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This review covers several topics involving renormahzation group ideas. The
solution of the s-wave Kondo Hamiltonian, describing a single magnetic
impurity in a nonmagnetic metal, is explained in detail. See Secs. VII—IX.
"Block spin" methods, applied to the two dimensional Ising model, are
explained in Sec. VI. The first three sections give a relatively short review of
basic renormalization group ideas, mainly in the context of critical phenomena.
The relationship of the modern renormalizati. on group to the older problems of
divergences in statistical mechanics and field theory and field theoretic
renormalization is discussed in Sec. IV. In Sec. V the special case of "marginal
variables" is discussed in detail, along with the relationship of the modern
renormalization group to its original formulation by Gell-Mann and Low and
others.
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INTRODUCTION

One of the most basic themes in theoretical physics is the
idea that nature is described locally. The basic equations
of all physics are local. For example, Maxwell's equations
specify the behavior of electric and magnetic fields in an
in6nitesimal neighborhood of a point x. In order to be able
to specify local equations it is necessary to define continuum
limits, namely the limits which define derivatives. The idea
of the derivative and the idea of a continuum limit that
underlies the derivative is therefore of great importance in
all of physics.

It is now becoming clear that there is a second form of
continuum limit, called the statistical continuum limit,
which also has a very broad range of applicability through-
out physics. In the statistical continuum limit functions of a
continuous variable are themselves independertt variables.
For example, the electric and magnetic fields throughout
space can be the independent variables in a statistical
continuum limit. This happens in statistical or quantum
mechanical problems where there are field fluctuations, so
that one has to compute averages over an ensemble of heMs.
In statistical calculations one does not compute the field at a

* Supported in part by the National Science Foundation.
f This paper is a compilation of material presented as a series of

nine lectures at Cargese in Summer 1973.

point x. Instead one computes correlation functions;
that is, expectation values of products of fields such as
(E(x,t)E( Yt')). In quantum mechanical problems the corre-
lation functions are sometimes replaced by vacuum expec-
tation values of products of 6elds. In the simplest cases a
field average determining a correlation function can be
written formally as a functional integral. In the func-
tional integral the 6elds are the independent variables of
integration.

There are two ways in which a statistical continuum
limit can arise. The obvious way is when the independent
6eld variables are defined on a continuous space; the case
of statistical or quantum fluctuations of the electromagnetic
field is an example. If one were to replace the continuum by
a discrete lattice of points, the held averages would consist
of integrals over the value of the field E at each lattice
site n. Thus for the discrete lattice case one has a multiple
integration, Q„fdic', the variables of integration being
the 6elds E„.In the continuum limit one has infinitely many
integration variables E„. Problems with inhnitely many
variables can be very diAicult to solve.

The second source of statistical continuum limits is the
situation where one has a lattice with a 6xed lattice spacing,
usually an atomic lattice. The number of independent
variables (i.e., independent degrees of freedom) at each
lattice site is 6xed and 6nite. The continuum limit arises
when one considers large size regions containing very many
lattice sites. When the lattice is viewed on a macroscopic
scale one normally expects the lattice structure to be
invisible. That is, large scale effects should be describable
by a continuum picture making no reference to the lattice
spacing.

Consider, for example, critical phenomena in a magnet.
A magnet is built of atoms and the atomic spacing provides
a fixed shortest length which does not go to zero. At the
critical point (the critical point occurs at the Curie tempera-
ture) there are long wavelength fluctuations of the magnet-
ization signalling the onset of spontaneous magnetization.
The maximum wavelength of the fluctuations is the corre-
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lation length $; precisely at the critical temperature, ( is
infinite.

The continuum limit comes into the problem when one
tries to formulate a hydrodynamic picture of the fluctua-
tions on the scale of the correlation length. Macroscopic
waves in a fluid are described by the continuum equations
of hydrodynamics which make no reference to the atomic
structure of the fluid. Similarly one would hope to achieve
a theory of the critical fluctuations in a magnet which makes
no reference to the atomic spacing.

The difference between a hydrodynamic wave and the
critical fluctuation in a magnet illustrates the difference
between the classical continuum limit and the statistical
continuum limit. A classical hydrodynamic wave is charac-
terized by a definite wavelength, and very little motion of
the fluid occurs at much shorter wavelengths. It is there-
fore a relatively trivial matter to introduce continuum
forms of density, pressure, etc. for a hydrodynamic wave.
However, the critical fluctuations in a magnet for very long
wavelengths are not the dominant fluctuations. Instead,
fluctuations occur on a/l wavelength scales from the corre-
lation length to the atomic spacing and all these inter-
mediate wavelengths are crucial to the physics of critical
phenomena. In particular there is no gap in wavelengths
between the wavelengths of fluctuations and the atomic
wavelengths. This means it is difficult to determine which
wavelengths of fluctuations to include in a continuum
description and which to exclude.

The statistical continuum limit is most difficult to achieve
when one tries to maintain locality. The problem is that
in a local system, very short wavelength fluctuations in a
field are as important as fluctuations at a fixed wavelength.
For example, the quantum fluctuations of the electro-
magnetic field are predominantly at wavelengths much
smaller than the electron compton wavelength. The reason
for this is that there is very little difference, locally, between
a short wavelength fluctuation and a long wavelength
fluctuation. For example, a fluctuation with wavelength
10 ' cm and a fluctuation with wavelength 10 " cm both
look like long wavelength waves if one looks only at a
region of size 10 '0 cm. In a local theory one specifies
initially the behavior of the system only in a region even
smaller than 10 20 cm. In consequence, in a local theory,
it is hard to suppress the 10 "cm wavelength fluctuations
more than the 10 " cm fluctuations, and the 10 ' cm
wavelengths then are more important because there are
more of them.

A procedure is now being developed to understand the
statistical continuum limit. The procedure is called the
renormalization gioup. It is the tool that one uses to study
the statistical continuum limit in the same way that the
derivative is the basic procedure for studying the ordinary
continuum limit. However, the problems that one studies
with the renormalization group are rarely formulated
explicitly in terms of continuum limits. Because of this
the very general nature of the renormalization group has
been less apparent than the general nature of the derivative.

The renormalization group is at a much more primitive
stage than the derivative. There is only a small subset of

problems involving the statistical continuum limit that
have been solved so far, and to solve these problems a,large
amount of labor and theoretical artifice is required. One
is still a long way from the simple and yet explicit nature
as the derivative. Nevertheless, the renormalization group
is the only method at present which is explicitly designed
to investigate statistical continuum limit problems, and is
likely to remain so. Also there are excellent prospects for
the renormalization group to become much more powerful
in the future than it is at present.

The crucial feature of the statistical continuum limit is
the absence of characteristic length or energy or time scales.
In the case of critical phenomena, the dominant fluctuations
are neither the fluctuations with wavelengths ( nor the
fluctuations with wavelengths of order of the atomic spacing.
It is the fluctuations betveeee these two wavelengths that
dominate.

In contrast, in classical (as opposed to statistical) prob-
lems the dominant length scale is determined by a length
parameter in the problem. For example, in the hydrogen
atom the Bohr radius provides the characteristic length
scale. This length scale is determined by simple dimensional
analysis. Any length of importance in the hydrogen atom
is proportional to the Bohr radius. Dimensional analysis is
completely taken for granted now. Physicists find it hard
to work with systems for which dimensional analysis is
irrelevant.

The absence of a characteristic length has profound
consequences for the statistical continuum limit. This
originally became apparent in quantum electrodynamics,
where short wavelength fluctuations led to divergences.

In quantum electrodynamics, and elementary particle
physics generally, the most noticeable missing scale is the
lack of an energy scale. There is sometimes a minimum
energy scale associated with a particle rest energy mt.-'

(m may be the electron rest mass or the m. meson rest mass,
for example). All energy scales above this minimum occur;
for example, in high energy scattering experiments, new
particles are created with all energies from the rest energy
up to the maximum energy available.

The lack of an energy scale becomes even more apparent
in quantum field theories of elementary particles. In these
theories one has to compute sums over intermediate states
containing arbitrarily large energies. For example, in
quantum electrodynamics one must consider electron—
positron intermediate states where the electron and positron
both have arbitrarily large momenta (but in opposite
directions so the total 3-momentum of the pair is small).
Sums over such states red'uce in many simple cases to the
logarithmically divergent integral

A logarithmically divergent integral is a typical (but
not universal) symptom of a problem lacking a charac-
teristic scale. The contribution of any given order of magni-
tude range of energies to the integral is finite. For example,
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for any Eo & mc', .the contribution to the integral from
energies between Eo and 2EO is ln2; this contribution is
independent of Eo. Thus all energy scales above mc make
equal contributions to the integral. The sum of these
contributions is infinite because there are an infinite number
of order of magnitude ranges of energy above mc'.

Renormalization theory, due to Bethe, Schwinger, Feyn-
man, Dyson, etc. t see Schwinger (1958)j, eliminates the
divergences of quantum electrodynamics. Renormalization
theory was the first method developed for computing the
statistical continuum limit of a local theory. It continues
today to be an important tool for investigating the statistical
continuum limit. However, the standard renormalization
theory applies only to problems which can be solved by a
Feynman diagram expansion. Even more restrictive is the
requirement that only a few Feynman diagrams be im-
portant after renormalization. (There are techniques for
summing infinite subclasses of Feynman diagrams but
unfortunately these methods are effective only in a few
cases. ) The worst feature of the standard renormalization
procedure is that it is a purely mathematical technique for
subtracting out the divergent parts of integrals in the
continuum limit. It gives no insight into the physics of the
statistical continuum limit. It is possible to solve the
renormalization problems of Feynman diagrams by mathe-
matical techniques without new physical insight because the
physical aspects of many length or energy scales are least
noticeable for - a theory dominated by a few Feynman
diagrams. The reason for this is that when the expansion
parameter for a Feynman diagram expansion is small there
is usually only a small coupling between fluctuations of
different wavelengths. The coupling between different
wavelengths is essential for the nontrivial consequences of
many scales. For example, the divergences in quantum field
theory are caused by the inhuence of very high energy
intermediate states on low energy phenomena. When the
coupling constant (the expansion parameter for Feynman
diagrams) is small, this influence is also small. (To be
precise, the inhuence of single factor of 2 range of high
energies on low energy phenomena is small —the divergence
due to all high energies is not small. )

The basic physical idea underlying the renormalizatioo
group approach is tha't the many length or energy scales
are locally coupled. For example, the behavior of Auctuations
in a magnet with wavelengths from 1000 to 2000 A are
assumed to be primarily a6ected by fluctuations with
nearby wavelengths, e.g. , 500—1000 A or 2000—4000 A.
Fluctuations with wavelengths much less or much greater
than 1000 A are less important. The result of this assumption
is that there is a cascade eftect in the whole system: the
atomic fluctuations (1—2 A) influence the 2—4 A fluctuations.
The 2—4 A fluctuations influence the 4—8 A fluctuations, etc.

There are two principal features of the cascade picture.
The first feature is scaling. The behavior of Auctuations for
intermediate wavelengths tends to be identical except for a
change of scale, precisely due to.the lack of a characteristic
length. The scaling fails for Auctuations with wavelengths
near a length parameter. For example, in a magnet the
fluctuations at atomic wavelengths and at wavelengths of
order g do not scale in the same way as intermediate wave-
length fluctuations.

The second feature of the cascade picture is the existence
of amplification and deamplification as the cascade develops.
For example, consider a small change in temperature away
from the critical temperature in a magnet. A small change
in temperature has little effect on the atomic scale fluctua-
tions, But as the cascade develops, from 1 A to 2 A to 4 A
to 8A wavelengths, etc. , the effect of the temperature
change is amplified, finally leading to macroscopic changes
at very large wavelengths. In particular, if the temperature
was initially precisely at the critical temperature then $
changes from being inflnite to some finite value g'. This
is a macroscopic change for fluctuations with wavelengths
greater than $'.

Deamplification also takes place in the cascade. For
example, two di6erent magnetic materials can have quite
diferent atomic structures. But the eGect of the different
atomic structures usually decreases with each stage, finally
becoming negligible at large wavelengths. This deamplifi-
cation underlies the hypothesis of universality )for refer-
ences see Wilson and Kogut (1974)g in critical phenomena.
The universality hypothesis is that many diferent sub-
stances have the same critical behavior.

There is an analogue to universality in the case of an
ordinary derivative. Namely, there are many different
finite di6erence approximations to a single derivative. That
is, many different discrete lattice differences have identical
continuum limits. Universality is the corresponding result
for the statistical continuum limit.

The first stage in the renormalization group analysis of a
system is to find a way to isolate a particular step in the
cascade. This amounts to defining a sequence of inter-
mediate steps in the solution of the full problem, one step
for each cascade step. For instance, in the case of critical
phenomena, one step in the renormalization group calcu-
lation may consist of an explicit statistical averaging over
fluctuations'with a factor of 2 range of wavelengths. The
first step might consist of an averaging over all fluctuations
with wavelengths less than 2 A. The second step would
then be to average over wavelengths from 2 to 4 A; the
third step to average over wavelengths from 4 to 8 A, etc.
(See Sec. I for more discussion. )

At the end of each step one is left with an effective
interaction or Ham&ltonian describing the length or energy
scales not yet solved. Scaling is achieved when the effective
interaction goes into itself (apart from a similarity trans-
formation) after each step. For example, in critical phe-
nomena the effective interaction generated after averaging
the 128—256 A fluctuations is very similar to the interaction
generated after averaging out the 256—512 A fluctuations.
When this similarity occurs one formally has a "fixed point"
interaction or Hamiltonian.

By carrying out the same cascade iterations for slightly
changed initial conditions one can determine a set of
amplification and deamplification factors X;. The factors
X; are the eigenvalues of a linearized version of the iteration,
linearized about the fixed point. The eigenvalues P, are the
factors by which small changes in the initial interaction
are increased or decreased with each step in the renormal-
ization group calculation. If a particular parameter in, the
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initial Hamiltonian causes amplification (i.e., X, is greater
than 1), it is called a "relevant variable. "A parameter whose
effect is deamplified is called "irrelevant. " The number of
relevant variables is equal to the number of amplification
factors P, greater than 1.

Ising model (Sec.VI) and the Kondo problem (Sec.VII—IX).
Nevertheless, the success of Kadanoff and Kadanoff and
Houghton for the Ising model and the success of the Kondo
calculations described here should encourage the study of
other problems in the same spirit.

Renormalization group theory divides, very roughly, into
four parts. There is the formal theory of fixed points and
linear (and nonlinear) behavior near fixed points. Much of
this theory is due to Wegner (1972); reviews of this theory
are provided in Wilson and Kogut (1974), Ma (1973), and
Fisher (1974). The second part is a diagrammatic formula-
tion of the renormalization group for critical phenomena.
This formulation Ldiscussed in Wilson and Kogut (1974)$
can be solved explicitly for the case of space dimension
d = 4 —~ with e small. It can be used to do calculations
to order e of numerous aspects of critical behavior and
illustrates the physics of fluctuations at many wavelengths.

The third aspect of renormalization group theory includes
the original Gell-Mann —Low (1954) renormalization group
theory and the Callan —Symanzik equations LCallan (1970)
and Syrnanzik (1970)j. These methods are quantum field
theoretical methods, originally, and they apply only to
Feynman diagram expansions. They are eAicient calcu-
lational methods (for Feynman diagrams): they are used,
for example, to do high order calculations in e. LSee Brezin
et al, . (1973)g. They completely hide the physics of many
scales. These methods are hard to follow in detail for
physicists without quantum field theoretical training. They
are closely related to the original renormalization procedures
for Feynman diagrams, which is the reason for the term
"renormalization" in "renormalization group. "

A principal part of this review is a detailed explanation
of the renormalization group solution of the Kondo problem
(in Sec. VII—IX). The Kondo problem is the problem of
magnetic impurities in a metal. An example is copper with
iron impurities, with concentrations of 0.01%%u& or less of
iron. At low temperatures (typically a few degrees K) there
are strong effects due to the impurities, for example, in the
resistivity of the alloy. See Kondo (1969). The especially
dificult problem for theorists has been to predict the zero
temperature behavior of the system, including the resis-
tivity, the impurity susceptibility, and the impurity specific
heat. The problem is caused by spin —spin coupling of the
impurity spin to the spins of the conduction electrons.
Without the spin —spin coupling, the electrons in the conduc-
tion band scatter independently from the impurities and
this scattering is easily computed. The spin —spin coupling
causes spin-Aip scattering which in turn breaks the inde-
pendence of the electrons (see Sec. VII).

Typically the spin —spin coupling strength J is small and
antiferromagnetic. Therefore, one can analyze the effects
of the spin —spin coupling by perturbation theory. Un-
fortunat;ely, the terms of order J' involve a logarithm,
namely J'in(D/kT), where D is the maximum electron
energy in the conduction band and T is the temperature
(k is Boltzmann's constant). When the temperature goes to
zero the logarithm becomes infinite and the perturbation
series becomes nonsense.

The fourth aspect of renormalization group theory is
the construction of nondiagrammatic renorrnalization group
transformations, which are then solved numerically, usually
using a digital computer. This is the most exciting aspect
of the renormalization group, the part of the theory that
makes it possible to solve problems which are unreachable
by Feynrnan dia, grams. The Kondo problem has been solved
by a nondiagrammatic computer method. The renormal-
ization group solution of the Kondo problem is explained
in detail in this paper: see Sec. VII—IX.. The two dimen-
sional Ising model has been solved approximately by
several nondiagrammatic ("block spin") renormalization
group methods, by Niemeyer and Van Leeuwen (1973,
1974, 1975) and others. An example is detailed in Sec. VI.
The Ising calculation is only a practice calculation, since the
exact solution is known. Recently, Kadanoff (1975) and
Kadanoff and Houghton (1975) have developed very
powerful block spin methods which have been applied to
the three dimensional Ising model, with considerable
success.

There is another renormalization group method being
d'eveloped by Golner and Riedel (1975) which also shows
promise for solving three dimensional problems in critical
phenomena more reliably than the e expansion.

The logarithm in perturbation theory rejects the existence
of many energy scales in the conduction band; the logarithm
comes from a logarithmic integral fdE/E with the lower
bound on the energy being kT, and the upper bound being
D. The low energy scales come from electrons very near the
Fermi surface which require very little energy to be excited.

The Kondo problem has fascinated theorists more than
is justified by its experimental significance. The reason for
this is that the theoretical models involving a single im-

purity coupled to a free electron band look simple enough
so that they ought to be soluble. Much e6ort has gone into
studies of the Kondo problem using a variety of techniques:
graph summation methods, Chew Low the-ory, etc. /See
Kondo (1969).j Perhaps the most successful of the various
previous approaches is the analogy developed by Anderson,
Yuval, and Hamann (1970a, 1970b) to a one dimensional
Coulomb gas, combined with Monte Carlo calculations by
Schotte and Schotte (1971).These papers give a picture of
the low temperature behavior which is qualitatively in
agreement with the precise calculations reported in this
review. However, none of the approaches prior to the
renormalization group were reliable they all involved
unverifiable approximations.

The development of a nonperturbative renormalization
group method which can be solved in practice to a reason-
able approximation is dificult. The obstacles to be overcome
will be evident from the discussion of the two dimensional

The simplest models of the Kondo problem are simple
enough so that they can be solved with good precision
(about 1% accuracy) using renormalization group methods.
The details are reported in Sec. VII—IX. of this review.
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The first part of this review is a review of the essentials of
renormalization group theory applied to critical phenomena
using the diagrammatic renormalization group formulation.
The review is not as detailed as the review of Wilson and
Kogut (1974). It should, however, provide sufficient back-
ground for the sections on block spin techniques and the
K.ondo problem. Also, there are some differences in emphasis
in the present review from Wilson and Kogut. In Sec. I, the
idea of averaging over fluctuations is made precise and it is
shown how this leads into the diagrammatic framework.
In Sec. II the fixed points of the diagrammatic theory are
discussed. In particular, the Gaussian fixed point (see
Sec. II for the definition of "Gaussian" ) and fixed points
near the Gaussian will be discussed. In Sec, III the linearized
equations about these fixed points and some of the eigen-
values X; are computed. The relation of one of these eigen-
values to physics (through a critical exponent) is explained.

Section IV is concerned with the relation of the renormal-
ization group ideas to the problems of divergences in quan-
tum field theory and critical phenomena. There are differ-
ences between the limit of zero lattice spacing (relevant
to field theory) and the limit of infinite correlation length
with a fixed lattice spacing. These differences will be
discussed. Then the outline of a theory of the statistical
continuum limit (i.e., renormalization) in field theory is
presented in the renormalization group framework.

Section U is devoted to a problem which is special and
yet very important, namely the theory of marginal variables.
A marginal variable is one which is neither amplified nor
deamplified by a renormalization group transformation.
A marginal variable causes special problems. Suppose it
represents a I%%u~ correction in each of more than 10000
iterations of the renormalization group calculation. Non-
linear effects of the marginal variable, which are of order
0.01%%uo for a single interaction, then may become 100/o
eAects when accumulated over jt.0 000 iterations. These
nonlinear effects will be discussed in Sec. V.

The study of marginal variables is important background
for parts of the Kondo calculation. In addition, the field
theoretic methods of Gell-Mann and I.ow and Callan and
Symanzik are based entirely on the special behavior of
marginal variables. The relation to the Gell-Mann —I-ow
theory is also explained in Sec. V.

In Sec. VI the theory of block spin transformations is
explained with a particular example applied to the two
dimensional Ising model. Near the end of this section, the
results of some computer calculations using block spin
methods are reported.

Sections VII to IX include the author's calculations for
the Rondo problem described in detail. The solution of the
Rondo problem involves many aspects of renormalization
group theory, from fixed points- and marginal operators to
nonperturbative methods. There are also many special
tricks which help to make the calculation practical; these
are also explained.

An extensive list of references on the renormalization
group approach has been given in Wilson and Kogut
(1974). Further references can be found in Science Citation

Index Lthrough citations of Wilson and Kogut (1974), for
example). The references in this paper are limited to the
particular topics discussed.

Further or alternative review papers on the renormal-
ization group can be classified as follows: There are two
short, intuitive introductions based on colloquium talks.
Wilson (1974b) explains the application to critical phe-
nomena and the e expansion. Wilson (1975) explains the
basic ideas of the nonperturbative renormalization group
approach using a watered-down form of the Kondo problem
as an example. For reviews at the same level as the present
Ieview, tllele ale Wllsoil and Kogut (1974), Ma (1973),
Fisher (1974), the book by Toulouse and Pfeuty (1975),
and a forthcoming book in the Bomb and Green Series
LDomb and Green (1975).g See further Wegner (1975) and
Brout (1974). These reviews are all concerned with critical
phenomena. For the block spin methods there is a recent
review by Nierneyer and Van Leeuwen (1975). There is no
other review of the renorrnalization group solution of the
Kondo problem reported in Sec, VII—XI'except an earlier
cryptic report by Wilson (1974a).

Renormalization group theory is technically more de-
manding than the theory of derivatives or Feynman
diagrams. However, most of the unsolved problems in
physics and theoretical chemistry are of the kind the
renormalization group is intended to solve (other kinds
of problems usually do not remain unsolved for long). It is
likely that there will be a vast extension of the renormal-
ization group over the next decade as the methods become
more clever and powerful; there are very few areas in either
elementary particle physics, solid state physics, or theoretical
chemistry that are permanently immune to this infection.

I. DEFINITION OF A RENORMALIZATION
GROUP TRANSFORMATION

A diagrammatic formulation of the renormalization group
was introduced by )Wilson and Kogut (1974)). In this
section an alternative and more general motivation will be
given for this formulation of the renormalization group
than was provided in )Wilson and Kogut (1974)g.

If one considers water, say, far from the critical point,
there are microscopic fluctuations on an atomic scale
(wavelengths of order 1 A). If one increases the temperature
and pressure towards the critical point, fluctuations (density
fluctuations) become important at larger wavelengths.
Sufficiently close to T, and I', (critical temperature and
pressure) there are fluctuations on the scale of 1000—
10000 A which scatter ordinary light, and the water looks
milky (this is critical opalescence). However the microscopic
fluctuations ( 1 A) have not decreased in size: close to
the critical point one has Quctuations at all wavelengths
from 1 A up to the correlation length P; at the critical
point $ = ~.

Most theoretical methods for handling Buctuations fail
near the critical point. The reason is that most techniques
require that only one order of magnitude range of wave-
lengths be important. This range could be the range 1 A
(microscopic) or perhaps the range of wavelengths
There is trouble when all wavelengths between 1 A and $
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are important, too. (In field-theoretic diagrammatic
methods the trouble takes the form of divergences when
—+ oo.)

holding M(x) fixed for all x. We can do this by holding
Mq fixed for

~
k~ & A. This means we write

The renormalization group approach is designed to
handle fluctuations over many wavelengths. The renormal-
ization group strategy is to divide the full range of wave-
lengths into subranges of manageable proportions and
consider each subrange in sequen. ce. For example, one can
consider separately the ranges of wavelengths 1—2 A, 2—4 A,
4—8 A, etc.

In statistical mechanics the properties of the system are
determined by a partition function Z which is a sum over
all possible configurations of the system. Taking into
account a given range of wavelengths of fluctuations, say
10—20 A, means in some sense performing the statistical
averaging over fluctuations of these wavelengths. In this
section a precise definition. of "averaging over fluctuations"
will be given; this will lead to a specific formulation of the
renormalization group. For a more qualitative discussion
see Wilson (1974a).

exp(3C [M]) = P (Q b(Mq —P exp(ik n)s„))
I's n } k=p

X exp( —H./k T), (I.3)

[A technical complication . occurs here, namely that

g exp(ik n)s„

is complex. So one must define the 8 function

b[Mg —P exp(ik n)s„].

where P~,„~ is a sum over all configurations of the spins s„,
for all lattice sites n. Ho is the Hamiltonian of the system,
and 3'.~ is an effective interaction depending on the variables
M~ (with 0 &

~
k~ & A), i.e. on the average magnetization

function M(x).

First it is useful to define a statistical averaging over
all fluctuations with wave number greater than a cutoff A,
i.e., wavelengths &2~/A. It will be assumed that the
wavelength cutoff 2ir/A is much larger than 1 A so that all
microscopic fluctuations are included in this initial aver-
aging. What this means intuitively is this. Consider the
example of water. Consider a region of size ~1/A in the
water surrounding a point x. Let p (x) be the average density
of this region. Then one would like to perform the statistical
averaging over density fluctuations inside the region keeping
the average density p(x) fixed. Such fluctuations necessarily
have wavelengths & 1/A. In a magnetic system one considers
an analogous region and defines M(x) to be the average
magnetization of the region. One would like to perform the
statistical average over all spin fluctuations in this region
holding M(x) fixed. The entire magnet can be divided into
subregions of size 1/A; and in each subregion one wants to
perform the average over fluctuations which leave un-
changed the average magnetization of the region.

This is done by defining the product

6[M~ —P exp(ik n)s„]5[M ~ —P exp( ik n—)s„]

to be

5[ReM~ —P cos(k n)s„]8[ImMq —P sin(k. n)s„].

The partition function Z is originally defined as

Z = g exp( —Ho/kT).
{sa}

(I 4)

One can compute Z from the effective interaction 3C& by
averaging over the long wavelength fluctuations Mk

Another problem is that for an infinite lattice the product
+i, is a continuous product; one can avoid this problem by
considering a large but finite lattice. See below. ]

This idea can be realized formally in the following
fashion. Suppose, to be specific, that one starts with a
magnetic system consisting of a lattice of spins s (spaced
at about 1 A). Let M~ be the Fourier transform of these
spins

z=n
k=p

dM„exp', (M)].

Here also a definition is needed, namely

Mg ——Q exp(ik n)s.

We can define an average magnetization density for regions
of size 1/A by defining is a shorthand for

exp( —ik x)M„d'k/(2ir)'. (I.2) d (ReM g) d (ImM g).

By only integrating to A instead of the maximum possible k
one produces an M(x) which involves only long wavelength
fluctuations. This means M(x) itself cannot vary much
for changes in x much smaller than the wavelength cutoff
1/A: it acts much like an average magnetization. One would
now like to perform a statistical mechanical averaging

For a system of finite size there are a discrete set of
allowed values for k and the product +&='0~ is an ordinary
product over all allowed vectors k with magnitude less than
A. In the infinite volume limit, k is a continuous variable
and Eq. (I.S) involves a functional integral. See Wilson
and Kogut (1974) for background on functional integrals.
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momentum cutoff A). Finally, the coeKcient functions u&,

N4, etc. are analytic in the temperature T and parameters
in the original interaction H0. All these assumptions are
made even at T = T, where the thermodynamics is non-
analytic. All these assumptions are verified within the
perturbation theoretic calculations of Secs. II and III, but
remain unproven for nonperturbative formulations of the
renormalization group (see Sec. VI). See Wilson and Kogut
(1974) and Wilson (1974a) for more discussion.

The effective interactions 3C~)og have been defined as
intermediate stages in the calculation of the partition func-
tion Z. They can also be used in the calculation of corre-
lation functions. Consider the spin —spin correlation function
of the original magnetic system

1I'„= —P s„so exp (—Ho/k T) .
f&n}

(I.13)

Let I'k ——P„exp(ik. n)1'„be the Fourier transform of I'„.
One can obtain I'k directly as

r, =— — P MkMi„exp( —Ho/kT)
Z &(k+ ki) l

(I.14)

)where Mi, is the Fourier transform of s„, and 6(k) means
(2n.)~bd(k)g. For

~
k~ & A, the quantities Mi, and Mi, ,

(ki ———k) are held fixed in the integrations defining 3Cz.
Therefore one can calculate the expectation value of MkM1, ,
using Bcq instead of II0

1

Z (i(k + ki) i '=o .
dMi, {MkMk, exp(3Cg)). (1.15)

It is convenient to define correlation functions for the
rescaled spin variables o-~, namely

1 1 1
——n

5(q + qi) Zp c'=o
(/0-, O,o„exp(3Cp[a)), (1.16)

zg ——n
@=0

d(r, exp (3CA [O.j).

I'i, ——zg'A'I'(i, (q = k/A) (k ( A) (I.18)

/the factor i1" comes from 6(k + ki) = 5(Aq + Aqi)
= A "6(q + qi)$. A related result is that the correlation
function F& ~ for q ( ~ can be expressed in terms of I'&~2, 2~

r~ q
——2—"l'r(~/2 2q. (I.19)

Note that any constant term in 3Cii (a term independent
of 0.) cancels in the calculation of I'~, ~,

' this is the reason
constant terms in 3C~ are ignored in this paper.

u. (q)
(I.20)

Lsee Wilson and Kogut (1974)$. If u4, etc. are nonzero then
I'&

q has to be calculated by approximate procedures, and

In the special case that 3C&ga j involves only a quadratic
term u2 (i.e., n4, etc. are all 0), one can calculate I'/„~
explicitly

if BC' is a critical or near critical interaction this is dificult
to do for the reasons already explained.

A quantity of particular interest is the correlation length
$. This is defined in terms of the behavior of I'

I"„-exp( —~n~/&) (I.21)

Note also that

$ iA/2) 2 $A. (I.23)

II. FIXED POINTS IN PERTURBATION THEORY

The formalism of the renormalization group approach
begins with the idea of a fixed point of a renormalization
group transformation, an example being a fixed interaction
3C* satisfying the transformation of Sec. I Lsee Eq. (I.11)j.
Then one discusses the behavior of solutions BC' of the
transformation near a fixed point. This formalism will be
illustrated in Sec. II and III by studying fixed points which
are either Gaussian I only u~(I7) is nonzerog or near to
Gaussian (u4, u6, etc. present but small). The restriction
to small non-Gaussian terms is a practical restriction;
otherwise, the transformation of Sec. I is too complicated
to solve (except by the rough procedures of the approximate
recursion formula )Wilson (1971a), Wilson and Kogut
(1974)j. The most important of the near Gaussian fixed
points occurs near four space dimensions; this fixed point
and its applications are discussed extensively in %'ilson and
Kogut (1974) and elsewhere. In this paper the more general
question of when there are near-Gaussian fixed points will be
discussed, along with some of their properties. Detailed
applications will not be explained.

Only under special circumstances are fixed points near-
Gaussian. It is important to be able to calculate fixed
points even if they are far from Gaussian. Some current
efforts to make such calculations are discussed in Sec. VI.

1

In this section the transformation of Sec. I will be written
out in detail for near-Gaussian interactions. The pertur-
bation theory which yields these results is explained in
Wilson and Kogut (1974) and will not be repeated here.
Then the Gaussian and near-Gaussian fixed points of the
transformation will be considered.

for large ~n~, apart from powers of ~n~ (if I' depends on
the direction of the vector n then one chooses the direction
that maximizes P). The behavior of I'„ for large ~n~ is
related to the singularities of its Fourier transform Fk .. for
I'„ to behave as in (I.21), I'k must have a singularity at

~
k~ = i( '. Consider now the correlation length P~ for the

interaction 3C& (the location of the leading singularity of
I /. q is at ~q~ = i$/, '). From Eq. (I.18) one sees that
I'(i has a singularity at q = k/A if I'i, has a singularity at
k, and hence

(I.22)

Therefore as one lowers the momentum cutoff A of 3Cg, its
correlation length also decreases. Note that $ii is a dimen-
sionless correlation length, since it is defined in terms of the
dimensionless variable q. What $ii determines in physical
terms is the correlation length of BC' in units of the minimum
wavelength A ' permitted in BC~.
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%Trite the transformation in the form

~'C~'1 = &E3'-L~j,H,
where SC' involves primed functions u2', u4', etc. Then up'(q),

u4'(qi, ,q4), etc. , are given by a sum of Feynman graphs;
the graphs for u2' have two external lines, the graphs for
u4' have four external lines, etc. The first few graphs give
the following equations:

q.
up (q) = P2 u2 — + 12

2

' u (q/2, —q/2, I, —p)
p — —+ O(u4', u„etc)

»{1)
(II.2)

u4'(qi, ~,q4) = g 2 u4(pqi, pq2, pqp, pq4) —12
(-'q, -'q, I, —u —lq —lq ) (lq, -'q. , —I, n + -'q + lq. )

P
»(I )u. (—p ——:qi—lq. )

+permutations + 15
(-'q, lq, lq, lq, p, —I)

p —+ O(u4', u4, up, up, etc.)
u2(p)

(II.3)

up'(ql, . . . , qp) = F62 '"{up(2ql, . . . , pqp)

+ O(u4', u4, up, up, etc. )}
etc. (II.9)

The next possibility is that rp vanishes but sp & 0. Then
(II 4) for large enough /,

(q) ~ (2(2 td2 —2(s —2

The first term in each of these formulae is trivial; for
example, the u4 term in the equation for u4' is obtained by
substituting f~2p' for ap in the expression

and if one chooses

2 (0+2 i /2

one has

(II.10)

As a first step in considering these rather complex equa-
tions consider what happens when u4, u6, etc. are all 0,
leaving only u2. In this case only u2' is nonzero. When the
transformation T is iterated one generates a sequence of
functions u2i(q), (/ = 0, 1, 2, etc.). Suppose the initial cutoff
Ap associated with u2p(q) is (10 A) '; then the cutoff A& asso-
ciated with urn( is 2 'h. p, or (2' X 10 A) '. Near the critical
point one is interested primarily in large wavelengths and
therefore large L

Let f be a fixed parameter independent of /. In this case
the recursion formula for u2( (dropping u4, up, etc.) is

», (+i(q) = F2 ui&(kq)-

The solution of this recursion formula is

u2i(q) = P'2 '"upp(q/2').

(II.S)

The precise form of u2p(q) is not known due to the compli-
cated definition of 3C~ (see Sec. I). However, for / large, one
needs to know u2p(q) only for ~q~ ( 2 '. Assuming no long
range forces are present in u2p(q) (see Sec. I) one can
expand u2p(q) in powers of q. For simplicity suppose u2p(q)
depends only on q2. Then

u2p(q) = &p+ spq + wpq + (II.7)

This gives

»i(q) = P'2 'd(rp+ zp2 "q'+ wp2 4'q'+ ). (II.S)

If rp is not zero then u2i{q) is approximately a constant
independent of q, for large /. In this case the correlation
function I"

g ~ for the interaction 3'.
E is also a constant approxi-

mately, and in particular has no singularity at q = 0 Lsee
Eq. (1.20)g. Therefore one is not at a critical point.

fp~ fpm fqgu4(qi, q., qp, —qi —q2 —qp)&pp'qg~qip —qq —pi —q3

(with all q's restricted. to be less than p) and changing
variables so that q, is replaced by q;/2. The remaining terms
come from diagrams: see Ref. 2.

u2i(q) —&pq (II.11)

The correlation function corresponding to u2((q) = spq2

is given by

I'(, p
= 1/(spq'). (II.12)

The singularity at q = 0 in F&,~ means there is a singularity
at k = 0 in the original correlation function I'~ (defined in
Sec. I). Hence one is at a critical point.

The constant rp in u2p(q) will not be zero, in general. To
make rp be zero one must restrict in some way the initial
microscopic interaction Hp or temperature T. Since rp = 0
corresponds to a critical point (assuming the absence of u4,
up, etc.), the corresponding restriction on (Hp, T) is that it
also be at a critical point, i.e., one must put the temperature
T equal to T,.

There are higher order fixed point solutions, namely
u2i(q) = wpq', or wiq', etc. (each requiring an appropriate
choice of f) The fixe. d point wpq' corresponds to a (V'M)'
term in a Landau theory replacing the usual (V'M)' term
(see, e.g. , LVhlson (1974b)g. To my knowledge these higher
order fixed points have not been studied in detail ~

Now consider fixed points with u4, u6, etc. nonzero.
Consider in particular those points for which u4, u6, etc. ,
are small so that one needs to consider only a few low order
diagrams in constructing the Axed point.

A fixed point is a value f* for l plus a set of functions
up (q), u4*(qi, qp, qp, q4), etc. which reproduce themselves
through Eqs. (II.2)—(II.4). If u4*, up~, etc. are all small

for large /, namely u2i{q) becomes independent of / for large
/. This is an example of a fixed point. In fact the formula
u2i (q) = spq' for any / is a special solution of the transfor-
mation Eq. (II.S), provided l is given by (II.10).
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then to a first approximation one can neglect N4*, +6*, etc.
in the equation for +2*. One then has

N.*(q) = f"2 '{I*(q/2) &. (II.13)

The fixed points of this equation have already been deter-
mined and only the solution u2*(q) ~ soq' Lwith f'* given
by Eq. (II.10)j, will be considered here. 'There will be
corrections to both N2*(q) and f'* due to the u4* terms, etc.
in Eq. (II.2), but thes'e corrections will be assumed to be
small.

I* 24 "m* (II.15)

The equation for N4*, to a first approximation, reads

u4*(q, ,q, ,q, ,q4) 2'—"m,*(qi/2, q&/2, q3/2, q4/2). (II.14)

LEq. (II.10) has been used for f* jOn. e seeks solutions which
are analytic in the q, 's for q, —+ 0. It is not difficult to see
that the solutions to this equation are monomials in the
q, , and that for each possible monomial, d is determined.
For example, consider the case u4*(qi, . ,q4) u*, a
constant. Then one has

The size of I*, i.e., the strength of u4*, can be determined
by considering nonlinear terms in the equation for u4 . A
full discussion of the equation is rather complicated (see
Ref. 2), so here the equation will be simplified by consider-
ing only the term involving N42 in Eq. (II.3), and only an
order of magnitude discussion will be given. With
u4*(q, . ,q, ) approximately a constant u*, the equation for
N4* reads approximately

u* = 2'u*+ O(N*') (II.21)

where e = 4 —d. When e is small, (1 —2')et* is approxi-
mately e (ln 2)u*, i.e., of order au*. Thus the equation
requires ~a* to be of order I*', which means N~ must be of
order e. Hence, for small e, u* is small.

In an accurate calculation of the fixed point, the functions
+6*, +8*, etc. , are nonzero but of higher order in e, likewise
zc4 ('qi ' ' 'q4) has momentum dependence in order e' and
u2*(q) is more complicated than sop'. To illustrate how this
happens, consider a simplified order of magnitude equation
for N6* neglecting its momentum dependence. There is a
term of order (+4*)' in the equation for +6* so one has

which is possible only if d ~ 4. Alternatively one might have
N4*(qi, ,q4) w*(qi + g2 + g3 + Ijf4), giving

(II.16)

u * = 2' '"N6*+ 0(N*')

With d ~ 4 this becomes

u6*(1 —-') = O(u*')

(II.22)

(II.23)

Suppose one cannot satisfy Eq. (II.14), i.e., d is not near
2 or -4. There still can be fixed point solutions with u4~

nonzero; however, there must be diagrams in the equation
for N4* which are as large as +4* itself. The diagrams that
can be as large as u4* (assuming u,*, etc. , are also small)
are the diagrams linear in N6*, N8*, etc. not involving N4*.

Suppose, for example, that N6* is important but N8* is
negligible. Then Eq. (II.14) for u4* need not be satisfied.
However, there is now a simple equation for +6~

u6*(qi, . ,q6) 2' '"us*(q]/2, ,q6/2).

The only solution for d ) 2 of this equation is

~6*(qi, ,q6) = ~*

(II.17)

where v* is a constant, in which case d must be d 3.
Similarly if +8* is important but ujo* is negligible then
there is a simple equation for Ns* with solutions for
8 —3d~ 0 arid so forth.

Consider more particularly the case d 4. One now has
an approximate solution for u&" (q), u4*(qi, q&,q3, q4), and f'*,
namely

ul*(q) sop',

u4*(qi, qp, q3,q4) I*,

f 4 ~ 21+d/2
7

(II.18)

(II.19)

(II.20)

with so and u* arbitrary so far (u" being assumed to be
small).

L+4*(qi, . ,q4) cannot, have a term linear in the q;: the
requirements of symmetry in the g, plus momentum conser-
vation rules out a linear term. j This equation can be
satisfied for d 2. However the case d 2 is very awkward
to discuss using the diagrammatic expansion of the re-
normalization group transformation; it will not be con-
sidered here.

With u* of order e, this makes +6* of order e'. This difference
between this equation and the equation for u* is that the
linearized equation for N6 is not almost satisfied, i.e., the
coeScient of N6* is of order 1 instead of order e. Hence n6*

is of order ~~ rather than of order ~.

The complete set of equations for u&*(q), u4*(qi, ,q4),
etc. now determine these functions completely, to any
order in e, except for the one constant zo. The constant 20

cannot be determined; instead one determines the param-
eter f'*. To see this we show first that so cannot be deter-
mined. The reason is a symmetry of the full renormalization
group equations. Let N2*(q), u4" (qi, ,q4), u6*(qi, ',q,),
etc. be an exact fixed point for some value f* of t Then.
the functions

uP(q, s) = s'uz*(q),

(qi&' ' iq4~s) s &4 (qi& ~q4)&

u6*(q.. .q6,s) = s'N, *(qi, ,q6),

(II.24)

(II.25)

(II.26)

The arbitrariness in the fixed point just demonstrated
can be used to impose an arbitrary value for so, say so ——i.
This is to be understood, more precisely, to mean that
when +2*(q) is expanded in powers of q, the term propor-
tional to q2 has coefFicient 1.

Now suppose one expands the equation for u2*(q) in
powers of g and collects all terms linear in q'. The general

also define a fixed point for any value of s. The transforma-
tions (II.24) to (II.26) are equivalent to a change of scale of
the spin variables 6,. This result is obvious for the terms
exhibited explicitly in Eqs. (II.2)—(II.4) and is easily seen
to be true for more complicated diagrams because s's
associated with the internal lines of any vertex cancel
against the s's in the propagator (see (Wilson and Kogut
(1974)j for the rules for diagrams).
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structure of this equation is (with f* left arbitrary)

q'{1 —I*'2 ' + ') = 0(u*')q' (II.27)

where one term of order I*' comes from the diagram shown
in Fig. 1 and there are other terms of order e' or higher.
This equation determines f*; due to the order u*' terms, f*
di6ers from 2&"+ ) f' in order .~

FIG. j. . A diagram contributing to the q2 term in u2*(q).

For some calculations to follow one needs to know the
explicit value of e* to order e. This is most easily obtained
by defining u* to be u4*(0,0,0,0) and considering Eq. (II.3)
for all external mornenta equal to 0. It is shown in Wilson
and Kogut (1974) that the u4* term for this case is of order

instead of ~ and therefore is unimportant. One is left
with the +4*2 term to calculate; using the first order equa-
tions (11.18)—(II.20), one obtains

(II.28)

with

linearized equations will be discussed for both the trivial
and nontrivial fixed point. To start with, the general theory
of linear perturbations about an arbitrary fixed point will be
described. Then the example of the trivial fixed point will
be discussed; this example will be used to show the relation
between eigenvalues of the linearized transformation and
the critical exponent v. [The exponent v gives the behavior
of the correlation length $ near the critical point, namely
Pn(T —T,) ", where T, is the critical temperature. $ Finally
some eigenvalues associated with the nontrivial fixed point
near ci' = 4 will be calculated.

Suppose one has a fixed point 3C* of a renornialization
group transformation T

(II.29)
3C* = TPC*g. (III.1)

The nontrivial solution of this equation is Consider sequences of interactions 3C& generated by the
transformation

u* = 4 ln2/(9C) to order e. (II.30)
3C(„i ——T[3C(]. (III.2)

In four dimensions precisely (e = 0) u* is zero which
means there is only the trivial fixed point. It is only for
d 4 but not equal to 4 that the above calculation gives a
nontrivial 6xed point with N4~, n6*, etc. , small. As e gets
large, say for d —+ 3, the 6xed point presumably still exists
but N4*, etc. are not small any more. This means one can.
no longer neglect complicated diagrams in the equations
for +4*, +6~, etc, which makes precise calculations hopeless.
However, calculations in powers of e are feasible to order ~'
or higher [Brezin et al. (1973)j and these calculations give
rather good results for e = 1.

As discussed earlier there are also nontrivial 6xed points
with u4*, u6*, etc. , small for d 3, 3d 8, 4d 10, etc.
The implications of these fixed points will be discussed after
considering linearized behavior about these fixed points:
see Sec. III. These fixed points are discussed in Chang and
Stanley (1973) and in Stephen and McCauley (1973).

III. LINEARIZED BEHAVIOR NEAR FIXED POINTS

The next topic to be considered is the solution of linear-
ized renormalization group equations near a fixed point.
In particular, the eigenvalues and eigenoperators of the

By continuity, if BC& is close to 3C then 3C&+& will be close to
T[3C*g, namely, close to 3C*. Write

m& —K* = ~BC&. . (III.3)

Consider

m,„,= T[3C*+~3C,g —3C*.

Expand this in powers of 6K~, one can then write

l)3C(+i ——L[3C*j b3Ci + 0[l)3CP),

(III.4)

(III.5)

where LPC*) is a linear transformation, and the remainder
is quadratic or higher in 53C&. To see what this equation
means, it will be exhibited more explicitly in terms of u2, u4,
etc. The fixed point 3C& is given by a set of functions u2*(q),
u4*(qi, q~, q3, q4), etc. The perturbation l)3C& is defined by
another set of functions, say l)u2&(q), ltu44(qi, ,q4), etc. ;
then 3Ci itself is given by u2*+ l)u2&, u4*+ hu4&, etc. The
equations for Bn2 ~+~, 6N4 ~+~, etc. are obtained by substituting
u2 + (tu2$ for u2, u4* + &u4( for u4, etc. , in Eqs. (II.2)—
(II.4). Consider in particular the equation for u2 i+i. This
now reads (assuming that f can be replaced by I *)

o "(4) +», + (4) = ("'~ '(o'(4/2) +» (4/2) +»

+contrihntiens .oi other diagrams).

u4*(q/2, —q /2, p, —p) + (t'u4((q/2, —q/2, p, —p)
P

Lu.*(p) +».4*(p)j
(III.6)

This equation can be expanded in powers of 6N2&, bu4&, etc. The terms independent of the perturbation match by the
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fixed point condition; the remaining terms give

gu, + (q) = ("'2 '(gu (q/3) + 12
()244&(q/2, —q/2, p, —p)

1
~ *(p)

—12
C»*(p)j'

~.*(e/2, —q/2, p, —p)» ((p)
P + other disgraros + 0(g')), (III.7)

where 0(()') means terms of order ()»(2, ()242(()uql, etc. This equation is explicitly linear in ()u2(, ()u4(, etc. , except for the 0(()')
terms. The coefFicients of 6u2 E, SN4, &, etc. , depend on u2, u4, etc. It is this equation, plus the equations for bu4, &+&, etc. ,
that can be written abstractly in the form (III.5).

Now consider solutions of the equations for small ABC~ so that the order 83C~' terms can be neglected. One then has a
linear equation; thus the general solution can be written as a linear combination of more special solutions. The simplest
solutions are generated from eigenvalues and eigenoperators of the linear operator L. Suppose one has an eigenoperator
0 of L such that

Xo= LO (III.S)

for some eigenvalue X. By an "eigenoperator" 0 one means a set of functions» (q), l)4(ql, .
,q4), etc. ; the eigenvalue equation

(III.S) written out is

hv, (q) = ("'2 '(v, (q/2) + )2
~4(4I/2, —41/2, p, —p)

P
»*(p)

' ~ *(q/2, —q/2, p, —p)
p —v, (p) + other diagrams)

(III.9)

hv (q,q,q, q ) = g"'2 "(' (q /3, ,q / g)

—12
244 (2qls 2412 P P 2411 2412)l)4(2413 2314 P P + 411 + 2412)

~2*(p)»*(—P —
2 el —2q2)

—5 (similar terms)

244 (zeal,
1

202, P, —P —2al —292)~4*(2%3, 2qq, —P, P + 2%4 + 202)
»(p)

L~ *(P)7»*(—P —2ai —2q2)

+ (3 similar terms) + other diagrams) ett. (III.10)

Given a solution of the eigenvalue equation (III.S) one
can construct a special solution of the linearized recursion
formula, namely,

BSCg ——cX'0, (III.11)

where c is an arbitrary constant independent of /. This
formula satisfies

SIC)+g = L 6K)

as a consequence of Eq. (III.S).

(III.12)

If L were a Hermitian operator, the eigenoperators such
as 0 would be complete, namely, the most general solution
NC4 of the linearized equation (III.12) could be expanded as
a sum over the eigenoperators

NC( ——P c X '0, (III.13)

where X is the eigenvalue for the eigenoperator 0 . How-
ever L is not Hermitian, which raises two problems. The
first is that to get a complete set of solutions of the linearized
equations one may have to look for solutions behaving as
lP ', l9 ', etc., as well as the eigenoperator type of solution
already discussed. No such solutions have occurred in any
example studied to date but they might arise in the future.

As an example of eigenoperators and their usefulness the
eigenoperators for the trivial fixed point will be discussed.
In this case 242*(q) = q2 (we set 2() ——1 for convenience) and
u4*, N6*, etc. are zero. There are several different classes of
eigenoperators in this case. First there are eigenoperators
with v4, v6, etc. a,ll zero, leaving only v2. Secondly, there are
eigenoperators with v2 and v4 nonzero while v6, vs, etc. are
all zero. More generally there are eigenoperators with
v2, v4, -, v2„nonzero and v2„+&, v~„+4, etc. , zero. Consider
first the case that only v2 is nonzero. The eigenvalue equation
is (with i * = 2' +" ')

»2(4I) = 4»(41/2). (III.14)

The solutions of these equations are the homogeneous
polynomials in g. Some examples with their eigenvalues are
shown in Table I (q,

' is a component of q).

The second problem is that L is an infinite dimensional
operator, so that completeness of the eigenoperators is
uncertain. In practical examples studied to date one has
only asymptotic complete32ess, which means that an arbitrary
solution MC~ of the linearized equations has an expansion
(III.13) only for sufficiently large /; for a given finite value
of l there may not exist a convergent expansion in terms of
eigenoperators. Examples of this will be given below.
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Suppose now that one is interested only in eigenoperators
which could contribute to an interaction 3'.~. Suppose also
that these interactions show cubic symmetry gas well as
the previous requirement i, (q) = m2( —q)j. Then all terms
odd in q (like q;) are ruled out. Furthermore, the first term
which is allowed and is not fully rotationally invariant is
the P, q,' term.

The results for eigenoperators just obtained can be
compared with the solution for 3Ci obtained earlier (Eq.
II.S) when only u2 is nonzero. LOne must choose l' = 2 "+"&"

in Eq. (II.S).j For an arbitrary u»(q) analytic about q = 0
obeyirig cubic symmetry one has, for large l,

R2i(q) = 4 i'0 + Z0(p + 'l804 i/ + %DO 4 p lf~ + ' ' '

(III.15)

1

rj

q4

(g

2
1

(I.20)j which gives a correlation length

« = Lso/4'~01'

and multiplication by 2' gives $0 = Lap/rog&.

TABLE I. Some eigenoperators @2{A) and eigenvalues X.

(III.17)

This formula can be understood as a special case of Eq.
(III.13):the coefFicients are ro, so, etc. , and the l dependence
is determined by the eigenvat. ues X = 4, 1, ~~ of the eigen-
operators.

For large l, the eigenoperators with eigenvalue X & 1
make a negligible contribution to M2i(q). Such operators are
called irrelevant. The operators with X & 1 are called
relevant; the coe%cients of the relevant operators grow
with /. In the expansion (III.15) there is one relevant
operator, namely, the operator it, (q) = 1 with X = 4.
Finally, operators with X = 1 precisely are called marginal;
the coefFicient of a marginal operator is constant with /.

Note that at large l there is full rotational symmetry; the
terms showing only cubic symmetry are irrelevant.

The eigenvalue of particular physical interest is the
eigenvalue A, = 4 of the relevant operator; one can obtain
the critical exponent v from X. The argument relating v to X is
true independently of the nature of the fixed point (whether
Gaussian, near-Gaussian or far-from-Gaussian).

If one is dealing with nontrivial interactions BCE, then,
as noted in Sec. I, it is very diificult to determine $0 directly
as a function of the parameters in 3CO, due to the diS.culties
of solving a near critical interaction. This is no longer true
of 3Ci, for sufFicientiy large l. If l is large enough so that $i
is of order 1 then it is not so difFicult to compute $&, by
solving the effective interaction 3Ci. And once $i is known
for some value of /, one can determine (0 from the relation
80 = 2'6i

To illustrate this, consider the Gaussian case under
discussion. In this case 3Ci is defined by n.i(q); for large l
and a near critical u20(q), one has

2Egi(q) ~ 4 ro + zog . (III.16)

The correlation function for 3Ci is P4'ro + soq'$ ' /from Eq.
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The argument is as follows. Consider the sequence of
interactions 3C& generated. by the tra, nsformation T starting
from some initial interaction 3CO which is close to but not
at the critical point, i.e., its correlation length &0 is large but
not infinite. Then the correlation lengths Pi for the inter-
actions 3Ci decrease with /: from Eq. (I.23), $i is 2 '$o, and
when / is about (ln gp/ln 2), $i will be about 1, i.e., 3Ci is
fa,r from any critical point.

In the Gaussian case one can calculate $o directly, also
using Eq. (I.20). However, even for the near-Gaussian case,
calculating $0 directly is not trivial. In the near-Gaussian
case, Ko contains small u4, u6, etc. , terms, and one can
think of calculating $o as an expansion in these terms.
Unfortunately these expansions have divergent coe%cients
when go~ ~. In contrast, when gi is of order 1 and 3Ci is
near-Gaussian there is no problem with using perturbation
theory to compute $&. (There do exist sophisticated methods
for using perturbation theory to determine $0 directly t see
Wilson and Kogut (1974)); even these methods fail when
one is in a, far-from-Gaussian situation).

How can one recognize the values of / for which 3C~ is
far from critical and gi is small'? The answer is simple:
First, 3Ci is far from critical when NCi is large (and in-

creasing), i.e., when one or more of the relevant operators
contributing to NCi in Eq. (III.13) have coefFicients of order
1 rather than much less than 1. In the Gaussian example
this means that (i is of order 1 wvhen 4'ro is of order 1;
more generally c 'A ' must be of order 1 for one of the
relevant operators 0

What "of order 1"means, more precisely, is this. Suppose
there is only one relevant operator, to simplify the dis-
cussion (this is the case for ordinary critical phenomena
in magnets in the absence of an external field: see later).
If the coe%cient cX' of the relevant. operator has a pre-
assigned value e, say, then the correlation length $i will
also have a specific value (. This is true independently of the
value l provided cX' is e. The reason is that if c) ' = c is fixed,
then 53C~ is also fixed; namely it is cO, where 0 is the relevant
operator, apart from negligible irrelevant terms. Since 3'.*
is also a axed operator, this meatus 3C~ is itself fixed, and
therefore $i = $ is fixed. Hence, in particular, if cX is 1 or
near 1, (~ will be near to the fixed correlation length associ-
ated with e = 1; $& cannot be very large (or very small
either).

For any given initial interaction BCO there will be a
corresponding constant c multiplying X'0 in SIC&. The
constant c can be determined by expanding ABC~, for some
fixed value of /, in terms of eigenoperators. Then the
analyticity principle of Sec. I requires that c be analytic
in the temperature T. In the Gaussian case, c is ro, which
we have argued is analytic in- T. Once c is known, v is
determined as follows. c'A' is near 1 when /~ —ln c/ln X.
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For this value of l, fi is a fixed number $; therefore

inc
$0 = exp ———in2 $ = c "f,

ink
(III.18)

a,re

X = 2 2": v6 = 1, v4, and v2 nonzero

X = 2' '": vg
——1, ve, v4, and v2 nonzero, etc.

where

i = ln 2/ln X. (III.19)

Return now to the classification of eigenoperators. So far
only those perturbation with v4, v6, etc. , equal to zero have
been discussed. It is also important to look a.t other eigen-
operators of the linearized equations. Consider, for example,
the eigenoperators with v4 nonzero but v6 ——vs = ~ ~ ——0.
The fixed point is still the trivial fixed point so +4* = +6~

= 0. The equation for ii4 is Lfrom (III.10)j
Xv4(qi, ,q4) = 2' "n&(qi/2, ,q4/2). (III.21)

The solutions are homogeneous polynomials in the q's;
considering only those which obey cubic symmetry and
reflection invariance, one gets the following eigenvalues and
eigenoperators:

P =24":v4 ——1

X = 2' ":v4 ——any quadratic form in

(qi. qg) etc. (III.22)

For these eigenoperators v~ is nonzero; the explicit form
of v2 will not be given here.

The eigenoperator with ~4
——1 is relevant if d & 4,

irrelevant if d ) 4, and marginal for d = 4. The other
eigenoperators are irrelevant for d ) 2.

The fact that v4 ——1 is a relevant eigenoperator for
d & 4 means that for d & 4 one cannot reach the trivial
fixed point for large l unless the v4 ——1 perturbation is
absent in 3Cp. Since one must also have the rp perturbation
absent, this means two parameters in the initial microscopic
interaction must be fixed at critical values to reach the
trivial fixed point. This is in the absence of an external field.
This means the trivial fixed point does not describe an
ordinary critical point for d ( 4, since an ordinary (mag-
netic) critical point is reached by fixing o'nly one parameter.
There are special critical points called tricritical points
(there is a tricritical point in liquid 'He —'He mixtures, for
example) which do require fixing two parameters (for
3He—4He mixtures there is a critical temperature and a
critical concentration). Tricritical points have been dis-
cussed in detail using the renormalization group approach by
Riedel and Wegner (1972, 1973, 1974), and are actively being
studied experimentally as well.

There are also eigenoperators with v6'nonhero, or v6 and
v8 nonzero, etc. The interesting eigenoperators that result

The critical point corresponds to c = 0; in this case
63C~ goes to zero for / —+~, i.e., BC' goes to the fixed point
3C*. For small c, analyticity in T suggests that c is linear in
T —T„so that

(III.20)

Hence by a quite general argument, the correlation length
exponent i is given by (III.19). For the Gaussian example,
X is 4 and Drom (111.19)g v is 2.

The v6 ——1 eigenoperator is relevant for d & 3; the
v8

——1 eigenoperator is relevant for d & 2.67, etc. This
means that for d & 3 the trivial fixed point does not even
describe a tricritical point since at least three parameters
must be fixed in the initial interaction in order to reach
the trivial fixed point. In the limit d —+ 2 an infinite number
of parameters must be fixed in order to reach the trivial
fixed point.

At each dimension for which the number of relevant
operators changes, i.e., the dimensions 4, 3, 2.67, etc. , a
nontrivial fixed point separates from the trivial fixed point.
As will be seen shortly, for d & 4 it is the nontrivial fixed
point that describes an ordinary critical point while the
trivia, l fixed point (for 3 ( d ( 4) describes a tricritical
point. Simila, rly the nontrivial fixed point that separates
from the trivial fixed point at d = 3 describes a tricritical
point, etc.

To complete the discussion of eigenoperators one should
consider eigenoperators odd in the spin variable, i.e.,
eigenoperators with vj, v3, v;, etc. nonzero instead of v~, v4,

v6, etc. These eigenoperators are important for magnetic
systems with external fields and for liquid —gas transitions
which have no symmetry analogous to the symmetry
spin —+ —spin of magnetic systems. To save space the
discussion of these operators is omitted.

SIC, = P c X '0 (111.23)

where the c 's are constants (depending on the choice of
parameters in the critical perturbation 63CO); the X 's are
the eigenvalues, and the 0 's are the eigenvectors of the
linearized equations.

If the perturbed interaction Ho+ WHO is still to be
critical then the coefficients of all relevant operators in
(III.23) must vanish. Suppose there is only one relevant
operator, for example. Then one must fix one parameter
in 6Hp to ensure the vanishing of the coefficient of this
operator. For example, if Hp is an Ising model interaction,
8H p might consist of a nearest-neighbor coupling and
several 2nd- and 3rd-neighbor couplings. Given the 2nd-
and 3rd-neighbor couplings in BHp there will be a special
value of the nearest-neighbor coupling in order to be at
the critical point. Apart from fixing this one parameter,

Having discussed the role of relevant operators it is
worth emphasizing the role of irrelevant operators. Suppose
a particular microscopic interaction Hp is critical, which
means in the renormalization group framework that the
resulting effective interactions 3C~ approach a fixed point 3C*.
Consider now an infinitesimal change in the original micro-
scopic interaction: Ho —& Ho+ WHO. There will be a corre-
sponding change in BCi. BCi —+ BCi+ 63Ci. When l is large,
BC& will be essentially 3C* and therefore the infinitesimal
SPACE will satisfy the linearized equations about the fixed
point. This means (if asymptotic completeness is correct)
that SIC~ has an expansion for large l
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the choice of BHO is irrelevant; for any choice, one reaches
the same fixed point. If one then allows departures from
criticality, the same critical exponents emerge, indepen-
dently of the choice of second and third neighbor interactions
in WHO. The reason for this is that critical exponents (such
as v) are determined by the eigenvalues X and these are
uniquely determined once 3C* is known.

Hence the role of the irrelevant variables is to establish
uni~ersality, namely the independence of critical behavior on
details of the original microscopic interaction. Specifically
one establishes local uei~ersaHty, namely independence of
critical behavior under infinitesimal changes in the inter-
action. More interesting in practice are questions of globa)
universality, i.e., independence of cri.tical behavior to large
changes in the interaction (such as the change from a ferro-
magnet to a binary alloy or a liquid —gas transition). To
establish global universality one must establish that very
different initial interactions II 0 lead to the same fixed
point 3C~. This has not been. established to date, for cases
of interest (e.g. , d = 3). However, there is so far only one
fixed point that seems suitable to describe ordinary critical
phenomena with a scalar order parameter (liquid —gas
transitions, uniaxial ferromagnets, etc.), namely the fixed
point which is near-Gaussian for d ~ 4.

To complete this section of the lectures, some eigenvalues
will be calculated for the nontrivial fixed point for d~ 4.
The eigenvalues will be computed to order e = 4 —d. The
purpose of this calculation is to show that the eigenvalues
for the nontrivial fixed point are different than those for
the trivial fixed point, implying that critical exponents will
also be diferent for the two fixed points.

Xv4(q„ ,q4) = 2'—~v4(qi/2, ,q4/2) (III.24)

had a solution for X 4; but we know that such solutions
exist only for X & 1j.Since v4 is of order «' it will not affect
the ~2 equation to order e and we neglect it. Using the
values of N4*, f*, and u~* obtained earlier for the nontrivial
fixed point, the v2 equation (III.9) reads (to order «)

Xv~(q) = 4 v~(q/2) — «ln2
I

p—»(p)
p4

(III.25)

with C given by Eq. (II.29). This equation has a solution
with vg(q) = 1; then

P = 4L1 —(« ln 2)/3j. (III.26)

Note that the constant C has disappeared. The value of v,
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For small e the nontrivial fixed point is close to the
trivial fixed point, so one expects the eigenvalues and
eigenoperators of the nontrivial fixed point to be close to
those for the trivial fixed point. Only two eigenoperators
will be considered here, namely the operator with v2(q) ~ 1
and the operator with v4(qi, q4) 1.

/

Consider first the eigenoperator with X ~ 4, v2(q) 1.
One cannot claim that n4 is 0 since there is a term propor-
tional to v2 in Eq. (III.10) for v4. However, the v2 term is of
order «' (since u4* is of order «). The solution v4 of the v4

equation is therefore also of order «' )the solution v4 could
be of order e only if the homogeneous equation

to order e, is

v = (ln 2)/ln X = (ln 2)L2 ln 2 —«(ln 2)/3) '
= 0.5+ «/12. (III.27)

In conclusion, the eigenvalue P is not 4, and is e dependent.
This is the origin of the nonclassical values of critical
indices in three dimensions for ordinary critical points.

44(0 0) = 2' "v4(0 0)—72m ln2
P9C; p'

(III.28)

with v4(0 0) = 1+ order «. Dividing out v4(0 0) one
gets

A = 2' —2e ln 2 = 1 —e ln 2 (III.29)

to order e. It is straightforward to verify that momentum
dependent terms in v4 are of order «(or higher) as assumed.

For d & 4 the eigenoperator ~4 = 1 of the Gaussian
fixed point was found to be relevant (eigenvalue 2'). Now
one sees that the corresponding eigenoperator for the
nogtrivial fixed point is irrelevant. There are no further
eigenoperators of the trivial fixed point which are relevant
or even near to being relevant for d~ 4, so there is only
one relevant operator for the nontrivial fixed point (in the
absence of an external field). This is true for d 4; one is
less certain how the eigenvalues and eigenoperators vary
as d moves away from 4, down to 2 for example.

A note about the term "irrelevant. " This is a technical
term —its intuitive sense is not always correct. Operators
are relevant or irrelevant only with respect to a particular
fixed point; an irrelevant operator is irrelevant in the literal
sense only if one is performing first order calculations about
that fixed point. In nonlinear calculations about a fixed
point (for example the calculation of the nontrivial fixed
point near the trivial fixed point) "irrelevant" operators
like ~6 are important, especially in high orders in ~.

IV. DIVERGENCES IN FIELD THEORY AND
STATISTICAL MECHANICS; THE TRIANGLE
OF RENORMALIZATION

The next topic is divergences in perturbation theory and
the way they are treated in the renormali7ation group
framework. In this section the divergences will be exhibited

Next consider the eigenoperator P ~ 1 and v4~ 1. To
discuss this problem properly one should include in the v,
equations the simplest diagram involving v«, but gas shown
in Wilson Bz Kogut (1974)j this term turns out not to
affect the calculation. To be precise, one finds that v6 is of
order «, but the contribution of v, to the v4 equation (III.10)
is of order e' for the special case q& = q2 = q3 = q4 = 0.
One expects v, (q) to be of order 1 since v;(q) is nonzero
even for the trivial fixed point. However the term containing
v&(q) in the v4 equation is of order «' and can be neglected
in an order e calculation. The eigenvalue X can now be
determined by setting q&

——q2 ——q3 ——q4 = 0 in the
equation. We must assume that v4(qi, . ',q4) = 1+ order «

for any q; (i.e., v4 has momentum dependence only in
order «); this is necessary to calculate the 04*v4 terms.
Finally, one has the equation (valid to order «)
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Then the field theorist's integral becomes

Wd-4 (m2/P2 + q2) 2ddq

I'IG. 2. Exa,mple of a diagram with divergences.

and the differences between field theoretic divergences and
statistical mechanical divergences will be explained.

Consider the diagram of Fig. 2. When this diagram arises
in a statistical mechanical context, it is a contribution to a
four-spin correlation function (we are not considering its
role in the renormalization group here). Suppose one is
interested in the case that all external momenta are zero;
let the propagator be 1/(ro+ k'). Then the diagram in-
volves the integral

(ro + k')—'d'k

The new integration momentum q has a fixed upper bound
I; the lower cutoff is m/A which goes to zero when A —+Qo.

Thus one is back to the. statistical mechanical type of
divergences, except that now one has an extra factor A."
For d ) 4, this factor produces a divergence even though
the integral is convergent. For d & 4, the factor A" 4 goes
to zero as A —+~, cancelling the divergence of the integral.
For d = 4, the factor is 1 and cannot affect convergence or
divergence.

The factor A" 4 can be absorbed in a redefinition of the
coupling constant (vertex); in a general graph one finds
there is one integration and two propagators for each 4
point vertex. Therefore if one starts with field theoretic
diagrams with 4 point coupling constant X and cutoff A,
the equivalent statistical mechanical graphs have coupling
constant A" 9 and cutoff j..

with the upper limit A on k being the inverse lattice spacing
(before conversion to dimensionless momentum units). In
the limit ro —+ 0 (the critical limit) this integral is

convergent (d) 4)

logarithmically divergent (at k = 0) (d = 4)

divergent by a power of k (at k = 0) (d ( 4)

In dimension d & 4 there are similar infrared divergences
in more complicated graphs.

Consider now the same diagram but in a quantum field.
theoretic context, still with all external momenta equal to
zero. Now ro is replaced by m', where m is the particle mass,
and. the upper limit A on the k integration is infinite. In
field theory d is the space —time dimension. Assuming m is
not zero, the integral is:

divergent by a power of k (d ) 4) (at k = ~)
logarithmically divergent (d = 4) (at k = ~)
convergent (d ( 4)

The only point of agreement between field theorists and
statistical mechanisms is that this graph is logarithmically
divergent in four dimensions. It is these logarithmic diver-
gences that will be emphasized in the following section.
However, it is useful to understand why field theorists
disagree with statistical mechanisms on what dimensions
lead to power law divergences. It is a simple matter of a
change of scale. In field theory the limit which produces
divergences is a limit in which the upper limit A of the
momentum variable k is taken to ~, holding all coupling
constants (vertices) fixed. In statistical mechanics the
upper limit on the momentum is fixed and one takes a limit
in v hich the effective infrared cutoff ro goes to zero holding
all vertices fixed. One can now make a scale change to make
the field theorist's ultraviolet limit (A —+~) look like an
infrared hmit (ro —+ 0). Namely one can replace the field
theorist s variable k by a dimensionless variable q = k/A.

The divergences discussed above provide one of the two
basic problems that arise in solving either statistical me-
chanical or field theoretic problems by Feynman graphs.
The other difficulty is that unless the coupling constants
are small one has to calculate too Inany graphs. The re-
normalization group approach is designed to deal with
both difhculties. The graphical formulation of the renormal-
ization group discussed so far can deal only with the di-
vergence difficulties (see below) but not the problem of too
many graphs. To deal with strong coupling one must
reformulate the renormalization group so as not to refer
to diagrams; some ideas for doing this are discussed in Sec.
VI; see also Secs. VII—X.

The renormalization group transformation in graphical
form is completely free of divergences: since every mo-
rnentum integral in the renormalization group equations
ranges from momentum ~ to momentum 1 there is no
possibility for either infrared or ultraviolet divergences.
Hence these divergences must occur only as a result of
iterating the renormalization group transformation. This
will be seen explicitly in the next lecture.

A problem for a field theorist with the renormalization
group is that he wants to increase the maximum momentum
A iri his Lagrangian. Unfortunately, the renormalization
group transformation of these lectures involves decreasing
the cutoff rather than increasing it. The process of de-
creasing the cutoff cannot be avoided: it is necessary to
solve the cutoff field theory. It is just as dificult to solve
a Lagrangian with a large cutoff A as it is to solve a sta-
tistical mechanical problem near its critical temperature.
In fact, we have seen that a simple change of momentum
scale transforms one problem into the other. So in order
to solve a Lagrangian with a large cutoff A, one uses the
renormalization group transformation to generate effective
Lagrangians with cutoff A/2, A/4, etc. This reduction
procedure will be explained in a bit more detail before
considering how to raise the cutoff.
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and Ki, for example that the term fq q'o. qo q appears with
coefficient 1. If i = Zi/Zs, one can show that the relation
of Ki to 3Cs is precisely that given in Sec. II LEqs.
(II.2)—(II.4)j.

p-k-k
I

FIG. 3. Input diagram for a renormalization group calculation.

Consider the diagrams of a g4 field theory with cutoff A.
Specifically, the cutoff is introduced by setting up the
diagrams in a Euclidean metric (k' = ks'+ k' instead of
k' = ks' —k') and then restricting all virtual momenta k so
that k' & A'. The use of a Euclidean metric means one can
calculate explicitly only vacuum expectati. on values for
spacelike momenta, thereby excluding physical scattering
amplitudes. But formal questions such as the problems of
renormalization are still present in the Euclidean domain.
A renormalization group approach similar to that of these
lectures has yet to be developed for the Lorentz metric.
See, hov ever, the recent work of Kogut and Susskind
(1974).

The idea behind the renormalization group transforma-
tion is to carry out all integrations over virtual momenta k
only over the range A/2 & k & A, not doing any integra-
tions for k & A/2. The results of these integrations can be
expressed in terms of a set of effective vertices, which are
then used to construct Feynman graphs with cutoff A/2.
Consider, for example, the diagram of Fig. 3. In particular
consider the part of this diagram with

l
k

l
) A/2,

I p —k —ki
I

& ~/2 b«
I
ki

I
& x/2. Then one integrates

over k and the line with momentum p —k —ki but not ki.
The result of the k integration (A/2 & k & A with the
further restriction A/2 & lp —k —kil & A) can be ex-
pressed as an effective four-point vertex, after which one
has the diagram of Fig. 4, with k~ still to be integrated over
but only over the range 0 & ki & A/2.

One can start with any Lagrangian 4o and define Feynman
graphs with cutoff A. The procedure illustrated above
(when applied to all graphs and aH possible ways of assigning
momentum ranges within a graph) results in a set of effective
vertices which define an effective Lagrangian g~. Then
when diagrams are constructed using 4, and cutoff h/2,
one gets exactly the same vacuum expectation values as one
obtains from diagrams using go and cutoff A.

It is convenient to make a change of scale and a renormal-
ization in both gs and Zi.. if ps is the Fourier transform of
the field p(x), then one writes for Zs

q = k/A. ,

4'k Zso qy

(IU.1)

(IV.2)

where Zo is an adjustable scale factor. One now writes
KpLo'j = aCpL&$. For Zi one writes

I.et G(ki, ,k ) be the Fourier transform of the vacuum
expectation value (0 l TP (xi) . g (x ) l D), where T is the
time ordering symbol. Then there is a scale change in G
corresponding to the scale change from Zo to 3CO or Z~ to 3Cj,
namely

G(ki, ' ',k ) = A Zp I'p(qt, ' ',q ), (IV.6)

with q, = k,/A, where I"s is the corresponding vacuum
expectation value of the a.,'s calculated for the interaction
Ks LA" is present because one divides out a factor
B~(ki+ + k ) from the Fourier transform in defining
G just as was done in Sec. I to define I's, qg. Similarly

G(ki, ,k ) = Zi (&/2) I'i(qi, ,q )

with q, = 2k;/A (provided that k, & A/2).

(IV.7)

Suppose one is interested in a problem with a renormal-
ized mass of about 1 GeV; one has a given Lagrangian go
and one wants to solve it in the limit of infinite cutoff A..
This is done as follows. One considers a discrete set of
cutoffs, say A = 2~ for X = 1, 2, 3, , ~, in units of
GeV. For each cutoff, i.e., each E, one applies the renormal-
ization group transformation to produce a sequence of
effective interactions 3CO, 3C~, 3C~, . until one reaches
3C~~. The cutoff for 3C„~ is 2~ ", and in particular the
cutoff for 3C&~ is 1 GeV for any X.

Any vacuum expectation value for momenta less than
1. GeV can be computed by computing the vacuum expec-
tation values I'&~(qi, ,q ) generated by 3Ciq~. Because
the cutoff is 1 there is no change of scale from the q's to
the original momentum variables k; however there are Z
factors

G(k, ,k ) = (Ziq )"I' ~(k, ,k ). (IV.8)

A field theorist is interested in the limit of infinite cutoff.
This limit may not exist due to renormalization problems.

While the cutoff in 3C~~ is 1 GeV, the vacuum expectation
values G (ki, ,k ) calculated from Kii through Eq.
(IV.8) are the same as for the interaction Ks~ with cutoff
2~ GeV. This means one is in a very fortunate position if
one knows 3C~~ and Z~~ for large iV: the actual calculation
of G(ki, ,k ) can proceed using the 1 GeV cutoff ap-
propriate to 3C~~ which means the calculations will be
completely free of divergences (the mass was assumed to
be of order 1 GeV also so there is no way for integrals to
diverge). Nevertheless G(ki, ,k ) will not have the
unwanted cutoff dependence normally associated with a

- 1 GeV cutoff, since the cutoff in G is 2~ GeV not 1 GeV.

(IV.3)

(IV.4)

(IV.S)

where Z& is another arbitrary scale factor. One will normally
use Zo and Z» to achieve a convenien. t normalization in 3CO

FIG. 4. Result of partial
integration of diagram of
Fig. 3: integration over
k(ii) ) it/2), with i4i
& A/2, leads to new dia-
gram shown with k1 line
remaining.

effective
vertex
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One way to ensure that this limit exists is for the sequence
of effective interactions 3CNN to have a limit for X —+~,
which will be denoted 3Cp~. The interactions BCNN all have
the same cutoff (A = 1 GeV); the vacuum expectation
values I'~ (qi, ,q ) are computed by the same procedure
for any N. Therefore, if 3CNN has a limit for Ã —+~, so
mill the I')i~(qi, . ,q ), and therefore so wi11 the vacuum
expectation values G(ki, . ,k ), except for the factors
ZNN. In practice, ZNN is a product of an initial'renormaliza-
tion factor Zp, which is usually Ap '("+'/", times a sequence
of t factors ii f2, . . . , i))( . For example, for a @' theory
the integral fd x20, namely the initial action from ~which

Feynman graphs are generated, is

(&'+ ~O')Ikey k + Xo
kI k2 Ic3

4kg4kk4kg4 —kg —k2 —k3 ~

To convert this to 3Cp starting from cutoff 2 = Ap, one
writes k = 2 'g~

2—N L(d+2) /2)~~A:— C

(corresponding to Zo ——Ao (~+2)") and then one has

(IV.9)

(q2 + t'ai 2~2—2.v)~ ~ + g„2N(d 4)—
&eI&e20 e3tT—eI—e2=e3 ~ (IV.10)

Hence the q20-~a. ~ term is normalized to 1, which conforms
to the conventions of Sec. II.

The factor ZNN is therefore

N

Z iv —g (i. N/2 (d+2)/2j
n=1

(IV.11)

Fortunately the divergence of ZNN for X —+~ is of no
importance: one simply defines a renormalized field (t)zk by

(t)zk = lim A/Z))).
N ~oo

(IV.12)

In the limit 2V ~~ this product will diverge unless most of
the f'i)(~ are approximately equal to 2(~+')(', i.e. , unless

f* for the trivial fixed point Lsee Eq. (II.10)j. This
is unlikely unless the 3C„N are themselves mostly close to
the trivial fixed point.

The renormalization calculation thus produces a "tri-
angle of renormalization"

Ap ——2—

3Cp

A„= 1— J, (T)

3Cp 3C1

BCp ' 3C

l (T)l
l

3Cp ' ' 3C

l

~A = 4GeV,

+—A=2GeV,

One starts with a "bare" Lagrangian Zp, with a choice of
cutoffs Ap. For each cutoff Ap = 2, the renormalization
group transformation T is used to generate a column of
effective interactions 3C~N. The infinite cutoff limit is
obtained as a limit of each row, moving to the right. If the
limit defining 3C „~ is well behaved, then the column of
3C 's can also be generated by T, except that the column
of renormalized interaction BC „ is of infinite extent (n can
be arbitrarily large) so it is difFicult to start applying T at
the top of this column.

One knows from ordinary renormalization theory that
the vacuum expectation values of the renormalized theory
do not exist (at least in perturbation theory) unless the
bare parameters mp and Xp in Zp are permitted to depend
on Ap. This can also be seen by analogy with critical phe-
nomena. Namely, the initial interactions 3Cp must approach
a critical interaction for Ã ~~. The reason for this is that
the correlation functions of 3CNN cannot approach a limit
for iV —k~ unless the correlation lengths $~ also approach
a limit. This limit cannot be zero; the limiting two point
function has to have a pole at q2 —1 to give a particle
of mass of order 1 GeV, therefore $~~ is of order 1. But
this means that the correlation lengths go~ of 3CO~ must be
of order 2 Es«Eq. (I.22)j.

For a free field theory (P o = 0) the critical interaction
corresponds to mo ——0 (r() ——0 in the earlier notation).
Once Xp & 0, however, there is a nonzero critical value rp,
for rp. This means that if 3Cp is to go to a cntical inter-
action then m02Ao ' (the parameter analogous to ro) must
approach rp, as A~ ~~, which is possible only if mp varies
with Ap, say mp' ——r«Ap'.

so that the vacuum expectation values of pz are precisely
the I'NN in the limit N —+~. One is free to make this
renormalization because no physics depends on the normal-
ization of the field @.

Thus as long as one permits the wave function renormal-
ization (IV.12), the existence of the limit 3C))(~ —+ 3CO~

ensures the existence of the vacuum expectation values.

Strictly speaking, since 3Cp~ has a cutoff of 1 GeV, one
can only determine vacuum expectation values for k & 1
from 3Cp . To compute for higher momenta one must look
pt the effective interactions with a general cutoff, say 2"
GeV. These are given by 3CN „N,. in the limit 2V —+~ these
interactions must also have a limit, which can be denoted
3C 'Q ~

Thus one sees that nzp2 will be quadratically divergent, as
one already knows from pe'rturbation theory calculations.
But the analogy to critical phenomena is valid even if
perturbation theory is not valid. Thus one expects mp to be
quadratically divergent in strongly coupled scalar field
theories also.

It should be noted here, that in less than four dimensions,
most field theorists hold Xp fixed when Ap ~~ since coupling
constant renorrnalization (see Sec. V) is not necessary in
less than four dimensions. As argued earlier, the corre-
sponding four point bare vertex in the statistical mechanical
theory is Apd 9p which goes to zero as Ap~~ for d ( 4.
This means the statistical mechanical theory approaches
the Gaussian case for Ap —+~. This means rp ls 0 and tlap

is no longer quadratically divergent in Ap.
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V. MARGINAL OPERATORS AND SEGOND
ORDER PERTURBATIONS ABOUT A
FIXED POINT

The purpose of this lecture is to discuss higher order
terms in perturbation theory about a 6xed point. That is,
the departure of an interaction BC' from a fixed point 3C*

will be calculated including terms of order (3C~ —3C*)2

and higher. This problem was 6rst discussed by Wegner
[1972].

Second order terms are important primarily when the
linearized equations give rise to a marginal operator. In the
linearized theory the strength of a marginal operator
neither increases nor decreases as l changes. Second order
terms can change this result, making the coeKcient of the
marginal operator either increase or decrease with l. This
will be explained below.

In the case that there is one marginal operator, the result
of the perturbation treatment described below is that the
full renormalization group equations for all the interactions
in X~ are reduced to a single recursion formula [gi+i
= V, (i,gi): see Eq. (V.,37)] for the coefficient gi of the
marginal operator in 3C&. In the present analysis the re-
cursion formula for g~ is a special simplification of the full
equations; the reduction to a single recursion formula is
possible only near a 6xed point which has a marginal
operator.

Historically the 6rst formulations of the renormalization
Group equations by Stueckelberg and Petermann ('1953)
gell-Mann and Low (1954), and Bogoliubov and Shirkov,
(1959) were single variable recursion formulae (or more
precisely differential equations for dg&/dl; see later) of this
special type. These differential equations were derived
from properties of renormalized Feynman diagram expan-
sions, -always for obscure reasons. The variable g& in these
equations was a coupling constant of some kind (originally,
the electron charge), generalized to be momentum de-
pendent (corresponding to l dependence in this paper).
The Gell-Mann —Low theory will be discussed later in this
section.

It turns out that there are a number of problems where
there are 6xed points with marginal variables, for which a
Gell-Mann —Low theory can be developed. These include
quantuin field theory (the original case), the Kondo prob-
lem (see Secs. VII—IK), the Riedel —Wegner theory of
tricritical points (Riedel and Wegner, 1972; 1973; 1974),
one dimensional "superconductor" theory [see, e.g. ,
Dyaloshinski and Larkin (1971) or Menyhard and Soiym
(1973)],etc. In all cases the fixed point is of a trivial nature
so that Feynman diagram expansion are useful near the
fixed point. But in almost all cases the coeKcient of the
marginal operator becomes large for some range of /, and
when this happens the Gell-Mann —Low theory becomes
useless for detailed calculations.

The main result of either Gell-Mann —Low theory or the
perturbation theory of this section is a scaling law which
shows that K~, considered as a function of both l and the
initial marginal operator strength go, actually depends on
only a single variable built from / and go. This scaling law
will be rederived in this lecture.

(V.1)

where N[NC~] contains all the second order terms and
higher in hag. Precisely

1V[BX(] = T[X*+NC(] —X* —L BX(. (V.2)

In the linearized theory one could write NC& as a sum over
all the eigenoperators 0 of L,. There are three distinct
types of eigenoperators: relevant, marginal, and irrelevant.
To set up the nonlinear theory it is convenient to make a
partial expansion of SPACE in terms of the eigenoperators,
namely to write

MCi —— Q p,O + Q g,O +6W(,
m~R mcR

(V.3)

where R is the set of all relevant operators, M is the set of
all marginal operators, and bS"g is a remainder term. If the
set of all 0 were complete, bW~ would be a sum over all
irrelevant operators. With asymptotic completeness, bW&

is defined as an operator which contains only irrelevant
terms after many iterations.

It is largely irrelevant for the discussion given below
how .many relevant, marginal, and irrelevant operators
there are. So to illustrate the principles involved it will be
imagined that there are only one of each, so there is one
relevant parameter p, ~, one marginal parameter g~ and one
irrelevant parameter wi (the latter replacing the functional
BWi).

The nonlinear equations for p, , g, and m corresponding to
Eq. (V.1) will be assumed to be the following

Pl+i 4@i + +p[IJL gl ~l]

go+i = g& + +g[JJI,,gt, ~t],

~t~i = 4~& + +~[At, gl, ~t],

(V.4)

(V.5)

(V.6)

where the functions X„,X„and X„are both analytic and

quadratic or higher in their arguments for small p, &, g&, and
but are otherwise unrestricted. For convenience in

writing formulae the eigenvalues of the relevant and ir-

relevant variables have been set equal to 4 and 4, respec-
tively: these values have no special significance.

The following discussion can be generalized to include an
almost marginal variable instead of a marginal variable;
this is done by allowing X, to contain a term eg&, where e is

a small number, in addition to quadratic terms and higher.
This generalization is left to the reader.

The solution of the Eqs. (V.4)—(V.6) will be discussed
assuming p, ~, gg and m~ to be small enough so that the E
terms can be treated as a perturbation.

The 6rst step in a perturbative calculation is to solve the
equations pretending that the X's are known functions of l.
Consider first the m& equation. Let

xg = 4'm~. (V.7)

Consider a renormalization group transformation T, a
fixed point 3C*, and the linearized transformation I about
the fixed point. Let X& = 3C*+ NC& be a solution of X/+. 1
= T[Xi].One can rewrite the recursion formula

53C(+i ——L h3C( + X[6X(],
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Then (multiplying the w( equation by 4'+i)

x(+i = x(+ 4'+'1V„[((((,g(,w().

The solution of this equation is

l—1

xi = *o + P 4"+'1V [p,g,w.]
n=G

which gives

(V.8)

(V.9)

man diagrams (the momentum scale corresponding to
is 2 ' so l itself is like the logarithm of a momentum). The
factors of l are not, at first sight, as disastrous as the factors
4' that appear in the bad form of the p~ equation. However,
the factors of l are less easily eradicated.

It does not help to use gL as the input parameter instead
of gG. In this case one has

I—1

w( = 4 'wo + P 4"+' '1V„[p„,g„,w„]. (V.10)
L—1

gl = gL —P ~Vg[pnygn, wn jr
n=l,

(V.14)

This is a well behaved equation, in the sense that if the
inputs mG and S for any n are small then the output ze~

is also small. In particular the 2V„'s have a weighting factor
4"+' ' which is small except for /~ n, which prevents the
sum from being much larger than the individual E 's

being summed.

and the sum can be large if L —/ is large.

%hat can one do with the equation for g~& One can do
the following. Suppose gE, is known for some value of /G.

Then one can calculate g& for l near /G. The equation is

The corresponding solution for p~ is n=lp
(U.15)

n=O

This equation is a disaster because the factor 4' multiplying
p, G and the weighting factors 4' ("+" both make p, ~ much
larger than the input, and if p& becomes too large the E's may
also become large and cannot be treated perturbatively.

L—1
I~ P 4(—(n+l)1V (V.12)

The difficulties with Eq. (V.11) can easily be avoided;
instead of using pG as an input one can use pL as an input
where L is the maximum value of / for which the variables
)(((, g(, and w( are small (or perhaps the largest value of l of
practical interest). The resulting equation (easily derived) is

If one considers only values of 1 —lo of order 1 (say 1 & l
—lo & 10) then the sum cannot become arbitrarily large
and this is a good equation.

To make use of Eq. (V.15) one has to allow g(, to be
input for a range of values of /G, and the simplest procedure
is to permit lG to be arbitrary, i.e., let the whole set of
constants g~, 0 ( l ( L, be input. This is for a hrst stage
calculation in which the relevant and irrelevant variables
pE and re~ are determined. In this first stage calculation one
can also calculate g(+i in terms of (g(, pl. , and wo), for any l.
This means one gets a recursion formula for g~ alone, rather
than coupled equations for g&, p&, and zeE. The solution of
this new recursion formula will constitute a second stage
in the over-all calculation and will be discussed later.

This is a good equation, namely if pL and 2V„are small then
p& will be small for any l.

It may happen that one knows pG in advance of solving
the equations while pL has to be calculated from the solution.
Even in this case, the advantage of having a good equation
are so important that one solves them as if pL were known,
obtaining in particular the quantity pG as a function of pL.
The formula for pG is then inverted to give pL as a function
of pG. This will be discussed further below.

The three equations to be solved are now

L—1
4( L~ Q 4(——(n+))1V

n=l

l—1

w( ——4 'w() + P 4"+' '1V [p„,g. ,w„),
n=0

a( = g(, + 2 1V 0[I -,g-,w- j.
n=lp

(U.16)

(V.17)

(V.18)

Consider Anally the equation for g&. Solved in terms of
gG one gets

n=G

It is assumed that pL, mG, and g~p are small; we also assume
L is large. The value of /G can be anywhere in the range.
0(/G(L.

(V.13)

This equation is unsatisfactory: if / is large the sum involves
a large number of terms with no damping factor. The sum
is of order l times the mean value of X„and this can be
arbitrarily large if / is large enough. For instance, if one
tries to expand the solution g~ in powers of gG one finds the
coeNcient of gG' is proportional to l, the coe%cient of gG'

is proportional to P, etc. , provided that 1V,+,g,wj includes
a g2 term when expanded in powers of p, g, and ze. These
factors of / correspond to logarithmic divergences in Feyn-

One would like to consider only / with l —lG 1 in order
to use the g& equation. Unfortunately, the equations for p&

and veg together involve sums over all n from 0 to L, which
means one must know g for all n. Fortunately, this need is
more apparent than real, for in the equations for y~ and zeE

the sums are dominated by values of n near /: values of n
with n —l large are suppressed by an explicit factor 4 ~" '~.

VVhat this means is one can use the equations (V.16)—(V.18)
to compute p~, m~, and g~ for l near /G and no difhculties will

arise in practice, as will be seen shortly.
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Equations (V.16)—(V.18) are now to be solved by iteration.
The first approximation is obtained by neglecting the E
terms completely, giving

than compensates the factor (I —l)'. However, this term
is important in computing the dependence of p, p on pL,
to a first approximation one has

Pl =4 PL,

'Evl = 4 %op,

gl = Clp.

(V.19)

(V.20)

(V.21)

PP =4 PL

b'ut now higher approximations include terms like

vo = 4 uL(1+ Lppgi, 'L')

(V.27)

(V.28)

The second approximation is obtained by substituting the
first approximation inside V and recomputing ml, pl, and
gl. The second approximation is

L—1
4l I — Q 4l—( +in)/)/ [gn L~ g

—4 n~ 7—(V.22)

l—1
4n+l —(IV pn L+ g

—4 nTI)
—
7

7L=0
(V.23)

L—1

gl glo + p -3 f4 )IL glo 4 )I)p7. (V.24)

The third approximation is obtained by substituting the
second approximation inside X in Eqs. (V.16)—(V.18);
similarly, one constructs approximations to any order.

Are large terms generated by these calculations& From
the previous analysis one has to fear only the effects of the
sum in Eq. (V.18). To be specific, let IV,&p,g, iI)7 include cg'
where c is a constant, in the limit of small p, g, and m. Then
the second approximation to gl includes a term

The spirit of the calculation was that terms in the higher
approximations shouM. be negligible compared to the fiI st,
approximation and this is no longer so.

Thus to determine pp from pL a more sophisticated calcu-
lation is required: this will be discussed later. If it is not
required to determine pp the calculation described above is
acceptable.

The method of successive approximations to Eqs. (V. 16)—
(V.18) determines pl, ill, and. gl as functions of gl„wo, and
pL, for 1 —lp of order 1. There are further simplifications
depending on the value of lp. For intermediate values of lp,

namely lo)) 1 and I. —/o)) 1 (and l —lo 1), both z()o

and p, L are negligible. This is because all terms involving mp

also have a factor 4 ', apart from powers of /; all terms
involving pL have a factor O' L apart from powers of L, —/.

In contrast, terms involving only powers of glp also involve
only powers of l —/p. Using this result the equations for
p, l, gl, and ml can themselves be simplified when / and lp are
in the intermediate region: one can set mp and pL equal to
zero and one can also extend the sums over n to + or —p():

gl = glp + (/ —/O)Cglp + (V.25) Pl —— Q 4 +p(Pn)gn)ii)n7) (V.29)

and one has a large term when / —lp is large. This means
g inside X„or IV„has a term (» —/p)cgi, '. Consider the
effect of this term on p, l. For this 'purpose corisider two
possible terms in X„Lp,g, w7, namely c,g'+ cong, with ci
and c2 being constants. Substitute in these terms (» —lo)cgl, '
for g and 4" L)((L for y.„(just to see the effects of these
terms: this is not a complete calculation), and they give a
contribution to pl of the form

—Z 4--"&"(--/. ) g. + 'g. ( -/. )4--"..7

l—1

'(I)t —Z 4 't ALP+ )g)))'(L7n) (V.30)

gl = glp + Q . /()/Pn)gn)7I)n7 (V.31)

When these equations are solved by the iteration procedure
defined above, it is easily verified that the sums over n
converge and the error introduced by extending them to
& ~ is of order O' L or 4 ' both of which are negligible.

The first term involves the sum

L—1

4™(»—l )'
n=l

(V.26)

gl = V„Ll —l(), gl, 7, (V.32)

The simplified equations (V.29)—(V.31) ha, ve a simple
translational invariance in l and lp which means the solution
for gl has the general forn~

Since 4' "decreases with» much more rapidly than (» —/o)o

increases, this sum is of order (/ —lo)2, i.e. , not very large
if / —lp 1, even though the upper limit on e may be
much larger than Lp. In fact the upper limit on e could be
changed to ~ and the sum would still be finite. In summary,
the» —lp terms in g„do not produce large terms in pl (or
il)l either) provided l —lp is not large. Now consider the
pLgl, term: in this case the sum involved is

where U, is a function of only two arguments, not /, tp and
gl, separately. Likewise pl = v„Ll —lp, gl, 7, etc.

L—1
4l I~ Q 4l (n+l ) g—? (~ g iI) 7—

n=l
(V.33)

When l and lp are near I one can no longer neglect pL
but wp can still be ignored. In this case one can simplify the.
equations to

L—1

Z 4' '(» —/. )
n=l

which is of order (I —l)'O' L if f )) l and J )) /o. This is
never numerically large eith=r since the power of 4 more

l—1
'))' u PP n)g i()n7 )))

l—1

gip + 2 ~)()LP»g ) "' 7.
n=lp

(V.34)

(V.35)
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The solution is a function of the form

gl = Vp[l —lp, L —lp, gL„Lgc]

etc.

(V.36)

This allows us to determine dgl/dl to order gp

(5g l = Cgl-'+ (C —")g'+ (V.45)

Similarly, when l and lt) are near 1, the solution depends
on mo, but is independent of pL, and L.

gL)-1 —V EI gl] (V.37)

What is the form of the function VpL1, g]& In the first
approximation, one has gl+i ——gl, i.e. , Up)1, g] = g. In the
second approximation, one can write

The next problem is to compute g&, say in terms of go.
This is done as follows. Using the previous calculation one
can determine g& for small /, say 1 & l & 10. The next
step is to determine g~ for l ) 10 and L —/ ) 10 in terms
of glp, at this stage one can use Eq. (V.32). It is convenient
to write this equation as a recursion formula

dgl/dl = |/(gL). (V.46)

This equation is a simple differential equation which is
easily integrated: let

F(g) = I LI/4(g)]dg (V.47)

then (irrelevant variables. will be ignored even for small l)

F (gl) —F (gl)) = l. (V 48)

For sma, ll g, F(g) is

More complicated calculations of the same type give dgl/dl
to any order in g&, the result can be written

V,L1,g] = g+ 4V, LO,g,O], (V.38) F(g) = —.dg
cg'+ (c3 —c.")g'+

V,$1,g] = g + cg'+ 0(g'). (V.39)

In the third. approximation, p„and m will be nonzero but
only in order gL2 or higher, and will contribute to VpL1,g]
in order g' or higher, through terms of order p, „g„orm„g„ in
/V pLLgrc, gn, 'LL)n]

and since the leading term in X, for small g must be qua-
dratic or higher, the leading term is the cg' term introduced
earlier. Hence

(Cp —C') 1
—+ order 1)rig

C g

11 c3
lng order g

c g c

So the equation for g~ is

(V.49)

The end result is an equation

gl+i = gl + Cgl + Cagl + Cggl + ' (V.40)

1 lng
cgg

X lngo — . = I. (V.50)

valid for small g~. %hen gg is small, g~+~ will not be much
different from g&, i.e., g& is a slowly varying function of I.
This allows one to convert the recursion formula, (V.40)
into a differential equation. This is done as follows. Assuming
g~ is a differentiable function of l, one writes 1/gl = (1/go) —c/ (V.51)

or

Assuming g~ and go are both small, - this equation can be
solved by successive approximations. The first approxi-
mation consists in keeping only 1/gl and 1/gp

dg& 1 d'g
gl+1 gl + + +

2 CO2

One now writes Eq. (V.40) as

(V.41) (V.52)g = g./(1 —c/g').

As a second approximation one uses this formula to compute
lng~, and then recalculate g~, giving

dg~ 12gi
Cgl + Cpgl + C4gl + ' '

6 (7P
(V.42)

gI, = go
C3

1 —cig, + ——1)g, )o (1 —cig, ) . (V.53)
c2

d2g~ (/g g

(2cgL + 3cpgL + . }
($P (/l

1 (5'g/
(V.43)

The higher order derivatives can be removed by successive
eliminations. The first step is to differentiate this equation,
giving

There are now two cases to discuss. If cgo is negative,
then one sees in the first approximation that g~ decreases
with l, and for very large l (l )) 1/gpc) one has

(V.54)gl ~ —1/cl.

In this case the second approximation is not much different
from the first approximation.

d'gl/dP = 2C'glp.

Rev. Mod. Phys. , Vol. 47, No. 4, October 1975

(V.44)

Since dgl/d/ is of order gL2, this shows that d'gl/dP is of order
glp (further analysis shows that d'gl/dP is of order gl', etc.).
To order g~' one obtains

The second case is the case cgo ) 0. In this case, g~

increases with /. For /&( 1/cgp this increase is not very
noticeable: g~ is small if go is small. But for clgo 1, g~

becomes much larger than go, in fact g~ becomes too large
for the perturbative approach of this lecture to be applicable.
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There is a third case, namely c = 0. This will not be
discussed here.

What one sees is that qualitatively the marginal coupling
can behave either like a relevant variable or an irrelevant
variable: if cgp ( 0 then g~ decreases with /, eventually
going to zero although not as fast as an ordinary irrelevant
variable. If cgp & 0 the variable g~ increases with / until it
becomes large enough so that perturbation theory about
the fixed point is no longer valid.

It must be emphasized that the calculations described
here are perturbative and therefore valid only when p&, g&,

and m ~ are small over the eeyore range 0 & l & I.. In the case
that g~ is increasing with /, one must choose I. s~all enough
so that gL, is still small. The input parameters m p and yL, must
also be small. This does not mean that anything funda-
mental goes wrong when g& (or p& or w&) is of order 1, just
that a nonperturbative method of solving the renormal-
ization group equations is required. in this case.

One can nov see the role of divergences in the renormal-
ization group equations. When these are solved by a straight-
forward expansion in pp, gp, and zep, the divergences appear
as the factor 2' multiplying pp and l multiplying gp2. These
diverge for I,—+~; in higher orders in gp and pp there are
more divergent factors.

By proper choice of the independent variables, namely
jki wo and either go or gl (depending on the sign of cg,) and
by properly solving the g& equation, all divergences dis-
appear. There remains the problem of what to do if any
of pr. , ii'0, or (gp ol gl.) is large, which is a problem of tech-
nique not of divergences.

It is now clear that the higher order calculation of this
lecture is crucial for the discussion of marginal variables.
In fact, -in practical situations it is sometimes necessary to
carry the perturbation calculation to quite high orders. An
example is in connection with the numerical evolution of the
Kondo problem. See Secs. VII—IX.

In contrast, for fixed points with no marginal or near-
marginal variables, the perturbations m~ and p~ change so
rapidly with / that there is less value to going beyond the
linear theory about the fixed point. Once one gets to values
of 1 for which the linear theory fails one gets almost iIn-
mediately to a range of l for which nonperturbative methods
are required.

The next topic to discuss is the physical significance of
the constants g~ and the derivation of the Gell-Mann —I-ow
renormalization group equations. The first thing to note is
that the expansion of gg in powers of gp is divergent for
clgp ) 1 Lat least in the approximation (V.52)j. This
means the expansion is useless for large enough / even if gp
is small. This is because the coefFicient of gp is of order

'. In contrast, g~+i has a good expansion in terms of g~,
'

this expansion is free of factors of l.

In the following a "good" expansion always means an
expansion free of factors of l.

Now consider the multispin correlation functions
I'~(qi, ,q„) (vacuum expectation values for field theorists).
If all the q, a're of order 1 (in particular, no q; is much less
than 1; one must also require that no partial sum of the q;
is small either) then one can argue that I'~(qi, .

,q„) has an
expansion in terms of g~ which is also free of divergences
(powers of l). In the specific case that the fixed point is the
trivial fixed point in four dimensions and g~ is the four
point vertex u~, the argument is a diagrammatic one: the
q, provide an infrared cutoA on all diagrams so no diver-
gences appear even if the constant rg in the propagator
q'+ r~ is zero (Gell-Mann and Low 1954). For example, a
simple diagram that might occur is

1
d g

(q + q') + r& q + r&

which is logarithmically divergent if bo/h q and r& = 0; but
if q is of order 1 the whole integral is also of order 1 even
for r& = 0. An argument applicable to arbitrary fixed points
is given in (Wilson and Kogut, 1974).

The correlation functions I'&(qi, . ,q ) are related to the
initial correlation functions or vacuum expectation values
G(ki, ,k ) by a change of scale and a renormalization
factor

(V.55)

where Ap is the initiai cutoff or maximum momentum. The
factors Z& are a nuisance; but these can be eliminated by
considering a ratio of vacuum expectation values, say
G(ki, ,k )/G(k) ", where G(k) is the two point function.
This is related by known factors of Ap and 2', to the ratio
I'~(qi q )/I'~(q) "with q, = 2'k, /Ao. Since the I'i have a
good expansion in g~ for q; 1, this means so does the ratio
of G's, provided the momenta k; are of order 2 'Ap.

Since g~ for sufFiciently large l has a poor expansion in
terms of go (poor meaning powers of l are present), the fact
that a ratio of G's has a good expansion in terms of g~ means
it has a poor expansion in terms of gp. In the special case
that- g~ is the coupling constant u~, this means that for
momenta of order 2 'Ap, ng is the appropriate measure of
the coupling strength and not Np. More generally, although
only one of gp or g& is an independent parameter, one should
use g~ as the independent parameter for momenta of order
2 Ao. See Wilson (1971b) for more discussion on this point.

Now consider the old Gell-Mann —I ow theory. In the
Gell-Mann —Low theory, say for a g4 ffeld theory, there
are a set of coupling constants g~', not the same as the
constants g& defined here, which however satisfy a differential
equation similar to Eq. (U.46). The constant g&' is defined
in terms of vacuum expectation values at a momentum of
order 2 'Ao (the conventional variable is ink, where h. is
2 Ao, lather than l, but this is a trivial diff'erence). What
we now see is that if one takes the ratio G(ki, ,k )/
G(k) " and subtracts the value of the ratio at the fixed
point [G*(k,, . . . ,k )/G*(k) "jthe difference will be propor-
tional to gg with corrections of order g~', etc. , provided
the k, are fixed at values proportional to 2 'Ap. So if one
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defines, e.g. ,

gi' ——G(2 'Ao 2 'AO, 2 'Ao, —3 && 2 'AO)/G(2 'Ao)'
—(fixed point value), (V.56)

then gl will have a good expansion in g~ starting with a term
proportional to gi (we assume this term does not vanish).

Now g~+~' also has a good expansion in terms of gg since
changing momenta by only a factor of 2 does not hurt these
expansions. Furthermore the expansion of g~' in terms of g~.

can be inverted to give g~ in terms of g~' and this will also
be a good expansion since the inversion process cannot
introduce powers of l. One can then proceed to express
go+i' as an expansion in g~' '. this will also be a good expansion.

Finally one can see that gE+&' is equal to g&' up to terrn0
of order g~". The reason for this is that the correlation
functions F&(qi, , q ) are uniquely and completely deter-
mined by 3C&. Now BC& consists of BC (which is independent
of /) plus perturbations of order gi, pi, and wr Also go+i = gi
up to order gP and (for intermediate values of / which is
implicitly assumed in the above discussion) Iii and zoi are of
order g&' or higher. Hence 3C&+j differs from BCE only in order
gi, hence I'i+i(qi, .

,q ) differs from Fi(qi, ,q ) (the
same arguments q,) only in order gi2. Fi and 7&+i for the
same arguments correspond to 6's with arguments differing
by a factor 2. Hence one concludes that g~+i' —gg' is of
order g~, which means of order gl" since gE' is of order g~.

Hence g&+&' can be written in terms of g&' in a form exactly
analogous to Eq. (U.40), except the constants c, c~, etc.
may be different. One can again convert this equation to
a differential equation and integrate as before.

Thus one can set up the Gell-Mann —Low equation using
parameters g~' defined in terms of vacuum expectation values
(correlation functions) directly without reference to the
renormalization group of this paper. In this case the function
P'(g&') that replaces |/ (g&) may be calculated by computing
both gi' and dgi'/d/ as a power series in go', then inverting
the series for g~' to give go' as a series in gl', and finally
expressing dgi'/d/ as a power series in gi'. The only trouble
with this procedure is that one starts with two bad expan-
sions (the expansions of gi' and dgi'/d/ in powers of go') and
it seems miraculous that one winds up with a function
P' (gi') which has a good expansion. Furthermore it is
somewhat difficult to prove that /'(gi)bias a good expan-
sion beyond the terms one calculates. Gell-Mann and Low
presented an argument to show that |/' has a, good expansion;
unfortunately, the standard review of Bogoliubov and
Shirkov ignores altogether the importance of distinguishing
good expansions from bad.

The Gell-Mann —Low renormalization group Lor its
cousin, the Callan —Symanzik equations (Calla, n, 1970;
Symanzik, 1970)) is thus a simplification of the complete
renormalization group, in which one has a differential
equation for only one variable g& (if there is only one
marginal variable) instead of recursion formulae for a
functional BC'. One pays a price for this: the Gell-Mann —Low
equation is useful only for discussing small perturbations
about a fixed point with a marginal variable. In the case
that the couplings g& increase with l one inevitably leaves
the region of validity of the perturbation treatment for

su%ciently large l; one is then forced to use an appropriate
formulation of the complete theory. This is a phenomeno-
logical statement: there has never been a successful calcu-
lation based on the Gell-Mann —Low or Callan —Symanzik
theory outside the region of small g&. Meanwhile, the Kondo
calculation discussed in later sections proves the usefulness
of the complete renormalization group in nonperturbative
calculations.

The remainder of this section is not important, for any
later section.

Finally, the problem of determining po, given pL, , will be
discussed further. To simplify the calculation, we assume
pl. is small and compute to first order in pL, . Also, the depen-
dence on the initial value zoo of the irrelevant variable will.

be neglected. Neither of these simplifications remove the
essential problem: the problem is the I,'g~, ' term in Eq.
(U.28) and higher order terms of the same type: higher
order in g~, but linear in p, L, and independent of veo.

The problem goes away if one calculates only p, & & instead
of /M&, for then L'g&,~ is replaced by g&,

' and similarly in
higher orders. This suggests that one revise the first stage
calculation so that input variables are p, ~,+~, g~„and m(),

while the output variables are p, ~, and g~,+~. Then the second
stage involves calculating both p, ~ and g~ as a function of l
instead of just g~. This is still easier than computing p, ~, g~,
and ~~ simultaneousl. y, especially if there are a large number
of irrelevant variables x~.

The solution of the first stage calculation has already been
defined: one sets I. = /0 + 1 in Eq. (V.36). The result is

&&0
= Vt L~~t~gio»&0+i'~

gi.+i = ~oD, 1,gi.»i.+i).

(V.57)

(V.58)

Both V„and V, have power series expansions in g~, and p, ~,+~.

To solve Eqs. (V.57)—(V.58) as they stand is painful, so a
further simplification will be introduced. One solution of
these equations is already known, namely, the solution
(V.32). That is, the formulae pi = V„L/ —/0, gi,) and
gi

——V,D —/0, gi,) (and w& = V P/ —/p, gi )) satisfy the
basic recursion formulae (V.4)—(U.6); in addition they
satisfy the same boundary condition for gi, as (V.36); the
only change is that p&,+& is not arbitrary, since

04+i ~wL1|gio) (V.59)

Next one calculates 6p, ~, as a function of Spz,+~. If Bp,gp+~

vanishes, then Bp~, also vanishes. The reason for this is

The simplification is to linearize about this solution. In
particular, one writes

(V.60)

(V.61)

The quantities 6p, &, and 6p, &,+& will be assumed to be small
and treated only to first order. Note that only pEp is linear-
ized v'ith respect to the solution V„L/ —/0, g~,); for consist-
ency yi,+i is linearized about the solution V„fl /0 1, g&,+&)——
which satisfies a different boundary condition Lgi,+i is
specified instead of gl, , gg, +i is related to gg, using Eq.
(V.32)).
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the following. One must compare three solutions of the
basic recursion formulae (V.4)—(V.6). The first solution is
given by pi = V,Ll —lo, 1, gi„pi,+i) (with similar formulae
for gi and m &), where gi, and pi,+i are specified. The second
solution is pi = V&gl —lo gg ), etc. , where gi, is specified,
and the boundary condition on p, & is that it is bounded as
l ~~ Lthis is evident from Eq. (V.29)). The third solution
is pi = V„Ll —lo —1, gi,+i), where gi, +i is specified, and
again p& is bounded as l —+~. (The boundary conditions on
re~ are that x~ be bounded as l —+ —~, for all three
solutions. )

These three solutions 3,re identical, provided that 8p.g,+~= 0
and that g&,+i agrees with the first solution Lnamely, g&,+i
satisfies Eq. (V.58)). These two provisos guarantee that
the first and third solutions give identical values for p, E,+~
and g&,+i. This in turn (combined with the boundary
condition on m &) determines a unique solution to Eqs.
(V.4)—(V.6); hence the first and third solutions are identical.
Now one knows that the hrst and third solutions give the
specified value of gg, and have a bounded p~ for l —+~, hence
they are the same as the second solution. Hence p, &, is
V„fo,gi,) and Byi, vanishes.

One can now expand 6p~, in powers of 6p, ~,+i. To first order
the result can be written

5&i, = Vi„agio)~p&o+i (V.62)

The function Vi„Lg&,) has a power series expansion in gi, ,
this series can be determined once the functions V„Lo,1,g,y),
V,$1,1,g,p), and V„Lo,g) are known.

To solve Eq. (V.62) is straightforward. One needs to
know g&, only to oth order in 8p, , i.e. one can use the previous
calculations Lsee, e.g. Eqs. (V.52) or (V.53)) to determine
g&, . Equation (V.62) can now be turned into a linear differ
ential equation for 6p, &.

One can also generalize the Gell-Mann —Low methods
to define quantities related to 6p& which also satisfy linear
differential equations analogous to (V.62) depending only
on g&'. This has already been done in field theory by 't Hoof t
(1973), Weinberg (1973), and Symanzik (1971).

In this section an approximate method for solving the
two dimensional Ising model will be described. A renormal-
ization group transformation T will be defined for the Ising
model. The fixed point of the transformation will be ob-
tained approximately. Likewise eigenvalues of the linearized
transformation will be calculated; these give (approxi-
mately) the exponents of the two dimensional Ising model.

Vl. BLOCK SPIN METHODS: THE TWO
DIMENSIONAL ISING MODEL

There is a practical aspect to the renormalization group
approach. This will -be illustrated in this lecture using the
two-dimensional Ising model as an example. The e expansion
does not work, very well for two-dimensional systems; there
is no other expansion that works for the two dimensional
Ising or Heisenberg models. There is Onsager's exact
solution for the nearest neighbor Ising model /see, e.g. ,
Schultz, Mattis, and Lieb (1964)) but there are many
systems in two dimensions that cannot be solved exactly.

The emphasis vill be on the general principles used in
constructing the transformation and in defining practical
approximations to the transformation.

There are many similar formulations of the transforma-
tion. Niemeyer and Van Leeuwen (1973; 1974, 1975) were
the first to define a transformation and carry out precise
numerical calculations for the two dimensional Ising model.
They studied a triangular lattice. Another transformation
for the square lattice, due to L. Kadanoff (unpublished) and
the author, will be discussed here. Other transformations
have been considered by Nauenberg and Nienhuis (1974a,
1974b, 1975), Kadanoff and Houghton (1975), Hsu,
Niemeyer, and Gunton (1975), Subbarao (1975), and
Kadanoff (1975). There is also an extensive literature on
transformations for one dimensional Ising systems PKrinsky
and Furman (1974), Balian and Toulouse (1974), Navenberg
(1975), Nelson and Fisher (1975), Weyland and Niemeyer
(1974)).

Consider the Ising model on a square lattice. The partition
function is

Z = P exp(K P P s„s„+i}.
(sJ n i

(VI.1)

The most straightforward way fo calculate Z would be to
calculate the exponential numerically for each configuration
and add up the results for all configurations. For a square
lattice of size X X X, there are 2 ' configurations. The
maximum reasonable size for a computer calculation at the
present time is about 10'o multiplications (this requires a
few hours on a CDC 7600). This means 1P must be less
than or near 33, i.e., X & 6, for a direct computer calcu-
lation. There are, of course, numerical tricks and pro-
cedures which allow one to increase this bound on X, but
not by a large factor.

If K is close to the critical point value K, there is a large
correlation length $, say $ = 1000 in units of the lattice
spacing. In this case to obtain a sufficiently accurate
approximation to the thermodynamic limit (X —+~) one
must consider values of X of order P, and this is hopeless:
there are of order 2"Oo~' configurations.

In the renormalization group approach the calculation
of Z is broken dovn into a number of steps such that each
step is a feasible calculation at least to a good approxima-
tion. For the Kadanoff method, this is done as follows.
Instead of summing over all the spins on the lattice, the
first step consists of a summation over half the spins, the
other half being held fixed. The process of summing over
half the spins is called "spin decimation. " The spins that
are held fixed lie on alternate diagonals; this is illustrated
in Fig. 5. It is convenient to relabel the spins held fixed.
Thus s~i becomes t~0, s02 becomes t~~, etc. , as illustrated in
Fig. 5. The advantage of this is that the set of "new spins"

Here n = (mi, nz) is a two dimensional vector with integr»
components labelling lattice sites on the square lattice; z is a
unit vector in the direction i (i = 1 or 2); s„ is the spin
variable site n, and K = —J/kT where J is the spin —spin
coupling strength. The spin s can have only the values & 1,
and P~, ~

is a sum over all possible configurations of all

the spins.
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X
s(- I g)

t(l, l)

s(0,2)
'pc

s (1,2)

X
s(2,5)

t(2,0)

s(2 g)

If the original lattice was of finite size (1V X Ã) then
after a finite number of steps (of order ln01V) all the spins
will be summed over and one will have the partition
function. For an infinite lattice the recursion formula
(VI.5) can be iterated indefinitely, but the renormalization
group formalism makes this unnecessary.

t(o, l)

s(-l, I)
X

s (O, l)

t (O,o)

t(l, o)

s(l, l) j(2,I)
An extensive formal discussion of transformations like

(VI.5) has been given by Wegner (1972). The present
lecture will be concerned with more practical aspects of
the transformation.

j(-I,O) j(O,O)
X

j(I,O) j(2,0)

FIG. 5. Lattice of old spins (s) and new spins (t) for the Kadanoff
transformation. New spins occur only at sites marked by a dot. Spins
are written s(n) rather than s„,

The easiest way to demonstrate the advantages of the
Kadano6 transformation is to compute explicitly the inter-
action 3C(L/j. This can be done exactly. It is not possible
to compute 3C2, 3@3, etc. , exactly: the approximations
needed to compute 3C~, 3C3, etc. , will be discussed later.

by themselves define a square lattice of Ising spins —that
is, the lattice label I for the new spins runs through the
same set of values as the original index n (for an infinite
size lattice) .

The Kadanoff transformation can be written

exp{3c L~3} = 2 {II~ ~.(-)}exp{3c0P3},
(al m

(VI.2)

3C0Lsg = K P P s„s„~(.
n i

(VI.3)

where the sum P(, ) is formally over all the spins s, but
the set of Kronecker 8's ensure that half the spins are held
fixed. The function n(m) gives the label n of the spin s in
terms of the label I of the corresponding new spin t

/for I = (1,0), n = (1,1), etc.j., Also

5 = P exP{K$01(f00 + $01 + t10 + 111)}
&01=+1

= 2 coshÃ (/00 + t01 + )!M + tii). (VI.6)

The sums over all the other spins give the same type of
result; thus exp{3C1Ltj} is simply an infinite product of
cosh functions, each cosh depending on a different set
of four t's.

Consider a specific spin to be summed over in the first
step (Eq. VI.2), namely s01. This spin is coupled (in 3C0)
to its four nearest-neighbor spins. As one can see from
Fig. 5, these four nearest-neighbor spins are all held fixed.
Thus so& does not couple to any other of the spins being
summed over. This means one can perform the sum over so~

independently of the sums over the other spins. The sum is

The result of the calculation is a function of the new spins
it is convenient to write the result in the form

exp {3C1(tg}.

It is more convenient to have 3Ciptj expressed as a
polynomial in the t s. This is easily accomplished. Using
the fact that each t

' can only have values &1, one can
establish the following identity

Z = P exp{3C(Ltj}. (VI.4)

The partition function can be calculated from 3C,Ltj by
summing over all the configurations of the spins t

2 cosh%()'00+ &01+ &10+ &ii)

= exp{A (K) + B(X)
X (/00101 + 300110 + f00fll + 301/10 + 101311+ $10111)

+ C (I(-)300/10f0ltli}. (VI 7)

This calculation has exactly the same form as the original
partition function (VI.1), since the t s also lie on a square
lattice and also have only the values &1. However, if the
original spins s„are restricted to a finite, X )& E lattice,
the new spins t form a lattice with only iV /2 sites, i.e.,
a lattice with fewer configurations.

The second and succeeding steps in the Kadanoff pro-
cedure are the same as the first. The second step consists
of summing over half the spins of the t lattice holding
alternate diagonals of

'

spins fixed. These steps can be
written as a recursion formula

To prove this identity, one must show that it is true for
all configurations of the spins too, , tj~. Both sides of the
identity are symmetric to interchanges of the t's and to
changing the signs of the t's (t —+ t for all m). —

This leaves three independent configurations to consider:

(a) all t =+1,
(b) one t = —1, the three others+ 1

(c) two t = —1, two t = +1.
To satisfy the identity for these three configurations one
must have

exp{3C Ltl} = 2 {II& ~-(-)}exp{3C*- [~j},
fs) m

(VI.5)

where the old spins for the ith step are labeled by s, the
new spins by t, and the old spins for the ith step are the
new spins from the previous (i —1st) step.

2 cosh4Ã = exp{A + 6B + C},

2 cosh2E = exp{A —C},

2 cosh 0 =' exp{A —28 + C}.

(VI.S)

(VI.9)

(VI.10)
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These equations can be solved to give A, B, and C

A (E) = ln2+ si {ln cosh4E+ 4 ln cosh2E}

8(E) = 8 ln cosh4E

C (E) = i8 {ln cosh4E —4 ln cosh2E}.

This proves the identity.

The interaction 3C~ now has the form

(UI. 11)

(VI.12)

(VI.13)

+2
3C,(tj = —A (E) + P P 28(E)t„t„&+ P g 8(E)

2 El 'C n

Xtntn+i~2 + P C(E)tntn+itn+itn+i+2 ~ (VI.14)

The critical value E, for E is known to be 0.440687
from Onsager's solution. Eqs. (VI.11)—(VI.13) give

A(E,) = 1.00376,

8(E,) = 0.137327,

C (E,) = —0.035960.

(VI.15)

(VI.16)

(VI.17)

The calculation of 3CiLtj is evidently much simpler than
the calculation of Z. Instead of computing 2~' configura-
tions of N2 spins, the problem reduced to summing over
1 spin coupled to four other fixed spins.

There is a constant term proportional to A (E) with a
coefFicient cV'/2 which is proportional to the total area of
the lattice. There is a new nearest-neighbor interaction
with coefficient 28(E). The factor 2 appears because each
nearest-neighbor coupling, for example tempt», is generated
from two different 'sums (tiotii comes both from the sum
over soi and the sum over si,). There is a diagonal nearest-
neighbor term (tootii is an example of a diagonal nearest-
neighbor product) with coefFicient 8(E), and a four spin
coupling term with coefficient C(E).

is also practical, provided one does not have to calculate
too many terms in the perturbation expansion. For the
nearest-neighbor Ising model, one knows -that expansions
in E have a radius of convergence given by E', 0.44.
Thus it seems likely that an expansion in the diagonal
coupling strength 0.14 and four spin coupling —0.04 would
be rapidly convergent.

In the second and subsequent steps, interactions of
arbitrary complexity are generated, not just the nearest-
neighbor, diagonal nearest-neighbor, and four spin cou-
plings. One expects the couplings of complex interactions
to be small because they arise only from the perturbation
expansion. As long as the nearest-neighbor term dominates
in 3C; ~ and the remaining terms are small, one can use
a perturbation expansion in the remaining terms to
compute 3C,.

There are two general principles illustrated by the above
discussion which are crucial to practical use of renormaliza-
tion group methods. The first principle is that the inter-
action 3C,Lsj should be dominated by short-range cou-
plings such as the nearest-neighbor coupling. For the
Kadanoff transformation it is specifically the nearest-
neighbor term that must dominate. For other transforma-
tions such as the one discussed by Niemeyer and Van
Leeuwen (1973) one could tolerate large diagonal nearest
neighbor coupling. Neither method is practical if couplings
are important for fourth or fifth nearest neighbors, say.

The second principle is that in the calculation of a
particular term in 3C,Ltj, for example the coefficient of
tempt», only a finite and small number of old spins s must
be involved. In calculating 3C& only two spins, sp& and s»,
contribute to the tempt~~ term. In calculating 3C2 and sub-
sequent interactions, more spins are involved, through the
perturbation calculations. If too many more spins are
involved there are too many configurations to sum over
and the calculation is impractical.

A similar but less trivial and only approximate simpli-
fication applies to subsequent steps. Consider the second
step, to be specific. The diagonal nearest-neighbor and
four spin interactions in 3CiLsj couple different spins being
summed over. For example, sp~ couples to s~2 through the
diagonal nearest-neighbor coupling. Hence the sum over sp~

cannot be separated from sums over the other spins exactly.
However, the strengths of the diagonal nearest-neighbor
and four spin couplings are small. Even at the critical
point these couplings have strengths 0.14 and —0.04 as
compared to the nearest-neighbor coupling 0.27 and the
original nearest-neighbor coupling 0.44. This suggests that
the diagonal nearest neighbor and four spin couplings can
be treated by perturbation theory.

If the diagonal and four spin couplings are treated to
first order, for example, then sp~ couples to s~2 but one
can ignore s~a in calculating the sum over soi (for reference
see Fig. 5). The reason for this is that it takes the product
of two diagonal couplings (soisi2 and si2s23) to obtain a
term coupling sp& to s». In general, to any finite order in
perturbation theory the sum over sp& involves only a finite
number of other spins, even if the lattice and correlation
length have a large size. Hence the calculation of 3C2(tj

To illustrate the use of the renormalization group trans-
formation to obtain critical exponents the Kadanoff trans-
formation in the simplest approximation will be discussed.
For this purpose 3C, igsj will be truncated to two types
of coupling: a nearest-neighbor coupling with strength E, ~

and a diagonal nearest-neighbor coupling with strength
L, i. The interaction 3C, t sj vill be calculated. as a per-
turbation expansion in both E; ~ and L, ~, to second order
in E; ~ and first order in L; ~. The result is

IC, = 2E, i'+ L; i,

L„=E; ~2

(VI.18)

(VI.19)

{The constant term in 3C;Ls) will not be studied; for a
calculation including these constants see Nauenberg and
Nienhuis (1974a,b)}. The terms 2E, i2 and E; i2 follow
from an expansion of 8(E) to order E2; the L, i term

The author has carried out calculations of the Kadanoff
transformation involving no more than 15 spins simulta-
neously (15 spins have 65 000 configurations) which give
critical exponents to an accuracy of about 0.2'P&. These
calculations will be described brieAy at the end of this
lecture.
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FIG. 6. Plot of the sequences (K;,L,) for three initial conditions. For trajectory (A), E'p = 0.3 Lp = 0. For (B), E'p = K'p, . —0.3921 Lp = 0.
For (C), Kp = 0.45, Lp = 0. Fori —+~, trajectory Agoes to 0, trajectory 8 goes to the fIxed point E' = —',, L* = 1/9, and trajectory C goes to ~.

arises from the diagonal nearest neighbor s—s couplings
which translate directly into nearest-neighbor t—t couplings
(e.g. , soosii becomes too'~io).

Suppose one specifies an initial nearest-neighbor coupling
Xo (with L, = 0) and iterates the equations (VI.18) and
(VI.19). In the limit of large i, one finds (from actual
calculation) three types of behavior. For illustration, see
Fig. 6.

(b) If Eo) 0.3921 then E, —+~, L, ~~. This is
evident if Ep is very large.

(c) There is a unique value Xo, for Eo, namely Ko,
'

~ 0.3921 for which E; and L, approach a nontrivial fixed
point E*, L* for i —+ ~. The fixed point satisfies

E*= 2X*'+ L,
'

LOfc

(VI.20)

(VI.21)

These equations have three solutions: E* = L* = 0,
E* = L* = ~, and the nontrivial solution

(VI.22)

(VI.23)

(a) If 0 ( Eo (0.3921 then X;—+0 and L, —+0 for
large i. It is evident without calculation that this happens
for very small Ep.

As explained in Sec. III, the susceptibility exponent v

can be calculated from the leading eigenvalue X of the
linearized equations about the fixed point. Let E = E*
+ k, L = L'+ / with k and ~ small. Then the linearized
equations giving P are

Xk = 4%*k+ 1,

Xl = 2E~k.

(VI.24)

(VI.25)

This leads to the equation

large i. A nearest-neighbor pair, say happ and tp&, after i steps,
corresponds to spins on the original lattice with separation
W2* in units of the original lattice spacing. For example,
after one step, tpp and tp~ correspond to spp and s~~ which
have separation V2; after two steps the new spin tpp and t~p

correspond to Spp and Sp2 on the original lattice with sepa-
ration 2, etc. The coupling between tpp and tpy becomes
small (small compared to the fixed point value 0.333)
when W2' becomes larger than the correlation length
for in this situation there should be very little coupling
between tpp and tp~. When Ep ——Ep. the correlation length
must be . infinite since E; never becomes small. Hence
Ep, represents an approximate value for E„ the critical
value. There is about a 10%%uo difference between E, and Ko,.
Ep & Ep, corresponds to temperatures below the critical
temperature. The behavior E;—+ ~ for i —+ ~ ensures
the existence of spontaneous magnetization: for large E;
and L; the dominant configuration is for t„ail to be +1
or t„all to be —1.

To understand the significance of these three alterna-
tives one must understand the meaning of E; and L; for X2= 4oX+ o (VI.26)
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which has two solutions

P g
= 1.7208,

X, = —0.3874.

(VI.27)

(VI.28)

(VI.36). However, it is still true that

Z = P exp{3C;Ptg} = Q exp{3C, i(s)}
I ~} fs}

(VI.37)

The dominant eigenvalue is Xi. The calculation of v from X~

is diferent from that of Sec. III because the length scale
changes by W2 per iteration instead of 2; hence

since the terms pt s„( ) sum to zero when the right. -hand
side of (VI.36) is summed over all t . (Note that each
new spin t appears only in 'one of the factors of the
product. ) For the spin-spin correlation function one has

) = (in@2)/lnhi

which gives v = 0.638.

(UI.29) = Z—'P t t, exp(3C, Pj} = Z—'P P t t,

The Onsager value for ) is 1; hence the result (VI.29) is
not very good.

(1 + pt- s-(- ))
Xg —exp{3C; it sg}.

m'
(VI.38)

The transformation (VI.5) has a flaw. The difficulty
arises in a study of the spin —spin correlation function F„:

The sums over the specific new spins t and to result in
factors ps„( ) and pso, respectively; thus

r = Z 'Q s soexp{3COLsj}.
fs}

Let Fi be the correlation function for'3Ci

r; = Z ' P s„so exp{3C;LsJ}.
fs}

(VI.30)

(UI.31)

Fim p Fi—1, n(m) ~
2

Therefore, at the fixed point and for large
~
m~

r; = p"2-*»(C/fmf-').

This expression has a nontrivial limit if

(VI.39)

(VI.40)

{VI.41)
There is a relation between F, and Fi &. This follows from
the fact that new spins t and to for stage i are the spins
s ( ~ and s(} from stagei —1. Hence

r; = Z ' p t to exp f 3C,Lt)} = Z ' g p t t,
{~} (~} {s}

XII t) s ( ) exp(3C' —iLsj} = Z '2 s ( )so
m' (s}

r. = c/[n[ ~

for large n, then one would have

(VI.42)

Thus if p = 2't'" there is no contradiction between the
Onsager —Yang result (VI.33) and the existence of a fixed
point. Alternatively, if one did not know the Onsager-
Yang result, knowing only that

Xexp(3C, )Lsj} = r, i „(~). (VI.32) r = p2'2-'~»C/~ m ~ (VI.43)

At the critical point one knows from the Onsager —Yang
calculation that

which has a nontrivial limit when

&ac 2q/4 (VI.44)

r. = c/[n[ —:

for ~n~ large, where C is a constant. From
formula (VI.32) and the fact that

(VI.33)
The simple approximate recursion equations (VI.18) and

the recursion (VI.19) are easily generalized to include p. Keeping to
second order in Ei ~ and first order L; ~, one obtains

[n(m)[ = W2/m[,

one obtains (at the critical point)

(VI.34) K, = p'(2K, )2+ L, i),

L„= p2Ei g~.

(VI.45)

(VI.46)

r,„=C2-*"/ In
I

' (VI 35) The nontrivial fixed point is given by

Kadanoff (unpublished) has generahzed the transforma-
tion (VI.5) to avoid this flaw. Kadanoff s generalization
reads

(1 + ptmsn(m))
exp(3C, (tj} = P +

2
exp(3C, )Lsj},

(VI.36)

where p is an arbitrary parameter in the transformation.
The sum over (s} is now a sum over all spins s, not just
half of thein, since there are no Kronecker deltas in Eq.

for large ~n~. This formula contradicts the existence of
a fixed point for large i: If 3C;fsg ~ 3C*Lsj for large i then
F; should approach the correlation function F„* for
3C*t sg. According to (VI.35), r;n ~ 0 for i —+ ~. One does
not expect 3C*I sf to have a zero correlation function, at
least not if 3C.*Lsj is a simple short-range type interaction.

K* = (2p'+ p') ',

2(2 2 + p4)
—2

(VI.47)

(VI.48)

The statement that p*(K*) is constant in the exact
theory is equivalent to the assertion that for p = p~ there
is a fixed Bee, namely a one parameter set of fixed points.
The parameter can be chosen to be E*. The proof of the

In the exact theory one expects to find a fixed point
only for p = p* = 2't'", but in the approximate theory
there is a fixed point for any p. The resolution of this
contradiction is simple. In the approximate theory one
can treat E* as the independent variable instead of p'.
for any K* there is a value for p, say p = p*(K*) for which
there is a fixed point. This is also true in the exact theory.
However, in the exact theory p*(K*) = 2't" is independent
of K*. In the simple approximation (VI.47), p*{K*) is
far from constant.
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TABLE II. .Results of block spin computations (see text for dehnitions of E~, etc.)

0.2384
0.2618
0.2897
0.2992
0.3104
0.3306

1.030
1.041
1.044
1.04421
1.04422
1.04417

0.17
0.23
0.2486
0.2497
0.2497
0.2494

0.95
0.984
1.002
0.998
0.988
0.97

1.131
1.093
1.054
1.041
1.027
1.003

h1

0.0287
0.0085
0.0013
0.0012
0.0021
0.0059

—0.00470
—0.00110-0.00006
—0.00010
—0.00040
—0.00140

—0.0029
—0.0005
—0.0002
—0.0006
—0.0014
—0.0040

t1+qu t ]zn(1 + p tmsn(m))
exp{3C*Lt)} = P n —exp(3C*I s)}.(VI.49)

2
exp(3C*Lt)} = exp{3C*Lu; q]}.

mJsI m

existence of the fixed line is as follows. Let 3C* be a fixed This expression (V1.54) is
point solution:

Then there is a one parameter family of fixed points
3C*I s; q] given by

(1+ qt„s„)
exp(3C*I t,q)} = g n exp(3C*js)}. (VI.50)

ts) n

Q.E.D. (VI.55)

Thus there is a fixed line 3C*(s; q) given by Eq. (VI.50)
when p = p*. Hence one expects that if one solves for p
as a function of K* in the exact theory, one will get p = p*
independently of K*: there wil be no solutions for p & p*.

L1 + p umtn(m))zn
Itj m 2

exp{3C*Lt; q)}.

This must be expL3C*(u; q)]. From Eq. (VI.50), this is

L1+ p*u t ( i) (1+ qt, „s„)zen n
'I t) fsI m

(VI.52)

The sum over the t spins can be performed explicitly,
giving

L1 + p qumsn(m))—exp(3C*Ls)}.
(sI m

(VI.53)

In this formula there is a new spin t„ for every s . The
proof that 3C*J t; q] is a fixed point is straightforward.
One must compute

The transformation of Niemeyer and Van I-eeuwen does
not suffer the same Raw as the original Kadanoff trans-
formation. The Niemeyer —Van Leeuwen transformation
involves a new spin which is defined to be the sign of
the sum of three old spins. For this case one cannot relate
the spin-spin correlation functions for different stages i,
and no parameter p is required. The question of when
the parameter p is required has been studied in detail
(in a different context) by Bell and Wilson (1974).

The simple approximation to the Kadanoff transforma-
tion discussed above gives no hint that p" (K*) should be
independent of K*. To test this (and other hypotheses)
the author set up a much more accurate approximation
to the Kadanoff approximation (see below). Calcula, tions
were performed on a CDC 7600 computer: one iteration
of the transformation required 3.3 sec. Fixed points were
obtained for values of K* from 0.24 to 0.33. The results
are as in Table II.

The formula (VI.53) is also obtained by summing the t

spig. s in the following expression

Li + qu t ] Pl + p*t s„& &]zen n—
ft] (sI m

(VI.54)

6

The value of p was calculated using Eq. (VI.44); the
value of v was obtained from the largest eigenvalue of
the linearized transformation about the fixed point using
Eq. (VI.29). The column p, * gives the value of p*(E*)'
calculated from the simple approximation (VI.47). The
columns labeled h~, h6, and hv give measures of the error
of the computer calculation (see below).

The values of p* for the computer calculation are close
to constant: they vary by only 0.015 while the simple
approximation gives a range 0.13. %here the computer
error (measured by h&, h, , and h7) is smallest (for K*
= 0.2897 and IC* = 0.2992) both p* and p vary hardly
at all. The results for K* = 0.2897 and 0.2992 are also
in extraordinarily good agreement with the exact results
(the exact numbers are g = 0.25 and v = 1).

FIG. 7. Subset of lattice containing all interactions included in the
colnputer calculations. The numbering of the lattice sites is for
convenience.

The computer calculation will now be outlined. A number
of details are omitted. In the computer calculation, 3C,Ls)
was represented by 217 different interaction constants in-
cluding two-spin, four-spin, six-spin, eight-spin, and ten-
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spin couplings. The couplings considered were all possible
couplings that fit into a 3 & 3 square, plus a subset of
couplings that fit into the set of 11 lattice sites shown
in Fig. 7. (A typical coupling constant is the coe%cient
of the product $i$5$6$io using the numbering of Fig. 7.)

The perturbation approach described earlier in this
lecture was not used in the computer calculation. Instead,
the infinite lattice was approximated by a finite square
lattice of size roughly 15 && 15 in units of the lattice
spacing. The square boundaries were at 45 to the lattice
axes (Fig. 8). Over most of this square, the new spin
variables t were held fixed at +1.Within a smaller area
in the center of the square (marked 8 in Fig. 8) contain-
ing 11 new spins (in the same geometry as Fig. 7) both
values ~1 were considered for the new spins.

The sum over all configurations of the old spins was
carried out sequentially, starting with the spin numbered 1
in Fig. 8, and continuing along the row of spins num-
bered 2, 3, etc. Then the spins in the second rom (12, 13,
etc.) were summed over. This sequential pattern was used
to sum over all the spins outside the inner area B. This
calculation was not performed exactly. Consider a typical
stage in this calculation, namely the sum over spin num-
ber 15. Spins 1 through 14 have already been summed
over, leaving a function of the remaining 203 spins. This

function was written in exponential form, e.g. ,

exp{BC ffI $15 . $217$}.

The interaction 3C,ft was written in polynomial form, and
then only the coupling of s» to nearby spins was included
in, the calculation. The "nearby spins" are those shown
in Fig. 9. The sum over s» was then performed for all
configurations of the 25 nearby spins of Fig. 9; the re-
maining 178 spins were fixed at +1. (In practice it was
possible to reduce the nearby spins to the subset C of 13
spins shown in Fig. 9. This was possible with the under-
standing that induced couplings over too long a distance
were neglected, e.g. , a coupling s22s26 was neglected. This
is not a new approximation, since such a coupling would
have been dropped anyways when the sum over s22 was
performed. Further details of simplifications like this will
not be reported here. )

Once all spins outside the area B in Fig. 8 were summed
over, the second step was a sum over all the spins inside
the area B. This sum was performed exactly for all con-
figurations of the new spins t j to t~j.

The result of this calculation was exp{BC,Pt7} evaluated
for all configurations in the t s inside the area B, with
all t's outside 8 set equal to +1. In principle this would
provide more than sufhcient information to determine the

FIG. 8. Subset of lattice used in com-
puter calculations. In region outside B,
all new spins t~ were set equal to
inside B both values ~1 were used.
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23

FIG. 9. Subset of spins included in the calculation of the sum over $1„.
In the actual computer program it was possible to replace a single
calculation over. this subset of spins by several calculations over regions
no larger than C.

217 coupling constants of 3C, since there are 2048 configura-
tions of the t's in the region B. In practice this information
is difFicult to extract. The difhculty is due to terms in
the interaction which contain products across the bound-
ary of 8, e.g. , i~of~~. These terms contribute to the de-
pendence of 3C,Ltj on ti, . . . , tii when the spins ti~, etc. are
equal to 1; this makes it difhcult to separate out specific
coupling constants. To simplify this and other parts of the
calculations a different representation of the interaction
was used.

Sm = 1 —20m~

1 —2Tm.

(VI.56)

(VI.57)

The values of 0. and ~ are 0 and 1. The second repre-
sentation of 3C, ~ was as products of .terms like
(1+ M"0.,06~7crio). (The constant kI" is not a function
only of M'; instead M" depends on all the couplings
in 3C; ~ which contain the spins s~, s6, s7, and s~o. A specia
conversion program was needed to convert 3C; ~ from the s
representation to the 0- representation. After 3C; was cal-
culated in the z representation, another conversion program
generated 3C, in the t representation. ) The advantage of
the 0- and r representation is that when s or t is equal
to +1 then 0. or 7 is equal to 0. This means all products
containing ~ or & are also 0.

The approximate form of the transformation described
above had one unexpected benefit: it violates the sym-
metry to s ~ —s„ for.all n. The reason for this violation
is the specification t = +1 outside the area 8 of Fig. 8.

First, to avoid exponentials in the computer program,
the interaction was represented in product form. That is,
terms like exp{3IIsis&s&sio} were replaced by the equivalent
expression (coshM) (1+ M'sis6s7si, ) where M' = tanhM.
This formula is equivalent to the exponential since s&s6s-, s&0

can only be &1. exp(3C, &Lsj} was then, a constant times
a product of terms like (1+ M'sis6s7s&0). The coupling
constant M' v as used in the program in place of M. This
representation was used for input and output in the
program. But in the actual calculation of 3C, from BC, ~

a second representation was used. I-et

To locate the fixed point 3C*jsg for a given value of K*,
a combination of straight iteration and Newton's method
was used. First a rough estimate of the fixed point was
guessed at. Secondly, 18 coupling constants were picked
out as being the most important (including the nearest-
and next nearest-neighbor couplings). Then for fixed values
of these 18 coupling constants and a 6xed value of p, the
transformation (VI.36) was iterated until the remaining
couplings stabilized (3 iterations, in practice). (In this
calculation the new values of the 18 picked couplings
were thrown out and replaced by their previously assigned
values after each iteration. ) At the conclusion of this
iteration the new values of the 18 picked couplings were
computed and compared to the fixed values. Newton's
method (using derivatives with respect to each of the
18 picked couplings, plus the derivative with respect to p)
was then used to approach a fixed point for all couplings.
Each derivative was computed numerically by recalcu-
lating the iteration with a small change in the appropriate
coupling constant.

The eigenvalue P was obtained by starting very close
to the fixed point but not at the fixed point, and then
iterating the transformation (VI.36) until all nonleading
eigenoperators had negligible coe%cients.

The largest couplings in the fixed point for E* = 0.2817
are shown in Table III (using the spin numbering of
Fig. 7). To give an indication of the sizes of the remaining
couplings the table below gives the distribution of cou-
plings by size, using factor of 2 bins, e.g., bin 5 contains
all couplings whose absolute value lies between 2 ' and 2 '.
Table IV gives the maximum coupling for each bin (col-

TABLE III. Dominant spin couplings in the Axed point Hamiltonian
for K* = 0.2817. The spin numbering shown in Fig. 7.

Spin product

$1$2

SIST

$1$2$4$g&

S1$3

S1$6

$2$4$6$8

S2S5$6Sz

Coef5,cient

0.281758
0.095562—0.017242
0.008422
0.004704—0.004008
0.001803

Spin product

$1$g$3$5
$1$gS&~$6

$2$4$6$z

$1$3$4$5

$1$2$3$4

$1$3$4$6

$1$5S6SV

Coe%cient

0.001762
—0.001615
—0.001045—0.001023

0.000736
—0.000612

0.000575

As a consequence, even if 3C; iLsj contained only sym-
metric interactions (i.e., only products of an even number
of spins), the new interaction 3C,Ltj contains odd inter-
actions. The strength of the odd interactions in 3C;Ltj
provided a good over-all measure of the accuracy of the
approximations. To prevent accumulation of error over
many iterations, these odd interactions were dropped (in
the t representation) before starting the next iteration.
The size of these odd interactions dropped considerably
as the computer progra, m was improved to its final form
(the author found many ways to increase the e%ciency
of the program, which in turn allowed increases in the
number of "nearby" spins. ) The columns labeled hi, h6,
and h7 in the table above show the coeKcients of the odd
interactions t„ tit4t5, and tit~t3, respectively (using the spin
numbering of Fig. 7). The table shows the values of these
odd interactions obtained from one iteration of the fixed
point 3C*(K*,s).
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TABLE IV. Distribution of coupling strengths in factor of 2 bins for the Hamiltonian with 'E* = 0,2817. The column labeled Max gives the
upper end of each bin.

Bln

0.5
0.25
0 ' 125
0.0625
0.0312
0.0156
0.0078
0.0039

No. of
couplings Bin

9
10
11
12
13
14
15

Max

0.00195
0.00098
0.00049
0.00024
0.00012
0.00006
0.00003

No. of
couplings

5
3
9
9
9

11
20

Bin

16
17
18
19
20
21
22

0.000015
0.0000076
0.0000038
0.0000019
0.0(NX$09
0.ON)0005
0.00000024

No. of
couplings

31
31
32
23
9

11
3

umn MAX) and the number of couplings per bin. The
couplings in bins 11, 12, and 13 can be important because
there are so many of them; the couplings in higher bins
are probably negligible. This has not been investigated
however.

\

tions of the Hamiltonians H ~ involving only a finite
number of parameters will be defined; these parameters
have been calculated numerically. The calculations were
performed on a CDC 7600 in runs requiring about ten
minutes each.

There are many further questions about this calculation
that will not be discussed here. The principal conclusion
is however clear: one can do precise calculations using
pure renormalization group methods with the only ap-
proximations being based on locality. The approximations
were (i) to restrict the interactions in 3C~(sf to sufIiciently
local interactions, and (ii) to 'restrict the range of effective
interactions generated by the sequential summation of
spins outside the region 8 in Fig. 8, as discussed earlier.
No perturbation expansions were used.

The dominant interaction at the fixed point is the
nearest-neighbor coupling. For accurate calculations one
must include many more; but for a qualitative picture
the nearest-neighbor constant E plus perhaps the next
nearest-neighbor coupling L, should be enough. The re-
maining couplings are at least a factor 5 smaller than L,.
This is also true in the Niemeyer —Van I.eeuwen calcula-
tions. Thus the old idea of KadanoG that there would be
effective nearest-neighbor Ising models for block spins is
very close to the truth.

It will be much more dificult to do precise calculations
for the two-dimensional Heisenberg model or the three-
dimensional Ising model. The reason is a practical one:
the number of configurations needed becomes astronomical.
The three dimensional analogue of Fig. 7, for example,
would contain over 30 spins corresponding to 2" —10'
configurations. Thus a study of various methods will be
needed to find the most economical one. For example,
Kadanoff and Houghton (1975) and Kadanoff (1975) have
recently obtained more accurate results than mine using
a method that may be generalizable to three dimensions.

Vil. THE KONDO PROBLEM: INTRODUCTION
AND DEFINITION OF BASIS

The remaining sections will be concerned with the
Kondo problem. A short summary of this work appears
in Wilson (1974a). The classical Kondo problem (defined
below) will be solved by approximate numerical calcula-
tions within a renormalization group framework. This
means one will define a renormalization group transforma-
tion T and a sequence of effective Hamiltonians H~
generated by the transformation. Approximate representa-

The Kondo problem is an important problem in its
own right. In addition, the solution of the Kondo problem
is the first example where the full renormalization program
(as the author conceives it) has been realized: the formal
aspects of the fixed points, eigenoperators, and scaling
laws will be blended with the practical-aspect of numerical
approximate calculations of effective interactions to give
a quantitative solution (the present accuracy is a few
percent) to a problem that previously had seemed hopeless.
The errors of the numerical calculation have been de-
termined (although not rigorously) as part of the cal-
culation and can be reduced by using more computing time.

There have also been numerical calculations within the
renormalization group framework for critical phenomena.
The first calculations, using the "approximate recursion
formula" (Wilson, 1971) were only quahtative, and no
systematic procedure is known for improving the accuracy
of these calculations. Some calculations have already been
performed on the two-dimensional Ising case as discussed
in the previous lecture; these calculations only confirm
the known solution of the two-dimensional Ising model.
So at present the Kondo calculation sets the standards
for what a renormalization group calculation can accomplish.

It will also become evident that numerous tricks have
been used to obtain the most practical formulation of the
renormalization group transformation for the Kondo prob-
lem and to squeeze the maximum amount o'f information
from the calculations. This is also true of the work on
critical phenomena. It is likely to be true of other problems
solved by renormalization group methods. The renormaliza-
tion group formalism can be set up in a fairly logical manner
to reduce a problem to onei nvolving a finite number of
degrees of freedom at each iteration. Unfortunately for
practical calculations success or failure. can depend on
whether the finite number is 1 or 10 or 100, and inevitably
one must resort to tricks to achieve 1 or 10 in place of 10
or 100. If one finds this prospect discouraging, one shouM
remember that the successful tricks of one generation
become the more formal and more easily learned mathe-
matical methods of the next generation.

The Kondo problem is concerned with magnetic im-
purities in a nonmagnetic metal, and more particularly,
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the question of whether the magnetic moment of the
impurity persists down to zero temperature. It is a part
of the more general problem of how ferromagnetism
develops, which is not very well understood.

x(H = 0) = p (kT ') TrS,'/Trl = —' p, '(kT) (VII.2)

In particular, the susceptibility behaves as T ' as a func-
tion of temperature.

For comparison consider a system of two electrons with
(in the absence of a field) two energy levels, one having
spin one, the other having spin zero. Assuming the two
levels have an energy separation 6E, consider the thermo-
dynamics for kT « 5E. In this case the excited state is
irrelevant. The susceptibility is therefore (5, is the total
spin of the two electrons)

x(H = 0) = p'(kT) —' TrS '/Tr1, (VII.3)

where the trace is over the ground state levels and p, is
the ground state moment. If the ground state has spin 0
then x(H = 0) is 0; the effect of the excited state. is to
give an exponential dependence exp( —6E/kT) to X. If the
ground state has spin 1, then X again behaves as T '

as T —+0.

The Kondo problem to be discussed here involves a
single spin 2 impurity coupled to the conduction band
of a nonmagnetic metal. The impurity is said to have
a moment if the susceptibility due to the impurity shows
a 1/T dependence. (To obtain the susceptibility due to
the impurity one has to subtract the susceptibility of the
pure metal from the total susceptibility of metal plus
impurity. )

The problem as described here is a.considerable idealiza-
tion of the experimental situation. Experimental data
come from dilute alloys such as Cu —Fe, Cu—Mn, Au —Vn,
etc. (e.g. , copper is the metal, iron or manganese is the
impurity). The impurities are present in concentrations
around 0.01%%uz. One tries to use concentrations small
enough so that the susceptibility due to the impurities is
linear in the impurity concentration, in which case one
can extract the susceptibility due to a single impurity.
In practice there are ferromagnetic couplings between
impurities which make it difFicult to obtain linearity at
very low temperatures. A very serious complication of the
experimental situation is that the conduction band involves
d-state electrons, which are coupled to d-band electrons
of the impurity. The Anderson Hamiltonian (Anderson,
1961) which describes this d-band coupling is much more
complicated than the Kondo Hamiltonian defined below,

As a preliminary, a brief review of the thermodynamics
of an electron spin will be given. Consider a system with
two spin states +—,

' and —2. The Hamiltonian is —pHS,
where S, is the spin, II is the external field, and p is the
magnetic moment. The magnetization at a tempera-
ture T is

M = p TrLS. exp(pHS. /kT) j/Tr(exp(pHS, /kT) j
(p/2) tanh(pH/2kT). (VII.1)

The susceptibility in zero field is BM/BH for H = 0; this
is easily seen to be

in which the conduction band contains only s-wave elec-
trons. A final simplification of the model is that ordinary
potential scattering of conduction band electrons by the
impurity is ignored. However, it is relatively straight-
forward to generalize the model to include s-wave scattering.

The question one is interested in both experimentally
and theoretically is the zero temperature behavior of an
impurity with weak antiferromagnetic coupling to the
conduction band. The weak coupling means that at high
temperatures the coupling is negligible (especially if kT is
much larger than the coupling energy) and the suscepti-
bility shows the T ' temperature dependence. The question
is whether the T ' dependence continues to zero tempera-
ture. Experimentally the best evidence indicates that X is
a constant at zero temperature /see, e.g. G. T. Rado and
H. Suhl (1973) and Boyce and Slichter (1974)g. The calcula-
tion reported here shows that & is a constant at 0 tempera-
ture and determines this constants as a function of the
initial coupling strength: see Sec. IX.

Oldie is also interested in the specific heat near zero
temperature, the zero temperature resistivity, etc. In, this
paper the ratio of the specific heat to the susceptibility
at zero temperature will be discussed in detail: the specific
heat is found to be linear in T for T~ 0. The resistivity
will not be discussed; it is dependent on the strength of
potential scattering which has been ignored in the cal-
culations to date. Many other questions of practical interest
are ignored also; the purpose of these lectures is to describe
the method of solution rather than detailed results (the
calculations so far have given only the susceptibili. ty and
specific heat; other quantities have not been determined).

There exist many good reviews of the Kondo problem in
the literature. Therefore, no further background on the
Kondo problem will be given here. A good review of older
theoretical work is given by Kondo (1969). Volume V of
the Rado —Suhl books on Magnetism LRado and Suhl (1973)$
contains many articles on the Kondo problem. Rizzuto
(1974) gives a recent experimental review. There are also
reviews by Griiner (1974) and Gruner and Zawadowski
(1974).

The relation of the calculations described here to previous
work on the Kondo effect is, briefIy, as follows. Yuval and
Anderson (1970) and Anderson, Yuval, and Hamann (1970a,
1970b) had argued using an analogy to a one dimensional
Coulomb gas that the zero temperature susceptibility is a
constant instead of behaving as T '. Prior to their approach,
theoretical predictions at 0 temper'ature generally involved
lnT terms coming from higher orders of perturbation theory
gas in Eq. (IX..57)]. The approach of Anderson and Yuval
did not lead to precise quantitative results at 0 temperature;
to the author's knowledge, the best calculations based on
the Anderson —Yuval approach are the Monte Carlo calcu-
lations of Schotte and Schotte (1971) which vill be dis-
cussed further in Lecture IX.

Anderson (1970) has given a formulation of the renor-
malization group approach which is very similar in spirit
to tke method complicated than the Kondo Hamiltonian
defined below, in which the conduction band contains only
s-wave electrons. A final simplification of the model is that
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FIG. 10. Two level system illustrating the maxi-
mum energy scale of the conduction band.

le

FIG. 1j.. Four level sys-
tem for two different
electrons in the conduc-
tion band with two differ-
ent energy scales.

leg

ordinary potential scattering of conduction band electrons
by the impurity is ignored. However, it is relatively straight-
forward to generalize the model to include s-wave scattering.

. le

The question one is interested in both experimentally
and theoretically is the zero temperature behavior of an
impurity with weak antiferromagnetic coupling to the
conduction band. The weak coupling means that at high
temperatures the coupling is negligible (especially if kT
is much larger than the coupling energy) and the suscep-
tibility shows the T ' temperature dependence. The question
is whether the T ' dependence continues to zero tempera-
ture. Experimentally the best evidence indicates that & is
a constant at zero temperature. '2

The calculation reported here shows that & is a constant
at 0 temperature and determines this constant as a function
of the initial coupling strength: see Lecture Ix..

excited to well outside Fermi surface. This can be illus-
trated by .a two level system with an energy level spacing
of order 1 eV (Fig. 10). All energy scales below 1 eV exist
also. For example, an electron reasonably close to the
Fermi surface can be excited to a state somewhat above
the Fermi surface with an excitation energy of only 0.1 eV.
This electron can be excited independently of the first
electron; the energy level structure now looks like Fig. 11.
Similarly, by going closer and closer to the Fermi surface
one finds electrons which can be excited with only 0.01 eV
energy, or 0.001 eV energy, etc. The resulting energy level
structure is shown in Fig. 12.

One is also interested in the specific heat near zero tem-
perature, the zero temperature resistivity, etc. In these
lectures the ratio of the specific heat to the susceptibility at
zero temperature will be discussed in detail: the specific
heat is found to be linear in T for T —+0, The resistivity
will not be discussed; it is dependent on the strength of
potential scattering which has been ignored in the calcula-
tions to date. The method developed here is more complex
and more powerful than Anderson's but the basic ideas are
the same. In addition, the methods developed here are a part
of a continuing development of renormalization-group
methods for Hamiltonian systems; earlier work is reported in
Wilson (1965, 1970). Abrikosov and Migdal (1970) and
Fowler and Zawadowski (1971) have applied the classical
Gell-Mann —Low renormalization group methods to the
Kondo problem, but they can only obtain high temperature
results where perturbation theory can be used (see Sec. IX).

A survey of the Kondo calculation will now be given,
before going into details. Another overview is presented
in a talk by the author, published elsewhere (Wilson
1975). It is recommended (but not necessary) that the
reader read Wilson (1975) before struggling with the re-
mainder of this paper.

This structure is oversimplified: actually there are a
continuum of excitation energies below 1 eV. However,
order of magnitudes of energies are more important than
their precise values. For qualitative purposes one can lump
together all energy level spacings within a factor 2 or so
of each other. The result of combining scales like this is
that there are a large number of energy levels for each

. le

„.0 le V

le

First a rough description of
duction band will be given.
mechanics are determined by
absolute value of an energy is
largest scale is a few electron
energy when ari electron deep

the energy scales in a con-
Energy scales in quantum
energy level spacings. The

unimportant (usually). The
volts; this is the excitation
inside the Fermi surface- is

FIG. 12. Multiple energy scale structure of many-electron states of
the conduction band.
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states correspond (roughly) to spherical layers surrounding
the imp urity, as shown in Fig. 13. That is, the wave
function for the second state of the Kondo basis is nonzero
(except for small tails) only in the first spherical shell
marked g 1 in Fig. 13, with width Al. Here A. is a pa-
rameter &1; it can be chosen arbitrarily. See below. For
accidental reasons the width of the first layer is denoted
A& rather than A. The third state is predominantly con-
tained in shell g2, etc. The shells increase in width; and
correspondingly the momentum spread of succeeding states
decreases. All wave functions in the Kondo basis are de-
fined so that their average momentum is the Fermi mo-
mentum. As n increases the nth state is concentrated
closer and closer to the Fermi surface; thus the energy
scale for these states decreases being A "I' for the
nth state.

FIG. 13. Onion-like spherical shells giving the location of successive
wave functions in the Kondo basis. The size of the smallest (inner) shell
is a few Angstrom units.

energy scale. Figure 12 with only two energy levels per
scale is thus an oversimplification.

Here and throughout the Kondo calculations the em-
phasis is on properties of the conduction band rather
than the impurity itself. One might think that the peculiar
nature of the Kondo problem is due to the magnetic im-
purity, not the conduction band. The importance of the
impurity is simple: it forces one to study the conduction
band as a many-electrori system. The cause of this is spin-
fiip scat tering o6 the impurity, which is possible only
when the impurity is magnetic (i.e., has a spin). Suppose
two electrons, both with spin up, try to spin-Rip scatter
from a spin-down impurity. The first electron can spin-Aip
scatter, but the result is to leave the impurity with spin up.
The second electron now cannot spin-Rip scatter because
this would violate spin conservation. Thus one cannot
treat the electrons of the conduction band independently:
one must treat the conduction band as a many electron
system. Inevitably, as a many-electron system, the con-
duction band has the energy level structure indicated in
Fig. 12, with each energy scale corresponding to a dif-
ferent set of electrons.

The normal description of individual electrons in the
conduction band is in terms of plane wave or Bloch wave
states. This description is poorly suited. to the Kondo
calculations. The trouble is that there are too many plane
wave states with almost the same energy (due to the
plane wave states being close to a continuum for a sample
of macroscopic size). For the Kondo calculation it was
necessary to define a new basis of states in the conduction
band which emphasizes those states with the largest direct
or indirect interaction with the impurity. The states
chosen are closer to the localized Wannier states than the
Bloch waves. The first state is (at least roughly) a Wannier
state localized about the impurity, as localized as possible
while still being in the conduction band. The remaining

In this basis, electron states are neglected where the
electron is far away from the impurity in position space
and far away from the Fermi surface in momentum space.
The motivation for this is as follows. The only reason
for considering states far away from the impurity at all
is that at very low temperatures only electrons very close
to the Fermi surface are thermally excited. Being close to
the Fermi surface in momentum space means the elec-
trons have very broad wave functions in position space.
At low temperatures the impurity interacts with these
states near the Fermi surface; hence they must be included
in the basis.

It is possible to add more states to the Kondo basis to
make it complete. This is explained later in this Section.
It turns out to be a good approximation (for static ther-
modynamic calculations) to neglect these extra states. See
later in this Section for more discussion.

The conduction band is now approximated by an infinite
set of discrete electron levels (called the "Kondo basis")
arranged much like layers of an onion surrounding the
impurity. The energy scale on the nth level is of order A "I'.

The heart of the Kondo calculation is a solution of the
Kondo Hamiltonian in the Kondo basis using numerical
methods. This proceeds in steps. First one solves the
impurity coupled to the first Kondo state (in the num-
bering of Sec. VIII this is the 0th step). The next step is
to add the second layer of the onion, namely the terms
involving the second Kondo state, and solve the combined
coupling of the first and second conduction band states
to the impurity. Then one adds the third state, then the
fourth state, and so forth. This corresponds to solving for
the eigenvalues at successively smaller and smaller energy
scales in Fig. 12.

Beyond the first few steps this calculation cannot be
done exactly: there are too many states. To be precise,
there are 2'"+' states in the nth step; when n is about 5
or higher this number is too large for an exact calculation.
Therefore, an approximate method is used which generates
only the lowest energy levels at each step; in practice
this means calculating about the first 1000 energy levels.
Note that for large n, say n = 100, the first 1000 energy
levels are a negligible fraction of the total number of levels
(2"' for n = 100).
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The basic results of the Kondo calculation can be sum-
marized in a geographical allegory. The sequence of Hamil-
tonians corresponding to adding successive layers of the
onion to the impurity will be represented by a railroad
track. The length of track from the beginning to the nth
tie represents the Hamiltonian containing n conduction
band single electron states (that is, the eth Hamiltonian
contains n particie creation and destruction operators).
There is a separate railroad track for each diferent strength
of coupling to the i~purity. The approximate numerical
solution of this sequence of Hamiltonians is represented
by a railroad car which travels down the track. Solving
the nth Hamiltonian corresponds to having the railroad
car at the nth tie on the track. The set of energy levels
actually computed corresponds to the length of track
covered by the railroad car; as the car moves down the
track (i.e., as n increases) it covers a smaller and smaller
fraction of the total track up to the nth tie.

The results of the calculation correspond to the arrange-
ment of railroad tracks shown in Fig. 14. The tracks for
two special cases: impurity coupling J = 0 and J = —~,
are simple and featureless. In these cases the energy levels
after n steps satisfy a simple scaling relation to the energy
levels at n+2 , steps (except for very small n) Thi.s is
explained in Sec. VIII. In renormalization group language,
the iterations for J = 0 and J = —~ each lead to fixed

points. The interesting case is small negative J. For
J = —0.055 (and A = 2.25) for example, the track stays
close to the J = 0 track past the 30th tie; but near the
40th tie (40th iteration) the track moves away from the
J = 0 track and moves over to the J = —~ track, which
it approaches asymptotically for large tie number e. The
crossover from the J = 0 track to the J = —~ track
takes place for all negative values of J.

The full set of energy levels for the case J = —0.055
is very different from either the J = 0 or J = —~ energy
levels. But the levels actually computed by computer stay
close to the analogous J = 0 levels until near n = 40.
Much beyond n = 40 the levels actually computed are
similar to the analogous strong coupling levels. Large n
(n)) 40) corresponds to the railroad car being past the
junction with the strong coupling track. Then the energy
levels actually calculated for J = —0.055 (corresponding .

to the region of track covered by the railroad are
indistinguishable from the corresponding levels & the
strong coupling track. However, if one knew the~ ire set
of energy levels for large m there would be significant
differences between small J and large J at higher energies,
corresponding to the large separation between the tracks at
small n (large energy scales). For e near 40 (the crossover
region) the computed levels for J = —0.055 are very dif-
ferent from either the J = 0 or J = —~ levels.

J=O J ~ (-.055)

FIG. 14. Railroad track analogy for the
Kondo calculation. Different tracks corre-
spond to different initial values of J. A
track from the top of the 6gure to the nth
tie corresponds to the Kondo Hamiltonian
with n electron states kept. The railroad cars
illustrate the subset of energy levels actually
kept in the numerical calculations.

corresponding car

on J &0 track
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l'IG. 15. Discretization on a logarithmic scale in k space.

The set of 1000 or so many-electron energy levels com-
puted for given n is incomplete, both because the con-
duction band levels for higher e are omitted and because
the levels above the first 1000 are omitted. Nevertheless,
one can do some rough thermodynamic calculations using
these levels. Thermodynamic calculations are based on
the trace Tr exp —PH, where P = 1/kT, a,nd H is the
Hamiltonian. If II were completely diagonalized, one would
simply add up exp —PE for all eigenvalues E to com-
pute the trace. Approximations of two types can be made
in calcu', ,,ting the trace. First, energies E which are much
larger F~,n k T can be ignored since for these levels
exp —P %is small. Secondly, terms in H« kT can be
neglecte because they -do not change F. by enough to
matter. ID consequence one can use the levels after e
iterations for approximate thermodynamic calculations,
provided the value of n is chosen appropriately. Since
the energy scales less than A "~2 are neglected in the nth
iteration, PA "" must be «1. In the actual calculations,
the highest energies kept are of order 7 )& A "~'; for higher
energies, to be negligible, one must have P 7-A "i')) 1.
This means the best value for P is around (1/2.5)A"".
Thus the numerical results for the eth iteration will de-
termine the thermodynamics for temperatures k T or
order P ~"

From the map in Fig. 15 it is seen that for very low
temperatures or zero temperature (kT A ""with n ) 40
if J = —0.055) the thermodynamics for weak coupling is
very similar to the thermodynamics for strong coupling
(J = —~). This is the principal qualitative result of the
Kondo calculation. Precise numbers are obtained in
Sec. IX.

culations are possible and one relies entirely on the nu-
merical computations.

In the strong coupling theory the moment of the im-
purity disappears. The impurity moment combines with
an electron spin from the conduction band to form a
singlet state and there is no 1/T term in the susceptibility.
For weak coupling the consequence of the crossover to
strong coupling is that the impurity susceptibility increases
as 1/T until T reaches roughly a temperature T» cor-
responding to the crossover (i.e., kT» is of order A ""
where n is in the crossover region). Below T» the impurity
susceptibility shows strong coupling behavior, that is, it is
a constant (of order 1/T») instead of,.increasing further.

%hy the crossover from weak to strong coupling takes
place will not be explained. The author has no simple
physical argument for it. It is the result of a complicated
numerical calculation. There are enough checks on this
calculation (reported in Sec. VIII and IX) so that it is
very difFicult to challenge the result. Nevertheless, it is
not explained.

The renormalization group tools developed in Sec. I—V
will be important for analyzing the behavior of the rail-
road tracks near the two extremes of weak and strong
coupling. On the weak coupling side, the beginning of the
crossover is governed by a single marginal eigenoperator
of the kind discussed in Sec. V. It will be necessary to
define a phenomenological coupling constant (called s„)
to parameterize the marginal variable, which varies with n.
The variable s„ is proportional to J in lowest order. The
dependence of s„on e will be studied both analytically
and numerically. On the strong coupling side the end of
the crossover is governed by two separate "irrelevant"
operators. The coupling constants of these operators will
be obtained by matching to the numerical calculations.
The two coupling constants will then be used in analytic
calculations of the zero temperature behavior of the sus-
ceptibility and specific heats.

The range of energies kept in the numerical calculations
is meager (from A "i to about 7 && A "i'). This is despite
the fact that over 1000 states are computed. The problem
is that only a few electrons are needed to generate 1000
different levels so 1000 energy levels can only cover a
small range of energies. This makes it hard to do accurate
thermodynamic calculations using only thy states com-
puted numerically. Therefore, the numerical calculations
have been supplemented by more complete analytic cal-
culations whenever this is possible. Analytic calculations
have been done where the track is near the J = 0 track,
using perturbation expansions in J. The thermodynamics
can be calculated directly from an expansion in J. Also
individual energy levels can be computed and compared
with numerical calculations. These analytic calculations
are reported in Sec. VIII and IX. and an Appendix.
Analytic calculations were also performed for very large e
where the small J track is close to the strong coupling
track. These are reported also in Sec. VIII and IX. Once
again one can calculate thermodynamic quantities or
individual energy levels in these analytic calculations. In
the "crossover region" where the track crosses over from
the weak to the strong coupling tracks, no analytic cal-

The Kondo Hamiltonian, in the form to be discussed
in this paper, is

dkaI, +al, —JR+ed. g (VII.4)

where

and

(ai-, ,ak.+} = 8(k —k').

The operator a~ is a conduction band electron destruction
operator for an electron in an s-wave state about the
origin of momentum k. The angular momentum indices
are not indicated because there is no coupling between

Finally, the susceptibility as a function of temperature
near T~ was calculated directly from the numerical eigen-
values: see Sec. IX.
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s-wave electrons and higher partial waves (the kinetic
energy is diagonal and by assumption higher partial waves
will not couple to the impurity). However ai does have
a spin index p. one should write a» but in practice the p
will be omitted. The a~+@I, term is the kinetic energy of
the conduction band. The energy k should have been
written ~I, —p. , where p is the chemical potential, and el,

is the electron energy. However, this has been simplified,
first by measuring the momentum relative to the Fermi
momentum k~ for which ~~~ = p. That is, the true mo-
mentum is k + k~ not k. Secondly, oi, —p has been
linearized about k = 0: e& —p, ~ k for k near 0. Only the
linear term has been kept. Thirdly, k is measured in units
of the band edge momentum so the maximum of

~

k
~

is 1;
it is also assumed that the band is symmetric about the
Fermi momentum. Finally the energy scale has been chosen
to avoid a constant factor in front of k.

The' operator A destroys an electron in the vicinity of
the impurity (the impurity is assumed to lie at the origin).

also has a spin index p., for example, A+0. A means
Z„„A„0.„„A„, where a is a Pauli spin matrix. The matrices
r = (r„r„,r,) are the Pauli matrices for the impurity.J is the coupling strength of the impurity to the con-
duction band.

(There may be confusion between the s wave of "s-wave
conduction band" and the s wave of "electron in an s-wave
state about the impurity. " An s-wave conduction band is
built from s-wave states of each atom in the metal. The
resulting conduction band states can have any orbital
angular momentum about the impurity. We consider here
only s states about the impurity. A d-wave conduction
band is built of d-wave atomic orbitals: since there are 10
of these (counting spin) for each atom, a d-wave conduc-
tion band is described by operators a», where p, has 10
values instead of two. )

In the renorrnalization group analysis one finds that the
logarithm in order J2 is symptomatic of the existence of
a marginal operator. Correspondingly one can define a
temperature dependent coupling which to a first approxi-
mation is

J(T) = 1/(1 —4J lnkT) (VII.6)

and the susceptibility X(T) has a good expansion in terms
of J(T) (see Sec. V for the term "good"):

X(T) = 4(1/kT){1+4J(T) + cJ'(T) + . .), (VII.7)
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When J is small, the susceptibility of the model (VII.4)
can be calculated by perturbation theory in J; the result
to order J' is (assuming unit magnetic moment and unit
g factors for electron and impurity)

X = 4(1/kT) (1+4J+ 16J'lnkT+ cJ'+ .). (VII.5)

(c is a constant). If one loqks at only the J term it would
appear that X is proportional to T ' for T~ 0. However,
for T —+ 0 the lnkT term spoils the argument; instead for
lnkT 1/J the perturbation expansion ceases to be valid
because the second order term (and higher orders as well)
are as, large as the first order term. Thus the true zero
temperature behavior cannot be determined from Eq.
(VII.5).

where this expansion is free of logarithms. This much has
already been learned using the Gell-Mann —Low. renormal-
ization group and related diagram summation techniques.

For ferromagnetic coupling (J ) 0) the function J(T)
goes to zero as T —& 0; in this case X(T) behaves as T '
for T —+0 and nothing further needs to be said, at least
for small J.

For antiferromagnetic coupling J(T) becomes large for
lnkT 1/J and a nonperturbative calculation is needed
to obtain the zero temperature limit. But if J is small,
it is only at extremely small temperatures that perturba-
tion theory fails. This is seen experimentally. The energy
scale set by the band edge corresponds to 104 K, while
specific heat measurements in Cu Cr show a maximum at
about 1'K LTriplett and Phillips (1971)g. (The specific heat
increases as J(T) increases as long as perturbation theory is
valid; a maximum is a nonperturbative eGect. ) More gen-
erally the temperature Tx at which J(T) becomes of order 1
is called the Rondo temperature. This is a qualitative defi-
nition of T&. various quantitative definitions exist (Kondo,
1969). Experimental values of T& vary from much less
than 1 K to more than 300'K.

The next topic is to set up an approximation to H~
which will be used in the numerical calculation. The
Hamiltonian which will be investigated numerically has
the form

& = Z & ""(fn+fn+i+ fr+i f ) —Jfo+o fo ~, (VII.8)

where f„are a set of discrete electron destruction operators
to be defined 1ater; J is proportional to J, and A. vill be
explained below. This Hamiltonian is called a "hopping"
Hamiltonian (because the coupling of f to f„+i is remi-
niscent of nearest-neighbor coupling models on a lattice
which are used as models of conduction). There are no
diagonal terms (i.e., f +f„) in Eq. (VII.8) because the
average energy of the state created by f will be the Fermi
energy, and the Fermi energy has already been subtracted
(by a chemical potential term) from the original Hamil-
tonian of Eq. (VII.4).

Three steps are needed to obtain the hopping Hamil-
tonian from H~. The first step is a discretization of the
operators aj, . The continuum of points k (—1 ( k ( 1)
will be replaced by a discrete set. The discretization will
be done on a logarithmic scale (Fig. 5): the discrete values
of k' are 1, 1/A, 1/A2, etc. and —1, —1/A, —1/A2, etc. ,
where A is an arbitrary parameter )1. Calculations have
been done for A = 2, 2.25, 2.5, and 3; the continuum limit
is the limit A —+ 1. For A. A 1 the Hamiltonian obtained
from the discretization is only an approximation to HIf,-.

One can use the discretization to define a sequence of
intervals: the mth interval is A. ' ( k &' A (there is an
equivalent interval for negative k also). Inside each interval
one can construct a complete set of wave functions P
The first wave function P o(k) we choose to be a constant;
ater normalization one obtains

P o(k) = A-"(1 —4-')—*' (4-"—' ( k ( A™) (VII 9)
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outside the interval P 0(k) is defined to be zero. The wave
functions p I(k) can be chosen to be

of k in the mth interval; these integrals are equal to

P l(k) = A "(1—A ') '*

X exp (ice kl) (A. m ' ( k ( A m), (VII.10)
(k —k }P I*(k}P (k)dk.

with

= 2nA. /(1 —A '); (VII.11)

again these wave functions vanish outside the interval.

The wave functions p l(k) together with f I(—k) form
a complete, orthogonal, discrete set of wave functions for
the interval —1 ( k & 1, for any value of A & 1. One can
therefore expand aj, in these wave functions:

(VII.12)

If A is close to 1 so that the intervals are small, then
k —k is small and the coupling of a ~ and b g to a
and b is small. If this coupling can be neglected, then
only the operators a and b couple to the impurity,
and when the impurity susceptibility is calculated the
remaining operators a ~ and b g do not contribute. For
A. = 2 to 3 it is not so obvious that the a g and b g can
be neglected, but actual calculations (given later) have
shown that the approximation is good to a few percent
accuracy even for A = 3 and arguments will be given later
to explain this result.

The operators a ~ and b ~ define a complete set of inde-
pendent, discrete, electron destruction operators satisfying
the standard anticommutation rules

Hx ~(1~+3. ') gA (a+a —b+b )
m=p

—JA+eA - ~

with

(VII.14)

A = (1 —A I)& P h. ""(a + b ). (VII.15)

(The factor 2(1 + A. ')A™in Hx is the integral

kP '(k)dk;

the factor (1 —A ')lA ~' in A is the integral

(k)dk. )

What has been neglected in this approximation? The
formula for A is exact because the integrals

PmI (k)dk

(VII.13)

We now approximate H~ by neglecting a ~ and b ~ for
l & 0. The operators a p and b p will be denoted a and b

for short; likewise P„denotes $„0. The resulting approxi-
mation to H~ is

Now the motivation for the logarithmic discretization
will be discussed. As background, it is useful to consider
a much simpler quantum mechanical problem. Suppose
one has a Hamiltonian H = Hp + Hl, where Ho is a
Hamiltonian with energy level spacing of order 1, while
H» is of order 0.0j.. Suppose that Hp has a degenerate
ground sta, te, consisting for example of two states

~
0)

and
~
1). Suppose also that H0 is a nontrivial Harniltonian

which can be solved only approximately and . that in
practice, one can calculate its energy levels only to about
5% accuracy. Finally, suppose that Hl splits the de-
generate ground states, and it is the resulting energy
splitting that one wants to calculate. For example one
might be computing the ground state 6ne structure split-
ting for a complex atom. This is a standard problem:
one first diagonalizes Hp as best one can, obtaining ap-
proximate wave functions for the states ~0) and

~
1). The

ground state splitting is now obtained by degenerate per-
turbation theory, for which one must calculate the matrix
elements (0

~
Hl ( 0), (1

~

Hl
~
0), etc. The accuracy of the

calculation depends on the accuracy with which these
matrix elements can be calculated; if the wave functions
are known to 5% and H, is of order 0.01, then these
matrix elements will be known with an absolute error of
about 0.0005, and this will be the error in the ground
state splitting.

Suppose that one were idiotic enough to diagonalize
H = H, + H, directly without first diagonalizing Ho. This
is no easier than diagonalizing Hp, so one cannot expect
to calculate the eigenvalues of H to better than 5% ac-
curacy. But in this case one might miss altogether the
ground state splitting, or else get a result but with 500%
error!

are 0 for / A 0. However, the exact conduction band
energy includes terms involving a & and b & for l A 0.
The crucial terms are those coupling a ~+ or b ~+ for l A 0
to a and b . The strengths of these terms are given by
the integrals

kP„,*(k)P (k)dk.

If the factor k were replaced by a constant, these integrals
would vanish, by orthogonality. I.et k„, be the mean value

What is the lesson of this example? It is that when
one is interested in small energy level splittings for a com-
plicated Hamiltonian H, it is essential to identify and
treat separately, by the perturbation technique, the small
term H» in H, which causes these splittings. This does not
mean one can ignore the larger term H p for one has to
diagonalize Hp in order to set up a perturbation calculation.

A more complicated situation that can arise is that H
coilslsts of tlllee pal ts H = Ho + Hl + H2 where Hl ls
1% of Ho in size, and H~ is 1% of Hl in size (H~ is only
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10 ' percent of Hp). This happens in hyperfine structure
calculations. In this case the sensible procedure is first to
diagonalize Hp, second to treat H~ as a perturbation to Hp,
and thirdly to treat H& as a perturbation to H&. Any
departure from this procedure (e.g. , treating Hi + Hp as
a single perturbation) will lead to disaster unless one can
do calculations to 0.05% accuracy instead of 5% accuracy.

A corrollary to these results should also be noted. As
long as one does use the perturbation treatment, the energy
levels of Hp need only be determined to rough accuracy
even though this means an error much larger than the
splittings one is finally interested in.

In the Kondo problem one has a situation which is
similar to the examples cited above, only worse. The
operators al,+ for k 1 create electrons with energies of
order 1, i.e., they generate states with energy level spacing
of order 1. The operators aI,+ with k of order +0.01 gen-
erate states with energy level spacing 0.01; but since the
aI,+ with k 0.01 can act on a state with any number of
electrons of energy 1, the effect of the a&+ with k 0.01
is to split the energy levels produced by the aI„-+ with
k 1. Hence the kaI, aI, terms with k 1 are analogous
to Ho,' the kaI,+aj, terms with k 0.01 are analogous to H~.
Also the kaI,+aI, terms with k 10 ' are analogous to H~.
Since k ranges from 1 to 0 there are even smaller terms
with k ~ 10, k 10 ', etc. According to the lesson of
the example each of these terms should be isolated and
treated as a perturbation relative to the previous term.

The difhculty with this approach is the presence of all
energy scales in between k 1 and k 0.01, due to k
being a continuous variable, or more generally the presence
of all energy scales from 1 to 0. Because of this there is
no obvious separation of Hrr into 8p + Hi + Hp + .
analogous to the separation of fine structure and hyperfine
structure in atomic physics. Nevertheless, the terms with
energy scales 1, 0.01, 10 4, ctc. are present in H~, and
the presence of the other energy scales as well iR '/10 'LvaY

invalidates the lesson of the example. The logarithmic
discretization is simply a way of setting up a separation
of H~ into separate terms associated with separate energy
scales. The ratio of energies of successive terms is A.

instead of 100, and there is no a priori best choice for A.

In fact any choice of h. in the actual range used (2 to 3)
ensures that the crucial separations are made; the terms
in H~ which differ by a factor of 100 or more in energy
are now separated. This would not be true if one had
used a linear discretization instead of a logarithmic one,
for in a linear discretization one finite size interval con-
tains the point k = 0, say 0 & k Q e. This one interval
contains an infinite number of different energy scales.

Obviously onc cannot treat succcssivc tcI Its in the dis-
crete form of H~ by perturbation theory; this difhculty
will be overcome by the approximate renormalization
group calculation described later.

The reason is that the low temperature thermodynamics
involves expressions like

The analogy between H~ and the example may be
imperfect, but it is used only to motivate the use of a
logarithmic division of momentum space. The only true
justification for using the logarithmic division is that a
successful calculation results. For a more clear exposition
of the above ideas see (Wilson, 1975).

One final comment. The author's original plan was to
fix A, at A = 2, for example, rather than varying A to
study the limit A —+ 1. To achieve reasonable accuracy
the idea was to take the operators a ~ and b„~ for / & 0
into account by treating their coupling to the a„and b

as a perturbation. This has proven to be unnecessary,
at least for susceptibility and specific heat calculations.
However, future calculations, for example the resistivity
at finite temperatures, may require the use of such a per-
turbation approach. As will be discussed later, the alter-
native of considering values of A less than 2 is impractical.

The second step in obtaining the hopping form (VII.S)
is a transformation from the operators a and b to a
new orthogonal basis f„. The operators are defined as
follows. First one defines fp to be A itself apart from a
normalization factor chosen so that ( fp,fp+) = 1. The result
is fp ——1/(A&2). Having defined fp to be (1/AV2) there is
no hope of obtaining a free electron energy diagonal in the
f's. As the next best thing one insists tha, t the free energy
contain only "nearest-neighbor" couplings:

Hlr = Q e„(f„+f„+i+ f„+i+f„) 2Jfp+(rfp s, —(VII.16)
n=p

where the e,„will be determined below. Consider now the
general structure of an orthogonal transformation. One
can write

fm g (++mmmm + &nmbm} . (VII.17)

If this is a real orthogonal transformation, then the inverse
transformation is

am &am n) (VII.18)

TrS.2 exp( —/Hing)/Tr exp( —PHD),

where P is 1/kT, and 5, is the total spin. These ratios
are determined primarily- by the energy level splittings
of order kT, i.e., the energy differences between the ground
state and those excited states with energies of order kT
above the ground state. Only energy level diAerenccs come
in because the ground state energy itself cancels out in
the ratio. Energies much greater than kT above the ground
state are exponentially suppressed. So if kT is small, then
small energy level splittings are important.

In the example one was interested in the energy level
splittings due to H& and H2. Likewise in the Kondo problem
one is interested in the splittings duc to the small k elec-
trons (i.e. , electrons near the Fermi surface). These split-
tings are crucial f'or the low temperature thermodynamics.

=Qw. f. (VII.19)

This follows from the orthonormality requirements on an
orthogonal transformation: The complete set of such rc-
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quirements in the present case are

+nm+nm' ~mm'y

+nm&nm' = 0)

Consider the coefficient of fi. One knows that this coeffi-
cient can always be written in the form afp+ +f2+ where
f2 is an operator orthogonal to fp, and 52 and p are pa-
rameters to be determined. Furthermore, the coefhcient

(VII.21) only involves sums a ++ b + so it, and therefore f2, will
both be orthogonal to fi.

~nm~nm' ~mm'y

Q (22nm25n'm + 2/nm2/n'm) = bnn'

(VII.22)

(VII.23)

Explicit calculation shows that

(1+A ')
/22 = (1 —A ')»(1 —A ')» (VII.31)

In practice the operators fi, f2, etc. , will be defined in
turn as orthogonal operators, so that the last of the or-
thogonality requirements (VII.23) will be satisfied by
construction. The first three orthogonality requirements
then are equivalent to the requirement that the whole
set {f„} is complete and this. will be proven in the Ap-
pendix to this lecture. We shall proceed assuming that the
first three requirements will be satisfied.

X-»(1 —A
—

2)

(1 —A
—')»(1 —A-5)»

(1+4 ')

2

(1 —A-')»
{(1 g—2)A—5m/2

v2(1 —A ')

(1 A
—')A—m/'}(a + b ),

(VII.32)

(VII.33)

The formula fp ——(1/&2)A determines up and 2/p

up = vp = (1/&i) (1 —A-1)-*'A™/'. (VII.24)

+non- p terms.

Thus one must have

(VII.25)

This means that one knows the coefficient of fp in the
formulae (VII.18)—(VII.19) for a and b Now .according
to the requirement (VII.16), the only term in H» involving
fp is ppfi fp. However, the coefficient of fp in H» can be
determined explicitly by considering Eq. (VII.14) for H»
and substituting 25p fp for a and 2/p fp for b . This gives

(1+ h. ') 1
H» —— —P —(1 —A ')'A ' "(a + —b +)fp

2 =ov2

where f2 is also properly normalized. Now the coefficient
of fi in H» is ufp+f, + /f2+f1 Clearly. one now defines
5, = P. Since H» is Hermitian, the fp+fi term must have
the same coefficient as the fi+fp term calculated earlier,
i.e. , n must be eo, which it is.

Continuing with the same type of calculation, one can
construct all the f„and all the constants 5 . One technical
observation: the Hermiticity of H~ ensures that the
coefficient of f in H» is not a totally arbitrary sum of
f„+1+,f„ 1+, f„2+, etc. ; the Hermiticity requires that the
COefFiCient Of f„be Simply 5 if 1+ + en+1fn+1+, Where
5„+1 is to be determined, but 5„1 and f„ 1 are known
from prior calculation. So one takes the coefficient of f„,
subtracts &if„ 1+, and. one has 5„+,f„+1+ which is easily
separated into f„+1 and pn+1.

ppfi+ = (1+A. ') 1
P —(1 —h. ')»A """(a + —b +).

2 =ov2
It turns out that one can obtain analytic expressions

for ~„, u„, and e„ for all n and m. The I and v„are
obtained in the form of a generating functional

This formula plus the normalization requirement
{fi,f1+} = 1 determines both f1+ and pp U. (s) = P u„z".

m=O
(VII.34)

1 00

f1+ = —(1 —A
—')-'* Q A

—'m/'(a + —b +)
v2 m=o

(V11.2&) Then the analytic expressions are

6p
(1 —h.—')' (1 + A.

—')

(1 —X-2)'
(VII.28)

Now one knows that

ui = —2/ = (1/V2) (1 —A ')'*. (VII.29)

This means one knows the coefficient of fi in the formulae
for a and b . This means one can determine explicitly
the coefficient of f„ in H», one obtains:

Note that fi is orthogonal to fp because fi involves dif-.
ferences a —b while fp involves sums a + b

A n/2[1 A
——(n+1)][1 A 2n+1] »— —

X[1 —A-/2-+»]-»[1 + A-']/2,

2/ = (—1)"I„,

U „(z) = 1 —A.
—('"+'» ].

2A"'"—"" 2 —A '"~")s)

(1 —A' s)+2
X

~=p (i. —A '+2"2)

where

(VII.35)

(VII.36)

(VII.37)

m=o

(1 —A
—')-:

A
—5m/2 (a + + b +)f

(1+h. ') a =
2 (22 even) or 2 (22 odd), (VII.38)

(VII.39)
+non- fi termS. (VII,30)
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One now has a Hamiltonian H~ with a set of con-
stants e . For large n, one has

(1+4 ')
g—n/2 (VII.40)

and the product from r = 0 to r~ is omitted for n & 2.
For proof of these formulae see the Appendix to this
section.

conditions are equivalent to the following:

1gNnm&nm' = 2~mm',

1g+nmlnm' 2 &mm'y
n odd

g u„u„. = —,'i)„„(ifn n' is —even).

The last condition is equivalent to the requirement

(VII.46)

(VII.47)

(VII.48)

The third step in deriving the hopping Hamiltonian H of
Eq. (VII.8) is rather trivial: one first redefines the p„ to
be [(1+A ')/2 "I') for all n, and secondly one divides
the total Hamiltonian by (1 + A ')/2A "( . One finally
gets Eq. (VII.8) with

J' = 4J(1+ A ') '. (VII.41)

The redefinition of e only changes the e„ for small n;
it will become clear later that the values of the e for
small n act like irrelevant variables in the renormalization
group sense and do not a6ect the low temperature cal-
culations. The rescaling of H~ is equivalent in thermo-
dynamic calculations to a renormalization of temperature
scale and this is easily corrected for in the final answers.

ds—U (s)U„(s ') = —,'tI ..

2'j s
(VII.49)

The relation (VII.46) is equivalent to

for even n —n', the contour integral runs around the unit
circle in the complex s plane. (It is easily verified that
the power series in s for U„(s) converges for s on the
unit circle. ) It is sufficient to consider the case n & n.
For n & n' one finds that the product s 'U„(s) U„(s ') is
analytic inside the unit circle so the integral vanishes.
For n' = n the same product has one pole inside the unit
circle, at s = A. ("+'"'. One obtains (VII.49) by computing
the residue at this pole.

APPENDlX TO Vll

In this Appendix the generating functional U (s) of
Eq. (VII.37), Eq. (VII.35) for 4 and Eq. (VII.36) are
derived.

U„(z)U„(s') =—
2 1 —ss'

The sum over n can be written

(VII.SO)

Continuing the analysis of Sec. VII, one determines
explicitly the coe%cient of f in Hx by substituting u„ f„
for a and v„ f„ for b in Eq. (VII.14). The result is

U (s)'U (z ) = Rp(s s ) + Rp(z s )R2(s s )
n even

+Rp (s,s') R2 (s,s')R4 (s,s') + (VII.51)

m=o

+non-f„ terms + J term.

(1+4 ')
—QA (u a+ —v b+)f„

2

where

R,(s,z') = (1 —A
—')/[2(1 —h. '*s)(1 —A

—Is' )], (VII.52)

(VII 42) alld for n & 2

The coefficient of f„must be equal to pn lfn 1+ + pnf +1+;
using Eq. (VII.17), this means that, for all 2n,

R (s,z') =
g( —f)s)[1 g( —$)s']

A-(-+~)z][1 g-(-+~)s )
Pn—lun —l, m + 6 u ( incan ,

= A--[(1+ ~-')/2)u. ,

&n—1Vn—i, m + &nVn+1, m, .

(VII.43)

gl—2n]+2—2 n

X
A2—2n)

%rite

(VII.53)

= —A [(1+A ')/2]v (VII.44)

One can set v„= (—1)"u„; then the second equation
reduces to the first. The first equation can be multiplied

by s and summed over m, giving Z„, (s,s') = 1+R„(s,s') Z„(s,s'). (VII.SS)

Z„(s,s') = 1 + R„. 2(s,s') + R„+2(s,s')R +4(s,s') +
(VII.54)

pn 1 Un 1(Z) + pn Un+1(z)
= L(1 + A-')/2)U-( /~)

This recursion formula has an analytic solution, namely
(VII.45)

If n = 0, p 1U„1(s) is replaced by 0. Some tedious
algebra shows that the formulae (VII.35) and (VII.37)
give. a solution to Eq. (VII.45) for all s.

z.(,") = L1/(1 —-')][1—A-("+"']

g(n+$)z)[1 g—(2n+1)7—1 (VII.56)

One verifies by substitution that this solves Eq. (VII.55).
Now the orthonormality conditions (VII.20)—(VII.23) To show that the explicit formula (VII.56) is equal to the

must be verified. Using Eq. (VII.36) one finds that these sum (VII.54) we must study the convergence of the sum.
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For n large (remember that A ) 1), one has

R„(s,s') n'. (VII.57)

The product RpR~ - . R„, therefore, behaves roughly as
(ss')""; thus the sum converges if

~

ss'~ ( 1. Using the re-
cursion formula (VII.55), the analytic expression (VII.56)
satisfies

gp(s, z') = 1 + R2 + R2R4+ R2R4Rp R Z (VII.58)

for any even m. For m~ ~, the last term behaves as
(ss') /2 and therefore vanishes. Thus for n2 —+ ~ one
obtains Eq. (VII.54) for n = 0. Eqs. (VII.51), (VII.52),
(VII.54), and (VII.56) now give Eq. (VII.50).

There is a similar proof of the odd n equation (VII.47).
This completes the proof of the orthonormality relations.

Vill. RENORMALIZATION GROUP
TRANSFORMATION FOR THE
KONDQ HAMILTONIAN

In this section the solution of the hopping Hamiltonian
of Eq. VII.S by renormalization group methods will be
discussed. The actual numbers computed in this section
have rather little relation to the physics of the Rondo
Hamiltonian; the physics will not be extracted until the
following section where the susceptibility and specific heat
will be computed. There is nothing surprising in this.
In this section the aim will be to set up a renormalization
group transformation and calculate the resulting effective
Hamiltonians. These effective Hamiltonians depend on how
the transformation is defined, just as in the case of critical
phenomena, so one expects to have to do a further cal-
culation in order to get some physics from the effective
Hamiltonians. For an elementary discussion of the method
of this lecture see Wilson (1975).

and then diagonalize Hp+ Hi, and finally to set up the
full Hamiltonian H in terms of the eigenstates of Hp + Hi
and then diagonalize H. The purpose of defining the
Hamiltonians HN is so that one can apply the same strategy
to the hopping Hamiltonian H. Hp contains the largest
terms in H (for this purpose the J term will be lumped
together with the fp+fi and fi+fp terms). The subsequent
Hamiltonians H~, H2, etc. , are obtained by bringing
in the successively smaller terms A '*(fi+f2 + f2+fi),
A '(f2+f, + f2+f2), etc. , from the original Hamiltonian H,
until for X —+ ~ one has recovered the full H (except
for the scale factor A&~ 'i/2j. Thus the strategy analogous
to that used on the hyperfine structure consists of diago-
nalizing each HN, in turn, and then calculating the matrix
elements of HN+~ in the representation in which HN is
diagonal. One then diagonalizes HN+~.

Consider now the practical aspects of diagonalizing HN.
The Hamilton HN is a 2'N+' & 22N+' matrix. The number
of states is 22~+' because H~ involves 2/V + 2 independent
electron operators f„„(0( n ( /V, /i = &2) plus r: each
single electron state can be occupied or empty so the
total number of many electron states is 2~N+2. The im-

purity has two states so the total number of states is
22~+'. When X is large (in the calculations reported later
/V will be as large as 180) the total number of states is
unmanageable: one can consider in practice only a small
subset of the eigenstates of HN.

There are no analytic methods known for diagonalizing
H~ except for the special cases J = 0 and J = pp (which
will be discussed later). So one has to diagonalize H~
numerically. This means one has to truncate the matrix
for HN from its original size 22N+' X 2~N+3 down to a more
manageable size (in practice manageable means roughly
1000 X 1000: see later).

It is convenient to define a set of Hamiltonians HN as
follows:

g(// —I)/2( Q P—n/2(f +f + f +f )
n=p

Jfp+efp ~}.— (VIII.1)

Then the original Hamiltonian H of (VII.8) is

im ~ (N I) f2HN.
N ~oo

(VIII.2)

He+i = +'Hx+ fr+i fr+ fr+fr+i (VIII.3)

which will be used to define the renormalization group
transformation.

The purpose of the factor A' ')" is so that the smallest
term in H~ is of order 1, the smallest term being f~ i+f~
+ fw+f& i The H/i satisf. y a recursion formula:

%hat energy levels of HN is one interested in? The
ultimate aim of the calculation is to determine the thermo-
dynamics at very small temperatures T; suppose to be
specific that one is considering kT A . Then one is
interested in the energy levels of H which are of order
A " above the ground state. One has to consider at least
the first 140 terms in H in order to include the terms
which produce an energy level spacing 4 ". Thus when
one is diagonalizing HN for E (& 140, it is only the ground
state that is directly relevant physically: the excited states
are too high in energy to be important thermodynamically.
However, in order to calculate the ground state of HN+~
one will have to know the excited states of HN as well

(see below). For /V 140 one needs also the first few
excited states of HN for the thermodynamics, which is
manageab. 'e. However for X» 140 one is including terms
in H with much smaller energies than kT, and now many
excited states of HN are important, too many to be cal-
culated numerically.

In the example of atomic hyperfine structure discussed
in the previous lecture, one had a Hamilton H = Hp

+ Hi + H2 (with no relation to the H~ defined just
above). The approved strategy was first to diagonalize
the largest term Hp, second to set up the Hamiltonian
Hp + Hi as a matrix in terms of the eigenstates of Hp

In this lecture we consider only the problem of cal-
culating the lowest 1000 or so eigenstates of HN, as is
appropriate for A I' & kT. The problem of calculating
many excited states for A N~'((. AT wiH be handled ana-
lytically (in the limit of small T); this will be explained
in the next lecture.
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2 I &kl f~. lk'&I'+
I
&k'If~. lk& I' = 1 (VIII.S)

so no individual term can be greater than 1. In addition,
the matrix elements of f~ tend to be largest for nearby
eigenstates of H~. This means in particular that the matrix
elements of f~ between the low excited states of H~ and
the more highly excited states being neglected are (&1.
This has been seen in the numerical calculations; the
reason for this will be explained shortly.

The operators f~+i and f~+i+ do not appear in H~. This
allows one to work in a simple representation of those
operators. The first effect of these operators is that each
eigenstate

I k) of H~ becomes four states when f~+i+
and f~+i are taken into account; these four states can
be denoted

la; k) = Ik),

lk k& =f~+i,.'Ik&,

I-4 k& =f~+i, «+Ik&,

lk, —
2 k& = f~+i,.'f~+i, .+I k&. —

(VIII.6)

(VIII.7)

{VIII.8)

(UIII.9)

The strategy proposed earlier is an iteration procedure:
the Xth iteration consists in expressing H~+~ as a matrix
in terms of eigenstates of H~, and then diagonalizing this
matrix to determine, the eigenvalues and eigenvectors of
H~+~. The truncation procedure used to bring this matrix
down to manageable size will be to consider only the first
1000 or so eigenstates of H~ in the calculation instead
of all 22~+3 eigenstates of IIN (Th. is is a truncation only
for 1V ) 3; for Ã ( 3 H~ does not have 1000 eigenstates. )

Numerical tests of the accuracy of this truncation
procedure show that the low excited state energy levels
of H~ are determined to an accuracy of about 1'Po for
A = 2, and a fraction of a percent for A = 2.5 and 3; this
even includes accumulated errors from many iterations
( 50 to 80). Detailed error estimates are given in the
next lecture. To understand this accuracy one has to look
more closely at the matrix defining H~+&. It is known
from the numerical calculations that the first 1000 energy,
levels of H~ include energies up to about 6 to 10 (these
are actual numbers) above the ground. state, while the
first excited state energy is usually (1 above the ground
state. (The factor A'~ ""was included in H~ so that
these numbers would be free of powers of A.) The energy
levels of H~ appear as diagonal elements of, the matrix
for H~+&, the energy levels of H~ are also multiplied by
a factor A"2 as in Eq. (UIII.3). Thus the diagonal elements
of the truncated matrix H~+~ range from & 1 to about 8—17
(depending on the size of A'"; the range 2 ( A ( 3 of
the numerical calculations is being considered here). The
oB diagonal matrix elements of H~+~ come from the term
fn f~+i + f~+i+f~. The operators f~ already appear in H~,
and they have a rather complicated set of matrix elements
between eigenstates of H~. (These matrix elements are
computed from a knowledge of the eigenstates of H~. )
However there is a sum rule which ensures that no matrix
element of f~ is greater than 1. I.et lk) be a complete
set of states: then the anticommutation relations give

2 &k'I f~. I
k') &k'I f&v+

I
k& + (k I f~.+ Ik') &k'I f~. Ik& = 1.

k~ (VIII.4)
This is

These states form an orthonormal basis for H~+~, since
the electron states created by f~+i„+ are orthogonal to
any of the electron states involved in the states lk). It is
straightforward to compute matrix elements of f~+i„,and
f~+i,„+ in this basis using the anticommunication relations
of fr+i, „and fyrqi, „+ plus the fact that f~+i,„lk& = 0 and
the conjugate result (kl f~+i,„+ = 0. For example,

(k', nl f~+i,„l-', ; k)
= (k'If~+i,.f~+i, :+I

k&—

= 8„,;(k'lk) —(k'I f~, i, ,+f~+i,„Ik)
~p, 1/2~k'k (VIII.10)

There are now two eHects that make the truncation
down to a thousand states a good approximation. The
first is that the states neglected haye diagonal elements)8 to 17 while their couplings to the states kept are less
than 1. This means the importance of these states is
reduced by a factor or 1/10 or more due to energy de-
nominators in the perturbation theoretic sense. But even
more important is the fact that the states neglected couple
mainly to the highest excited states kept; the direct cou-
pling of the states neglected to the lowest few states of
H~ is extremely small. The result of this is that the first
few states of H~~~ are built mainly from the first few
states of H~, and even the higher states kept contribute
little; the states neglected are negligible.

In the numerical calculations one diagonalizes numeri-
cally the truncated matrix for H~+~. The diagonalization
procedure produces both eigenvalues and eigenvectors, the
eigenvectors being linear combinations of the states
IQ; k), I ~; k), etc. Given the eigenstates in this form, it
is straightforward to calculate the matrix elements of f~+i
and f~+i+ between these eigenstates. This means one has
all the necessary information to set up the matrix for
H~+2. Note that if one keeps 1000 states of H~, one is
actually truncating the matrix for H~+~ down to 4000
X 4000, so one can calculate 4000 eigenstates of H~+~.
But one will keep only the lowest 1000 of these, if one
is keeping 1000 states for each X.

One consequence of the form (Fig. 16) for H~+i .is that
the matrix elements of f~+i and f~+i+ are small for well-
separated eigenstates of H~+~. The reason is that well
separated eigenstates of H~+~ will involve mainly non-
overlapping states of H~. Since f~+i has no matrix ele-
ments between diferent eigenstates of H~, this means
the matrix elements of f~+i and f~~i+ are small, as claimed.

It is clear from this example that f~+i and f~+,+ only
have matrix elements between states with the same
value, i.e., the same eigenvalue for H~. Thus the products
f~+,+f~ and f&+f~+i primarily connect nearby energy
levels of H~ (since f~ only connects nearby energy levels).
So if one orders the states

I k) in order of increasing energy
the matrix for H~+~ looks like Fig. 16; the diagonal ele-
ments starting with A"~EO ——0 (the ground state energy
of H~ is subtracted from HN+i as a practical convenience)
repeated four times along the diagonal, then A'~'Ej four
times (Ei is the first excited state energy of HN) etc.
The important matrix elements of f~+i+f~ and. f~+f~+i
lie near the principal diagonal: far away from the principal
diagonal the matrix elements of H~+~ are very small.
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0
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FIG. 16. Form of matrix for H~+I.
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This means that in the next iteration the input matrix for an infinite set of f„s while H~ contains only a finite
elements are small except near the diagonal, as was stated. subset of f„'s.

There is one further comment about the actual calcula-
tions. ' The total spin S of the electrons plus impurity
commutes with H~, as well as the total charge Q of the
electrons. Hence in diagonalizing H~+~ one can consider
independently each subspace of given S', 5„and Q. This
reduces the size of the matrices being diagonalized from
4000 X 4000 to a maximum of about 100 X 100, enor-
mously reducing the computer time required to complete
the diagonalizations. Computations were performed keeping
either 526 or 1620 states and compared to test the ac-
curacy of the truncation; a single iteration with 1620 states
kept required less than 7 seconds on the CDC 7600.

The quadratic form can be written in matrix form.
I.et f be the vector (fo,fi, . . . ,fg). Then Hy(J = 0)
= f+BC~f where 3C~ is an (iV + 1) X (1V + 1) matrix
with elements

iV, n, n,+1 ~ N, ~+1,~(X—1—n) /2 (VIII.12)

3fBc~M = g~,

with

(VIII.13)

(0 & m & 1V —1); all other elements are 0. The matrix
3C~ is a real symmetric matrix. Therefore there exists a
real orthogonal matrix M which diagonalizes 3C~

The recursion formula VIII.3 defines the transforma-
tion T, except for a ground state energy subtraction. To
be precise the transformation is

MM =MAL=1,
so that

(VIII.14)

H~+i = TPH~) = ~'"H~ +f~+i+f~
+ fx+fzgi —&e.++i, (VIII.11)

The renormalization group transformation has two fixed

points, both of which are important for the interpretation
of the numerical results. The fixed points are both rather
trivial and can be obtained by the study of two limiting
cases: J = 0 and J = —~ . This study will be described
before presenting numerical results. For J = 0, H~ is a free
electron Hamiltonian. That is, H~ is a quadratic form in f
and f„+, which can be diagonalized by a suitably chosen
set of single electron operators. Unfortunately it is not
sUfficient to r everse the transformation used initially to
define the f„'s, because that transformation was defined

where Eo ~+~ is chosen so that the ground state energy
of H~+i is 0. In the calculations, the input to the trans-
formation T consists of the eigenvalues of H~ and the
matrix elements of f~ between these eigenstates; the out-

put of the transformation consists of the eigenvalues of
H~+i and the matrix elements of fv+i

~N, nmjl-fml ~nl gNll' (VIII.16)

the vectors M~ = (MO~, Mi~, , M~~) are the eigenvec-
tors. ) Once M has been obtained one defines new opera, —

tors g~ as

g( = Q M„(f„ (VIII.17)

or

f = QM„(gE (VIII.18)

and H~ is

HN Q gN, golgi gl. '

l

(VIII.19)

(VIII.15)

where r~ has only diagonal elements z~«. The elements
are the eigenvalues of 3C~, while the matrix M is

built from the eigenstates of BC~. (Since
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The matrix M and the eigenvalues .q~~~ have to be
computed numerically which is trivial for E & 40. From
the results of the calculation one can easily extrapolate
to any larger X. %hat happens is that for large Ã the
eigenvalues of 3C~ approach a limit, except that there are
two separate limits, one for even Ã and another for odd X.
For example, for A = 2 one obtains the eigenvalues

X even and large: g = 0, &1.297, &2.827,
~4v2, +8&2, ~ -, &2~ i&2,

2V odd and large: g = &0.6555, &1.976, &4,
o ~ e 2& ~ ~ ~

7 l )

(VIII.20)

(VIII.21)

(VIII.22)

(VIII.23)

There is a symmetry (particle —hole symmetry) which
ensures that for every eigenvalue p of 3C~ there is also
an eigenvalue —p, except when p is 0. The symmetry for
the complete Kondo Hamiltonian is the following:

Now one can see the true reason for introducing the
factor A( "~' in the definition of H~, namely this factor
is necessary to have a fixed point in the large X limit
for the low eigenvalues of 3C~. If no factor A(~ ' were
introduced one would still get a fixed point, but the 6xed
point would be a limit of the largest eigenvalues of 3C~
instead of the smallest eigenvalues.

Consider now the case J = —~, or more precisely
J(& —1. In this case the J term in H~ is much larger
than the rest of H~. The J term is A' —" 'Jfo+efo. ~,
one wants to diagonalize this term and then treat the rest
of H~ as a perturbation. The eigenstates of fo+ofo ~ con-
tain either 0, 1, or 2 electrons since there are two electron
spin states available. The states with 0 or 2 electrons
have total spin 0, i.e., fo+afo is 0 for these states. The
states with one electron have spin ~; the operator fo+afo
acts on this spin ~ multiplet like the matrices o them-
selves. The product e ~ has two eigenvalues: +1 for total
spin 1 and —3 for total spin 0. Since —A( "'J is posi-
tive, the spin 0 state has the lowest energy.

(wher'e t = t ty = ry 7 = 7.g). Under this sym-
metry H~ —+ —H~. Hence for every positive eigenvalue
of H~ there must be an equal and opposite eigenvalue.
Since BC~ has 1V + 1 eigenvalues, it has an odd number
of eigenvalues for even Ã; the odd eigenvalue must be 0
as it is. For odd Ã no eigenvalue 0 is required, and there
is none. The large eigenvalues for even X are approxi-
mately A' 'Kh. and for odd 1V are A', except for the
very largest eigenvalues (/ near X). This is seen in the
numerical calculations and can be justified by setting up
and analyzing the formal equations defining the fixed point.

One practical comment. H~, in diagonal form, includes
terms of type pg+g where p is negative. In this case the
electron state created by g+ is filled -in the ground state
of H~. It is then useful to think in terms of holes instead
of electroris. The operator which creates a hole (removes
an electron) is g. So one defines h+ = g and h = g+; using
the anticommutation rules, and remembering that g has
two spin components, one has

gg+g = —qh+h + 2g. (VIII.24)

The coeKcient of h+h is positive. This particle —hole trans-
formation can be used to rewrite H~ so that it involves
only positive single-electron energies.

The fixed points of T involve an infinite set of eigen-
values, behaving as either A' '~' or A' as l —& ~. However
the BC~ for finite E have only a finite number of eigen-
values. If one looks at the largest eigenvalues of 3C~, they
do not approach the fixed point eigenvalues even for
X —+ ~. The precise statement of the fixed point limit is
that the 3th eigenvalue of 3C~ approaches the lth eigen-
value of the fixed point for X —+ ~, but this approach
is not uniform in /: the limit is reached only for Ã)) l.

Due to the even —odd alternation one does not have a
Axed point-of T but rather of T; T2 is the transformation
which takes H~ to H~+~. -The even and odd Ã limits
define two distinct fixed points of T'. For T itself the
even —odd alternation is called a limit cycle.

In the limit of large negative J, the excited states of
the J term are negligible. Since the singlet state expecta-
tion value of fo and fo+ is zero, the effect of neglecting
the excited states is to rub out the fo+fi and fi+fo terms
in H~, as well as replacing the J term by its eigenvalue
for the singlet state. One is left with

H~(J —+ —~) = constant+ 4'~ ""

n=l
(VIII.25)

Again one has a quadratic form to diagonalize, with
the only difference from the J = 0 case being that there
are only X operators f„ instead of X + 1. In fact the
quadratic form for H~ with J = —~ is precisely the
same (apart from the labeling of the f's) as the quadratic
form for H~ l at J = 0. As a result the same fixed points
are obtained for large N, but the even —odd alternation is
reversed: the single electron eigenvalues are (for A = 2)

J = —~, X even and large: &0.6555, &1.976, etc. ,

J = —~, X odd and large: 0, &1.297, etc.

TABLE V. Two excited state energies from the computer iterations
(N: iteration number).

20 22 108 110 130 180

EI 0.0314
0.0419

0.0321
0.0428

0.313 0.363
0.446 0.529

0.6541
1.3055

0.6555
1.3110

Some results of the computations will now be reported.
Calculations were performed for J = —0.024 and A = 2,
2.25, 2.5, and 3; the results are similar for the four cases
and to be specific the results for A = 2 will be described.
In this calculation the lowest 1620 energy levels of H~
were computed through E = 180. Some examples of the
first and second excited state energies are as given in
Table V.
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For small X, the solution is near the J = 0 values;
for even N this means there is a single electron state with 0
energy. The numerical solution gives many electron state
energies; in particular ther= are 0-, 1- and 2-electron states
of zero energy, when J = 0. Combined. with the impurity
spin, the zero energy states are states with total spin
1, 0, and 2: the energies Ej and E2 correspond to a spin

state and spin 1 state, respectively (the ground state
has spin —,'). For X = 20 or 22 one can see from Table V
that these energies are still small.

As E increases the eigenvalues move away from their
J = 0 values. For large N the solution approaches the
J = —~ fixed point. This means the lowest single elec-
tron energy is 0.6555 (for X even) and the impurity spin
is no longer involved explicitly (the impurity spin is tied
up with fo in making a singlet state) so the states of energy
0.6555 above the ground state have only spin ~. To make
a state of spin 1 (energy level E,) requires two electrons
and therefore has an energy 1.311. By N = 180 the eigen-
values are indistinguishable from the eigenvalues of the
J = —~ fixed point.

For all values of A, for both choices of the number of
states kept, and for all values of J investigated (all such
values were negative) the same result is seen: a crossover
from near the J = 0 eigenvalues for small N (if J is small)
to the J = —~ eigenvalues for large X.

For further analysis of the numerical results it is neces-
sary to identify the leading eigenoperators and eigenvalues
of the linearized renormalization group transformation
about each of the fixed points. A shortcut will be used
to obtain these eigenoperators and eigenvalues. Consider
a Hamiltonian H' = H + 8H where 8H depends only on r
and the first few f„.Also put J = 0 in H. Define

Hiv' = H~ + h&~ '&&'bH. .
—(VIII.26)

Starting from the fact that H~' and H~ both satisfy the
recursion formula VIII.3, and assuming that BH is in-
finitesimal, the difIerence H~ —H~ satis6es a linearized
renormalization group equation with a linear operator L,

The remainder of this section is devoted to a detailed
and technical discussion of the behavior of the eigenvalues
of H~ for very large N where H~ is near the J = —~
fixed point, followed by a similar discussion of moderately
small Ã where H~ is near the J = 0 fixed point. This
analysis has two purposes. One is that it provides a very
thorough check on the validity and accuracy of the nu-
merical calculations. The other purpose is to provide
crucial information for the susceptibility and specific heat
calculations described in Sec. IX. For very large N where
the energy level spacing is much less than kT even for
small T, one needs to know many more energy levels
than are computed. numerically; the analytic calculations
for large S will be used in Sec. IK to give this informa-
tion. The perturbation theory near J = 0 will be used to
compute H~ for arbitrarily small J, given H~ for J
= —0024. All that is involved here is a translation:
H~ for J = —0.024 is H~. for very small J where X'
= 1V+ (function of J). The function of J will be de-
termined in Sec. IX, based on information obtained in
this lecture.

depending on H~. For large X, H~ is essentially H*,
where H* is the 3 = 0 fixed point, and therefore the
operator LLH& j is essentially L(H*], the linear operator
whose eigenoperators and eigenvalues are sought. Note
that even for N large, H~ is not exactly H*, and if BH is
small enough H~' —H~ may be much smaller than
H~ —H*. This does not change the fact that the linear-
ized equation satisfied by H~' —H~ is close to the lin-
earized equation about the fixed point, for N large. There-
fore, for large X one can expand. H~' —H~ in terms of eigen-
operators and eigenvalues, giving

H~' —H~ ——Qc 0 X ~, (VIII.27)

where the 0 are the eigenoperators, P the eigenvalues,
and c are constants depending on the choice of BH.

For simple choices of bH, the Hamiltonians H~' can be
diagonalized explicitly to first order in 6H and the eigen-
value differences of H~' —H~ determined. From the 1V

dependence of these eigenvalues, one can determine the
operators 0 and eigenvalues X, except for eigenoperators
for which c is G. By studying a sufficiently wide range
of interactions BH, one should. be able to identify all eigen-
operators 0 of interest.

For the purposes of the renormalization group trans-
formation, an operator H~ is specified by a list of energies
(its eigenvalues) and a set of matrix elements (matrix
elements of f~) Corres. pondingly an eigenoperator 0 is
also specified by a list of energies and a list of the matrix
elements. In the following only the first few energies will
be considered explicitly; these will be sufficient to identify
the eigenvalues P, and only the 6rst few energies of the
eigenoperators will be needed for later discussion.

The diagonalization of H~ for J = 0 has already been
discussed. The eigenvalues of H~' are needed to first order
in 5H. By standard perturbation theory the eigenvalue
differences of H~' —H~ are given by the matrix elements
(k~8H~ k) where the states

~
k) are the eigenstates of H~.

The ground state of H~ is the state ~0) destroyed by
all the operators g& and h&. This is actually two states
because of the two possible states for the impurity. The
first excited states are the single particle (or hole) states
gi„+~0) and hi„+~0). Then there are further single particle
states, two particle states, etc. such as g2„(0),
g,„+k,„+~0), etc.

Given the single particle operators g~ which diagonlaze
H~, and their eigenvalues gi (in the limit of large

reduces to X-independent values it~), one can con-
struct the multielectron eigenstates of H~. It is convenient
to replace those g& with negative eigenvalues pE by the
corresponding hole operators h~ = g~+. In the following,
the g) will be only operators with positive eigenvalues q).
For simplicity only the odd N case will be discussed;
in this case there is both a particle operator g~ and a hole
operator hi for each eigenvalue gi. there are (cV + 1)/2
eigenvalues g~. These eigenvalues will be arranged in in-
creasing order: gi &. g2, etc.
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For f2, fa, etc. one finds that: f2, f4, etc. are proportional
to fo except for terms behaving as A "~ ')", while f3, f5, etc.
are proportional to f) apart from terms behaving as
p—7(W—1)/4

Consider now a particular example of an operator bH,
say BH = e(fo+f& + f&+f0) where e is a small number. The
perturbation to H~ is A. ( ' ~ 6H. Consider only matrix
elements (k~lBH~k) where ~k) involves only the operators
gi+ and ki+ through g,+ and k3+ acting on ~0). Any term
in BH involving g4, h4, g5, h5, etc. on the right of an ex-
pression gives zero acting on any of these states

~ k);
likewise any operator g4+, h4+, on the left of an expres-
sion gives zero acting on any of the conjugate sta, tes (k

~

.
(For example the matrix element (k~k4+k4~k) vanishes).
Also since one uses the same state

~
k) on both sides, the

only operators with nonzero matrix elements are those that
do not change the number of particles in any state. For
example, g~g~+ has a matrix element but not g~h2+. How-
ever, if two different states ~k) and ~k') have the same
energy one must also consider the off-diagonal matrix
elements (k~li)H lk') as part of a degenerate perturbation
calculation. This means one is interested in any term in 5II
which connects states of equal energy.

The result of these considerations is that

A ~ ') 5H = e(A ( ')(2){c)$2gi+gi —2kiki+j
+ c~L2g2 g2

—2k2k2 ]+ . }, (VIII.30)

where ci, c2, etc. are A dependent constants. (For A = 2,
ci ——0.227, c2 ——0.782, etc.) For / ) 3 one can replace
2g(+g) —2k&k&+ by 2g&+g&+ 2k&+k& —4 and then neglect
2g)+g&+ 2k(+k(. Thus for our restricted set of states ~k),

In order to calculate matrix elements of 8H between
these eigenstates, it is convenient to express bH in terms
of the operators g( and k). Since (')H depends on fo, fi, etc.
we need the expansion of fo, fi, etc. in terms of g) and k(
(actually k&+). This expansion has been determined nu-
merically for X less than about 40. For A. = 2 one finds
for large Ã

fo = 2 '~ ""(0588(gi + ki+) + 0 629(g2 + k2+)

+0.861(g3+ ka+) + . .}, (VIII.28)

f = 2 "~ "('(0.386(g —k+) + 1.243(g, —k,+)

+ 3.446(g3 —k3+) + (VIII.29)

For A & 2, the X dependence is A (~ ')~4 and h. '&~—»~4

instead of 2 (~ "~ and 2 " "" and the numerical co-
efFicients are different. This N dependence can only be
approximately verified from the calculations since only
X & 40 was considered; but the coeKcients are indepen-
dent of X to the accuracy cited. The power of A. is not
surprising: the operators g& and h& are roughly analogous
to the operators a and 0 of the original discretization,
with es = (X —1)/2, in the sense that the energy A ~
associated with a and b is analogous to the energy

1 of g~ and h~ when one takes into account the scale
factor A( ')~' in the definition of H~. The coefficients of
a and b with m = (E —1)/2 in the original formulae
for fo and f& behave precisely as h. (~ ""and h. '(
respectively, which is the same as the E dependence ob-
tained from the numerical calculations.

one has

A( —)I gH —E(A
—( —)l ) jci[2gi+g) + 2ki k)j

+ cgL2g2+gg + 2k2+k2j + c3L2g3+gg + 2k3+k3 j}
+ constant. (VIII.31)

The constant is neglected because it is eliminated when
one subtracts the ground state energies of both H~ and II~'
(this is part of the renormalization group transformation).
The cj, cg, and c3 terms have no ground state matrix ele-
ments. For excited states

~
k), the matrix elements of

A.(~ "I'bH behave as A (~") as a function of N. This
means Lcf. , Eq. (VIII.27)) one can identify A l as an
eigenvalue of the linearized form of T, or more properly,
since only odd N is being discussed, A ' is an eigenvalue
of the linearized form of T' about the odd X fixed point.
The eigenoperator is the coeKcient of ~A ~t'2 in Eq.
(VIII.31) apart from an arbitrary normalization constant
which can be chosen to be 1. The eigenoperator has for
its list of energies the diagonal matrix elements of
)Ace(2gi g) + 2k) ki) +

Using fo+f& + fi+fo as the initial ()H, one generates an
irrelevant eigenoperator. Are there any relevant or mar-
ginal operators? Evidently one wants to use the minimum
possible number of operators fo and f) in BH, since each fo
or f0+ contributes a factor A. ~" and each fi or f)+ con-
tributes a factor A '~(2 to the X dependence (and using
f2, f3, etc. , is no better). Also, we will be interested only
in eigenoperators with the same symmetries as H itself,
namely bH must conserve charge and total spin and
particle —hole symmetry. This means a minimum of two f's;
to achieve a maximum X dependence this means f0+ and f,.
The only such operator satisfying all the symmetry re-
quirements is fo+afo ~, the same operator that multiplies
J in H. The alternative fo+fo violates particle —hole sym-
metry. With 5H = fo+ofo ~, the operator A ~ '))26H is
independent of N when expressed in terms of g~, h~, etc. ;
thus fo+ofo ~ generates a marginal eigenoperator of the
odd X fixed point.

Note that the operator fo+afo ~ exists only for the
J = 0 fixed point. For the J = —~ fixed point, there is
no 7 operator (no doubling of the electron states due to
the impurity), and hence there are no relevant or marginal
operators for the J = —~ fixed point. For future use it
will be necessary to know the dominant irrelevm, t opera-
tors for the J = —~ fixed point. Since products fo+fo,
fo+f2, etc. are all ruled out by particle hole symmetry,
it is not dificult to see that there are two dominant ir-
relevant operators (both having the same eigenvalue)
namely the eigenoperator generated from fo+f& + f&+fo,

already discussed, and the eigenoperator generated from
(fo+fo —1)'. It is easily seen that (fo+fo —1) is odd under
particle —hole symmetry so (f0+f0 —1)' is even. At first
sight this would appear to be a marginal operator due to
the fo+fo term when (f0+f0 —1)2 is multiplied. out. How-
ever, the f0+f0 term is canceled when the operators in
fo+fofo+fo are rearranged in normal ordered form. Normal
ordering means all g~+ and h~+ operators are the left of
all g~ and h~ operators. The reason for using normal order-
ing is to ensure that all terms with any g&, h&, g&+, or h&+

for l ) 3 have zero matrix element for the states
~ k)

being considered. (The algebra demonstrating the cancella-
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TABLE VI. Eight eigenstates and eigenvalues near the strong cou-
pling fixed point (see text for explanations).

the fixed point. This means one should have (for even X)

State q s E(II*)
Change in energy due to:

02 02

H~ —H* = g w (J)X ~O, (VIII.37)

++
I o&

gp+ I o&
g+g+Ig +Io&
ga+g, +10&
g~+g2+

I
o&

gx+hx+
I 0&

gi+hg+
I 0&

1
1
1
2
2
2
0
0

0
0
1
0
1

gl
7/2

3+1
2+1

gl + Q2

+1+ Q2

2+1
2+1

3 A A Ay4

3X*
2X*

4 AAny+

4.444K*
2X*
2X*

0
0
0
m~

2;285'*
0

H~ —.H* = {w,(j)0i+ w, (j)0,)A— (VIII.38)

where w (j) are coefficients depending on the initial
choice of J (and also on A). For large X, the dominant
terms will be the eigenoperators with the largest eigen-
value X, and as shown above there are two dominant
operators (call them Oi and 02) having the same eigen-
value: Xy ——X2 = A. s. Thus:

fo fo 1 = ( + h)(h+ + )
= —', (g+h+ + g+g + hh+ + hg) —1.

Using

(VIII.32)

tion of fp+fp is as follows: write fp ——(1/&2)(g + h+), where

g is the sum of all gi terms in fp, and h+ is the sum of all the
h&+ terms. It is easily seen from Eq. (VIII.28) that {g,g+)
= {h,h+); since {fp,fp+) = 1 it follows that {g,g+)
= {h,h+} = 1 also. Now

There are two unknown constants wi(J) and w2(j) in this
expression. These constants can be determined by fitting
the formula (VIII.38) to the numerical results for the
first few eigenvalues of H~. In principle one needs to
consider only two eigenvalues of H~ since only two con-
stants are to be determined. ; in practice, eight eigenvalues
were used in order to be sure that Eq. (VIII.38) is correct
(and also as one of the checks on the computer program).
The eight eigenstates were chosen as shown in Table VI.
For each eigenstate, the charge Q, total spin 5, and
energy E (with respect to H*) are given; charge and
energy are both relative to the ground state.

hh+ = Q h„h„+ = 2 —h+h, (VIII.33)

one has

fp+fp
—1 =

p (—h+h + g+g + g+h+ + hg). (VIII.34)

Therefore

(fo+fp —1)' = —,
' (—h+h + g+g + g+h++ hg)'. (VIII.35)

h. &~ 'i" H = 2 & ""p{(0 588)' Q Q(hi +hi +hi hi
V

+glp giy giggly 2glga hip 'glg hi@

2hi+h, „g,„+g, ) + }. (VIII.36)

In particular the eigenoperator associated with
(fp+fp —1)' affects only two particle states and higher,
not the one particle states. Once again the eigenoperator
will be defined to be the coefficient of 2 ~"p in Eq. (VIII.36).

S'arning: in the abo~e expression h~~+ creates a hole
with spin —

2 (hii+ destroys an electron with spin + 2).

Now a more detailed analysis of the numerical results
for nonzero J will be given, concentrating on the small
and large X limits where the Hamiltonians H~ are close
to a fixed point. For very large Ã, H~ is close to the
J = —~ fixed point: only even X will be discussed here
so the fixed point H* is the even E, J = —~ fixed point.
For large but finite Ã, H~ —H* is small and should be
approximately a solution of the linearized equation about

When this square is multiplied out and put into normal or-
dered form (using relations like h+hh+h = g„g.h„+h„h„+h.
= —P„g„h„+h„+h„h„+2h+h) one finds only quartic terms
(like h+h+hh) and constants remain: there are no quadratic
terms anymore. ) With the fp+fp term canceled it is clear
that for pH = p(fp+fp —1)', A' "~'BH behaves as
A & ')" in terms of g&, h&, etc. , just as in the case of
fp+fi + fi+fp. For A = 2 some of the terms in A'~ ""BH are

In Table VI, products gi+gi+ always mean gi+~gi+ ~

which has spin 0. Products like gi+g2+ and gal+hi+ are
ambiguous; when 5 = 1 is specified then one is referring
to spin 1 combinations like gi+, ~g2+ ~; when S = 0 is
specified one is referring to the spin zero state

For A = 2 the energies q~ and g2 are 0.6555129 and
1.9760024, respectively. The constants I* and re* are
proportional to m~ and m2, respectively

X* = 2v2(0. 227)wi = 0.642wi,

m~ = 0.338ze2.

(VIII.39)

(VIII.40)

The results for 0i and 02 were computed by computing
matrix elements using the coe%cients of ~A. f' in Eqs.
(VIII.31) (Oi) and (VIII.36) (Op). The numbers quoted
above are for A = 2.

The linearized behavior (VIII.38) is true for the nu-
merical results only if H* is the numerically determined H*,
in the limit of large X. Furthermore, the truncations of
the numerical calculations result in small modifications of
the eigenvalues and eigenoperators of the linearized theory.

A problem that arises in trying to fit Eq. (VIII.38) to
the numerical calculations is that the eigenvalues of H*
given in Table VI do not quite rnatch the limit for E ~~
of the numerical calculations. This is because the numerical
calculations involve truncation while the eigenvalues - of
Table VI are exact (although the values obtained for g, and

p2 are also only an approximation). The numerical energy
for all even iterations with X ) 164 (A = 2, J = —0.024)
was 0.6555132 compared with exact- value 0.6555129
(exact to seven decimal places). For the state gi+g2+~0)
(5 = 0) the computer gave 2.631526 while i&i + q2 is
2.631515; the difference 0.00001 was the largest found
among the states of the table.
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TABLE VII. Comparison of numerical calculations with analytic predictions from the strong coupling analysis.

g1 g1
gi g2

gi g2
g+Ig +
g1+hi+

0)
0}
0)
0)
0)

g~ o)
g2+ 0)
g,+g,+h&+

i 0)

1
1
1
2
2
2
0
0

0

1
0
1

E.(H*}

0.6555132
1.9760066
1.9665404
1.31102801
2.6315262
2.6315174
1.3110274
1.3110256

E(II~) —E(H*)
N = 132 X 10 4:

Computed Theory

7.015 input—21.833 21.826*
—23.384 -23.380*
—0.185 —0.181

0.459 0.468—31.160 —31.175
—0.181 input—27.884 —27.880

7-015 X 10 4 X 266

13.850 X 10 4 X 266

E(e~) —E(a*)
N =144X 10-5:

Computed Theory

—1.101 input—3.791 -3.787*
—3.307 —3.309*
—0.031 —0.034

0.065 0.061—4.892 —4.894
—0.034 input—4.370 —4.371—1 101X10 SX2~

2 ~ 1687 X 10 ' X 2"

To test Eq. (VIII.38) for the difference H~ —H*, the
difference H~ —H* (H* given by iteration iV = 180) was
calculated from the numerical results for two values of &:
Ã = 132 and Ã = 144. The results were compared with
the theoretical formulae of the table, with X* and m*

determined independently for each N. Two of the eight
eigenvalues in Table VI were used as input to de-
termine X* and m*; the remaining 6 eigenvalues could
then be predicted from the formulae of the Table. The
results are shown in Table VII:

The numbers marked with an asterisk in Table VII had
to be computed specially by degenerate perturbation
theory. The two states involved have the same quantum
numbers and for N = 132 the perturbation due to 0&

and 02 is about the same order as the difference of the
unperturbed 'energies. So it was necessary to take into
account the off diagonal matrix element of the perturba-
tion and diagonalize the two by two matrix from (H*
+ perturbation) to obtain the correct theoretical predic-
tions. The off diagonal matrix element is 1.069 m*. The
agreement of the computer results to theoretical predic-
tions is excellent. The values of A.

* and m~ for N = 132
and X = 144 agree to within 0.5%. This means the eigen-
values of the linearized numerical transformation have to
be within 0.1% of 2. One concludes that the theoretical
analysis leading to Eq. (VIII.38) is correct and complete
and that the coefficients wi(J) and w2(J) can be deter-
mined to about 0.5% accuracy. LEqs. (VIII.39) and
(VIII.40) relate wi and w2 to X* and w*.j

One final point for large N. The constants m~ and m»

have been determined for an example of small negative J,
namely J = —0.024. They can also be determined for
J = —~. Even for J = —~, the interactions H~ for
finite N are cot equal to H* and for large N the form
(VIII.38) should still be valid. For J = —~, H~ is a
quadratic form in the g's and h's, so the nonquadratic
term (f0+f0 —1)' cannot occur in the linearized approxi-
mation; hence w2(J) (i.e. , w*) must vanish. The value of wi

(i.e., )*) can be determined from the X dependence of
the single particle energies of H~. From numerical diago-
nalizations one finds the 1V dependence (A. = 2) (X refers
to H~ with J = —~) shown in Table VIII. This gives
X, = 0.44.

The second run had a smaller value of J than the first run.
Starting with iteration 20 there is virtually perfect match-
ing. For small N, irrelevant operators are important, and
the two runs diverge from each other. The same results
for N = 20 apply to every eigenvalue of the numerical
calculations, not just the examples cited.

TABLE IX. Verification (from numerical results) that a change in J
is equivalent to a change in N when N is large. The erst three columns
show two excited state energies vs N' for J = —0.055016, the last
three columns are for J = —0.02424.

J = —0.055016 J = —0.02424
E1 E2

This concludes the analysis of the numerical results for
N very large. The next topic is the analysis for reasonably
small values of N, where the J = 0 fixed point is relevant
(assuming the initial value of J is small). First a formal
discussion will be given. Near the J = 0 fixed point there
is one marginal eigenoperator; the rest are irrelevant, with
the largest irrelevant eigenvalue being A ' '. From the
general discussion of marginal operators given in Sec. V,
one expects the following. For suKciently large N, large
enough so that the irrelevant operators can be neglected,
II~ will be completely determined except for one param-
eter (the parameter gi of Sec. V). This is true indepen-
dently of the original value of J.This means, as remarked
in Sec. V, that there will be discrete sequences of initial
values J which lead to the same set of effective inter-
actions H~, except for a translation in N. This prediction
has been confirmed numerically. For example, two dif-
ferent initial values of J, for A = 2.25, gave the results
for the first and second excited state energies and even Ã
shown in Table IX.

N =30 N =32 (N =30)—(N = ~)
0.65552674 0.65551984 0.65551294
1.97605015 1.97602630 1.97600245
4.00006262 3.99997201 3.99988140

1.38 X 10 '
2.385 X 10 '
9.061 X 10 '

TABLE VIII. Single particle energies for J = —~, vs N. 6
8

10
20
30
40
50

0.075257
0.07777
0.08156
0.11367
0.18440
0.38734
0.68168

0.10067
0.10407
0.10919
0.15275
0.25076
0.56332
1.31203

62
64
66
76
86
96

106

0.07261
0,07662
0.08109
0. 11377
0.18450
0.38737
0.68166

0.09714
0.10255
0.10858
0. 15290
0.25092
0.56338
1.31199
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TABLE X. Comparison of numerical calculation of s~ with perturba-
tion formula V(s~ 2,. 2).

39
41
43
45

0.0386566
0.0397257
0.0408546
0.0420484

V(~~ „2)

0.0397258
0.0408547
0.0420485

The fact that the eigenvalues of HN for the first run
are essentially the same as the eigenvalues of HN+56 for
the second. run, means, for example, that wi(J) and zv~(J)
for the second run are larger by a factor 2.25" than ze&

and w2 for the first run, and in particular the ratio wg/nr,
is the same for both values of J. More generally one can
construct a decreasing (in absolute value) sequence of
initial values for J, say Jp, J2, J4, ' such that HN+~ for
J~ is the same as HN for Jp, for all these values of J, the
ratio zv2/wi is constant.

One can only show that w&/wi is constant for discrete
sequences of J which produce the same discrete sequences
of HN apart from a translation in X. There are other
values of J whose eigenvalues of HN only interpolate
between the eigenvalues of HN of the original valve Jp,
i.e. , correspond in a rough sense to a non-integral trans-
lation in N. There is no guarantee, from the scaling law
alone, tha, t w&/wi will be the same constant in these cases.
This is part of a general problem of "wobble" caused by
the discrete nature of the renormalization group trans-
formation T. If one were dealing with an infinitesimal
transformation so that X were a continuous variable, this
problem would not arise. Various measures of this wobble
will be discussed later, but the result is that it is a minor
problem for A. = 3 and 2.5 and negligible for A = 2.25
and 2.

The scaling law discussed above allows one to extend
the numerical results obtained for J = —0.024, say, to
much smaller values of J without having to redo the
calculations. However the numerical results for J = —0.024
and A = 2 are only useful for X & 20 or so; otherwise
irrelevant variables are important. X = 20 for J = —0.024
will correspond to very large A for values of J much
smaller than —0.024. It will be useful to know the eigen-
values of H~ for all 1V (at least all iV ) 20) for arbitrarily

Note however that w, /wi is different for J = —~ than
its value for J small, and therefore w2/wi cannot be strictly
constant even for small J. The deviations from constancy
for small J are caused by irrelevant variables near the
J = 0 fixed point. The size of the irrelevant variable
effects is of order A. ~' in HN. These effects can be esti-
mated to still be of order A N~' even for very large 3J,
which means they have the same X dependence for very
large E as the irrelevant terms involving m~ and re~, in
fact they cause corrections to ve& and zv& of absolute order 1.
But for weak J, wi and w2 are both very large (in the
example with J = —0.024 and A. = 2, ~I and m2 are of
order 10'7) so corrections of absolute order 1 to these
numbers are negligible. But when J is large, m~ and zv2

are not large and deviations from constancy of the ratio
are large.

small values of J. Pretend for example that for J = —0.014,
Hsp corresponds to H2p of J = —0.024. One would like
to know H2p through H7g for J = —0.014.

As J decreases the number of iterations required before
HN reaches H2p for J = —0.024 becomes enormous. The
reason is that as long as HN is near the J = 0 fixed point
it is also very slowly varying with Ã. This is due to the
presence of the marginal operator (generated by fo ufo~)
which to a first approximation does not change with X.
This makes it hard to compute numerically for small J,
because numerical errors accumulate over many iterations
and because too much computer time is required. Fortu-
nately, the range of X for which HN is near the J = 0
fixed point can be handled by perturbation theory. Initially
one calculates perturbation expansions in J, but for large X
there are factors of E in these expansions (the factors
of X are precisely the / factors that occur in Sec. V).
We know from the general discussion of Sec. V that these
factors of Ã can be removed at the price of introducing
a set of expansion parameters, one for each E, in place
of J itself. These expansion parameters will be chosen
here to be

~N gl +1N) (VIII.41)

where Ei~ is the first excited. state energy (odd 1V only
is considered), arid gi is the lowest single particle energy
of the odd N fixed point. From the general discussion of
Sec. V one expects that sN+~ will have an expansion in sN
which is free of factors of Ã, and this is confirmed by
actual calculations. The result is a formula

sii+g = U[s~ ) A] (VIII.42)

s~ = 1.5J' + 27.2808J" + 469.3577J"
+ 7661.9091J'4. (VIII.43)

By comparison the expansion of sN+~ in powers of sN, for
E & 29 and A. = 2 was found to be

s~~g ——s~ + 0.71436'~' + 0.14220sn '
—2.9214m~' = U(s~', 2). (VIII.44)

(Calculations were performed using 30 decimal places to
avoid the obvious problems of roundoff error. ) This simple
recursion formula can be compared with numerical results:
for A. = 2, and J = —0.024, the numerically determined
values of sN and corresponding theoretical prediction
(calculating s~ from s~ 2) are given in Table X.
The difference between the theoretical and numerical results
is negligible.

valid for large 1V, where U[s~] has a power series in ski.
In order to make accurate comparisons with the numerical
calculations it was necessary to compute U[sii, h] to
order sN4. This was done by expanding both sN and sN+&
in powers of J to order J' by standard perturbation
methods (see the Appendix), and then inverting the series
for sN to express J as a function of sN. The formulae
for sN in powers of J involves sums over all the eigen-
values g~~ of H~ (a single sum in order J', a double sum
in order J', etc.); these sums were computed by com-
puter. As an example of the results, for X = 31 and A = 2
the expansion of zN in a parameter J' proportional to J
was found to be
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One can now use Eq. (VIII.44) to extrapolate back-
wards the numerical results from X = 39. Define an in-
finite sequence of numbers sN, for odd X and —~ ( E( 39, such that z»/+& ——V(z»/', 2) as given by Eq. (VIII.44),
and such that s39 = 0.0386566. This sequence can be cal-
culated by successive approximations (using this method
on a pocket computer it was found that s 29 = 0.020101,
for example) or it can be calculated analytically by first
converting the recursion formula (VIII.44) to a differential
equation (using the methods of Sec. V), and then inte-
grating the differential equation (assuming z»/ is small,
which it is). The result of this procedure is the equation

(/V —/V')/2 = 4 (z»/ ) —4'(z»/), (VIII.45)

with (for A = 2)

4'(z) = (0.71436z) ' —0.72135 ln(0. 71436z)
—7.7310(0.71436z) (VIII.46)

neglecting order s~. By setting X' = 39 and sN
= 0.0386566, one ob'tains the equation

(39 —E)/2 = N(z»/) —38.5885 (VIII.47)

which can be solved implicitly to give sN as a function of X.

The extrapolation defined here has no relevance for
J = —0.024, for negative values of X have no meaning
for this case. But for smaller values of J the whole se-
quence of Hamiltonians HN are translated in X, and
negative values of X for J = —0.024 correspond to large
positive X for su%ciently small J; in this case the sequence
(z»/) defined by Eq. (VIII.47) completes the construction
of eRective Hamiltonians for small J except for the region
1V small (/V ( 20 or so) where irrelevant variables are
important.

This completes the analysis of the numerical results.
The emphasis was on results for A = 2 where the errors
of the numerical calculations are largest (for A = 2.25,
2.5, and 3 the truncation errors are much smaller). Even
for A. = 2 the errors are remarkably small and fits to
perturbation theory about the J = 0 and J = —~ fixed
points work very well.

To begin with the susceptibility x(T) must be defined.
The susceptibility one wants is the impurity susceptibility,
namely the susceptibility of metal plus impurity minus the

. susceptibility of the normal metal. For the full hopping
Hamiltonian H, both these susceptibilities are infinite due
to the infinite number of free electron states in II. So one
has to define a limiting procedure in order to obtain a finite
result for the difference. The obvious choice of limit is to
take the limit from a finite number of terms in H; this

IX. IMPURITY SUSCEPTIBILITY AND SPECIFIC
HEAT FOR THE KONDO HAMILTONIAN

In this section various methods for calculating the
susceptibility and specific heat of the Kondo Hamiltonian
will be discussed; the final result will be the zero temperature
limit of both. The first part of the section is a discussion for
the hopping Hamiltonian H for fixed A; in the second part
the continuum limit A ~ 1 is examined.

leads to the definition

x(T) = lim
PT M~oa

Tr5ir, ' expL —A &I ""H~(J)/kTj
Tr exp/ —4 {~ '& "H~ (J)/k Tj

Tr5ir, expL —h. ™Il ~H~(J = 0)/kT)

Tr expt 1t—{~ '& "H~(J = 0)/kTj
(IX.1)

For any finite temperature T, the limit M —+~ means
in practice that one must consider values of M such that
A '~ "~' is much less than kT. This means that very highly
excited states of H~ will be important, and these have not
been calculated in the numerical calculations. Suppose,
however, that one splits H~ into two parts: one can write

' &"H~+ R~..v, (IX.2)

where .V is any integer less than M, and the remainder
R~, N is

~{M—i&/2 P g n/2(f +—f + f +f )
n=N

(IX.3)

I,et HN consist of those terms which, iri H, are of order kT
or greater, while R~ N includes the terms in H smaller than
kT. This means that X is chosen so that A (N "~' is of order
kT, and that A (~ ""R~,N consists of terms each of which
is smaller than kT. The remainder. , term RJI/J, N can be split
further:

Rir, n = 1i{ '"Hr + R~.a+i, (IX.4)

where

Hr = 1t '(f~+fx+i+ fz+i+fw) (IX..5)

The point of this splitting is that the operators which
appear in R/&r, ~+i, namely f~~i, . . . , f/&r, are completely
independent of the operators which appear in HN. If it
were not for the coupling term HI, the trace calculations for
HN and R~,N+& could be done independently, using formulae
such as

Tr exp( A{~ '&' H~/kT —A—&~ "/~R/&r ~/i/kT)
=Tr exp( 1t &~ '&/'H~/kT)—

X Tr( 1i &~ '&/2R/&r, ~—+i/kT). (IX.6)

(Expectation values with Sir, will- be discussed later. ) The
coupling term must be taken into account; however, if N is
not too small HI can be treated as a perturbation. H~
appears inside exponentials multiphed by 1t &~ '& /2/k T,
and Hl ls itself of older 1. Thus if one chooses X so that
A {~ '&/2/kT is somewhat smaller than 1, the operator
h{~ ""HI/kT will also b.e somewhat smaller than 1 and

I

(M is used as a substitute for /V here to avoid confusion
later on), where 5/&I, is the z component of the total spin
of the impurity plus the electrons in H~,. it is assumed that
the electrons and impurity have the same magnetic moment
and g factor and both these terms have been set equal to 1;
the final term 4 is necessary to remove the impurity suscepti-
bility at J = 0 from the J = 0 term in order that the
J = 0 term subtract only the pure metal susceptibility.
The factor A '~ ') f' multiplying H~ is necessary to remove
the factor A'~ ""used in defining H~.
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one can expand in powers of this operator using standard
techniques. (One might be able to treat the full remainder
E~ ~ as a perturbation, but the large number of states
associated with the operators fN+ fM+ may cause prob-
lems. ) The perturbation expansion in Hr has been set up
in practice (to order HP) and the results are reported later.
The results are not sufficiently accurate to check the con-
vergence of the limit A ~ 1. It is useful as a preliminary
analysis to study the susceptibility neglecting the A'I term
altogether. One can split 5,~~.- also

SMz = SNz + 2 2 fn 'irfn'
n=N+1

SNz + SM, N+ lz~,
(IX.7)

(IX.8)

Thus

SMz = SNz + 25NzSM, N+l, z + 5
M, Ni+, z ~

By total spin conservation the traces

Tr SNz exp{ A''& "H—N/k. T)

(IX.9)

and Tr SM, N+l, exp{ A' "i'RM—N+l/kT) both vanish.
Therefore

Tr SM,~ exp{ AM 'i 2HM—/kT)~ Tr SNz' exp{ A' ""HN/—kT)
X Tr exp{ A' " 'RM —N+l/kT) + Tr SM, N+i, .'
X exp{ A™I~ ARM—N+l/kT) Tr

X exp{ A iN ii HN/k—T) (IX.10)

With A iN "/kT of order 1, only those excited states of
JI~ with energies of order 1 are important in the trace;
higher energies are exponentially damped. Hence for a
rough calculation one can keep only the energies calculated
numerically. However it is more important to note the two
limiting cases where one can calculate x(T) by perturbation
theory. If kT is extremely small, then N will be large
enough so that H~ is approximately given by the J = —~
fixed point; if more accuracy is needed, one can use the fit
to H~ —H* in terms of the leading irrelevant operators.
If N is r)ot too large, i.e. , kT is not too small, then II~ will
be close to the J = 0 fixed point, and one can use a pertur-
bation expansion in J to compute x(T). A better procedure
for small 1V is to expand X(T) in powers of sN instead of J
(iV chosen so that A 'N "i'/kT 1). The low lying energy
levels of H~ have an expansion in terms of s~ which is free
of powers of A, and therefore x(T) should also have a good
expansion in terms of s~. This turns out to be the case.

neglecting H&. (The traces are over the states of the irn-

purity plus electron states 0 to N for H~ and over electron
states 1V + 1 to M for RM, N+l. ) The same breakup is true
for any J, and E~,~+~ is independent of J. The result of
this approximation for x(T) is that the terms involving
RM N+i cancel and one is left with Eq. (IX:.1) but with the
fixed number N replacing M.

Now the perturbation expansions for x(T) will be dis-
cussed in detail, first considering the large X case (T« TIr).
In these calculations the exact formula (IX.1) will be
used, not the approximation M = N.

The first approximation to x(T) is obtained by replacing
HM(J) by Et"(J = —~). Similarly, for large M one can
replace HM(J = 0) by the J = 0 fixed point Hamiltonian.
Both fixed point Hamiltonians are free electron Hamil-
tonians, and can be written as sums of independent terms
of the form qg+g (g =—g~). For a single term of this type
(summed over the spin index y)

Tr 5,2 exp( —PH) = —',e ~&,

Tr 5, exp( —PIi) = 0,

Tr exp( PH) = —(1 + e ~")'

(IX.11)

(IX.12)

(IX.13)

exp ( pM gl)— '

i=i E1 -+ exp (—PM vi) 3'
(IX.14)

/The explicit ~ in Eq. (IX.1) is cancelled by the impurity
susceptibility term in the J = 0 term of Eq. (IX.1).j
The 8 term comes from the 0 energy states of the E evenJ = 0 fixed point. Similarly, for M even one obtains

exp( —PMni)
lim

kT M " i=i L1 + exp( —PMgi) j'
exp( —pMi7i')

(IX.15)

Except for small /, g~ is A' ' and g~' is A' ' '; but for large
enough M, PMgi is «1 for small {,and can be replaced by 0,
or equally well by /MA' '. Hence the formulae gl ——il. ' '
and p&' ——A' '" may be used for all /. Furthermore if one
combines the two sums over l, the first few terms cancel
completely for large enough M, and one can replace the
lower limit / = 1 by / = —~ without changing the result.
Hence

kTx(T) = x, (P,g)

From these results it is easy to construct x(T). I.et gi, g2,
etc. , be the single particle eigenvalues of the N odd, J = 0,
fixed point Hamiltonian (each eigenvalue occurring twice).
Let 0, g~', g2', etc. , be the single particle eigenvalues of the
N eve+ J = 0 fixed point Hamiltonian. There are now two
cases to consider: M odd or M even. The M odd J = —~
fixed point is the same as the E even J = 0 fixed point
except to omit the impurity states. Let M be odd. Let
PM ——A

—™»~/k T. Using the three results (IX.11)—
(IX.13), one obtains

1 1 (exp —PMg, ')
x(T) = —lim —+

kT M 8 i=i L1 + exp( —pMgi )j

From the numerical calculations it is found that there is
only a small range of values of N for which neither pertur-
bation theory works at least roughly. Correspondingly
there is a single order of magnitude range of T for which
neither expansion is good; this range of T qualitatively
defines T~, the Kondo temperature. A more precise defini-
tion of T~ wil-1 be given later.

j
lim ——+

M-+oo
3f ev'en

exp( —pMA. ' '")

exp( —pMA. ' ')

L1 + exp( —PMA' ')j'

L1 + exp( —PMA' '~')g'

with a similar expression for M odd.

(IX.16)
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Expression (IX.16) for x(T) is invariant to the change
P,ir ~AP~, since this can be compensated by the change of
summation variable l —+ l —1. This means the sum over /

only needs to be calculated for a factor of A range of Psr.
The sum has been calculated numerically; some typical
results are given in Table XI.

2
2. 5
3

0.5
0.46
0.433

kTy(T}

0.00001016
—0.000285
—0.000883

TABI.EXI. Values of kTx(T} very near T = 0 Lusing Eq. (IX.16}j.

The results are small and decrease as A decreases. One
can show that for A —+ 1, kTx(T) ~ 0; this will be proven (VIII.38)j. This normalization is accomplished by the
later. The same is true for the alternate formula for M odd. denominators ngyg and ng' in Eqs. (IX.22) and (IX.23).

The above result shows that substituting H*(J = ~)
for HM gives 0 for kTx(T), at least in the limit A —+ 1.
Hence, it is important to study the e8ect of corrections
to H*.

More complete formulae for O~ and 0~ are needed for the
susceptibility calculation. When M —+~, P)gr —+ 0 and
therefore highly excited states of H~ contribute to the
thermodynamics. To start with a more complete form of
Eqs. VIII.28—VIII.29 is required. One can ~rite

fs ——A &~ ')"P ng(gg + hg+),

f A—3(iv—g)/4 P ~ (g k+)
l

(IX.18)

(IX.19)

The quantities a& and && are known from numerical calcu-
lation for / & 20. For intermediate values of / they are
found to behave as

~ ~g3(L—1)/2
)

(IX.20)
'

(IX.21)

where gr and y are constants independent of l (but varying
with A). This form is found to fit the numerical calculations
except very near the endpoints of the range of / (the end-
points are 1 and (gV+ 1)/2). For A. = 2, n and y are
both 0.4307.

The formulae (VIII.31) and (VIII.36) must also be
generalized. The results are

~l Pl
wg(J)Oi ——X*(J)P ——(gg+gg + kg+kg) (IX.22)

uy yy

ws(J)Os = sw*(J) E . . . 2 Z Z(~g) ~gp'gs~gpg4
l4 p' v

It was shown in Sec. VIII that the leading corrections
to H* have the form

H)gr H* + A ~"Lwg(J)Og + ws(J)Osj, (IX.17)

where so~ and ze~ are parameters and O~ and 02 are the
leading irrelevant operators. In Sec. VIII the corrections
for the low lying eigenstates of H~ were discussed explicitly.

The above formulae define Oj and O~ when M is even
Pin Eq. (IX.17)$. For odd M one must use the even 1V,

J = 0 fixed point for A*. The operators Oy and O~ still are
derived from the operators fo+fi + fg+fs and (fe+fs —1),
but the expansions of fg) and fi in terms of gg and hg have
new coefficients. LAlso there is a single creation operator
for 0 energy, say g&, in addition to the pairs (ga, kg), (g2 h2),
etc.g. The author has not calculated the operators Oi and
Og explicitly for odd M.

The calculation of x(T) is straightforward. The Oi and
02 terms are to be treated in lowest order perturbation
theory. Hence one has to compute

Z)gr ——Tr exp( PsrHg)r) T—r exp( —)(l)grH*)
—/MA "Tr( (wgOi + w, O,) exp( —PggrH*)), (IX.24)

Tr Ssr,s exp( PsrH~) —Tr Ssr.s exp( —P)grH*)
—PsrA™Tr f Ssr,' (wiOi + wsOs) exp (—P)grH*) }.

(IX.25)

The traces involving 0& and 02 are calculated by standard
methods. The result for x(T) is that

kTx(T) = kTxs —A ~"P P,
*

grg "rg exp( P~'ggg)$1 ——exp( P)grrgg) jxp ———
g ni pi L1+ exp( —Psirgg)j'

~P exp( —P~ng)
+2p~w*&-~" 2 — (».26)

grg LI+exp( PMrgg))

Lxs(p, A) is defined in Eq. (IX.16).g

For M —+~, Psr becomes small and the terms for l near 1

are negligible in the sums, compared to the terms for large E.

The reason for this is that a~p~ and n&' increase with /. The
dominant terms in the sums are those with p)gfrlg 1. For
very large 1, P)grrgg is large and the terms are exponentially
small. For large E one can use the asymptotic forms (IX.20)
and (IX.21) for ng and yg. Thus for sufFiciently large M
(sufficiently small P)gr) one has the following. Let

X (giga ggsy gggpggggp + kgggg kggp g~ykg4p

+2gglll hgsg higVgg4V 2gggjl gg+lhg3V hg4Y) . (IX 23)

(The indices gg and v are spin indices. ) These formulae are
obtained by expressing fs+fg + fg+f& and (fs+fe —1)' in
terms of gE and h~. For O~, only the diagonal terms are
listed since only these a6ect the energy levels of H~. All
terms are included for 02. The parameters X* and. m* are
normalized so that the energy level shifts of states created
by gi+ and hi+ are simple Lsee Table VI, following Eq.

!
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xi(p)gr, A) = (p)Ir)'lnA Q A'" "
oo

exp (—p)erg g) L1 —exp (—psrri g)j
X

PI + exp( —P~qg) j'
Ag —' exp( —P)grrgg)

x, (p)gg, A) = p)gr'(inA)'
L1 + exp (—Psr' g)j'

(IX.27)

(IX.28)
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TABLE XII. x1 and x2 for various values of p~.

A=2:P~ 0.5 0.6 0.77 0.93

x1 0.49989 0.49999 0.50015 0.49998 0.49989
x2 0.249988 0.2500|| 0.250002 0.249984 0.249988

where p& is replaced by A' '. Then

A ~~' ay 1
k Tx (T) xo(T) — P

* » (p~)
lnA nisi P~

A
—3I/2 ~ 4

+2 ~* — X2(P~).
(lnA)' n i P~

(IX.29)

The reason for including the factor le in Xi and X~ is that
they make the functions X~ and X~ invariant when
P~ —+ AP~. The invariance is obtained by letting PM ~ APM
and l ~ l —1 in Eqs. (IX.27) and (IX.28). Hence Xi and x,
need be calculated only for one factor of A range of P,M.

The factors of lnA are included in X~ and X~ so that X~ and X2

have a limit for A —+ 1. It will be shown later that X~ ~0.5
and X~ —+0.25 for A ~ 1.

The variation of Xi and X& with P~ is an artifact of the
discretization for A & 1. It is one of the sources of error
when X(T) for A = 1 is approximated by X(T) for A W 1.
Thus there is a minimum error of about 4% in x(T) when
calculated using A = 3; for A = 2 this source of error is
negligible. There are similar but smaller variations in Xo

about 0.

Neglecting the variation of Xi and X2 with P~, replacing
Xo(T) by 0, and expressing P~ in terms of kT, one has

The functions X& and X2 are easily calculated. For example,
for A = 2 one obtains the results shown in Table XII.
Clearly the sums for A = 2 are very close to the limit for
A —+ 1. The reason for this will be explained later. There is
a small variation in Xi and X~ as P~ varies The .results for
A = 2, 2.25, 2.5, and 3 are summarized in Table XIII.
As A increases the average values of X~ and X2 remain 0.5
and 0.25, but the variation of Xi(P~,A) and X&(ll~,A) with
P~ is larger, the maximum variation being &4 j& for xi
atA =3.

The speci6c heat of the impurity can also be calculated,
for small T. The calculation will be described briefly. The
specific heat C(T) for a general system is defined as

C(T) = LTr H exp( —H/kT) j/LTr exp( —H/kT) j
dT

d
k1'

dT
In Tr exp( —H/kT). (IX.31)

The specific heat of the impurity is de6ned as the difference
of (specific heat of metal plus impurity) —(specific heat
of pure metal). Using the same limiting procedure as for
the susceptibility, one obtains

d
C(T) = k T2 lim —{ln Tr

dT dT ~""

XexpL —A &~ '&~~H~(J)/kT1 —ln Tr

Xexpl —A ~~ ' ~'H~(J = 0)/kTj + ln2}. (IX.32)

(The ln2 term is to remove the free impurity contribution
from the trace for J = 0.) Here C(T) calculated to first
order in ze,O, + w,O, gives

A ~~9*n~yE and A ~l'+~a~' which increase rapidly with l.
These factors are to be compared to gE, the unperturbed
energies of H*. Now o.~y~ and o.~ increase as A", while g~

increases only as A'. The sums over l determining X(T) are
cut off when P~q~ becomes ))1.Hence A ~'(wiOi + w202)
can be treated as a perturbation in the calculation of X(T)
only if A ~"X*o.~y~ and A ™m*ng4 are smaller than qg when
l is chosen to make P~g~ of order 1. Consider for example
the example of Sec. VIII with X* and iit" of order 2" (A = 2).
Then we must have 2' ~ '2" && 2' when 2™2'/ kT& 1.
This is true if 2"kT « 1. This means that P~ itself can be
small only for M )) 112. Referring to the table of numerical
results (following Eq. VIII.25), M —112 is about the
lowest value of M for which H~ is close to H* (J = —~).
Many people are upset by the large absolute magnitude of
X* and w* (2" in the example). This analysis shows that
the O~ and 02 terms still can legitimately be treated as a
perturbation if M is large enough and P~ not too small;
the basic reason is that X* and ve* are multiplied by A ~"
and the products X~A ~", m~A ~~' are small for large
enough M.

kTx(T) —0.5
A& lnA

Thus x(T) is a constant independent of T.

IX.30
d d

C(T) = k T'
dT (IT

lnZ(T'), (IX.33)

The above calculation is valid only for small T, namely
T&& T~, where T~ is the Kondo temperature. The reason
for this is that A ~~~2(miOi + w202) is a small perturbation
only for low lying excited states of H~. To be precise, the
size of A ~"(wiOi + F202) is given essentially by the factors

Z(T) = l{ II L1+exp( —P~ni)3'51+exp( —P~%')3 '}
l=—ce

TABLE XIII. Variation in X1 and X2, vs p„~, for various values of A..

AP I(P~,A)
A' lnA ngyg

(IX.34)

2.25 2.5 where

x1 0.5 ~O.03% o 5 ~0.2% 0 5 ~.&% 0.5 ~4%
x2 0.25&0.006% 0.25&0.06% 0.25&0.3% 0.25~ 1.3%

exp (—P ns'9 t)
I(P~ A) = lnA g P~'A2t ' . (IX.35)

E1+ exp( —P~q, )3
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A 2 225
error in I ~0.006% ~0.06%

2.5 3
w 0.3% w 1.5%

The product over l gives 4, except for similar but smaller
fluctuations as a function of P~. So, neglecting these
fluctuations,

oy )Z(T) =1 ——
3 A& lnA nisi)

(IX.36)

In these formulae, g~ is A' ', and q~' is A' 't'. There is no
contribution to Z from the m20~ term. The over-all factor 4
is due to the 0 energy mode present in the Ã even, J = 0
fixed point. The sum I has been defined to be invariant
to the change P~ —& APpr and to have a finite limit for
A = 1, namely I(PpI, 1) = ir'/12 (see later). For A = 2,
2.25, 2.5, and 3, one obtains I = x'/12 with variation as
shown below:

the expansion (IX.38). The large numbers in the expansions
(IX.39) and (IX.40) are due to lnkT terms in the expansion
of X(T) and terms proportional to X and 1V2 in the expan-
sion of J'.)

To understand the result (IX.38) being independent of T
or 1V as long as pii = 0.7071 is fixed, consider the definition of
x(T), Eq. (IX.1). First consider the qualitative calculation
where M —+~ is replaced by M = Ã. In this case one has
two traces to calculate. The first trace is exp( PprH—&(J)).
This trace depends only on s~, and not otherwise on X, for
large Ã. The reason for this is that all the low lying energy
levels of H~(J) are determined once s~ is given (see Sec.
VIII). The highly excited states of H~ may depend on X
but are exponentially damped in the calculation of x(T).
The other trace involves P~H~ (J = 0). For large X,
H~(J = 0) can be replaced by a fixed point Hamiltonian
which does not depend on iV.

for small T; this gives

2m 2 A.
* o.y

C(T) = ——k'T
3 A& lnA o.~y~

(IX.37)

The formulae obtained above for x(T) and C(T) can be
used for specific values of J for which numerical calculations
are performed and values obtained for X* and tv*. A better
and more general result can be obtained using a further
set of formulae for x(T) valid for large T /formulae for
C(T) for large T will not be neededj. For T)) T» one can
use perturbation theory in J to compute x(T), provided J
is small. %hen J is small, the Kondo temperature T~ is
very small (see later) so T can be much larger than T»
and still have kT « 1. In this case the perturbation expan-
sion of X. involves logarithms: J lnkT, J'ln'kT, etc. i.e.,
the series for x(T) is a bad series in the language of Sec. V.
In the formula defining x(T), the dominant states are those
with energies of order kT above the ground state, and in
the rough calculation described at the beginning of this
section, one can determine these states by studying H&
with 3f chosen so that A. i' kT. The eigenvalues of II'~
have a good expansion in terms of s~ Lsiv was defined in
Eq. (VIII.41)g. Thus one anticipates that x(T) has a good
expansion in terms of s~ with X chosen to give A ~"—kT.
This is the case. For example, let A = 2 and let piv
= 2 iii' '& "/k T be V2/2. In the limit of large 1V a perturba-
tion calculation (see the Appendix) gives

kTX(T) = 0.25 —0.25766siv + 0.31472sip'
—1.1300sg' (IX.38)

This is true for any large N as long as kT = 2.2 ~~'. For
large X, kT is very small but there are no lnkT terms in
this formula; it is a good expansion. LKquation (IX.38)
was obtained by expanding x(T) in powers of J and then
substituting the expansion of J in terms of s~. For detailed
formulae, see the Appendix. Both these calculations were
performed for large but finite X.A typical set of formulae are

kTx(T) = —038648417' —9.219866J"
—213.31641J'3, (IX.39)

J' = 0.6666667siit —11.41686s»P + 202.52955s~P,
(IX..40)

v,-here J' is proportional to J; substituting sN for J' gives
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To be more accurate, one must consider M & X. I et
11' = 1V+ 1.; the first trace now involves /~A "HN+L(J).
Once s~ is specified, H~ is determined; from the recursion
formula for H~+&, the energy levels of II&+&, H~+2, etc. are
all uniquely determined also: they are independent of X
if s~ is held fixed. So the trace is again independent of X.
Likewise for the trace with J = 0. Thus kTx(T) depends
on T and 1V only through p~ and sii.

There is a consistency check one can perform on the
expansion for x (T). Namely, holding T fixed one can
increase 1V, say to X + 2 and expand in s1i+&. One obtains
/ii+2 ——p~/A. For the example one has p»+2 ——0.3535.
The expansion of x (T) calculated for pii+p ——0.3535 is
found to be

kTx(T) = 0.25 —0.25766am+2 + 0.49878sii+2p
—1.80601sii+2' + . . . . (IX.41)

The expansion of s~+2 in terms of s~ was given earlier
LEq. (VIII.44)g. Using this expansion, Eq. (IX.41) reduces
to the previous form (IX.38), as required.

kTpx(Tp) = 0.25 —0.25766siv + 0.31472'~'
—1.1300s~' (IX.42)

kTX(T) = 0.25 —0.25766sN+2L+ 0.31472siv+pL'
—1.1300~&+»'. (IX.43)

From Kq. (VIII.45), one has

+ (e1V+2L) + (sN) (IX..44)

One can invert Kqs. (IX..42) and (IX.43) to express s~
and siv+2L in terms of X(Tp) and X(T). It will be convenient
to use a variable

yp
——2kTpx(Tp) —0.5,

in place of x(Tp) itself. In terms of yp,

(IX.45)

s1ii
———1.9406yp + 4.5998yp2 + 10.2447yp' +

(IX.46)

The perturbation expansion for x, Eq. (IX.38) can be
used to determine the temperature dependence of x(T),
for T )& Tz and kT « 1. Specifically one proceeds as
follows. I.et kTO = 2. 2 t and T = To 2 ~. Then Eq.
(IX..38) can be used for both x(Tp) and x(T) (if T and Tp
are both larger than T»). One has
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TABLE XIV. Values of l':, F, and G in Eq. (IX.58).

I
F
G

2.0
—0.5 & 0.004%—0.5

0 ~ 01 Fo

2.25

—0.5 & 0.04%—0.5

2.5

0.5 ~ 0.2'Fo
—0.5

3.165 ~ 0.3'Fo

0 5~ 1'Fo
—0.5

3.165 ~ 1.5'Fo

The expansions for sip and sip+QQ can be substituted in (nonlogarithmic) terms in the expansion (IX.51) in order
Eq. (IX.. 44). Writing yr, ——2kTx(T) —0.5, the result is J'p', J'pP, etc. An example will be given later.

4' (yl ) —4 (yp) = —I ln2 = ln (T/Tp),

where

(IX.47)

4/2k Tx (T) —0.5) —4L2kTpx (Tp) 0.5)
= ln(T/Tp)

which means that if one defines B to be

B = ln kT —4L2kTx(T) —0.5),

(IX.49)

(IX.50)

then B is independent of T so long as T is an inverse power
of 2.

4 (yp) = (ln2)%'(s~) + 1:0018 = (—1/2yp)
—0.5 lnl2ypl + 3.1648yp+ O(yp'). (IX.48)

The constant 1.0018 was added in Eq. (IX.48) so that
4(yp) would have no constant term. Now one has

The temperature dependence of x(T) for T » Tlr is
now given by

4l 2kTx(T) —0.5) = 4[Jp) + 1n[kT/D(Jp)). (IX.56)

Solving this equation as an expansion in Jp, using Eq.
(IX.48), one obtains

kTx(T) = 0.25(1+ 2Jp+ 4J'p' ln(kT/D)
+ J'p'L8 ln'kT/D) + 4 ln(kT/D))
+ J4p4(16 lnP(kT/D) + 20 ln'(k T/D)

—21.331n(kT/D)) + . ). (IX.57)

To the author's knowledge the nonleading logarithms in
this expansion have not been previously calculated to this
order in Jp. The leading logarithms agree with earlier
calculations.

Consider B as a function of Jp. It is convenient to write
B in terms of a new constant D

B(Jp) = lnD(Jp) —4 (Jp). (IX.52)

The point of this equation is that D(Jp) has a power series
expansion in Jp while 8 (Jp) does not. This follows from the
fact that x(Tp) for fixed Tp has a power series expansion in
Jp, and in particular yp = 2kTpx(Tp) —0.5 has the form

The quantity B depends on the initial coupling constant
J. In order to make connections with previous work on
the Kondo problem we shall return to the constant J of
previous workers in place of J. In the conventional con-
tinuum Kondo theory discussed in (Kondo, 1969), x(T)
has an expansion of the form

kTx(T) = 0.25(1+, 2Jp+ 4J p ln(kT/D) + ),
(IX.51)

t

where p is the density of states at the Fermi surface, and D
is the width (in energy) of the conduction band. (In the
model of Sec. VII, p is 2, and D is 1.) Only the leading
logarithm has been calculated in order J'p'.

The function 4 (y) in principle should be calculated in
the limit A —+ 1. %e need to know the errors that occur
for A & 2. The general form of 4 (y) is

4'(y) = (&/y)+ ~lnl2yl + Gy, (IX.58)

The equations for the temperature dependence of x(T)
obtained above were derived assuming kT = A '~ 'i' /P
for integer E and fixed P; they are not (as derived) valid
for all T. To cover a continuous range of T one must relate
the calculations of x(T) for a continuous range of P. This
can be done in practice as follows. For two values of P,
say P and P', one can calculate X(T) for fixed iV. Thus one
calculates x(T) for kT = A ' ""/p and x(T') with kT'
= A ' ""/P'. The result can be written

where E, Ii, and G depend on A; except for F they also
depend on the value of P chosen in calculating the expansion
of X in terms of s~. These constants have been calculated
for a range of values of P, with the result shown in Table
XIV.

Once again there is rapid convergence as A decreases; this
will be explained later.

(IX.59)

(IX.60)

(IX 53) 4L2kjx(T) —0.5) = (lnA)%(s~) —H (p),

4 L2k T'x (T') —0.5) = (lnA)% (spr) —H (p'),

yp = Jp+ o(J'p').
From Eq. (IX.50) one has

lnI kTp/D(Jp)) = O'Lyp) —4'LJp). (IX.54) where H(p) is a constant for given p. In these formulae the
small variations of 4 with p have been ignored. Numerical
calculations of H (p) show that to a good approximation

H (P) = + lnP + H, (IX.61)

where H is independent of P. The results for H are:

The difference 4 (yp) —4 (Jp) contains the differences
l yp

i —(Jp) i) and lnyp lil(Jp). Usiilg Eq ~ (IX 53) it
follows that each of these differences has a power series
expansion in Jp. Using the second order term. in Eq. (IX.51),
one obtains

D(Jp) = D(co+ c,Jp+ c,J'p'+ . ). (IX.55)

The constants cp, cy etc. are determined by the constant
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2
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Thus, one has, for LV fixed,

4 L2k Tx (T) —0.5) —4 L2k T'x (T') —0.5j
= —ln(P/P') = ln(kT/kT') (IX.62)

Now one obtains X"(Jp) from a generalization of Eq.
(IX.63)

(IX.68)

which is the previous formula (IX.56) but now valid for a
continuous range of values of T and T'.

w* = A f"pE,I —E,(~)j —2x*, (IX.64)

where E,f is the energy of the state g&+k&+~0) with total
spin 0 for iteration Ãf.

For an arbitrary value of Jp, one cannot expect s~ = s;
for N = N, . However one can calculate the value of 2V for
which z~ ——z, . Namely, from Eqs. (IX.56) and (IX.59),
one has

(lnA)%(z») —H —lnP = 4 (Jp) + ln(kT/D) (IX.65)

This completes the study of x(T) for large T (T)) T»,
1» kT). The stage is set for the calculation of the zero
temperature susceptibility and speci6c heat as a function
of Jp. This means computing P

~ and m* as a function of Jp.
The computer calculation gives A.

* and m* for a single
value of Jp. More precisely the information taken from the
computer calculation is as follows. For some initial value
N, of N, the value z, = z(N, ) is obtained from the com-
puter output. In the example di.scussed in Sec. VIII, N,
can be chosen to be 39; then s, is 0.038657. Then values of
X* and m* are calculated by matching to the energies calcu-
lated for a large value 1Vf for N (N = 132 for the example
of Sec. VIII). One calculates X* from the formula

(IX.63)

where E&r is the energy of the state g&+~0) (see Sec. VIII)
for iteration Ãf, obtained from the computer calculation.
Likewise

A similar formula holds for w*(Jp). Both X* and w* depend
on Jp only through the factor A~'"; in the ratio w*/X*
this factor is removed. Thus w*/X* is independent of Jp.
(This is true only for small Jp, as was explained in Sec.
VIII.)

One can now combine Eqs. (IX.67) and (IX.68) to give
the zero temperature susceptibility

x(0) = x, exp{4 (Jp) —lnD), (IX.69)

where &, is a constant independent of Jp

11 AP vv py A

{Eu —E~(™))
2 lnA lnA

I

(Ng —1V,)
)&exp H + —lnA —lnA+ (z,) (IX.70)

The ratio of specific heat to susceptibility at zero tempera-
ture has a simpler form. The ratio one studies is the zero
temperature limit of C(T)/Tx(T) and this is

C (T) 4z'k'
lim
T ' Tx(T)

(IX.71)

In this formula, Nf, 1V, , z;, E~f, E~(~), and w*/X* are
determined from computer output; a, y, n~, y~ are deter-
mined from free electron (J = 0) calculations; the constant
H and functions 4 (Jp) and 4'(z) are determined from
perturbation theoretic calculations.

as long as kT = A &~ '&' /P. This means

(N —1)/2 InA = —lnP —lnkT.

If s~ is required to be s; then N is

(IX.66)

with

(IX.72)

N = No(Jp) = 1+ (2/lnA){4 (Jp) + H —lnD)
2N z, . (IX.67)

Suppose for a moment that No(Jp) is an integer. The
computer calculation tells us that Ãf —N; further itera-
tions are required in order that the first excited state energy
E~(N) be equal to E&~. In other words, if z~, = z, for
initial coupling Jp, then E&(NO+ 1Vf —N, ) will be equal
to Egf The reason for this is that E~(1VO + Nf —N, ) is
determined once z», is given (as explained earlier) irregard-
less of the value of No (provided No is sufficiently large).

In these calculations, a maximum of 1620 states were
kept (for A = 2, 2.25, and 2.5), broken down as shown in
Table XVI.

F

(For 5 W 0 this table gives the number of states kept for a
given value of 5,.) The calculations were performed on a
CDC 7600 and required 7 seconds for 1 iteration. The
calculations for A = 3 were performed keeping only 526
states, as shown in Table XVII.

TABLE XV. Results of the Kondo calculation.

E
Xg

si

~If —~1( )

2.0
1.998
0.10345

43
0.0408546

142—2.2027 X 10 ~

2.25

1.9994
0.10315

35
0.0409743

130
—2.5359 X 10 6

2.5
2.00006
0.1029

31
0.0417065

114
—1.3746 X 10 5

2.0001
0.1026

31
0.0303433

120
—2.5902 X 10 4
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TABLE XVI. Number of states retained for different values of Q and double sum and 6 involves a triple sum, both of which the
S in the full calculation (1620 states total) counting different values author' has not tried to wrjte down explicit]yof S,.

Q=O
~1
&2
&3
&4
w5
&6

26
21
11 .

6
4
2
1

38
33
16
8
4
2

34
26
14
6
4
2
1

21
19
9
3
2
1

10
7

22

0 0

P(—1 lie+

Then from Eq. (IX.28)

(IX.73)

The quantity I2 ——(X&') can be used to illustrate the
rapid convergence. In the limit A ~ 1, I2 becomes an
integral. This is seen as follows. Let x = (l —1) lnA. For A
near 1, lnA is small and Bx is small for a unit change in /:
6x = 1nA. Write

If 1VO(Jp) calculated from Eq. (IX.67) is not an integer
then one must change the value of s, until X,(jp) is an
integer, and then redo the computer calculations with the
new value of s;. This means there will be a new value of
Egf also. But for A —+ 1 there should be a unique
value for X(0), which means the product {Eif—Ei(~)}
X exp{—lnAC(s, )} should not vary appreciably as s, varies
(if X, and Ef are held fixed). Likewise the ratio i(("/X~
should not vary. To test this, calculations for A = 2.25
were carried out for four values of s, ; only a 0.1% variation
was found for the product {Eif -- Ei(~)}exp{ —in' (s,)}
and the ratio u(*/X*.

u, exp( —u()
Ig(P,A) = lnA

(=—- L1+ exp( —u, ))'

dx Pe exp( —f7e )$1 + exp( —Pe )) '.

(IX.f4)

Let s = exp( —Pe*) giving ds = —Pe*zdx. Then

Ig(P,A) ~
j.

dz—— —= 0.5.
(1 + z)'

(IX.75)

F« ~ ~ 1, ln~ —+0, and this formula becomes exact.

The values of the susceptibility and specific heat are
subject to intrinsic errors due to fluctuations for A & 1 as
noted in various tables, but for A = 2 and 2.25 these
fluctuations are a small fraction of 1% and are unimportant.
For A = 2.5 they are of order 1% to 2%, and (5% for
A = 3. In addition there are numerical truncation errors
which could approach 1% for X, for A = 2; for all the
other results these truncation errors are much less than
1%. A fuller discussion of errors will be given later.

The results for R and X, are the central results of the
Kondo calculation. R is remarkably close to 2; one can
hardly avoid the conclusion that it is 2 exactly. Recently
Nozieres (1974) has argued that the factor R is 2 precisely.
Nozieres combines qualitative results from the present
work with known properties (in perturbation theory) of
the Kondo Hamiltonian under a shift of the Fermi energy.
Such a shift produces a violation of particle —hole symmetry;
the e6ect of such a violation on the numerical calculations
has not been studied yet. An even simpler argument for R
being 2 is given by Yamada (1975).

f(x)(lx. (IX.76)

An approximation to this is

I(a) = a g f(al)
l=—oo

(IX..77)

for small a. One relates I(a) to I as follows. One can write

The sum in Eq. (IX.74) is a very naive approximation
to the integral. If the limits of integration were finite, the
error in approximating the integral by a sum would be of
order 6x = 1nA. But because the limits are infinite the error
is exponentially small, namely of order exp{ —ir'/lnA}.
This is the reason for the rapid convergence. To show this
result we review a standard but poorly known (in the U.S.)
theorem about approximation of infinite integrals by infinite
sums LFisher and Barker (1972)).Let f(x) be analytic in the
complex x plane in a strip —r Imx r about the real
axis. Also assume f(x) goes to zero rapidly as x ~ & ~ in
the strip. Then let

The first step in the error analysis is to explain the rapid
convergence of the sums X~, X2, and I as A —+ 1 and likewise
the rapid convergence of E, F, and G Lthe coefficients in
4 (y)). The coefficients E, F, and G also involve sums over
the free particle energies. E is just —&2 "while F involves a

TABLE XVII. Number of states kept in the fast calculation (526
states total}.

(ix f (x) P 6 (x —al).

Now use the formula

OQ

a P 5(x —al) =-
)=—oO exp(2&zx/a) —1 + e

(IX. 7g)

Q=O
&1
&2
&3
~4

13
11
6
3
1

18
15
8
3
1

14
13
6
2
1

212 )

exp (2vrix/a) —1 —e
(IX.79)

where e is as usual an infinitesimal positive quantity. {The
difference in Eq. (IX.79) vanishes unless x/a l with
integer l; for x/a = l the difference is $2~i(x/a —l) + e)—L2~i(x/a —l) —c) 'which is 6(x/a —l) = aB(x —al).}
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Hence

I(a) = dx f(x)
exp(2xix/a) —1 + e

(IX.83)

(IX.84)

it for A —+ 1 of all the strong coupling functions
can be obtained analytically, just as or

lim(A~ 1)xi(P,A) = 0.5,
' (—lns)

hm(A ~ 1)I(P,A) = —ds = m'/12.

exp (2m ix/a) —1 —e

dx f(x)
exp(2n. ix/a) —1 + e

exp (2~ix/a)

exp (2m ix/a) —1 —e
(IX.80)

exp( —A~ui)
(IX.85)

The latter result comesmes from t e CR.C tables of definite
tibilit xo one hasF the zeroth order suscepti i i yintegrals. ) or e z

exp( —u, )x.(pA) = —,

the contour of integration to Imx= ~rNow one can move
ids poles of the integran .as long as one avoi s po

(x is real in the formula below)

Lt + exV( —A~u, )3'
'—'. For A near 1 the sum is ve yver well approxi-with ui = PMA

mated by an integral .

I(a) = I+ f(x —ir)

epx(2~r/a) exp (27rix/a) —1

1
x, (p,A) = —-+

f(x+ ir)

1 —exp (2n r/a) exp (—2n.ix/a)
(IX.81) exp( —u)

Li + exp (—u) j'
exp( —A&u)

L1 + exp( —A&u)]'

ve a fs,ctor exp( —2n.r/a)For u —+ 0 the integrals each have a
(f the denominator); henceq rom e . nce

(IX.82)l
I(a) —I

l
—exp (—2~r/a) .

ies only toex onential convergence applie ypo
ns. If the integra as

l b d dgf inte ration must a ways
ne cannot obtain e e

Th o tib to ofn oints of these contours. e c
these endpoints is an error o or er a,

1
exp (—2m'/1nA)

lnA
(IX.86)

e error term goes to zero aas A —+ 1. For
X small the integra can1 b d d

owers of X. Disregarding terms w ic v
one has

1 1 P d
Xo(PA) = ——+ — dx ——u—

m. This mea
m'z

x = ln(2rrz+ 1)m + —+ 2grip —ln

ult to the sum for I~, we have a = lnA.pp y

(—2 /) h i ths onding integral behaves as exp — r a
width of the strip o

denominator, which occ = m im x
ns

exp( —u)
X + o(x).

L1+ exp( —u)j'

But du = udx so ud/du = d/dx;

1 1 —exp( —u)

1+ -v(- )j'.=-.8

(IX.87)

= 0. (IX.88)

A similar anay
0 ~

l sis shows t ah t the infinite product in the
it A —+ 1:one writes

0

equation for Z(T) is 4 in the imit —+

hich is possible only if lImx x/2).
(p ) — (p, ) l

of o d
and the error

. ForA= 2t isgives
—6

v{—'/ )

—2 'd t i th ltment between A =
X X,, I3, E, Ii, G, and H.found ear ier or ad l f r all the quantities &~, X2,

onl for infinitel convergence applies on yThe exponentia co
K do calculations onlylies to the Kon o ca

. Thi l dover l are infinite sum. s.where t e sums o
f r small Ã and ca cu a ionscalculations io sm

which there is a ni e m
i . ll the susceptibility andi nored. But a e

specific heat calcu a ilations for sma invo
vident- in the resultsial convergence is evi en -

'ao. . . a IJ, function of A.E F, G, an, asaobtained for X&, X2, I3,

Z, (P,A)

A&u —4= n L1+.p(-,)~'Lt+ v( —A'

= exp g {4lnL1 + exp( —ui) j
—4 lnL1 + exp (—A&ui) j
exp

lnA
dx{4 lnl 1+ exp( —u)$

—4 lnL1 + exp( —A~u)g)

—u Ox)= exp {—
~ l

4 inL 1 + exp (—u

= 4+ op). (IX.89)
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TABLE XVIII. Variations in XQ and ZQ, is A.

XQ

ZQ

&0.00002
W 10-7~j,'

2.25

&0,00015
0 01~go

%0.0005
%0.05'Pg

&0.002
O. 5'Fo

The fluctuations in X, (P,A) and Z, (P,A) for 2 & A & 3 are
shown in Table XVIII (absolute values, not percent, are
shown for Xo).

Now comes the big question: Do the calculations of R
and X„which involve much more than sums over /, also
show exponential convergence as A —+ 1? The author' s
suspicion is that they do and this accounts for the remark-
able agreement of the results for A = 2, 2.25, 2.5, and 3.
However there are various sources of error in the results for
X, and R which must now be discussed. The errors to be
discussed are numerical errors for a fixed value of A. These
errors come from the truncation of the Hamiltonian H~
to a finite number of states. (Round-off error seems not to be
a problem. ) There is also an error in the calculation of
N(s;) Lin Eq. (IX.70) for X,$ bees, use N(s, ) is known only
to order s,. from the perturbation calculation. The order
s,2 term in +(s,) has been estimated from the computer
calculations and was found to make a 0.5% change in X,.
This correction is included in the numbers reported for X,.

There are various error tests one can make on the com-
puter calculations, some of which have already been Inen-
tioned in Sec. VIII. They give the following results:

(1) Agreement of the numerical J = —~ fixed point
with the single particle eigenvalues: for gi, 0.00005%, for
g, , 0.0002%

(3) Comparison of energy differences with predictions in
terms of X* and w*: 0.1%.

(4) Departure of marginal eigenvalue from 1 for weak
coupling: 0.003% (A = 2) and 0.0002% (A = 2.25).

(5) Agreement of s~+~ v ith perturbation expansion in s~
to order s~' Lcf. Eq. (VIII.44)j (for s~ 0.04): 0.001%.

TABLE XIX. Comparison of 1620 state calculation and 526 state
calculation for erst excited state energy.

526 states
N Energy

1620 states
N Energy Diff erence

31
. 33

35
37
39
41
43
45
47

0.514605
0.487647
0.453728
0.410697
0.356266
0.289271
0.212729
0.137212
0.077129

87
89
91
93
95
97
99

101
103

0.514569
0.487619
0.453709
0.410689
0.356270
0.289287
0.2'12754
0.137238
0.077147

0.000036
0.000028
0.000019
0.000008
0.000004

—0.000016
—0.000025
—0.000022
—0.000018

(2) Agreement of the leading irrelevant eigenvalues with
A. ' (eigenvalue of T'): this varies with A, being 0.1%,
0.025%, and 0.01% for A = 2, 2.25, and 2.5, respectively.

(6) Comps, rison of calculations with 526 states kept
with the calculations with 1620 states kept: This is the
only way one can check the calculations in the middle of
the crossover region where H~ is far from both fixed points.
A precise comparison v, as made for A = 2 and for A = 2.25.
For 15 iterations through the crossover region the uccumN-
tated error was 1.5% for A = 2 while for A = 2.25 the
accumulated error over 15 itera, tions was 0.2%. It is worth
exhibiting the comparison for A = 2.25. The 526 state
calculation was for J = —0.055016 while the 1620 state
calculation was for J = —0.02424. The precise values of
J were chosen to make iterations 35 and 91 agree.

The comparison of the first excited state over 15 iterations
is shown in Table XIX.

Table XIX also illustrates universality, namely the
same sequence of energies are obtained for two different
initial values of J. The errors at first sight seem of order
0.03% at most, but the error that one needs is an error
in E, i.e., how much must 2V be changed to make the two
series agree exactly. For example, compare N = 31 (526
states) with AT = 87 (1620 states). The difference is 0.000036.
But the difference between 2V = 31 and Ã = 33 is only
0.027, so an energy difference 0.000036 corresponds to a
change in iV of 2 X (0.000036/0. 027) 0.0027. Now in the
calculation of &.-, the difference Ef —N, is multiplied by
ln(2. 25)/2 0.4 so an error of 0.0027 in .Vf or A', means
an error of 0.1% in X,.

The principa, l sources of error seem to be (1) errors in
the estimation of the s' term in 4', and (2) accumulated
error due to departure of the leading irrelevant eigenvalue
from A ' in the strong coupling region. This error accumu-
lates from the end of the crossover region to the final value
&Vf of 2V; it is estimated to be ~10 times the error in the
eigenvalue, namely 1% (A = 2), 0.25% (A = 2.25), and
0.1% (A = 2.5). The accumulated error in the weak coupling
region is negligible due to the very small error in each
iteration (error P4). These three errors affect only X„ the
ratio R is presumably much more accurately determined.

The above discussion is for fixed values of A. Now the
errors involved in extrapolating to A = 1 must be considered.
For the perturbation theory sums (X,, X,, I,, E, F, G, and H)
the errors for A = 2.25 and A = 2 are negligible as noted
earlier due to exponentia, l convergence. For A = 2.5 the
errors are 1% in the worst case (the worst case is Xi). Even
for A. = 3 there is at most a 4% error. If there is exponential
convergence for X, and R, then one would also expect their
values for A = 2.25 and 2 to be very close to the A = 1
limit. The results for R seem to confirm this; there is only a
0.1% change in R from A = 2 to A = 2.5. The 0.1% change
from A = 2.25 to A = 2 is easily accounted for by numerical
errors in the A = 2 calculation, so the intrinsic difference
between A = 2 and A = 2.25 could be smaller than 0.1%.
The most plausible conclusion is that R is 2 exactly for
A = 1 and already very close to 2 for A = 2.25. It may
in fact be 2 for all A; this possibility has to be investigated.
For X, the results for A = 2, 2.25, 2.5, and 3 vary by 0.8%;
this variation is easily accounted for by numerical errors
and if the convergence to the A = 1 limit is exponential
then the result 0.10315 for A = 2.25 is, one would guess,
within 0.5% of the A = 1 limit. If the convergence is not
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exponential then there could be extrapolation errors to
A = 1 several times the variation from A = 2 to A = 2.5,
or an extrapola, tion error of order 2% say. There is not much
hope of repeating the calculation with A ( 2 because the
truncation errors of the numerical calculation increase
rapidly as A decreases (in the crossover region they increased
by a factor 7 from A = 2.25 to A = 2).

There is no experimental reason to seek better than 5%
to 10% accuracy and for this purpose the simpler A = 3
calculation is good enough. Thus much of the future work
on the Kondo problem could be done with A = 3. In this
case one can g~- g'~od results keeping only 300 states.
The purpose of the high accuracy calculation reported here
was only to make sure there are no subtle diAiculties in the
renormalization group approach to the Kondo problem,
difficulties that might be overlooked in a rough calculation.
No such difFiculties arose.

Note that some authors use —Jp for 2Jp or other more
obscure notations, but one can correct for this if one can
compare the above formula for the high temperature
susceptibility with the analogous formula in the obscure
notation. Not all authors give the conduction band electrons
the same g factor as the impurity, which is a complication
not considered here Lsee Kondo (1969)g. The formulae
given here are valid only for the case that the g factors are
the same.

(2) Small T (T« T»)

x(T) = (0.1032 & 0.0005)

D(ju)

Q exp

C(T)

Tx(T)

2%2
k2.

—i~ in~2jp~ —1.5g24~2jp~ + O(j'p')

(IX.91)

(IX.92)

(3) The Kondo temperature T». We agree with previous
work that the Kondo temperature is, in order of magnitude,

T» D
~

2Jp
~

+' exp{—1/
~

2Jp
~ ) .
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(IX.93)

How universal are the results for x(T) and C(T)? First,
it is useful to collect the results:

(1) Large T(D)) kT » kT» where D is the conduction
band width and T» the Kondo temperature): Lthe complete
formula is Eq. (IX.57))

kTX(T) = 0.25{1+2jp+ 4J'p' ln(kT/D) + O(j'p'))
(IX.90)

where J is the impurity coupling and p the density of
states at the Fermi surface, in the notation of LKondo
(1969)j. The variable D is proportional to D, depends on
Jp, and is defined so that there are no constant (non-
logarithmic) terms in this expansion beyond the Jp term,
i.e. , no cJ2p2 term with constant c. Terms of order kT,
(kT)', etc. for small T are neglected. The usual factors,
namely the impurity moment p and g factor, have' been set
equal to 1; the conduction band electrons have been given
the same g factor as the impurity.

The basic use of the Kondo temperature is in a scaling
formula, e.g. , kTX(T) is a function only of T/T» (Yuval
and Anderson (1970); Anderson, Yuval, and Hamann
(1970a, 1970b)). This follows, e.g. , from Eq. (IX.56), which
also gives

T» = D(jp) exp{ —4(jp)) = D(jp)
—1

Xexp — + -', ln
i
2jp i + 1.5824

i
2Jp i + 0 (J'p')

(IX.94)

More generally one can define T» to be cD exp{—C (Jp)),
where c is an arbitrary constant independent of Jp, and
kTX(T) will still depend only on T/T». Since D(jp) has a
power series expansion in Jp, it cannot be confused with
the first two terms in the exponential, but the third (Jp)
term in the exponential is not very useful unless D(jp) is
known to order Jp. To determine this one must compute the
expansion of x(T) in powers of Jp to order (Jp)' for the
particular model one is interested in. In any case the order
of magnitude of (IX.94) agrees with (IX.93) apart from
a numerical constant (namely the ratio D/D for Jp = 0
which can be determined if the expansion of x(T) is known
to order J'p').

(4) The susceptibility near the Kondo temperature (see
later) .

The essential result giving universality and the scaling
law (namely that kTX(T) depends only on T/T») is that
there is a unique trajectory of effective Hamiltonians H~,
parametrized by s~. For any small initial value of J, the
H~ for large lV lie on this trajectory. The temperature
dependence of X(T) and C(T) have all been determined
from properties of this trajectory and the recursion formula
for H~+~ which connects successive members of the trajec-
tory. Thus any initial Hamiltonian which leads to effective
Hamiltonians on this trajectory will give the same behavior
for the susceptibility and specific heat, for small T, including
T~ T~.

There are some changes in the initial Hamiltonian which
necessarily are universal, i.e., still lead to the same family
of effective Hamiltonians. As was shown in Sec. VIII, the
operators fo+fi+ f,+f0, fi+f2+ f2+fi, etc. are all irrelevant
operators; adding these terms with small coefficients to the
initial Hamiltonian will not change the II~ for large 2V. This
means the replacement of e„by 1 in Sec. VII should have
no effect on the results reported here. This has not been
checked explicitly. This is true only for small J; for large J
the irrelevant variables generated by the e„are important.
This does not mean one can add infinite sums such as
g A ""(f+f +i + f„+i+f„)to the Hamiltonian; adding such
infinite sums changes the recursion formula satisfied by
H~ for large Ã, and any such changes spoil universality.

There are some other changes in the initial Hamiltonian
which are obviously nonuniversal. These are of three types.
First there are changes which change the recursion formula
itself; in particular adding d-wave electrons from the
conduction band coupled to the-impurity is nonuniversal.
Here d-wave means in a d-wave state about the impurity.
Then there are 10 more operators f» for each X due to the
d-wave electrons and these appear in the recursion formula.
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I'IG. 17. Plot of inverse susceptibility x '(T) vs T from the computer calculations. The magnetic moment and g factor of both the impurity and
the conduction band electrons are set equal to 1. The plot actually shows (kTzx) ' vs T/T&, where TE. was defined in Eq. (lX.94). The crosses
represent results for two difI'erent calculations (both with A = 2.25, but. f = 0.024 for one and 0.02412 for the other); the scatter at small T is due
to truncation errors. The zero temperature value is taken from Eq. (IX.69) and Table XVI.

Secondly, there are changes which change the J = 0 fixed
point. In particular, changing the spin of the impurity,
from spin ~ to spin 1 or spin 2, for example, changes the
J = 0 fixed point (by increasing the degeneracy of each
energy level). Thirdly, a change of the Hamiltonian which
adds the marginal eigenoperator f0+f0 violates universality.
This term violates particle-hole symmetry. But particle —hole

symmetry has no experimental basis. In particular, any
change of the Fermi energy will generate this marginal
term.

The formulae given here for X(T) are both independent
of a scale change in energy. A scale change in energy is
equivalent to a scale change in temperature. In the high
temperature formula, a scale change in temperature is
compensated for by the same scale change in D. This scale
change in D then gives the correct low temperature formula
for X(T). In the formula for C/Tx, a change H —+ sH leads
to a change, namely to C/Tx = s'/'(2~')/3.

There are modifications to the Hamiltonian which might
be universal but must be studied further. One example

would be macroscopic changes in the model near the band
edge, for example modification of the single electron energy
from the k —k~ law assumed here. These changes must
be studied further because the universality guaranteed by
renormalization group is only for inPeitesima/ modifications
of the initial Hamiltonian.

Anderson and duval (1970a,b), Hamann (1970), and
Schotte (1971) have developed an analogy between the
solution of the Kondo Hamiltonian and the partition func-
tion of a one dimensional Coulomb gas. The analogy is not
exact; a "long-time" approximation is used. This approxi-
mation preserves the leading logarithmic behavior of the
Kondo Hamiltonian. However it appears that the full
universal properties of the Kondo Hamiltonian are +of
preserved by' this analogy. In particular the susceptibility
formula given by Schotte and Schotte (1971) disagrees with
the universal formula (IX.57) in order (Jp)' lnkT/D. The
calculation which shows this will be outlined below. The
formula of Schotte and Schotte through order (Jp)3 is
(J7 in the Schotte and Schotte paper is —2Jp in the Kondo
notation and 7- is D ' in the Kondo notation; this transcrip-
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tion was used in obtaining the formula below)

kTx(T) = (1 + Jp)2 0.25 +
2

XL( ~ — —p/2)' —p'/4 j
sin[2r (2-2 —21)/p j —12+2~»

X
sin (2r/PD)

(IX.95)

To avoid a divergent integral, the ratio of sines is replaced
by 1 if either r2 —ri & D ' or 22 —ri & P —D '. This
formula has been evaluated in the limit of large P = 1/kT
(partly by numerical methods); the result is, to order (Jp)2,

kTx(T) = 0.25(1+ Jp)2{1+4J2p2 in(kT/D)
+ 1.3515(jp) + 8j'p ln'(kT/D) + J'p'c2
= 0.25{1+2Jp+ 4J'p' ln(kT/D) + 2.3515(jp)'
+ Sj'p' ln (kT/D) + Sj'p' ln(kT/D)
+ JP'( c2+ 2.703)), (IX.96)

where c3 has not been evaluated. One must now define D to
eliminate all constant terms. The result is

D(jp) = 0.5555D{1+c4jp), (IX.97)

where c4 is a constant. In terms of D

kTx(T) = 0.25{1+2jp+ 4J2p2 in(kT/D)
+ SJ p2 ln (kT/D) —1.406(jp) ln(kT/D). (IX.98)

The coefFicient —1.406 multiplying (Jp)2 in (k T/D) dis-
agrees with the universal result +4 of Eq. (IX.57).

The susceptibility through the Kondo temperature was
calculated by using second order perturbation theory in
the perturbation Hr of Eq. (IX.4), as part of the computer
calculations. The results have an absolute accuracy of
about 0.001 in kTx(T), according to comparison of numeri-
cal results with weak and strong coupling results. Results
for A = 2, 2.25, 2.5, and 3 agree to about this accuracy.
The results are shown in Fig. 17. The results fit well to a
Curie —Weiss form near the Kondo temperature, in agree-
ment with the earlier results of Schotte and Schotte (1971)
and Gotze and Schlottmann (1973):

1t 0 17
x(T) = —

i i
(0.5Tx & T & 16Tx). (IX.99)

k T+ 2Trr

For T/Tx ) 16 the high temperature formula

CL2kTx(T) —0.5j = in(T/T )rr
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(IX.100)

Schotte and Schotte (1971) have calculated the suscepti-
bility x(T) by Monte Carlo methods for the Coulomb
analog. The violation of universality means that the value
of T~ they calculate is unreliable because the Jp dependence
they obtain does not have the (Jp)+'12 contained in the
exact result. LIt can be shown that a change in the
(Jp)' in(kT/D) term amounts to a change in the coefficient
of ln~2jp~ in C(jp).j If one allows an adjustable scale
factor in the temperature scale -of Schotte and Schotte
then their calculations can be brought into agreement with
numerical calculations of the susceptibility reported below,
to within 20% except for T « Tx where the Schotte and
Schotte calculations are unreliable.

(inverted numerically to determine x(T) from T/T x) gives
x(T) to better than 1%.

In conclusion, the renormalization group approach
described in Sec. VII—IX appears clearly superior to all
previous methods of solving the Kondo Hamiltonian. The
principal approximation —the discretization —does not spoil
perturbation theory even in third Order so long as A ( 2.5
or so; the numerical calculations agree excellently with
perturbation theory when perturbation theory is valid.
Nothing qualitative is thrown out with the discretization,
and the comparison of results for A = 2 to 3 suggests that
one is very close to the continuum limit over-this whole
range of A.

Future renormalization group studies are likely to include
(1) the effects of potential scattering, (2) studies of the
Anderson model (the impurity spin is replaced by an extra
electron state), (3) studies of dynamic properties (resis-
tivity, etc.), (4) attempts to include d-wave coupling to
the impurity, and (5) study of impurity —impurity inter-
actions. There are good prospects for solving all these
problems, especially if one learns to work with large values
of A so that only a few states need be kept in the numerical
calculations.

APPENDIX: PERTURBATION EXPANSIONS FOR
THE KQNDO HAINILTONIAN

In this appendix the weak coupling expansions used in
Sec. VIII and IX will be reported in more detail. No
derivations will be given; only some further results are
quoted here. The expansions discussed here are the expan-
sion of s~+2 in powers of s~ LEq. (VIII.44)j to order sN'
and the expansion of x(T) in powers of s111 pEq. (IX.38)j
to order s~'. The formulae which determine these expansions
will be given below, for arbitrary A, followed by some tables
of results.

—A(N —lij2 Q P—n/2(f +f + f +f )
n=O

(A1)

Here the Hamiltonian contains an infinite sum but is still
rescaled by the finite factor A(~ '& '. The only reason for
this factor is to make thermodynamic calculations involve
P = A i~ 'ii2/(kT) in a natural way. In practice one uses
asymptotic properties of the solution of II~ for large E
to determine the values of gg" and ng". It is convenient to
let the label I range from —~ to (1V+ 1)/2, with the
eigenvalues g~" arranged to increase with /. Then there

The first step in constructing the expansions is to diagonal-
ize the free electron Hamiltonian H~ of Eq. (VIII.1) (forJ = 0) obtaining in particular the single electron energies
gi and the expansion coefficients ui of Eq. (IX.18). These
were computed only for 1V odd and sufficiently large (e.g. ,
1V = 35 for A = 2). In order to calculate s~+2 one must
also diagonalize H~+2, giving energies g~ and expansion
coefFicients n&'. The quantities p& and n& exist for
& (1V+ 1)/2; the quantities gi' and ai' exist for 1 & f
& (iV+ 3)/2. In order to compute x(T) one must also
knew the corresponding yg" and Q.g" for the Hamiltonian
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are two asymptotic results of interest. The first is that

g~" ——g~ (f large, A" large)

n~" = n~ (l large, 1V large)

in the limit of large A' and large l,.

(A2)

(A3)

"A(™(1V large, l « 1V, m « iV)

nI" ——n„,"A" '~' (7V large, I && 1V, m&&.V)

(A4)

for large 1V, / «,V, and m « cV (including the cases that l
and/or m are negative). These formulae can be used to
determine q~" and n~" for any / ( (cV + 1)/4, given results
for g~" and n~" for / = (V + 1)/4 (or the next integer above
(V+ 1)/4).

For example, this result can be used to determine g~" and
n~" for large 1V and I & (V+ 1)/4. The second result Lsee
Eqs. (VIII.21) and (IX.20)j is

rvhere I = (EV+ 1)/2; and

L L

R, = —0.375m, ' g P n 'nP
m=1 I,=l

X
(n-+ ni)' (n-+ ni)(ni+ ni)

+
(n~+ n-)(ni+ n-)

9(1 —~~~)(1 —~ ~)

(ni-v~) (n--vi)

6(1 —5(i)

(n~ —n~)(n~+ n-)

R4 has the following form:

I 3 9(1—B„)—0.375a)' Q — —+-
(a~ + ni)' (n~ —n~)'

(A9)

Ihe next step is to construct expansions in J for s~,
s~+2, and X(T). The formulae for s~ are as folio&vs:

I L

R4 = yg~P Q Q Q ~I, ~m. o' n
/=I m=1 -n=l

25 g",

v = Rg,j + R;P+ Rg,J3+ R~J'

xvith

(A6)
L L 34

+-,—6ng' Q Q n„'n„' g C,/D,

R( ———3nP/2; (A7)
m=1 n=l i=26

L

Rg ——0 75nP .Q nP
1 3(1 —6„)

+ )
'It 1 + '9l 'gl 'gl

'TAHI. E A. 1. Coefficients in Eq. (A. 10).

(Ag)

L 36

+—,',ng' Q a ' P C,/D;,
i=35m=1

(A10)

where the numerators and denominators C; and D, are
listed in Table A.I

1
2
3

I

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

'
22
23
24
25
26
27
28
29
30
31
37
33
34
35
36

C, .

192
30

—18
27
99

—42
—54
—39

81
3
3

30
6

12
36
30
18

—18
54

—21
27
18
$4
18

90
—18
—54
—18

99
—243
—27

27
—27

81

(n- + n )'(n-+ ni)
(nI + n ) (n + n ) (~ + ni)
(nl —~n)(n +n )(n-+ ni)
('g1 + gm) (pm + gn) (gm + gl)
(el —~ ) (n. + n ) (n.n + ni)
(n1+ ~»)(n1+ n )(~-+ ni)
(. —&n,)(. —&.)(.n. +.)
(n + n )(n + n-)(n + n )
(n1 —n ) (nI —n-) (~1 —nl)
(nI+ n-+ en+ n~)(n + n. )(n + ni)
(nl —n —n —ni) (n.n + nn) (n + ni)
(el+ n. +~-+ ~i)(~. + ~ )'
(01 5 '9 '9&) (n. + ~ )'
(gl + 'gm + gn + gl) (+1 + urn) (gn + gl)
(nl —~ —

V
—~i) (nI —n»)(~. + ni)

(~1+ n + n + ~I)(nI+ em)(n» + ~n)—ni)(nl —n )(n + n )
(nl + n- + n-+ ni)(nI + urn)'

(~I —~. —n —ni)(nI —n )'
(nl + n + n + ni)(nl + n. )(VI + n )
(91 —7I —n —nl)(nl —n )(nl —n ).

(~ + ..)(.-+.)'
(nl —n-)(n + ni)'
(nI+ n )'(n + ni)
(nl —nm)'(n + ni)
(n +~)'
(~ +..)(. +..)'
(~I —n. ) (~- + n-)'
(~I+ n )'(n-+ nn)
(nI —n-)'(n + n )
(nI+ ~ )'(el+ n )
(. —.) (. +..)
(nl + nn. )'(nl —n )
(gl —g,r, )'(g1 + gn)
(g 1. + grn)

)'

The expansion of z~+& in povrers of .J is obtained by
replacing n by n', g by g', and l. by I.+ 1 throughout the
above formulae.

The expansion of X (T) has the form

x(7.) = —;+V, (P)i+ I;(P)I'+ I'~(P)J' (A11)

with

I'~(P) = +P 2 (~~")' «p( —Pot")LI + exp( —Pn~")l '

(A12)

I'~(P) = s(P)' Z 2 L1+ (n-"~ —~-"))
n=—oo m=—oo

X ( -")'( .")'h(P~-")h(Pn. ")((3LI —exp( —Pn-")3'

Xh'(pq ") + L1 + exp( —pq ") «p( —pg.")g

Xh(Pq ")h(Pg.") —4)G(Pg "+Pn ")
+4 exp( —Pq„") exp( —Pg ")h(Pq ")h(Pq„")), (A13)

~vhere L1+ (g
"—+ —q ")g means that for each m there

are two terms, the first calculated as shown, the second
calculated by replacing p

"by —p
"wherever p

"appears.
The auxiliary functions G and h are

G(x) = (1 —e )/x,

h(x) = 1/(1+ e *).

(A14)

(A15)

Terms with D, = 0 are to be omitted from the sum in Eq.
(A.10) (e.g. , the m = 1 term is omitted ~vhen D, contains
ni —n-)
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Finally

L
I's(P) = —(P)' P [1+ (n4" —' —n4")j

96

x p [1+(~" —~")j

L
x 2 [1+ (~."-—~.")j( ")'( -")'(.")'

Xh(pri~")h(pri ")h(pri„")([—32 exp( Pr—i ")
X exp( Pri —")h(Pri„")h(Prl ") —24 exp( —2P47„")

Xh'(Pg ") + 16 exp( —Pn ")h(Pn.")h(Pn ")
+72 exp( —Ptl ")h'(P47.") —48h'(Pri. ") + 56

Xexp( —Pri„")h(pri ") + 16h(pri ")jK(pri "+ P4i

P47„" + Prii") + exp( —Prii")h(Ptl4")[ —64 exp( —Pri ")
Xh(P47„") + 32h(Pri„") + 40jlC(Pri„" + Pri ",0)
—3«xp( —Pn~")h(Pn4")G(Pn4" + Pn-")), (A16)
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