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The purpose of this review article is to explain and illustrate in detail the
technique of dimensional regularization, which is a major mathematical tool in
the renormalization program of gauge theories. The most important single
feature of the new technique is the concept of analytic continuation in the
number of space —time dimensions 2', where the regulating parameter co is
complex in general, and co = 2 corresponds to four-dimensiona1 space —time. The
technique of dimensional regularization preserves the local gauge symmetry of
the underlying Lagrangian and thereby permits a consistent gauge-invariant
treatment of divergent Feynman integrals to all orders in perturbation theory.
The method can thus be applied —as demonstrated in this articl- not only to
Abelian gauge models, but more importantly to non-Abelian theories such as
Yang-Mills fields and quantum gravity, to which the majority of conventional
regularization procedures is inapplicable. We illustrate both the advantages and
the limitation of dimensional regularization, as well as its extension to massless
particles.
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I. 1NTRODUCTION

A. Ultraviolet infinities in quantum field theory

1. Preliminary remarks

The treatment of ultraviolet infinities continues to be one
of the most challenging and tenacious problems in relativistic
quantum field theory. Only in quantum electrodynamics has
it been possible to eliminate these infinities consistently and
in a physically meaningful manner by absorbing them into
the bare, i.e., unobserved, charge and mass of the electron.
The result is the successful renormalization program of
Dyson (1949a,b) and Salam (1951a,b), in which the re-
normalized quantities, mass and charge, correspond precisely
to the observed mass and charge of the electron. Although
many questions remain to be answered for either the strong,
gravitational, or weak interactions, there are indications
now that perhaps one or even two of these interactions
might be renormalized in the not-too-distant future. The
reasons for this cautious optimism are (i) the recent progress
in the unification of electromagnetic and weak interactions,
(ii) the breakthrough in the renormalizability of certain non-
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Abelian gauge field theories, and (iii) a new powerful
regularization method known as the technique of dimensional
regllarisation. It is the purpose of this review article to
explain in some detail the general features of dimensional
regularization and to illustrate it with examples drawn from
both Abelian and non-Abelian gauge theories.

2. Previous regularization techniques

(a) Pauli Vil—lars regularization

A regularization technique is any mathematical prescrip-
tion which renders divergent Feynman amplitudes finite by
means of a specific cutoff procedure. The technique is then
said to regulariz the divergent integrals. One of the earliest
regularization procedures is due to Pauli and Villars (1949),
who introduced massive auxiliary fields called regulators in
order to eliminate the singularities from propagators and
other ill-defined field functions (Bogoliubov and Shirkov,
1959). The Pauli —Villars technique gives a precise prescrip-
tion for the use of these regulators in quantum electro-
dynamics in such a way that the theory remains gauge-
invariant at each order of perturbation theory. Since the
auxiliary fields do not admit a physical interpretation, the
Pauli —Villars method must be regarded as a purely formal
cutoff procedure.

(b) Analytic regularization

The method of analytic regularization differs completely
from that of Pauli and Villars, in that it exploits for the first
time the concept of analytic continuation in some complex
parameter n. To gain an overview of this method, let us
consider the Feynman. propagator (p'+ mz —ie) ' for a
scalar particle of mass m and four-momentum p„. The
crucial step in the prescription is to replace the above
propagator by (P2 + mz —ie), where the regulating
parameter a may be complex. The result of such a replace-
ment is to transform originally divergent integrals into well

behaved analytic functions of a. Since the integrals are now
convergent, they can be evaluated unambiguously by
performing the usual operations of integration by parts,
symmetric integration, etc. Once these formal manipulations
have been executed one can continue the resulting expres-
sions analytically to ~ = 1; the original ultraviolet diver-
gences then reassert themselves a, s poles at n = 1. Subtrac-
tion of these poles at the end of the calculation yields the
desired finite portion of the integral. It turns out that the
notion of analytic continuation, first exploited by Speer,
Hollini, and others is also an essential ingredient of the
technique of dimensional regularization.

(c) Speer's analytic renormalization and the BPH approack.
Analytic renormalization has been popularized by several

authors (Riesz, 1949; Gel'fand and Shilov, 1964; Bollini
clat. , 1964; Gi,ittinger, 1966; Caianiello, 1973),but especially
by Speer (1968, 1969). In order to place Speer's work in

proper perspective with earlier renormalization techniques,
especially with the Bogoliubov —Parasiuk —Hepp (BPH)
theory, we shall briefly review the principal features of
Speer's approach.

Consider a perturbative quantum field theory in which a
Feynman amplitude 5 corresponds to the connected graph
G(V, Z) with vertices V, Q V, i = 1, 2, . . . , n and internal

lines l Q Z, l = 1, 2, . . . , m. The graph G(V, Z) gives in
general rise to ill-defined products of Green's functions of
the form

+ d, p'(x, , —xt, ),

where x;, and xf, denote, respectively, the initial and final
coordinates of the lth line (Speer, 1968, 1969; Breitenlohner
and Mitter, 1968). Following Speer (1968), we write the
causal propagator in momentum space- for a spinless particle
of mass m~ & 0 as

Z, '(p) = iZ, (p)(p'+ mP —io)-', (1.2)

where Zi (p) is an arbitrary but regular polynomial of
degree r~. The first significant step in Speer s prescription is
to replace' the propagator (1.2) by the generalized propagator
(Gel'fand and Shilov, 1964; Speer, 1968)

l(p) Z (p)e(1/2iivril(p2 + m 2 jO)
—xl (1 3)

where the regulating parameters X~, / = 1, 2, . . . , m are
complex. It is essential in this kind of analytic renormaliza-
tion that we assign a diferent Xi to each different internal
line. The generalized propagator A~, ' may then, with the
help of Hepp's regularization (Hepp, 1966), be expressed as

lim lim 6
a~0+ r~o+

(1.4)

the distribution (Schwartz, 1966)

&& expLia& (p + mP —i f)5 (1.5)

Using his Diethod of evaluators, Speer was able to prove
the equivalence between analytic renormalization and the
additive renormalization procedure of Bogoliubov, Parasiuk,
and Hepp. ~ The proof consists of demonstrating that analytic

' See the discussion in Sec. 2(b) above.
2 The converse of this statement has been proven by Hepp (1971).

being an entire function of (Xi,kz, . . . ,X ) = X. For Re(hi)
sufficiently large, the corresponding momentum integrals
converge and can be evaluated with the aid of the integral
representation (1.5). These operations —including integra-
tion over the auxiliary variables o.&

—lead eventually to the
generalized Feynman amplitude 5'(X&), which is an analytic
function of the X's. If we were to continue the integrals in
F(XI) to the "physical" value 20 = (1,1, . . . ,1), we would
find that the original ultraviolet divergences reassert them-
selves either as poles of y functions or in some other singular
form. In order to remove these singularities, Speer applies
a certain operator b),„called an emluator, which effectively
"regularizes" the generalized amplitude 5(X&). Analytic re-
normalization in the sense of Speer (1971, 1972) corresponds,
therefore, basically to the extraction of the regularized part
Sa,,g at the physical point 3

5g,,„= hg, 5 (Xi). (1.6)

In the simple case where 5'(X&) contains only poles, the
operator 8)„ first symmetrizes the amplitude with respect
to the X's and then extracts from 5:P.i) the regular part of
the Laurent expansion (Speer, 1972).
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renormalization is additive in structure and that it can be
implemented by the addition of counterterms to the original
Lagrangian (Speer, 1968, 1969, 1971).

and L' the representation matrices associated with the
group generators T,, i = 1, 2, . . . , n. The operators T-,

satisfy the commutation relations

Although Speer's analytic renormalization is not gauge-
invariant —the generalized propagators such as (1.3) violate
the Slavnov —Taylor identities (Slavnov, 1972; Taylor,
1971)—his work is nevertheless of considerable importance,
since it provides a close link with earlier renormalization
proofs such as the 8PH approach. Almost 20 years have
elapsed since 8ogoliubov and Parasiuk developed their
additive renormalization scheme for the perturbation series
in Lagrangian quantum field theory. The basic mathematical
ingredient of that scheme is a recursive subtraction proce-
dure known as Bogoliubov's R operation (Bogoliubov and
Parasiuk, 1957; Bogoliubov and Shirkov, 1959; Parasiuk,
1960). Bogoliubov's rules for the renormalized Feynman
integrals were originally formulated in coordinate space and
are equivalent to the addition of infinite counterterms to
the Lagrangian (Bogoliubov and Parasiuk, 1957; Bogoliubov
and Shirkov, 1959; Hepp, 1966, 1969a,b; Speer, 1969).The
work of Bogoliubov and Parasiuk was subsequently refined
by Hepp, who made several significant contributions to the
theory of renormalization (Hepp, 1965, 1966, 1969a,b). He
proved, among other things, that any two renormaliza-
tions —for example, the analytic and additive renormaliza-
tions of Speer and BPH—differ only by a finite renormaliza-
tion (Hepp, 1971; Speer, 1972). Hepp (1971) also gave an
axiomatic treatment of renormalization and showed that
Speer's theory satisfies the given axioms.

There have been many other contributions to the theory
of renormalization in recent years, notably by Zimmermann
(1967, 1968, 1969, 1970) and Epstein and Glaser (1971,
1973). A detailed discussion of their powerful and mathe-
matically rigorous expositions as well as those of other
authors lies, however, outside the scope of this introductory
review of dimensional regularization and we refer the reader
to the fairly extensive literature on this subject (Westwater,
1969; Symanzik, 1969, 1970b; Guerra, 1971; Schroer, 1972;
Lowenstein, 1971a,b, 1972; Stora, 1973;Lowenstein, Rouet,
Stora, and Zimmermann, 1973; Bergere and Zuber, 1973).

Consider a Lagrangian density 2 which is a function of n
fields @,(x), i = 1, 2, . . . , e, and let us construct a Lie
group G of gauge transformations on these fields (Abers
and Lee, 1973):

g ~ P' = U(A)g(x), U(A) = exp/ il. Ag, —(1.7)

where P(x) is a column vector, A' are the gauge parameters,

Rev. Mod. Phys. , Vol. 47, No. 4, October 1975

3. Abeiian and non-Abelian gauge theories

The purpose of this section is to summarize several useful
definitions which are currently in vogue in connection with
the renormalization of gauge theories ('t Hooft, 1971a,b;
Lee, 1972; Lee and Zinn —Justin, 1972, 1973; 't Hooft and
Veltman, 1972a,b). Of particular interest to us are the
concepts of Abelian and non-Abelian gauge fields which will
be used repeatedly in our subsequent illustrations of the
continuous dimension method (Secs. IV—VII). For a detailed
account of this fascinating subject of gauge theories we refer
the reader to some excellent review articles, for example by
Veltman (1974) and Abers and Lee (1973).

(1.8)

the numerical constants f,", are called structure constants
and are totally antisymmetric.

If the generators T, commute,

PT;,Tj = 0, (1.9)

The gauge parameter A associated with the transformation
(1.7) may or may not be a function of space-time. If A is a
function of the space-time variable x, the gauge group is
called local; otherwise we speak of a global gauge group.

I-et us illustrate some of these concepts in the case of
quantum electrodynamics. To say that quantum electro-
dynamics is an Abelian gauge theory means that the
Lagrangian density

ZONED
= —,'F„„F""+ P(iy—8—m + ey. A)f,

F„„=8„A„—B„A„,
(1.10)

remains invariant under the Abelian gauge transformation

P(x) ~ P(x) expgieA(x)5,

A„(x) ~ A„(x) + B„h.(x),

P(x) —& P(x) exp) —i'(x) j,
where e and m denote, respectively, the charge and mass of
the electron. It is easy to see that in this case the gauge
field is just the photon field A„(x).

Ever since the pioneering work of Yang and Mills (1954)
and Shaw (1954) nearly 20 years ago, the subject of gauge
theories has been under constant investigation by many
theorists, for example Bludman (1958), Gell-Mann (1960,
1961), Salam and Ward (1961), Feynman (1963), Faddeev
and Popov (1967), and others. One of the questions asked
by these authors was whether or not theories of the Yang—
Mills type are renormalizable. The answer was provided
by 't Hooft (1971a,b) in a series of fundamental papers
which demonstrated the renormalizability of both massless
and massive Yang —Mills theories in the context of spon-
taneous symmetry breaking (Englert and Brout, 1964;
Higgs, 1964; Guralnik, Hagen, and Kibble, 1964; Kibble,
1967). The work of 't Hooft hinged decisively on finding a
suitable cutoff procedure that would preserve the gauge
symmetry of the underlying Lagrangian. Such a procedure
was subsequently developed by 't Hooft himself, in collab-
oration with Veltman ('t Hooft and Veltman, 1972a), by

we call G an Abeli, an Lie group a,nd (1.7) an Abelian gauge
transformation. Examples of Abelian gauge theories are
quantum electrodynamics and the X@' and Xqb' theories. On
the other hand, if the structure constants in (1.8) differ
from zero, so that the generators T, do not commute, then
G is called a non-Abt. 'lian Lie group. A field associated with
the latter group structure is called a non-Abelian gauge
field. Yang —Mills fields and quantum gravity are examples
of such non-Abelian gauge fields (Yang and Mills, 1954;
Utiyama, 1956).
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Bollini and Giambiagi (1972), and by Ashmore (1972, 1973),
and became known as the technique of dimensional

regle, ri saki on.

I(4) —=

(2m)4k'I (k —p)' + m'g

defined over Euclidean momentum space. In the limit of
large momenta, k' —+ +~, I(4) diverges, whereas in three
dimensions the corresponding integral

(24r) ' I d'k(k'L(k —p)'+ m'j) —'

is finite as k' —+ +~ . We see that a reduction in the number
of dimensions from four to three makes the original integral
I(4) convergent. The idea, therefore, is first to generalize the
dimensionality of the space from f044r to n, where
n = 0, 1, 2, . . . , and then to go one step further and replace
n by a complex number' 2' which is called the regulating
parameter. Symbolically,

I(4) —= J(k'k. p) ~
(2n.)4

d"k
j(e,k', k p)(2')-

d2cuk

J(2co,k', k. p) —= I(2(u).
(2~)'"

(1.12)

Whereas I(4) does cot exist, the integral I(2co) may be
defined in such a way that it is an analytic function of co

which can in principle be evaluated explicitly. Once all formal
manipulations involving integrals, such as symmetric
integration, shift of integration variable, and integration by
parts, have been completed, we can invoke the principle of
analytic continuation to return to four-d. imensional space
(2~ = 4). The concept of analytic continuation in the
number of space-time dimensions is the most important
single feature in the technique of dimensional regularization.

This may be an appropriate place to ask what meaning, if
any, we can attach to a space of complex dimensions.
Although we are unable to give at present a physical inter-
pretation of such a space, it may be worthwhile remembering
that the abstraction from a discrete to a continuous param-
eter space is by no means uncommon in physics. We recall,
for example, in classical mechanics the transition from
particle theory to held theory, where the generalized
coordinates q, (t) are replaced by the real space-time function
P (x,t). Here 0. = 0, 1, 2, . . . labels the field components,
while the index j, j = 0, 1, 2, . . . , E, counts the number of
degrees of freedom of the system. In the transition to

B. Concept of dimensional regularization

1. General idea

The technique of dimensional regularization, also called
the continuous dimension method, is probably the best
regularization procedure on the market. ' To understand the
basic motivation behind this technique let us consider the
four-dimensional integral

classical field theory, q, (t) —+ P, (x,t), the discrete index j is
formally "replaced" by both the discrete index ~ and the
continnols variable x. Expressed in mathematical language,
the above transition describes the continuation from a
discrete to a continuous parameter space. There exist, no
doubt, other examples which are based on the same mathe-
matical principle.

It is also worth noting that, inasmuch as physical results
are expressed in terms of inproducts between vectors, no
objection can be raised against the assumption that space
is of noninteger dimensions. An experimental test in this
regard. , suggested by J. S. Bell, is the decrease in the intensity
of light, emitted from a point source, as a function of the
distance from that source. Since the intensity behaves as
1/r'" ', the integral over a sphere remains constant. The
experimental observation that the gravitational potential
behaves very nearly as 1/r is likewise related to the fact
that the dimensionality of space-time is almost equal to 4.'

2. Usefulness

Since dimensional regularization preserves the local sym-
metries in the Lagrangian such as gauge invariance, the
technique is eminently well suited for treating gauge held
theories in general. In addition, the continuous dimension
method is not only simpler than that of Pauli and Villars,
but also more elegant and intuitive. Whereas the Pauli-
Villars regulators are completely devoid of any physical
meaning, ' the regulating parameter cu admits —at least for
some of its values —a realistic interpretation, for example
when 2' = 1, 2, 3, . . . . In summary, dimensional regulariza-
tion permits a consistent gauge-invariant treatment of
divergent Feynman integrals to all orders in perturbation
theory. The method can be applied not only to Abelian gauge
models, but more importantly to non-Abelian theories such
as Yang —Mills fields and quantum gravity, to which the
majority of conventional regularization procedures is
inapplicable.

C. Outline

Section II begins with the central theorem on analytic
continuation, which is subsequently applied. to Euler's
representation of the y function. We then summarize the
principal features of Ashmore's approach to dimensional
regularization (Ashmore, 1972, 1973) and comment briefly
on the generalization of four-dimensional combinatorics to
complex-dimensional space. A rather vital formula is the
trace relation 6„„=2'. A second approach to dimensional
regularization, developed by 't Hoof t and Veltman, is
discussed near the end of Sec. II.

In the first half of Sec. III we apply the technique to
quantum electrodynamics, an Abelian gauge theory; by
regularizing both the electron self-energy and the vacuum
polarization tensor. These calculations are carried out to
lowest order in e (e'/4' = n is the fine-structure constant).
It is reassuring that the new technique reproduces the gauge-
invariant factor (p g„„—p„p„), which is so characteristic of

3 See also Cicuta and Montaldi (1972), Geist, Kuhnelt, and Lang
(1973), and more recently Butera„Cicuta, and Montaldi (j974), as
well as Speer (1974a,b).

4 We 6nd it extremely convenient to use 2~ as our regulating param-
eter rather than co.

5 The author is indebted to Professor M. Veltman for bringing Bell' s
work to his attention.

6 Pauli —Villars particles could become physical, however, if made
unstable. This possibility has been investigated in recent years by T. D.
Lee.
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-3 -2 -1 0 1 2 3 4

FIG. 3. Weierstrass's repre-
sentation of the y function
F~(z) is analytic everywhere
except at the points z = 0, —1,—2 —3 -. "

(iv) The resulting amplitude is now well defined as a
function in a finite domain of the complex ~ plane. Outside
this domain the amplitude is defined as the analytic con-
tinuation of the amplitude inside. The domain is in practice
determined by the convergence. of the Feynman parameter
integrations. Because of infrared problems, this domain may
in certain special instances shrink to zero as, for example,
in the case

($2co/g

(27r)'"k'L(k —p)' + m'gwhich is analytic in the shaded area depicted in Fig. 2. In
order to discuss points lying outside this region, for example
in the left-hand z plane, it is mandatory to find first an
analytic continuation of I'@(s) which is valid in that region.
Such a continuation is precisely Weierstrass's partial
fraction expansion (Markushevich, 1965) n 2p2

Xexp +
ni+n2

—ng(p' + m')

(—1)"'
I'w(z) = P +

=o n, !(m + z)
(i't t' 'e (2 2) where the domain becomes vanishingly small as p approaches

zero.

B. The technique of dimensional regularization

3. Prescription

Let us assume that the four-dimensional integral

I(p) =
d4k

—J(k', k p)
(2ir)4

is ultraviolet divergent. (To simplify matters, we work in
Euclidean space. ) For massive fields, the basic steps in the
method of dimensional regularization then are (Ashmore,
1972, 1973):

(i) Define all inner vector products over a complex 2cu-

dimensional space.

which is analytic in the entire z plane, except at the points
z = 0, —1, —2, —3, . . . (Fig. 3). The representation I'~ is
a usque analytic continuation of I"&, since its domain of
definition clearly overlaps that of I'& $cfr Figs. 2 and 3 ].

(v) Integration over Feynman parameters leads, in the
region where the integrals exist, to p functions. The analytic
continuation defined in step . (iii) above is then imple-
mented by using for these p functions the Weierstrass
representation

(-1)-
r (z)=Z

=on!(m+ z)
dt t' 'e—'. (2.5)

The subscript 8' on the y function will, in the future, not
be written explicitly.

(vi) Expand all co-dependent quantities in a Laurent
series about the point co = 2, so that the integral I(p)
becomes

I(p) = G(p')/( —2) + F(p') + o( —2) (2.6 )

We see that the original ultraviolet infinities manifest them-
selves as poles at the "physical" value co = 2. (We recall
that 2' = 4 corresponds to four-dimensional space. )

(ii) Parametrize all momentum-space propagators accord-
ing to

(vii) Cancel the pole term G(p')/(oo —2) in Eq. (2.6a) by
adding appropriate counterterms to the original interaction
Lagrangian in which case the regularized integral finally
reads

k'+ m'
dn exp( —n(k'-+ m')j, m' W 0. (2.3) IR„(p) = F(p') + O(~ —2). (2.6b)

Since we work in Euclidean space, there is no need for an
i~ term in the propagator.

(iii) Integrate over momentum space by means of the
generalized Gaussian integral

(viii) Analytically continue the right-hand side of (2.6b)
to four-dimensional space, i.e., take the limit~ co —+ 2+ so
that the ~alue of the integral is given by the finite portion
F (p') of the Laurent expansion, properly continued to
Minkowski space (p' = po' —p').

(5'-"k (7r/x)" b'
—exp( —xk'+ 2k b) = —— exp —,

(2~)'" (2v)'-" x

x&0. (2 4)

For integer or half-integer values of co, 2~ = 1, 2, 3, . . . ,
formula (2.4) reduces to the standard Gaussian formula, but
for complex values of o~, the right-hand side of (2.4) must
be taken as the definition of the integral on the left.

The prescription (i)—(viii) is sufhcient to regularize inte-
grals associated with massive fields, provided there appear
no anomalies from partially conserved axial-vector currents
which would imply the presence of y' terms (cf. Sec. III.C).
The above prescription may break down for certain values
of the external momenta if there are infrared divergence

7 It is convenient in algebraic calculations to state explicitly whether
a& approaches 2 from above, ~ —+ 2+, or from below, or ~ 2 . We shall
consistently use the notation "co —+ 2+".

Rev. Mod. Phys. , Vol. 47, No. 4, October 1975
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problems. If the momenta are off-mass-shell, however, as
well as nonzero, as in the example in step (iv), then there are
no difhculties. Nor are there any problems in theories where
the infrared difhculties eventually cancel out, provided one
works on-mass-shell and considers only the sum of the
various contributions. In these theories it is necessary to
continue the external momenta analytically outside four
dimensions, since the infrared cancellations occur specifically
between internal and external momentum integrations
(Gastmans and Meuldermans, 1973). We intend to deal
with the infrared divergences in a different manner (see
particularly Secs. IU and VI) which is especially well suited
for vacuu'm polarization diagrams of the type discussed in
point (iv) above. To what extent our approach coincides
with the usual results, and indeed maintains the cancella-
tions of infrared divergences of loop integrals and external
phase space integrations, will not be discussed here.

&»P = P» P»P. = P' (2.7)

and

2. Cornbinatorics and gauge invariance

The computation of Feynman integrals involves a certain
amount of combinatorics between vectors p„and the general-
ized Kronecker 6 symbol 8„„. The procedure outlined in
Sec. II.B.i must therefore be supplemented by the following
rules valid in 2co-dimensional space ('t Hooft and Veltman,
1972a, 1973).

Formulas (2.7)—(2.10) are essential in proving that the
continuous dimension method preserves the gauge invari-
ance of the 5 matrix to all orders in perturbation theory. To
say that dimensional regularization is gauge-invariant
simply means that it respects certain identities such as the
Slavnov —Taylor identities which depend, according to (2.8)
and (2.10), on the dimensionality of the space. Hence if
gauge invariance is to hold, these identities must either be
iedeper4der4t of 4o or they must be satisfied identically for all
values of ca, especially for 4o = 2 (which corresponds to four-
dimensional space-time) . The validity of the Slavnov-
Taylor. identities or their counterparts is essential in proving
both the unitarity and the causality of the S matrix ('t Hooft
and Veltman, 1972a,b).

3. infrared vs ultraviolet divergences

The primary objective of most regularization procedures
is to tackle either the ultraviolet divergences or the less
severe infrared divergences, but not both. It is therefore
natural to inquire whether the technique of dimensional
regularization is perhaps capable of dealing with both types
of infinities. Since we already know how to attack the ultra-
violet problem, the question really is: Can the method also
cope with the infrared infinities which are specifically con-
nected with zero-mass particles' A prescription for dealing
with these divergences has recently been proposed by
Leibbrandt and Capper (1974a,b) and is analyzed in
Sec. IV.

6„„6„„=2u,

~~a = 2~)

(2.8a) C. Other techniques

1. The 't Hooft —Veltman approach
2.8b

P.P (P'/2~)~". (2.8c)

For Feynman diagrams involving spin one-half particles
and p matrices we have these additional rules ('t Hooft and
Veltman, 1972a, 1973; Gastmans and Meuldermans, 1973),

{y»,y„) = 26»„I, I —= unit matrix

Tl ace (y»'r„) = 2 5»„, (2.9)

'Y»p'Y = 2(1 ~)p, p = 'r ' p

»W&" = 4P V+ 2(~ —2)Pe'
(2.10)

Another useful feature of dimensional regularization con-
cerns the shift of origin in momentum space. Once a diver-
gent integral has been regularized by defining it over a space
of 2' dimensions, the integration variable k„can be shifted
to k„+ bp», regardless of the original degree of divergence.
In four dimensions, such a shift is only allowed for con-
vergent and logarithmically divergent integrals.

Whereas the operations in (2.7) are formally the same as in
four-dimensional space, it is highly significant according
to (2.8b) that the trace of 6»„ is 'no longer four but 24'. This
amazing result leads to the following observation: In the
framework of dimensional regularization, the four-dimen-
sional Feynman rules must in general be replaced by 2co-

dimensional rules. %'e shall have occasion to demonstrate
this explicitly in Sec. VI in the case of quantum gravity.

Consider the photon self-energy loop carrying momentum
k. 't Hooft and Veltman (1972a) separate the 2&d-dimensional

momentum space over k into a physical four-dimensional
space, characterized by the four-vector k, plus a (2a& —4)-
dimensional space over the vector K. Symbolically,

/

I(24') —= f d' k f(k) ~ f d'k f d'" 4K g(k K'), (2.11)

where k' = k2 + K'. Working in polar coordinate space and
defining the length of the vector K by x, 't Hooft and
Ueltman obtain via (2.11)

I(2') =
2'

d4k
I'(co —2)

dx x' —'g(k x'). (2.12)

At this stage of the procedure, I(2~) contains both
infrared. and ultraviolet divergences. To eliminate the
infrared divergences these authors employ partial differen-
tiation to obtain a domain of analyticity for I(24m). They
specifically integrate over x partially X times so that (2.12)

As noted earlier, the renormalizability of both Abelian
and non-Abelian gauge held theories depends crucially upon
the existence of a regularization procedure that preserves
the gauge symmetry of the underlying Lagrangian. 't Hooft
and Veltman (1972a) were among those who succeeded in
finding such a procedure —the technique of dimensional
regularization. Since their method is more intuitive than
that of either Ashmore (1972, 1973) or Bollini et al. (1972),
we shall highlight here the principal features of the 't Hooft-
Veltman approach.
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becomes

I(2cu, X) =
I'(cu —2 + X)

X — g k,x' .

44k (jg X2co 5+2K

Introduction of the parameter M leads to convergent
integrals that can be evaluated by standard techniques.
After all integrations have been completed, the regulator
mass M is allowed to approach infinity. The above technique
yields gauge-invariant amplitudes, but may only be applied,
as 't Hooft (1971a) points out, to one-loop diagrams.

(b) Brown's method

By choosing the parameter X large enough, the infrared
problem can readily be elimina, ted. Gf course (2.13) remains
ultraviolet divergent, but at least there is now a region in
co space in which the x integral converges. A more challenging
task is to find a domain in which the ultraviolet integrals
converge as well. To achieve this 't Hooft and Ueltman
employ integration by parts in order to continue the repre-
sentation (2.13) analytically in the complex &u plane. The
result is an enlarged domain of definition for the x integral
in Eq. (2.13). For example, if the original integral holds only
for Rem & —'„ the continued integral can be made to hold
for Re~ & 2. By choosing X su%ciently large, one can
effectively replace all ultraviolet integrals by convergent
ones.

This completes our discussion of the one-loop photon self-
energy. The procedure just described is also applicable to
diagrams containing two or more closed loops, although the
amount of algebra increases rapidly now with each nev loop.

The 't Hooft —Ueltman approach' respects the structure
of the Slavnov —Taylor identities which play such a funda-
rriental role in discussions of gauge invariance; moreover it
preserves the usual operations of partial differentiation,
integration by parts, and shifting the origin in momentum
space.

2. Other one-loop techniques

To round out this section, we review two other approaches
to dimensional regularization: the five-dimensional proce-
dure of 't Hooft (1971a) and the intermediate method of
Brown (1973).

(a) 't Hooft's method

It was originally introduced by 't Hooft in connection
with Slavnov —Taylor identities (Slavnov, 1972; Taylor,
1971) in his work on the renormalization of massless Yang—
Mills fields. Observing that certain Slavnov —Taylor iden-
tities hold not only in Minkowski space but also in a space
of five dimensions, 't Hooft proceeds to add a fixed fifth
component to all four-momenta occurring inside closed
loops; the Yang —Mills fields W„become then 15-component
objects. Thus

k„= (kM), u= 1, 2, . . . , 5 (2.14a)

W„' = (W,W5~), a = 1, 2, 3 (2.14b)

where k and W denote (Minkowski) four-vectors, and where
momentum conservation demands that the regulator mass
M be the sauce for each propagator of a closed loop. All-
exterea/ momenta are strictly defined over four-space. The
fifth component 8'& is treated as a new particle; its Feyn-
man rules for the propagator and vertices are determined by
the (4 + 1)-dimensional Yang —Mills Lagrangian.

' For a simpler procedure see Sec. VII.

It lies somewhere between 't Hooft's five-dimensional
regulator approach and the' 2~-dimensional technique
described at the beginning of Sec. II. Brown's prescription
may be summarized as follows (Brown, 1973):

k&"+ ' = (k'"', M, O' ") (2.15)

RNle b: In evaluating Feynman integrals, we must adhere
to the rules

(i) 6» ——n + m Lcf. Eq. (2.8b)g;
(ii) if k is a loop momentum, its magnitude equals

k2 —k2 (n) + M2

whereas if k is an extra(J/ momentum,

Rule c: The third and final step in Brown's approach is
to introduce diferent regulator masses M; by replacing terms
such as G(M')/(k'+ M') by

G(M') G(M 2)
—~Pe,k'+ M' ' k'+ M,' (2.16)

where the signs e; and masses M; are selected according to
the following scheme':

co=1, MD=0,

Pe, =0, PeM, '=0, PeM =0,
(2.17a)

(2.17b)

g e In M' = A P e M' ln M ' = B
i&0 i&0

Q e,M, 4 ln M, ' = C.
i&0

(2.17c)

Near the end of the calculation, i.e., after the residue at
n = 4 has already been extracted from the integral under
consideration, the limit M, —+~, i & 0, is finally taken.

Let us illustrate Brown's method for the integral (factors
of 2m- are omitted)

k„k„f(n = 4)G(n. —= 4; p),
k'(k + p)'

v, p, = 1, 2, 3, 4 (2.1g)

where the factor f(n = 4) arises from the rule 5„„=4 and

' See also 't Hooft (1971a), Eqs. (5.2) to (5.3).

Rule a: Let the momentum k inside a closed loop have
(n + m) components, the first n components being an
extension from four to n dimensions. The (n+ 1)th com-
ponent is fixed and of length M, as in 't Hooft's case, while
the remaining (m —1) components of k are of magnitude
zero:
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G. Leibbrandt: Introduction to the technique of dimensional regularization 857

p, , v are external indices. Rules a and b transform the integral detail, since it contains several features common to many
(2.18) into of our subsequent illustrations.

d"k k i"'k i"'f(n + m)G(n. p- M')

(k'+ M')[(k + p)'+ M']
A. Electron self-energy

%e start with the free Dirac equation in momentum space

Making the replacement (2.16) and integrating over k, we
obtain

I„+ ——~-~ r(2 ——,'n)P e,

(iy p.+ m)P(p) = 0

and take

i egg»PA"

(3.1)

(3 2)

' (Jx G(x; n; p; M,')f(n + m)

M 2 + p2x(1 x)]2—n/2

whose pole part is equal to

as the interaction between the spinor field iP and the electro-
rnagnetic field A». In four-dimensional space, the amplitude
for the proper electron self-energy may then be expressed
as (see Fig. 4)

2m'f(4 + m)
—Pe, dxG(x; 4; p; M, ').

Z(p) = +ie'
d'k y„[i(~ p —~ k) —may»

—.(3.3)
(2ir)'(k' —ie) [(p —k)' + m' —ie]

Employing the expansion

[M,2+ p~x(1 —x)]-i~--~»
= exp{ —(2 ——,'n) ln[MP+ p'x(1 —x)])
= 1 —(2 ——,'n) ln[M, 2+ p'x(1 —x)]

+ 0((2 —l )')

we can readily calculate the expression

lim (I„+ —I„+ 'i) =—I,+ R'g.

(2.21)

(2.22)

This typical four-dimensional integral is plagued by both
ultraviolet infinities (large k-behavior) and infrared in-
finities (zero photon mass). Since the ultraviolet problem is
appreciably harder to solve than the infrared one, we shall
devote our attention almost exclusively to the former. The
infrared problem can be rectified, for instance, by assigning
to the photon a fictitious mass p, .

I et us return to Eq. (3.3). Under the assumption that
both (3.1) and the interaction term (3.2) remain valid in a
complex space of 2cu dimensions, we can generalize Z(P) to
read (Bollini and Giambiagi, 1972)

As M; ~~, i & 0, we find that the only nonvanishing term
is given by

Z (p, 2(u)
d'"k y„Pi (p y —k y) —m]q»

(2ir)'~(k' —ie)[(p —k)'+ m' —ie]
(3.4)

Beg — ir2f(4 + m)P e; dxG(n = 4 x p M )

Xln [M,'+ p'x(1 —x)].

Reducing the numerator veith the help of Kq. (2.10) and
combining the propagators by means of the standard

(2.23) formula

It is significant to note that m occurs only in f (4 + m), and
not in its derivatives. Since the Slavnov —Taylor identities
are either independent of the dimensionality of the space or
must hold for all values of (n+ m), we are at liberty to
choose a convenient value for m"; for example, we may
choose m = 0 and still preserve gauge invariance. .

we obtain

Z(p, 2(u) = ie'

[ax + b(1 —x)]'
(3.5)

The above variant to dimensional regularization was
originally designed to regularize in a gauge-invariant manner
divergent one-loop Feynman integrals in pure quantum
gravity. The procedure has, to the best of our knowledge,
only been tested at the one-loop level

d'"k{2i(1 —cu)[(1 —x)p. y —k y] —2m'&I
(3.6)

(2m.)' [k' + Ho]'

III. ILLUSTRATIONS FROM QUANTUM
ELECTRODYNAMICS

We illustrate the technique of dimensional regularization
in the case of quantum electrodynamics —an Abelian gauge
theory —by regularizing first the electron self-energy and
then the vacuum polarization tensor. %e only work to
second order in the coupling constant" e (n = e'/47r). The
electron self-energy calculation is presented in considerable

'0 See the discussion in Sec. VI.A.3."Natural units A = c = 1 are employed throughout this paper.

Ho ——(p' + m')x(1 —x) + m'x' —is, (3.7)

FJ.G. 4. The electron self-
energy.

c

/
I i

I

where the —ie term v ill henceforth be omitted. The transi-
tion from (3.4) to (3.6) involves a, shift of the integration
variable, which is permissible here since the integral (3.4)
is known to converge for complex ~. VJe should also stress
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858 G. Leibbrandt: Introduction to the technique of dimensional regularization

that Feynman's formula (3.5) works perfectly well for
one-loop diagrams, but that it must be used cautiously in
the case of multiple-loop diagrams, as first emphasized
by 't Hooft and Veltman (1972a). Their argument is that
it is possible —in the case of two- and three-loop diagrams-
for the ultraviolet divergences to become trartsferred to the
parameter integrations, in which case the infrared and
ultraviolet infinities get mixed up.

To evaluate the k-space integral in (3.6) we use [cf.
Eq. (A1))

for ~s~ & 1is

I'(c)
~F4(a,b; c; s) =—

I'(b)1 (c —b)
dt t'—'(1 —t)'—~'

'(p, 2(u) =—2e'I'(2 —(u) (pm')" '

X(1 —ts) ', Re(c) ) Re(b) ) 0. (3.12c)

For
~

s~ ) 1, the hypergeometric function 2Fi(a, b; c; s) is
de6ned by analytic continu ation. Hence the electron self-
energy becomes

(t2"tt iver"H p" I'(a —~)

(2m.)'"(k' + H())

together with

(P"k k„
—=0

(2m)'" (t't' + II(,)

(3.8)

(3.9)

—[(i—p y+-m) (1 —cu) —m)
M 1

p 1
X2~& 2 ~, c0 —1; M;

P

where (3.9) is the analog of symmetric integration in four-
space. Applica, tion of Eqs. (3.8) and (3.9) to (3.6) yields

1 M

+ [m —(~:p y+ m))

Z(p, 2(d) =—e'I'(2 — )
(/x

p —1
X2Fy 2 —

co& Go& M 1
&

P
(3.13)

X[2i(1 —~) (1 —x)p y —2m~)

X[(P' + m') x(1 —x) + m'x') —'
It is customary in the renormalization program of quan-

tum electrodynamics (Jauch and Rohrlich, 1959) to express
(3 10) Z(p, 2u) with the help of the identity

or, with (m'+ p')/m' =—p, (ip p + m)' = 2m(ip. y + m) —(p'+ m') (3.14)

e'I'(2 —~) (pm')~ '
=(p, 2~) = ——

(4 )

1
p

2

(txx ' 1+ —x
0 P

X[(ip .y + m) (2 —2cu) (1 —x)

+mx(2 —2(u) —2m). (3.11)

dxx" '

(1+Px)
= —~F4(I, p; p + 1; P), —

p

~
arg (1 + P)

~

( ir, Re t( ) 0 (3.12a)

where the hypergeometric function 2J I has the infinite series
representation (Magnus and Oberhettinger, 1954)

ab z.Fi(a, b; c; s) = 1 + ——

Since the last integral is a well defined analytic function
of co, it can be readily computed using the formula [see p. 284
of Gradshteyn and Ryzhik (1965))

in the convenient form

Z(p, 2cu) = A(a)) + (ip y+ m.)B(co)

+ (ip y+ m)'Zt(p, 2a)), (3.15)

e2(2~ —1)m2" 3

A (ur) = I'(2 —(u).
(2(u —3) (44r)"

(3.16)

B((d) is derived by first differentiating Eqs. (3.13) and (3.15)
partially with respect to ip y and then substituting —m
for ip y. The result,

where A (u) and B(cv) must be independent of the external
momentum p. The coeKcients A (&u) and B(cu) contain the
virulent ultraviolet divergences, while Zt (p, 2&v) is finite
apart from a harmless infrared term. It is significant to real-
ize that all three coe%cients depend on the dimensionality
of the space. The determina. tion of A (cu), B(cv), and Z&(p, 2~)
is completely analogous to that in four dimensions (Jauch
and Rohrlich, 1959) and will not be repeated here. The
general idea is to express the electron self-energy (3.13) as
a second-degree Taylor polynomial about ip y = —m. To
determine A (co), for example, we replace ip y in Eqs. (3,13)
and (3.15) by —m, which leads to the answer

a (a + 1)b (b + 1) s'+—
c(c+ 1) 2!

~ ~ ~

7 (3.12b)

e2(2co —1)m2" 4

B(co) = — I'(2 —co) + B;,(~),
(2cu —3) (4m )"

(3.17)

which is absolutely convergent for ~s~ & 1 and divergent
for

~
s~ ) 1. For ~s~ = 1, the series converges absolutely if

Re(a+ b —c) ( 0. A convenient integral representation

consists of an ultraviolet 6rst part and an infrared term
B;,(co), whose origin, as noted at the beginning of this
section, can be traced back directly to the use of a vanishing
photon mass in Eq. (3.3) (Ahmed and Qadir, 1974). The
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finite portion of Z(p, 2co) reads

Z, (P,2cu) = —e'(4~) "m'~ 41'(2 —cd)

2Fi(2 —co, 1; co; 1 —p)

2 (1 —a&) 2cd —1
2Fi(2 —~, 1; cd + 1; 1 —p)

24) —3-

m —ZP 7+ — —22F i(2 —a), 1; co; 1 —p)

The next step in the renormalization program of quantum
electrodynamics is to absorb the troublesome coeS.cients
A (co) and 8 (c0) into the bare charge and mass of the electron,
which brings us to the finite portion Zi (p, 2co). Continuing
the latter analytically to four-dimensional Minkowski space
(P' = P02 —p2), we finally obtain the regularized expression
for the electron self-energy:

lim Zf(p, 2cu) =—ZR,g(p, 2(u = 4).
co ~2+

This completes our first illustration of the continuous
dimension method.

2 (1 —co)
—2Fi(2 —cu, 1; &u + 1; 1 —p) + 1

m —iPy 4
—2Fi(2 —co, 1; M; 1 —p)

p'm' 1 —co

4(1 —co)
+ —gFi(2 —cd, 1; cd + 1; 1 —p)

2 (2cd —1) + .V'2~).
2M 3

(3.18)

B. Vacuum polarization

The purpose of this section is to summarize the major
steps in the dimensional regularization of the photon self-
energy. The reason for choosing this particular example is
purely pedagogical: We want to demonstrate that the
continuous dimension method does indeed preserve the
gauge symmetry inherent in the polarization tensor.

The integral associated with the photon self-energy
depicted in Fig. 5,

II„„(P) = ie'

The subscript f in Zf(p, 2co) is short for "finite with respect
to ultraviolet divergences. "The infrared divergences of Zf are
contained in the additive term Z;, (p, 2co) and can be shown
to cancel to order e'. The behavior of 2, B, and Zf at co = 2
depends decisively on the analytic structure of the p func-
tions. Expansion of I'(2 —cv) about c0 = 2, for example,
yields Lcf. Eq. (2.5)5

I'(2 —~) = 1/(2 —~) + 4(1)
+ k(2 —~)E3~'+ P(1) —4'(1)5

+ o((2 — )'), (3.19)

4 ( ) = Wd ) lnI'( ). (3.20)

Returning to Eqs. (3.16) and (3.17) and keeping (3.19) in
mind, we see that the lethal ultraviolet infinities in A(c0)
and B(co) manifest themselves as poles of I'(2 —cv) at the
"physical" value cd = 2. The third coeKcient Zf(p, 2co) is
finite, however, since the ultraviolet pole terms vanish in
the limit co —+ 2+, as may be verified by using Eq. (3.19)
together with the infinite series representations for
2Fi(2 —cd, 1; or, 1 —p) and 2Fi(2 —co) 1) co+ 1) 1 —p),
respectively:

XTr
d'k y„(iy k —m)p. Pip. (k —p) —m5

(2n.)'Pk + m' —ie5$(k —p)'+ m2 —jq5

XTr
d'"k y„(iy k —m)y. Lip (k —p) —m5

(27')2~Lk + m2 —i,5[(k —p) + m2 —i/5

(3.22)

is then a well defined analytic function of the regulating
parameter co. Combining propagators and shifting the
integration variable from k„ to Lk„—(1 —x)p„5 we find
that

II„„(p,2') = ce'Tr
d2"k

—(k'+ H) '
(2m)'

(3.21)

is seen, from power counting, to be quadratically divergent
(Tr means trace). Infrared infinities do not occur. In order
to regularize the operator II„„(p),known as the pola, rization
tensor (Schweber, 1962), we define II„„over a space of 2c0

dimensions. The resulting expression

II„„(P,2u)) = se'

and

(2 —cu) (3 —cv)2! (1 —p)'

co(cu + 1) 2!

2F i (2 —co, 1;co; 1 —p) = 1 +
2 601 p X(y„fig k+ iy 'p(1 —x) —m5

X~.L'~. (k —px) —m5),

where

H = x(1 —x)p'+ m' —ie

(3.23)

2 —601 p

(2 —(u) (3 —cd)2! (1 —p)'

(a& + 1)(cd + 2) 2!

co+ 1 1!

0 ~ ~

,F,(2 —co, 1; cd + 1; 1 —p) = 1 + FIG. 5. Vacuum po1.ariza-
tion in quantum eIectrody-
namics to order e'.

k-p
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860 G. Leibbrandt: Introduction to the technique of dimensional regularization

We observe again that the shift of origin mentioned above
is justified, since Eq. (3.22) is known to converge. The shift
is not permitted for the quadratically divergent four-
dimensional integral (3.21). (In Minkowski space such a
shift may only be applied to convergent and logarithmically
divergent integrals. )

The numerator in Eq. (3.23) may be simplified with the
help of the trace relations (Akyeampong and Delbourgo,
1973a,b)

11f (p', 2or) —= II (p', 2or) —II (0,2or), (3.31)

which gives the observable (physical) contribution of the
photon self-energy (Schweber, 1962). In our case

It is evident from (3.30) that the ultraviolet infinities in the
original expression (3.21) manifest themselves as poles of
the y function in the limit or ~ 2+ Lcf. Eq. (3.18) for the
electron self-energyj. To eliminate these poles, we construct,
in analogy with four-dimensional quantum electrodynamics,
the expression

Tr(p„p„) = 2.g„„, (3.24a)
IIf(p', 2~) =

e'I" (2 —or) (m')~ '

3(2m)"
It is important to note that the dimensionality ~ introduced
through Eqs. (3.24) does not affect the Slavnov —Taylor
identities, since the number of closed fermion loops in these
identities is the same in every term. Applying formulas (3.8)
and (3.9), together with Pcf. Eq. (A4)j

(3.32)

which is hnite for all values of co, and leads to the regularized
quantity

d'"k k k~

(2m)' (k'+ H)'
(3.25) lim IIq(p', 2or) =— IIR,g(p', 2or = 4). (3.33)

we obtain from Eq. (3.23)

g2

II„„(p,2or) =
(2m)"

I.et us turn now to the question of gauge invariance. It
is well known (Jauch and Rohrlich, 1959) that the polariza-
tloil tcllsol II&„(p ) lii foul-dimensional space-tliilc 1s pl opoi'-
tional to the gauge-invariant quantity (p p„. —p„p,). Not
only does this quantity reappear in the generalized version
of II„„,Eq. (3.30a), but it reappears thereiudepeudeut of the
regulating parameter or. Consequently, the relation

p"11v.(p', 2~) = p" (p'nv. pvp)II—f(p'»~) = 0 (3.34)

Xp p + tn'g„„g (3.26)

or Anally

11"(p 2 ) = (p'~" —p.p.)11(p',2 ), (3.27a)

II(p', 2or) =
2e'I' (2 —or) dx x(1 —x)

(x(1 —x)p2 + m2$'--
(3.27b)

In deriving (3.27), we also employed the relation ('t Hooft
and Veltman, 1973)

~g~p = 2'. (3.28)

dx x" '(u —x)" '(x + P) ~

=p uv+ B(jl v)2I i( X v'u + v' u/p)

~arg(u/p) t
( rr, Reu ) 0, Re v ) 0

so that the system (3.27) reduces to

11 .(p' 2~) = (p'~ ~
—pvp. )II(p', 2~), (3.30a)

e'I' (2 —or) (m') ~—' p2
II(p', 2or) = o'~ 2i8i

3 (2m)" 4m'f

The remaining x integral can be computed using the formula
Lsee p. 287, no. 8, of Gradshteyn and Ryzhik (1965)j

is identically satis6ed for all values of co, particularly for
w = 2. It is clear then that the continuous dimension
method preserves the gauge-invariant character of the
polarization tensor. For non-Abelian fields the problem of
satisfying gauge invariance becomes much more acute due
to the appearance of ghost particles which destroy the
unitarity of the 5 matrix. We return to this problem in
Sec. VI.

v' = (1/4l)~.o..v v'v"v"- (3.35)

The basic reason for this caution is that the e ~„„symbol is
only defined in four dimensional space, -whereas the appro-
priate Slavnov —Taylor identities must be satisfied in any
space, whether integral or complex. The solution to this
dilemma hinges decisively on the possibility of generalizing
Eq. (3.35) to dimensions other than four (Zumino, 1972).
Akyeampong and Delbourgo (1973a,b) have adopted the
view that one should work with y' rather than with the
e p„„ tensor. The transition to arbitrary dimensions is then
achieved by making the replacement

y' ~ ~(x~L,~mj- m),

C. Limitation of dimensional regularization

1. Can the ~ ~,„ tensor be generalized to
arbitrary dimensions?

The technique of dimensional regularization must be
applied with care if the final Slavnov —Taylor identities
contain factors of p' or, equivalently, of the totally anti-
symmetric tensor ~ p„„, where

(3.30b) where the indices K, L, kI, X range from 0, 1, 2, . . . up to
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2/ —1, and where the four I"s are anticommuting. With
this definition of the matrix y' for even-dimensional spaces
the four-dimensional term if''P represents only owe com-
ponent of the chiral quantity if+1'~&FIFMI'~~/ in 2l dimen-
sions. Whether a similar definition is also possible in odd
dimensions remains to be seen. '~ 't Hooft and Veltman
(1972a) employ, for example, a &' which anticommutes with
the first four y matrices, but which commutes with the
remaining y s. The drawback of this particular generaliza-
tion is that the Slavnov —Taylor identities, connected with
the spinor line, may be violated (Bardeen, Gastmans, and
Lautrup, 1972).

FIG. 6. Axial-vec-
tor triangle graph in
spinor electrodynam-
ics which leads to
the anomaly in Eq.
(3.36).

(p-p)

with

G ~ = 8 W ~ —8 W ~+ gfg~ W 'W '

Yy
k2

kq

(3.38)

2. Anomalies (3.39)

—(kg+ kp)gT„„" = 2moT„„+ 8~'kg~k2Pe p„„) (3.36)

The difFiculty with ~ p„„, in physical terms, is-that it gives
rise to the well known Bell—Jackiw —Adler anomalies (Bell
and Jackiw, 1969; Adler, 1969) such as the axial-vector
current anomaly which arises in nucleon-nucleon scattering
and leads to a breakdown of the Slavnov —Taylor identities
as soon as 2' ~ 4. Another example is the anomaly associ-
ated with the axial-vector triangle graph in spinor electro-
dynamics (Fig. 6), which is of the form (Adler, 1969)

LX,Xbg = 2if 'bX„ (3.40)

where the Hermitian matrices X generate a representation
of the Lie algebra, and f, '~ are totally antisymmetric struc-
ture constants Pcf. Eq. (1.8)$. Although, the Lagrangian
(3.37) is formally invariant under gauge transformations of
the second kind, the same is not true for the corresponding
perturbation series, where gauge invariance is broken by the
appearance of axial-vector current anomalies. For the
Lagrangian (3.37), the divergence of the current

where mo is the bare electron mass; the structure of T„„is
governed by parity conservation and Lorentz invariance.

is given by (Gross and Jackiw, 1972)

(3.41)

Fortunately the appearance of anomalies of the type
discussed above does not prevent us per se from using the
continuous dimension method. For it is sometimes possible
to make the anomalies cancel by a judicious redefinition of
the associated spinor fields, as was demonstrated in the case
of one-loop anomalies by Souchiat, Iliopoulos, and Meyer
(1972), Gross and Jackiw (1972), and Wess and Zumino
(1971).This is true not only for Abehan, but also for non-
Abelian models, where it is possible to remove the anomalies
by doubling the number of fundamental fermions (Gross
and Jackiw, 1972). The possibility of cancellations at higher
orders has also been studied. According to Bardeen (1972),
anomalies arising from higher-order diagrams will create no
additional difhculties provided the anomalies can be made
to cancel at the one-loop level.

Since the presence of anomalies (Bardeen, 1969) can be
somewhat of a problem, both in Abelian and non-Abelian
gauge theories, it is reasonable to ask which gauge models
of the weak and electromagnetic interactions are likely to
be free of anomalies. The answer to this question, as Georgi
and Glashow (1972b) and others have shown, depends
basically on the underlying group structure of the particular
model (Gross and Jackiw, 1972; Wess and Zumino, 1971).
To illustrate this for the non-Abelian case, consider the
interaction between the gauge boson fields 8'„and the
spinor fermion 6elds f. The Lagrangian for the interaction
reads"

(3.37)

'2 It may turn out, in fact, that a generalization of y~ to odd-dimen-
sional spaces is really not needed, since one is interested in returning
eventually to physical four-space.

'3 We follow the work of Gross and )ackiw (1972}.

8"J„= (const)g'e"" P Tr (X L2 B„W, 8 Wp

—i 8„(W„W Wp) j) (3.42)

(const)g'd, b, e&" p B„pV„'(48 Wp'

+ f„d,W "Wp')$, , (3.43)

where

d.„=—,
' Tr p.{nba,)j. (3.44)

We conclude that if we are dealing with weak interactions
or with some other interaction leading to an axial-vector
current, the continuous dimension method must be employed
judiciously. In particular, if the emerging anomalies cannot
be made to cancel, dimensional regularization must be
applied with care to prevent the appearance of ambiguities.
The same conclusion holds for gauge theories involving chiral
transformations, such as the %einberg —Salam model
(Weinberg, 1967; Salam, 1968).

If the group symbol d ~, of the representation is zero, for
all u, the non-Abelian anomaly on the right-hand side of
(3.43) is absent. The proportionality of the anomaly to
d &, implies quite generally that a gauge model will be
anomaly-free if the corresponding group symbol d &, is zero,
in which case the theory is said to be safe (Georgi and
Glashow, 1972b). For example, a theory based on SU(2) is
safe, since d, b, vanishes for aH representations of SU(2).
The Lie algebra SU(3), on the other hand, is not safe.
Georgi and Glashow (1972b) have constructed a list of Lie
algebras for which d ~, is zero and which are accordingly
safe for constructing models of the weak and electromagnetic
interactions.
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FIG. 7. Massless tadpole diagram.

(Van Dam and Veltman, 1970; Zakharov, 1970). Before
describing a possible solution to this infrared dilemma, we
illustrate by means of a concrete example why the technique
described in Sec. II.B.1 may lead, for massless particles, to
ambiguous results.

IV. EXTENSION OF DIMENSIONAL
REGULARIZATION TO MASSLESS FIELDS

A. General remarks

I-et us evaluate the massless integral

d'"k

(2~)'"k'
(4.4)

(2~)2' (k2 + m2) a (4~) co ()~2)a raI' (o
—
)

=—K(m, cu,n), m' W 0 (4.1)

The technique of dimensional regularization, defined and
illustrated in the preceding two sections, works admirably
for massive fields provided no anomalies occur from partially
conserved axial-vector currents. For massless fields, how-
ever, the technique requires modification in order to cope
with genuine infrared divergences. The trick of inserting a
finite mass into the integral and then allowing it to approach
zero at the end of the calculation is, in general, not a satis-
factory prescription. To see this, consider the massive
integral

associated with the tadpole shown in Fig. 7, in two distinct
ways (Leibbrandt and Capper, 1974a). First, using Eqs.
(2.3) and (2.4), we obtain

d2"k
exp( —xk')dx =

(2n-)' p

(4.S)

d'k (k —p)'

(2')'"k' (k —p)'
(4.6a)

which diverges as cv —+ 2+, the infinity arising specifically
from the lower limit of integration x = 0. In view of this
divergence the interchange of the x and k integrations in
(4.5) is strictly speaking not permissible.

In our second approach we express (4.4) as

which converges for m complex; the parameter n is arbitrary
but fixed. All integrals in this and the subsequent section are
.defined over Euclidean space in order to facilitate com-
parison with the published literature. We note first of all
that the limit

(2~)' k'(k —p)'

d'"k k'

d'"k p. k—2
(2n-)'"k'(k —p)'

lim E'(t1t, cd,n)
m~«0

(4 2)
p'W 0.

(2m-)'"k'(k —p)'
(4.6b)

may or may not exist, depending on the relative magnitudes
of n and w. But even if it did exist, another problem could
arise as we approach four-space (provided the original
amplitude is. infrared divergent to begin with), because in
general

Evaluating the three integrals in (4.6b) separately- we find
that

I = (4 )
—{(p') —'I'(1 — )L(1 —(v)B(co —1, co —1)

—2(1 —~)B(&u —1, cd) + (1 —(u)B((u —1, co+ 1)g}

lim [lim E(m, a&,u)] W lim [lim E(m, cu,n)],
'

co «2+ m2 «0 m2 0 ~«2+

so that the massless integral

(4.3) +L=(4 )--(p')--'I (1 —-)~(-,-)3,
where the P function is defined by

(4.7)

d'"k

(21r)' (k')

cannot be derived unambiguously from the massive integral
(4 1) 14

The insertion of a finite mass term into the propagator is
unsatisfactory for yet another reason: it spoils the gauge
symmetry in the original theory, provided such a symmetry
existed in the first place. For these reasons it is probably
fair to say that the transition from a massive to a massless
theory creates at least as many problems as it solves

'4 Of course, for "healthy" theories, such as quantum electrodynam-
ics, it does not really matter if the limits in Eq. (4.3) cannot be inter-
changed, provided the arithmetic is performed consistently throughout
the entire calculation. It is also worthwhile recalling that o6-mass-shell
amplitudes are not infrared divergent and that there are some real
inhnities in closed loop diagrams which are cancelled by similar in6ni-
ties in phase space integrals. The author is grateful to Professor M.
Veltman for pointing these facts out to him.

dt t'—'(1 —t)~-', Re x & 0, Re y & 0.

(4.8)

A naive reduction of Eq. (4.7) yields I = 0. To see that this
need not be the case, we observe that each of the terms in
the bracket (. . . } is analytic in the finite strip X)1..
1 ( Re cu ( 2, whereas the last expression involving
I'(1 —co)B (~,~) is only defined in the domain
0 & R.e ~ ( 1. Since the domains of definition X)~ and X)2

do not onerlaP (x)in x) = g), it is not clear whether we
are justified in making cancellations between the analytic
continuations of the corresponding functions in (4.7). The
difficulty with Eq. (4.7), therefore, is lack of uniqueness in
the limit co —+ 2+.

We conclude that the application of the continuous
dimension method to the massless integral (4.4) yields either
infinity, zero, or a finite value, depending on the method of
computation. Similar inconsistencies emerge in other
massless integrals.
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Defrci tiorc:

d'"k
—exp[ —xk'+ 2b kg =—(4mx) "

(2m)'

Xexp[b'/x —xf(co)j, x ) 0 (4.9)

where the vector b„ is also dehned over 2a-space and x be-
haves like a c number. The new function f(c0), which is rcot

unique, is called the continuity functiorc and satisfies the
following four conditions:

B. Redefinition of the generalized
Gaussian integral

1. The Gaussian integral

Since the continuous dimension method outlined in
Sec. II.B is clearly inadequate to cope with the infrared
divergences arising from massless particles, I eibbrandt and
Capper (1974a) have proposed the following redefinition of
the generalized Gaussian integral in 2u-dimensional
Euclidean space":

(vi) f"'(cd) W 0 for &u =a@, X = 0, 1, 2, . . . , and
2n($+

There exist other functions with the required properties
(i)—(vi), but the representation (4.11) is particularly easy
to handle. It is certainly superior to an earlier version of
f (cu), especially with regard to the calculation of higher-order
diagrams (Leibbrandt and Capper, 1974b). We finally
emphasize that the introduction of f(co) in definition (4.9)
is not a gauge-invariant procedure for u,& 2. Since it is
possible, however, by property (v) to make an arbitrarily
large number of derivatives of f (cd) vanish, the recipe (4.9)
to (4.11) can be made gauge irma-riant to any fieite order.

d'"k

(2~)'"k'
exp (—xk') (4.12)

2. The lowest-order tadpole integral

The modified definition (4.9) of the complex dimensional
Gaussian integral permits a consistent treatment of the
massless tadpole integral (4.4). Application of Eqs. (2.3)
and (4.9) yields forthwith

(i) f(u) is a nonzero analytic function of the complex
variable ~ = cr+ ir; = (4~)-- dx x exp[ —xf (~)$ (4.13)

(ii) f(a)) = 0 for (u = W 2X, X = 0, 1, 2, . . . ;

(iii) f"'(cu) = 0 for c0 = & ~X, X = 0, 1, 2, . . . , and l ( lo,
where lo is finite; l denotes the number of ordinary deriva-
tives with respect to co,.

(iv) Re[f (cu) 1 ) 0 for cJrcy Re co &~ 2X, X = 0, 1, 2, . . .
and for some Im co.

These properties are discussed extensively in Leibbrandt
and Capper (1974a). Here we merely observe that property
(iv) guarantees that the x integration is well defined, since
the integral

r(1 —~) = —(1/(2 —~) + P(2)
+ 2(2 —~)[3~'+ 4'(2) —4'(2)3

+ 0((2 —~)')}, (4.15)

we obtain

with f(cd) given by (4.11).Since Re[f(co)j ) 0, it is possible
to integrate (4.13):

S = (4~)—-r(1 —~)[f(~)q--'. (4.14)

Expanding both [f(co)j" ' and F(1 —~) in (4.14) about
u = 2, where

x "
exp[ —xf(cu)jdx, (4.10)

I = —4ivr'(47r) "[(2 —(u) + (2 —c0)'P(2)

+ 0((2 —~)')j (4.16)

with Re[f(cu) j ) 0, yields immediately Euler s & function;
by comparison, the integral fopx dx does not exist [cf.
Eq. (4.5)j.

A continuity function f (&u) satisfying the above four
properties is, for example, given by (Capper and Leibbrandt,
1974)

f(~) = 1 —cos(2m cos(2m-(cos(. . . (cos2xa&). . . ))))
(4.11)

which contains n nested cosine functions, n being a finite
integer. The function (4.11) satisfies two additional criteria:

(v) f&'& (a&) = 0 for co = ~ —,'X, X = 0, 1, 2, . . . , and where
2" ) i+ 1; rc has the same meaning as in (4.11), while i is
the same as in property (iii);

"This approach to dimensional regularization differs, for vzassless
particles, somewhat from that of 't Hooft and Veltman. The difTerence
arises basically from step (ii) in Sec. II.B.1. The author is grateful to
Dr. G. 't Hooft for his clarifying remarks about this matter.

Clearly, as cu —+ 2+, the massless integral (4.12) reduces to
zero:

(P"k

(2m-)'"k'
= 0. (4.17)

This result must be interpreted with care: We are not
claiming that the tadpole (4.4) is really zero, but rather that
the continuous dimension method regularizes these highly
divergent (four-dimensional) integrals formally to zero.

Definition (4.9) may be used to demonstrate that the
result (4.14) is consistent with the integral (4.6a). Calcula-
tion of the three integrals in Eq. (4.6b) is straightforward
and yields (Leibbrandt and Capper, 1974a)

d' k (k —p)'
—= (4m-)

—r(1 —cu)[f((u) j"—',
(2n-)'"k' (k —p)'

(4.18)

in exact agreement with Eq. (4.14). Hence the modified
Gaussian formula (4.9) leads to a consistent value for the
tadpole integral (4.4).
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F5G. 8. Diagram giving rise to aB4(0) term.

d'"k k'

(2m)'" k'
exp (—xk'), (4.19)

(2~)'"

3. 8'(0) terms

6 (0) terms arise in theories which contain two or more
derivatives in a nonlinear interaction Lagrangian (see
Fig. 8). In the context of dimensional regularization, such
terms can formally be replaced by the integral fd' k; the
latter may be evaluated by multiplying the integrand by
1 = k2/k2. Applying the parametrization (2.3), we get

and for p = 0 in the limit co —& 2+. In actual fact the integral
(4.24a) is zero for suKciently large co (cu ) 1 —p) for any
given p if one first introduces a mass m, and then takes the
hmit m —+0. [This follows, for example, from Eq. (A1).j
By analyticity in co the integral (4.24a) is then zero every-
where. Consequently there exists a definition whereby
Eq. (4.24a) holds for all or and P.

The major steps in the proof of the 't Hooft —Veltman
conjecture (4.24b) for massless particles —massless integrals
over a polynomial occur for example in one-loop and two-
loop graviton-graviton calculations —can be summarized as
follows (Leibbrandt and Capper, 1974b). One first applies
Eqs. (2.3) and (4.9) to the integral (4.4), which leads to
(4.13). Differentiation of

which may be further reduced with the help of definition
(4.9) and the formulas f d'"k exp( —xk') = ~"x—"exp[ —xf(~)l

p times with respect to x then yields

(4.25)

—exp( —xk') = (4mx) "exp[ xf—(cu) j,
(2ir)'"

(4 2o)
d2~k(k2)e exp( —xk2)

Xexp[ —xf(cu)g. (4.21)

d'"k k'
—exp( —xk') = (4')—"[coax—&'+"& + x "f(u)))

(2~)'
r(p+1)r( + j) .Lf( )3' 'x

—r(j)r(p —j +1)r( )

Hence

Io = (u (4m.) " dx x ' " exp[ —xf(u&)g

Xexp[ —xf((u)], P = 0, 1, 2,

in which case the integral in (4.24b) becomes

I = (4m)
—[f(cv)g +e—'r(1 —cu)

(4.26)

+f(~)(4n-)—" dx x—"exp[ —xf(~)g, (4.22)
(—1) r(P+ 1)

=o r(q + 1)r(p —j+ 1)
(4.27)

which on integration yields the result
The last expression reduces, on account of the formula

I, = [f( )j.(4 )-.[ r(—) + r(1 — )l. (4.23)
1

In the limit as co~ 2+, the right-hand side of (4.23) ap-
proaches zero inside the bra, cket, so that P(0) formally
vanishes.

C. Proof of a 't Hooft-VeItman conjectore

(-1) r(p+1)
=«(j + 1)r (p —j + 1)

to the desired result

d'"k(k')e '

1 for P=0,
0 for p&1,

(4.2S)

(4.29)

The continuous dimension method has the additional
advantage of treating highly divergent Feynman integrals
such as fd'k(k')", n = 0, 1, 2, . . . , in a, consistent manner,
as was first pointed out by 't Hooft and Veltman (1972c) in
the case of masse particles. They conjectured that no in-
consistencies occur, for example, in the Slavnov —Taylor
identities (Capper, Leibbrandt, and Ramon Medrano, 1973)
if one assumes that

d' k(k')e '
—= 0, for ~, p complex.

(2m)'"

(2m)'"

(4ir) "[f(cu)j"+e 'I'(1 —co) for P = 0, (4.30)

for P& 1. (4.31)

For P = 0, we recover from Eq. (4.30) the tadpole result
(4.14), while Eq. (4.31) with P = 1 verifies that 64(0) terms
are formally zero in the framework of dimensional regulariza-
tion. Finally, for p ) 1 Eq. (4.31) shows that integrals over
a polynomial do indeed vanish. This completes our proof of
the 't Hooft —Veltman conjecture (4.24b) for massless
particles.

Equation (4.24a) implies, among other things, that integrals y AppLlcATtoN To yANG MILLS FtELDS
over a polynomial vanish identically within the context of
dimensional regularization: A. Introduction

d'"k(k')e '
—= 0, P = 0, 1, 2,

(2m)'"
(4.24b)

Within our definition, using the function f(~), Eq. (4.24b)
has recently been proven for p = 1, 2, 3, . . . and any ~,

The continuous dimension method has recently been
applied by several authors to gauge held theories of the
Yang —Mills type (Yang and Mills, 1954; Shaw, 1954) which
represent the simplest example of theories associated with a
local non-Abelian gauge group. Bardeen, Gastmans, and
Lautrup (1972), for example, have computed the muon
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anomaly at the one-loop level in the Weinberg SU(2) )C U(1)
model (Weinberg, 1967). The results of their calculation
agree with those of Fujikawa, Lee, and Sanda (1972) work-
ing in the Rt formalism. Jones (1974) has performed a two-
loop calculation of the coefficient function P(g) which
appears in the Callan —Symanzik renormalization group
equations (Callan, 1970; Symanzik, 1970a).

(a)

B. The muon (g —2} factor ln the
Georgi-Glashow model

In this section we use dimensional regularization to study
.the muon (g —2) factor in the Georgi —Glashow model.
Georgi and Glashow (1972a) have constructed a spon-
taneously broken gauge model of weak and electromagnetic
interactions with SO(3) symmetry which contains no addi-
tional neutral currents apart from the electromagnetic one."
This model, which contains two gauge fields S'+ along with
the photon A —= Ws, consists of two muon (p) triplets and
singlets and two electron (e) triplets and singlets. The muon
triplets are of the form

Y

(c)

FIG. 9. These four diagrams contribute to the muon (g —2) factor
to order e' in the SO(3) model. In the text we are chief concerned
with diagram (c).

Lee, 1973)

V+

g„L ——-', (1+ yp)i VP cosy+ v„sinP ~,

(5.1)

2m+

&&u(p ——,'q),

pa &apq
V. = ~(p+ -'q) —~i(q') + f -(&i(q') + Fs(q'))

m

(5 5)

while the two left (L)- and right (R)-handed muon singlets
read

s„L ——-', (1 + yp) ( V' sinP —v„cosP),

~ = -'(1 —7)" (5.2)

where V+, VP are heavy muonic leptons and P is the mixing
angle between the physical muon neutrino v„L and
VLP = si (1 —yp)VP. A similar set of triplets and singlets,
with heavy leptons X+, XP and with the same mixing angle P,
exists for the electron and its neutrino v, . The total
Lagrangian for the Georgi —Glashow model, which is in-
variant under a local non-Abelian gauge group, consists of
6ve components:

where m„ is the mass of the muon and (P —pr q) and (P + srq)

its initial and 6nal momentum, respectively. F& and F2
denote, respectively, the electric and magnetic form factors
as functions of the momentum transfer q . The anomalous
magnetic moment of the muon is defined as

(Fs(0)). = Lp(g —2)l. = ~' (5 6)

Whereas the one-photon exchange contribution to a„Lsee
Fig. 9(a)j is the same and equal to cr/2m in all models /see,
for example, Weinberg (1967) and Georgi and Glashow
(1972a)j, the corrections to a„are definitely model-depen-
dent. In the Georgi —Glashow model the corrections to
second order in e come from diagrams 9(b), (d), and (c)
which yield, respectively (Primack and Quinn, 1972),

+EC.E. + @m + +W + +p + @Wp

where Zg -&,

(5.3) rr sin'Pm '10
(~.)" =

8m-Mg ' 3
(5.7)

l=e, p

eW), (&( X yg&i), (5 4)
8m-N g 'Mp' p xp x+1

n(nzr+ —m„)'m ' ' dx(2x' —x')
(5.8)

—crm„mvo cosP 1
—+3

2+My ' 2

r —= mros/iMu' p —= rN '/M '

describes the coupling of the muon and electron to the gauge
field Wz. We shall refrain from listing explicitly the remain-
ing terms in Eq. (5.3)—they can be found in Primack and
Quinn (1972)—since the purpose of the above summary is
merely to familiarize the reader with the structure and where

nomenclature of this simple model.

dx x2
(5.9)

p x+ (1 —x)r

Our discussion of the weak correction to the anomalous
magnetic moment of the muon follows closely the work of
Primack and Quinn (1972). To begin with we recall that
the fi electromagnetic vertex is of the form (Abers and

and m&+, m&0, M~, and M~ denote, respectively, the masses
of the I'+, I 0, P, and W particles. '7 Using, dimensional
regularization, we shall concentrate on the derivation in
(5.9) of the factor (s) inside the square bracket. In the

'7 After spontaneous symmetry breaking, the originally massless
'6 The various aspects of spontaneous symmetry breaking are dis- vector bosons acquire a mass M~ (53 sinp) Ge V, while the photon

cussed in a recent article by Bernstein (1974). A = Wo remains massless.
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im "F(2 —(u) g„„

(2ir)'"2c' I'(3)

d2"k k„k„
g p

—k kp/Ms2
(2m)'"(k'+ c)'(5.10)

unitary gauge or U formalism {Primack, 1972; Weinberg, Application of Eq. (2.8c) together with
1973), where the W propagator reads

(5.14)

k2 —Mg '

the contribution from diagram 9(c) equals (q = p' —p)

d4k
-u(p')y. [mro cosP

(2m-)4

+i~ (p' —k) (1 + cos2j9 —p5 sin'P)]

I'"{p',p) = ie'

(k + q) (k + q) /M p' —g
Xy.~(p)

(k + q)' —Mir'

ki'k /Mg' —g&'
-[(k —q) g'"

k' —Ms ' (p —k)' —mr"

+(2q + k)&g"" —(2k + q)"g ~]. (5.11)

The computation of I ~ is nontrivial on at least two counts.
In the first place, the integrals appear to be highly divergent
due to the special form (5.10) of the propagators, and
secondly Eq. (5.11) contains the factor y5. The first problem
is readily dealt with by using a powerful cutoff procedure
such as dimensional regularization. But if the latter is
employed, we are faced with another problem, that of
generalizing the y,; matrix ueambiglolsly to arbitrary di-
mensions which, as pointed out in Sec. III.C, is still not
rigorously solved. The problem can be circumvented by
calculating only the leading term in (g —2) which is of
order m„mro/Mw', so that in the first square bracket of
(5.11) only the expression mro cosP survives. Generalizing
Eq. (5.11) to 2cu dimensions and observing that the numera-
tor term proportional to 1/M ~' vanishes at q = 0, we obtain

F"(2~,p', p) = ie'mro c—os/(u(p')p. y,n(p))
d2"k ger

(k+ q) (k + q)—
(2m-)'" 2

g
rzrr

+k~k' g g
Mg2

X[(k —q) g~" + (2q + k)i'g " —(2k + q) "g ~]

X[((k + q)' —Ms')(k' —Ms')

X((p —k)' —mro')] '.

I(2cu, p) =
d' k(4k pk —k'p )

(2m)' (k'+ c)'
(5.13)

A naive computation of this expression in four dimensions yields
zero. See the comment in the appendix of Primacy and Qu'inn (1972).

The computation of the term g g&' in the curly bracket in
(5.12) is straightforward and will not be discussed any
further. For the evaluation of the divergent integrals associ-
ated with the first and second terms, vis.

[(k + q) (k + q) g&' + ki'k'g~v]/Mir'

a gauge-invariant cutoff procedure is virtually mandatory. '"
Combining propagators and simplifying the resulting inte-
grand, we can show that the relevant integrals reduce to
the form

yields

im (2 —(u)I'(2 —a&)

1(2~,p) =
(2x)'"F(3)c' " (5.15)

As co —+ 2+, the last expression reduces to (i/32~') p„which
leads precisely to the factor (2) in Eq. (5.9). This completes
our discussion of the (a„)r' contribution.

The weak corrections to the muon apomalous magnetic
moment have also been computed by Jackiw and Weinberg
(1972) and by Bars and Yoshimura (1972) in Weinberg's
SU(2) X U(1) model, employing the U formalism, and by
Fujikawa, Lee, and Sanda (1972) in the R~ gauge [see also
Hagiwara (1974)]. To compute the muon anomaly, the
latter three authors apply the Rg formalism in both the
Georgi —Glashow and the Weinberg model. "The important
message emerging from these various model calculations of
the muon (g —2) factor is simply this: For the sake of
internal consistency and in order to minimize the appearance
of ambiguities, a gauge-invariant regularization scheme
should be employed whenever possible. 20

VI. APPLICATION TO QUANTUM GRAVITY

A. Pure quantum gravity

1. introduction

The purpose of this section is to calculate the one-loop
contributions to the graviton self-energy (Fig. 10) in the
context of covariant quantization by employing the modified
technique of dimensional regularization [cf. Eq. (4.9)].
Since quantum gravity belongs to the class of non-Abelian
gauge theories, it is considerably harder to regularize than
the two Abelian examples discussed in Sec. III. Calculations
are further complicated by the fact that we are dealing here
with a massless spin-two theory. Despite these rather
severe obstacles, the continuous dimension method correctly
preserves the gauge symmetry of the underlying Einstein-
Hilbert Lagrangian, provided all contributions from ficti-
tious particles are properly included.

Einstein s gravitational field is described by the Lagran-
gian density

z = (2/~')4 —g g~"R„„, (6.1)

where g&" is the metric tensor, R„„the Ricci tensor defined by

Rpv = pp, v' —Fpv, p' —
pv v p' + Fvv'F, p (6-2)

2g (gpv " + gv" p gpv v)v (6 3)

and g —= detg„„; ~' = 32+G is the gravitational constant in
natural units 6 = c = 1 and G is the Newtonian constant.

For a review of this topic, see Primack (1972).
~ A clear discussion of ambiguities arising, for example, in the U gauge

from the use of the Pauli —Villars or the "proper-time" regularization
schemes can be found in Fujikawa, I.ee, and Sanda (1972).
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FIG. 10. Massless graviton
loop.

ciP'

p-k

We can simplify subsequent calculations appreciably by
expressing the Lagrangian density (6.1) in terms of the
tensor density g e of weight +1 (Capper, Leibbrandt, and
Ram6n Medrano, 1973):

in which case

(6 4)

1
g, &Slav

2K

egg gv

g 'g»eR& 2~e ti& g»~ I

2 (40 —1) )
(6.5)

The new version of the Einstein —Hilbert Lagrangian ex-
hibits a pole at cv = 1 which is connected with the fact that
the total Lagrangian I- = fZ 4t'"x reduces in two dimen-
sions to a surface integral. It is also worth noting that the
original Lagrangian (6.1) is independent of the dimension
of the space, whereas (6.5) contains co explicitly.

ZLj"j = &Cg""j~Cg "jexp i dx z+ g "j—„„

(6.6)

where j„„is an external source function and 2 is given by
(6.5). The factor &Cg»"j gives rise to fictitious particles,
while —(aK') '(B»g»")' breaks the gauge symmetry The las. t
two terms play an essential role in the quantization of the
gravitational field, especially in the derivation of the
Feynman rules. The gauge term removes the degeneracy in
the free part of the Lagrangian so that the propagators
become unique. The expression ACg»"j, on the other hand,
coiiipensates for an infznite volume factor which arises from
integrating over points in the- function space of the field
variables g»" (Faddeev and Popov, 1967; Popov and
Faddeev, 1972). If the physical graviton field @»" is defined
by

2. Fictitious particles

For gauge theories, the Creen's functions and vertices are
most easily derived from a generating functional Z by the
method of functional derivatives (Schwinger, 1951; Syinan-
zik, 1954; Zumino, 1960). In the case of quantum gravity,
Z reads

Feynman —DeWitt —Faddeev —Popov ghosts. CSee Feynman
(1963), DeWitt (1967a,b), and also Mandelstarn (1968).j
In pure quantum gravity, these ghosts are real massless
vector particles. Moreover, they are unphysical since they
occur only in oriented closed loops, called fictitious "fermion"
loops (Fig. 11). The name "fermion" comes from the rule
which assigns —in analogy with Furry's theorem in quantum
electrodynamics —a factor of (—1) to each closed loop. The
fictitious particles $i, and zt„are needed to cancel the longi-
tutiinal, i.e., unphysical polarizations arising from closed
loops. Their purpose is to restore both the unitarity of the
scattering matrix 5 and the transversality of the scattering
amplitudes (Faddeev and Popov, 1967; Fradkin and Tyutin,
1970).

(6.9)

which is t.rue to all orders in the gravitational constant K

and holds for any gauge specified by the parameter n. Since
the Slavnov —Taylor identity (6.9) is a theoretical result
which is clearly independent of the number of dimensions
2', the central question is: Does our space-dependent
regularization scheme preserve the space-independent iden-
tity (6.9) in a practical calculation? Capper, Leibbrandt,
and Ramon Medrano (1973) have demonstrated for the
graviton self-energy that the continuous dimension method
does indeed preserve (6.9) to second order in K Csee also
Brown (1973)j. Since their calculation is already of tremen-
dous complexity (there are over ten thousand terms), it will
be some time before the identity (6.9) is verified to fourth
and higher order.

Symmetry and Lorentz covariance demand that the total
contribution from the pure graviton loop and the fictitious
particle loop be written as (g means graviton)

T-e- e "'(P) = "C.P-Pep- Pe T '"'(P')
+ &.e&. e Tz'"'(p') + (~ ~pe + 4 t4 e )Tz"'(P')
+ (t'-eP- Pe + t'-8 P-P8)T4"'(P')
+ (~aa pt4pe +'~Pa'pa'pe' + ~ae'pepa'

+ &ee P-P- )T '"(P')3. (6.10)

The invariant amplitudes T,"&(p'), i = 1, 2, . . . , 5, which
are crucial for the discussion of the Slavnov —Taylor identi-
ties, possess the following form:

3. Slavnov —Taylor identities

Having gained some insight into the structure of the
generating functional ZCj „.j, we are ready now to continue
with Eq. (6.6). Employing the technique of 't Hooft (1971a)
we obtain the following expression for the Slavnov —Taylor
identity (Slavnov, 1972; Taylor, 1971):

g»" —$»" + KQ»"

then"

(6.7)
Ti"'(P') = C8(4~' —1)3 '

X (2co4 —5aP + 35cu'+ 16co)Ii, (6.11a)
(~CR""j) ' = f &Ck.jd(~.j

X exp(z f dx zt, C8p&H K($»p &» Q»p'5p& l9» l9»

—4»», »~.x ~. + 4» .» ~~)jb) (6.8)

~' In view of definition (6.7) it is no longer necessary to distinguish
between upper and lower indices on +„„.

— where $q and zt„represent fictitious particles, also known as

FIG. 11. Fictitious
particle loop in pure
quantum gravity. The
solid line represents a
graviton; q and & de-
note fictitious particles.

q

q,W
I
I
l

a' '
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T "'(P') = L32(~ —1)'(4 ' —1)j '

X (—14(g4 —7(g' + 36(g2 + 9(g)I1, (6.11b)

T,«)(p') = P2(4~2 —1)]-'
X (—16(g' —18(g2 + 15(g + 8)I1,

where

(6.11e) (a) (b) (.)
FIG. 13. Lowest-order photon contributions to the graviton self-
energy. The solid lines represent gravitons, the dashed lines photons(y).

= (4gr)
—"I'(2 —(o)

(2gr) 2"k2 (k —p)'
(c) In view of the contributions from fictitious particles—
these give rise to longitudinal polarizations —the connected
Green's function Q«' no longer satisfies the naive identity

«L~(1 ~)P' + f( )3. (6.12) P.Q..„, (P) = O. (6.19)

and f(o)) is the continuity function defined in (4.11).

In order to verify (6.9) we must first construct from
(6.10) the connected Green's function

Q "1")(P) = D -e(P') T-e- e '"(P)D- e "(P'), (6 13)

where D f)„„(p2) is the free massless spin-two propagator:

D fig (P') = (2P') '(~ pt')ff —t') (fag + & t')eg) (614)
Substitution of (6.10) and (6.14) into the right-hand side of
(6.13) yields

Q ) (») (p) —(4P2)
—2)(2{a ),Tl(g) + ((g 1)2a2gggl T2(g)

+. pa...„), + (~ —2)a2„.„1)T2(g) + (~ —1)at„-,) Tt(g)

+ at...1T2")}, (6.15)

where the kinematical coe%cients ai„„q, . . . , a~„„q are not
needed for the discussion here. For the Green's function
(6.15), the Slavnov —Taylor identity (6.9) implies that

%e should point out that the total graviton amplitude
(6.10) includes, in addition to Figs. 10 and 11, four other
second-order graphs (Fig. 12). The tadpole diagram 12(a)
and the l)4(0) diagram 12(b) have already been shown to
vanish in the context of dimensional regularization PEqs.
(4.17) and (4.23), respectively), whereas diagrams 12(c)
and 12(d) contain zero-momentum propagators of mass
zero and are consequently harder to evaluate. However,
since both 12 (c) and 12 (d) satisfy the Slavnov —Taylor
identities, we shall not examine these graphs any further
here.

4. Structure of pole term and counter Lagrangian

Expanding the right-hand side of Eq. (6.15) about (g = 2
and continuing factors such as ln(p2) analytically from
Euclidean to Minkowski space, we can express the total
amplitude for the graviton self-energy conveniently as

Q (g) —&2(4pt) —IPQ (g) pole + Q (g) ffnitej (6 2())

P.P.Q...."'(P) = o,

or equivalently

(6 16) where

(g) f inite ~ (g) Real ~ &~ (g) Im
vopX ~ v (rpX l ~~ v (r p))t (6.21)

T (g) + p2T (g) —0

(P2)2T (g) + 4((g 1)2T2(g)

+ 4((g 1)(T (g) p2T (g)) —()

The detailed structure of Q'"' R' ' and Q(') ™is given in
6.17

Eqs. (5.18) and (5.19) of Capper, Leibbrandt, and Ram6n
Medrano (1973),"while the pole term reads

Equations (6.16)—(6.18) contain a number of remarkable
features which we shall briefly summarize. (a) Identities
(6.16) and (6.17) are both independent of the dimensionality
of the space, whereas Eq. (6.18) holds for all values of (g,

except for cg = 1 (we recall from earlier discussions that the
Einstein —Hilbert Lagrangian is not defined in-two dimen-
sions). (b) It is amazing as well as gratifying to find that
the o) fIePendent amplitudes T-, «' in (6.11) satisfy the theo-
retical identities (6.17) and (6.18). In short, dimensional
regularization respects the Slavnov —Taylor identity (6.9).

Q -"'"'""(P)= P40(4 )'(2 — )3 'P28ai ".
—59a2„„1+ 81at„„),+ 104a4„„),—81at„,„},j

+ O((g —2). (6.22)

The pole term may be eliminated by means of appropriate
counterterms in the Lagrangian. Moreover, the extraction
of Q"' ""'" from Q"' in (6.13) is consistent with gauge
invariance, since each one of the expressions Q"' R' ', Q('}™,
and Q«'p'" satisfies the Slavnov —Taylor identities (6.17)
to (6.18) separately. We postpone a detailed discussion on
the possibility of renormalizing quantum gravity until Sec.
VI.C.

(a) (b)

o gt

FIG. I2. Lowest-order
contributions to the gravi-
ton self-energy. Diagrams
(a), (c), and (d) are tad-
poles with q, $ denoting
fictitious particles again,
awhile diagram (b) gives
rise to 54(0) terms.

B. Corrections to the graviton propagator
1. Photon correction

Using dimensional regularization, Capper, Duff, and
Halpern (1974) have evaluated the one-loop photon cor-
rection to the graviton self-energy (Fig. 13). We examine

(c)
22 There is a correction in that paper: the over-all factor (120 p4)

in (5.18) and (5.19) should be replaced by (,240(4~)4) '.
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the highlights of their calculation, paying particular atten-
tion to the Slavnov —Taylor identities and to the extraction
of the finite part of the photon contribution.

cia'

The interaction of gravitons -with photons is described
by the Lagrangian density (p means photon)

Z&~) = (2/~')4 —
g g&"R„„—i, V —g g&"g ~F„F„e, (6.23)

(6.24)

while the connected Green's function LFig. 13 (a)j reads

FIG. 14. (a) One loop-neutrino
contribution to the graviton self-
energy. The wavy lines represent
neutrinos (v). (b) The graviton-
neutrino vertex.

Q/~P~ (P) = Dli~~e(p )T~e~) (P)D~&P~(p )i (6.25) (b)

where T(&) is the total photon self-energy contribution and
D„„,is given by (6.14). The integrals associated with the
tadpole diagrams 13(b) and 13(c) yield zero again. Invari-
ance of (6.23) under general coordinate transformations
leads to the identity Q,„ii")(p) = 0, for all co (6.32)

which expresses gravitational gauge invariance, and the
identity

p„Q„„.' '(p) = 0,

or equivalently, to the three identities

Ti'» —2(cu —1)T4'&) = 0,

Ti'&) —4(cu —1)'T2&» —4(co —2)T,&»

+ 4T i» —0

T3(i) + T~(v) —0

(6.26)

(6.27a)

(6.27b)

(6.27c)

which arises from contracting the indices at one of the
vertices in Fig. 14(a).

Since the neutrino amplitude satisfies the identity (6.31),
one can remove the ultraviolet-divergent portion of Q

" by
augmenting the original graviton-neutrino Lagrangian by
the counterterm

where the structure of the invariant photon amplitudes
I,(&), i = 1, 2, . . . , 5, is not needed here for the discussion.
%e see, just as in the case of the graviton amplitude, that
the identities (6.27a) and (6.27b) involve cu explicitly. To
regularize Q„„„ii'),one first expands (6.25) about o& = 2,

Q."."' = (y) pole L jj (y) f in it e
P~P 0 Mls&p ~ (6.28)

and then eliminates Q„„, '&' "" by means of the four
dimensional counterterm

—g
(R' —3R„„R~"),

2 —cu 120(4m)'
(6.33)

which is the same, except for a factor of + 2, as the photon
term (6.29). The Lagrangian (6.33) meets the requirements
of (6.31), but fails to satisfy the second identity (6.32).
The reason is that AZ (") is strictly a four-dimensional
quantity, whereas the trace identity (6.32) is seen to hold
in any dimension. The problem can be resolved by replacing
(6.33) by the 2cu-dimensional expression

—g
(R' —3R R~")

2 —a) 60 (4~r)'
(6.29)

Az&"'(cd) =
2 —co 32 (4v-)'(4~' —1)

Since the extraction of Q~&) ""'"turns out to be consistent
with the Slavnov —Taylor identities (6.27), we conclude that
the continuous dimension method preserves the gauge-
invariant character of the photon-graviton Lagrangian
(6.23). It is also worth noting that the photon function
Q'i' is transverse, satisfying the naive identity (6.26), in
contrast to Q«), which satisfies the weaker identity (6.16).
Consequently we find that the counterterms for Qi» are
covariant, whereas the graviton counterterms are generally
noncovariant.

2. Neutrino correction

For the one-loop neutrino contribution to the pure gravi-
ton propagator t Fig. 14(a)) the connected Green's function

Q -"'"'(P) = D -e(p')T-e- e'")(P)D- e "(P') (6.3o)

X —R' —(2' —1)R„„R&",
2

(6.34)

C. A second look at quantum gravity

1. Trace anomalies

As pointed out in Sec. III, dimensional regularization
must be applied with care if the Slavnov —Taylor identities
contain the & p„„ tensor, since the latter is only defined in
four-space. There exists another type of anomaly which is
connected with the fact that the trace operation depends
explicitly on the dimensionality of the space, as seen from
the relation 8» = 2'.

which is generally covariant as well as conformally invariant
for all co. dpi")(cu) satisfies both identities, (6.31) and (6.32).

satisfies two distinct identities (Capper and DuH, 1974b):
the Slavnov —Taylor identity (v means neutrino)

P.Q.""'(P) —o,
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To illustrate this second type of anomaly let us go back
to the neutrino Green's function Q&") satisfying the trace

(6.31) identity (6.32). The latter is equivalent to (Capper and
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Duff, 1974a)

, ("& + 2cuQ (") + 4Q, '"' = 0 for all cu

2~Q2(") + 2Q ("& + Q4'"' ——0, for all (u

where

(6.35a)

(6.35b)

qg("& (a)) = ((v —1)2 $32 (4(d' —1))—',

co ' i = 1, . . . , 5 (6.36)Q""'( P') = (7""'(~) (P') '1(~ P )

with
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be expressed as (Eden et a/. , 1966)

Q n, (q,'+ m,') = kr A(n)k + k~ B(n)p
i=1

In order to perform the K integrations, we follow the
standard procedure of first diagonalizing the 2 &( 2 matrix
A(n), labelling its eigenvalues by a, (n), j = 1, 2, and then
applying the following generalized Gaussian integrals
(a & 0):

+pr C(.n)p + P n, m. ,'. (7.13)

The order of the matrices A(n), B(n), and C(n) is 2 X 2,
2 X (E —1), and (E —1) X (E —1), respectively; k and

p are column matrices,

d'" 4E 1
—exp[ —aK') =

(2 )'"-'
(2 v'

d2ca—4+
K„exp—[—aK') = 0,

(2~)2'—4

(7.20a)

(7.20b)

P2 )

Lpg

(7.14) (g 2'
—4+

K„K„exp[—aK') =
(2~)2a)—4 2a(2 42ra)2

(7.20c)

and their transposes kr and pr row vectors. Substitution of
(7.13) into (7.12) yields forthwith

d2ca —4~
—K' exp[ —aK') =

(2~)2n—4

(d —2

a (2 42ra)'"—' (7.20d)

OO d'"kl d'"k
Frr(2rd, p) = II dn, —(II k .k„)

4=1 0 (22r) ~ (22r) n m, n

X(IIk, p„) exp[ —k A(a)k —k B(a)p
s, r

—pr C(n)p. —P n,m, '). (7.15)

k = (fc,K)

and, for the external momenta,

(7.16a)

p = (p,0) (7.16b)

Since the E space is orthogonal to the physical A' space, the
first two terms on the right-hand side of (7.13) reduce to

Rather than integrate over d'"kl and d'"k2 directly, as was
done in earlier sections of this review, we follow the approach
of 't Hooft and Ueltman [cf. Eqs. (2.11) and (7.4)) who
separate the 2~-dimensional momentum space over k into
a physical four-dimensional space, characterized by the
four-vector fc, plus a (2&v —4)-dimensional space over the
vector X. Thus

6„„6„„=2(v —4,

6„„K„=K„

6~~ = 2' —4~ (7.21)

(7.22)

and, if the structure of the integrand demands it, identities
such as

Trace(y„y. ) = 2' (7.23)

We summarily denote all cu-dependent terms arising from
such identities by the polynomial factor g(cd). We further
deduce from Eqs. (7.20) that the eigenvalues a, behave like

[a'( )) ' "'',
where d, depends strictly on the number of E,„„K,„„
E,», . . . vectors in the integrand; d, can be either an integer
or zero, d, & 0. The integral (7.19) therefore assumes the
fOrm24

Other formulas follow from the basic expression (7.20a) by
partial differentiation with respect to a(n). Reduction of
the K integrals also brings into play certain important
identities, some of which contain explicitly the dimension
co of the space; for example,

k~ A (n)k + k~ B(a)p
= kr A(n)k+ kr. B(n)P + Kr A(n)K;

in addition,

d'k =d4k, d'" 4K, , i =1, 2

k p=kp,
and

k k = fc'+ K'.

(7.17)

(7.18a)

(7.18b)

(7.18c)

N m
g(Go)

Pa(2(u, p) = II dn,
i=1 al A ~—2+dl u CX

~—2+d2

(/4kl d'4k 2-(II k- k-)(II k. p.)
(22r)4 (22r)4 m, n s, r

exp[ —k~. A(a)k —kr B(n)P —P~.C(n)P

N—P n, m, '). (7.24)

The two-loop integral (7.15) is therefore composed of a s24m

of terms of the type [cf. Eq. (7.18c))
d'kl d4k2

~ (2,P) =
I II d ' — (II k- k-)
E 4=1 2 (22r) (22r) m,

X(II I, p„) exp[ —kr A(n)k —kr B(n)p —pr C(a)p
s, r

d2--4E, d2--4E,
n,m;2) (II K K )

(2~)2n—4 (2~)2n —4

We do not reduce the right-hand side of (7.24) any
further. Suffice it to say that the two k integrals are con-
vergent for complex values of cu and can therefore be evalu-
ated by the usual techniques. There remain X integrals
over al, n2, . . . , ~N. As might be expected, the computa-
tional aspects of these parameter integrals can be rather
forbidding, just as in the case of ordinary four-dimensional
integrals. Regarding the singularity structure of (7.24) we
note that two-loop diagrams in general give rise to poles of

Xexp[ —Kr .A (n)K). (7.19) 24 Factors of 27'-, originating from the E integrations, are omitted.
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order up to two at the "physical" value 2' = 4. The
analysis of these integrals may be further complicated by
the presence of overlapping divergences. For a discussion
of these matters we refer the reader to 't Hooft and Veltman
(1972a, 1973).

It is clear how the two-loop formula (7.24) can be ex-
tended to describe diagrams with I. loops. The correspond-
ing integral reads

FIG. 15. Pure graviton triangle diagram.

L
d ' lc(~)/II La'(~) j" '+"'

j'=I

N—P n;m;2,

( N

R(2~ p) =
I II

d'k& q
XI II l(II k k.) (II k. .p,)

i=i (2~)4) tn, n s, r

XexpL k—rA(n)k —k~ B(cx)p —pr. C(n)p

(7.25)

where

pi'= pl +m2 +m3 pl (p2+ p3)

p2 —p2+mp+mp, p3p3+mi'+m
(7.29a)

(7.29b)

If we deflile Ilew vailab'les $, r, X by tx = P,, P = rX,

y = X(1 —$ —r) with Jacobian
I Jl = X', the integral

(7.28) reads

I(m) = (4~)-- dg

where the elements of the column matrices
Xexp{—3 pA (p) + B(m)j}, (7.30)

1

2

pE—1 g

(7.26)

are still Lorentz f6ur-vectors, but where A (a), B(n), and
C(n) are now, respectively, I. X I., I. X (E —1), a,nd
(E —1) X (E —1) matrices.

8. Vertex diagram

The basic integral associated with the third-order vertex
diagram Fig. 15,

d2"k
m) = {(k'+mi2)l (k —p,)'+ m22)

(2m.)'"
XL(k + pl)'+ m3'j}—', (7.27)

is most easily evaluated by using the exponential parame-
trization (7.10), which leads to

Let us summarize the main features of this section. We
have shown, by using the exponential parametrization for
momentum space propagators, how the technique of dimen-
sional regularization can readily be extended from one-loop
graphs to multiple-loop diagrams. The exponential parame-
trization is particularly convenient to apply here, since it
leads to generalized Gaussian integrals that are easy to
evaluate. We have also seen Lrecall formulas such as (7.21)—
(7.23) and (2.7)—(2.10)j that the generalization to and
subsequent computation of multiple-loop diagrams are both
gauge-invariant procedures. This observation leads to the
important conclusion that the continuous dimension method
respects gauge invariance to all orders of perturbation
theory, a property which is essential in proving the re-
normalizability of gauge theories in general. This completes
our discussion of multiple-loop diagrams.

where the structure of A(p) and B(m) need not be known
explicitly here. The computation of the massive integral
I(m) is straightforward though tedious and will not be
discussed any further. Instead we shall briefiy examine the
corresponding massless integral which, on account of the
infrared problem, is substantially trickier to handle than
(7.30). Setting mi ——m2 ——m3 ——0 in Eq. (7.27) and em-

ploying the modified Gaussian formula (4.9), we obtain in
place of (7.30)

I(0) = (4~) d$ d7.

Xexp{—ALA(p) + f(cu)j}, (7.31)

where

A(p) =— Ep'+ 8(1 —
&

— )p"
+ r(1 —$ —r)pi' (7.32)

is the same as in I(m). Hence the only formal difference
between I(m) and I(0) lies in the continuity function f(oi)
which replaces the massive term B(m) in Eq. (7.30). Inte-
gration over X and v yieMs

I(0) = (p ')--'I (3 — )

2 (cv —2) (4n ) 0

XR 'I si" '2Fi(u) —2, -', ; ~ —1) zi/R')

—0
—'2 i( —2, —', ; ~ —1 so/R') j (7.33)

where

R = (o. + eit+ e.P)', e. = —:(1+4fPi '),
ci = (p2 pg) pl q c2 L(p2 p3) p2 p3 jpl ) (7 34)

so = Lf+5(1 —$)p'3P ', s = Lf+0(1 —&)p'lP '.

I(m) = (4~)—" dn dP dy(n + P + y) "

XexpL —(npp3' + cxyp2' + ypPi' + a'mi'

+p'm3' + y'm22)/ (n + p + y) j,

As long as co remains complex, the right-hand side of (7.33)
is a well defined function of ~. In particular, f(~) guarantees
that the $ integrand in (7.33) contains neither real poles nor
end point singularities. Since the finiteness of I(0) as

(7.28) co ~ 2+ is also readily established (Capper and Leibbrandt,
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874 G. Leibbrandt: Introduction to the technique of dimensional regularization

1974), we conclude once again that the continuous dimen-
sion method yields the same result as other more conven-
tional regularization procedures.

VIII. CONCLUDING REMARKS

In this review we have applied the technique of dimen-
sional regularization to divergent Feynman integrals in the
context of Abelian as well as non-Abelian gauge theories.
The technique has, in our opinion, three distinct advantages.
In the first place, it is simpler and more elegant than other,
more conventional regularization methods such as the Pauli-
Villars prescription. Secondly, dimensional regularization is
powerful enough to handle efficiently and on the same
footing both ultraviolet and genuine infrared divergences.
Finally, and this is its most significant feature, the tech-
nique is eminently well suited for dealing with gauge
theories, since it preserves the local gauge symmetry of the
underlying Lagrangian. The preservation of this symmetry

-- was demonstrated in Sec. III for the vacuum polariza. tion
tensor in quantum electrodynamics, and in Sec. VI by
regularizing non-Abelian massless spin-two quantum gravity
to lowest order in the gravitational coupling constant. It
was specifically shown there that the sum of the graviton
and fictitious-particle contributions to the graviton propa-
gator satisfies Slavnov —Taylor identities jEqs. (6.17) and
(6.18)) and that the finite portion of this sum can be ex-
tracted in a manner which is consistent with these identities.
In summary, dimensional regularization permits a consist-
ent gauge-invariant treatment of divergent Feynman am-
plitudes to all orders in perturbation theory.

Although the concept of dimensional regularization is
easy to grasp once the notion of analytic continuation is
clearly understood, the method should not be applied indis-
criminately to any model possessing gauge symmetry.
Before embarking on an explicit calculation, it is best to
ascertain first whether or not the underlying theory —be it
Abelian or non-Abelian —(i) is massive, (ii) is massless, or
(iii) contains, through Slavnov —Taylor identities or other-
wise, fa,ctors of p'. Let us briefly examine these three
possibilities.

For massive theories the prescription of 't Hooft and
Veltman (1972a), Bollini and Giambiagi (1972), and Ash-
more (1972, 1973) works reinarkably well, as demonstrated
in Secs. III.A and V, and ambiguities can easily be avoided.
For massless theories the prescription given in Sec. II.B.1
requires modification (Leibbrandt and Capper, 1974a) due
to the appearance of infrared divergences connected specifi-
cally with massless particles (see Sec. IV.B). The modifica-
tion involves basically a redefinition of the original 2co-

dimensional Gaussian integral which permits a consistent
treatment of massless' tadpoles as well as 8'(0) terms
(Sec. IV.C) and preserves, moreover, the crucial Slavnov-
Taylor identities associated with the graviton self-energy
loop (Sec. VI).

anomalies can sometimes be made to cancel by a judicious
redefinition of the fundamental fermion fields, it is neverthe-
less desirable to continue the search for a y' matrix valid
in arbitrary dimensions, so that the technique of dimen-
sional regularization may be applied unambiguously to an
even greater variety of physical models than has hitherto
been the case.
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APPENDIX. USEFUL INTEGRATION FORMULAS

The following list of 2'-dimensional integrals is divided
into two categories: the integrals in the first category hold
for massive particles (m W 0), whereas those in category B
are' valid for integrals associated with massless fields
(m = 0).

(2~)2a&(q2 + 2k. q + yyg2)u (4~)ca(yyz2 k2) a—a&

r (u —a))

r (u)
(A1)

d2 67
q q

(2~)'~ (q2 + 2k .
q + m2) ~ (47r)" (m' —k')

r (u —(u)
—(—k„),r() (A2)

d2"q q2

(2~)2' (q2 + 2k .
q + y~2) a

1 1

(47r)" (m' —k') r (u)

A. Massive integrals

Formulas (A1)—(A6) below are taken from Appendix A
of 't Hooft and Veltman (1972a). In transferring them we
have, for the sake of consistency, replaced the complex
variable e by 2&v and divided each integral by (27r)'". These
integrals hold for m2 ~ 0, co arbitrary, and are particularly
useful in connection with the discussion in Secs. III and V.

X{r(u —cu)k'+ r(u —1 —(v)co(m' —k')}, (A3)
Finally, extreme care must be exercised whenever the

theory contains anomalies characterized by e p„„or&'. Since
the latter has only been generalized successfully to even-
dimensional spaces (Sec. III.C), the continuous dimension
method could create ambiguity problems if these anomalies
persist in the final Slavnov —Taylor identities. Although the

gpgv

(2~)'~(q'+ 2k q+ m')~ (4n-) (m' —k') — r (u)

X{r(u —cu)k„k, + I'(u —1 —a&) —5„„(m2 —k2)}, (A4)

Rev. Mod. Phys. , Vol. 47, No. 4, October 1975



G. Leibbrandt: introduction to the technique of dimensional regularization 875

irtpgvg)

(2%)'"(q'+ 2k q+ m')~ (4')"(m' —k')~ ~ I'(n)
I6 — I])

8 (2co —1)
(813)

X{—I' (n —co)k„k„kg —I' (n —1 —co)

Xs(3„.k), + b„),k. + &„zk„)(ms —k')), (As)

(to+ 1)(co+ 2)
I1)

4 (4co' —1)

d2"q q2q„

(2m)' (q'+ 2k. q + m') (4m)" (m' —k') " I'(n)

X(—k„)(I'(n —co)k'+ I'(n —1 —to)(co + 1)

—(to + 1)p'
—I1,

g (4cu' —1)
(815)

(816)
X (m' —k') l. (A6)

S. Massless integrals

The following massless integrals (Capper, I.eibbrandt,
and Ram6n Medrano, 1973) arise in the treatment of quan-
tum gravity in Secs. VI and VII, for which a gauge-invariant
cutoff procedure is absolutely essential. There are no factors
of i present, since all integrals are defined over Euclidean
space.

(2m )'"q'(q —p)' (4m) I'(2co —2)

XI'(2 —to)1'(co —1)I'(cv —1)(p')"—' =—It, (81)

(2~)'q'(q —P)'
pI 2) (82)

d g lIIIpgv

ccv s + Pccpv 4c

(2~)scaqs (q p) 2
(83)

g g~gvgp = Psp P~Is + &s vI'
(2~)"q'(q —P)'

(84)

g gegvgVgo

(2~)"q'(q —P)'

+Hcav yaIs c

= p.p.p,p.I7+ G....Is
(85)

where

&~.i —= ~~pv+3 vp. + o~~p

Gccv'ra ccvp'rpa + 3v Ypccpa + 3vapccpv + 3cc Ypvpa

+ 4.P Pv + ~v.p.p
Hccvya: 3ccv3ya + 3cca3vy + 3va3ccy.

(86)

(87)

(88)

I2 2 I1) (89)

I3 = I1,
4 (2Q) —1)

(810)

I4 = I1,
2 (2(u —1)

(~+ 1)
I1,

4(2(o —1)

(811)

(812)

The integrals I2, . . . , I9 have the following simple structure
in terms of the basic integral It in Eq. (81):

Formulas (89)—(816) must of course be understood in the
spirit of Sec. IV, where it was demonstrated that the
analytic continuation of these integrals hinges decisively
on the application of Eq. (4.9) rather than on Eq. (2.4).
A detailed analysis of this mathematical problem can be
found in I.eibbrandt and Capper (1974a,b).
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