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This article consists of two parts. The first part presents a tutorial approach to cooperative phe-
nomena in systems far from thermal equilibrium and in nonphysical systems. Particular emphasis
is placed on the question of how order and self-organization may arise. The following example is
treated among others: the ordered phase of the laser giving rise to both coherently oscillating
atomic dipole moments and coherent light emission. A complete analogy of the laser light distribu-
tion function to that of the Ginzburg-Landau theory of superconductivity is found mathematically
which allows us to interpret the laser threshold as a quasi-second-order phase transition with soft
modes, critical slowing down, etc. Similar phenomena, again closely resembling phase transitions,
are found in tunnel diodes and in the nonlinear wave interaction which occurs, for example, in
norlinear optics. Remarkable analogies between the instability of the laser and those in hydro-
dynamics are elaborated. While these phenomena show pronounced analogies to phase transi-
tions in thermal equilibrium, there are further classes of instabilities and new phases which rather
resemble hard excitations known in electrical engineering. Chemical oscillations are particularly
important examples. In addition, the first part of this article contains the example of the cooperative
behavior of neuron networks and shows the applicability of simple physical concepts, e.g., the
Ising model, to the problem of the dynamics of social groups. All these above—mentioned examples
demonstrate clearly that rather complex phenomena brought about by the cooperation of many
subsystems can be understood and described by a few simple concepts. One of the main concepts
is the order parameter; another is the adiabatic elimination of the variables of the subsystems,
which is based upon a hierarchy of time constants present in most systems. The second part of
this article gives a systematic account of the mathematical tools which allow us to deal with fluctua-
tions. It contains the master equation, the Fokker—Planck equation, the generalized Fokker-
Planck equation, and the Langevin equations, and gives several general methods for deriving the
stationary and, in certain cases, the nonstationary solutions of master equations and the Fokker-
Planck equations. Such general classes comprise those in which detailed balance is present or in
which the coupling to the reservoirs is weak. In the quantum mechanical domain, the density
matrix and the projection formalism for its reduction are presented. Finally, it is shown how the
principle of quantum-classical correspondence allows us to translate quantum statistical problems
completely into the classical domain.
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PART I: A TUTORIAL APPROACH

I. INTRODUCTION

We often analyze the properties of a system by decom-
posing it into its subsystems. In many cases we discover
that these properties cannot be explained as mere random
superimpositions of the effects of the sybsystems. Quite to
the contrary, the subsystems seem to cooperate with each
other in a well regulated manner. Furthermore, the behavior
of the total system may show characteristic changes which
can be described as a transition from disorder to order, or,
as a transition from one state of order to a different one.

In physics there are numerous examples of such behavior,
e.g. the ferromagnet, where the parallel alignment of the
spins causes a macroscopic magnetization, or the super-
conductor which behaves as a quantum system with a
macroscopic wavefunction. While these systems go into the
ordered state when temperature is lowered, pronounced co-
operative phenomena may also occur in physical systems far
from thermal equilibrium, and may occur even in non-
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physical systems. In physical systems far from equilibrium
the ordered states are created and maintained by an energy
flux passing through the system. Thus it is not surprising
that such systems comprise active devices like lasers, tunnel
diodes, Gunn oscillators, etc., which have technical appli-
cations.

It oame as a surprise to many physicists, however, that
there are profound analogies between the behavior of such
systems and the behavior of conventional systems in ther-
mal equilibrium. These analogies include phenomena char-
acteristic of phase transitions, such as: symmetry breaking
instabilities, critical slowing down, soft modes, critical
fluctuations, etc. (for an explanation of these concepts see
Sec. IT). The discovery of these analogies have a number of
independent sources and elaborations. These include Land-
auer’s work (1961, 1962, 1967, 1971a, 1971b) on tunnel
diodes and data processing, the work by Haken (1964,
1970), Martin (1965), Graham and Haken (1968, 1970),
DeGiorgio and Scully (1970) and others dealing with
lasers and related devices, and the work of Pytte and
Thomas (1968, 1969) with respect to the Gunn effect, to
mention a few examples.

The purpose of the present article is twofold.

(1) We want to show by means of examples selected
from different disciplines how subsystems act to create
order on a macroscopic scale.

(2) We want to develop the concepts which underlie all
these seemingly quite different systems, including some
biological and sociological models.

The systems with which we are concerned possess an
enormous number of subsystems (or degrees of freedom).
The determination of the detailed behavior of any individual
subsystem is, in general, hopeless—but fortunately, this is
not needed. We are interested in features only on a macros-
copic scale. Thus, it is our task to select the relevant param-
eters and to do away with all unnecessary information. To
achieve this goal, the concept of the order parameter, well-
known in phase-transition theory, has turned out to be a
very useful tool. For example, consider the mean field theory
of the ferromagnet. In this theory direct interaction (caused
by the Coulomb exchange interaction) between the spins
is replaced by a two-step procedure: first a macroscopic
quantity (the magnetization) is constructed, generated by
the different spins; then this magnetization acts on each
individual spin to tell each how to behave. The magnetiza-
tion acts as an order parameter in two respects. It gives
orders to the subsystems and it also describes the degree of
order (it is zero in the disordered state and acquires a
maximum value in the ordered state). The order parameter
(or a set of such parameters) represents the behavior of the
system on a macroscopic scale, and is thus a macroscopic
variable.

Often the equations for such order parameters acquire a
rather simple structure with respect to their time depend-
ence. The reason for this is that the relaxation time of order
parameters is usually much greater than those of the sub-
systems. Thus the subsystems can follow the “orders” of the
order parameter adiabatically' and the variables of the
subsystem can be eliminated without increasing the degree
of the time derivatives. The long relaxation time or, in
other words, the long lifetime of the order parameter allows
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it to “slave’ the subsystems (a technical expression from
control systems engineering).

This concept of the order parameter also sheds new light
on the problem of self-organization: the subsystems them-
selves create fictitious or real quantities which via feedback
loops organize the behavior of the subsystems. It is nearly
superfluous to say that there are close analogies between
the equations of the order parameters we will obtain, and
those of control circuits, e.g., in electrical engineering.

In certain classes of systems the disorder—order transitions
are characterized by an infinite relaxation time at the transi-
tion without oscillations of the corresponding order param-

eter. In this case the above—mentioned analogy with phase -

transitions applies. An important difference should be men-
tioned, however. In usual phase-transition theory the use
of the order parameter concept may break down close to
the critical point, and has to be replaced by other methods,
e.g., the scaling laws [see Kadanoff e al. (1967) ] or Wilson’s
techniques (Wilson 1971a,b), yet this concept remains
extremely useful for the systems treated in our article. One
reason is that a thermodynamic limit in many cases is not
required. Instead, a limit may even obscure a problem, e.g.,
the reliability of a device due to its finiteness. Furthermore,
some of the phenomena depend on the geometry of the
system. Let us discuss the phase-transition analogy to
systems that are in and far from thermal equilibrium a bit
further. Landauer suggested that a link among such systems
is provided by the principle of detailed balance, and this
conjecture has since been proven by Graham and Haken
(1971a,b). It should be stated clearly, however, that this
principle applies to systems in thermal equilibrium al-
though it need not necessarily hold for other systems which
may show more complexity. The situation is rather this:
when a system far from thermal equilibrium becomes un-
stable with a soft mode, its dynamics is governed by a single
degree of freedom and can often be described by a continu-
ous Markov process. In such a case we may invoke the
principle of detailed balance. Thus, close to such a point
this principle holds to an excellent approximation, and it
appears as a prerequisite for phase-transition-like behavior.
In this case we now have a complete description, including
the behavior in the transition region.

In general, however, the principle of detailed balance can-
not be invoked for systems far from thermal equilibrium.
This may easily be seen in the example of a three-level atom
which is pumped to its uppermost level and which then
undergoes further transitions between its levels. Further
examples of the violation of this principle are provided by
chemical oscillations. Here the situation is much less well
understood and requires further developments. We hope
that the degree of understanding of the various categories
is clearly mirrored by our examples.

An adequate treatment of all these phenomena requires
a statistical description which we have adopted throughout
this article. We will see that the behavior of the systems is
determined by some causal forces and fluctuating forces.
The fluctuating forces which act on the order parameters
are the trace left by the “underworld” of the subsystems
(and other “reservoirs”). Our models will allow us to study
in detail the interplay between the stochastic forces and the
coherent forces, or, in a more philosophical language, the
interplay between chance and necessity. The detailed

Rev. Mod. Phys., Vol. 47, No. 1, January 1975

mathematical apparatus for the models is developed in the
second part of this article and includes results obtained very
recently. This mathematical apparatus is also readily
applicable to some biological problems, e.g., to the theory
of evolution. .

In conclusion, a word should be said of the relation of the
approach presented in this article to approaches made
within irreversible thermodynamics, or to still more ad-
vanced thermodynamical approaches like that by Glans-
dorff and Prigogine. In our approach we start from sto-
chastic equations of motion either for microscopic systems
or for systems described by order parameters. The thermo-
dynamic approach begins with the assumption that there
exists local thermodynamic equilibrium; this allows us to
define quantities like entropy, so that the principle of
excess entropy production (Glansdorff and Prigogine) can
be applied. While this principle proves to be a useful tool in
the “linear regime,” its applicability to the ‘“phase-transi-
tion” region which requires a truly nonlinear treatment
seems to require further investigation.

Il. SOME BASIC CONCEPTS!

A. The damped anharmonic oscillator

In this section we anticipate that the variables of the
subsystems have already been eliminated and that we are
dealing with the equations of the order parameter alone. A
great many concepts can be exemplified by means of the
damped anharmonic oscillator. As we will see later, its
coordinate ¢ may stand for the coordinate of a particle,
for its velocity, for the size of the charge, for the magnetiza-
tion, for the electric field strength or for many other quan-
tities. We hope the following analysis will demonstrate how
concepts from such different disciplines as nonlinear me-
chanics, electrical engineering, phase—transition theory,
thermodynamics, fluid mechanics and other fields are linked
together.

However, because this article is written primarily for
physicists we first interpret ¢ as the coordinate of a particle.
We denote its mass by m, its damping constant by +, the
linear “restoring” force by —agq, and we introduce the non-
linear restoring force —pBg®. The equation of motion reads

mq+ vj = —aq — B¢’ (2.1)
The force

k(q) = —ag — B¢ (2.2)
possesses a potential

k(q) = —(3aV/aq), (2.3)
where

V = lag + 16¢" (2.4)

The potential is plotted as a function of the coordinate ¢ for
different values of o and 8 in Figs. 1 and 2. In the follow-

1 This paragraph is intended primarily for students. Experts may
find it amusing to see how many concepts are brought out in this simple
example.’
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FIG. 1. The potential V' (2.4) as a function of q for 8 > 0. Solid
curve, & > 0; dashed curve, @ < 0.

FIG. 2. The potential V (2.4) as a function of ¢ for 8 < 0. Solid
curve, @ < 0; dashed curve, « > 0.

ing we will emphasize Fig. 1 where 8 > 0. Figures 1 and 2
allow us to discuss global and local stability.

(a) Global stability. In the case 8> 0 the system is
globally stable. Whereever the particle starts it comes to rest
at a finite value of ¢. On the other hand we have global
instability for 8 < O.

(b) Local stability. Let us first consider the steady state
characterized by

g=1g=0. (2.5)

Using Eq. (2.1) the states of stable or unstable equilibrium
are then defined by

ag + Bg* = (2.6)
For a > 0, we have the stable solution
qo = 0 (2.7)

In the language of mathematicians, this state is an ‘‘at-
tractor.” For o < 0 the state go = O becomes unstable
(“repeller””). Instead, we have now the two stable solutions

Q2= =(| a/B )12 (2.8)

With the transition from a > 0 to a < 0 the system
passes through an instability by which the symmetry is
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broken. The particle is now either at ¢; or at ¢g» [compare
Eq. (2.8)7]. (Symmetry breaking instability). Note, how-
ever, that on a global scale the potential is still completely
symmetric. In fluid dynamics the change of one stability
state to another is called an exchange of stabilities. The
steady state, where @ = 0, ¢ = 0, is a marginal state, i.e.,
it has neutral stability. In mathematics, the passing over
from one stable state to two new ones is known as (Hopf)
bifurcation.

As we will see later, fluctuations usually must be incor-
porated in the order parameter equations. Let us assume
that the particle gets impulses of equal magnitude, but
that it gets them randomly in forward or backward direc-
tion. These impulses are recognized by adding to Eq. (2.1)
the random force

6(t) = £ (—1)mo(t — 1)), (2.9)

where { stands for the size of the impulses, #; is a random
variable with values O or 1, and ¢; is a random time sequence.
6 is the usual Dirac function. We thus obtain
mq+ v = —ag — B¢ + ¢(1). (2.10)
For the sake of simplicity we confine our following analy-
sis largely to the heavily damped oscillator, in which case

we can formally put m = 0. Introducing further the new
quantities

a/y=a B/y=b ¢/y=F (2.11)
we may transform (2.10) into
d= —aq— bg®+ F(2). (2.12)

We want to discuss this equation from various points of
view. In Eq. (2.12) the explicit form of the fluctuating
force (2.9) is not needed. What is needed are the correla-
tion functions. Because impulses in the positive and nega-
tive direction are assumed of equal size we have

F@))=0.

The brackets (-+-) denote the statistical average over the
direction of the impulses (i.e., #;) and the times ¢;. For more
details about such averages consult Sec. X.A. In most
applications the correlation function

(2.13)

(FOF()) (2.14)
is needed.’ Using the form
F(t) = Fozjj (—1)nis(t — ), (2.15)
one may show that
(F(OF ()
=FP>8(t—t)s(t — 1))
= (FOZ;to)a(t — ) =Cs(1 — 1), (2.16)

where 4 is the mean time between impulses.
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Forces, whose second-order correlation function (2.16)
is a 6 function, are sometimes called Markovian in the
literature. Some care should be exercised with this notation
to avoid confusion with the concept of a ‘“Markov process”
(compare Chapter X). For a complete analysis of Eq. (2.12)
we first put F(¢) = 0. The time-dependent solution of
d = —aq — bg® reads

q(2)
= :l:(a)l""{exp[2a(t — )] — b} for a>0
(2.17)
and
q()
= £(la)*?{b — exp[—2]|a| (¢ — )T}
for a<0. (2.18)

Note that ¢ has the meaning of an inverse relaxation time.
In both cases ¢ 2 0, ¢ tends to its equilibrium value. Be-
cause in more general cases of order-parameter equations
an explicit solution cannot be found, we must discuss
further tools for studying the motion of the particle. We
first investigate local stability by the method of linearization.

We define the coordinate ¢, of the steady state by ¢, = 0
and put
q= ¢+ dq. (2.19)

Let us first linearize Eq. (2.12) around ¢, = O which yields

8¢ = —adg (2.20)
with the solution
8q = A exp(—T4%), T = a. (2.21)

For a > 0 the system is stable, for ¢ = 0 we have a marginal
state (neutral stability), for @ < O the system becomes
unstable. When a approaches 0, the relaxation constant T’
tends also to 0: we have the phenomenon of critical slowing
down connected with a soft mode? If on the other hand
a < 0, the coordinate of the stable point is

[gls= (] al/b) = (2.22)
Inserting

9= ¢+ ¢ (2.23)
into ¢ = —aq — bg® yields

(d/dt)sqg = —2 ] a| dq, (2.24)
so that the relaxation time

7= (2]a])™ (2.25)

2If at the instability undamped oscillations occurs, we are dealing
with a kard excitation.
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We consider the fluctuations of q in the linearized theory and
solve the equation (a > 0)

(d/df)sq + adq = F(1), (2.26)
which vields
t
5 = exp(—at) f exp(ar) F(r) dr. (2.27)
to

A measure for the temporal behavior of the system (the
particle) is the correlation function of its coordinate. In-
serting Eq. (2.27) into

(8q(0)dq(2") ) (2.28)
yields after elementary calculations (for fp— — )
(0q()8q()) = (C/2a) exp[—a(t —)]; t=1.
(2.29)

From Eq. (2.28) it is evident that as @ — O not only the
relaxation time 7 = (1/T') becomes infinite, but also the
coordinate fluctuation (“critical fluctuations”). It is, how-
ever, an important point that the divergence of Eq. (2.28)
for a— 0 is caused by the linearization procedure, or, in
other words: while the fluctuations &g for ¢ > 0 or a < 0
are finite and can in many cases be neglected, the lineariza-
tion procedure breaks down near the point ¢ = 0. In the
exact theory, which avoids linearization, it remains true,
however, that at the critical point ¢ = 0 the fluctuations
in 8q become large. In such a region the correlation function
t>1)

(gg(@)) (2.30)
can be found only by computer solution, even in our simple
example. The concepts of critical slowing down, soft mode,
critical fluctuations, and symmetry breaking, belong to the
standard repertoir of phase-transition theory.

We now proceed to some methods of statistical mechanics.
Equation (2.12) may be considered as an extension of the
Langevin equation of Brownian motion

§g= —aq+ F(1). (2.31)
Note that g is now interpreted as the velocity of a particle.
While it is quite simple to solve

§= —aqg — b+ F(2) (2.32)
in the linearized domain, its solution becomes a formidable
task even for this very simple case if the nonlinearity is

kept. It is advantageous to proceed to the Fokker—Planck
equation which is given by

flq, 0

= —(8/0q) (K(g) ) + 3(8*/9¢*) (Q(g) f)- (2.33)

Here f(q, t) dq is the probability of finding the particle with
coordinate ¢ in the interval ¢---¢ + dg at a time £ The
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general formulation of a Fokker-Planck equation will be
given in Sec. X. Here we only give a recipe which allows us
to determine K (q), Q(¢g). The so-called drift coefficient K
is defined by

K(q) = ltinol(l/t><(q(t) —q(0))); (2.34)
the diffusion coefficient by
Qg) = ltir%(l/t)<(q(t) — ¢(0))?). (2.35)

In both cases one has to imagine that Eq. (2.32) is solved
for a time interval which still comprises many pushes of
F(t) but is small compared to the overall motion of the

system. In the present case one readily finds that K(q) is

identical with the force k(g) introduced in Eq. (2.2):

K(q) = —ag — bg* = —(3V/adq), (2.36)
and that
Q(g) = (2.37)

where C is defined as the coefficient in the correlation func-
tion (2.16). The Fokker—Planck equation (2.33) thus reads

-3l

Having in mind that f has the meaning of a (probability)
density, Eg. (2.38) has the form of a conservation law:
Denoting the probability current by 7, we obtain

g0 = (2.38)

f=—1(8/89) j. (2.39)
In the stationary state
f=0 (2.40)
‘we-readily find the solution
ji=0, ’f=i)"6exp(——26—‘V)
= N exp{—(2/C) (3ag® + ibg"), (2.41)

where we have taken into account that f vanishes at in-
finity, because f must be normalizable.

The distribution function f is of great importance be-
cause it governs the siability, the fluctuations and the
dynamics of the system.

(a) The stability. A comparison with our previous con-
siderations reveals that those systems are globally stable
in which f is normalizable. We call a point go locally stable
if the exponent in Eq. (2.41) has a local maximum at that
point. (This maximum can be also metastable if there are
other maxima which yield a higher probability f). V serves
as a Liapunov function Vi which fulfills the following
criteria: [put Vi(q) = V(g) — V(go)!].
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(1) Vi(q) and its first derivative are continuous in a
region surrounding go,

(2) Vi) = 0,
(3) in a region surrounding go, V.(q) > 0,
(4) Vo= kgradV, <0,

(2.42)

where

= &(q). (2.43)

Then the stability criterion of Liapunov states: If there
exists in a region surrounding ¢, a Liapunov function
Vi(q), then g is stable.

(b) The fluctuations. Expanding the exponent V(q) in F
(2.41) about the stable state of the system using

q=¢:+ dq

yields an expression for the probability of ﬁndlng a fluctua-
tion of size §q.

(@)

=S)"Lexp—2{ V(g + — &V

2C  9¢?

(54)2} .

(2.44)

(c) the dynamics. Here V(q) (or V/C) can serve as a
criterion for the development of the system. Evidently the
system with initial state g, develops in time such that at a
later time

V(g) < V(ga) (2.45)

holds. Furthermore, from the knowledge of ¥ (g) one may
deduce the equation of motion without fluctuating forces
by means of

g= —(3V/dq).

We now abandon the description of our problem in the
terminology of mechanics and statistical mechanics and
turn to thermodynamics, where we consider the problem of
Brownian motion. We assume that the random pushes
exerted by the random force F(#) on the particle are caused
by a ‘“heatbath’ in thermal equilibrium into which our
particle is immersed. To obtain the correct physical proper-
ties. of the fluctuating force we must go back to Eq. (2.10)
where we put @« = 8 = 0, assuming that a coherent force
k(g) does not influence the random impulses supplied by
the heatbath. The resulting equation has the form (2.26)
provided we make the following replacements in (2.26)

9—4¢ a—(y/m), F—(¢/m).

Using (2.27), (2.28), (2.29) and putting

bD)e(t)) = Cs(t— 1), (2.46)
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we obtain (with 2 = ¢)

(m/2) (@*) = (C'/4y). (2.47)

On the other hand, we know that in thermal equilibrium

(m/2) (»?) = $ksT, (2.48)

where kp is the Boltzmann constant, and T the absolute
temperature. Comparing Eq. (2.48) with (2.47) leads to
the very important relation

C’' = 2vkpT. (2.49)
This states that the correlation constant C’ of the fluctuating
forces and the damping constant v are connected with each
other by necessity. Passing from the fluctuating force ¢ to

F according to Eq. (2.11), and using Eq. (2.49), we obtain
the constant C occuring in Eq. (2.16) as

C = C'/y? = 2kgT/y. (2.50)

Such relations between fluctuation and dissipation are of
fundamental importance for all systems we will consider,
be they quantum systems or classical systems, or systems
in or away from thermal equilibrium. Relations which
generalize Eq. (2.50) to such systems have been found more
recently (see Sec. XII).

In later applications we will see that establishing functions
of the form (2.41) or its generalization is one of the main
goals of the theory. In thermodynamics we may determine
the probability distribution function f directly by general
principles rather than by solving the Fokker-Planck
equation.

To this end we remind the reader of the relation between
entropy and probability. Consider quite generally a sub-
system within a closed system. The state of the subsystem
is described by the parameter ¢ which together with its
temperature determines its energy. We permit thermal
energy to be exchanged with the rest of the total system
as the subsystem is subject to coherent forces. According to
thermodynamics, the probability of finding the subsystems
in the interval from ¢ to ¢ + dg is given by

f(g) dg = M exp(ks'S(q)) dg, (2.51)

where S(g¢) is the entropy, ks is again the Boltzmann con-
stant, and 9T is the normalization factor defined by

N = [ exp(ksS(q)) dg. (2.52)
We show in a well-known manner how to determine S(q)
directly in the present case where ¢ is identified with the
previous coordinate g. We compare the two states ¢ = 0
and ¢ # 0 having the same energy. The energy needed to
bring the particle from ¢= 0 to ¢ (neglecting kinetic
energy) is

V(g) = 3a¢® + B¢ (2.53)
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Because the final state is supposed to have the same energy
as the initial state we must take the energy (2.53) away
from the system in the form of heat, i.e.,

s@ = [ro VD

T (2.54)‘

Application of Eq. (2.51) to our present case yields

f(g) dg = St exp(— (1/ksT)V(q)) dg. (2.55)
This result is identical with Eq. (2.41), provided we use
Eq. (2.11) and the relation (2.50) between dissipation and
fluctuation coefficients. Let us now expand V(g) around its
equilibrium point g in powers of 8¢. This yields apparently
the probability w(q) for a fluctuation of size 8q. This Einstein
relation yields

1 9§

2.56) -
ZkB 6q2 ( )

w(g) ~exp 50)?).

(Note that the derivative of V vanishes at the equilibrium
point.)

Our example of the overdamped anharmonic oscillator
is also a simple example for the demonstration of the Landau
theory of phase tramnsitions. It starts with the expression?

(@) = Nexp(S/ks), (2.57)

and tries to determine S as a function of the “order param-
eter” ¢ by symmetry arguments. Particular attention is
paid to the case in which an instability for @ = 0 occurs.
The potential ¥V possesses mirror symmetry with respect
to the V axis, i.e., it remains invariant under the trans-
formation ¢— —gq. Because the probability distribution
must have the same invariance as the problem, S must be
also an even function of ¢ which can be expanded around
the equilibrium value ¢ = 0 as

S =dig®+ dog*++-- . (2.58)
Apparently the first two members of S already yield the
correct potential (2.53), though in general the explicit form
of the coefficients dy, d» remains unknown in the Landau
theory. In cases similar to our present problem; one may
deduce, at least qualitatively, the dependence of di, d» on
some of the important constants of the problem, in particu-
lar on the constant a. If a changes its sign the total sym-
metry remains but a new state occurs with new equilibrium
positions. We therefore expect dy < @ in agreement with
our previous results.

B. Some general conclusions

So far we have discussed a very simple system in thermal
equilibrium. In the next paragraphs we will demonstrate by
explicit examples that we are led to equations of the form

3 Depending on the physical situation, S must be replaced, e.g, by
the free energy or some other thermodynamic potential.
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(2.12) or its generalization to many coordinates for systems
which are far from thermal equilibrium. In these cases ¢
may represent quite different quantities, e.g., the laser
light field, electric currents, velocity fields in fluids, con-
centrations of chemical reactants, etc. The stable states
g = ¢s # 0 are now maintained by a balance between
energy input and dissipation. Most important for our sub-
sequent treatment will be the fact that a great deal of the
above analysis applies equally well to these more general
cases. We briefly give a review of what has been achieved
and which problems are still unsolved. The full mathe-
matrical ‘apparatus will be developed in Part II of this
review article.

(1) Equations of motion. Let the system be described by
the order parameters ¢i, **+, ¢. (which may also depend on
a continuous index 7).

In many cases, Langevin equations of the type

G5 = k(g =+, qn) + Fi(1) (2.59)

can be derived. These equations may be generalized to the
quantum case, where ¢ and F become operators. Both for
classical and quantum systems there exist general relations
between fluctuation and dissipation. Local stability may
be studied by the method of linearization or by the Liapunov
theory. A classification of critical points (if k; can be derived
from a potential) has been achieved by Thom (1972).
However, we will not consider his work in this article. From
Eq. (2.59) one may deduce a Fokker-Planck equation (or
a generalized Fokker—Planck equation). Such an equation
can also be derived from the density matrix equation
through the principle of quantum-classical correspondence.

(2) Methods of solution. As we have seen, a great number
of conclusions, particularly concerning critical points (in
our example ¢ = 0), can be drawn if the stationary solu-
tion of the Fokker-Planck equation is known. Explicit
stationary solutions of the Fokker—Planck equation are
known in the following cases:

(a) if the drift coefficients (compare (2.33), (2.34))
are linear in the coordinates and if the diffusion coefficients
are independent of the coordinates,

(b) if the system shows detailed balance,

(c) if the system is weakly coupled to reservoirs,

(d) if the system is far from critical points showing

just “normal fluctuations” (more precisely: normally dis-
tributed fluctuations). Time-dependent solutions may be
found quite generally for (a) and (d), and, to some extent,
for (c). In general, however, evaluation of time-dependent
correlation functions requires numerical methods or certain
approximation schemes.

The examples which follow will show that the analysis
of our simple example above (including concepts like critical
slowing down and stability) apply in many cases to systems
far from thermal equilibrium as described by a variety of
order parameters. There remain, on the other hand, other
classes which at the present time are less understood, at
least so far as fluctuations are concerned. These classes are
characterized by hard excitations (in the terminology of
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electrical engineers) and by ‘“cyclic balance,” a concept
introduced by Tomita (1973).

I1l. COOPERATIVE EFFECTS IN THE LASER

The laser is today one of the best understood many-body
problems.* It is a system far from thermal equilibrium and
it allows the study of cooperative effects in great detail.
The essential feature to be understood about the laser is
the following: If the laser atoms are pumped only weakly
by external sources, the laser acts as an ordinary lamp. The
atoms emit waves with random phases independently of
each other. The coherence time of about 107! sec. is evi-
dently on a microscopic scale. The atoms, visualized as
oscillating dipoles, are oscillating completely at random. If
the pump strength is increased, within a very sharp transi-
tion region the linewidth of the laser light may suddenly
become of the order of one cycle per second. The phase of
the field then remains unchanged on a macroscopic scale of
1 sec. Thus the laser is evidently in a new highly ordered
state on a macroscopic scale. The atomic dipoles now all
oscillate in phase, though they are excited by the pump
completely at random. The extraordinary coherence of
laser light is brought about by the cooperation of the atomic
dipoles.

Let us now consider the laser in more detail. We take as
an example the solid state laser which consists of a set of
laser-active atoms embedded in a solid state matrix. As
usual we assume that the laser end faces act as mirrors
serving two purposes: they select modes in the axial direc-
tion and with discrete cavity frequencies. In our model we
will treat atoms with two energy levels. In thermal equi-
librium the levels are occupied according to the Boltzmann
distribution function. The excited atoms form an inverted
population which can be described by a negative tempera-
ture. The atoms now start to emit light which is eventually
absorbed by the surroundings, whose temperature is much
smaller than #iw/ks (where w is the light frequency of the
atomic transition and kg is Boltzmann’s constant), so that
we may put this temperature ~0. From a thermodynamic
point of view the laser is a system (composed of the atoms
and the field) which is coupled to reservoirs at different
temperatures. Thus the laser is a system far from thermal
equilibrium. Nevertheless we want to demonstrate that it
shows all the features of a second-order phase transition.’

4Tor a detailed account of the various aspects of laser theory, see
Haken (1970) and Sargent, Scully, and Lamb (1974). These works
include in particular the quantum statistics of the single mode laser,
which is also treated by Lax (1968), Lax and Zwanziger (1973), and
Louisell (1973). We do not intend to duplicate these works here, but
rather to present those aspects of laser theory which are the most
relevant ones in the present context. Our analysis is mainly based on
our previous papers (Haken, 1962, 1964, 1965, 1966, 1969, 1970a, b,
c; Arzt et al., 1966, Graham and Haken, 1968, 1970), with particular
emphasis on an interpretation in the spirit of the present article. From
a mathematical point of view, our approach (as well as essential
parts of Lax’s and Louisell’s work) is mainly based on the Langevin
and Fokker-Planck equations referring to field amplitudes, while
that of the Scully-Lamb theory uses the master equation which is
dealt with in the photon number presentation. For further references
consult the text and, in particular, the above mentioned books and
articles.

5 We do not enter into the discussion on the existence of the thermo-
dynamic limit. Suffice it to say here that the single mode laser with
the number of atoms N tending to infinity possesses such a limit,
causing a sharp transition at the laser threshold (Dohm, 1972a, b).
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A. Equations of classical dispersion theory

The mathematical description we will employ is somewhat
reminiscent of the classical dispersion theory, which may be
characterized as follows: The electric field strength obeys
the wave equation '

1 .. 4«0, 4r ..
—AE+ - +EE= — B,
C

c? c2

(3.1)

where o, is the conductivity which describes the damping
of the field, and P is the macroscopic polarization. Thinking
of atoms dispersed in a medium, we may represent the
polarization as a sum over the individual atomic contribu-
tions at sites x, by

P(x,?) = 2.8(x — x) (1), (3.2)

where p, is the dipole moment of atom u. The field equation
(3.1) is supplemented by the equation of the atom, u,

.Iiu + 2'Yi)u + vp, = (ez/m)E(X,,,, 1), (3.3)

where v is the damping constant of the atoms,

B. The laser equations

While in a fully quantum mechanical treatment Eq.
(3.1) may essentially be kept, Eq. (3.3) must be replaced
by the quantum mechanical treatment of the single atom.
Because the procedure has been described elsewhere and
would take us far too much space, we present here only the
relevant features. The electric field strength may be ex-
panded into cavity modes in the form '

E(x,?)

= 13, { 21fion/ V)12 exp (iknx) by — c.c.}, (3.4)
Y

where for simplicity we assume running waves. Here X is
an index distinguishing the different modes, w is the mode
frequency, V the volume of the cavity, kx the wave vector,
by and bt in the classical description, are time-dependent
amplitudes and, in the quantum mechanical description,
are the creation and annihilation operators of photons.
Though the analysis goes through in a completely quantum
 mechanical fashion it is perhaps more instructive to use a
classical interpretation.® Anticipating that the dipole mo-
ments oscillate around a mean frequency », we use the
decomposition

Pu= but + P, (3.5)
with
puE < exp(Five). (3.6)

¢ The method of quantum classical correspondence even allows the
replacement of quantum mechanical equations by classical equations,
either exactly or with well defined approximations (see Sec. XVI).
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We now proceed to dimensionless quantities o, ot by
putting

PP = Onay, PO = Ox*o,t, (3.7)
where @y is the dipole moment matrix element between the
two atomic levels. For the experts we mention that o, o,
may be interpreted as rising and lowering operators of the
atom u. (Their explicit definition is as follows: We use
second quantization and denote the creation operator of an
electron in the level j of the atom u by a;*, the correspond-
ing annihilation operator by aj. Then a,t = ay,ta1, and
ay = aytas.) We further denote the population of the
levels 2 and 1 of atom u by N, and Ny, respectively, and
put o, = (N2, — Ni1,,) or using a;™t, @i: o, = asutas, —
aytay. Denoting the coupling constants between field
mode A and atom u by g, the Hamiltonian of the “proper
laser system,” field and atoms, becomes .

H = Z ‘ﬁw)\b)"*'b)\ -+ %”ﬁlf Z Oy + % Z (g,,)\*bxa,ﬁ‘ -+ hC) .
A M My
(3.8)

From the Hamiltonian we may proceed to Heisenberg
equations of motions for by, txt, o, @, 0. The structure of
these equations is roughly analogous to those of Egs. (3.1)
and (3.3), if use of the relations (3.2), (3.4)—(3.7) is made.
We hasten to remark that the proper laser system is still
coupled to individual reservoirs: in the case of the field,
for example, to currents in the mirrors, while in the case
of the atomic field, to lattice vibrations or nonlasing field
modes. Thus the Hamiltonian of the total system comprises
not only Eq. (3.8), but also the interaction Hamiltonian
of these reservoirs. By methods which we will describe in
detail in Sec. 12, the reservoir coordinates may then be
eliminated, leaving their trace in the equations of motion
by causing damping and fluctuations.

We will not dwell, however, on these details but rather
on the basic equations of motion. We have equations for
the field amplitudes s\*, for the dipole moments o,*, and
the inversion o,.

1. Field equations

The equation for the field ainplitude is:

bt = (ion — )bt + i3 gatat + BF(1). (3.9)

Here w) is the mode frequency, «, is the decay constant of
mode X if left alone in the cavity without laser action, while
I\t is a stochastic force which occurs necessarily, due to the
unavoidable fluctuations when dissipation is present. In the
present case these fluctuating forces are a consequence of
quantum mechanical consistency (compare the second part
of this article).

2. Matter equations

a. Equation for the atomic dipole moments
The equation for the atomic dipole moment is:

at = (v — V)t — 12 gabrto. + T (). (3.10)
)
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Here » is the central frequency of the atom, + is its linewidth
caused by the decay of the atomic dipole moment, while
the T',*(¢)’s are stochastic forces.

b. Equation for the atomic inversion
The equation for atomic inversion is:

é’,_t = ’)/11((270 — 0',_‘) + Z’LZ (g,‘)\a,‘bx* — C.C.) + Fu,u(t)~
A
(3.‘11)

Here do is an equilibrium inveérsion which is caused by the
pumping process and incoherent decay processes if no laser
action takes place, v11 is the relaxation time after which the
inversion comes to an equilibrium, and the T, ,’s are again
fluctuating forces.

Let us first consider the character of the equations (3.9)
to (3.11) from a mathematical viewpoint. They are coupled,
first-order differential equations for many variables. Even
if we confine ourselves to the modes within an atomic line-
width, this may contain dozens to thousands of modes.
Furthermore, there are typically 10" laser atoms or many
more, so that the number of variables of the system (3.9)
to (3.11) is enormous. Also the system is nonlinear because
of the terms d*o in (3.10), and abt, ob in (3.11). We will
see in a moment that these nonlinearities play a crucial role
and must not be neglected. Last but not least, the equations
contain stochastic forces. Thus, at a first sight, the solution
of our problem seems rather hopeless.

C. The order parameter concept

A discussion of the physical content of the equations
(3.9) to (3.11) will help us to cut down the problem, and
to solve it completely. Equation (3.9) describes the tem-
poral change of the mode amplitude under two forces: (1) a
driving force stemming from the oscillating dipole moments
(™) quite in analogy to the classical theory of the Hertzian
dipole [compare also Eq. (3.1)7], and, (2) a stochastic
force F*. Equations (3.10)-(3.11) describe the reaction
of the field on the atoms. '

Let us first assume that in (3.10) the inversion o, is kept
constant. Then &% acts as a driving force on the dipole
moment in analogy to the classical equation (3.3) where
E acts as a driving force on p,. If the driving force has the
correct phase and is near resonance, we expect a feedback
between the field and the atoms, or, in other words, we
obtain stimulated emission. This stimulation process has
two opponents. On the one hand, the damping constants «
and v will tend to drive the field to zero; on the other hand
the fluctuating forces will disturb the total emission process
by their stochastic action. Thus we expect a damped oscilla-
tion.

As we will see more explicitly below, if we increase oy, the
system becomes unstable suddenly with exponential growth
of the field and correspondingly of the dipole moments.
Usually it is just a single field mode which first becomes
undamped or, in other words, unstable. In this instability
region the internal relaxation time is apparently very long.
This makes us anticipate that the mode amplitudes, which
become undamped, may serve as the order parameters.
These slowly varying amplitudes now slave the atomic
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system. The atoms have to obey the orders of the order
parameters as described by the right-hand sides of Egs.
(3.10) and (3.11). If the atoms follow without delay, the
orders of the order parameter, we may eliminate the
‘“atomic” variables at, @, o, adiabatically, obtaining equa-
tions for the order parameters b\ alone. These equations
describe most explicitly the competition of the order param-
eters among each other, finally obeying the order parameter
which wins the competition. In order to learn more about
this mechanism we first anticipate that one 5+ has won the
competition and we confine our analysis to this single mode
case.

D. The single mode case
We drop the index A in Egs. (3.9)-(3.11), assume exact

resonance w = », and eliminate the time dependence by the
substitutions
bt = bt exp(iwt),
F+ = F+ exp(iwt),

ot = &, exp(ivf),

(3.12)

where we finally drop the tilde. The equations we consider
are then

bt = —xbt + i3 gfo T+ FH(t), (3.13)
M

a,F = —yout — igubto, + TH(1), (3.14)

ou = yu(do — o) 4+ 2i(guad™ — c.c.) + T, (¢). (3.15)

We note that for running waves the coupling coefficients
g, have the form

g.* = gexp(ikxy,), (3.16)

where g is assumed real.
Note that the field mode amplitude &* is supported via a
sum of dipole moments

> a,texp(ikx,) = Syt (3.17)
u

We first determine the oscillating dipole moment from
Eq. (3.14) which yields in an elementary way

at = —ig,,/ expl—v (L — 7)(B¥6,), dr + D+ (D),
(3.18)
with
B = f expl—rv ({ — 7) 0+ (r) dr. (3.19)

In Eq. (3.18) we have dropped the (damped) solution of
the homogeneous part of (3.14), because we will consider
the stationary state.

We now make a very important assumption which is not
only typical for lasers but also for many other cooperative
systems. We assume that the relaxation time of the atomic
dipole moment ot is much smaller than the relaxation time
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inherent in the order parameter b* as well as in o,. This
allows us to take dto, out of the integral in Eq. (3.18). By
this adiabatic approximation we obtain
ot = — (igu/V) b + T+ (). (3.20)
Equation (3.20) tells us that the atoms obey instantaneously
the order parameter. Inserting (3.20) into (3.13) yields
b =

— kbt + (/N T 0w+ F (), (3.21)

where F is now composed of the field contribution F and the
atomic noise sources T,

P(1) = Fr(t) + i3 g T+ (1), (3.22)

In order to eliminate the dipole moments completely we
insert Eq. (3.20) into (3.15). A rather detailed analysis
shows that one may safely neglect the fluctuating forces
which act on the inversion g,. We therefore obtain imme-
diately '

ou = yu(do — a,) — 4(g%/v) btbo,. (3.23)
We now again assume that the atom obeys the field instan-
taneously, i.e., we put

Gu=0 (3.24)
so that the solution of (3.23) reads
0w = do/[1 + 4(g/yyu) b*b]. (3.25)

Because we will later be mainly interested in the threshold
region where the characteristic laser features emerge and in
that region b%b is still a small quantity, we replace Eq.
(3.25) by the expansion

Oy = do - 4(g2/'y'y;1)dob"‘b. (326)
As we will see immediately, laser action will start at a
certain value of the inversion do. Because in this case btb
is a small quantity, we may replace do by d. in the second
term of Eq. (3.26) to the same order of approximation. We
introduce the total inversion

2 ou= D, (3.27)
®

and correspondingly
Ndy = D,. (3.28)

Inserting (3.26)
(kv/g" ]

bt = [—x 4+ (g8/v) Dolb* — 4(g2k/yyn) bbb+ + F(1).
(3.29)

into (3.21) we obtain [with Nd, =

If for the moment we treat b+ as a real quantity ¢, (3.29)
is evidently identical with the overdamped anharmonic
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oscillator discussed in Sec. II, where we may identify

[« — (¢/7)Do] = a. (3.29a)
[compare Eq. (2.12)7]. Thus we may apply the results of
that discussion in particular to the critical region, where the
parameter a changes its sign. We thus find that the concepts
of symmetry breaking instability, soft mode, critical fluctua-
tions, critical slowing down, are immediately applicable to
the single mode laser and reveal a pronounced analogy be-
tween the laser threshold and a (second-order) phase
transition.”

While we may use the results and concepts exhibited in
Sec. IT, we may also interpret Eq. (3.29) in the terms of
laser theory. If the inversion d, is small enough, the coeffi-
cient of the linear term of (3.29) is negative. We may safely
neglect the nonlinearity, and the field is supported merely
by stochastic processes (spontaneous emission noise). Be-
cause F' is Gaussian, b is also given by a Gaussian distribu-
tion (for the definition of a Gaussian distribution see Sec.
X).

The inverse of the relaxation time of the field amplitude
bt may be interpreted as the optical linewidth. With in-
creasing inversion do the system becomes more and more
undamped. Consequently, the optical linewidth decreases;
this is a well observed phenomenon in laser experiments.
When e (3.29a) passes through zero, b+ acquires a new
equilibrium position with a stable amplitude. Because b+
is now to be interpreted as a field amplitude, this means
that the light is completely coherent. This coherence is
disturbed only by small superimposed amplitude fluctua-
tions caused by F and by very small phase fluctuations.?
Even if we consider (3.29) as an equation for a complex
quantity b+ we may derive the right-hand side from the
potential

—v{eh

= [—x+ (&/v)Do]|b [ — 2(g%/vvn) | b[*. (3.30)

By methods described in the second chapter, the Fokker—
Planck equation can be established and readily solved,
yielding?®

f(®) = stexp[—2V (|5 )/Q], (3.31)

where Q = C (compare Eq. (2.37)) and measures the
strength of the fluctuating forces. The function (3.31)
[first derived by Risken (1965) and Lax and Hempstead
(1966) ] describes the photon distribution of laser light,
and has been checked experimentally with great accuracy.
[See e.g., Arecchi et al. (1967), Arecchi and Schulz—Dubois
(1972), Mandel (1969), Pike (1970)].

7' These analogies have been found and elaborated by Graham and
Haken (1968, 1970), Haken (1970), DeGiorgio and Scully (1970),
Goldstein, Scully, and Lee (1971), Grossmann and Richter (1971),
Grossman (1973), and Graham (1973).

8 Note that we have to put b = r exp(ip), with real amplitude » and
phase ¢, because b is a complex quantity.

9 Note a difference in the interpretation of the ‘“variable” 5%, 5. In
all equations up to (3.29) b*, b may be interpreted either as classical
or quantum mechanical quantities. In (3.30) and (3.31) & must be
a classical variable. How one may extract quantum mechanical informa-
tion from a classical function is explained in Chapter XVI.
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So far we have investigated the occurrence of a single
coherent wave. Expressing the dipole moments via Eq.
(3.20) by the field [using also (3.26)7], we may readily
calculate the correlation function between the o’s. For small
inversion we thus find

(at (Do (1))

= (&%/7*) exp[ik(x, — x,) JdP BT ()b(1) ). (3.32)

Our results up to now may be summarized as follows: If
the atomic damping constants v and vy are big enough
(which is realized in many laser systems), the adiabatic
principle applies, which means that the atoms are forced
to obey immediately the order. parameter. We must now
discuss in detail why just one order parameter is dominant.
If all parameters would matter simultaneously the system
would still be completely random.

E. The multimode laser

We now repeat the preceding steps for the multimode
case. We anticipate that the field mode with amplitude bt
may be decomposed into a rapidly oscillating part with fre-
quency 2, and a slowly varying amplitude By*:

bt = Byt exp (). (3.33)
The integration of Eq. (3.10) yields
a,t
——iZ g [ el (=]
X (byto,), dr + Tt (3.34)

Using in it (3.33) and making again the adiabatic approxim-
ation, we find

ot = =i gali(@ — ») + v}t 4+ Bt (3.35)
A

We insert (3.35) into (3.9) and use the abbreviation

dwx = wn — . (3.36)
We thus obtain
€exp (iﬂ)j) B)\+
. gu)\*g#)\' %
= 7(dwxn — k) O\t — 2 Dy F.
2(8wn — xa) by +§i(9x,_y)+7x%+ A
(3.37)

We now consider explicitly the case in which we have a
discrete spectrum of modes and we assume further that we
may average over the different mode phases, which in many
cases is quite a good approximation. (It is also possible,
however, to treat phaselocking which is of practical impor-
tance for the generation of ultrashort pulses.) Multiplying
Eq. (3.37) by b\ and taking the phase average we have

B){*’B)\r = n)‘ay\)\', (3.38)
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where #, is the number of photons of the mode A. If we
neglect for the time being the fluctuating forces in Eq.
(3.37), we obtain

7ix = — 2 + manD, (3.39)
with

wy = 2vg%/[ (D — »)* + 7], (3.40)

[ ga > = g~ (3.41)
In the same approximation we find

0y = yu(do — 0) — 2 ; WANAT (3.42)
or after solving (3.42) again adiabaticaily

D= Zu: 0.~ Dy — (2D;/v11) ? WA, (3.43)

where D, is the critical inversion of all atoms at threshold.

We want to show that Egs. (3.39)—(3.43) lead to the
selection of modes (or order parameters). Consider as an

example just two modes. Then the time-independent equa-
tions (3.39) read

nl(—'2x1 + ZU]D) = 0,
%2(;2K2 + 'L@)QD) = 0.

(3.44)
(3.45)

If both modes would be present, #n; 5% 0, 1y 5% 0. Then
necessarily Egs. (3.44)—(3.45) must be fulfilled, so that

D= 2K1/w1, (3.46)
and simultaneously
D= 2/(2/’102. (3.47)

In practical lasers, however, the decay constants xx may be
different, and the mode frequencies 2, have different dis-
tances from the line center ». Thus in general (3.46)
(3.47). This contradiction can only be resolved if only one
mode is present and the other one has died out. This
analysis can also be done quite rigorously for many modes
and shows that in the laser system only a single mode, the
one with the smallest losses and closest to resonance sur-
vives. All the others die out. It is worth mentioning that
equations of the type (3.39), (3.43) have been proposed
more recently in order to develop a mathematical model for
evolution [Eigen (1971)7]. We will come back to this point
in Sec. VI.

As we have seen in Sec. II it is most desirable to establish
the Fokker-Planck equation and its stationary solution be-
cause it gives us the over-all picture of global and local
stability and the size of fluctuations. The solution of the
Fokker-Planck equation which is associated with Egs.
(3.37)-(3.43) has been found and reads [compare Haken
(1969a) ]

f(By) = 9 exp(—2¢/0Q), (3.48)
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where
2¢ = ; ’ B)‘ l2(2K)\ — ‘Z,U)\Do) -+ (ZDc/'yn)

X > wwn | By 2| Ba |2 (3.49)
AN

The local minima of ¢ describe stable or metastable states.
This solution allows us to study multimode configurations
if some modes are degenerate.

F. Laser with continuously many modes

The next example which is slightly more involved will
allow us to make contact with the Ginzburg-Landau theory
of superconductivity. Here we assume a continuum of
modes all running in one direction. As in the case just con-
sidered we expect that only modes near resonance will have
a chance to participate in laser action, but because the
modes are now continuously spaced we must take into
consideration a whole set of modes near the vicinity of
resonance. Therefore we expect (this must be proven in a
self-consistent way) that only modes with

[ —r | <Ky (3.50)
and
[ — O | <K yu (3.51)

are important near laser threshold. Inserting Eq. (3.35)
into Eq. (3.11) we obtain

( girgn™®

op = yu(do — o) — 20,2 o — ) T

AN

X bton + c.c.) (3.52)

which under the just mentioned simplifications reduces to

24, *
e~ (do _ e BOBY s + c.c.) : (3.53)

Y11 A Y
Inserting this into (3.37) yields
byt

2 -~
- (iwx — o4 Dy—F )bx+ + R

'I:(Q)\ - V) + Y
4d,

Y11Y2 i

g")\*g")"gﬂ)‘l/g“)‘n;*b)\l—"bxn"'bxlu_ (3.54)

Using the form (3.16) one readily establishes

> Zin*gunr Gunrs Gunrr o
m

= Ng*s(kn — kv — kne + Farnr), (3.55)

where V is the number of laser atoms. Note that we have
again assumed (3.50) in the nonlinear part of (3.54). If
Q)\ = W\ -|- Inggz/[i(Q)\ —_ 1/) + 'y:] (356)
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possesses no dispersion i.e. @\ « k& the following exact
solution of the corresponding Fokker—Planck equation holds

f(8) = 9 exp(2¢/Q), (3.57)
where
vg? 2D,
= by |2 (D N £ SR ) _ 2
¢ ;I | O(Q)\— v)? 4 4% = ’)’11’)’2g4
X X 8(kx— k- Bar — Eared) bty thabaes.
ANINIINI LY
(3.58)

We do not continue the discussion of this problem here in
the mode picture but rather establish the announced
analogy with the Ginzburg-Landau theory. To this end we
assume

o= c¢| k|, (3.59)
Q)\ =7 l /e)\ ', (360)
Kn = K. (3.61)

Confining ourselves again to modes close to resonance, we
use the expansion

g2
1:(9)\ - V) + Y
2 2 2
=§_— ':f;(szx—y) —%(Qx—v)? (3.62)

We now replace the index N by the wave number %, and
form the wave packet ‘

vt(x, t) = /N Byt exp(—ikx + v | k| t) dk. (3.63)

The Fourier transformation of Eq. (3.54) is straightforward
and we obtain

¥t (x, 1)
= —a¥t(x,t) — c[iv(d/dx) — v ¥+ (x,1)

-2 I \I,(x7 t) '2‘II+(x: t) + F(xi t)y (3.64)
where in particular the coefficient a is given by
a= [x— (g¢/v)Do]. (3.65)

Equation (3.64) is identical with the equation of the elec-
tron—pair wavefunction of the Ginzburg-Landau theory of
superconductivity for the one-dimensional case if the fol-
lowing identifications are shown in Table I. Note, however,
that our equation holds for systems far from thermal equi-
librium where the fluctuating forces, in particular, have quite
a different meaning. We may again establish the Fokker—
Planck equation and translate the solution (3.57), (3.58)
to the continuous case which yields.®

f= 9 exp(2¢/Q), - (3.66)

10 Compare footnote 9 on page 77.
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TABLE I. Comparison between superconductors and lasers.
Superconductor Laser

1. ¥ Pair wavefunction Electric field strength

2.axT —T, a < D — D

3. T Temperature D Total inversion

4. T, Critical temperature D, Critical inversion

5. v « A, Component of vector » Atomic frequency

potential
. F(x,t) Thermal fluctuations

[=))

Fluctuations caused by spontaneous
emission etc.

with
¢=[la|¥(x,t) 2—b|¥(x,1) |*

— ¢ | [iv(d/dx) — vI¥T |2} dx. (3.67)

Equation (3.66) is identical with the expression for the
distribution function of the Ginzburg-Landau theory of
superconductivity if we identify (in addition to Table I) 2¢
with the free energy, and Q with kzT. The analogy between
systems away from thermal equilibrium and in thermal
equilibrium is so evident that it needs no further discussion.
As a consequence, however, methods originally developed
for one-dimensional superconductors are now applicable to
lasers and vice versa.

In the last section of this section we want to show that in
spite of this formal analogy there are still deeply rooted
differences in the underlying mechanism. In order not to
bore the reader with mathematical details, we present a
phenomenological approach, which may be substantiated,
however, by a rigorous treatment (compare Sec. XI.C).

G. A phenomenological approach to the single
mode laser:

As we have seen before, the mode amplitude b+, the
Fourier component of the total atomic polarization P, and
the total inversion may serve as suitable macroscopic vari-
ables. We now discuss the interplay between these three
variables, which in the quantum mechanical domain are
represented by operators

mode amplitude: bt b with [b,8t] =1

atomic polarization

[compare Eq. (3.17),

where we drop the

index k7]: S+, S- with [S+, S—] = 28,

atomic inversion

[compare Eq. (3.27)]: D = 2S5, (3.68)
We use a notation which clearly exhibits the analogy to spin
systems, where the S’s have the usual meaning. Note that
the electric polarization is obtained from S+, $— by multi-
plication with a factor, which contains essentially the
atomic dipole matrix element. The interaction Hamiltonian
may be obtained directly from Eq. (3.8) and reads (we
assume exact resonance and work in the interaction repre-
sentation)

H = 7ig(b+S— + bS+).
11 We follow essentially Haken (1973b).

(3.69)
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In the following we assume that the interaction between
atoms and field is dominant over their individual interaction
with the reservoirs. In a first step we consider only Eq.
(3.69). It allows for several constants of motion %;:

the interaction
energy ho=H

the total number
of photons and
inverted atoms = bt0+ S,

the total pseudo
spin by = S2 4 $S5+S— 4 35S+ (3.70)
The third quantity follows from the fact that S+, S—, S,
behave like spin operators. We now use the method of
quantum-classical correspondence, which we will explain
in Part II in more detail. It allows us to establish a one-
to-one correspondence between operators and classical
quantities such as field amplitudes, classical polarization
and the occupation number of atoms. In view of a precise
formulation of the conservation laws we now distinguish
explicitly between operators and classical variables.

field amplitude b, bt > u, u*

S, ST 0, v*

2S5, D

polarization

inversion

(3.71)

The integrals of motion may be expressed by the classical
quantities as may be shown by detailed calculations

ho = u*v + uv*,
= u*u+ D/2,
hy = D?/4 4 v*v,

(3.72)

(Note that we have dropped the factor 7ig in %o, because it is
not needed in our following considerations). Now let us
look at the stationary distribution function f(#, v, D) which
gives the probability of finding a configuration %, v, D. With
no coupling to the external world, all configurations which
are compatible with the conservation laws may be realized.
Thus the probability of finding a certain configuration of
u, v, D will depend on these coordinates via the conservation
laws:

f=f(h0(u,v, D),hl(u,v,D),---), (373)

where f may be an arbitrary function. In this sense the

system is highly degenerate.

Now consider the coupling of the proper laser system of
atoms and field to its surroundings (‘‘reservoirs”). Then
depending on the temperatures of the reservoirs e.g., certain
energies are favored compared to others. In thermal equi-
librium, f would thus acquire the Boltzmann distribution
function ~exp(—H/kT). Similarly we expect that in our
more general case f is no longer a completely arbitrary
function but will acquire a specific form. If we admit that
the system finds a stationary state, we expect that the
values of 4, /1, % are centered around certain values giving
a maximum probability around which the distribution
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function will fall off in a Gaussian way. An example for f
would be a product of functions of the form

exp(—a;(B; — k;)?), (3.74)

where «;, 8; are constants.

Let us furthermore assume that the phase of the polariza-
tion is heavily damped by its coupling to external heatbaths,
such as lattice vibrations etc. We then expect that the con-
stant of motion % is also heavily damped because it depends
on the phases of v. Thus we are left only with the distribu-
tion function of the two other constants of motion. We further
use the fact that the action of the heatbaths on the polariza-
tion stems from many statistically independent events, and
that the effect of this reservoir is dominant over the other
ones. Under these conditions f~ exp(—C|v[?), ie. a
Gaussian distribution in » (C is a parameter). Because,
however, v must occur via the constant of motion

hy = | v |2+ D*/4, (3.75)
we expect a distribution function of the form
f=exp(—C(|v |2+ D?/4)) = exp(—Chy). (3.76)

The factor 9T may still depend on %;. Assuming for 9 the
form (3.74) as discussed above, we obtain finally

Jo= No exp(—ai(B1 — /)?) exp(—Chs) (3.77)
or, after a slight rearrangement
fo = Ny exp(Ah1 — Bh? — Chz) (378)

which is indeed found by a detailed calculation from first
principles.

Equation (3.78) exhibits a strong correlation between
photon number and inversion. When we integrate over the
inversion and polarization we obtain a dlstrlbutlon function
of the form v

F(n) = Noexp(an — bn?) (3.79)
(n = | 4 |?) which we have given in (3.31). Our derivation
of (3.79) has revealed, however, that (3.79) is a consequence
of the second two conservation laws of (3.72), but not of
the first one, which represents the energy. Thus there exists
a fundamental difference between the laser and a thermo-
dynamic system showing a phase transition e.g., the super-
conductor. We conclude with a final remark. In our deriva-
tion we did not make assumptions about the decay rates of
u and D, which may even be equal, so that our analysis
applies also to mode-mode coupling theory. [Note that
hitherto Eq. (3.79) could be derived only using an adia-
batic elimination of the inversion D7].

H. Further instabilities

Let us briefly return to the question of the validity of the
adiabatic principle. When the laser is pumped more and
more, the relaxation time of the field amplitude becomes
shorter and shorter. Thus the adiabatic elimination of the
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atomic variables is finally no longer permissible. If one
keeps all variables, one finds at a high enough pump power
a new instability [ Graham and Haken (1968b); and par-
ticularly Risken and Nummedal (1968)7]. The laser starts
pulsing or, in other words, shows order in the time domain.
This instability may be interpreted as a kard mode insta-
bility. To our knowledge, so far no analytical treatment of
the corresponding stochastic problem exists.

IV. NONLINEAR WAVE INTERACTIONS

In physics there are numerous examples of nonlinear
wave interactions, e.g., in plasma physics [see e.g., Klimon-
tovich (1967)7, in nonlinear transport in crystals [see e.g.
Wagner (1973)7], nonlinear optics [see e.g. Bloembergen
(1965) 7] etc. Here we want to sketch a few problems with
the following characteristic features:

(1) Dissipation and fluctuation are included.
(2) There exist pronounced transitions from disorder to
order. .

We take our examples here from nonlinear optics, though
a number of them can also be realized by electronic devices
[see e.g., Woo and Landauer (1971)7. Consider an electro-
magnetic wave with frequency wo impinging on a crystal.
This wave causes the electronic (or molecular) moments to
oscillate. In classical dispersion theory, the crystal is
treated as a set of (electronic or molecular) oscillators with
a linear restoring force. If the field strength is high enough,
the amplitudes of the oscillators become so high that non-
linear terms of the restoring forces are important. These
anharmonicities lead to a frequency spectrum of the oscil-
lator, which contains e.g. the frequencies 2w, or 3wo. The
oscillator now emits electromagnetic waves with these corre-
sponding frequencies. Thus the incoming wave (wo)
transformed into a new one with (2w,) or (3wo).etc. Admit-
ting for similar combinations of the incoming wave with
newly generated ones, a great number of transformations,
wo — ', can be realized.

In the following we do not explicitly treat the role of the
atomic system, which only serves in a sense as catalyser
We consider rather the final effect, which consists in the
transformation of the initial wave into a set of new ones.
Or in other words: We treat the field modes as the order
parameters. This transformation is best described by a
Hamiltonian. For this purpose we split the amplitude of a
field mode into a time and space-dependent part

E\ = Ex(f)mun(x). (4.1)
We further split E,(¢) into

Ex(t) = b+ bt (4.2)
where

by < exp(—imt); byt o« exp(+iw).

In a classical description, by, by are time-dependent ampli-
tudes; while in quantum mechanics bF, b\ are the well-
known creation and annihilation operators of light quanta
(we assume #, properly normalized).
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A typical Hamiltonian then reads
H = Ffiwpbythy, + O Fiandatby -+ figh, W ()
x

+ %ig*b,W (5%) + bytic exp(—iwpt)

+ bfic* exp (Twyt) . (4.3)
[For special cases see e.g., Bloembergen (1965), Yariv and
Louisell (1966), Louisell (1964) . The first expression is the
energy of the incident “pump” wave, the following sum the
energy of the other waves A (it is understood that from now
on A does not comprise p). The terms ~g, g* stem from the
interaction energy and describe e.g., the annihilation of a
quantum p and the simultaneous creation of several other
quanta of types . We quote a few examples:

subharmonic oscillator

W (b) = b2 with wp, = 2w (44)
parametric oscillator
W(b) = bibs, with wp = w1+ ws (4.5)

higher order parametric process

W (b) = by™««-by™, with wp = mw1 + -+ nywy

(4.6)

The last two terms in Eq. (4.3) describe a completely
coherent driving force generating the pump wave p.

So far all processes are completely coherent and the
problem of a disorder-order transition does not arise. This
situation changes immediately, however, when we include
damping and fluctuations. We do this in the frame of the
equations of motion which in classical and quantum physics
have exactly the same form:

byt

= (twp — kp)bpt + 1g*W (bF) + ic* exp (Gwyt)

+ FH(1), 4.7)
N

= (iwx — )bt + igby (W /0by) + Pyt ().  (4.8)

These equations must be supplemented by their complex
(Hermitian) conjugate counter parts. The terms —k,b,t,
— iabxt describe damping of the waves (e.g., by scattering)
and F,*(¢), Fyt(t) are the fluctuating forces which neces-
sarily accompany dissipation. The physical content of
Eqgs. (4.7) and (4.8) is this: The coherent driving force
(e.g., a laser) «c¢ in Eq. (4.7) first generates the pump
field p. In Eq. (4.8) the term ~b,* then creates, together
with the other &’s occurring in W /3b, a field iy in a self-
consistent way. The s*t’s then react on byt in (4.7) via
W (b%), leading to a saturation of b,*.

A detailed analysis (see also below) reveals the following
result: For small external force ¢, no coherent waves b\t
can be maintained. The fields N are completely randomly
excited so that the statistical average (byt) = 0. Above a
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certain threshold ¢ = ¢y, coherent field configurations
emerge with stable, nonvanishing amplitudes b, as is well
known from laser physics. To obtain this result all hitherto
known papers [Graham and Haken (1968a), Graham
(1968a,b, 1970, 1973a), White and Louisell (1970), Haken
(1970d) ] proceed as follows:

We first eliminate the main time dependence by replacing

byt — byt exp(iwyt),

bt — bt exp(io»\t) . (4.9)
We then assume for the damping constants
Kp > K (4.10)

and eliminate the pump adiabatically. From Eq. (4.7) we
obtain

bt = (1/xp) {ig*W (%) + dc* + Fy+ (1)} (4.11)
which, inserted into (4.8), yields Langevin equations for
the bt’s, b’s alone. Using prescriptions given in Sec. X11I,
XIII, and XIV one readily establishes the Fokker—Planck
equation or in the quantum mechanical case the density
matrix equation and subsequently the generalized Fokker—
Planck equation, where higher-order derivatives of the dis-
tribution function with respect to the variables by, by must
be neglected. For specialists we note that the Fokker-Planck
equation is derived by means of the Wigner distribution
function [ Graham (1970b, 1973a); Haken (1970d)]. If all
x\’s are equal

Kxn = K (412)
and W is of one of the forms (4.4), (4.5), (4.6) the appli-
cation of a theorem described in Chapter XI [Haken
(1969a) ] allows us to construct the explicit stationary solu-
tion, f, immediately. It has the following form [ Graham
(1970b, 1973b), Haken (1970d), Woo and Landauer
(1971) 7:

f= Nexp(—¢), (4.13)

where

& = (2/kKp) (*gW + cg*W™*) + (2] g |*/xxp) | W |2
+2Tnl (4.14)

(Note that by, byt are now complex numbers and no longer
operators!)

A still more general class of processes in which several
pump fields occur and to which our theorem on page 107 is
still applicable has been elaborated by Graham (1973b).
Returning to Eq. (4.14) and inserting e.g., (4.4) we obtain
[Woo and Landauer (1971) ]

& = (2/xxp) (c*ghs® + cg*br*) + 2| b1 [*

+ (2] g 1"/ kp) | 0| (4.15)
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Putting b = g exp(ip), we find a striking analogy with the
model of Chapter II, showing us the applicability of all
concepts presented there including again the phase-transi-
tion analogy.

In the above example a coherently driven pump field is
decomposed into new fields showing disorder (incoherence)
or order (coherence). Recently examples have been found
in which a completely random pump field may by the process
(4.5) generate a new field with a stable amplitude by, i.e., a
coherent field. In this case ¢ is put equal to zero, and it is
assumed that F,* creates a Gaussian photon distribution
in the same way as Fit and F,*. Provided the internal
coupling constant g is bigger than «i, ko (and x\ << k) the
photon distribution can be found explicitly (Haken
(1974b) ). Referring the reader who is interested in further
details to that paper, we merely quote the result if the
photon numbers 7, are treated as continuous variables
(Haken (1973d)). The distribution function of the gen-
erated modes 1 and 2 reads

Sf(m, m2) = N exp(—¢), (4.16)
where
ooyl fl7—?’_(1 —T+ ’_il) In (1 + _£i+_’f—i)
Np No Koo (% Np Ne,
(4.17)

for iy = no — m1 2> 0.

The solution for 4; < 0 may be found by exchanging
everywhere the indices 1 and 2.7, %x are the mean thermal
photon numbers, due to the coupling of the modes to their
respective reservoirs at different temperatures. The inte-

gration of Eq. (4.16) over n, yields a distribution function.

f(n1) which describes the photon statistics of that mode.
Provided 7 K73,  71<K7p and k1 > ke With k1, ke <K «p,
one obtains a pronounced non-Gaussian distribution which
comes very close to the photon distribution of the single
mode laser (3.31), (3.30). This proves that one may obtain
an amplitude stabilized field mode from a completely
chaotic pump field.

conduction
band

energy gap

valence
band

FIG. 3. Energy levels of the energy bands versus coordinate x.
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V. TUNNEL DIODES

The physical properties of active devices using as essen-
tial part tunnel diodes as representative components have
been treated by Landauer (1961, 1962, 1967, 1971a,b) in-
voking cooperative phenomena in the spirit of the present

~article. We will follow Landauer in the main steps of our

presentation.

First a brief reminder about tunnel diodes starting with
the usual semiconductor. A single electron in a semiconductor
may be described by a plane wave with wave vector k
which is modulated by a periodic factor. As is known from
quantum mechanical calculations, the corresponding energy
levels are grouped in ‘‘bands” which are separated by gaps.
The simplest case is shown in Fig. 3. If we consider regions
in space x and in k space so that Heisenberg’s uncertainty
relation A x Ak > 1 is fulfilled, we may simultaneously
plot the energy levels as a function of spatial coordinate %
(Fig. 3). The ordinate represents the energy of a particle,
the abscissa its space coordinate. The energy levels are now
filled with electrons of opposite spins according to the Pauli
principle.

In a semiconductor at the absolute temperature 7" = 0
the valence band is completely filled and the conduction
band completely empty. Doping the semiconductor with
charged impurities shifts the local potential energy of an
electron and consequently the energy bands. If the doping
is high enough the energy scheme of the tunnel diode (com-
pare Fig. 4) arises. Because the Fermi level remains constant
in the crystal at equilibrium the electrons are now redis-
tributed among the energy levels: we find empty states in
the valence band and occupied states in the conduction
band. The application of an external electric field causes an
additional displacement of the energy levels. Depending on
the direction of the electric field, we now find the energy
schemes of Fig. 5. Clearly, if a small voltage is applied the
electrons of the conduction band find free states of the
valence band into which they can tunnel. [Note that the
concept of tunneling applies also to transitions between
energy bands (‘“‘Zener tunneling” for the transition valence
band — conduction band, ‘“Esaki tunneling” for the transi-
tion conduction band — valence band).] If the voltage is
increased still further, the number of occupied initial states
in the conduction band which can tunnel through to acces-

conduction
band

energy gap

valence
band

FIG. 4. Occupied and empty energy levels of a - tunnel diode

(schematic) .
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FIG. 5. Energy bands for different voltages and the corresponding points on the characteristic of the tunnel diode.

sible states in the valence band is decreased. Thus the cur-
rent decreases until finally the situation shown in Fig. Se is
reached. These considerations explain qualitatively the
current—voltage relation (‘“‘characteristic’’) of the tunnel
diode, represented in Fig. 6 (Landauer (1961). The be-
havior of a tunnel diode is a typical cooperative effect:
Tunneling probabilities depend on voltage and therefore
on the number of charges on the capacitance. In this way
it is analogous to a ferromagnet in mean field theory, where
spin flip probabilities depend on the local field, and therefore
on the net magnetization.

We now want to demonstrate, following Landauer, the
way in which such tunnel diodes allow us to build circuits
in which stable or metastable dissipative states are main-
tained. Consider as a first example a battery, a tunnel diode
and a resistor in series (Fig. 7, Landauer (1962)). In Fig. 6

SV

FIG. 6. Negative resistance characteristic (solid line) with load line
(dashed). Zero and one are stable states, U is unstable [after Landauer
(1961) 7.
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we present the current voltage characteristic of the tunnel
diode again, where ¥ denotes the voltage across the tunnel
diode. The voltage across the resistor is then given by

V'= VB—V,

where Vg is the voltage of the battery. The current 7 pro-
duced by V” is plotted in Fig. 6, as a function of ¥ for fixed
Vs, as a dotted line. If there is a difference between the
dotted and the solid line at a given V, we obtain a current
flow which charges or discharges the tunnel diode capaci-
tance. In a stationary state the current must vanish so that
the crossing points of the solid, and dotted lines give the
voltage and current combinations for which we obtain sta-
tionary states. Note that these states are maintained by a
current, i.e., by an energy flux, so that these states are kept
away from thermal equilibrium.

The first most obvious question is this:

(1) Which states are stable, which metastable, which
unstable? The answer to this question is of direct technical
relevance because we then know in which state we can
reliably store information. It will become obvious below,
that under certain conditions there are two stable (or
metastable) states A”.and C'’, which may be identified with
“0” and ““1” of a computer element.

R
FIG. 7. Tunnel diode  fed _!
through series resistance R and i
diode capacitance C. V is the = g4 i cH- v

potential across the diode [after
Landauer (1962)7.
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The next class of questions concerns in a certain sense the
reliability of our device:

(2) How probable are voltage (current) fluctuations?

(3) Is there a certain probability the device may go
spontaneously from ‘“0” to ““1”’ or vice versa?

(4) How quickly does the system relax to its stable
states or leave the unstable state?

Before we demonstrate, following Landauer, how such
questions may be answered, we mention that similar con-
siderations may be applied also to devices composed of a
battery, a tunnel diode and a thermionic vacuum diode in
series or composed of a battery and two tunnel diodes in
series. The latter device had been proposed by Goto et al.
(1960) for switching (bistable elements for computers).

We now proceed to formulate the problem mathemati-
cally. A formulation starting from first principles ought to
start with the equations of motion of all the electrons of the
total device.!? A much more elegant approach rests on the
order parameter concept. We use as order parameter the
number IV of electrons representing the capacitance charge
on the tunnel diode [Landauer (1962)7]. To treat the system
statistically NV is considered as a stochastic variable. Let
n(N) be the number of ensemble members with /V electrons.
Here #(N) changes with time because electrons pass from
one side of the tunnel diode to the other or vice versa. We
denote the transition rate from a state with IV electrons to
one with N’ electrons by I'(V, N’). Because in the limit
dt— 0 there is no probability that two or more electrons
make a simultaneous transition, the rate equation for »#(N)
reads®®

an(N) /ot
=T(N+ 1, NN +1) + TN — 1, N)n(N — 1)
— T'(N,N 4+ Dn(N) — T(N,N — D)n(N).  (5.1)

Though it is not always permissible (as has been stated
quite clearly by van Kampen (1961) and Landauer (1962))
to replace the difference Eq. (5.1) by a differential equa-
tion,* we gain considerable insight into the physical proper-
ties by making this approximation (which indeed holds
very well at the stationary points). We therefore use the
expansion

FV 4+ 1) = f(N) + f/(N) + 3f"(N) +---. (5.2)
Because the transition probability multiplied by the charge
e has the units of a current we use the abbreviations

Il

el'(N,N — 1) = ip(N) (D: discharge), (5.3)

el' (N, N + 1) = 2¢(IV) (C: charge). (5.4)

12 Such considerations apply, of course, to any electric network.
From a physicist’s viewpoint one ought to treat the motion of all
electrons of the network. Instead, one introduces macroscopic quantities
like currents and charges. In this sense the corresponding equations
are ‘order parameter equations.” Furthermore, the microscopic
“underground” still manifests itself by fluctuations (noise) of the
order parameters. Seen from this point of view, it is perhaps not
astonishing that similar concepts apply both to electric networks and
to other physical systems.

18 Carrier density fluctuations have also been treated by Burgess
(1950) and others, with different emphasis, however.

14Tt is also possible to solve the difference equation (5.1) exactly
(Landauer, 1962). For the general method see Sec. XI.E.
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The capacitance charging current is given by the difference
between (5.4) and (5.3). For reasons which will become
clear below, we write ’

ic — ip = {¢)av, (5.5)
with

qg=eN, . (5.6)
and where (- -+ )., denotes the ensemble average.

We now put

f(q) dg = Non(N) dN, (5.7)

where N, is chosen in such a way, that f(¢) is normalized to
unity and can be interpreted as a probability density. We
readily obtain from (5.1) the equation

f
at

29 ot in) £,

757 (5.8)

=—§q[<ic—ip>fj+

Keeping in mind that ip, 7, are functions of the charge ¢
[compare Egs. (5.3), (5.4), (5.6)], Eq. (5.8) has the form
of a Fokker-Planck equation where the drift and diffusion
coefficients are ¢ dependent.

Let us first discuss the ¢ dependence of the drift coeffi-
cient (i¢ — ip) by looking at Fig. 6. Putting CV = ¢, where
C is the tunnel diode capacitance, the drift coefficient is just
the difference between the currents at charge CV and can
be interpreted as a g-dependent force. This force possesses
an effective potential in the sense discussed in Sec. II.
From the potential we may deduce approximately which
states are stable, unstable, and metastable. For a more
exact calculation it is, however, necessary. to take the ¢
dependence of the diffusion coefficient

D = }e(ic + ip) (5.9)
into account, which we will do below. D represents shot
noise because (5.3) and (5.4) are transition rates (aside
from the factor e) and thus the noise is proportional to the
sum of the two uncorrelated currents flowing in opposite
directions. We now solve Eq. (5.8). We write (5.8) in the
form

of/ot = —(37/9q) (5.10)
and split 7 up into

7 = vf — D(3f/dq) (5.11)
with

v, = {G)ev — (3D/3q). (5.12)

Note that at other places in this paper, e.g. in (2.33), the
right-hand side of the Fokker—Planck equation is split up
differently. According to Landauer it is this present form
which gives [in the term (5.12)7] the motion of ensemble
members due to the forces which favor a nonuniform
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ensemble distribution.- {¢).y, without the correction term
—8D/dq, also includes terms due to mobility gradients,
which arise from the fact that the ensemble member can
jump farther from a given point in one direction than the
other, but these terms do not correspond toward tendencies
for nonuniform equilibrium distribution. For a detailed
discussion of the appropriate splitting up of the different
terms of the Fokker-Planck equation and their physical
interpretation, which is of particular interest for research
workers in the field of diffusion, compare Landauer and
Woo (1973). :

From Egs. (5.10), (5.11), and (5.12) we find immediately
the stationary distribution function. We have only to put

i=0 (5.13)
and find explicitly
f = foexpf(vy/D) dg. (5.14)

The negative exponent of (5.14) has, qualitatively, the
form of Fig. 1, of Sec. IT though it may be asymmetric.
Most important, one may change the fictitious potential
from the shape of the solid curve to the shape of the dashed
curve of Fig. 1 by changing the battery voltage (note that
the crossing points 4, D, C are shifted by that change!)

A comparison with the considerations of Sec. IT shows
that all the concepts of phase-transition theory such as
symmetry breaking instabilities, soft mode, critical fluctua-
tions etc. become applicable to our device. These and related
considerations are fundamental for questions concerning
energy consumption, and the reliability of switches (Land-
auer 1961, 1962, 1967). Here we sketch only some aspects,
referring the reader for a detailed treatment to Landauer’s
papers, and consider the following switching process.

Let us assume that we have information stored in the
stable state A. Then by continuously changing the fictitious
potential ¥ of Fig. 1 (Sec. II) we may eliminate the barrier
and then wait until the fluctuations have driven the system
into the other states where it remains now locked if the
potential is returned to its original form. The information
state has changed; C is now occupied. From considerations of
this sort one may derive expressions for switching speeds,
for error probabilities during switching (probability for
remaining in the undesired state) and for the extra energy
consumption required by the switching process. The two
information states (4, C) are separated by a “barrier” (B).
Qualitatively the higher the barrier, the harder the inten-
tional switching becomes. Lowering the barrier spoils the
reliability, however, because the information may diffuse
more easily from 4 to C, without external switching. This
diffusion process is the second aspect we want to discuss.

Let us assume that we have put the system into the
neighborhood of its stable point A4. Its distribution function
Jo(g) is then centered around ¢ = g4. This critical distribu-
tion fo(g) is, however, by no means the stationary solution
(5.14), which has maxima both at 4 and C. Because f,(q)
develops after a certain relaxation time 7 into f(g), we may
find the system with practically equal probability (depend-
ing on the exact form of f) in both states. The device has
lost its information. The determination of 7 is thus of
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fundamental importance.  We merely quote Landauer’s
result (1962)

(1/7) = (2m7p)exp(—A4) + exp(—AC)}. (5.15)
The quantities 75, A4, AB are defined as follows: 75 is the
“relaxation” time, occurring in the linearized Langevin
equation near the unstable point ¢ = ¢p

vg= —(q¢ — qB)/75. (5.16)
Here 75 is a measure for how quickly the system leaves B.
The ‘““free energies of activation’”” A4 and AC are defined
such that

exp(AA) = Ngs(A)/Nss(B) (5.17)
and
exp(AC) = Ngg(C)/Nss(B). (5.18)

Here Nss(4), Nss(C) are the integrated probabilities of
finding the system in the wells 4 or C respectively, whereas
Ngs(B) is defined by

Nss(B) = f(gs) (2wD(gs) /75)"2. (5.19)
A closer inspection of Eq. (5.15) reveals that the behavior
of 7 as a function of the system parameters is governed by
an exponential function of the form (5.14). Thus if the

potential barrier is increased even only modestly, the system
can be efficiently protected against “diffusion.”

In conclusion, let us make the following remarks: The
present example is to our knowledge the first in which the
analogy between the distribution function of a system away
from thermal equilibrium and the Boltzmann distribution
function was discovered (Landauer 1962, 1971a,b, 1972).
To demonstrate this analogy we rederive (5.14) in a formal
manner.’ The Boltzmann distribution would be given by

f(q) = exp(—V/kT), (5.20)

where the potential energy ¥V can be obtained in a formal
way by integration

o (_ @ 1 dVd)
P k5T dg

Multiplying numerator and denominator by the particle
mobility u we obtain

. ( /‘1 1 dVd )
xp | — M .
p T H dg Y

When we are dealing with the Brownian motion of a particle
with the mobility u we know that the numerator under the
integral in (5.22) is just the particle velocity ¢, whereas the
denominator ukpT is the diffusion constant D. Now we may

(5.21)

(5.22)

15 Landauer, in his original papers, went the other way, showing that
the Boltzmann distribution is a special case of Eq. (5.14).
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immediately identify the resulting expression

w(-f%5)

with Eq. (5.14). Though it was possible by a formal analogy
to deduce (5.14) from (5.20) an important difference
should be noted. Equation (5.14) is much more general
because D need not depend on the temperature, as in the
case of Brownian motion, and furthermore it can be a com-
plicated function of ¢.

(5.23)

Vi. COOPERATIVE EFFECTS IN CHEMICAL
REACTIONS

Because chemical reactions take place between several
varieties of molecules, there exists an interaction in a rather
trivial sense. What we have in mind, however, is a more
sophisticated cooperative effect which leads e.g., to instabili-
ties of the chemical reaction and even in some cases to
oscillatory behavior. As order parameters for such chemical
reactions we may take the concentrations of molecules which
may depend on space and time. This implies that we are
dealing with some sort of local equilibrium, which has been
pointed out and investigated in detail by Prigogine and co-
workers (see e.g. Glansdorff and Prigogine (1971)). As we
have seen in many instances cited in the present article one
may either consider equations for the mean value of the
concentrations (‘“‘rate equations’), or an equation for the
distribution function allowing also for fluctuations (‘‘sto-
chastic equations”). Here we want to treat two simple
examples illustrating these two approaches.

A. Rate equation approéch

1. Competition and selection of molecule
production

We first consider the following awufocatalytic reaction:
Molecules of type X are generated from molecules of type
A by the autocatalytic action of molecules X, so that

k
A+ X —2X, (6.1)
where % is the corresponding rate constant. We further
assume that by action of molecules B the molecules X are
decomposed to form molecules C with the rate constant &’

&
X+ B—C. (6.2)
We denote the concentration of molecules X by #, those of
A and B by #4, g, respectively. The temporal change of the
concentration of molecules of type X is then given by
1 = knan — k'npn. (6.3)
We now consider the case in which there is only a limited
supply of molecules of type A, because by each production
of an additional X molecule an A molecule is consumed.
We thus adopt the relation
(6.4)

na = Ny — N,
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where 7, is the initial concentration of atoms A4. Inserting
Eq. (6.4) into (6.3), we obtain

n= (e — v)n — Bn? (6.5)
with the constants
o = kng
s (6.6)
Y = k/%B
B =k (6.7)

An equation of type (6.5) is well known from the single
mode laser (compare Sec. IIT). For o < 7, i.e., for the pro-
duction rate smaller than the loss rate, there is no production
of molecules X. On the other hand, in the opposite case
there is at first an exponentially increasing number of mole-
cules X, but due to the nonlinear term a stable state is
finally reached which is caused by the limited ‘food”
supply. This kind of equation can be generalized to several
types of molecules X ; which again are all created from the
same initial substance 4. The rate equation then reads!®

Ny = knan; — vin;, (6.8)
where the production rate depends on n4 which has for
instance the form

N
na = np — > n;. (6.9)

I=1

One may easily show that equations of the type (6.8)
with (6.9) lead to the selection of molecules of a certain
type, namely those, which have the highest gain coefficient
k; and the lowest loss coefficient v;. Actually the same equa-
tions hold for certain types of laser modes (compare Chapter
IIT) where #; denotes the photon number of those modes.
In this latter case mode selection has been studied in detail.
In this context, it had been suggested [Haken (1971,
1973)7] that laser-type equations may be applicable even
to certain types of biological processes. This is indeed the
basis of Eigen’s theory of evolution of biological macro-
molecules [Eigen (1971)7], though from the mathematical
point of view he starts with Prigogine’s formulation. In
order to proceed from selection to evolution it is necessary,
exactly as in the laser case, to include spontaneous produc-
tion of molecules where spontaneous means without auto-
catalytic action. Denoting the spontaneous production rate
by p; the equation then reads

"y = kman; — ym; + pi(t). (6.10)
They are in complete formal analogy to laser equations and
allow for instance the study of phase transition-like be-
havior, e.g. the occurrence of a macroscopic occupation
number. The basis difference between the laser and the
process of evolution is that laser modes form a closed system,
whereas by spontaneous production of new molecules (i.e.
by mutation) new species are continually fed into the total

16 Rate equations of this and related types occur also in population
dynamics (see, for example, Goel et al., 1971; Montroll, 1972).
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system. These new molecules compete with each other and
with the old ones again undergoing a selection process.

2. Oscillations and spatial structures

Clearly enough, passing on to more complicated reactions
leads us to deal with rate equations of the general form

ﬁf: Fj(nly ttty nN)' (6‘11)
Such coupled differential equations which are in general
nonlinear allow for a variety of solutions including self-
sustained oscillations with small or even large amplitudes.”
We mention as an explicit example the following auto-
catalytic model which has been studied in detail by the
Brussels group: [Lefever and Nicolis (1971), Lavenda el al.
(1971) 7.

A—-X,
B4+X—>Y+ D,
2X +Y—3X,

X — E. (6.12)
The inverse reaction rates are neglected and the initial
and final product concentrations A, B, D, E are maintained
time independent throughout the system.

Normalizing the concentrations #; so that the rate con-
stants become unity the rate equations for the intermediate
products read

ﬁ,x = Ng — (%3 + l)ﬂX —|" nX2%y (613)

’liy = mnphx — nX21’Ly. (614:)
For certain values of #; (7 = A4, B) a limit cycle may bi-
furcate from the steady state. Such models thus allow for
an understanding of chemical and perhaps even for biological
clocks.!® Taking into account matter transport by diffusion
or convection we may generalize equations (6.11) by in-
clusion of spatial derivatives. In the case of the model
(6.12), diffusion was introduced by adding terms
Dx (d*/dx*) nx, Dy (&2/dx*) ny

to Egs. (6.13) and (6.14), respectively. (Prigogine and
and Lefever (1968), Lefever (1968), Herschkowitz—Kauf-
man and Nicolis (1972)). Among the different types of
solution chemical waves seem to be extremely interesting,
particularly with respect to biological processes. Further-
more spatially inhomogeneous solutions may occur. Experi-
mentally, striking wave-propagation phenomena of chemi-
cal reactions, including rotating reactions, have been
found more recently (Zaikin and Zhabotinsky (1970),
(1973) ; Winfree (1973)). Clearly enough the rate equa-
tions e.g., of type (6.10) refer to mean numbers, saying
nothing about fluctuations. We finally show by means of a
simple example how fluctuations may be taken into account.

17 The first mathematical model was given by Lotka (1920).

18 Chemical oscillations have been found in the laboratory, e.g., by
Bray (1921), Belousov (1959), and Zhabotinskij (1964), and are at
present being studied very intensely.
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B. Stochastic equations (master equation
treatment)

We assume the autocatalytic production of molecules of
type X from the basic substance A but now take the number
of molecules of substance 4 to be much greater than those
of substance X and thus neglect saturation.’® Instead we
assume a bimolecular decay process. Furthermore we allow
for a spontaneous production from the original material and
consider the final decay of this molecule. Thus this process
reads

k1

A+ X2 2X,

ko
k3
A—X,

k4
X 4+ B—C. (6.15)

It is a simple matter to derive the master equation for the
distribution function f of the number of molecules of type
X (we assume k3 = k;)
df (n, t)/dt
=a{nf(n — 1) — (n+ 1) f(n)},
+B{n(n+1) f(n+1) —n(n—1) f(n)},

+rin+ 1) fn+1) —nf(n)}, (6.16)
where
o = klnA,
B = k2,
Y = k41’LB. (6.17)

We briefly indicate how to obtain an equation for the
mean number which is defined by

Ms

i= 3 nf(n). (6.18)

n=0

Multiplying (6.16) by # and summing up over # we obtain
difdt = a(ii + 1) — vii — B(n? — 7). (6.19)

If the fluctuations of # around the mean value are small we
may put

7R 2. (6.20)
Finally neglecting 1 compared to 7 we obtain
di/dt = (o — v)7 — BR2 (6.21)

which is of the form of Eq. (6.5) discussed above.

Equations of the type (6.16) have been found and dis-
cussed e.g., in the section concerning tunnel diodes. Applying
Landauer’s method of solution (compare also Sec. XI.E)

1 We follow essentially the paper by K. J. McNeil and D. F. Walls
(1974). A related problem (the Lotka—Volterra problem) has been
treated by Nicolis (1972).
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the stationary solution is found to be

F(m) = £(0) (a/7)" g (1w, (6.22)
with
w =B/, (6.23)

and f(0) is determined by the normalization condition
yielding

f0) = {1i(1;1 4+ 1/u;0/8) } 7, (6.24)
where 111 is a hypergeometric function. The mean number of
molecules is given by

n = f(0) (a/v) (1 + w)™4f1(2; 2 + 1/u; a/B). (6.25)
Plotting 7 as a function of the “pump parameter’” « one
observes a sudden increase of the molecule number above a
certain threshold value quite in analogy to the laser, which

is no surprise because the underlying equations are prac-
tically the same. '

It is remarkable that the system above threshold de-
scribes a state of higher order which may be proved by
looking at the entropy. We define the entropy without
further discussion by

S=— ﬁ:;o £(n) logf(n). (6.26)

The evaluation of (6.26) by means of (6.22) yields, some-
what below threshold,

S~ — Zlog S — log(1 — /7). (6.27)
Y Y

This is identical with the maximum entropy, which is found
by the variation of (6.26) under the constraint that f(#»)
is normalized and the mean number 7 is kept fixed. Some-
what above threshold, however, one finds, again using
(6.22),

S = $[log(2m(e/B)) + 1.

Though the entropy is an increasing function of the pump
parameter, Eq. (6.28) does not represent the maximum
value (6.26) can acquire for a given mean number 7.

(6.28)

Our above remarks, of course, do not exhaust this vast
field and we feel that here in particular we are just at a
beginning.

VII. INSTABILITIES IN FLUID DYNAMICS®
A. The Bénard and Taylor problems

We shall now discuss a set of problems which have
fascinated physicists for at least a century because they

2 There exists an enormous literature on instabilities and also on
fluctuations (including the problem of turbulence) in fluid dynamics.
It is not the purpose of this chapter to review this field. We have
rather chosen an example which shows striking similarities with the
laser instability and which, incidentally, demonstrates clearly the
interplay between ‘“‘coherent’ forces and fluctuations.
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are striking examples showing how thermal equilibrium
states, characterized by complete disorder, may suddenly
show pronounced order if one goes away from thermal
equilibrium. We shall select the so-called Bénard and
Taylor problems.?

We first describe the Bénard problem, or, using another
expression for it, the convection instability: Let us con-
sider an infinitely extended horizontal fluid layer which is
heated from below so that a temperature gradient is main-
tained. This gradient, if expressed in suitable dimensionless
units, is called the Rayleigh number R. As long as the
Rayleigh number is not too large, the fluid remains quiescent
and heat is transported by conduction. If it exceeds a certain
value, however, suddenly the fluid starts to convect. What
is most surprising is that the convection pattern is very
regular and may either show rolls or hexagons.

The hexagons depicted in Fig. 8 are the convection cells
as seen from above. One may have the fluid rising in the

FIG. 8. Bénard cells in
spermaceti. A reproduction
of one of Bénard’s original
photographs.

middle of the cell and going down at the boundaries or vice
versa. An obvious task for a theoretical treatment is to
explain the mechanism of this sudden disorder-order transi-
tion and to predict the form and stability of the cells. In a
more refined theory one may then ask questions as to the
probability of fluctuations. ‘

A closely related problem is the so-called Taylor prob-
lem: the flow between a long stationary outer cylinder and a
concentric rotating inner cylinder takes place along circular
streamlines (couette flow) if a suitable dimensionless meas-
ure .of the inner rotation speed (the Taylor number) is
small enough. But Taylor vortices spaced periodically in
the axial direction appear when the Taylor number exceeds
a critical value.

In the following we treat explicitly the Bénard instability.
The physical quantities we have to deal with are the velocity
field with components #; (7 = 1,2,3 <> x,y,2) at space
point x, v, 2, the pressure p, and the temperature 7. Before
going to the mathematical details, the situation is described:
the velocity field, the pressure, and the temperature obey
certain nonlinear equations of fluid dynamics which may
be brought into a form depending on the Rayleigh number
R which is a prescribed quantity. For small values of R one
obtains a solution by putting the velocity components equal
to zero. The stability of this solution is proven by linearizing
the total equations around the stationary values of «, p, T,

21 For a detailed review see, e.g., the book by Chandrasekhar (1968).
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where one obtains damped waves. If, however, the Rayleigh
number exceeds a certain critical value R, the solutions
become unstable. The procedure is now rather similar to
the one which we have encountered in laser theory (com-
pare Sec. IIT). The solutions which become unstable define
a set of modes. We expand the actual field (%, T) into these
modes with unknown amplitudes. Taking into account the
nonlinearities of the system we now obtain nonlinear equa-
tions for the mode amplitudes which quite closely resemble
those of laser theory leading to certain stable mode con-
figurations. If we include thermal fluctuations we again end
up with a problem defined by nonlinear deterministic forces
and fluctuating forces quite in the spirit of Sec. II. Their
interplay governs in particular the transition region, R~ R..

B. Mathematical treatment

1. The basic equations and the boundary
conditions®

We start with the so-called Boussinesq approximation
from which the equations of fluid mechanics acquire the
following form: The continuity equation reads

8uj/6xj = 0. (71)

Here and in the following, double indices imply summation
over these indices. The equation of fluid motion reads

E)uj _

o
-+ (1 -+ 5p/p0)X@; -+ vV, + Fi(“)(x, f).

(7.2)

Here po is the mean density of the fluid, §p is the deviation
from the mean density due to thermal expansion (with the
expansion coefficient «)

op = —po(T — Ty). (7.3)
X are the components of external forces, in our case the
gravitation field X = (0,0, —g), » = u/po is the kinematic
viscosity, and u is the coefficient of viscosity. The fluctuating
force F;® has been added to the usual Boussinesq equa-
tion.? Finally the equation for the heat conduction reads

AT /ot = —u;(8T/dx;) + «V2T + FD (x, 1), (7.4)
where « is the thermometric conductivity. F( is again a
fluctuating force. The fluctuating forces stem from thermal

fluctuations and are as usual connected with the dissipation
of the system (compare Sec. XII.A).

In the following we adopt Landau’s point of view and
assume that the fluctuating forces are § correlated in space
and time, but that F® and F™ are mutually uncorrelated.

Before proceeding further we note that the nonlinearities

u;(Ou;/dx;) and u; (8T /dx;) (7.5)

2 See, for example, Chandrasekhar (1968).

2 Fluctuating forces were introduced into fluid dynamics by Landau
(see, for example, Landau and Lifshitz, Fluid Dynamics) and used
more recently by Zaitsev and Shliomis (1971).
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stem from the so-called local description in fluid dynamics.
As is well known, the following relation holds for an arbi-
trary quantity 4 (e.g.,, momentum component, energy,
etc.)

dA/dt = dA/3t + uVA. (7.6)
The left-hand side of Eq. (7.6) is the rate of change of the
quantity A4 of a fluid particle as it moves in space. The two

terms on the right-hand side represent the local change of
that quantity 4.

Keeping in mind the analogous treatment in laser theory

_we first consider the stationary state for R < R, without

fluctuating forces. (For the explicit definition of R see
(7.20)). In the stationary state there is no fluid motion so
that )

u; =0 (7.7)
We further put
T=Ts=To— Bz (7.8)

where 8 is the temperature gradient in the vertical direction
needed to describe the spatial dependence of the tempera-
ture. With (7.7) and (7.8) one readily fulfills the equations
(7.1) and (7.4) (without fluctuating forces:). From Eq.
(7.2) one determines the pressure

P = po — gpo(z + 3afz?). (7.9)
We now consider the general case including R > R, and
transform Egs. (7.1)—(7.4) further putting

T"=T+ 0. (7.10)
The boundary conditions for the quantities u, © are as
follows. We consider a layer infinite in horizontal extent

and the fluid between the planes 2 = — (d/2) and z = (d/2)
For a viscous fluid we have at rigid boundaries

u,=0=0 (7.11)
and at free boundaries
U, = (6/62) €Uy = 0= 0. (7.12)

2. The equations in dimensionless quantities

As usual we proceed to dimensionless quantities defined by

u; = ku;'/d; 6 = vkO'/agd?, L= %/«

w=dx!, &= p/oo+ g(z — $Pa?) = &/ d

(7.13)

and
F® = F’2/ds (7.14)
FO = FO2/adbg. (7.15)

After dropping the primes from the new variables, our
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system of equations reads and »® by
Ou;/0x; = 0 (7.16) ¥® = w(x, y)g(z). (7.29)
ou; ou; 9% ' The functions w and g(z) are defined as follows: For f
ous Ui 0w ) ) W ) g efined as follows: For free
at % ow; o + PON A Phus+ F89, - (7.17) boundaries (the origin of the coordinate system is put in the
A= (0,0, 1) - middle of the layer) [see e.g. Pellew and Southwell (1940) ]
30 90 g(2) = (7* + k)2 coshmiz = (w* + k2)? cosnz (7.30)
= = —u;— + Ru, + A6 + FO, (7.18)
at ox;
and
Here )
w(x,y) = 3 Ak exp(ikx), (7.31)
P = v/k (7.19) ; *
X ~ where the coefficients A4; are still arbitrary, and k lies in
is the Prandtl number and the x, v plane,
R = agBd*/vk (7.20) k= (ks k), (7.32)
the Rayleigh number. If the temperature gradient in z having the absolute value
direction varies with time we must replace [ Krishnamurti
(1968) ] k= x/V2. (7.33)

Ru, (7.21)
by
Ru, — Ry'zu,. (7.22)

Here 7' is connected with the time-dependent temperature
Ts by

7' = (&/xAT) (3Ts/dt), (7.23)
and the boundary conditions now read

Ts=3AT 4+ 9t . at z= —3d, (7.24)

Ts = —3AT + gt at z = id. (7.25)

As we will see below such inhomogeneities are necessary in
order to explain hexagonal formation.

3. Damped and neutral solutions (R < R.)

We treat now Egs. (7.16)-(7.18) as follows. We first
assume that R < R,. Linearizing the nonlinear equations
around the values u = © = 0 we obtain, after some calcula-
tions, damped solutions

y>0 (7.26)

u~ exp(—t);
We now define the critical value R, as the one for which
v tends to 0. R = R, thus defines the marginal (neutral)
states. A lengthy but straightforward calculation shows that
the neutral solutions may be defined as follows [Schliiter
et al. (1965)]

w0 (x) = 52, (7.27)
where the operator 8; is given by
6; = (az/ax,' (")Z) - >\¢A; A= (O, O, 1), (728)

Rev. Mod. Phys., Vol. 47, No. 1, January 1975

Without going into all details of the neutral solution we
merely mention that the neutral solution may be described
by a super-position of formal vectors

L 0D
¥, = .
0,

For the following we define the transpose of (7.34) by

(7.34)

T = (1D, O, D) (7.35)

The 6,x®’s can also be given explicitly.

4. Solution near R = R, (nonlinear domain)
effective Langevin equations

We now expand the velocity field u (and correspondingly
the temperature field) according to Eq. (7.34) into the
neutral solutions [compare also Eq. (7.31)]

u(x) = Y 4O (%), (7.36)

where the coefficients Ay are still to be determined. We shall
even allow the amplitudes Ax to vary slowly with time
and space. [Where “slowly means “slowly compared to
exp(7kx)”’.] The main goal is now to establish a set of
equations for the coefficients Ax in a region where the
Rayleigh number R is different, but still in the vicinity of
the critical Rayleigh number R.. Introducing a small quan-
tity € we define as usual an iteration procedure by [see e.g.,
Schliiter et al. (1965)] :

u(x) = ea®(x) + u®(x) +--- (7.37)
O(x) = OW(x) + 0D (X) +---+ (7.38)
R = RO 4 ¢R® 4 &R® ..., (7.39)
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The performance of the iteration procedure is not very
difficult but rather lengthy so that we refer the reader to
the original literature. We just quote the final result. We put

(R~ R)/R. = éx (7.40)
and use concomitant with Egs. (7.37)—(7.39) the scaling
(Newell and Whitehead (1969)).

= ¢, X = ex, Y = (e)l2y. (7.41)

In the final equation we then formally put e = 1, and
replace X, ¥ by «, y. By neglecting the additional terms de-
scribed by Eq. (7.22) etc. we find the following set of
equations

04y
ot

i} i 92 >2
- - Ax + ad
Y (axao VZr 8yt +ad

— 2 B | Aw PAx + Fu(x, v, 2) (7.42)
I

which has the form of Langevin equations for the Ay’s. The
only thing we have to do beyond the hitherto known pro-
cedure is to repeat all the necessary steps including the
fluctuating forces [Haken (1973f)]. They are found as
projections of the original fluctuating forces on the neutral
solutions i.e., as follows:

Fi(w, ,1) = <<@; (;::)>> ’

The brackets () denote an average over the space coordi-
nates over a region large compared to 1/[%|, but small
compared to the wavelength of the resulting fluctuations of
Ay.

From this definition one readily derives the following
correlation functions:

(7.43)

<<Fk(x7 2 t)Fk'(xlr y,> t,) >>

= bed (@ — a)8(y — ¥)o(1 — )Q. (7.44)

The double brackets ((---)) denote the statistical average
over the thermal fluctuations. We obtain

Q

2P [ PoykgeT
ul [ ip (7.45)

_ a3 Z-kBTz]
41+ P)? | Rek®-d-po

v2k2poCy
i.e., the strength Q of the fluctuating forces has the form
Q = T + GT. (7.46)

The coefficients «, 8, v in Eq. (7.42) are defined as follows:

§ = 4P/(P + 1), (7.47)

a = [3Px*/2(P + 1)]-[(R — R.)/R.], (7.48)

B=P/2(P+1), (7.49)
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where P is the Prandtl number introduced by Eq. (7.19).
9/0xq is the derivative in the direction of the k vector
occurring in Ay, yu the derivative perpendicular to it. We
further have

,Bkk’ = 6 for k= k/, (7.50)
and put
B = B(1 4+ Biy) for k= k' (7.51)

For the following discussion the explicit form of 8;; is not
very important. We only note that all 8;; are positive. If the
inhomogeneity described by Eq. (7.22) is taken into account
an additional term of the form

—8 20 Aw* A ikt 0

(7.52)
ki, ke .
must be added to the right-hand side of Eq. (7.42) where
& « n'. [For the sake of completeness we mention that the
inclusion of Eq. (7.22) requires a “renormalization’ of R, &
and an altered function g(z) in (7.29). Because this does
not change the structure of our following equations, we
suppress a detailed discussion here].

An equation of the form (7.42) is now well known to us.
We know it already from the chapter on laser theory and
we can exploit the methods of solution which have been
described there. Before doing so we write (7.42) [if neces-
sary under inclusion of (7.52)7] in the form

94x/dt = LAx + Ny ({A}) =+ F, (7.53)

where L is the linear operator occurring on the right-hand
side of Eq. (7.42), whereas Ny contains all the nonlinear
terms of that equation.

5. The Fokker-Planck equation and its stationary
solution

It is now a simple matter to establish the corresponding
Fokker—-Planck equation which reads

a= Moz

4 Na({A () ]) +c.c.}f

6 -~
{5/11((00, y) (LAk(xi y)

62
+ / / dx d . 7.54
Q N y¥5Ak(x, )0 Ai* (x, y)fa (759
We seek its stationary solution in the form
f = N expo (7.55)

One readily establishes that the conditions allowing an
explicit stationary solution of (7.54) (compare Sec. XI.D)
are fulfilled. From it one derives the following explicit
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solution

2 F) i\
-«
¢ Q_[_/{EE'Y “ \owwy 2Prdywd

+ Z & I Ak ’2 - —115; E (6Ak1*Ak2*Aka*6k1+k2+ka,0 + C.C.)
k

kikoks

— 32 Bue | A [P | Aw Iz} dx dy. (7.56)
kk/

(Haken (1973f)); for the special case of a single mode see
also Graham (1973b). In Eq. (7.56) we have included terms
stemming from (7.52). ‘

6. Stable mode configuration

It goes, of course, far beyond the present article to treat
Eq. (7.56) in its whole generality. We want to demonstrate,
how such an expression (7.55) and (7.56) allows us to dis-
cuss the threshold region and the stability of various mode
configurations. We neglect the dependence of the slowly
varying amplitudes 4 on #, y. We further put 6 = 0. Equa-
tions (7.55) and (7.56) give us a suitable means for the
discussion of the stability of different mode configurations.
Because ¢ depends only on the absolute values of Ay

¢ = ¢(| Ax [?) (7.57)
we introduce the new variable
| Ak 2 = Wk (7.58)

The values wi for which ¢ has an extremum are given by

a
¢ =0, or
E)wk

a— 57 Brwwyr = 0, (7.59)
k

and the second derivative tells us that the extrema are all
maxima

8%/ 0wy dwyr = — Bix < 0. maximum (7.60)
For symmetry reasons we expect

we = w(1/N). (7.61)
From Eq. (7.59) we then obtain

o(w) = 3(&/B), (7.62)

where we use the abbreviation

1 =
]szklﬁkk' =B.

We now compare the solution in which all modes partici-
pate, with the single mode solution for which

a — Bkkw =0 (763)
holds, so that
#(w) = 3(a%/P). (7.64)
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FIG. 9. Construction of hexagons from basic triangle (for details
consult the text).

A comparison between Egs. (7.62) and (7.64) reveals that
the single mode has a greater probability than the multi-
mode configuration. Our analysis can be generalized to dif-
ferent mode configurations leading again to the result that
only a single mode is stable. This is in agreement with
previous stability investigations by Schliiter et al. (1965)
and others.

Let us discuss the form of the velocity field of such a
single-mode configuration, using Egs. (7.27) to (7.30).
Choosing k in the x direction, we immediately recognize
that the z component of the velocity field, %, is independent
of y, and has the form of a sine wave. Thus we obtain rolls
as stable configurations. How do we explain the still more
spectacular hexagons? To do this we include the cubic
terms in (7.56) which stem from the spatial inhomogeneity
in z direction. Admitting for the comparison only three
modes with amplitudes 4;, 4%, ¢ = 1, 2, 3, the potential
function is given by

®=a(| A1+ | A2+ | 45 ]2) — 6(4:*42*45* + c.c.)
— 32 F Buw | Ak P | Aw |3, (7.65)
k

where the k sums run over the triangle of Fig. 9 which arises
from the condition k; + k; +k; = 0 and | k;| = const.
[compare Eq. (7.33)].

To find the extremal values of ® we take the derivatives
of (7.65) with respect to 4, 4.*, and thus obtain six equa-
tions. Their solution is given by

Ai* = A«;; A1 = A2 = As = A (7653,)
Using (7.65a) together with (7.27)—(7.35), we obtain e.g.,
u#,(x). Concentrating our attention to its dependence on =,
y, and using Fig. 9, we find (with x’ = =/V2x)

u,(Xx) « Af{exp(iz’) + exp(—ix’)

+ expi(—«'/2 + yV3/2) +---, (7.65b)
or in a more concise form
u:(X) o 24 {cosx’ + cos(3x’ + $V3y')
+ cos(3x" — £V3y)}. (7.65¢)

Using the solid line in Fig. 9 as an auxiliary pattern one
easily convinces oneself that the hexagon of Fig. 9 is the
elementary cell of #,(x) (7.65¢).
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In conclusion we discuss the probability of the occurrence
of this hexagon compared with that of rolls. To this end
we evaluate Eq. (7.65) with aid of (7.65a) which yields
(using the explicit expression for 4): |

Gmax(A) = B[22 + 1826 — Amax(268 — 38%)}.  (7.66)

Here we have used the abbreviations

B=F XpBu=28 (7.67)
&= a/f (7.68)
§=5/8. (7.69)

We now discuss Eq. (7.66) for two different limiting
-cases:

(i) 2> a. (7.70)
In this case we obtain

Gmax (A) X 185 A m 0. (7.71)
(2) P < a. (7.72)
In this case we obtain

Omax(A4) = &/2B. (7.73)

A comparison between (7.71) or (7.73), respectively, with
a single mode potential (7.62) reveals the following: for
Rayleigh numbers R > R,, which exceed R, by a small
amount, the hexagon configuration has a higher probability
than the roll configuration. But a further increase of the
Rayleigh number finally renders the single mode configura-
tion (rolls) more probable.

Viii. FOKKER PLANCK EQUATION TREATMENT
OF INTERACTING SOCIAL GROUPS

Intuitively it is rather obvious that formation of public
opinion, actions of social groups, etc. are of a cooperative
nature. On the one hand it appears extremely difficult if
not completely impossible to put the treatment of such
phenomena on a rigorous basis because the actions of indi-
viduals are determined by a number of (very often) un-
known causes. Within the spirit of this article, we have seen
that in systems with many subsystems there exist at least
two levels of description: one which analyzes the individual
system and its interaction with its surroundings, and another
which describes the system’s statistical behavior by using
macroscopic variables. It is on this level that a quantitative
description of interacting social groups becomes possible.
This remark is, of course, basic to the whole field of insur-
ance business, marketing, and economics, and is indeed
mentioned in every introductory textbook on these subjects.
In this chapter we will present a detailed mathematical
model which has been used more recently by Weidlich
(1971, 1972, 1973) to treat interacting social groups.

As a first step we have to seek the macroscopic variables
describing a society. First of all we must look for the relevant
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characteristic features of an opinion. Of course “the opinion”
is a very diffuse concept. However, similar to the measuring
process in physics one can make a measurement of public
opinion—e.g., by votes. In order to be as clear as possible
we want to treat the simplest case where there are two
kinds of opinions denoted by plus and minus. An obvious
order parameter is the number of individuals #y, #_ with
the corresponding opinions 4+ and —, respectively. The
basic concept now to be introduced is that the formation of
the opinion, i.e., the change of the numbers ny, n_ is a
cooperative effect: The formation of the opinion of an indi-
vidual is influenced by the presence of groups of people
with the same or the opposite opinion. We thus assume that
there exists a probability per unit time, for the change of
the opinion of an individual from plus to minus or vice versa.
We denote these transition probabilities by

P14, 1) and Pt (14, m). (8.1)
We are interested in the probability distribution function
f(ng, n_, t). One may easily derive the following stochastic
equation:

oflny, n; 1]
ot

= —{nyprLny, w1+ np_[ny, n-1} fLny, n; 1]

+ (np + Dpefny + Line — 1] flne + 1,0 — 1;4]

+ -+ Dpy[ny — L,no+ 1] [0y — 1, n-+ 18],
(8.2)

The crux of the present problem is, of course, not so much
the solution of this equation, which can be done by standard
methods, as the determination of the transition probability.
As in problems in physics where not too much is known
about the individual interaction, one may now introduce
plausibility arguments to derive . One possibility which
has been discussed in detail by Weidlich is the following:

Assume that the rate of change of the opinion of an indi-
vidual is enhanced by the group of individuals with the
opposite opinion, and diminished by people of his own
opinion. Assume furthermore that there is some sort of
social over-all climate which either facilitates the change of
opinion or else makes it more difficult. Finally one can
think of external influences on each individual, e.g., infor-
mation from abroad. For a physicist it is not too difficult
to cast these assumptions into a mathematical form, if he
thinks of the well known Ising model of the ferromagnet.
Identifying the spin direction with the opinion 4, —, we
are led in analogy to the Ising model to put

p+Lny, n]= p(g) = vexp {:_(I_qé—LH_)} )
=vexp{— (kg + )},

+(Iq + H)} ’

p—ln, n]=p_(q) = vexp { o

= vexp{+ (kg + h)}, (8.3)

where I is a measure of the strengths of adaptation to
neighbors. H is a preference parameter (H > 0 means that
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opinion + is preferred to —), © is a collective climate
parameter corresponding to %sT in physics (ks is the
Boltzmann constant and T the temperature), v is the fre-
“quency of the “flipping” processes. Finally
qg= (ny — n-)/2n, n=ny+ n_. (8.4)
For a quantitative treatment of Eq. (8.2) we assume social
groups big enough so that ¢ may be treated as a continuous
parameter. Transforming (8.2) to this continuous variable
and putting

wy(q) = nypy[ny,n]=nG+ ) pe— (0,

wy(q) = n_p[ni,n]=niE — ¢ p—(q), (8.5)
we transform (8.2) into a partial differential equation (see
e.g., Sec. V of this review article). Its solution may be
found by quadratures in the form

o ¢ Ki(y)
fo(g) = cK57'(g) exp {2 -[-1/2 K () “ } (86)
with
Ki(q) = v{sinh(kq + k) — 2¢ cosh(kq + £)}
Ky(q) = (v/n){cosh(kq+ h) — 2qsinh(kq+ %)}. (8.7)

As one may expect from a direct knowledge of the Ising
model, there are typically two results. One result corre-
sponds to the high temperature limit: on account of rather
frequent changes of opinion we find a centered distribution
of opinions. If the social climate factor © is lowered or if the
coupling strengths between individuals is increased, two
pronounced groups of opinions occur which clearly describe
the by now well known ‘“polarization phenomenon” of
society. It should be noted that the present model allows
us to explain, at least in a qualitative manner, further

ﬁl(q\ ,k =0
h =0
9.
fa £~ 20
k=00
q
fe @ h=2,5
h=00

FIG. 10. (a) Centered distribution in the case of rather frequent
changes of opinion (independent decision). (b) Distribution at the
transition between independent and strongly adaptive decision. (c)
“Polarization phenomenon” in the case of strong neighbor-neighbor
interaction.
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processes, e.g., unstable situations where the social climate
parameter is changed to a critical value. Here suddenly
large groups adhering to an opinion are formed which are
dissolved only slowly, and it remains uncertain which group
(+ or —) finally wins. Using the considerations of Sec. IT
it is obvious that again here concepts of phase-transition
theory become important, like critical slowing down (re-
member the duration of the 1968 French student revolution,
which led Weidlich and the present author to a discussion
about the possibility of such analogies), critical fluctuations,
etc. As has been stressed by Weidlich, such statistical de-
scriptions certainly do not allow unique predictions due to
the stochastic nature of the process described. Nevertheless
such models are most valuable in understanding general
features of cooperative behavior even of human beings,
though the behavior of a single individual may be extremely
complicated and not accessible to a mathematical descrip-
tion.

The model described above has been generalized by
Weidlich to several interesting examples, for instance inter-
action of a small group with a big group (e.g., management
and employees, or government and population etc.). Such
treatments reveal in particular how, and how quickly, public
opinion may change. It is quite obvious that many general-
izations can be now worked out, some of which are already
given by further papers of Weidlich (1972, 1973).

IX. NEURON NETWORKS

In the present chapter we want to demonstrate how the
concept of macroscopic variables or order parameters
proves to be useful in a description of cooperative phenom-
ena in neuron networks. We follow closely the work by
Wilson and Cowan (1972) and Wilson (1973) on a homo-
geneous cortical tissue model. We leave aside those papers
which deal with the neurons itself though they are also
very appealing to physicists [see e.g. Giittinger (1972,
1973), Hahn and Giittinger (1972)7]. One may readily
convince oneself that neuron activity in the cerebral cortex
must be cooperative in nature. This follows from the fact
that nerve cells can become active only if they receive
signals from at least 10 other cells, in a finite time interval
(of the order of 10 msec). This property evidently sup-
presses random noise and gives rise to cooperative effects.
One may further show that there is a local redundancy of
cell function which allows us to treat the functioning of the
cortical tissue as a two-dimensional problem.

Actual calculations have been performed with respect to
a one-dimensional model in the framework of a deterministic
dynamical system which neglects the impact of noise.2* The
model starts from the fact that there exist two types of
cells, namely excitatory and inhibitory cells. Their distribu-
tion over the tissue is taken to be homogeneous with surface
densities p. and p;, respectively. We denote by E(x, ¢) the
excitatory neuron activity, or more precisely p.E dx d¢ is

% Here we have in mind the conventional concept of ‘“noise.”
Landauer (private communication) has defined a generalized “noise”
in the following sense. “Noise’’ may be anything which causes ensemble
members which are together initially to depart from each other with
time. In this sense the distribution function D,(8) [compare Eq.
(9.3) ], just like a lack of reproducibility in computer components, is
really noise. It causes é-function distributions to become spread out,
just as thermal agitation does.
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the number of excitatory cells becoming active during the
time interval dt in the space interval dx, or in short, E is the
transition rate of the neuron to its active state. In a similar
way we define the inhibitory neuron activity I(x, ¢). In the
following we will derive equations for E and I using plaus-
ability arguments.

Consider a single cell (or a distribution of equivalent
cells). It is known that the so-called post-synaptic potential
PSP generated in that cell is caused by activity in all other
cells. On the other hand the post-synaptic potential, after
reaching a certain threshold, allows the cell to emit signals.

We denote the transfer functions transferring signals be- .

tween excitatory and inhibitory cells by Be.c, Be,i, Bies Biis
and assume that postsynaptic effects are additive. For the
corresponding processes the postsynaptic potential of exci-
tatory cells reads

PSP,(x, t)

= f_w Beool| 2 — &' N E(s', 1) da’

_ f_m Bu(| & — & NI, 8) df - P(x, 1) (9.1)

where P(x, t) is an external input for the tissue from other
parts of the brain or from 'sense organs. Denoting spatial
convolution by ®, Formula (9.1) may be written as

PSP(2,1) = Bee ® E— B ® I + P(,1). (9.2)
Equation (9.1) assumes that the transmission of signals
occurs instantaneously.

We now derive the equation for E. As already mentioned
a cell becomes active only if its PSP exceeds a threshold
value, O, and furthermore if it is sensitive, i.e., if it is not
refractory. The number of cells becoming active is propor-
tional to the proportion of excited cells above threshold
times the number which is sensitive. If there is a distribu-
tion of threshold D.(0) the number of cells .S, receiving
superthreshold excitation is given by

S.(PSP,) = f o D(0) do. (9.3)

0

A typical function (9.3) is plotted in Fig. 11. Apparently it
describes some sort of saturation behavior. The proportion

10F T
FIG. 11. Plot of a typical
sigmoidal function. The
~ particular function shown
<L o5t | here is the logistic curve:
& S(PSP) = 1/[1 + exp
(—a(PSP — 9))] with g =
5, a=1. (After H. R.
Wilson (1973) in Syner-
getics.)
0 . 1
0 5 10
PSP
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of excitatory cells at ¥ which are sensitive at the time
t -+ otis givenby 1 — rE(x, t), where 7 is the duration of the
refractory period. We are now in a position to establish the
equation for E. If there were no signals from other cells, E
would decay within a time 7 so that its equation would read

7(dE/dt) = —E. (9.4)
On the other hand, the rate at which cells become active is
given by (1 — 7E) S(PSP.). Replacing PSP, by Eq. (9.1)
we obtain the final equation

T(OE/3t) = —E+ (1 — 7E)S[Bee ® E — B:c ® [

+ P(w,2)]. (9.5)
In a similar manner, one obtains for the inhibitory activ-
ity, the equation

7(@I/dt) = =T+ (1 —rD)S[Bs @ E— B ® I

—Q(x,0) ] (9.6)
Equations ’(9.5) and (9.6) are nonlinear equations for E
and /. They have forms which also occur in physical prob-
Iems and must be solved by computer. Wilson and Cowan
have used the following explicit forms for .S and g.

S(PSP) = {1+ exp[—a(PSP — ©)]}, (9.7)

B(lo—o'|) = bexp(— | & — &' |/0). (9.8)
Equations of that sort are typical for active circuits.

Three different kinds of modes were found by computer
solutions.

(1) Stable and spatially inhomogeneous steady states.
Such states may play a role in active short term memory,

(2) Limit cycle type oscillations in response to main-
tained stimulation. For sufficiently broad stimuli one can
obtain edge enhancement. This class of solutions includes
coherent oscillation and frequency demultiplication (com-
pare Fig. 12).

(3) An active transient mode which remains spatially
localized. We mention that through this model comprising
1), 2), 3) a number of experiments on vision for instance
but also on other effects, find their explanation. It would
take us beyond the goal of the present article to enter into

050 T T T T T T
0.25f j\ B
o
1 I m M I I
1 1 1 1 1 1
0 50 100 150 200 250 300
tin msec
FIG. 12. Frequency demultiplication in the neural response to a

stimulus pulse train. Each stimulus pulse had a narrow, rectangular
spatial profile. (After H. R. Wilson (1973) in Synergetics.)
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the details of these interpretations. It seems important to
note in our present context, however, that reasonable
modelling may explain a number of observed brain responses.

PART II: THE MATHEMATICAL APPARATUS

While in the first part we have given a number of explicit
examples of cooperative effects in systems far from thermal
equilibrium, in part II we want te present a coherent
account of the methods enabling us to deal with such sys-
tems. We have tried to include in particular very recent
developments, such as methods for solving master equations
and Fokker-Planck equations. This second part is organized
as follows: Sections X—XTT deals with classical systems; Secs.
XIII-XV with quantum systems. In Sec. XVI we present
the method of quantum 'classical correspondence which
allows us to transform the quantum mechanical problem
into a c-number problem. For the article to be self-contained
we start with a few reminders of concepts of probability
theory.

X. SOME BASIC CONCEPTS OF PROBABILITY
THEORY WITH APPLICATIONS TO PHYSICS AND
RELATED DICIPLINES*

A. Random variables and probability densities.
Definitions

Consider a random variable £ which may adopt continuous
values. Each measurement gives rise to a realization of the
random variable. Those realizations are denoted by &, &, » -«
We define the mean value (expectation value) by

(&) = lim E—li—ﬁni—&‘ (10.1)
and that of an arbitrary function g of £ by
(€(®)) = lim (1/n) 2 g(&). (10.2)

n—>0 v=1

Using Dirac’s 6 function we define the probability density by

filg) = (& — ) (10.3)
Because often the value of ¢ is denoted by the same letter
as the random variable £ itself, we replace f¢(q) by f:(£).
Dropping the redundant subscript we obtain f(£). The
probability density must be normalized

F7®) dg = 1. (10.4)

The mean value (expectation value) of a function g(¢) is
obtained by means of f through the formula

(8(8)) = Jg(&) f(¥) dt. (10.5)
The characteristic function is defined by
O (u) = (exp(iu))

= [ exp(iug) f(£) dt. (10.6)

% Readers interested in more details are referred to the excellent
review articles and books by Lax (1960, 1966a, b) and Stratonovich
(1963, 1967), respectively.
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Momenis are defined by

my = (£"); n=1,2,+--. (10.7)
They may be obtained from the characteristic functions as

derivatives

mn = (1/1")[d"0¢(u) /du] |yumo. (10.8)
Cumulants k, are defined by
) (iu)n
O¢(u) = exp {> — kot . (10.9)
n=1 L

Taking the logarithm of (10.9) on both sides, the coeffi-
cients &, of the Taylor expansion with respect to u are given
by :

ko = (1/i*)[d" InO¢(u) /du"] |ueo. (10.10)
The first cumulants read

by = my, (10.11)

ky = my — myt. (10.12)

If ¢ has discrete realizations u, one has to replace the &
function 6(¢ — ¢) by &, and correspondingly define the
average value of g(£) by

&) = 2 gw) f(u). (10.13)

If £ has both continuous and discrete values one has to
replace the integrals by Stieltjes’ integrals. The above
definitions are readily generalized to several random vari-
ables &, -+, £. (Note the change of definition of the £’s,
because the indices now denote no more realization of the
single stochastic random variable but distinguish different
random variables!).

The probability density is defined by
Jae(@reeeg) = @6 — q) -8 — ¢2) (10.14)
and the average of an arbitrary function g of £ to &, by

(g(&,‘ * 'Er)>

= f' ° 'ff(i:l;' ° 'Er)g(gl;' ° 'E’r) d&' * 'dgr- (10'15)

Equation (10.14) implies the normalization condition

Jor oS fEye e, &) dae e odt, = 1. (10.16)
We introduce the abbreviation
&) = [f(&, &) d&, (10.17)

where f(£1) gives the probability of finding & irrespective
which value of & is accepted. We then define the conditional
probability density as follows: for two variables we have

fEl &) = f(&, &)/f(&) (10.18)



98 H. Haken: Cooperative phenomena

and in the general case we define the conditional probability
density

.

f(sly' ooy & | SASTLEEN g"‘) = f(sb" % ‘E?‘)/f(gk+l;" ) gr);

(10.19)
where

FErpnyee ey &) = [ooo [ fl&r,e 00, &) dEre e - d. (10.20)

If we let the indices 1, -+, » become continuous variables
and identify them with the time ¢, the set of random varia-
bles £ may be described as a random function £(¢). Now
taking a discrete time sequence #,- - -, ¢,, we may transcribe
the definition (10.14) into the definition of the probability
density of a random function

felguee e, @ity e, ty) = (8(q — E(8)) -+ +8(g- — E(8)))
(10.21)

Correspondingly the characteristic function is defined by

67‘(”1;' © Uty tf)

= (expi(m(t) +-+ -4 wt(1)), (10.22)

and the cumulants by

er(“l;' te, Ups by, t,-)

= exp {Z v > Eko(fay,e vy ta,) taye -ua,} (10.23)

=1 s! IR

in straightforward generalization of the corresponding defi-
nitions (10.6) and (10.9), respectively. We now come to a
very important notation. The random function £(¢) is said
to represent a Gawussian process if all cumulants other than
the first two vanish, i.e., if

bs=Fky=+2-=0 (10.24)

holds. In that case the characteristic function is represented
by

91'(“17' Cry Ury by, t'f)

= exp{4, Z kl(la)ua - % Z kz(ta, tﬂ)uaug}.

a=1l a,B=1

(10.25)

If one defines moments in generalization of Eq. (10.8) one
extablishes immediately from Eq. (10.25) that all moments
may be expressed by the first two cumulants 1, 2 or, because
the first cumulants may be expressed by the first and second
moments, all higher moments may be expressed by the
first two moments. If &, - -, & have discrete realizations one

has to replace the integrals by sums, and if both discrete

and continuous realizations are present one has to replace
the integrals by Stieltjes integrals.
B. Markov process and stochastic equations

We now come to a second definition which plays an im-
portant role in many practical applications. We therefore
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begin with a motivation for this analysis. As we have
seen, in practical examples we are often dealing with macro-
scopic variables or order parameters which change slowly
compared to the motion of their subsystems. Or using
the still more familiar example of a Brownian particle,
the velocity at each moment of the Brownian particle
depends on the last push it has received. We now de-
fine this property in mathematical terms and call it M arkov
process. Let ¢(t) be a random process and (#;, fy+++2,) be a
given time sequence with '

h>lrer> (10.26)
We consider the conditional probability density
folg(t),- -, q(t) ]
fEQ(t) i (t)y"') (tn>]= .
VR S T, g
(10.27)

A process is called Markovian if the left-hand side of Eq.
(10.27) depends only on ¢(%) and not on the preceding
process. Thus we may write instead of (10.27) [with
g = q(t:)]

g gzr ey gn) = pun(a, @) (n>2). (10.28)
We call
pun(q, @) = wla| @), L>bh (10.29)

the transition probability. Multiplying Eq. (10.27) on both
sides by f.—; and then applying this formula recurrently
using (10.29) we find the formula

f(ql:"': qn)

= Pun(qi, g2) Prat(ge, g5) * * * Prasta(Gnos, gn) f(gn).
(10.30)

Using the definitions (10.19), (10.20) and (10.29) one
immediately obtains the Chapman—Kolmogorov equation

JPu6(q1, @) Pru(a, ¢s) dge

= puu(q, @); (th >t > t5). (10.31)
It may be generalized to an #-dimensional vector g and then
reads

Joo [ pun(@y, Qo) P (ds, 4s) drge

= puu(@u@);  (h>0>h). (10.32)
If ¢ acquires only discrete values the integrals must be
replaced by sums. Multiplying both sides of Eq. (10.31) by
f(gs) and integrating we find another form of the Chapman~—
Kolmogorov equation, namely

(g, 1) = [Pe,1(q @) (o, o) dgo (10.33)
in one dimension, or
(@, 1) = [+ Jpuuld, Qo) f(Qo, to) d"go (10.34)
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in n-dimensions, or if discrete values are present

f(nl)"°7 Wy l)

Z Pl.to(”l,' S0y Npy My,e ooy, mr) f(ml)' °cy My lo).
Lyeee mr

m

(10.35)

We obtain the so-called stochastic equation if we take on
both sides of (10.35) the time derivative (¢ = f, + = with
7—0).

NI

= Z Ijt,to("h"‘; (7N mly"',mr) ’t=to
my,e .. My

X [y, e, me; t). (10.36)
Denoting the transition probability per unit time by W we
find

f(nb' *0y My t)

= E W(nl:"': ”r;mly"'?mr)f<m1)"';mr;t)~

my,ee mr

(10.37)

We now return to the case in which ¢ is a continuous
variable. Then one may deduce from Eq. (10.33) by a
formal expansion in (¢ — go) (compare also Sec. XI.A)
the stochastic (kinetic) equation

fo = £ (- 5) &0 5@)] (1038)
with the definitions

K.(¢) = lim [m.(q)/7] (10.39)
and ”

ms(q) = ((¢ — 9)°). (10.40)

The formulas (10.38)—(10.40) may be used rather simply
e.g., to derive the Fokker—Planck equation from Langevin
equations by determining ¢, for small values from these
latter equations. The derivation of Eq. (10.38) from (10.33)
may be justified in several explicit cases on physical grounds.
For instance one introduces the inverse volume as expansion
parameter (compare Sec. XI). It should be noted, however,
hat such an expansion may require an infinite number of
derivatives, for instance near instabilities (phase transi-
tions). On the other hand in many important cases it is
sufficient to terminate the expansion (10.38) after the first
two derivatives. If K3, K4, ++ = 0, the process is called a
continuous Markov process and one obtains the Fokker—
Planck equation

f(@) = —(8/99)[K:1(9) f(9) ]+ 3(3*/0¢) [K2(q) f(9)].
(10.41)
If the initial distribution function at ¢ = 4 is a 6 function

fu(@) = 8(g — qo),
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