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This review covers several topics involving renormalization group ideas. The
solution of the s-wave Kondo Hamiltonian, describing a single magnetic
impurity in a nonmagnetic metal, is explained in detail. See Secs. VII-IX.
“Block spin” methods, applied to the two dimensional Ising model, are
explained in Sec. VI. The first three sections give a relatively short review of
basic renormalization group ideas, mainly in the context of critical phenomena.
The relationship of the modern renormalization group to the older problems of
divergences in statistical mechanics and field theory and field theoretic
renormalization is discussed in Sec. IV. In Sec. V the special case of “marginal
variables” is discussed in detail, along with the relationship of the modern
renormalization group to its original formulation by Gell-Mann and Low and

others.
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INTRODUCTION

One of the most basic themes in theoretical physics is the
idea that nature is described locally. The basic equations
of all physics are local. For example, Maxwell’s equations
specify the behavior of electric and magnetic fields in an
infinitesimal neighborhood of a point x. In order to be able
to specify local equations it is necessary to define continuum
limits, namely the limits which define derivatives. The idea
of the derivative and the idea of a continuum limit that
underlies the derivative is therefore of great importance in
all of physics.

It is now becoming clear that there is a second form of
continuum limit, called the statistical continuum limit,
which also has a very broad range of applicability through-
out physics. In the statistical continuum limit functions of a
continuous variable are themselves independent variables.
For example, the electric and magnetic fields throughout
space can be the independent variables in a statistical
continuum limit. This happens in statistical or quantum
mechanical problems where there are field fluctuations, so
that one has to compute averages over an ensemble of fields.
In statistical calculations one does not compute the field at.a
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point x. Instead one computes correlation functions;
that is, expectation values of products of fields such as
(E(x,t)E(y,')). In quantum mechanical problems the corre-
lation functions are sometimes replaced by vacuum expec-
tation values of products of fields. In the simplest cases a
field average determining a correlation function can be
written formally as a functional integral. In the func-
tional integral the fields are the independent variables of
integration.

There are two ways in which a statistical continuum
limit can arise. The obvious way is when the independent
field variables are defined on a continuous space; the case
of statistical or quantum fluctuations of the electromagnetic
field is an example. If one were to replace the continuum by
a discrete lattice of points, the field averages would consist
of integrals over the value of the field E at each lattice
site n. Thus for the discrete lattice case one has a multiple
integration, J]. fdE., the variables of integration being
the fields E,. In the continuum limit one has infinitely many
integration variables E,. Problems with infinitely many
variables can be very difficult to solve.

The second source of statistical continuum limits is the
situation where one has a lattice with a fixed lattice spacing,
usually an atomic lattice:. The number of independent
variables (i.e., independent degrees of freedom) at each
lattice site is fixed and finite. The continuum limit arises
when one considers large size regions containing very many
lattice sites. When the lattice is viewed on a macroscopic
scale one normally expects the lattice structure to be
invisible. That is, large scale effects should be describable
by a continuum picture making no reference to the lattice
spacing.

Consider, for example, critical phenomena in a magnet.
A magnet is built of atoms and the atomic spacing provides
a fixed shortest length which does not go to zero. At the
critical point (the critical point occurs at the Curie tempera-
ture) there are long wavelength fluctuations of the magnet-
ization signalling the onset of spontaneous magnetization.
The maximum wavelength of the fluctuations is the corre-
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lation length £; precisely at the critical temperature, £ is
infinite.

The continuum limit comes into the problem when one
tries to formulate a hydrodynamic picture of the fluctua-
tions on the scale of the correlation length. Macroscopic
waves in a fluid are described by the continuum equations
of hydrodynamics which make no reference to the atomic
structure of the fluid. Similarly one would hope to achieve
a theory of the critical fluctuations in a magnet which makes
no reference to the atomic spacing.

The difference between a hydrodynamic wave and the
critical fluctuations in a magnet illustrates the difference
between the classical continuum limit and the statistical
continuum limit. A classical hydrodynamic wave is charac-
terized by a definite wavelength, and very little motion of
the fluid occurs at much shorter wavelengths. It is there-
fore a relatively trivial matter to introduce continuum
forms of density, pressure, etc. for a hydrodynamic wave.
However, the critical fluctuations in a magnet for very long
wavelengths are not the dominant fluctuations. Instead,
fluctuations occur on all wavelength scales from the corre-
lation length to the atomic spacing and all these inter-
mediate wavelengths are crucial to the physics of critical
phenomena. In particular there is no gap in wavelengths
between the wavelengths of fluctuations and the atomic
wavelengths. This means it is difficult to determine which
wavelengths of fluctuations to include in a continuum
description and which to exclude.

The statistical continuum limit is most difficult to achieve
when one tries to maintain locality. The problem is that
in a local system, very short wavelength fluctuations in a
field are as important as fluctuations at a fixed wavelength.
For example, the quantum fluctuations of the electro-
magnetic field are predominantly at wavelengths much
smaller than the electron compton wavelength. The reason
for this is that there is very little difference, locally, between
a short wavelength fluctuation and a long wavelength
fluctuation. For example, a fluctuation with wavelength
107'® cm and a fluctuation with wavelength 10~ cm both
look like long wavelength waves if one looks only at a
region of size 1072 cm. In a local theory one specifies
initially the behavior of the system only in a region even
smaller than 1072 c¢cm. In consequence, in a local theory,
it is hard to suppress the 107% cm wavelength fluctuations
more than the 107! cm fluctuations, and the 10~1® cm
wavelengths then are more important because there are
more of them.

A procedure is now being developed to understand the
statistical continuum limit. The procedure is called the
renormalization group. It is the tool that one uses to study
the statistical continuum limit in the same way that the
derivative is the basic procedure for studying the ordinary
continuum limit. However, the problems that one studies
with the renormalization group are rarely formulated
explicitly in terms of continuum limits. Because of this
the very general nature of the renormalization group has
been less apparent than the general nature of the derivative.

The renormalization group is at a much more primitive
stage than the derivative. There is only a small subset of
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problems involving the statistical continuum limit that
have been solved so far, and to solve these problems a large
amount of labor and theoretical artifice is required. One
is still a long way from the simple and yet explicit nature
as the derivative. Nevertheless, the renormalization group
is the only method at present which is explicitly designed
to investigate. statistical continuum limit problems, and is
likely to remain so. Also there are excellent prospects for
the renormalization group to become much more powerful
in the future than it is at present.

The crucial feature of the statistical continuum limit is
the absence of characteristic length or energy or time scales.
In the case of critical phenomena, the dominant fluctuations
are neither the fluctuations with wavelengths £ nor the
fluctuations with wavelengths of order of the atomic spacing.
It is the fluctuations between these two wavelengths that
dominate.

In contrast, in classical (as opposed to statistical) prob-
lems the dominant length scale is determined by a length
parameter in the problem. For example, in the hydrogen
atom the Bohr radius provides the characteristic length
scale. This length scale is determined by simple dimensional
analysis. Any length of importance in the hydrogen atom
is proportional to the Bohr radius. Dimensional analysis is
completely taken for granted now. Physicists find it hard
to work with systems for which dimensional analysis is
irrelevant. )

The absence of a characteristic length has profound
consequences for the statistical continuum limit. This
originally became apparent in quantum electrodynamics,
where short wavelength fluctuations led to divergences.

In quantum electrodynamics, and elementary particle
physics generally, the most noticeable missing scale is the
lack of an energy scale. There is sometimes a minimum
energy scale associated with a particle rest energy mc?
(7 may be the electron rest mass or the = meson rest mass,
for example). All energy scales above this minimum occur;
for example, in high energy scattering experiments, new
particles are created with all energies from the rest energy
up to the maximum energy available.

The lack of an energy scale becomes even more apparent
in quantum field theories of elementary particles. In these
theories one has to compute sums over intermediate states
containing arbitrarily large energies. For example, in
quantum electrodynamics one must consider -electron—
positron intermediate states where the electron’and positron
both have arbitrarily large momenta (but in opposite
directions so the total 3-momentum of the pair is small).
Sums over such states reduce in many simple cases to the
logarithmically divergent integral

© dE
A logarithmically divergent integral is a typical (but
not universal) symptom of a problem lacking a charac-

teristic scale. The contribution of any given order of magni-
tude range of energies to the integral is finite. For example,
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for any Eo, > mc?, the contribution to the integral from
energies between E, and 2E, is In2; this contribution is
independent of E,. Thus all energy scales above mc? make
equal contributions to the integral. The sum of these
contributions is infinite because there are an infinite number
of order of magnitude ranges of energy above mc2.

Renormalization theory, due to Bethe, Schwinger, Feyn-
man, Dyson, etc. [see Schwinger (1958)7, eliminates the
divergences of quantum electrodynamics. Renormalization
theory was the first method developed for computing the
statistical continuum limit of a local theory. It continues
today to be an important tool for investigating the statistical
continuum ‘limit. However, the standard renormalization
theory applies only to problems which can be solved by a
Feynman diagram expansion. Even more restrictive is the
requirement that only a few Feynman diagrams be im-
portant after renormalization. (There are techniques for
summing infinite subclasses of Feynman diagrams but
unfortunately these methods are effective only in a few
cases.) The worst feature of the standard renormalization
procedure is that it is a purely mathematical technique for
subtracting out the divergent parts of integrals in the
continuum limit. It gives no insight into the physics of the
statistical continuum limit. It is possible to solve the
renormalization problems of Feynman diagrams by mathe-
matical techniques without new physical insight because the
physical aspects of many length or energy scales are least
noticeable for-a theory dominated by a few Feynman
diagrams. The reason for this is that when the expansion
parameter for a Feynman diagram expansion is small there
is usually only a small coupling between fluctuations of
different wavelengths. The coupling between different
wavelengths is essential for the nontrivial consequences of
many scales. For example, the divergences in quantum field
theory are caused by the influence of very high energy
intermediate states on low energy phenomena. When the
coupling constant (the expansion parameter for Feynman
diagrams) is small, this influence is also small. (To be
precise, the influence of single factor of 2 range of high
energies on low energy phenomena is small—the divergence
due to all high energies is not small.) ‘

The basic physical idea underlying the renormalization
group approach is that the many length or energy scales
are locally coupled. For example, the behavior of fluctuations
in a magnet with wavelengths from 1000 to 2000 A are
assumed to be primarily affected by fluctuations with
nearby wavelengths, e.g., 500-1000 A or 2000-4000 A.
Fluctuations with wavelengths much less or much greater
than 1000 A are less important. The result of this assumption
is that there is a cascade effect in the whole system: the
atomic fluctuations (1-2 A) influence the 2-4 A fluctuations.
The 2-4 A fluctuations influence the 4-8 A fluctuations, etc.

There are two principal features of the cascade picture.
The first feature is scaling. The behavior of fluctuations for
intermediate wavelengths tends to be identical except for a
change of scale, precisely due to the lack of a characteristic
length. The scaling fails for fluctuations with wavelengths
near a length parameter. For example, in a magnet the
fluctuations at atomic wavelengths and at wavelengths of
order ¢ do not scale in the same way as intermediate wave-
length fluctuations.
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The second feature of the cascade picture is the existence
of amplification and deamplification as the cascade develops.
For example, consider a small change in temperature away
from the critical temperature in a magnet. A small change
in temperature has little effect on the atomic scale fluctua-
tions. But as the cascade develops, from 1A to 2A to 4 A
to 8 A wavelengths, etc., the effect of the temperature
change is amplified, finally leading to macroscopic changes
at very large wavelengths. In particular; if the temperature
was initially precisely at the critical temperature then £
changes from being infinite to some finite value £&'. This
is a macroscopic change for fluctuations with wavelengths
greater than ¢’

Deamplification also takes place in the cascade. For
example, two different magnetic materials can have quite
different atomic structures. But the effect of the different
atomic structures usually decreases with each stage, finally
becoming negligible at large wavelengths. This deamplifi-
cation underlies the hypothesis of universality [for refer-
ences see Wilson and Kogut (1974)7] in critical phenomena.
The universality hypothesis is that many different sub-
stances have the same critical behavior.

There is an analogue to universality in the case of an
ordinary derivative. Namely, there are many different
finite difference approximations to a single derivative. That
is, many different discrete lattice differences have identical
continuum limits. Universality is the corresponding result
for the statistical continuum limit.

The first stage in the renormalization group analysis of a
system is to find a way to isolate a particular step in the
cascade. This amounts to defining a sequence of inter-
mediate steps in the solution of the full problem, one step
for each cascade step. For instance, in the case of critical
phenomena, one step in the renormalization group calcu-
lation may consist of an explicit statistical averaging over
fluctuations with a factor of 2 range of wavelengths. The
first step might consist of an averaging over all fluctuations
with wavelengths less than 2 A. The second step would
then be to average over wavelengths from 2 to 4 A; the
third step to average over wavelengths from 4 to 8 A, etc.
(See Sec. I for more discussion.)

At the end of each step one is left with an effective
interaction or Hamiltonian describing the length or energy
scales not yet solved. Scaling is achieved when the effective
interaction goes into itself (apart from a similarity trans-
formation) after each step. For example, in critical phe-
nomena the effective interaction generated after averaging
the 128-256 A fluctuations is very similar to the interaction
generated after averaging out the 256-512 A fluctuations.
When this similarity occurs one formally has a “fixed point”
interaction or Hamiltonian.

By carrying out the same cascade iterations for slightly
changed initial conditions one can determine a set of
amplification and deamplification factors X\;. The factors
\; are the eigenvalues of a linearized version of the iteration,
linearized about the fixed point. The eigenvalues \; are the
factors by which small changes in the initial interaction
are increased or decreased with each step in the renormal-
ization group calculation. If a particular parameter in the
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initial Hamiltonian causes amplification (i.e., A; is greater
than 1), it is called a “relevant variable.” A parameter whose
effect is deamplified is called “irrelevant.” The number of
relevant variables is equal to the number of amplification
factors A; greater than 1.

Renormalization group theory divides, very roughly, into
four parts. There is the formal theory of fixed points and
linear (and nonlinear) behavior near fixed points. Much of
this theory is due to Wegner (1972); reviews of this theory
are provided in Wilson and Kogut (1974), Ma (1973), and
Fisher (1974). The second part is a diagrammatic formula-
tion of the renormalization group for critical phenomena.
This formulation [discussed in Wilson and Kogut (1974)7]
can be solved explicitly for the case of space dimension
d = 4 — e with e small. It can be used to do calculations
to order e of numerous aspects of critical behavior and
illustrates the physics of fluctuations at many wavelengths.

The third aspect of renormalization group theory includes
the original Gell-Mann-Low (1954) renormalization group
theory and the Callan-Symanzik equations [Callan (1970)
and Symanzik (1970)7]. These methods are quantum field
theoretical methods, originally, and they apply only to
Feynman diagram expansions. They are efficient calcu-
lational methods (for Feynman diagrams): they are -used,
for example, to do high order calculations in e. [See Brézin
et al. (1973)]. They completely hide the physics of many
scales. These methods are hard to follow in detail for
physicists without quantum field theoretical training. They
are closely related to the original renormalization procedures
for Feynman diagrams, which is the reason for the term
“renormalization’ in “renormalization group.”

The fourth aspect of renormalization group theory is
the construction of nondiagrammatic renormalization group
transformations, which are then solved numerically, usually
using a digital computer. This is the most exciting aspect
of the renormalization group, the part of the theory that
makes it possible to solve problems which are unreachable
by Feynman diagrams. The Kondo problem has been solved
by a nondiagrammatic computer method. The renormal-
ization group solution of the Kondo problem is explained
in detail in this paper: see Sec. VII-IX. The two dimen-
sional Ising model has been solved approximately by
several nondiagrammatic (“block spin’’) renormalization
group methods, by Niemeyer and Van Leeuwen (1973,
1974, 1975) and others. An example is detailed in Sec. VI.
The Ising calculation is only a practice calculation, since the
exact solution is known. Recently, Kadanoff (1975) and
Kadanoff and Houghton (1975) have developed very
powerful block spin methods which have been applied to
the three dimensional Ising model, with considerable
success.

There is another renormalization group method being
developed by Golner and Riedel (1975) which also shows
promise for solving three dimensional problems in critical
phenomena more reliably than the e expansion.

The development of a nonperturbative renormalization
group method which can be solved in practice to a reason-
able approximation is difficult. The obstacles to be overcome
will be evident from the discussion of the two dimensional
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Ising model (Sec. VI) and the Kondo problem (Sec. VII-I1X).
Nevertheless, the success of Kadanoff and Kadanoff and
Houghton for the Ising model and the success of the Kondo
calculations described here should encourage the study of
other problems in the same spirit. '

A principal part of this review is a detailed explanation
of the renormalization group solution of the Kondo problem
(in Sec. VII-IX). The Kondo problem is the problem of
magnetic impurities in a metal. An example is copper with
iron impurities, with concentrations of 0.019, or less of
iron. At low temperatures (typically a few degrees K) there
are strong effects due to the impurities, for example, in the
resistivity of the alloy. See Kondo (1969). The especially
difficult problem for theorists has been to predict the zero
temperature behavior of the system, including the resis-
tivity, the impurity susceptibility, and the impurity specific
heat. The problem is caused by spin-spin coupling of the
impurity spin to the spins of the conduction electrons.
Without the spin—spin coupling, the electrons in the conduc-
tion band scatter independently from the impurities and
this scattering is easily computed. The spin—spin coupling
causes spin-flip scattering which in turn breaks the inde-
pendence of the electrons (see Sec. VII).

Typically the spin—spin coupling strength J is small and
antiferromagnetic. Therefore, one can analyze the effects
of the spin-spin coupling by perturbation theory. Un-
fortunately, the terms of order J? involve a logarithm,
namely JZIn(D/kT), where D is the maximum electron
energy in the conduction band and T is the temperature
(k is Boltzmann’s constant). When the temperature goes to
zero the logarithm becomes infinite and the perturbation
series becomes nonsense.

The logarithm in perturbation theory reflects the existence
of many energy scales in the conduction band; the logarithm
comes from a logarithmic integral fdE/E with the lower
bound on the energy being k7, and the upper bound being
D. The low energy scales come from electrons very near the
Fermi surface which require very little energy to be excited.

The Kondo problem has fascinated theorists more than
is justified by its experimental significance. The reason for
this is that the theoretical models involving a single im-
purity coupled to a free electron band look simple enough
so that they ought to be soluble. Much effort has gone into
studies of the Kondo problem using a variety of techniques:
graph summation methods, Chew-Low theory, etc. [See
Kondo (1969).7] Perhaps the most successful of the various
previous approaches is the analogy developed by Anderson,
Yuval, and Hamann (1970a, 1970b) to a one dimensional
Coulomb gas, combined with Monte Carlo calculations by
Schotte and Schotte (1971). These papers give a picture of
the low temperature behavior which is qualitatively in
agreement with the precise calculations reported in this
review. However, none of the approaches prior to the
renormalization group were reliable—they all involved
unverifiable approximations.

The simplest models of the Kondo problem are simple
enough so that they can be solved with good precision
(about 19 accuracy) using renormalization group methods.
The details are reported in Sec. VII-IX of this review.
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The first part of this review is a review of the essentials of
renormalization group theory applied to critical phenomena
using the diagrammatic renormalization group formulation.
The review is not as detailed as the review of Wilson and
Kogut (1974). It should, however, provide sufficient back-
ground for the sections on block spin techniques and the
Kondo problem. Also, there are some differences in emphasis
in the present review from Wilson and Kogut. In Sec. I, the
idea of averaging over fluctuations is made precise and it is
shown how this leads into the diagrammatic framework.
In Sec. IT the fixed points of the diagrammatic theory are
discussed. In particular, the Gaussian fixed point (see
Sec. II for the definition of “Gaussian’’) and fixed points
near the Gaussian will be discussed. In Sec. III the linearized
equations about these fixed points and some of the eigen-
values A\; are computed. The relation of one of these eigen-
values to physics (through a critical exponent) is explained.

Section IV is concerned with the relation of the renormal-
ization group ideas to the problems of divergences in quan-
tum field theory and critical phenomena. There are differ-
ences between the limit of zero lattice spacing (relevant
to field theory) and the limit of infinite correlation length
with a fixed lattice spacing. These differences will be
discussed. Then the outline of a theory of the statistical
continuum limit (i.e., renormalization) in field theory is
presented in the renormalization group framework.

Section V is devoted to a problem which is special and
yet very important, namely the theory of marginal variables.
A marginal variable is one which is neither amplified nor
deamplified by a renormalization group transformation.
A marginal variable causes special problems. Suppose it
represents a 19, correction in each of more than 10 000
iterations of the renormalization group calculation. Non-
linear effects of the marginal variable, which are of order
0.019, for a single interaction, then may become 1009,
effects when accumulated over 1000C iterations. These
nonlinear effects will be discussed in Sec. V.

The study of marginal variables is important background
for parts of the Kondo calculation. In addition, the field
theoretic methods of Gell-Mann and Low and Callan and
Symanzik are based entirely on the special behavior of
marginal variables. The relation to the Gell-Mann-Low
theory is -also explained in Sec. V. ’

In Sec. VI the theory of block spin transformations is
explained with a particular example applied to the two
dimensional Ising model. Near the end of this section, the
results of some computer calculations using block spin
methods are reported.

Sections VII to IX include the author’s calculations for
the Kondo problem described in detail. The solution of the
Kondo problem involves many aspects of renormalization
group theory, from fixed points and marginal operators to
nonperturbative methods. There are also many special
tricks which help to make the calculation practical; these
are also explained. ’

An extensive list of references on the renormalization
group approach has been given in Wilson and Kogut
(1974). Further references can be found in Science Citation
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Index [through citations of Wilson and Kogut (1974), for
example]. The references in this paper are limited to the
particular topics discussed. s

Further or alternative review papers on the renormal-
ization group can be classified as follows: There are two
short, intuitive introductions based on colloquium talks.
Wilson (1974b) explains the application to critical phe-
nomena and the e expansion. Wilson (1975) explains the
basic ideas of the nonperturbative renormalization group
approach using a watered-down form of the Kondo problem
as an example. For reviews at the same level as the present
review, there are Wilson and Kogut (1974), Ma (1973),
Fisher (1974), the book by Toulouse and Pfeuty (1975),
and a forthcoming book in the Domb and Green Series
[Domb and Green (1975).] See further Wegner (1975) and
Brout (1974). These reviews are all concerned with critical
phenomena. For the block spin methods there is a recent
review by Niemeyer and Van Leeuwen (1975). There is no
other review of the renormalization group solution of the
Kondo problem reported in Sec. VII-XI'except an earlier
cryptic report by Wilson (1974a).

Renormalization group theory is technically more de-
manding than the theory of derivatives or Feynman
diagrams. However, most of the unsolved problems in
physics and theoretical chemistry are of the kind the
renormalization group is intended to solve (other kinds
of problems usually do not remain unsolved for long). It is
likely that there will be a vast extension of the renormal-
ization group over the next decade as the methods become
more clever and powerful; there are very few areas in either
elementary particle physics, solid state physics, or theoretical
chemistry that are permanently immune to this infection.

l. DEFINITION OF A RENORMALIZATION
GROUP TRANSFORMATION

A diagrammatic formulation of the renormalization group
was introduced by [Wilson and Kogut (1974)7]. In this
section an alternative and more general motivation will be
given for this formulation of the renormalization group
than was provided in [Wilson and Kogut (1974)7].

If one considers water, say, far from the critical point,
there are microscopic fluctuations on an atomic scale
(wavelengths of order 1 A). If one increases the temperature
and pressure towards the critical point, fluctuations (density
fluctuations) become important at larger wavelengths.
Sufficiently close to T'. and P, (critical temperature and
pressure) there are fluctuations on the scale of 1000-
10 000 A which scatter ordinary light, and the water looks
milky (this is critical opalescence). However the microscopic
fluctuations (~1 A) have not decreased in size: close to
the critical point one has fluctuations at all wavelengths
from 1A up to the corrélation length &; at the critical
point £ = .

Most theoretical methods for handling fluctuations fail
near the critical point. The reason is that most techniques
require that only one order of magnitude range of wave-
lengths be important. This range could be the range ~1 A
(microscopic) or perhaps the range of wavelengths ~&.
There is trouble when all wavelengths between 1 A and ¢



778

are important, too. (In field-theoretic diagrammatic
methods the trouble takes the form of divergences when
£— ©.)

The - renormalization group approach is designed to
handle fluctuations over many wavelengths. The renormal-
ization group strategy is to divide the full range of wave-
lengths into subranges of manageable proportions and
consider each subrange in sequence. For example, one can
consider separately the ranges of wavelengths 1-2 A, 2-4 A,
4-8 A, etc.

In statistical mechanics the properties of the system are
determined by a partition function Z which is a sum over
all possible configurations of the system. Taking into
account a given range of wavelengths of fluctuations, say
10-20 A, means in some sense performing the statistical
averaging over fluctuations of these wavelengths. In this
section a precise definition of “averaging over fluctuations”
will be given; this will lead to a specific formulation of the
renormalization group. For a more qualitative discussion
see Wilson (1974a). )

First it is useful to define a statistical averaging over
all fluctuations with wave number greater than a cutoff A,
i.e., wavelengths <2m/A. It will be assumed that the
wavelength cutoff 2w/A is much larger than 1 A so that all
microscopic fluctuations are included in this initial aver-
aging. What this means intuitively is this. Consider the
example of water. Consider a region of size ~1/A in the
water surrounding a point x. Let p(x) be the average density
of this region. Then one would like to perform the statistical
averaging over density fluctuations inside the region keeping
the average density p(x) fixed. Such fluctuations necessarily
have wavelengths S1/A. In a magnetic system one considers
an analogous region and defines M (x) to be the average
magnetization of the region. One would like to perform the

statistical average over all spin fluctuations in this region -

holding M (x) fixed. The entire magnet can be divided into
subregions of size ~1/A; and in each subregion one wants to
perform the average over fluctuations which leave un-
changed the average magnetization of the region.

This idea can be realized formally in the following
fashion. Suppose, to be specific, that one starts with a
magnetic system consisting of a lattice of spins s, (spaced
at about 1 A). Let My be the Fourier transform of these
spins

M, = Y exp(ik-n)sny. (1.1)

We can define an average magnetization density for regions
of size ~1/A by defining

M(x) = / exp(—ik-X) M d*k/ (2x)5. (1.2)

By only integrating to A instead of the maximum possible &
one produces an M (x) which involves only long wavelength
fluctuations. This means M (x) itself cannot vary much
for changes in x much smaller than the wavelength cutoff
1/A: it acts much like an average magnetization. One would
now like to perform a statistical mechanical averaging
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holding M (x) fixed for all x. We can do this by holding
M, fixed for | k| < A. This means we write

exp@e,[MY) = £ (11 6(Mx — E explik-nisy)

{sn} k
Xexp(—H/kT), (1.3)

where s, is @ sum over all configurations of the spins s,
for all lattice sites n. H, is the Hamiltonian of the system,
and 3¢, is an effective interaction depending on the variables
M, (with 0 < |k| < A), i.e. on the average magnetization
function M (x).

[A technical complication .occurs here, namely that

> exp(ik-n)s,

is complex. So one must define the 8 function

My — 3 exp(ik-n)‘sn].

This is done by defining the product

o[ My — Y exp(ik-n)saJo[M_x — 3 exp(—ik-n)sa]
to be

s[ReM, — Y cos(k-n)s, Js[ImMy — >_ sin(k-n)s,].
Another prdblem is that for an infinite lattice the product

IIx is a continuous product; one can avoid this problem by
considering a large but finite lattice. See below. ]

The partition function Z is originally defined as

Z =Y exp(—Ho/kT).

{sn}

(1.4)

One can compute Z from the effective interaction 3¢y by
averaging over the long wavelength fluctuations M

Z = IAI i dM y exp[3Cy (M)]. (1.5)

=0 —0

I:Here also a definition is needed, namely

/ de/ (;M_k

is a shorthand for

©

/w d(ReMk) d(Ika).]

—o0

For a system of finite size there are a discrete set of
allowed values for k and the product J]x—o? is an ordinary
product over all allowed vectors k with magnitude less than
A. In the infinite volume limit, k is a continuous variable
and Eq. (I.5) involves a functional integral. See Wilson
and Kogut (1974) for background on functional integrals.
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The renormalization group transformation can now be
defined as a formula relating JCs ;2 to 3Ca. One has

o

' exp (GCA/z[:M]) = IAI dM exp (C‘CA[M]), (16)

Iki>A/2 ) _y

where 3C, is a functional (for the infinite volume case)
depending on functions Mx(0 < k£ < A) and 3Ca;o[ M ]
depends on My for 0 < £ < A/2. The factor 2 is arbitrary:
one could also calculate 3C4,5 for any & > 1. This is not yet
the renormalization group transformation. This is obtained
by converting to dimensionless variables. For a given
cutoff A one introduces a dimensionless momentum variable
q = k/A, so that the range of q is always 0 < |q| < 1.
Furthermore one replaces My by a rescaled variable oq

I.mn

The scale factor zx is introduced so that one can adjust
the average magnitude of the fluctuation ¢4 for some value
of q, to be of order 1 regardless of the average magnitude
of My. Since the conversion to dimensionless variables is
different for different A, one has different variables, say
oq and ¢y, appearing in 3Cs and 3Ca/s. These variables are
related by

M); = ZA04q.

0q = $o2q, (1.8)
where
¢ = ZA/z/ZA. (19)
The renormalization group transformation is precisely
1 o
exp(®aplo’]) = T doq exp(3Calo]) (I.10)

i<lal J o

with ¢’ defined as above (Eq. 1.8). The constant { is a

parameter that will be determined later.

[A constant factor has been omitted from Eq. (I.10),
namely the constant generated by changing the variables of
integration from My to oq. The constant has been omitted
because in this paper we will only be concerned with corre-
lation functions; these involve statistical expectation values
for which such constants are irrelevant. If one tries to
calculate the free energy itself then such constants must be
taken into account.]

The purpose of the change of variables is to make possible
the existence of fixed points. A fixed point is a specific

functional 3C* such that J

)

exp(@c*o’]) = II (I.11)

i<lal J -

doq exp (3C*[a])).

To have the same functional on both sides means in particu-
lar that o4 and o, must have the same range of q; they

also must have the same average magnitude for the same

value of q. The change of momentum scale and the factor ¢
are both needed to make this possible. This will be seen
explicitly below. ‘

What can one say about the interaction 3Cs[o]? Since
they are defined by a complicated configuration sum one
can make only general statements. It will be assumed that
when ¢ is small, 3CAs[¢] has a power series expansion in o.
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In the case of a magnetic system with no external field
there is a symmetry for ¢ — — o which means only even
terms in o appear. Then the expansion can be written

sealo] = —% / @0 — / / [

Xu'i(ql, 42, 43, —q1 — qz — q3)‘701O—Qz‘7‘130’—‘11—Q27q3

—f / ws(qy, .-, G5, —q1 — -+ - —(5)
q1 qs5 .

Xogq, " 0g0—gy—eem LT

(I.12)

where %2(q), %4(q1,42,93,94s) etc. are unknown functions
(which also depend on A); there are only three independent
momenta in #4 due to momentum conservation (which is a
consequence of translational invariance in position space).
All integrals are restricted so that |q;| < 1 (note that
|q1 + g2 + q3] must also be less than 1 in 4, etc.). The
functions u4(q1,- - - ,q4) etc. will be required to be symmetric
under interchanges of the q; (as one is free to demand);
for u,(q) this means %2(q) = u2(—4q).

A second assumption is that 3Cs[¢] has no long range
forces. If critical behavior is caused by long wavelength
fluctuations then hopefully no long range correlations are
introduced by integrating out only the short wavelength
fluctuations. A “long range force’” means here a term in x
space falling like a power of x, say

fxfyM(")M(y”" —y|-

for any m. Long range tails in position space are associated
with singularities in momentum space, in this case a term
|g|™ 2 in u2(q) (if m — d is 0 or a positive even integer
then the term is |q|™ ¢In|q| which is still singular).

The absence of long range forces is one of the most tenuous
of the assumptions of the renormalization group approach.
For the particular renormalization group transformation
described here, the sharp cutoff in momentum space leads
to some particular long range terms, most notably a |q|
term in #3(q). These terms are, I believe, manageable
and are usually rather small. They will be ignored in this
paper. See also Sak (1973). Otherwise no long range force
terms occur in the explicit perturbation theory calculations
of Sec. IT-III.

Another general assumption is that the effective inter-
action 3Cs[o] depends analytically on temperature and the
parameters in the microscopic interaction Ho. That is, the
functions #2(q), %#4(qy,- - -,q4), etc. will all be functions of
T and any parameters in Hy; it is assumed that this depen-
dence is analytic even at T = T. (for fixed A) where the
thermodynamic quantities are nonanalytic functions of T.
This will be discussed further in Sec. II.

In conclusion, the effective interactions 3C,[o] are
assumed to be triply analytic: firstly, analytic in ¢ itself,
e.g., no fractional powers of ¢ appear in 3Cs; secondly, the
coefficient functions us, w4, etc. analytic functions of
momenta (apart from nonanalyticity caused by the sharp
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momentum cutoff A). Finally, the coefficient functions .,
u4, etc. are analytic in the temperature 7' and parameters
in the original interaction H,. All these assumptions are
made even at T = T. where the thermodynamics is non-
analytic. All these assumptions are verified within the
perturbation theoretic calculations of Secs. IT and III, but
remain unproven for nonperturbative formulations of the
renormalization group (see Sec. VI). See Wilson and Kogut
(1974) and Wilson (1974a) for more discussion.

The effective interactions 3Cx[o ] have been defined as
intermediate stages in the calculation of the partition func-
tion Z. They can also be used in the calculation of corre-
lation functions. Consider the spin—spin correlatlon function
of the original magnetic system

1
Ta=— 3 snSoexp(—Ho/kT).
VA {sn}

(1.13)

Let Tx = X . exp(ik-n)I'y be the Fourier transform of T'.
One can obtain I'k directly as

1 1
2 MMy, exp( —Ho/kT)

—_— (1.14)
Z 5(]( + kl) {sn}

[where My is the Fourier transform of s,, and §(k) means
(2r)2s¢(k)]. For |k| < A, the quantities My and My,
(k; = — k) are held fixed in the integrations defining 3C,.
Therefore one can calculate the expectation value of MMy,

using 3C, instead of H,
1 1 A
= ——" H /del{MkMkl CXP(Z}CA)} (IIS)
Z 8(k + ky) w=o,

It is convenient to define correlation functions for the
rescaled spin variables oq, namely

1 1 1
Wi:‘}:,q m—zj EO/ doqaq0q, exp(3Calo]), (1.16)
Zy = f[ doq exp(3Cala]). I.17)
Then "
T = 2x2A%Tsq (@ = k/A) (k< A) (1.18)

[the factor A? comes from &(k + ky) = 6(Aq 4 Aqy)
= A~9%(q + q1)]- A related result is that the correlation
function T's q for ¢ < 3 can be expressed in terms of I'p/g,2q

PA q = 2—d§‘2PA/2,2q. (I19)

Note that any constant term in 3Cx (a term independent
of ¢) cancels in the calculation of T'j,q; this is the reason
constant terms in JC4 are ignored in this paper.

In the special case that 3Cs[ o] involves only a quadratic
term u2 (i.e., 4, etc. are all 0), one can calculate T'y,
explicitly

1
(1.20)

Tag =
u3(q)

[see Wilson and Kogut (1974)]. If %4, etc. are nonzero then
T'a,q has to be calculated by approximate procedures, and
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if 3C4 is a critical or near critical interaction this is difficult
to do for the reasons already explained.

A quantity of particular interest is the correlation length
£. This is defined in terms of the behavior of T',

In[/&) (L.21)

for large |n|, apart from powers of |n| (if I'x depends on
the direction of the vector n then one chooses the direction
that maximizes ). The behavior of T, for large |n]| is
related to the singularities of its Fourier transform I'x: for
I'n to behave as in (I.21), T'x must have a singularity at
|k| = i£7%. Consider now the correlation length £, for the
interaction 3Cx (the location of the leading singularity of
[xq is at |q] = #£7Y). From Eq. (I.18) one sees that
T's o has a singularity at ¢ = k/A if T'x has a singularity at
k, and hence

Er = AL

Therefore as one lowers the momentum cutoff A of 3C,, its
correlation length also decreases. Note that £, is a dimen-
sionless correlation length, since it is defined in terms of the
dimensionless variable q.- What £, determines in physical
terms is the correlation length of 3Cy in units of the minimum
wavelength A~! permitted in 3Ca.

Ty ~ exp(—

(1.22)

Note also that

£ = 3éa- (1.23)

II. FIXED POINTS IN PERTURBATION THEORY

The formalism of the renormalization group approach
begins with the idea of a fixed point of a renormalization
group transformation, an example being a fixed interaction
Jc* satisfying the transformation of Sec. I [see Eq. (I.11)7].
Then one discusses the behavior of solutions 3Cx of the
transformation near a fixed point. This formalism will be
illustrated in Sec. II and III by studying fixed points which
are either Gaussian [only #(g) is nonzero] or near to
Gaussian (u4; s, etc. present but small). The restriction
to small non-Gaussian terms is a practical restriction;
otherwise, the transformation of Sec. I is too complicated
to solve (except by the rough procedures of the approximate
recursion formula [Wilson (1971a), Wilson and Kogut
(1974)7]. The most important of the near Gaussian fixed
points occurs near four space dimensions; this fixed point
and its applications are discussed extensively in Wilson and
Kogut (1974) and elsewhere. In this paper the more general
question of when there are near-Gaussian fixed points will be
discussed, along with some of their properties. Detailed
applications will not be explained.

Only under special circumstances are fixed points near-
Gaussian. It is important to be able to calculate fixed
points even if they are far from Gaussian. Some current
efforts to make such calculations are discussed in Sec. VI.

In this section the transformation of Sec. I will be written
out in detail for near-Gaussian interactions. The pertur-
bation theory which yields these results is explained in
Wilson and Kogut (1974) and will not be repeated here.
Then the Gaussian and near-Gaussian fixed points of the
transformation will be considered.
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Write the transformation in the form
3¢'[o'] = T3e[o]5], (I1.1)

" where 3¢’ involves primed functions %, #4’, etc. Then u.'(q),

! 2, - 2, y T
uy' (q) = {22"d{u2<g) + 12/ pm(q/ V2e D) + O(uq?, us, etc)},

u2(p)
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us' (q,- - - ,q4), etc., are given by a sum of Feynman graphs;
the graphs for u," have two external lines, the graphs for

, . .
u4 have four external lines, etc. The first few graphs give
the following equations:

(11.2)

=P — 3 — 342)us(3q5, 3q4, —p, p + Fq: + 3q2)

U us(3qy, 392, p
(@ 08) = c42~3d{u4<—;—ql, Jas, 3as, Jas) — 12 / oty 2n B
1

7

. Loug (%qu %q% %q:*; %q‘i; p, —p)
+permutations + 15 | p—
3 u2(p)

' (Q1, - - ., qs) = $627%{us(34qy, - - -, §q6)

+ O(udd, us, us, us, etc.)} (IL.4)

etc.

The first term in each of these formulae is trivial; for
example, the u, term in the equation for #«, is obtained by
substituting {2y’ for o4 in the expression

fqlfquqa“4(qu 42, 43, —d1 — Q2 — q3)U11UQ2UQ3U—Q1—QZ—Q3

(with all ¢’s restricted to be less than %) and changing
variables so that q; is replaced by q./2. The remaining terms
come from diagrams: see Ref. 2.

As a first step in considering these rather complex equa-
tions consider what happens when u., e, etc. are all 0,
leaving only #,. In this case only %’ is nonzero. When the
transformation T is iterated one generates a sequence of
functions #s:(g), (! = 0, 1, 2, etc.). Suppose the initial cutoff
Ao associated with u20(q) is (10 A)~1; then the cutoff A; asso-
ciated with us; is 27%A,, or (2! X 10 A)~'. Near the critical
point one is interested primarily in large wavelengths and
therefore large /.

Let ¢ be a fixed parameter independent of /. In this case
the recursion formula for us; (dropping u., us, etc.) is

w2, 11(q) = 2272 (3q). (IL.5)
The solution of this recursion formula is
un(Q) = £¥2 s (q/2Y). (11.6)

The precise form of u#20(g) is not known due to the compli-
cated definition of 3Cs (see Sec. I). However, for / large, one
needs to know u30(q) only for |q| < 2—%. Assuming no long
range forces are present in u3(q) (see Sec. I) one can
expand u20(q) in powers of ¢. For simplicity suppose #20(q)
depends only on ¢2. Then

u20(q) = 70 + 2o + weqt + - - -. (I1.7)
This gives
un(g) = (¥2-1(ry + 20222 + we2—4gt + ---).  (IL.8)

If 7o is not zero then u,,(¢) is approximately a constant
independent of ¢, for large /. In this case the correlation
function I'; , for the interaction 3C, is also a constant approxi-
mately, and in particular has no singularity at ¢ = 0 [see
Eq. (1.20)7]. Therefore one is not at a critical point.
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+ O (ud®, ua, ue, ug, etc.) }

uz(Puz(—p — a1 — 34q2)

(I1.3)

The next possibility is that 7, vanishes but 2o % 0. Then
for large enough /, :

Uz (q) =2 £H271422g g2 (11.9)
and if one chooses ‘

§ =20 (I1.10)
one has

u21(q) == 20g? (IL.11)

for large I, namely #2;(¢) becomes independent of / for large
l. This is an example of a fixed point. In fact the formula
u21(gq) = 20¢® for any I is a special solution of the transfor-
mation Eq. (IL.5), provided { is given by (I1.10).

The correlation function corresponding to #2:(q) = zog?
is given by
Pl,q = 1/(20q2)-

The singularity at ¢ = 0 in I'; ; means there is a singularity
at k = 0 in the original correlation function I'y (defined in
Sec. I). Hence one is at a critical point.

(I1.12)

The constant 7, in u20(¢) will not be zero, in general. To
make 7o be zero one must restrict in some way the initial
microscopic interaction H, or temperature 7. Since 7o = 0
corresponds to a critical point (assuming the absence of 4,
ug, etc.), the corresponding restriction on (H,,T) is that it
also be at a critical point, i.e., one must put the temperature
T equal to T..

There are higher order fixed point solutions, namely
u21(g) = woq?, or wig®, etc. (each requiring an appropriate
choice of {). The fixed point weq* corresponds to a (VZM)?
term in a Landau theory replacing the usual (VM)? term
(see, e.g., [Wilson (1974b)7]. To my knowledge these higher
order fixed points have not been studied in detail.

Now consider fixed points with #4, % etc. nonzero.
Consider in particular those points for which u,, us, etc.,
are small so that one needs to consider only a few low order
diagrams in constructing the fixed point.

A fixed point is a value ¢* for { plus a set of functions
u2*(q), %4*(q1,92,93,94), etc. which reproduce themselves
through Eqgs. (I1.2)-(I1.4). If us*, u¢*, etc. are all small
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then to a first approximation one can neglect #.*, us*, etc.
in the equation for #2*. One then has

us*(q) == £*2274u,*(q/2)}. (11.13)

The fixed points of this equation have already been deter-
mined and only the solution %s*(q) =~ z,¢> [with ¢* given
by Eq. (I1.10)], will ‘be considered here. There will be
corrections to both #,*(q) and {* due to the us* terms, etc.
in Eq. (I1.2), but these corrections will be assumed to be
small.

The equation for u4*, to a first approximation, reads

%s* (Q1,92,93,94) == 24%%4* (41/2,92/2,43/2,94/2). (I1.14)

[Eq. (I1.10) has been used for {*.] One seeks solutions which
are analytic in the q.’s for q;— 0. It is not difficult to see
that the solutions to this equation are monomials in the
¢, and that for each possible monomial, d is determined.
For example, consider the case u4*(q1,"-,qs) ~ u* a
constant. Then one has

W~ Qa—dyk

(I1.15)

which is possible only if d =~ 4. Alternatively one might have
w*(q, - +,q0) = w*(q:? + ¢ + ¢* + ¢4?), giving

(I1.16)

wk ~ P2—dyy*,

[%4*(q1,- - -,44) cannot have a term linear in the q;: the
requirements of symmetry in the q; plus momentum conser-
vation rules out a linear term.] This equation can be
satisfied for d >~ 2. However the case d =~ 2 is very awkward
to discuss using the diagrammatic expansion of the re-
normalization group transformation; it will not be con-
sidered here.

Suppose one cannot satisfy Eq. (I1.14), i.e., d is not near
2 or 4. There still can be fixed point solutions with #.*
nonzero; however, there must be diagrams in the equation
for us* which are as large as u#,* itself. The diagrams that
can be as large as us* (assuming u*, etc., are also small)
are the diagrams linear in %¢*, ug*, etc. not involving wu*.
Suppose, for example, that #¢* is important but #g* is
negligible. Then Eq. (II.14) for #4* need not be satisfied.
However, there is now a simple equation for u¢*

us*(qu,- -+ ,q6) ™ 27 us™(41/2," - 06/2)-
The only solution for d > 2 of this equation is

(I1.17)

ue*(qu, -, qs) = v*

where v* is a constant, in which case d must be d~3.
Similarly if #g* is important but #:0* is negligible then
there is a simple equation for ug* with solutions for
8 — 3d =~ 0 and so forth.

Consider more particularly the case d ~ 4. One now has
an approximate solution for #:*(q), %4*(q1,92,93,44), and ¥,
namely

ug*(q) == 2g?, (I1.18)
%5*(q1,02,95,94) = u*, (11.19)
o arkan, (11.20)

with 2o and #* arbitrary so far (#* being assumed to be
small).
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The size of #*, i.e., the strength of #4*, can be determined
by considering nonlinear terms in the equation for u.*. A
full discussion of the equation is rather complicated (see
Ref. 2), so here the equation will be simplified by consider-
ing only the term involving %4 in Eq. (I1.3), and only an
order of magnitude discussion will be given. With
us*(q,- - -,q3) approximately a constant #*, the equation for
u4* reads approximately

w* = 2u* + O(u*?), (I1.21)

where ¢ = 4 — d. When € is small, (1 — 2¢)u* is approxi-
mately e(In 2)u* ie., of order ew*. Thus the equation
requires ex* to be of order #*?, which means #* must be of
order e. Hence, for small ¢, #* is small.

In an accurate calculation of the fixed point, the functions
ug*, ug*, etc., are nonzero but of higher order in ¢; likewise
#4*(q1," - - ,91) has momentum dependence in order € and
#s*(q) is more complicated than z0¢%. To illustrate how this
happens, consider a simplified order of magnitude equation
for us* neglecting its momentum dependence. There is a
term of order (#4*)? in the equation for #¢* so one has

ug* = 22y + O(u*2). (I1.22)
With d >~ 4 this becomes
us* (1 — 1) = O(u*?). (11:23)

With #* of order ¢, this makes u¢* of order €. This difference
between this equation and the equation for #* is that the
linearized equation for #¢* is not almost satisfied, i.e., the
coefficient of #¢* is of order 1 instead of order e. Hence u¢*
is of order € rather than of order e.

The complete set of equations for us*(q), #4*(qy, - -,q4),
etc. now determine these functions completely, to any
order in €, except for the one constant z,. The constant 2,
cannot be determined; instead one determines the param-
eter {*. To see this we show first that z, cannot be deter-
mined. The reason is a symmetry of the full renormalization
group equations. Let u2*(q), #s*(qy,- - *,44), 6™ (g1, ,46),
etc. be an exact fixed point for some value {* of {. Then
the functions

u*(q,2) = 22us*(q), (11.24)
ws*(Q1,- - ,44,%) = 2'ud*(qu, - -, q), (11.25)
ws* (4, - +,46,2) = 2°us™(qu," - - ,4s), (11.26)

also define a fixed point for any value of z. The transforma-
tions (I1.24) to (II.26) are equivalent to a change of scale of
the spin variables 6,. This result is obvious for the terms
exhibited explicitly in Eqgs. (II.2)-(I1.4) and is easily seen
to be true for more complicated diagrams because 2z’s
associated with the internal lines of any vertex cancel
against the z’s in the propagator (see [Wilson and Kogut
(1974)7] for the rules for diagrams).

The arbitrariness in the fixed point just demonstrated
can be used to impose an arbitrary value for 2o, say zo = 1.
This is to be understood, more precisely, to mean that
when #.*(q) is expanded in powers of ¢, the term propor-
tional to ¢? has coefficient 1.

Now suppose one expands the equation for #,*(q) in
powers of q and collects all terms linear in ¢2. The general
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structure of this equation is (with ¢* left arbitrary)

F{1 — 2@} = O (), (1I1.27)
where one term of order #*2 comes from the diagram shown
in Fig. 1 and there are other terms-of order ¢ or higher.
This equation determines {*; due to the order »*? terms, {*
differs from 2¢+2)/2 in order €.

For some calculations to follow one needs to know the
explicit value of #* to order e. This is most easily obtained
by defining #* to be #4*(0,0,0,0) and con51dermg Eq (I1.3)
for all external momenta equal to 0. It is shown in Wilson
and Kogut (1974) that the u¢* term for this case is of order
€ instead of € and therefore is unimportant. One is left
with the #,*? term to calculate; using the first order equa-
tions (I1.18)—(11.20), one obtains

u* = 2qu* — 9u*2(C, (11.28)
with
1 1 ddp
C= 4/ — . (11.29)
3 p* (2m)¢
The nontrivial solution of this equation is
* = ¢1n2/(9C) to order e. (11.30)

In four dimensions precisely (e = 0) u* is zero which
means there is only the trivial fixed point. It is only for
d >~ 4 but not equal to 4 that the above calculation gives a
nontrivial fixed point with ¥, ue*, etc., small. As e gets
large, say for d — 3, the fixed point presumably still exists
but #¢*, etc. are not small any more. This means one can
no longer neglect complicated diagrams in the equations
for us*, ue*, etc, which makes precise calculations hopeless.
However, calculations in powers of e are feasible to order ®
or higher [Brezin ef al. (1973)7] and these calculations give
rather good results for ¢ = 1.

As discussed earlier there are also nontrivial fixed points
with us*, u¢*, etc., small for d >~ 3, 3d >~ 8, 4d ~ 10, etc.
The implications of these fixed points will be discussed after
considering linearized behavior about these fixed points:
see Sec. III. These fixed points are discussed in Chang and
Stanley (1973) and in Stephen and McCauley (1973).

lIl. LINEARIZED BEHAVIOR NEAR FIXED POINTS

The next topic to be considered is the solution of linear-
ized renormalization group equations near a fixed point.
In particular, the eigenvalues and eigenoperators of the

u2*(q) + Su2,141(q) = (*22_‘{(%2* (a/2) + dux(q/2) + 12/ p

-+ contributions of other diagrams).

renormalization group 783

&
N
\ q
us® »

A diagram contributing to the ¢* term in us*(¢).

A

FIG.1.

linearized equations will be discussed for both the trivial
and nontrivial fixed point. To start with, the general theory
of linear perturbations about an arbitrary fixed point will be
described. Then the example of the trivial fixed point will
be discussed ; this example will be used to show the relation
between eigenvalues of the linearized transformation and
the critical exponent v. [The exponent v gives the behavior
of the correlation length £ near the critical point, namely
ta(T — T.)™, where T is the critical temperature.] Finally
some eigenvalues associated with the nontrivial fixed point
near d = 4 will be calculated.

Suppose one has a fixed point 3C* of a renormalization
group transformation T

0% = T[ae*]. (IIL.1)

Consider sequences of interactions 3C; generated by the
transformation
31 = T[3C]. (I11.2)

By continuity, if 3C; is close to 3¢* then 3C;;1 will be close to
T[3¢*], namely, close to 3C*. Write

3, — 3C* = 83C,.. (111.3)
Consider

8301 = T[3e* + o3¢,] — d¢*. (I11.4)
Expand this in powers of 83C;; one can then write

83,1 = L[3C*]-83¢, + O[83C2], (I11.5)

where L[3C*] is a linear transformation, and the remainder
is- quadratic or higher in 83C;. To see what this equation
means, it will be exhibited more explicitly in terms of %2, #,4,
etc. The fixed point 3¢; is given by a set of functions u#.*(q),
%4*(q1,92,93,94), etc. The perturbation §3¢; is defined by
another set of functions, say &u:(q), dua(qy,- - - ,q4), etc.;
then 3¢; itself is given by wuo* 4 duar, us* + du4y, etc. The
equations for éuz 1,1, d#%4,141, etc. are obtained by substituting
wus* + dugy for ue, us* + duy for wus, etc., in Egs. (I1.2)-
(I1.4). Consider in particular the equation for us ;3. This
now reads (assuming that { can be replaced by {*)

u*(q/2, —q/2, p, —p) + dua(a/2, —q/2, p, —p)
[u2*(p) + duz*(p)]

(I1L.6)

This equation can be expanded in powers of dua;, s, -etc. The terms independent of the perturbation match by the
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fixed point condition; the remaining terms give

! ou (q/27 _q/zy P, _p>
btts 112 () = r*?rd(auu(q/z) +12 / p— .
} u2*(p

2 we'(@/2, =4/2, b, —p)owai(p)
- p
3 [u2* (p):lz

where O (6%) means terms of order dus?, duiduy, etc. This equation is explicitly linear in dus, duy, etc., except for the O(8?)
terms. The coefficients of 8u,,;, 6u4,1, etc., depend on u,*, u.*, etc. It is this equation, plus the equations for 8u4,41, etc.,
that can be written abstractly in the form (IIL.5).

-+ other diagrams + 0(62)>, (I11.7)

Now consider solutions of the equations for small §3C; so that the order §3C2 terms can be neglected. One then has a
linear equation; thus the general solution can be written as a linear combination of more special solutions. The simplest
solutions are generated from eigenvalues and eigenoperators of the linear operator L. Suppose one has an eigenoperator

O of L such that
N0 = L-O

(I11.8)

for some eigenvalue \. By an “eigenoperator’” O one means a set of functions v5(q), v4(qy, - -,q4), etc.; the eigenvalue equation

(IT1.8) written out is

N (q) = r*zz—d(w(qm r12f po
3 ug* (P)

Mg (q1,92,93,4) = §*42_3d<v4(¢11/2,~ . ,44/2)

' v(q/2, —q/2,p, —p) 1/1

pﬁtt*(q/zy _q/zy p, _p)
! [u*(p) P

vo(p) + other diagrams)
(I11.9)

— 341 — 3q2)v4(3qs, 344, —p, P + 31 + 3q2)

! u‘l*(%qu %qu p, —
—12f p

s u*(p)uz*(—p — 3q1 — 3q2)

— S(similar terms)

+12/l ud* (341, 342, p, —P — 3a1 — 3@2)us*(3qs, s, —p, P + 3a1 + 3q2)
p
3 [us*(p) Pus*(—p — 361 — 3q2)

~+ (5 similar terms) + other diagrams) etc.

Given a solution of the eigenvalue equation (II1.8) one
can construct a special solution of the linearized recursion
formula, namely,

83¢; = o\, (IT1.11)

where ¢ is an arbitrary constant independent of /. This
formula satisfies

53{:1+1 = L53C1 (11112)

as a consequence of Eq. (IIL.8).

If L were a Hermitian operator, the eigenoperators such
as O would be complete, namely, the most general solution
63C; of the linearized equation (I11.12) could be expanded as
a sum over the eigenoperators

3301 = 3 Codm!Om, (IT1.13)

where N\, is the eigenvalue for the eigenoperator O,,. How-
ever L is not Hermitian, which raises two problems. The
first is that to get a complete set of solutions of the linearized
equations one may have to look for solutions behaving as
Ml I\ etc., as well as the eigenoperator type of solution
already discussed. No such solutions have occurred in any
example studied to date but they might arise in the future.
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v2(p)

(I11.10)

The second problem is that L is an infinite dimensional
operator, so that completeness of the eigenoperators is
uncertain. In practical examples studied to date one has
only asymptotic completeness, which means that an arbitrary
solution 63C; of the linearized equations has an expansion
(I11.13) only for sufficiently large /; for a given finite value
of / there may not exist a convergent expansion in terms of
eigenoperators. Examples of this will be given below.

As an example of eigenoperators and their usefulness the
eigenoperators for the trivial fixed point will be discussed.
In this case #,*(q) = ¢? (we set 2o = 1 for convenience) and
us*, ug*, etc. are zero. There are several different classes of
eigenoperators in this case. First there are eigenoperators
with vy, vs, etc. all zero, leaving only v,. Secondly, there are
eigenoperators with v, and v, nonzero while vg, v, etc. are
all zero. More generally there are eigenoperators with
Uy, Vg, - -, Van NONzero and va,iz, Vani4, €tC., zero. Consider
first the case that only v, is nonzero. The eigenvalue equation
is (with ¢* = 2(@+2)/2)

M2 (q) = 4v2(a/2).

The solutions of these equations are the homogeneous
polynomials in q. Some examples with their eigenvalues are
shown in Table I (¢g; is a component of g).

(I11.14)
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Suppose now that one is interested only in eigenoperators
which could contribute to an interaction 3C;. Suppose also
that these interactions show cubic symmetry [as well as
the previous requirement v,(q) = v,(—q)]. Then all terms
odd in q (like ¢:) are ruled out. Furthermore, the first term
which is allowed and is not fully rotationally invariant is
the >_; ¢ term.

The results for eigenoperators just obtained can be
compared with the solution for 3C; obtained earlier (Eq.
11.8) when only #, is nonzero. [One must choose { = 2@+ /2
in Eq. (I1.8).] For an arbitrary u#,0(q) analytic about q = 0
obeying cubic symmetry one has, for large /,

u(q) = 4'r0 + 20 + wod 7'¢* + w4 Y gt -
(I11.15)

This formula can be understood as a special case of Eq.
(II11.13): the coefficients are 7o, 2, etc., and the ! dependence
is determined by the eigenvalues A = 4, 1, 1 of the eigen-
operators.

For large I, the eigenoperators with eigenvalue N\ < 1
make a negligible contribution to #2:(q). Such operators are
called irrelevant. The operators with A > 1 are called
relevant; the coefficients of the relevant operators grow
with /. In the expansion (III.15) there is one relevant
operator, namely, the operator v:(q) = 1 with A = 4.
Finally, operators with A = 1 precisely are called marginal;
the coefficient of a marginal operator is constant with /.
Note that at large / there is full rotational symmetry; the
terms showing only cubic symmetry are irrelevant.

The eigenvalue of particular physical interest is the
eigenvalue A = 4 of the relevant operator; one can obtain
the critical exponent v from A. The argument relating » to \ is
true independently of the nature of the fixed point (whether
Gaussian, near-Gaussian or far-from-Gaussian).

The argument is as follows. Consider the sequence of
interactions JC; generated by the transformation 7 starting
from some initial interaction 3C, which is close to but not
at the critical point, i.e., its correlation length &, is large but
not infinite. Then the correlation lengths £&; for the inter-
actions 3C; decrease with /: from Eq. (1.23), & is 27, and
when [ is about (In £/In 2), & will be about 1, i.e., 3¢; is
far from any critical point.

If one is dealing with nontrivial interactions 3C;, then,
as noted in Sec. I, it is very difficult to determine &, directly
as a function of the parameters in 3Co, due to the difficulties
of solving a near critical interaction. This is no longer true
of 3C;, for sufficiently large /. If ! is large enough so that &
is of order 1 then it is not so difficult to compute &;, by
solving the effective interaction 3C;. And once £; is known
for some value of /, one can determine £, from the relation

EO = 2’5!-

To illustrate this, consider the Gaussian case under
discussion. In this case 3C; is defined by u.;(q); for large !
and a near critical #0(q), one has

u2(q) >~ 4'r0 + 20g". (II1.16)
The correlation function for 3C; is [4%r¢ + 20¢>]™* [from Eq.
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TABLE 1. Some eigenoperators v2(q) and eigenvalues \.
v2(q) A
1 4
qi 2
¢ 1
¢ i
2 g i

(1.20)] which gives a correlation length
= [Zo/ 4ty o]%

and multiplication by 2! gives & =

(I11.17)
[Zo/fo]%

In the Gaussian case one can calculate £, directly, also
using Eq. (I1.20). However, even for the near-Gaussian case,
calculating £, directly is not trivial. In the near-Gaussian
case, JCo contains small %, us, etc., terms, and one can
think -of calculating £ as an expansion in these terms.
Unfortunately these expansions have divergent coefficients
when £,— . In contrast, when £; is of order 1 and 3¢; is
near-Gaussian there is no problem with using perturbation
theory to compute &. (There do exist sophisticated methods
for using perturbation theory to determine £, directly [see
Wilson and Kogut (1974)7; even these methods fall when
one is in a far-from-Gaussian situation).

How can one recognize the values of I for which 3C; is
far from critical and & is small? The answer is simple:
First, 3C; is far from critical when 63C; is large (and in-
creasing), i.e., when one or more of the relevant operators
contributing to §3C; in Eq. (ITI.13) have coefficients of order
1 rather than much less than 1. In the Gaussian example
this means that &; is of order 1 when 4!ry is of order 1;
more generally ¢,A»! must be of order 1 for one of the
relevant operators Onm.

What “of order 1” means, more precisely, is this. Suppose
there is only one relevant operator, to simplify the dis-
cussion (this is the case for ordinary critical phenomena
in magnets in the absence of an external field: see later).
If the coefficient ¢cA\! of the relevant operator has a pre-
assigned value ¢, say, then the correlation length & will
also have a specific value £. This is true independently of the
value ! provided c\! is &. The reason is that if cA\! = € is fixed,
then 83C, is also fixed ; namely it is €0, where O is the relevant
operator, apart from negligible irrelevant terms. Since 3C*
is also a fixed operator, this means 3¢, is itself fixed, and
therefore &, = £ is fixed. Hence, in particular, if cA?is 1 or
near 1, £ will be near to the fixed correlation length associ-
ated with ¢ = 1; £ cannot be very large (or very small
either).

For any given initial interaction JCo there will be a
corresponding constant ¢ multiplying NO in 83C;. The
constant ¢ can be determined by expanding 63C;, for some
fixed value of I, in terms of eigenoperators. Then the
analyticity principle of Sec. I requires that ¢ be analytic
in the temperature 7. In the Gaussian case, ¢ is ¢, which
we have argued is analytic in- 7. Once ¢ is known, v is
determined as follows. cA! is near 1 when I~ — In¢/In \.
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For this value of /, £ is a fixed number £; therefore

Inc¢ _ _ :
£ = exp{ ———1n2 }E = ¢, (111.18)
InA
where
v = 1n2/In . (111.19)

The critical point corresponds to ¢ = 0; in this case
83C; goes to zero for I— oo i.e., 3C; goes to the fixed point
3C*. For small ¢, analyticity in T suggests that ¢ is linear in
T — T, so that

£ (T — TC)_".

Hence by a quite general argument, the correlation length
exponent » is given by (II1.19). For the Gaussian example,
N is 4 and [from (II1.19)7] v is 3.

(111.20)

Return now to the classification of eigenoperators. So far
only those perturbation with v4; v6, etc., equal to zero have
been discussed. It is also important to look at other eigen-
operators of the linearized equations. Consider, for example,
the eigenoperators with v4 nonzero but v = 3= --- = 0.
The fixed point is still the trivial fixed point so u,* = us*
= ... = 0. The equation for v, is [from (II1.10)]

Aa(qy,- - -,q4) = 277%4(qa/2,- - - ,q4/2).

The solutions are homogeneous polynomials in the ¢’s;
considering only those which obey cubic symmetry and
reflection invariance, one gets the following eigenvalues and
eigenoperators:
A= 2429, =1
A = 2279: 9, = any quadratic form in
(q1- - -qq) etc.

(IT1.21)

(I11.22)

For these eigenoperators v, is nonzero; the explicit form
of v, will not be given here.

The eigenoperator with o4 = 1 is relevant if d <4,
irrelevant if d > 4, and marginal for d = 4. The other
eigenoperators are irrelevant for d > 2.

The fact that v, =1 is a relevant eigenoperator for
d < 4 means that for d < 4 one cannot reach the trivial
fixed point for large ! unless the v, = 1 perturbation is
absent in JCo. Since one must also have the 7o perturbation
absent, this means two parameters in the initial microscopic
interaction must be fixed at critical values to reach the
trivial fixed point. This is in the absence of an external field.
This means the trivial fixed point does not describe an
ordinary critical point for d < 4, since an ordinary (mag-
netic) critical point is reached by fixing only one parameter.
There are special critical points called tricritical points
(there is a tricritical point in liquid *He—*He mixtures, for
example) which .do require fixing two parameters (for
3He—*He mixtures there is a critical temperature and a
critical concentration). Tricritical points have been dis-
cussed in detail using the renormalization group approach by
Riedel and Wegner (1972, 1973, 1974), and are actively being
studied experimentally as well.

There are also eigenoperators with vs nonzero, or v and
vg nonzero, etc. The interesting eigenoperators that result
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are
A= 262d; g =

A= 28_3'1& Vg

1, v4, and v, nonzero

Il

1, vs, v4, and v, nonzero, etc.

The vs = 1 eigenoperator is relevant for d < 3; the
25 = 1 eigenoperator is relevant for d < 2.67, etc. This
means that for d < 3 the trivial fixed point does not even
describe a tricritical point since at least three parameters
must be fixed in the initial interaction in order to reach
the trivial fixed point. In the limit 4 — 2 an infinite number
of ‘parameters must be fixed in order to reach the trivial
fixed point.

At each dimension for which the number of relevant
operators changes, i.e., the dimensions 4, 3, 2.67, etc., a
nontrivial fixed point separates from the trivial fixed point.
As will be seen shortly, for d < 4 it is the nontrivial fixed
point that describes an ordinary critical point while the
trivial fixed point (for 3 < d < 4) describes a tricritical
point. Similarly the nontrivial fixed point that separates
from the trivial fixed point at d = 3 describes a tricritical
point, etc.

To complete the discussion of eigenoperators one should
consider eigenoperators odd in the spin variable, i.e,
eigenoperators with vy, v3, v5, etc. nonzero instead of v, v4,
vs, etc. These eigenoperators are important for magnetic
systems with external fields and for liquid—gas transitions
which, have no symmetry analogous to the symmetry
spin — — spin of magnetic systems. To save space the
discussion of these operators is omitted.

Having discussed the role of relevant operators it is
worth emphasizing the role of irrelevant operators. Suppose
a particular microscopic interaction H, is critical, which
means in the renormalization group framework that the
resulting effective interactions 3C; approach a fixed point 3C*.
Consider now an infinitesimal change in the original micro-
scopic interaction: Ho— Ho + 6Ho. There will be a corre-
sponding change in 3C;: 3C; — 3C; + 63C;. When [/ is large,
3¢, will be essentially 3C* and therefore the infinitesimal
83C; will satisfy the linearized equations about the fixed
point. This means (if asymptotic completeness is correct)
that §3C; has an expansion for large /

83C, = 3 CnAn'Om (I11.23)

where the c¢,’s are constants (depending on the choice of
parameters in the critical perturbation 83Co); the A\,’s are
the eigenvalues, and the O,’s are the eigenvectors of the
linearized equations.

If the perturbed interaction Ho-4 8H, is still to be
critical then the coefficients of all relevant operators in
(I11.23) must vanish. Suppose there is only one relevant
operator, for example. Then one must fix one parameter
in 6H, to ensure the vanishing of the coefficient of this
operator. For example, if Hy is an Ising model interaction,
6H, might consist of a nearest-neighbor coupling and
several 2nd- and 3rd-neighbor couplings. Given the 2nd-
and 3rd-neighbor couplings in 6H, there will be a special
value of the nearest-neighbor coupling in order to be at
the critical point. Apart from fixing this one parameter,
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the choice of §H, is irrelevant; for any choice, one reaches
the same fixed point. If one then allows departures from
criticality, the same critical exponents emerge, indepen-
dently of the choice of second and third neighbor interactions
in 6H . The reason for this is that critical exponents (such
as v) are determined by the eigenvalues )\, and these are
uniquely determined once 3C* is known.

Hence the role of the irrelevant variables is to establish
universality, namely the independence of critical behavior on
details of the original microscopic interaction. Specifically
one establishes local wuniversality, namely independence of
critical behavior under infinitesimal changes in the inter-
action. More interesting in practice are questions of global
universality, i.e., independence of critical behavior to large
changes in the interaction (such as the change from a ferro-
magnet to a binary alloy or a liquid-gas transition). To
establish global universality one must establish that very
different initial interactions H, lead to the same fixed
point 3¢*. This has not been established to date, for cases
of interest (e.g., d = 3). However, there is so far only one
fixed point that seems suitable to describe ordinary critical
phenomena with a scalar order parameter (liquid—gas
transitions, uniaxial ferromagnets, etc.), namely the fixed
point which is near-Gaussian for d ~ 4.

To complete this section of the lectures, some eigenvalues
will be calculated for the nontrivial fixed point for d ~ 4.
The eigenvalues will be computed to order ¢ = 4 — d. The
purpose of this calculation is to show that the eigenvalues
for the nontrivial fixed point are different than those for
the trivial fixed point, implying that critical exponents will
also be different for the two fixed points.

For small e the nontrivial fixed point is close to the
trivial fixed point, so one expects the eigenvalues and
eigenoperators of the nontrivial fixed point to be close to
those for the trivial fixed point. Only two eigenoperators
will be considered here, namely the operator with v,(q) >~ 1
and the operator with v4(qy,- - -,q4) =~ 1. ’

Consider first the eigenoperator with A >~ 4, v,(q) ~ 1.
One cannot claim that v, is O since there is a term propor-
tional to v, in Eq. (II1.10) for v4. However, the v, term is of
order € (since u.* is of order ¢). The solution v, of the v4

equation is therefore also of order € [the solution »4 could

be of order e only if the homogeneous equation
)\'1)4((11,' o 7q4) = 24_dv4(q1/21 Tt >q4/2)

had a solution for A =~ 4; but we know that such solutions
exist only for A < 17. Since v4 is of order € it will not affect
the 2, equation to order e¢ and we neglect it. Using the
values of u#s*, {* and u,* obtained earlier for the nontrivial
fixed point, the v, equation (II1.9) reads (to order ¢)

(I11.24)

12 11
A (q) = 4{v:(q/2) — e In2 / p;’vz(p)} (111.25)

with C given by Eq. (I1.29). This equation has a solution

with 22(q) = 1; then
A= 41— (eln 2)/3]. (I11.26)

Note that the constant C has disappeared. The value of »,
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to order e, is

(In2)/Inx = (In2)[2In2 — ¢(In 2)/3]!
0.5+ ¢/12.

14

I

(I11.27)

In conclusion, the eigenvalue A is not 4, and is ¢ dependent.
This is the origin of the nonclassical values of critical
indices in three dimensions for ordinary critical points.

Next consider the eigenoperator A~ 1 and vs~ 1. To
discuss this problem properly one should include in the v,
equations the simplest diagram involving vg, but [as shown
in Wilson & Kogut (1974)7] this term turns out not to
affect the calculation. To be precise, one finds that v is of
order ¢, but the contribution of v to the v4 equation (II1.10)
is of order € for the special case q: = q2 = q; = q4 = O.
One expects v,(q) to be of order 1 since v;(q) is nonzero
even for the trivial fixed point. However the term containing
v2(q) in the v4 equation is of order ¢ and can be neglected
in an order e calculation. The eigenvalue A can now be
determined by setting ;1= q2 = qs = q4 = 0 in the v,
equation. We must assume that v4(qy,- - -3q4) = 1+ order e
for any q; (i.e., vs has momentum dependence only in
order ¢); this is necessary to calculate the u4*v, terms.
Finally, one has the equation (valid to order €)

72¢1n2
9C

L |
Ay (0---0) = 249, (0---0) — / p—4 (I11.28)
3 P

with 24(0---0) = 1 4 order e. Dividing out 24(0---0) one
gets

A=2—2In2=1—¢ln2 (I11.29)

to order e. It is straightforward to verify that momentum
dependent terms in v,4 are of order e (or higher) as assumed.

For d < 4 the eigenoperator v, = 1 of the Gaussian
fixed point was found to be relevant (eigenvalue 2¢). Now
one sees that the corresponding eigenoperator for the
nontrivial fixed point is irrelevant. There are no further
eigenoperators of the trivial fixed point which are relevant
or even near to being relevant for d >~ 4, so there is only
one relevant operator for the nontrivial fixed point (in the
absence of an external field). This is true for d =~ 4; one is
less certain how the eigenvalues and eigenoperators vary
as d moves away from 4, down to 2 for example.

A note about the term “‘irrelevant.” This is a technical
term—its intuitive sense is not always correct. Operators
are relevant or irrelevant only with respect to a particular
fixed point; an irrelevant operator is irrelevant in the literal
sense only if one is performing first order calculations about
that fixed point. In nonlinear calculations about a fixed
point (for example the calculation of the nontrivial fixed
point near the trivial fixed point) ‘“‘irrelevant’ operators
like v are important, especially in high orders in e.

IV. DIVERGENCES IN FIELD THEORY AND
STATISTICAL MECHANICS; THE TRIANGLE
OF RENORMALIZATION

The next topic is divergences in perturbation theory and
the way they are treated in the renormalization group
framework. In this section the divergences will be exhibited
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FIG. 2. Example of a diagram with divergences.

and the differences between field theoretic divergences and
statistical mechanical divergences will be explained.

Consider the diagram of Fig. 2. When this diagram arises
in a statistical mechanical context, it is a contribution to a
four-spin correlation function (we are not considering its
role in the renormalization group here). Suppose one is
interested in the case that all external momenta are zero;
let the propagator be 1/(ro + k?). Then the diagram in-
volves the integral '

A

/ A (ro + E2)~2%
0

with the upper limit A on % being the inverse lattice spacing
(before conversion to dimensionless momentum units). In
the limit 7o— O (the critical limit) this integral is

convergent d@>49
logarithmically divergent (at £ = 0) (d = 4)
divergent by a power of £ (at £ = 0) (d < 4)

In dimension d < 4 there are similar infrared divergences
in more complicated graphs.

Consider now the same diagram but in a quantum field
theoretic context, still with all external momenta equal to
zero. Now 7, is replaced by m?, where m is the particle mass,
and the upper limit A on the % integration is infinite. In
field theory d is the space-time dimension. Assuming s is
not zero, the integral is:

divergent by a power of £ (d > 4) (at k = )
logarithmically divergent (d = 4) (at k= «)

convergent @<9

The only point of agreement between field theorists and
statistical mechanisms is that this graph is logarithmically
divergent in four dimensions. It is these logarithmic diver-
gences that will be emphasized in the following section.
However, it is useful to understand why field theorists
disagree with statistical mechanisms on what dimensions
lead to power law divergences. It is a simple matter of a
change of scale. In field theory the limit which produces
divergences is a limit in which the upper limit A of the
momentum variable % is taken to o, holding all coupling
constants (vertices) fixed. In statistical mechanics the
upper limit on the momentum is fixed and one takes a limit
in which the effective infrared cutoff 7o goes to zero holding
all vertices fixed. One can now make a scale change to make
the field theorist’s ultraviolet limit (A —) look like an
infrared limit (70— 0). Namely one can replace the field
theorist’s variable 2 by a dimensionless variable ¢ = k/A.
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Then the field theorist’s integral becomes
1 :
Ad—4/ (mZ/AZ + q2)*2ddq'
0

The new integration momentum ¢ has a fixed upper bound
1; the lower cutoff is m/A which goes to zero when A —co.
Thus one is back to the statistical mechanical type of
divergences, except that now one has an extra factor A%
For d > 4, this factor produces a divergence even though
the integral is convergent. For d < 4, the factor A%~ goes
to zero as A — o cancelling the divergence of the integral.
For d = 4, the factor is 1 and cannot affect convergence or
divergence.

The factor A?~* can be absorbed in a redefinition of the
coupling constant (vertex); in a general graph one finds
there is one integration and two propagators for each 4
point vertex. Therefore if one starts with field theoretic
diagrams with 4 point coupling constant X and cutoff A,
the equivalent statistical mechanical graphs have coupling
constant A4\ and cutoff 1.

The divergences discussed above provide one of the two
basic problems that arise in solving either statistical me-
chanical or field theoretic problems by Feynman graphs.
The other difficulty is that unless the coupling constants
are small one has to calculate too many graphs. The re-
normalization group approach is designed to deal with
both difficulties. The graphical formulation of the renormal-
ization group discussed so far can deal only with the di-
vergence difficulties (see below) but not the problem of too
many graphs. To deal with strong coupling one must
reformulate the renormalization group so as not to refer
to diagrams; some ideas for doing this are discussed in Sec.
VI; see also Secs. VII-X.

The renormalization group transformation in graphical
form is completely free of divergences: since every mo-
mentum integral in the renormalization group equations
ranges from momentum % to momentum 1 there is no
possibility for either infrared or ultraviolet divergences.
Hence these divergences must occur only as a result of
iterating the renormalization group transformation. This
will be seen explicitly in the next lecture.

A problem for a field theorist with the renormalization
group is that he wants to increase the maximum momentum
A in his Lagrangian. Unfortunately, the renormalization
group transformation of these lectures involves decreasing
the cutoff rather than increasing it. The process of de-
creasing the cutoff cannot be avoided: it is necessary to
solve the cutoff field theory. It is just as difficult to solve
a Lagrangian with a large cutoff A as it is to solve a sta-
tistical mechanical problem near its critical temperature.
In fact, we have seen that a simple change of momentum
scale transforms one problem into the other. So in order
to solve a Lagrangian with a large cutoff A, one uses the
renormalization group transformation to generate effective
Lagrangians with cutoff A/2, A/4, etc. This reduction
procedure will be explained in a bit more detail before
considering how to raise the cutoff.
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k
< LY <
P \4_/ P
p-k-kl :

FIG. 3. Input diagram for a renormalization group calculation.

Consider the diagrams of a ¢* field theory with cutoff A.
Specifically, the cutoff is introduced by setting up the
diagrams in a Euclidean metric (k2 = ko* + k® instead of
k% = ky*> — k?) and then restricting all virtual momenta & so
that k2 < A% The use of a Euclidean metric means one can
calculate explicitly only vacuum expectation values for
spacelike momenta, thereby excluding physical scattering
amplitudes. But formal questions such as the problems of
renormalization are still present in the Euclidean domain.
A renormalization group approach similar to that of these
lectures has yet to be developed for the Lorentz metric.
See, however, the recent work of Kogut and Susskind
(1974).

The idea behind the renormalization group transforma-
tion is to carry out all integrations over virtual momenta %
only over the range A/2 < k < A, not doing any integra-
tions for £ < A/2. The results of these integrations can be
expressed in terms of a set of effective vertices, which are
then used to construct Feynman graphs with cutoff A/2.
Consider, for example, the diagram of Fig. 3. In particular
consider the part of this diagram with |k > A/2,
|p — k — k1| > A/2 but |ky| < A/2. Then one integrates
over k and the line with momentum p — 2 — &, but not &;.
The result of the % integration (A/2 < k < A with the
further restriction A/2 < |p — k — k1] < A) can be ex-
pressed as an effective four-point vertex, after which one
has the diagram of Fig. 4, with %, still to be integrated over
but only over the range 0 < &y < A/2.

One can start with any Lagrangian £o and define Feynman
graphs with cutoff A. The procedure illustrated above
(when applied to all graphs and all possible ways of assigning
momentum ranges within a graph) results in a set of effective
vertices which define an effective Lagrangian £;. Then
when diagrams are constructed using £; and cutoff A/2,
one gets exactly the same vacuum expectation values as one
obtains from diagrams using £, and cutoff A.

It is convenient to make a change of scale and a renormal-
ization in both £¢ and £;: if ¢; is the Fourier transform of
the field ¢ (x), then one writes for £

q = k/A,
b = ZOUGI!

where Z, is an adjustable scale factor. One now writes
3o o] = Lo[¢]. For £, one writes

(IV.1)
(Iv.2)

= k/(A/2), (Iv.3)
¢k = Zldq/, (IV.4)
seufo"] = £4[¢], (IV.5)

where Z, is another arbitrary scale factor. One will normally
use Zp and Z, to achieve a convenient normalization in 3Co
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and 3¢, for example that the term [, ¢%s,0_, appears with
coefficient 1. If { = Z,/Z,, one can show that the relation
of 3C, to 3Co is precisely that given in Sec. II [Egs.
(I1.2)—-(11.4)].

Let G(ky,- - - ,km) be the Fourier transform of the vacuum
expectation value (Q|T¢(xy)- - -¢(xn)|Q), where T is the
time ordering symbol. Then there is a scale change in G
corresponding to the scale change from £, to 3¢, or £; to 3¢y,
namely

G(ky,- - - km) = A°Zg"To(q1," - * 1gm), (Iv.6)

with ¢; = k;/A, where Ty is the corresponding vacuum
expectation value of the ¢,’s calculated for the interaction
3Co [A? is present because one divides out a factor
8%(kv+ -+ + km) from the Fourier transform in defining
G just as was done in Sec. I to define I'y ,]. Similarly

Gk, - - kem) = Zy™(A/2)T1(qs," - - ,gm) av.7n
with ¢; = 2ki/A (provided that k; < A/2).

Suppose one is interested in a problem with a renormal-
ized mass of about 1 GeV; one has a given Lagrangian £,
and one wants to solve it in the limit of infinite cutoff A.
This is done as follows. One considers a discrete set of
cutoffs, say A= 2¥ for N=1, 2, 3, ---, o, in units of
GeV. For each cutoff, i.e., each IV, one applies the renormal-
ization group transformation to produce a sequence of
effective interactions 3CoV, 3C;V, 3CoV, - - - until one reaches
JCnN. The cutoff for 3¢, is 2¥—7, and in particular the
cutoff for 3¢xV is 1 GeV for any N.

Any vacuum expectation value for momenta less than
1 GeV can be computed by computing the vacuum expec-
tation values I'y"V(qy,- - -,qm) generated by JCyV. Because
the cutoff is 1 there is no change of scale from the ¢’s to
the original momentum variables &; however there are Z
factors

G(kh T ,km) = (ZNN)mI‘NN(kl" o >km)~ (IV'S)

While the cutoff in 3¢y is 1 GeV, the vacuum expectation
values G(ki,- - -,km) calculated from 3CxY through Eg.
(IV.8) are the same as for the interaction 3¢,V with cutoff
2N GeV. This means one is in a very fortunate position if
one knows 3Cx" and Zy" for large N : the actual calculation
of G(ky,- - ,km) can proceed using the 1 GeV cutoff ap-
propriate to 3Cy" which means the calculations will be
completely free of divergences (the mass was assumed to
be of order 1 GeV also so there is no way for integrals to
diverge). Nevertheless G(ki,--,kn) will not have the
unwanted cutoff dependence normally associated with a

1 GeV cutof, since the cutoff in G is 2V GeV not 1 GeV.

A field theorist is interested in the limit of infinite cutoff.
This limit may not exist due to renormalization problems.

integration of diagram of
effe?ﬁve
/ _— vertex
< A/2, leads to new dia-

FIG. 4. Result of partial k'
Fig. 3: integration over

k(|k| > A/2), with |k

gram shown with %; line

remaining. P
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One way to ensure that this limit exists is for the sequence
of effective interactions 3Cx" to have a limit for N —oo,
which will be denoted 3Co%. The interactions JCx?V all have
the same cutoff (A = 1 GeV); the vacuum expectation
values I'xy? (qy," - - ,gn) are computed by the same procedure
for any N. Therefore, if 3Cy" has a limit for N —o, so
will the T'a%¥ (g, - - ,gm), and therefore so will the vacuum
expectation values G(ky,- - -,kn), except for the factors
Zn¥. In practice, Zy" is a product of an initial renormaliza-
tion factor Zo, which is usually A¢~1(¢+2/2] times a sequence
of ¢ factors {1V¢.Y, ..., ¢aN. For example, for a ¢* theory
the integral [d%x £o, namely the initial action from which
Feynman graphs are generated, is

) / (B + m®)prdp_r + >\0/‘ / / Bies Py ks P—tey—kp— kg
k by J ok J kg

To convert this to 3Cy starting from' cutoff 2¥ = Ao, one
writes £ = 2%g,

Gp=2-Nl@ el (Iv.9)

(corresponding to Zo = A¢~@+»/2) and then one has

/ (q2 + m02><2 2V)0'q0'—q + )\OZN(dM)

X/ / / 091999 039 —q1—a2=33°

Hence the ¢%040—, term is normalized to 1, which conforms
to the conventions of Sec. II.

(IV.10)

The factor Zy" is therefore

_ ﬁ (N /2@D12), (Iv.11)

n=1

In the limit NV —co this product will diverge unless most of
the ¢nY are approximately equal to 2@*+2/2 je., unless
{n N~ ¢* for the trivial fixed point [see Eq. (I1.10)]. This
is unlikely unless the 3C," are themselves mostly close to
the trivial fixed point.

Fortunately the divergence of Zy" for N —« is of no
importance: one simply defines a renormalized field ¢r: by

drr = lim ¢r/ZnV (1v.12)

N>

so that the vacuum expectation values of ¢r are precisely
the T'y? in the limit N —o. One is free to make this
renormalization because no physics depends on the normal-
ization of the field ¢.

Thus as long as one permits the wave function renormal-
ization (IV.12), the existence of the limit JCyY — 3Co®
ensures the existence of the vacuum expectation values.

Strictly speaking, since 3Co® has a cutoff of 1 GeV, one
can only determine vacuum expectation values for & < 1
from 3CoF. To compute for-higher momenta one must look
at the effective interactions with a general cutoff, say 2"
GeV. These are given by JCy_»"; in the limit V—oo these
interactions must also have a limit, which can be denoted

3C_nE.
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The renormalization calculation thus produces a ‘“‘tri-
angle of renormalization”

Ao = 4—
1
3o -3 sk A = 4 GeV,
Ao = 2— L (M}
U
5C01 3(302' . '5(:_113 — A =2 GCV,
Ao=1— M ] |
R
C‘Cno JCII :}sz' R d 3C0R<——- A =1 GeV.

One starts with a ‘“bare” Lagrangian £,, with a choice of
cutoffs Ag. For each cutoff Ag = 2V, the renormalization
group transformation T is used to generate a column of
effective interactions JCp". The infinite cutoff limit is
obtained as a limit of éach row, moving to the right. If the
limit defining 3C_,% is well behaved, then the column of
JC®’s can also be generated by T, except that the column
of renormalized interaction 3C_,® is of infinite extent (% can
be arbitrarily large) so it is difficult to start applying T at
the top of this column.

One knows from ordinary renormalization theory that
the vacuum expectation values of the renormalized theory
do not exist (at least in perturbation theory) unless the
bare parameters mo and Ao in £0 are permitted to depend
on Ao. This can also be seen by analogy with critical phe-
nomena. Namely, the initial interactions 3Co” must approach
a critical interaction for N — . The reason for this is that
the correlation functions of 3¢y cannot approach a limit
for N — oo unless the correlation lengths £x% also approach
a limit. This limit cannot be zero; the limiting two point
function has to have a pole at ¢ ~ — 1 to give a particle
of mass of order 1 GeV, therefore £y" is of order 1. But
this means that the correlation lengths £V of 3Co¥ must be
of order 2% [see Eq. (1.22)].

For a free field theory (Ao = 0) the critical interaction
corresponds to mo =0 (ro = 0 in the earlier notation).
Once Ao 5 0, however, there is a nonzero critical value 7,
for 7o. This means that if 3C," is to go to a critical inter-
action- then m¢?A¢2 (the parameter analogous to rp) must
approach 7o, as Ag— 0, which is possible only if m, varies
with Ao, s