fig. 155, it is evident
that many types of behavior are possible. Figure 159
illustrates a simple case in which the compound CD is
composed of extremely light elements. On the right
side of the mode graph the elements CD must each re-
sult in a local mode if the structure is well behaved,
in the sense of the isotope model having applicability.
At the left side, if we assume that the elements AB are
both heavy, then we might have two low-frequency
localized modes, perhaps occurring in a gap of the
compound CD. Within the isodisplacement model these
end point modes can be linked up as shown in the figure.
Mixed modes with an anticrossing must occur near the
point m (see figure) since the eigenvector for the D-ion
local mode must merge with the CD reststrahlen band.
Similarly, the B gap mode must finally be connected
with the AB reststrahlen band. If these anticrossings
near m produce a rather close approach of the poles
and zeros of the dielectric function, then, near 50% con-
centration, the material will have an over-all one-mode
reststrahlen spectrum, while at other concentrations
it will appear to have a three-mode spectrum.

Several mixed III-V+II-VI semiconductor compounds
have been successfully prepared. For example,
ZnSe+ GaP is a completely miscible quaternary alloy
system (Yim ef al., 1970). A reflectivity study has
been made of some compositions of alloys from this
system and the preliminary results are shown in the
lower part of Fig. 159. It is evident that some of the
features to be expected from a general mode graph such
as shown at the top of the figure are in fact observed in
this mixed crystal system. Certain modes appear to be
missing, however, in these preliminary results. Ex-
perimentally, this lack of mode structure could be due
to anomalously large linewidth for certain modes or
to the merging of weak mode structure with interference
peaks, which complicated the spectra for several of the
very thin samples used here. Work in this area will
probably proceed only as fast as the technical import-
ance of these crystals leads to new crystal growth
efforts.



X. STRUCTURAL DISORDER—AMORPHOUS SYSTEMS

A. Introduction

In the preceding sections we have discussed infrared
and Raman spectra for crystals in which the disorder
arises from impurity atoms substituted for a host atom.
Usually the crystal can be treated as if the atom posi-
tions still maintain a regular periodic array and the
principal perturbation is only one of a mass change.
Experimentally, such crystals show fairly sharp x-ray
diffraction lines. In the present section we consider the
effect of disorder in the periodic arrangement itself.
Figure 160 shows examples of the two kinds of disorder.
In (a) the disorder discussed in preceding chapters is
shown. In (b) is shown the widely quoted representation
of glass'® proposed by Zachariasen (1932). The figure
schematically depicts a two-dimensional A,B; solid.
There are no impurity atoms. Differing bond lengths
and bond angles cause a loss of both short-range and
long-range order in this amorphous system which would
have been present in crystalline A, B,. Locally, how-
ever, each A atom always sees three B atoms as near-
est neighbors, and each B atom always sees two A
atoms. In many amorphous or glassy systems it has
been found that valence is locally satisfied. For exam-
ple in amorphous germanium, each Ge atom has four
nearest neighbors. These neighbors are found at ap-
proximately the same distance and bond angle as in cry-
stalline Ge. The key point is that local valence (i.e.,
four nearest neighbors) can be satisfied even in a
very disordered structure, as shown in the figure.

Thus in comparing related crystalline and amorphous
materials, the great differences show up in atom spac-
ings and angles from a particular atom to second or
more distant neighbors. The present chapter deals with
amorphous materials such as those discussed by Zach-
ariasen. The working definition of an amorphous sys-
tem is that its x-ray diffraction pattern lacks sharp
rings or spots, consisting of a few broad halos (Bagley,
1974).

Unfortunately, the above definition does not lead to
precise concepts when discussing the atomic structure
of amorphous solids (Bagley, 1974; Grigorovici, 1974).
The Zachariasen picture has been criticized since its
inception (Higg, 1935; Zachariasen, 1935), but no sin-
gle model has taken its place. Figure 160(c) shows
schematically one main opposing school of thought. This
figure might be titled the microcrystalline model of the
amorphous state. Here we imagine identifiable cry—
stallites which are randomly oriented, and probably
badly strained, joined by irregular bonds and atom
bridges to each other. If the crystallites are small
enough (~ 15 Z\) and/or strained enough, this solid will
also lack sharp x-ray diffraction lines. Only in the past
year have any vibrational models of both the random

123ome authors define a glass as an amorphous solid which
can be prepared from a melt. Others use amorphous and
glassy synonymously. The adjectives vitreous and glassy are
equivalent.
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network type [Fig. 160(b)] and the microcrystalline type
[Fig. 160(c)] been constructed and intercompared.
These models are mentioned below. While a review of
the amorphous state is beyond our scope here it is im-
portant to give the reader two warnings. First, there
may be no unique amorphous state for most materials.
By its very nature the state is thermodynamically un-
stable or metastable and can transform with time or
with thermal cycling. Different preparation techniques
may yield different forms of the same solid. Secondly,
presently available measurement techniques may not be
able to distinguish between different models (Bagley,
1974). It appears that the major spectral peaks are in-
sensitive to the details of sample preparation in many
cases. Itis in this area of model checking that optical
spectra may play an important role in the future. If

(c)

FIG. 160. Schematic representations of (a) substitutional dis-
order, (b) random network, and (c) microcrystallite disorder
in two dimensions. Note the retention of local valence in (b).

. The crystallites shown by the regular polygons in (c) can be

imagined to have regular structure internally with some super-
imposed strain caused by the irregular bonds at the surface
atoms. (a), (b), from Dean (1967).
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models can be developed for optical spectra which de-
pend on second-neighbor parameters, then comparison
of theory with experiment could lead to progress in un-
derstanding the amorphous state.

The absence of periodicity in amorphous solids and
glasses allows many modes of the system to be both in-
frared-and Raman active. The perfect periodicity of a
crystal causes cancellation of dipole moments (infrared
activity) and polarizabilities (Raman activity) for all
modes except those at §=0. In the amorphous systems
this perfect cancellation can no longer occur. The
amorphous solids therefore have spectra which show
intense broad features, and the problem becomes one
of relating these features to the structure and state of
order present in the solid. Figure 161 shows an ex-
ample of spectra for fused quartz (SiO,) and compares
it with the similar spectra for crystalline quartz
(a@-Si0,). From the figure we note there is a merging
in the fused quartz of many sharp features of crystalline
quartz in the 100-500 cm~*! region. The fused quartz
shows only broad features. The contrast with Fig. 1
(H local mode) is striking. There is little use in amor-
phous systems for the one-oscillator model exploited in
earlier chapters. In spite of the structural complexity,
many of the vibrational modes in amorphous systems
are localized. This seems intuitively obvious since
perfect periodicity is needed to prove the Bloch theorem
on plane wave states. At a somewhat deeper theoretical
level, proofs that randomness causes localization are
extremely difficult and only exist for very specialized
and narrowly defined systems (Halperin, 1968).

From Fig. 161 we note that both types of quartz ex-
hibit modes all the way up to about 1250 cm~*, which is
typically the highest frequency which occurs in oxide
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FIG. 161. (a) Raman scattering from a-quartz at 300 °K.
From Scott and Porto (1967). (b) Raman scattering from fused
silica at 300 °K (Tobin and Baak, 1968). Upper curve E perpen-
dicular to direction of exciting beam; lower curve E parallel
to direction of exciting beam.
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materials, whether of glassy form or crystalline form.
There are new features in the glass system at frequen-
cies below 100 wave numbers. We will treat this very-
low-frequency region in a later section. Several sys-
tems which occur in both the glassy and crystalline
form have now been shown to have features simiiar to
Fig. 161. Markov and Reshetnyak (1972) have studied
CdGeP, by infrared reflectivity. They find in the glassy
spectra, similar to fused quartz, a considerable
broadening and loss of detail. Finkman and Tauc (1973)
have measured the reflectivity of In,Te; which has zinc
blende structure with one-third of the cation sites vac-
ant. In passing from an ordered to a disordered ar-
rangement of vacancies, many sharp phonon modes
merge into a few very broad bands. Spectra for some
other materials have been reviewed by Lucovsky (1974).

There have been very few theoretical calculations
which explain either the Raman or infrared spectra of an
amorphous system. Most theories attempt to ascribe
the absorption directly to the density of vibrational
states. The calculation of the density of vibrational
modes in itself is a formidable task, even without the
additional complication of calculating the optical matrix
elements. In Sec. IX. B we describe some calculations
on very simple models and in the following sections list
some experimental results, together with the models
chosen by the various authors to help explain their re-
sults.

Leadbetter (1968) has given a review of the properties
of glasses—particularly noting the indications of anom-
alous low-frequency vibrational modes which affect the
thermal properties. Tauc (1974) has recently reviewed
both the vibrational and electronic optical properties of
amorphous systems. An excellent source of recent work
on all aspects of amorphous systems may be found in
the Amorphous and Liquid Semiconductor Conference
Proceedings edited by Stuke and Brenig (1974).

B. Model calculations

We first note that the equation of motion for the linear
chain (Sec. II) does not contain the position coordinate
of each atom explicitly. Therefore the calculations car-
ried out there for mixed crystals do provide a rough
model for amorphous systems. The assumption which
must be made is that the structural disorder can be sim-
ulated by the mass disorder of the mixed crystal model.
The principal results to be noted are the broadening of
structure, which was sharp in the regular chain, and
the induced infrared activity for practically all modes
in both the acoustic and optic bands. These results of
Sec. II qualitatively explain the broad spectra of Fig.
161. Payton and Visscher (1968) have calculated the
density of vibrational modes for a three-dimensional
diatomic lattice with disorder in the value of the force
constants. Figure 162 shows the results as the disorder
increases from top to bottom. The model solid consists
of 6 x6x40 atoms connected by central and noncentral
nearest-neighbor force constants. The force constants
y are chosen randomly from within the range indicated
in part (b) and part (c¢) of the figure. In part(a) there
is no disorder and the density of states shows an acoustic
band and an optic band separated by a gap, together with
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some sharp structure within each band. The two main
features to note as the disorder is increased are the loss
of the sharp features and the broadening of both the
acoustic and the optic band until finally the gap is re-
moved. If optical absorption is ¢onnected with one of
the sharp features in the spectrum of Fig. 162(a), then
one would expect it to become broadened also, giving a
qualitative explanation of the behavior shown in Fig. 161.
Dean and co-workers have calculated the vibrational
density of states for glassy structures using explicit
models for the random positions of the ions involved.
Bell and Dean (1966) constructed atomic models of
silica (SiO,) based on the SiO, tetrahedron, with the sil-
icon cation at the center. The models are physically
constructed on the basis of random network theory,
with metal rods representing bonds and polystyrene
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FIG. 162. Normal mode frequency distributions for ordered
diatomic simple-cubic lattices (6 X6 X40 NaCl structure), in
which one component has a mass % the other. Central and non-
central force constants v are chosen at random uniformly over
the intervals specified. From Payton and Visscher (1968).
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spheres representing the ions. The Si—O-Si angle can
take any value within a range from about 120° to 160°.
The mean value of this angle is 140°. The O-Si-O angle
remains near the ideal tetrahedral angle for a regular
structure (109.5°). The Si-O bond lengths also vary
throughout the model but to a smaller extent than the
variation in bond angle. Once a model of several hund-
red ions is constructed, the actual position coordinates
of each ion are measured and radial distribution func-
tions are calculated. These distribution functions agree
quite well with measured x-ray radial distribution func-
tions. The vibrational spectra are calculated from the
physical model by adopting a central force constant of
4.0 X 10° dyne/cm and a noncentral force constant of
3/17 times this value. This model, therefore, unlike
the one described in Fig. 162, has identical force con-
stants throughout, but randomness in the angles of the
bonds and the positions of the atoms. Figure 163 shows
the calculated spectrum assuming fixed-end boundary
conditions. Slightly different results are obtained when
the boundaries are left free. Some of the individual
modes have been identified and are labelled in the figure.
Modes labeled B contain predominantly Si—O-Si bond -
bending vibrations. In modes labelled R the oxygen
atoms perform an Si—-O-Si rocking motion roughly
perpendicular to the bond plane. Modes labelled C have
extremely intricate atomic motion, with the largest
part of the vibrational energy residing in the Si ion.
Finally, the modes labelled S are predominantly
Si—0O-Si bond-stretching vibrations in which the O moves
in opposition to its two Si neighbors and roughly parallel
to a line joining the two nearest Si ions. Bell, Dean,
and Hibbens-Butler (1970) have considered the localiza-
tion of the modes which are shown in the top part of

Fig. 163. They define a quantity called the participation
ratio, denoted by p,, which gives roughly the number of
atoms which participate in a given mode. p,is shown in
the lower part of Fig. 163 for the SiO, model with fixed-
end boundary conditions. As can be seen from the fig-
ure, the localization is most severe in the midfrequency
range for those modes of the B type.

In addition to the modes described above for the con-
tinuous structure, the authors find some more-local-
ized modes connected with broken bonds, which always
occur at the surface of the model. These broken bonds
can be inserted in the interior, for example, to simul-
ate radiation-damaged silica. Modes observed near
900 cm~! have been assigned to such broken bond loca-
tions (Bell and Dean, 1968). No optical matrix elements
have been calculated for these SiO, models, so that only
very rough comparisons can be made between the cal-
culated density of states and the observed spectra.

Recently Alben et al. (1974) have calculated the densi-
ty of vibrational modes and the infrared and Raman
spectra of amorphous silicon and germanium. They
adopt a finite cell of randomly positioned atoms, sub-
ject to the constraint of tetrahedral nearest-neighbor
coordination, but possessing a substantial number of
fivefold rings of bonds. Bonds through a surface of the
cell are reconnected by periodic boundary conditions to
the far side with the constraint that the bond must be
completed to an allowed tetrahedral site and must not
be greatly distorted. The rms variation of one specific
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61-atom model is 12.5° in angular bond distortion.
Figure 164 shows a comparison of their calculated re-
sults for two similar models of amorphous silicon. One
model contained 61 atoms in the cubic cell, and the other
62 atoms. Diamond structure crystalline silicon would
contain 64 atoms in this same cell. Note that neither the
infrared absorption nor the Raman scattering is related
to the density of states in a very direct way (see Fig.
164). Reasonable agreement between theory and exper-
iment is found for major features in the spectra. In
addition Alben et al. are able to deduce some general
conclusions concerning the parameters which control
the appearance of major bands in amorphous systems.

C. Infrared and Raman spectra of several systems

1. Chalcogenide glasses

Many chalcogen compounds form bulk glass samples
on cooling from the melt. The structures are thought
to differ widely, however, exhibiting one-dimensional
correlations (chains) such as in a-Se (amorphous Se)
(Lucovsky et al., 1967) or two-dimensional correla-
tions (layered structures) as in a-As,Se,. (See Taylor
et al. and Lucovsky in Stuke and Brenig (1974) for op-
posing arguments on the two-dimensional or one-dimen-
sional nature of a-As,Se;). By way of contrast, a-Ge
and a-Si with their pronounced preference for tetrahe-
dral bonding form three-dimensional networks. As dis-
cussed in the introduction to this Section, the structure
may not be unique in some cases but depends on the
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method of preparation (Rechtin and Averback, 1973).
As,Se; and As,S; can be prepared in amorphous or
crystalline form. Felty ef al. (1967) have made an in-
frared reflectivity study of the strongest modes in a
mixture of these two compounds-in the amorphous form.
The reststrahlen bands show two-mode behavior (Sec.
IX) as a function of composition. The modes are quite
broad, even the pure end compounds showing much more
breadth than the pure crystalline forms. Taylor et al.
(1970) have made a much more detailed infrared study
of amorphous As,Se, as well as dielectric loss measure-
ments in the microwave range. They find three rest-
strahlen bands at 102, 156, and 237 cm~!. These bands
have frequencies within 10% of the frequencies of the
strongest modes seen in the E || a-axis spectrum in the
crystalline form of As,Se, measured by Zallen ef al.
(1971). Taylor et al. (1974) suggest that this correspon-
dence supports a two-dimensional bonding model.
Lucovsky (1974) has taken a different viewpoint of the
structural interpretation of the optical spectra.
He adopts a molecular model approach (zero-dimensional
correlations) for the high-frequency modes in the chal-
cogenide glasses in which the internal vibrations of the
AsS, molecule, for example, would explain the three
reststrahlen bands in this material. Mitchell et al.,
(1972) have found that the line shape of the strong phonon
modes cannot be fit by the Lorentzian line shape which
is commonly used for crystalline materials. A good
fit is obtained by using a Gaussian distribution of
Lorentzian line shapes. The width of the distribution is
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about 20 cm~! for each of the modes. The authors feel
that this type of statistical distribution is consistent
with the disordered structure.

Figure 165 shows the conductivity as a function of
frequency for As,Se, from 0.1 cm~! together with the
spectra of several other amorphous solids. The mech-
anism of the loss at frequencies below the obvious
phonon peaks in Fig. 165 remains unclear. At frequen-
cies below about 10°Hz As,Se, shows a conductivity
which depends approximately linearly on frequency
(Taylor et al., 1970; Owen and Robertson, 1970). Owen
and Robertson (1970) suggested that this is evidence
for hopping conduction by mobile carriers. As Fig. 165
shows, at microwave frequencies many amorphous
solids show an w? frequency dependence for the
conductivity ¢’ (Note: o'(mho/cm)=(1/120m)na= ve"/60,

DENSITY OF

S165

where 7z = index of refraction, and v=frequency in cm™!.)
Strom et al. (1974) and Taylor et al. (1974) relate the
magnitude of this w? sbsorption to the 72 (Debye-like)
part of the specific heat in these materials. Since there
is a good correlation, this result suggests that the low-
frequency absorption comes from a disorder-induced
coupling to Debye modes. In addition, the coupling
coefficient M is frequency independent in the expression

o'(w)=Mg(w) ...Debye modes. (10.1)

This same type of expression is obtained by Elliott for
the band mode absorption in the one-defect case when
there are no resonant mode enhancements (Elliott, 1966),
but has not been derived in any convincing manner for
the amorphous case. Fritzsche (1974) has pointed out
the wide applicability of the power law ¢’(w)~ w®, where
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by the arrow at 380 cm™!, Spectra are formed by adding weighted Lorentzian contributions from the calculated §=0 modes and are

normalized to the same maximum value. From Alben et al. (1974).
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s ranges from less than one to two for a diversity of
amorphous compounds. Mott and Davis (1971) give a
derivation of ¢ (w)~ «? for a model consisting of random
potential wells which lead to localized states. They also
discuss other power law behavior and the temperature
dependence of of. It must be concluded that most of the
arguments relating spectra to structure are extremely
speculative at present. Much more work on harmonic
models like those used by Alben et al. (1974) is needed.
In addition it will be necessary to model anharmonic
motion and tunneling motion within various structures to
correlate the low frequency spectra with structure.
Finally, it is interesting to note the preservation of
the optic mode peaks in the 100—400 cm™! range when a
glass softens and then enters the liquid phase. Taylor
et al. (1971) have mesasured the infrared transmission
of As,Se; and Tl, SeAs,Te, glasses in the temperature
range 300° to 675 °K. Both glasses show well-defined
absorption peaks which change very little on passing
through the glass transition temperature 7, and into
the liquid phase. The Tl, SeAs,Te, glass showed an ab-
rupt loss of mode structure about 120 °K above Tg. The
authors estimate that As,Se, would have shown a similar
loss of mode structure at a temperature 7~ 725 °K.
The observed mode structure is taken as evidence that
a layer-type coordination is retained in the liquid phase
but then abruptly lost above a well-defined temperature
T.

s*

2. Amorphous semiconductors

Figure 166(a) shows a Raman spectrum of amorphous
silicon at room temperature and low temperature.
Once the temperature-dependent Stoke’s factor »+1 has

Frequency (10° Hz)

10 102 103 104
105 . - : .
|) T|258A52T€3 . |02
2) 14Na,0-13Ca0-7ISi0,
4q |
10 3) As, Se, 0
4) As,Sy
103 | 5) GeO,
6)B,0, {10°
o2 | 7)si0, o
na 110™
0! (Q 'em™)
~2
(cm) 1'°
1P
H1073
Top
H10™
102
Jio™®
103

10! 10° 10' 102 10%
Wavenumber (cm)

FIG. 165. Room temperature conductivity versus frequency
of selected amorphous materials., From Strom ef al. (1974).

Rev. Mod. Phys., Vol. 47, Suppl. No. 2, Fall 1975

A.S. Barker, Jr. and A.J. Sievers

been removed (see Table II.2), the two spectra are al-
most identical, showing that each spectrum arises from
the same one-phonon processes. Simple models (one-
defect) of infrared absorption in disordered systems
give a spectrum proportional to the density of states
g(w) as long as there is no enhancement due to resonant
modes (Elliott, 1966). For the Raman spectrum Smith
et al. (1971) have used an expression suggested by
Shuker and Gammon (1970) for amorphous silicon.
These latter authors use

I(w) < (n+1)g(w)/w,

where [ is the scattered intensity, and (»+1) the Stoke’s
factor. Smith et al. plot wI/(n+1) so that if Eq. (10.2)
holds, their data should reflect the density of states
g(w). Comparison is made in Fig. 166(b) of this reduced
data with the density of states of crystalline siliconbroad-
enedin avery specific but ad zocmanner. Thereare some
correspondences between major features in parts (a) and (b)
of the figure, though an extra factor of w in (10.2) would ob-
viously put the two major peaks in better agreement when
comparing the theory and experiment. It should be stress-
ed that there is no fundamental reason to expect simple
forms like (10.2) to hold over the entire frequency

range of Fig. 166, or even within one band of modes.

At low frequencies (below 100 cm-?! in silicon), where
the Debye approximation should hold, theoretical models

(10.2)
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FIG. 166. (a) Raman spectra of amorphous Si at 27 and 300 °K
reduced by [#(w, T) +1]/w. Resolution is indicated by R. (b)
Single-phonon density of states of crystalline Si; dashed line is
the density of modes g(w), and the solid line is obtained by
broadening g(w). From Smith ef al . (1971).
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are not in agreement on the expected form for the op-
tical spectra (see R. J. Bell, 1972). King et al. (1974)
have measured the heat capacity of amorphous german-
ium between 2° and 30 °K. The measurements show a
Debye-like [g(w) < w?] density of phonon states at low
energies similar to crystalline germanium but with all
frequencies reduced by 16%. These measurements do
not go low enough in temperature, however, to uncover
the anomalous linear terms discussed in Sec. X.D.
Lannin (1973) has made a careful study of the two
independent polarization components of the Raman
scattering in amorphous silicon. In the range below
67 cm~! he finds that I(w) < w?. If we insert the Stoke’s
factor and assume the Debye density of states, this re-
sult is

I(w) < w@k+1)g(w) (low frequency modes) (10.3)

in contrast to (10.2) above. Equation (10.3) may be ob-
tained from (10.2) if we insert a mode coupling para-
meter (matrix element) which is constant in (10.2) but
proportional to o for low-frequency modes. Such a
dependence has been suggested by Whalley and Bertie
(1966). Recently, Alben et al. (1974) have given a re-
view of optical, electron tunneling, electron energy
loss, and neutron spectra of amorphous silicon and
germanium. These authors have carried out model
calculations of g(w), I(w), and infrared absorption for
random network structures, microcrystalline structures,
and polymorph structures. The infrared activity is
expressed as a sum of the differences in bond extension
about an atom. Three independent Raman polarizabili-
ties are set up which also depend on local bond compres-
sion and extension. Figure 164 shows the calculated
spectra for two random network models. These models
compare favorably with experiment, while the micro-
crystalline models give a much poorer comparison.
The authors note that the calculated density of states is
close to that of the crystalline solid. This result is
shown to depend on the importance of the nearest-neigh-
bor central forces, which are essentially preserved in
passing from the crystal to the amorphous form in these
materials. They conclude that the broad features of the
density of states and the variation with frequency of the
optical matrix elements can be rather well explained in
terms of the short-range order. Approaches which
start from perfect crystal results and then smear out
the spectra to approximate the amorphous phase

[cf. Fig. 166(b)] are therefore in some difficulty.
Joannopoulos and Cohen (1973), in a study of the elec-
tronic transitions in amorphous silicon and germanium,
agree that modifications or smearing of pure crystal
results cannot yield the correct density of states. They
find, however, that short-range parameters (bond
angles, etc.) must contain significant disorder to ex-
plain major features of the electronic band structure of
amorphous silicon and germanium.

3. Ammonium bromide and ammonium chloride

The ammonium halide crystals all show an order—dis-
order transition as a function of temperature. At low
temperatures they are ordered; however, on heating
they pass through a lambda transition and become dis-
ordered. The disorder is of a particularly simple na-
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ture, encouraging hope for some understanding of the
vibrations in these systems using a perturbation ap-
proach. These materials are not amorphous in the
usual sense, but are characterized by a special type of
disorder on one sublattice. From one point of view
these materials are similar to an AB,C, _, type mixed
crystal. The mixing is not of different species with
different mass, but of one species with two kinds of ori-
entation resulting in two kinds of force constants. In
the disordered phase the halide ion maintains a regular
approximately simple cubic array, while the ammonium
ion is disordered, being able to take one of two orienta-
tions within the cube. The idea of a perturbation ap-
proach comes form the observation that the internal
modes of vibration of the ammonium molecule lie above
1000 ecm~!, while the modes of vibration involving rel-
ative ammonium-halide motions lie at about 300 cm-*
and below. This fact, together with the form of the
structure, shows that any one ammonium molecule vi-
brates fairly independently of its neighbors and thus
should only weakly feel the effects of the ordering.
Wang and Fleury (1969) have studied the Raman spectra
of NH,Br. They note that two sharp modes near 60 cm™
persist in the disordered phase. These authors present
arguments suggesting that the enlarged Brillouin zone
in the disordered phase still feels the effects of the
smaller zone which exists at lower temperatures. This
causes an activation of a zone boundary phonon mode.
Schumaker and Garland (1970) have made an infrared
absorption study of one of the internal vibrations of the
ammonium molecule. They are able to make correla-
tions of the strength of this mode with a long-range or-
der parameter which changes with temperature. Figure
167 shows the Raman spectra taken by Wright and Wang
(1973) also in the region of the internal ammonium
molecule vibrations. The order—disorder transition is
235 °K. As the sample is cooled, a rather strong broad
mode near 1400 cm~! begins to sharpen and become
quite asymmetric as the ordered phase is approached.
This mode persists into the ordered phase and a new,
much sharper, mode grows at 1420 cm-!. According
to the authors’ analysis, the 1400 cm~! mode is Raman
forbidden at low temperatures in the ordered phase.
This mode therefore serves as a probe of the local site
symmetry, and its integrated strength can be used as a
measure of the evolution of order below the lambda tran-
sition. From the figure we note that the order evolves
rather gradually, with considerable disorder remaining
present 30° to 60 °K below the ordering temperature.
Fritz (1973) has studied the low-frequency Raman
spectrum of NH,Cl in its disordered phase. The
author’s viewpoint is that since there is only one allow-
ed lattice vibration which is optically active in the or-
dered phase, any new features which appear in the
disordered phase must reflect the activation of lattice
vibrations throughout the zone. Since the disorder is a
small perturbation, the actual phonon frequencies are
considered to be those of the ordered phase which have
“een measured separately by neutron scattering. Fritz
merely compares the observed Raman peaks in the
50-400 cm~! range with a list of critical point frequen-
cies taken from previous theoretical and experimental
work on the ordered phase. The agreement is good
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once the critical point frequencies are corrected for the
difference in temperatures between the two sets of data.
This approach has intuitive appeal when the disorder is
weak, as in the ammonium halides. It would be useful
here to correlate the temperature dependence of some
order parameter measured by x-ray methods with the
temperature dependence of the low-frequency spectral
intensities. A positive correlation would provide a
stronger experimental basis for the method proposed
by Fritz.

Loveluck and Sokoloff (1973) have developed a theory
of systems with substitutional disorder and applied it
to NH,Cl. By assuming that the force constants which
depend on the orientation of the ammonium molecule are
weak, they are able to draw some conclusions about the
form of the spectrum in NH,C1. These authors use the
ratio of the order-dependent force constant to an order-
independent force constant as an expansion parameter in

171.2°

160.5°

45°K

S L 1 L 1 : 1 ,|£ 1 1 1 1 1 L.
1,460 1440 1,420 1400 1,380 1,360 1,340
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FIG. 167. Raman spectra for the internal bending mode, v,
region at various temperatures in Phases II and III obtained
in the a(ca)b(=b(cb)a) scattering configuration. From Wright
and Wang (1973).
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the theory. For small values of this expansion parame-
ter they obtain expressions for the Raman scattering
and infrared absorption. By making certain assump-
tions they are able to show that the Raman spectrum
consists of two terms in the disordered phase. One
term contains the features of the §= 0 spectrum of the
ordered lattice, while the other depends directly on the
density of states of the ordered lattice throughout the
zone. Since the =0 features appear directly in this
theory, there is no need to postulate a remnant short-
range order in the disordered phase as some experi-
mentors have suggested when analyzing their data. The
authors make some comparisons with measured spectra
and suggest that it would be useful to be able to subtract
experimentally the density of states type features from
the measured spectrum, in order to separate the two
types of terms and thus fix some of the parameters
which enter their theory. :

D.Low-frequency modes in amorphous solids

There are several kinds of indirect experimental
evidence that anomalous low-frequency modes occur in
some amorphous materials. Flubacher et al. (1959)
have fit the heat capacity of fused quartz very carefully
over a moderately wide temperature range above 2.5 °K.
They find they must use the usual Debye form plus
three Einstein oscillators located at 9, 22, and 40 cm™?,
Such low-frequency modes are not observed in optical
spectra of crystalline quartz. Strakna (1961) has analyz-
ed the ultrasonic absorption in fused quartz before and
after fast neutron irradiation. He postulates a distribu-
tion of barrier heights for oxygen motion ranging in
energy from 0-1000 cm~!. This distribution has con-
siderable weight below 300 cm-!., These modes are
quite different from the usual Debye modes of a solid.
More recently Zeller and Pohl (1971), Lasjaunias et al.
(1972), and Stephens (1973) have measured the specific
heat of several amorphous systems including fused
quartz below 2 °K. The results show a large non-Debye-
like contribution which varies as 7. This is interpreted
as anomalous modes whose density can be specified in
the energy range 0.2 to 4 cm~!. Using Brillouin scat-
tering, Love (1973) and Pohl et al. (1974) have estab-
lished that there are regular well-behaved transverse
and longitudinal thermal phonons at 0.5 and 0.78 cm™*
in addition to the anomalous modes. We discuss this
very-low-frequency region later.

Turning to optical studies, we discuss first the region
above 20 em-!. The low-frequency peak in the spectrum
shown in Fig. 161 has been investigated using polarized
Raman scattering. Hass (1970) and Stolen (1970) have
carefully checked the temperature dependence of the
peak near 40 cm~!. Figure 168 shows the results of
Stolen at 300° and 14 °K. The work of Hass and of Stolen
establishes the important result that the broad band
between approximately 20 and 200 cm~! is a one-phonon
loss spectrum. The two curves in Fig. 168 are different
only because of the Stoke’s factor »+1 being different for
the two temperatures shown. Stolen goes on to show that
the room temperature Raman spectrum and the infrared
absorption plotted as a(w)/w? have the same shape in
the range 20—-100 cm~!., He finds the same result for
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At this point we digress on possible models for the
low-frequency optical absorption. Figure 169 shows a
small part of the silica structure. In parts (a)-(d) of the
figure an oxygen atom is shown with various possible
Si—-O-Sibond angles. To make a specific model we con-
sider oxygen motion. in the plane of the figure in the ver-
tical direction. If the Si—Obond has a stretching but no
bending restoring force, then as we progress from (a)
to (c) in the figure, the frequency of the oxygen mode
will decrease. For this rather unrealistic model with
no bending restoring force, a point of instability is
reached when the bond angle is 180°, yielding a zero-
frequency mode. Since the configurations shown in part
(a)—(c) of the figure occur at random throughout the
silica network (cf. Fig. 160), the modes we are describ-
ing would be localized modes. Such grossly strained
bonds may be characteristic of oxide glasses but not of
amorphous germanium and silicon. The strong tendency
of the Group IV elements to form tetrahedral bonds
would explain this difference. Such speculation must
still be tested by a study of the very-low-temperature
specific heat of amorphous germanium.

An estimate may be made of the number of local
modes participating in the broad band, which is peaked
near 40 cm-!. In crystalline quartz the dimensionless
strength of the 1050 cm=-! mode is S=0.67 (see Table
11.2). This mode is known to have predominantly oxygen
motion connected with it. If the force constant associat-
ed with this mode is now reduced to move it down to the
40 cm-~?! region, its strength would increase to approx-
imately S=500. Since the integrated absorption of the
broad band near 40 cm~?! yields a dimensionless strength
of §=0.05, we find by this argument that only 1 in 10*
oxygen atoms have the weakened force constant which
gives modes in this low-frequency region. That is,
configurations shown schematically in Fig. 169(c) are
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rather rare occurrences in the fused quartz structure.

Figure 169(e) shows a different model of Si—O-Si
bonding in fused quartz. This is the model suggested by
Strakna to explain the ultrasonic absorption. It is best
described as a broken-bond model. In some regions of
the fused quartz structure neighboring silicon atoms
are too far apart for the regular Si—O-Sibridge form.
In this situation Strakna suggests the oxygen remains
bound to one of the silicons, leaving the dangling bond
shown schematically by the dashed line in the figure.
Since the single oxygen bond can actually involve either
of the nearest silicon atoms, this suggests that the
oxygen resides in a double-well potential. Such a double-
well model is not unique to the stretched Si—-O-Si bond
but can also occur, for example, for the two configura-
tions shown in parts (c) and (d) of the figure. That is,
under the influence of thermal excitations, the system
may jump from configuration (c) to configuration (d).

If we consider thermal hopping over the top of the po-
tential hump in either two-well model, we obtain the
well-known Debye expression for the dielectric constant.
To produce the broad absorption peak observed in fused
quartz we would have to postulate a distribution of po-
tential wells with different barriers between the two
positions. For the Debye model with thermal excitations
over the barrier the relaxation time is exponentially
dependent on temperature, and the strength of the ab-
sorption goes as 1/7T. This model appears to be ruled
out, therefore, by the lack of temperature dependence
in the infrared absorption.

We return now to the harmonic oscillator description
of the absorption in the 20 to 100 em~?! frequency region
in a-8i0,. Recent work by Stolen (1970) and Stolen et al.
(1970) shows the broad absorption discussed previously
which peaks near 40 cm-! when the data is plotted as
a/w?. Figure 170 shows the low-frequency edge of
this absorption. The strong peak centered at 40 cm™*
has little or no temperature dependence, as mentioned
above. If we regard this peak as arising from a distri-
bution of localized oxygen oscillators as shown in Fig.
169, we may draw some conclusions concerning the
distribution of these oscillators. Since the absorption
is low, we are in a region where the absorption coef-
ficient @ is proportional to wIm[e] (see Table II.2).

If we take each of the local modes to be fairly narrow
on the scale of this broad mode, then the spread of
modes is caused by a distribution of force constants,
since all the masses are the same. In this situation the
distribution of modes in frequency is given simply by
the absorption coefficient itself. That is, g(w) < a(w).
The data of Fig. 170 would then imply g(w) < w? for
silica and plastic in the 10 to 40 cm~! range. This re-
sult is parallel to the discussion leading up to Eq. (10.1).
If, however, the spread of modes is caused by a distri-
bution of masses, which we might picture as clusters of
various sizes joined by a relatively small number of
bonds to the host structure, then g(w) o« a/w?. The
infrared data alone cannot decide between these models.
We have already noted that for the first type of situa-
tion, where each oscillator has the same mass (and we
assume the same effective charge), approximately 10-*
of the oxygen atoms in the silica structure participate
in the low-frequency band.
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Stolen’s finding that the infrared and Raman spectra
are nearly identical when compared in a suitable fash-
ion puts some additional restrictions on models which
will fit the absorption data. The simplest model of
Raman scattering consists of postulating one nonlinear
bond connecting the vibrating atom with the electronic
charge cloud which provides the high-frequency elect-
ronic polarizability (Barker and Loudon, 1972). If we
use a model like that shown in the upper part of Fig.
169, then it seems reasonable that each oscillating unit
would probably have the same nonlinear bond describing
the coupling of the electronic and ionic motions. Using
this model, we find that the Raman spectrum will have
the same shape as.a/w? derived from the infrared
spectrum, as long as the Raman spectrum is measured
at high temperatures (i.e., in the classical limit). This
is the result that Stolen has established for the broad
40 cm-! band in fused quartz. If the local vibrating
units have a distribution of masses and of effective
charges, then aw?/® (or some similar weighted function
of a depending on the model) has the same form as the
Raman spectrum. At least in fused silica this latter re-
sult appears not to apply.

The specific heat measurements on fused quartz,
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FIG. 170. Absorption in vitreous silica and plexiglass at low
temperatures. Note the features near 3 cm™! which show little
temperature dependence. The low-frequency end of the curve
C shows quite strong temperature dependence. After Mon and
Sievers (1975).
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glasses, and other amorphous systems at temperatures
well below 1 °K have been discussed above. These
measurements suggest that some extremely low-lying
levels (below 20 em~!) must exist in amorphous systems
The specific heat varies linearly with 7' and only at
higher temperatures is controlled by the standard 7°
term which arises from acoustic band phonons charact-
eristic of the Debye model (Zeller and Pohl, 1971;
Stephens, 1973). Anderson et al. (1972) and independent-
ly Phillips (1972) have explained the anomalous low-
temperature thermal properties by postulating a double-
well situation for a set of atoms in the glass system.
A broad distribution of potential barriers and of energy
differences between the two minima is to be expected
“in an amorphous system. If the distribution of the
energy differences is smooth on the scale of k2,7 (105
to 10-3 eV) and if the potential barrier separating the
wells permits tunneling so that thermal equilibration
can occur in an acceptable time span ¢ (10-1° sec <t
<10°% sec), then the entropy and the specific heat are pro-
portional to T'. The authors point out that only a small
fraction of the atomic units within the lattice will have
acceptable energy separations and barrier heights to
contribute to the low-temperature specific heat. :
Golding et al. (1973) and Hunklinger et al. (1973) have
measured the phonon attenuation in fused quartz at tem-
peratures below 1 °K and at frequencies in the 1 GHz
region. The strong nonlinearities which are observed
are taken as evidence for the tunneling states mentioned
above. Castle et al. (1963), in studying relaxation of
electron spin resonance at defect centers in quartz,
suggest that there are modes in the 1-5 cm-* frequency
region near a Si-O vacancy which relax the neighboring
paramagnetic Si ion. Taylor and Rubinstein (1974)
have noted evidence for very-low-frequency modes in
chalcogenide glasses from spin lattice relaxation. The
interesting specific heat, ultrasonic attenuation, and
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ESR measurements suggest that there may be a region
of very-temperature-dependent absorption well below

20 cm-?! in fused quartz and other amorphous solids.
Figure 170 shows prominent features near 3 cm-? in
two solids which may be associated with the low-lying
levels. These peaks show little temperature depend-
ence (see figure), which is a rather unexpected result
for tunneling modes; however, the curves C,C’ show a
strong temperature dependence, which may indicate the
onset of tunneling modes at energies below 2 cm™.
Recently Winterling (1975) has measured Raman scatter-
ing in silica down to 4 cm~! and finds excess tempera-
ture-dependent intensity which may be related to the
tunneling modes. Amrhein and Heil (1971) have mea-
sured losses in glasses and polymers in the microwave
region which show significant temperature dependence.
It is evident that there is much insight to be gained by
performing additional low-frequency optical experiments
on glassy systems. The intriguing similarity of the low-
temperature specific heat in many widely different
amorphous systems, as well as the wide divergence of
many experimental results from the corresponding
crystalline cases, shows this to be an area which should
lead to an improved basic understanding of disordered
systems.
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