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This article consists of two parts. The first part presents a tutorial approach to cooperative phe-
nomena in systems far from thermal equilibrium and in nonphysical systems. Particular emphasis
is placed on the question of how order and self-organization may arise. The following example is
treated among others: the ordered phase of the laser giving rise to both coherently oscillating
atomic dipole moments and coherent light emission. A complete analogy of the laser light distribu-
tion function to that of the Ginzburg-Landau theory of superconductivity is found mathematically
which allows us to interpret the laser threshold as a quasi-second-order phase transition with soft
modes, critical slowing down, etc. Similar phenomena, again closely resembling phase transitions,
are found in tunnel diodes and in the nonlinear wave interaction which occurs, for example, in
norilinear optics. Remarkable analogies between the instability of the laser and those in hydro-
dynamics are elaborated. While these phenomena show pronounced analogies to phase transi-
tions in thermal equilibrium, there are further classes of instabilities and new phases which rather
resemble hard excitations known in, electrical engineering. Chemical oscillations are particularly
important examples. In addition, the first part of this article contains the example of the cooperative
behavior of neuron networks and shows the applicability of simple physical concepts, e.g., the
Ising model, to the problem of the dynamics of social groups. All these above —mentioned examples
demonstrate clearly that rather complex phenomena brought about by the cooperation of many
subsystems can be understood and described by a few simple concepts. One of the main concepts
is the order parameter; another is the adiabatic elimination of the variables of the subsystems,
which is based upon a hierarchy of time constants present in most systems. The second part of
this article gives a systematic account of the mathematical tools which allow us to deal with Quctua-
tions. It contains the master equation, the Fokker —Planck equation, the generalized Fokker-
Planck equation, and the Langevin equations, and gives several general methods for deriving the
stationary and, in certain cases, the nonstationary solutions of master equations and the Fokker-
Planck equations. Such general classes comprise those in which detailed balance is present or in
which the coupling to the reservoirs is weak. In the quantum mechanical domain, the density
matrix and the projection formalism for its reduction are presented. Finally, it is shown how the
principle of quantum-classical correspondence allows us to translate quantum statistical problems
completely into the classical domain.
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In physics there are numerous examples of such behavior,
e.g. the ferrornagnet, where the parallel alignment of the
spins causes a macroscopic magnetization, or the super-
conductor which behaves as a quantum system with a
macroscopic wavefunction. While these systems go into the
ordered state when temperature is lowered, pronounced co-
operative phenomena may also occur in physical systems far
from thermal equilibrium, and may occur even in non-

PART I: A TUTORIAL APPROACH

I. INTRODUCTION

We often analyze the properties of a system by decom-
posing it into its subsystems. In many cases we discover
that these properties cannot be explained as mere random
superimpositions of the effects of the sybsystems. Quite to
the contrary, the subsystems seem to cooperate with each
other in a well regulated manner. Furthermore, the behavior
of the total system may show characteristic changes which
can be described as a transition from disorder to order, or,
as a transition from one state of order to a different one.

physical systems. In physical systems far from equilibrium
the ordered states are created and maintained by an energy
Aux passing through the system. Thus it is not surprising
that such systems comprise active devices like lasers, tunnel
diodes, Gunn oscillators, etc. , which have technical appli-
cations.

It came as a surprise to many physicists, however, that
there are profound analogies between the behavior of such
systems and the behavior of conventional systems in ther-
mal equilibrium. These analogies include phenomena char-
acteristic of phase transitions, such as: symmetry breaking
instabilities, critical slowing down, sof t modes, critical
fluctuations, etc. (for an explanation of these concepts see
Sec. II) . The discovery of these analogies have a number of
independent sources and elaborations. These include Land-
auer's work (1961, 1962, 1967, 1971a, 1971b) on tunnel
diodes and data processing, the work by Haken (1964,
1970), Martin (1965), Graham and Haken (1968, 1970),
De Giorgio and Scully (1970) and others dealing with
lasers and related devices, and the work of Pytte and
Thomas (1968, 1969) with respect to the Gunn effect, to
mention a few examples.

The purpose of the present article is twofold.

(1) We want to show by means of examples selected
from different disciplines how subsystems act to create
order on a macroscopic scale.

(2) We want to develop the concepts which underlie all
these seemingly quite di fferent systems, including some
biological and sociological models.

The systems with which we- are concerned possess an
enormous number of subsystems (or degrees of freedom).
The determination of the detailed behavior of any individual
subsystem is, in general, hopeless —but fortunately, this is
not needed. We are interested in features only on a macros-
copic scale. Thus, it is our task to select the relevant param-
eters and to do away with all unnecessary information. To
achieve this goal, the concept of the order parameter, well-
known in phase-transition theory, has turned out to be a
very useful tool. For example, consider the mean field theory
of the ferromagnet. In this theory direct interaction (caused
by the Coulomb exchange interaction) between the spins
is replaced by a two-step procedure: first a macroscopic
quantity (the magnetization) is constructed, generated by
the different spins; then this magnetization acts on each
individual spin to tell each how to behave. The magnetiza-
tion acts as an order parameter in two respects. It gives
orders to the subsystems and it also describes the degree of
order (it is zero in the disordered state and acquires a
maximum value in the ordered state) . The order parameter
(or a set of such parameters) represents the behavior of the
system on a macroscopic scale, and is thus a macroscopic
variable.

Often the equations for such order parameters acquire a
rather simple structure with respect to their time depend-
ence. The reason for this is that the relaxation time of order
parameters is usually much greater than those of the sub-
systems. Thus the subsystems can follow the "orders" of the
order parameter adiabatically and the variables of the
subsystem can be eliminated without increasing the degree
of the time derivatives. The long relaxation time or, in
other words, the long lifetime of the order parameter allows
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it to "slave" the subsystems (a technical expression from
control systems engineering) .

This concept of the order parameter also sheds new light
on the problem of self-organization: the subsystems them-
selves create fictitious or real quantities which via feedback
loops organize the behavior of the subsystems. It is nearly
superfluous to say that there are close analogies between
the equations of the order parameters we will obtain, arid
those of control circuits, e.g. , in electrical engineering.

In certain classes of systems the disorder —order transitions
are characterized by an infinite relaxation time at the transi-
tion without oscillations of the corresponding order param-
eter. In this case the above —mentioned analogy with phase
transitions applies. An important difference shouM be men-
tioned, however. In usual phase-transition theory the use
of the order parameter concept may break down close to
the critical point, and has to be replaced by other methods,
e.g. , the scaling laws )see Kadanoff et al. (1967)$ or Wilson's
techniques (Wilson 1971a,b), yet this concept remains
extremely useful for the systems treated in our article. One
reason is that a thermodynamic limit in many cases is not
required. Instead, a limit may even obscure a problem, e.g. ,
the reliability of a device due to its finiteness. Furthermore,
some of the phenomena depend on the geometry of the
system. I.et us discuss the phase-transition analogy to
systems that are in and far from thermal equilibrium a bit
further. Landauer suggested that a link among such systems
is provided by the principle of detailed balance, and this
conjecture has since been proven by Graham and H3ken
(1971a,b). It should be stated clearly, however, that this
principle applies to systems in thermal equilibrium al-
though it need not necessarily hold for other systems which
may show more complexity. The situation is rather this:
when a system far from thermal equilibrium becomes un-
stable with a soft mode, its dynamics is governed by a single
degree of freedom and can often be described by a continu-
ous Markov process. In such a case we may invoke the
principle of detailed balance. Thus, close to such a point
this principle holds to an excellent approximation, and it
appears as a prerequisite for phase-transition-like behavior.
In this case we now have a complete description, including
the behavior in the transition region.

In general, however, the principle of detailed balance can-
not be invoked for systems far from thermal equilibrium.
This may easily be seen in the example of a three-level atom
which is pumped to its uppermost level and which then
undergoes further transitions between its levels. Further
examples of the violation of this principle are provided by
chemical oscillations. Here the situation is much less well
understood and requires further developments. We hope
that the degree of understanding of the various categories
is clearly mirrored by our examples.

An adequate treatment of all these phenomena requires
a statistical description which we have adopted throughout
this article. We will see that the behavior of the systems is
determined by some causal forces and fluctuating forces.
The fluctuating forces which act on the order parameters
are the trace left by the "underworld" of the subsystems
(and other "reservoirs") . Our models will allow us to study
in detail the interplay between the stochastic forces and the
coherent forces, or, in a more philosophical language, the
interplay between chance and necessity. The detailed

II ~ SOME BASIC CONCEPTS'

A. The damped anharmonic oscillator
In this section we anticipate that the variables of the

subsystems have already been eliminated and that we are
dealing with the equations of the order parameter alone. A
great many concepts can be exempli6ed by means of the
damped anharmonic oscillator. As we will see later, its
coordinate q may stand for the coordinate of a particle,
for its velocity, for the size of the charge, for the magnetiza-
tion, for the electric field strength or for many other quan-
tities. We hope the following analysis will demonstrate how
concepts from such different disciplines as nonlinear me-
chanics, electrical engineering, phase —transition theory,
thermodynamics, fluid mechanics and other fields are linked
together.

However, because this article is written primarily for
physicists we first interpret q as the coordinate of a particle.
We denote its mass by ni, its damping constant by p, the
linear "restoring" force by —nq, and we introduce the non-
linear restoring force —Pq'. The equation of motion reads

mI7+ yj = nq —Pq'. — (2 1)

The force

k(q) = —nq —Pg'

possesses a potential

k(q) = —(BV/8g),

where

(2.2)

(2.3)

V = —',nq'+ -',Pq'. (2.4)

The potential is plotted as a function of the coordinate q for
different values of n and P in Figs. 1 and 2. In the follow-

This paragraph is intended primarily for students. Experts may
6nd it amusing to see ho+ many concepts are brought out in this simple
example.

'

mathematical apparatus for the models is developed in the
second part of this article and includes results obtained very
recently. This mathematical apparatus is also readily
applicable to some biological problems, e.g. , to the theory
of evolution.

In conclusion, a word should be said of the relation of the
approach presented in this article to approaches made
within irreversible thermodynamics, or to still more ad-
vanced thermodynamical approaches like that by Glans-
dorff and Prigogine. In our approach we start from sto-
chastic equations of motion either for microscopic systems
or for systems described by order parameters. The thermo-
dynamic approach begins with the assumption that there
exists local thermodynamic equilibrium; this allows us to
define quantities like entropy, so that the principle of
excess entropy production (Glansdorff and Prigogine) can
be applied. While this principle proves to be a, useful tool in
the "linear regime, " its applicability to the "phase-transi-
tion" region which requires a truly nonlinear treatment
seems to require further investigation.
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FIG. 1. The potential U (2.4) as a function of q for P ) 0. Solid
curve, n ) 0; dashed curve, n & 0.

broken. . The particle is now either at qt or at qs /compare
Eq. (2.8)). (Symmetry breakieg irrstability). Note, how-
ever, that on a global scale the potential is still completely
symmetric. In Quid dynamics the change of one stability
state to another is called an exchange of stabilities. The
steady state, where n = 0, q = 0, is a marginal state, i.e.,
it has neutral stability. In mathematics, the passing over
from one stable state to two new ones is known as (Hopf)
bifurcation, .

As we will see later, fluctuations usually must be incor-
porated in the order parameter equations. I.et us assume
that the particle gets impulses of equal magnitude, but
that it gets them randomly in forward or backward direc-
tion. These impulses are recognized by adding to Eq. (2.1)
the random force

4(t) = t Z (—1)"'b(t —«'), (2.9)

/
/

/

/
/

where ( stands for the size of the impulses, w; is a random
variable with values 0 or 1, and t; is a random time sequence.
6 is the usual Dirac function. We thus obtain

mq + pq = —ctq —ltq'+ @(t). (2.10)

For the sake of simplicity we confine our following analy-
sis largely to the heavily damped oscillator, in which case
we can formally put m = 0. Introducing further the new
quantities

F1G. 2. The potential V (2.4) as a function of g for p ( 0. Solid
curve, n & 0; dashed curve, n ) 0.

ing we will emphasize Fig. 1 where P ) 0. Figures 1 and 2
allow us to discuss global and local s/ability.

we may transform (2.10) into

q = —aq —bq'+ F(t).

(2.11)

(2.12)

(a) Global stability. In the case P ) 0 the system is
globally stable. V+ereever the particle starts it comes to rest
at a finite value of q. On the other hand we have global
instability for P ( 0.

We want to discuss this equation from various points of
view. In Eq. (2.12) the explicit form of the fluctuating
force (2.9) is not needed. What is needed are the correla-
tion functions. Because impulses in the positive and nega-
tive direction are assumed of equal size we have

(b) Local stability. Let us first consider the steady state
characterized by (F(t)) = 0 (2.13)

j= j=0. (2.5)

Using Eq. (2.1) the states of stable or unstable equilibrium
are then defined by

The brackets ( ~ ~ ~ ) denote the statistical average over the
direction of the impulses (i.e. , e,) and the times t;. For more
details about such averages consult Sec. X.A. In most
applications the correlation function

For a & 0, we have the stable solution

qo
——0.

(2.6)

(2.7)

(F(t)F(t') )

is needed. Using the form

F(t) = Fe Q (—1)"Q(t —t;),

(2.14)

(2.15)

In the language of mathematicians, this state is an "at-
tractor. " For n ( 0 the state qo = 0 becomes unstable
("repeller") . Instead, we have now the two stable solutions

one may show that

(F(t)F(t ) )
= F,'g S(t —t, )b(t' —t;)

qt, .= ~(l ~/0 I)'" (2.8)
(2.16)

With the transition from n ) 0 to o. ( 0 the system
passes through an instability by which the symmetry is where to is the mean time between impulses.

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975
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Forces, whose second-order correlation function (2.16)
is a 8 function, are sometimes called Markovian in the
literature. Some care should be exercised with this notation
to avoid confusion with the concept of a "Markov process"
(compare Chapter X) . For a complete analysis of Eq. (2.12)
we first put F(t) = 0. The time-dependent solution of
j = —aq —bq3 reads

(d/dt)6q+ ahq = F(t), (2.26)

which yields

We consider theguctuations of q in, the linearised theory and
solve the equation (a ) 0)

q(t) 8q = exp( —a/) exp(ar)F(r) d~ (2.27)

= & (a)'f'IexpL2a(t —t') ) —bI for u& 0
A measure for the temporal behavior of the system (the

(2 17) particle) is the correlation function of its coordinate. In-
serting Eq. (2.27) into

q(t)

= ~(l a I)'"Il —expL —2
I
a

I (t —t')1} "'
for a ( 0. (2.18)

(~q(t) ~q(t') &

yields after elementary calculations (for ts —+ —m)

{oq(t)Bq(t') ) = (C/2a) expL —a(t —t') j;

(2.28)

We define the coordinate q, of the steady state by j, = 0
and put

q = qs + ~q. (2.19)

Let us first linearize Eq. (2.12) around q, = 0 which yields

(2.20)

Note that a has the meaning of an inverse relaxation time.
In both cases a && 0, q tends to its equilibrium value. Be-
cause in more general cases of order-parameter equations
an explicit solution cannot be found, we must discuss
further tools for studying the motion of the particle. We
first investigate local stability by the method of linearisation

(2.29)

From Eq. (2.28) it is evident that as a ~ 0 not only the
relaxation time 7 = (1/I') becomes infinite, but also the
coordinate fluctuation ("critical fluctuations"). It is, how-
ever, an important point that the divergence of Eq. (2.28)
for a —+0 is caused by the linearization procedure, or, in
other words: while the Quctuations 6q for a & 0 or a ( 0
are finite and can in many cases be neglected, the lineariza-
tion procedure breaks down near the point a = 0. In the
exact theory, which avoids linearization, it remains true,
however, that at the critical point a = 0 the fluctuations
in 8q become large. In such a region the correlation function
(t) t')

with the solution
(q(t) q(t') ) (2.30)

8q = A exp( —I't), (2.21)

For a & 0 the system is stable, for a = 0 we have a marginal
state (neutral stability), for a ( 0 the system becomes
unstable. When a approaches 0, the relaxation constant I'
tends also to 0: we have the phenomenon of critical showing
doton connected with a soft mode. s If on the other hand
a ( 0, the coordinate of the stable point is

q = —aq + F(t) . (2.31)

can be found only by computer solution, even in our simple
example. The concepts of critical slowing down, soft mode,
critical Auctu, ations, and symmetry breaking, belong to the
standard repertoir of phase-transition theory.

We now proceed to some methods of statistical mechanics
Equation (2.12) may be considered as an extension of the
Langevin equation of Brotonian, motion

I q I
= (I a I/&) "'.

Inserting

(2.22)
Note that q is now interpreted as the velocity of a particle.
While it is quite simple to solve

('2.23) q = —aq —bq'+ F(t) (2.32)

into j = —aq —bq' yields

(d/dt) oq = —2
I
a

I Bq,

so that the relaxation time

(2.24)

in the linearized domain, its solution becomes a formidable
task even for this very simple case if the nonlinearity is
kept. It is advantageous to proceed to the Fokker —I'/anck
equation which is given by

f(q, t)
= (2l al) '. (2.25) = —(~/~q) (&(q) f) + s (~'/~q') (Q(q) f). (2.33)

'If at the instability undamped oscitlations occurs, we are dealing Here f(q, t) dq is the probability of finding the particle with
with a hard elicitation. coordinate q in the interval q. ~ .q+ dq at a time t. The
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general formulation of a Fokker —Planck equation will be
given in Sec. X. Here we only give a recipe which allows us
to determine E (q), Q(q). The so-cal!ed drift coe%cient K
is defined by

(2.34)

the diffusion coefficient by

(2) Vz(qp) = 0,

(3) in. a region surrounding qp Vz(q) ) 0,

(4) Vr. = k gradVz, ~ 0, (2.42)

where

(1) Vz(q) and its first derivative are continuous in a
region surrounding gp,

Q(q) = »m(1/t) ((q(t) —q(o)) ). (2.35)
q = k(q). (2.43)

In both cases one has to imagine that Eq. (2.32) is solved
for a time interval which still comprises many pushes of
F(t) but is small compared to the overall motion of the
system. In the present case one readily finds that K(q) is
identical with the force k(q) introduced in Eq. (2.2):

Then the stability criterion of I.iapunov states: If there
exists in a region surrounding qp a Liapunov function
Vr, (q), then qp is stable.

(b) The ftuctuatious. Expanding the exponent V(q) in F
(2.41) about the stable state of the svstem using

E(q) = aq —bq' —= —(&3V/Bq), (2.36)

and that
yields an expression for the probability of finding a Quctua-

(2.37) tion of size bq.

f(gp= ——
, ((

— f) —K —}. (2.38)

where C is dehned as the coefficient in the correlation func-
tion (2.16). The Fokker —Planck equation (2.33) thus reads

q)

1 1 O'V(q)= BT. exp —2 —V(o.) +—, (8q)*} .
C 2C 8q'

(2.44)

Having in mind that f has the meaning of a (probability)
density, Eq. (2.38) has the form of a conservation law:
Denoting the probability current by j, we obtain

(c) the dynamics Here V(.q) (or V/C) can serve as a
criterion for the development of the system. Evidently the
system with initial state q develops in time such that at a
later time

f = —(~/~q)i. (2.39)
V(q) ( V(q ) (2.45)

In the stationary state

=0

we-readily find the solution

holds. Furthermore, from the knowledge of V(q) one may
(240) deduce the equation of motion without fluctuating forces

by means of

q = —(BV/Bq).

j= 0, j = m exp(- ")
= K expI —(2/C) (-,'aq'+ ~ibq4), (2.41)

where we have taken into account that f vanishes at in-
finity, because f must be normalizable.

The distribution function f is of great importance be-
cause it governs the stability, the ftuctuations and the
dyn, amies of the system.

(a) The stability Acomparison w. ith our previous con-
siderations reveals that those systems are globally stable
in which f is normalizable. We call a point qp locally stable
if the exponent in Eq. (2.41) has a local maximum at that
point. (This maximum can be also metastable if there are
other maxima which yield a higher probability f). V serves
as a Liapuuov fuivctiou Vz, which fulfills the following
criteria: gut Vi. (q) = V(q) —V(q())!j.

a —+ (y/m), F -+ (@/m).

Using (2.27), (2.28), (2.29) and putting

(4 (t) 4 (t ) ) = C b(t —t ), (2.46)

We now abandon the description of our problem in the
terminology of mechanics and statistical mechanics and
turn to thermodyrIomics, where we consider the problem of
Brownian motion. We assume that the random pushes
exerted by the random force F(t) on the particle are caused
by a "heatbath" in thermal equilibrium into which our
particle is immersed. To obtain the correct physical proper-
ties of the fluctuating force we must go back to Eq. (2.10)
where we put o. = P = 0, assuming that a coherent force
k(q) does not influence the random impulses supplied by
the heatbath. The resulting equation has the form (2.26)
provided we make the following replacements in (2.26)
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we obtain (with m
—= q) Because the final state is supposed to have the same energy

as the initial state we must take the energy (2.53) away
from the system in the form of heat, i.e. ,

On the other hand, we know that in thermal equilibrium V(q)
T

(2.54)

(ni/2) (v') = -', koT, (2.48)
Application of Eq. (2.51) to our present case yields

where k~ is the Boltzmann constant, and T the absolute
temperature. Comparing Eq. (2.48) with (2.47) leads to
the very important relation

C' = 2yk~T.

This states that the correlation constant C' of the fluctuating
forces and the damping constant y are connected with each
other by necessity. Passing from the fluctuating force p to
F according to Eq. (2.11), and using Eq. (2.49), we obtain
the constant C occuring in Eq. (2.16) as

C = C'/y' = 2koT/y. (2.50)

Such relations between fluctuation and dissipation are of
fundamental importance for all systems we will consider,
be they quantum systems or classical systems, or systems
in or away from thermal equilibrium. Relations which
generalize Eq. (2.50) to such systeriis have been found more
recently (see Sec. XII).

f(q) dq = rC exp(ko '5(q)) dq, (2.51)

where 5(q) is the entropy, kB is again the Boltzmann con-
stant, and K is the normalization factor defined by

% = I exp(kn '5(q)) dq. (2.52)

In later applications we will see that establishing functions
of the form (2.41) or its generalization is one of the main
goals of the theory. In thermodynamics we may determine
the probability distribution function f directly by general
principles rather than by solving the Fokker —Planck
equation.

To this end we remind the reader of the relation between
entropy and probability. Consider quite generally a sub-
system within a closed system. The state of the subsystem
is described by the parameter q which together with its
temperature determines its energy. We permit thermal
energy to be exchanged with the rest of the total system
as the subsystem is subject to coherent forces. According to
thermodynamics, the probability of finding the subsystems
in the interval from q, to q + dq is given by

f(q) dq = K exp( —(1/k&T) V(q)) dq. (2.55)

This result is identical with Eq. (2.41), provided we use
Eq. (2.11) and the relation (2.50) .between dissipation and
fluctuation coefFicients. I.et us now expand V(q) around its
equilibrium point qo in powers of 6q. This yields apparently
the probability w(q) for a fluctuation of size bq This .Einstein
ref g,lion yields

8'5
w(q) —exp (Bq)' ~.

2ko ciq' j (2.56)

(Note that the derivative of V vanishes at the equilibrium
point. )

Our example of the overdamped anharmonic oscillator
is also a simple example for the demonstration of the I.aedan
theory of phase transitions. It starts with the expression3

f(q) = V exp (5/kn), (2.57)

5 = diq + dsq + ' ' ' (2.58)

Apparently the first two members of 5 already yield the
correct potential (2.53), though in general the explicit form
of the coeKcients d~, d2 remains unknown in the Landau
theory. In cases similar to our present problem, one may
deduce, at least qualitatively, the dependence of dj, d'2 on
some of the important constants of the problem, in particu-
lar on the constant a. If a changes its sign the total sym-
metry remains but a new state occurs with new equilibrium
positions. We therefore expect d» ~ a in agreement with
our previous results.

and tries to determine 5 as a function of the "order param-
eter" q by symmetry arguments. Particular attention is
paid to the case in which an instability for a = 0 occurs.
The potential V possesses mirror symmetry with respect
to the V axis, i.e. , it remains invariant under the trans-
formation q

—+ —q. Because the probability distribution
must have the same invariance as the problem, 5 must be
also an even function of q which can be expanded a.round
the equilibrium value q = 0 as

We show in a well-known manner how to determine S(q)
directly in the present case where q is identified with the
previous coordinate q. We compare the two states q = 0
and q ~ 0 having the same energy. The energy needed to
bring the particle from q = 0 to q (neglecting kinetic
energy) is

B. Some general conclusions

So far we have discussed a very simple system in thermal
equilibrium. In the next paragraphs we will demonstrate by
explicit examples that we are led to equations of the form

' Depending on the physical situation, S must be replaced, e.g, by
(2.53) the free energy or some other thermodynamic potential.
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(1) Equations of motion. Let the system be described by
the order parameters qi, ~ ~ ~, q„(which may also depend on
a continuous index n) .
In many cases, Langevin equations of the type

j, = k, (qi, ~ ~ ~, q„) + F, (/) (2.59)

can be derived. These equations may be generalized to the
quantum case, where q and Ii become operators. Both for
classical and quantum systems there exist general relations
between fluctuation and dissipation. Local stability may
be studied by the method of linearization or by the Liapunov
theory. A classification of critical points (if k, can be derived
from a potential) has been achieved by Thorn (1972).
However, we will not consider his work in this article. From
Eq. (2.59) one may deduce a Fokker —Planck equation (or
a generalized Fokker —Planck equation). Such an. equation
can also be derived from the density matrix equation
through the principle of quantum-classical correspondence.

(2) Methods of solution, . As we have seen, a great number
of conclusions, particularly concerning critical points (in
our example a = 0), can be drawn if the stationary solu-
tion of the Fokker —Planck equation is known. Explicit
stationary solutions of the Fokker —Planck equation are
known in the following cases:

(a) if the drift coeKcients (compare (2.33), (2.34))
are linear in the coordinates and if the diffusion coeKcients
are independent of the coordinates,

(b) if the system shows detailed balance,
(c) if the system is weakly coupled to reservoirs,
(d) if the system is far from critical points showing

just "normal fluctuations" (more precisely: normally dis
tributed fluctuations). Time-dependent solutions may be
found quite generally for (a) and (d), and, to some extent,
for (c). In general, however, evaluation of time-dependent
correlation functions requires numerical methods or certain
approximation schemes.

The examples which follow will show that the analysis
of our simple example above (including concepts like critical
slowing down and stability) apply in many cases to systems
far from thermal equilibrium as described by a variety of
order parameters. There remain, on the other hand, other
classes which at the present time are less understood, at
least so far as fluctuations are concerned. These classes are
characterized by hard excitations (in the terminology of

(2.12) or its generalization to many coordinates for systems
which are far from thermal equilibrium. In these cases q
may represent quite different quantities, e.g. , the laser
light field, electric currents, velocity fields in fluids, con-
centrations of chemical reactants, etc. The stable states
q = q, & 0 are now maintained by a balance between
energy input and dissipation. Most important for our sub-
sequent treatment will be the fact that a great deal of the
above analysis applies equally well to these more general
cases. We briefly give a review of what has been achieved
and which problems are still unsolved. The full mathe-
matrical apparatus will be developed in Part II of this
review article.

electrical engineers) and by "cyclic balance, " a concept
introduced by Tomita (1973).

III. GOOPERATIVE EEFEGTS IN THE LASER

The laser is today one of the best understood many-body
problems. 4 It is a system far from thermal equilibrium and
it allows the study of cooperative effects in great detail.
The essential feature to be understood about the laser is
the following: If the laser atoms are pumped only weakly
by external sources, the laser acts as an ordinary lamp. The
atoms emit waves with random phases independently of
each other. The coherence time of about 10 " sec. is evi-
dently on a microscopic scale. The atoms, visualized as
oscillating Gipoles, are oscillating completely at random. If
the pump strength is increased, within a very sharp transi-
tion region the linewidth of the laser light may suddenly
become of the order of one cycle per second. The phase of
the field then remains unchanged on a macroscopic scale of
1 sec. Thus the laser is evidently in a new highly ordered
state on a macroscopic scale. The atomic dipoles now all
oscillate in phase, though they are excited by the pump
completely at random. The extraordiri ary coherence of
laser light is brought about by the cooperation of the atomic
dipoles.

Let us now consider the laser in more detail. We take as
an example the solid state laser which consists of a set of
laser-active atoms embedded in a, solid state matrix. As
usual we assume that the laser end faces act as mirrors
serving two purposes: they select modes in the axial direc-
tion and with discrete cavity frequencies. In our model we
will treat atoms with two energy levels. In thermal equi-
librium the levels are occupied according to the Boltzmann
distribution function. The excited atoms form an inverted
population which can be described by a negative tempera-
ture. The atoms now start to emit light which is eventually
absorbed by the surroundings, whose temperature is much
smaller than A'&u/k& (where co is the light frequency of the
atomic transition and ko is Holtzmann's constant), so that
we may put this temperature 0. From a thermodynamic
point of view the laser is a system (composed of the atoms
and the field) which is coupled to reservoirs at different
temperatures. Thus the laser is a system far from thermal
equilibrium. Nevertheless we want to demonstrate that it
shows all the features of a second-order phase transition. 5

4 For a detailed account of the various aspects of laser theory, see
Haken (1970) and Sargent, Scully, and Lamb (1974). These works
include in particular the quantum statistics of the single mode laser,
which is also treated by Lax (1968), Lax and Zwanziger (1973), and
Louisell (1973). We do not intend to duplicate these works here, but
rather to present those aspects of laser theory which are the most
relevant ones in the present context. Our analysis is mainly based on
our previous papers (Haken, 1962, 1964, 1965, 1966, 1969, 1970a, b,
c; Arzt eP a/. , 1966, Graham and Haken, 1968, 1970), with particular
emphasis on an interpretation in the spirit of the present article. From
a mathematical point of view, our approach (as well as essential
parts of Lax's and Louisell's work) is mainly based on the Langevin
and Fokker —Planck equations ref erring to field amplitudes, while
that of the Scully —Lamb theory uses the master equation which is
dealt with in the photon number presentation. For further references
consult the text and, in particular, the above mentioned books and
articles.

5%e do not enter into the discussion on the existence of the thermo-
dynamic limit. Suffice it to say here that the single mode laser with
the number of atoms E tending to infinity possesses such a limit,
causing a sharp transition at the laser threshold (Dohm, 1.972a, b).
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" 4xo, 4x -.—bE+ —+E E = ——P,
c2 C2 C2

(3.1)

where cr, is the conductivity which describes the damping
of the field, and I' is the macroscopic polarization. Thinking
of atoms dispersed in a medium, we may represent th' e
polarization as a sum over the individual atomic contribu-
tions at sites xp by

I'(x, t) = Q b(x —x„)r„(t), (3.2)

A. Equations of classical dispersion theory

The mathematical description we will employ is somewhat
reminiscent of the classical dispersion theory, which may be
characterized as follows: The electric Aeld strength obeys
the wave equation

We now proceed to dimensionless quantities a„, n„+ by
putting

p„&+~ = e ~„, P (—) —+~~1*O +
21 p (3.7)

where &21 is the dipole moment matrix element between the
two atomic levels. For the experts we mention that o.„+, o.„
may be interpreted as rising and lowering operators of the
atom p. (Their explicit definition is as follows: We use
second quantization and denote the creation operator of an
electron in the level j of the atom p, by a,„+, the correspond-
ing annihilation operator by a;„. Then cx„+ = a2„+a~„and
cr» = at»+o~». ) We further denote the population of the
levels 2 arid 1 of atom p, by X2,„and X&,„respectively, and
put rr» = (iV~,»

—1Vt,») or using a;»+, o,»: o.„= a~»+a.»—
a1„+a1„. Denoting the coupling constants between field
mode X and atom p, by g„q, the Hamiltonian of the "proper
laser system, " field and atoms, becomes

where p„ is the dipole moment of atom p, . The field equation
(3.1) is supplemented by the equation of the atom, p,

p„+ 2yp„+ v'p„= (e'/m)E(x„, t), (3.3)

where y is the damping constant of the atoms.

B. The laser equations

While in a fully quantum mechanical treatment Eq.
(3.1) may essentially be kept, Eq. (3.3) must be replaced
by the quantum mechanical treatment of the single atom.
Because the procedure has been described elsewhere and
would take us far too much space, we present here only the
relevant features. The electric field strength may be ex-
panded into cavity modes in the form

II = P Ace), b~+b), + sA'v P o„+A Q (g»),*b),n»+ + h.c.) .

(3.8)

From the Hamiltonian we may proceed to Heisenberg
equations of motions for bq, by+, o.„+,n„, 0.„.The structure of
these equations is roughly analogous to those of Eqs. (3.1)
and (3.3), if use of the relations (3.2), (3.4)—(3.7) is made.
We hasten to remark that the proper laser system is still
coupled to individual reservoirs: in the case of the field,
for example, to currents in the mirrors, while in the case
of the atomic field, to lattice vibrations or nonlasing field
modes. Thus the Hamiltonian of the total system comprises
not only Eq. (3.8), but also the interaction Hamiltonian
of these reservoirs. By methods which we will describe in
detail in Sec. 12, the reservoir coordinates may then be
eliminated, leaving their trace in the equations of motion
by causing dampirlg and fluctuations.

E(x, t)

= i Q [ (2~A'(ug/V)'t' exp(ilryx) by —c.c.I, (3 4)

We will not dwell, however, on these details but rather
on the basic equations of motion. We have equations for
the field amplitudes b~+, for the dipole moments n„+, and
the inversion a-„.

p» = p»++ p» (3 3)

where for simplicity we assume running waves. Here X is
an index distinguishing the different modes, cuq is the mode
frequency, V the volume of the cavity, kz the wave vector,
bq and bq+, in the classical description, are time-dependent
amplitudes and, in the quantum mechanical description,
are the creation and annihilation operators of photons.
Though the analysis goes through in a completely quantum
mechanical fashion it is perhaps more instructive to use a
classical interpretation. Anticipating that the dipole mo-
ments oscillate around a mean frequency v, we use the
decomposition

1. Field equations

The equation for the field amplitude is:

b),+ = (ice), —xt,) by+ + i Q g»),*n»+ + Fg+ (t) . (3.9)

Here or& is the mode frequency, It.z is the decay constant of
mode X if left alone in the cavity without laser action, while
Iiq+ is a stochastic force which occurs necessarily, due to the
unavoidable fluctuations when dissipation is present. In the
present case these fluctuating forces are a consequence of
quantum mechanical consistency (compare the second part
of this article).

p„+ ~ exp(Wivt). (3.6)
2. Matter equations
a. Equation for the atomic dipole moments

The equation for the atomic dipole moment is:
6 The method of quantum classical correspondence even allows the

replacement of quantum mechanical equations by classical equations,
either exactly or with well defined approximations (see Sec. XVI) .

n»+ = (iv —y) a»+ —i Q g»gb), +o»+ F»+(t). (3.10)
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Here v is the central frequency of the atom, y is its linewidth
caused by the decay of the atomic dipole moment, while
the I'„+(t) 's are stochastic forces.

b. Fquatior( for the atomic iriilersior(

The equation for atomic inversion is:

o.„= yii((tp —o-„) + 2i g (g„i,n„bi+ —c.c.) + I', „(t).

(3.11)

Here do is an equilibrium inversion which is caused by the
pumping process and incoherent decay processes if no laser
action takes place, yI~ is the relaxation time after which the
inversion comes to an equilibrium, and the F,„s are again
fl.uctuating forces.

Let us first consider the character of the equations (3.9)
to (3.11) from a mathematical viewpoint. They are coupled,
first-order differential equations for many variables. Even
if we confine ourselves to the modes within an atomic line-
width, this may contain dozens to thousands of modes.
Furthermore, there are typically 10'4 laser atoms or many
more, so that the number of variables of the system (3.9)
to (3.11) is enormous. Also the system is nonlinea, r because
of the terms b+oin (.3.10), and nb+, n+b in (3.11).We will
see in a moment that these nonlinearities play a crucial role
and must not be neglected. Last but not least, the equations
contain stochastic forces. Thus, at a first sight, the solution
of our problem seems rather hopeless.

C. The order parameter concept

A discussion of the physical content of the equations
(3.9) to (3.11) will help us to cut down the problem, and
to solve it completely. Equation (3.9) describes the tem-
poral change of the mode amplitude under two forces: (1) a
driving force stemming from the oscillating dipole moments
(n„+) quite in analogy to the classical theory of the Hertzian
dipole /compare also Eq. (3.1)j, and, (2) a stochastic
force F+. Equations (3.10)—(3.11) describe the reaction
of the field on the atoms.

Let us first assume that in (3.10) the inversion o.„is kept
constant. Then b+ acts as a driving force on the dipole
moment in analogy to the classical equation (3.3) where
F. acts as a driving force on p„. If the driving force has the
correct phase and is near resonance, we expect a feedback
between the field and the atoms, or, in other words, we
obtain stimulated emission. This stimulation process has
two opponents. On the one hand, the damping constants ~

and y will tend to drive the field to zero; on the other hand
the fluctuating forces will disturb the total emission process
by their stochastic action. Thus we expect a damped oscilla-
tion.

As we will see more explicitly below, if we increase 0-„, the
system becomes unstable suddenly with exponential growth
of the field and correspondingly of the dipole moments.
Usually it is just a single field mode which first becomes
undamped or, in other words, unstable. In this instability
region the internal relaxation time is apparently very long.
This makes us anticipate that the mode amplitudes, which
become undamped, may serve as the order parameters.
These slowly varying amplitudes now slave the atomic

system. The atoms have to obey the orders of the order
parameters as described by the right-hand sides of Eqs.
(3.10) and (3.11). If the atoms follow without delay, the
orders of the order parameter, we may eliminate the
"atomic" variables n+, n, o-, adiabatically, obtaining equa-
tions for the order parameters bq alone. These equations
describe most explicitly the competition of the order param-
eters among each other, finally obeying the order parameter
which wins the competition. In order to learn more about
this mechanism we first anticipate that one bq+ has won the
competition and we confine our analysis to this single mode
case.

b+ = b+ exp(i(pt),

F+ = F+ exp(iu&t),

n„+ = n„+ exp(ivt),

(3.12)

where we finally drop the tilde. The equations we consider
are then

b+ = —«b+ + i g g„*n„++ F+(t), (3.13)

n.+ = —en'+ —ig.b+ov + I'.+(t) (3.14)

o.„=yii(dp —o-„) + 2i(g„n„b+ —c.c.) + I'. „(t). (3.15)

We note that for running waves the coupling coefficients
g„have the form

g„* = g exp(ihx„), ( 3.16)

where g is assumed real.

Note that the field mode aniplitude b+ is supported via a
sum of dipole moments

p n„+ exp(1'kx„) = Sg+. (3.17)

Ke first determine the oscillating dipole rnonient from
Eq. (3.14) which yields in an elementary way

expL —y(t —r) )(b+(r„), (/r + I'„+(t),

with

(3.18)

I'„+(t) = expL —y(t —r) jI'„+(r) (tr (3.19)

Ill Eq. (3.18) wc llavc clloppcd tllc (clalllpc(1) solut1011 of
the homogeneous part of (3.14), because we will consider
the stationary state.

We now make a very important assumption which is not
only typical for lasers but also for many other cooperative
systems. We assume that the relaxation time of the atomic
dipole moment n+ is much smaller than the relaxation time

D. The single mode case
We drop the index X in Eqs. (3.9)—(3.11), assume exact

resonance cv = v, and eliminate the time depend. ence by the
substitutions
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inherent in the order parameter b+ as well as in cr„. This
allows us to take b+o„out of the integral in Eq. (3.18). By
this adiabatic approxinzatioe we obtain I:~ —(g'/v)Dsj = ~. (3.29a)

oscillator discussed in Sec. II, where we may identify

as+ = —(ig„/y)b+o„+ F„(t). (3.20)

Equation (3.20) tells us that the atoms obey instantaneously
the order parameter. Inserting (3.20) into (3.13) yields

b = —~b++ (g'/y)b+g o + F(t) (3.21)

where I' is now composed of the field contribution Ii and the
atomic noise sources I

P(t) = F+(t) ~ ig g„*r„+(t). (3.22)

~. = Vii(ds —~.) —4(g'/V) b+b~. (3.23)

We now again assume that the atom obeys the GeM instan-
taneously, i.e., we put

g„= 0 (3.24)

so that the solution of (3.23) reads

~. = ds/51 + 4(g'/vv») b+b3 (3.25)

Because we will later be mainly interested in the threshold
region where the characteristic laser features emerge and in
that region 5+6 is still a small quantity, we replace Kq.
(3.25) by the expansion

o.„=de —4 (g'/yy») dsb+b (3.26)

As we will see immediately, laser action will start at a
certain value of the inversion do. Because in this case 6+6
is a small quantity, we may replace do by d, in the second
term of Eq. (3.26) to the same order of approximation. We
introduce the total inversion

In order to eliminate the dipole moments completely we
insert Eq. (3.20) into (3.15). A rather detailed analysis
shows that one may safely neglect the fluctuating forces
which act on the inversion o-„. We therefore obtain imme-
diately

-I (Ib()
= L

—x + (g'/v) Do& I
b I' —2 (g' /~v ) I

b (' (3 3o)

By methods described in the second chapter, the Fokker-
Planck equation can be established and readily solved,
yielding9

f(b) = yt expL —2V(( b ()/Qj, (3»)

Lcompare Eq. (2.12)$. Thus we may apply the results of
that discussion in particular to the critical region, where the
parameter u changes its sign. %e thus 6nd that the concepts
of symmetry breaking instability, soft mode, critical fluctua-
tions, critical slowing down, are immediately applicable to
the single mode laser and reveal a pronounced an, alogy be-
tween the laser threshoM and a (second-order) phase
transition. v

While we may use the results and concepts exhibited in
Sec. II, we may also interpret Eq. (3.29) in the terms of
laser theory. If the inversion do is small enough, the coe%-
cient of the linear term of (3.29) is negative. We may safely
neglect the nonlinearity, and the 6eld is supported merely
by stochastic processes (spontaneous emission noise). Be-
cause F is Gaussian, b is also given by a Gaussian distribu-
tion (for the deflnition of a Gaussian distribution see Sec.
X).

The inverse of the relaxatioo time of the fieM amplitude
b+ may be interpreted as the optical linewidth. With in-
creasing inversion do the system becomes more and more
undamped. Conseauentlv, the optical linewidth decreases;
this is a well observed phenomenon in laser experiments.
When a (3.29a) passes through zero, b+ acquires a new
equilibrium position with a stable amplitude. Because b+
is now to be interpreted as a Beld amplitude, this means
that the light is completely coherent. This coherence is
disturbed only by small superimposed amplitude Auctua-
tions caused by F and by very small phase fluctuations. s

Even if we consider (3.29) as an equation for a complex
quantity b+ we may derive the right-hand side from the
potential

and correspondingly

%do = Do.

(3.27)

(3.28)

where Q = C (compare Eq. (2.37) ) and measures the
strength of the fluctuating forces. The function (3.31)
I
first derived by Risken (1965) and I.ax and Hempstead

(1966)g describes the photon distribution of laser light,
and. has been checked experimentally with great accuracy.
LSee e.g. , Arecchi et al. (1967), Arecchi and Schulz —Dubois
(1972), Mandel (1969), Pike (1970)g.

Inserting (3.26) into (3.21) we obtain ( with Xd, =

(~v/g') 3
b+ = L

—~+ (g'/~) D.3&+ 4(g"/vv i) b+bb++—F(~).

(3.29)

If for the moment we treat b+ as a real quantity q, (3.29)
is evidently identical with the overdamped anharmonic

7 These analogies have been found and elaborated by Graham and
Haken (1968, 1970), Haken (1970), DeGiorgio and Scully (1970),
Goldstein, Scully, and Lee (1971), Grossmann and Richter (1971),
Grossman (1973), and Graham (1973).

s Note that we have to put b = r exp(iq&), with real amplitude r and
phase q, because b is a complex quantity.

Note a difference in the interpretation of the "variable" b+, b. In
all equations up to (3.29) b+, b may be interpreted either as classical
or quantum mechanical quantities. In (3.30) and (3.31) b must be
a classical variable. How one may extract quantum mechanical informa-
tion from a classical function is explained in Chapter XVI.
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So far we have investigated the occurrence of .a single
coherent wave. Expressing the dipole moments via Eq.
(3.20) by the field /using also (3.26) j, we may readily
calculate the correlation function between the n's. For small
inversion we thus And 'fti, = —2lcyRy + 'Izy'wyD, (3.39)

where ey is the number of photons of the mode X. If we
neglect for the time being the fluctuating forces in Eq.
(3.37), we obtain

(n„+(t)n. (t') )
= (g'/ ') -pL'&( ~

— .) jd'&b+(t)b(t')). (3.32)

with

~i = 2'Yg /L(fl~ —~)'+ v'1,

0.„=y» (do —(r„) —2 g wi,ni,g„, .

or after solving (3.42) again adiabatically

Our results up to now may be summarized as follows: If
the atomic damping constants y and y~~ are big enough
(which is realized in many laser systems), the adiabatic In the same approximation we find
principle applies, which means that the atoms are forced
to obey immediately the order, parameter. We must now
discuss in detail why just one order parameter is dominant.
If all parameters would matter simultaneously the system
would still be completely random.

(3.40)

(3.41)

(3.42)

E. The multimode laser D —= Z ~.= D. —(2D./v») Z ~~~~, (3.43)

by+ = Bi+ exp('LQyt) . (3.33)

We now repeat the preceding steps for the multimode
case. We anticipate that the field mode with amplitude 5q+

may be decomposed into a rapidly oscillating part with fre-
quency Qz and a slowly varying amplitude Bz+:

where D, is the critical inversion of all atoms at threshold.

We want to show that Eqs. (3.39)—(3.43) lead to the
selection of modes (or order parameters). Consider as an
example just two modes. Then the time-independent equa-
tions (3.39) read

The integration of Eq. (3.10) yields t'ai( —2Ki + 'WiD) = 0,

eg( —2x2+ w2D) = 0.

(3.44)

(3.45)

= —ig g„g exp(Lie —p) (t —~)j If both modes mould be present, e~ ~ 0, e2 ~ 0. Then
necessarily Eqs. (3.44) —(3.45) must be fulfilled, so tha, t

X (b),+0,).&r + I'~+. (3.34) D = 2Ki/28i (3.46)

Using in it (3.33) and making again the adiabatic approxim-
ation, we find

and simultaneously

n„+ = i P g„gI i(Qg —v) +—y I 'bi+0„+ I'„. (3.35)
D = 2K2/BJ2. (3.47)

We insert (3.35) into (3.9) and use the abbreviation

(3.36)

We thus obtain

exp (iQit) 8&,+

(3.37)

In practical lasers, however, the decay constants ~~ may be
different, and the mode frequencies Qq have different dis-
tances from the line center v. Thus in general (3.46) N
(3.47). This contradiction can only be resolved if only one
mode is present and the other ove has died out. This
analysis can also be done quite rigorously for many modes
and shows that in the laser system only a single mode, the
one with the smallest losses and closest to resonance sur-
vives. All the others die out. It is worth mentioning that
equations of the type (3.39), (3.43) have been proposed
more recently in order to develop a mathematical model for
evolution LEigen (1971)].We will come back to this point
im Sec. VI.

We now consider explicitly the case in which we have a
discrete spectrum of modes and we assume further that we
may average over the different mode phases, which in many
cases is quite a good approximation. (It is also possible,
however, to treat phaselocking which is of practical impor-
tance for the generation of ultrashort pulses. ) Multiplying
Eq. (3.37) by b&, and taking the phase average we have

As we have seen in Sec. II it is most desirable to establish
the Fokker —Planck equation and its stationary solution be-
cause it gives us the over-all picture of global and local
stability and the size of fluctuations. The solution of the
Fokker —Planck equation which is associated with Eqs.
(3.37)—(3.43) has been found and reads /compare Haken
(1969a)j

&~+&~ = e~b),), , (3.38) f(Bg) = X, exp( —2@/Q), (3.48)
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where

2@ = g I A I (2&x —~&DO) + (2D /vu)

possesses no dispersion i.e. Qq ~ kq the following exact
solution of the corresponding Fokker —Planck equation holds

x g ~~~~ I 73& I'
I

&x I'. (3.49)
f(b) = ~«xp(20/0),

where

(3.57)

The local minima of @ describe stable or metastable states.
This solution allow's us to study multimode configurations
if some modes are degenerate.

F. Laser with continuously many modes

The next example which is slightly more involved will
allow us to make contact with the Ginzburg —Landau theory
of superconductivity. Here we assume a comtienum of
modes all running in one direction. As in the case just con-
sidered we expect that only modes near resonance will have
a chance to participate in laser action, but because the
modes are now continuously spaced we must take into
consideration a whole set of modes near the vicinity of
resonance. Therefore we expect (this must be proven in a
self-consistent way) th. at only modes with

In), —v
I «y

, ( 'Yg 2D
0 = Z I b~ I'

I DO, , —~~ — ', g'
(~~ —v)'+ V' Y&& Y

Z ~(4 —4"+ 4 —4 ")b~+b), "+bd~" .
XXikiQ, iii

(3.58)

ng ——v
I kg I,

(3.59)

(3.60)

(3.61)

Confining ourselves again to modes close to resonance, we
use the expansion

We do not continue the discussion of this problem here in
the mode picture but rather establish the announced
analogy with the Ginzburg —Landau theory. To this end we
assume

In„—n, . I&&~„ (3.51)
g2

i(Qg —v) + y

are important near laser threshold. Inserting Eq. (3.35)
into Eq. (3.11) we obtain

(3.62)

gpXgpX'0„= yu(do —0-„) —20„+
&(n~ —v) + y

We now replace the index A by the wave number k, and
form the wave packet

(3.52) By+ exp( ikx+—iv
I

k
I t) dk. (3.63)

which under the just mentioned simplifications reduces to The Fourier transformation of Eq. (3.54) is straightforward
and we obtain

Inserting this into (3.37) yields

(3.53) 4+(x, t)

= —a++(x, t) —cI iv(d/dx) —vj'++(x, t)

—2b
I
+(x, ~) I%'+(x, t) + F(x, t), (3.64)

=
I
i~~ —~~+ DO. b),++ J"~(~)

i(Qg —v) + y

where in particular the coeKcient a is given by

~ = L~ —(g'/v) Dol. (3.65)

4d, Z gvx gjux'gv) "gvx"' 4' bv' bv" ~

pglgI Q 1I/

Using the form (3.16) one readily establishes

Z gvX guX'gvX"gpss"'

= &g'b(4 —k),"—4 + 4" ), (3.55)

Qy = coy + ImDog'/I i(Qg —v) + pg
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(3.56)

where E is the number of laser atoms. Note that we have
again assumed (3.50) in the nonlinear part of (3.54) . If f = Ko exp(2@/Q)

'0 Compare footnote 9 on page 77.

(3.66)

Equation (3.64) is identical with the equation of the elec-
tron —pair wavefunction of the Ginzburg —Landau theory of
superconductivity for the one-dimensional case if the fol-
lowing identifications are shown in Table I. Note, however,
that our equation holds for systems far from thermal equi-
librium where the Auctuating forces, in particular, have quite
a different meaning. We may again establish the Fokker-
Planck equation and translate the solution (3.57), (3.58)
to the continuous case which yields. '
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Superconductor Laser

TABLE I. Comparison between superconductors and lasers. In the following we assume that the interaction between
atoms and field is dominant over their individual interaction
with the reservoirs. In a first step we consider only Eq.
(3.69) . It allows for several constants of motion h;:

l. + Pair wavefunction
a cr T Tc

3. T Temperature
4. T, Critical temperature
5. v ~ A~ Component of vector

potential
6. F(x, t) Thermal fluctuations

Electric field strength
u cr- Dc —D
D Total inversion
D, Critical inversion
u Atomic frequency

Fluctuations caused by spontaneous
emission etc.

the interaction
energy

the total number
of photons and
inverted atoms

with

the total pseud. o
spin h..= S.s+ —', 5+5—+ -'5—5+ (3 70)

(3.67)

G. A phenomenological approach to the single
mode laser»

As we have seen before, the mode amplitude b+, the
Fourier component of the total atomic polarization P, and
the total inversion may serve as suitable macroscopic vari-
ables. We now discuss the interplay between these three
variables, which in the quantum mechanical domain are
represented by operators

mode amplitude:

atomic polarization
[compare Eq. (3.17),
where w'e drop the
index k$:

b+, b

S+, 5—

with [b, b+j = 1

with [S+, 5 j = 25,

atomic inversion
[compare Eq. (3.27)): D = 25,

We use a notation which clearly exhibits the analogy to spin
systems, where the S's have the usual meaning. Note that
the electric polarization is obtained from S+, 5 by multi-
plication with a factor, which contains essentially the
atomic dipole matrix element. The interaction Hamiltonian
may be obtained directly from Eq. (3.8) and reads (we
assume exact resonance and work in the interaction repre-
sentation)

H = Ag(b+5 + bS+).
» We follow essentially Haken (1973bl.
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(3.69)

Equation (3.66) is identical with the expression for the
distribution function of the Ginzburg —Landau theory of
superconductivity if 'we identify (in addition to Table I) 2p
with the free energy, and Q with k&T. The analogy between
systems away from thermal equilibrium and in thermal
equilibrium is so evident that it needs no further discussion.
As a consequence, 'however, methods originally developed
for one-dimensional superconductors are now applicable to
lasers and vice versa.

In the last section of this section we want to show that in
spite of this formal analogy there are still deeply rooted
differences in the underlying mechanism. In order not to
bore the reader with mathematical details, we present a
phenomenological approach, which may be substantiated,
however, by a rigorous treatment (compare Sec. XI.C).

The third quantity follows from the fact that S+, 5, 5,
behave like spin operators. We now use the method of
quantum-classical correspondence, which we will explain
in Part II in more detail. It allows us to establish a one-
to-one correspondence between operators and classical
quantities such as fieM amplitudes, classical polarization
and the occupation number of atoms. In view of a precise
formulation of the conservation laws we now distinguish
explicitly between operators and classical variables.

field amplitude

polarization

inversion

b, b++-+n, u*

5, 5++-+~, n*

2S, ~D (3.71)

The integrals of motion may be expressed by the classical
quantities as may be shown by detailed calculations

he ——u*v + uv*,

hi ——u*u + D/2,

h2 ——D'/4 + v*v (3.72)

(Note that we have dropped the factor Ag in he, because it is
not needed in our following considerations). Now let us
look at the stationary distribution function f(u, v, D) which
gives the probability of finding a configuration I, ~, D. With
no coupling to the external world, all configurations which
are compatible with the conservation laws may be realized.
Thus the probability of finding a certain configuration of
u, v, D will depend on these coordinates via the conservation
laws:

f = f(hs(u, v, D), hi(u, v, D), ~ ~ ~ ), (3.73)

where f may be an arbitrary function. In this sense the
system is highly degenerate.

Now consider the coupling of the proper laser system of
atoms and field to its surroundings ("reservoirs"). Then
depending on the temperatures of the reservoirs e.g. , certain
energies are favored compared to others. In thermal equi-
librium, f would thus acquire the Boltzmann distribution
function exp( H/kT). Similarly we e—xpect that in our
more general case f is no longer a completely arbitrary
function but will acquire a specific form. If we admit that
the system finds a stationary state, we expect that the
values of ho, hi, h~ are centered around certain values giving
a maximum probability around. which the distribution
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function will fall off in a Gaussian way. An example for f
would be a product of functions of the form

exp( —a;(P; —h;) 2), (3.74)

h, =
~

i ~2+ D2/4 (3.75)

where n;, P; are constants.

I.et us furthermore assume that the phase of the polariza-
tion is heavily damped by its coupling to external heatbaths,
such as lattice vibrations etc. We then expect that the con-
stant of motion hp is also heavily damped because it depends
on the phases of v. Thus we are left only with the distribu-
tion function of the two other constants of motion. We further
use the fact that the action of the heatbaths on the polariza-
tion stems from many statistically independent events, and
that the eRect of this reservoir is dominant over the other
ones. Under these conditions f exp( —C

~

n P), i.e. a
Gaussian distribution in n (C is a parameter). Because,
however, v must occur via the constant of motion

atomic variables is finally no longer permissible. If one
keeps all variables, one finds at a high enough pump power
a new instability LGraham and Haken (1968b); and par-
ticularly Risken and Nummedal (1968)). The laser starts
pulsing or, in other words, shows order in the time domain.
This instability may be interpreted as a hard mode ~msfa-

bi/july. To our knowledge, so far no analytical treatment of
the corresponding stochastic problem exists.

IV. NONLINEAR WAVE INTERACTIONS

In physics there are numerous examples of nonlinear
wave interactions, e.g. , in plasma physics )see e.g. , Klimon-
tovich (1967)), in nonlinear transport in crystals Lsee e.g.
Wagner (1973)), nonlinear optics )see e.g. Bloembergen
(1965)) etc. Here we want to sketch a few problems with
the following characteristic features:

(1) Dissipation and fluctuation are included.
(2) There exist pronounced transitions from disorder to

order.

we expect a distribution function of the form

f = K exp( —C(j v ~'+ D'(4)) —= K exp( —Chg). (3.76)

The factor K may still depend on h&. Assuming for K the
form (3.74) as discussed above, we obtain finally

fo ——¹'exp( —ui(Pi —hi) ) exp( —Ch2)

or, after a slight rearrangement

fo ——
¹ exp(Ahi —BhP —Ch~)

(3.77)

(3.78)

f(n) =
¹ exp(ae —5n') (3.79)

(e =
~
I ~') which we have given in (3.31). Our derivation

of (3.79) has revealed, however, that (3.79) is a consequence
of the second two conservation laws of (3.72), but not of
the first one, which represents the energy. Thus there exists
a fundamental diRerence between the laser and a thermo-
dynamic system showing a phase transition e.g. , the super-
conductor. We conclude with a final remark. In our deriva-
tion we did not make assumptions about the decay rates of
u and D, which may even be equal, so that our analysis
applies also to mode-mode coupling theory. t Note that
hitherto Eq. (3.79) could be derived only using an adia-
batic elimination of the inversion D).

which is indeed found by a detailed calculation from first
principles.

Equation (3.78) exhibits a strong correlation between
photon number and inversion. Vi/hen we integrate over the
inversion and polarization we obtain a distribution function
of the form In the following we do not explicitly treat the role of the

atomic system, which only serves in a sense as catalyser.
We consider rather the final eRect, which consists in the
transformation of the initial wave into a set of new ones.
Or in other words: We treat the field modes as the order
parameters. This transformation is best described by a
Hamiltonian. For this purpose we split the amplitude of a
6eld mode into a time and space-dependent part

Ei, ——E),(t)ug(x). (4.1)

We further split Eq(t) into

E),(t) = b), + by+, (4 2)

where

We take our examples here from nonlinear optics, though
a number of them can also be realized by electronic devices
Lsee e.g. , Woo and Landauer (1971)).Consider an electro-
magnetic wave with frequency cop impinging on a crystal.
This wave causes the electronic (or molecular) inoments to
oscillate. In classical dispersion theory, the crystal is
treated as a set of (electronic or molecular) oscillators with
a linear restoring force. If the field strength is high enough,
the amplitudes of the oscillators become so high that non-
linear terms of the restoring forces are important. These
anharmonicities lead to a frequency spectrum of the oscil-
lator, which contains e.g. the frequencies 2&op ol 3cop. The
oscillator now emits electromagnetic waves with these corre-
sponding frequencies. Thus the incoming wave (coo) is
transformed into a new one with (2cuo) or (3cvo), etc. Admit-
ting for similar combinations of the incoming wave with
newly generated ones, a great number of transformations,
cop —& co', can be realized.

H. Further instabilities
bi, ~ exp( —icvqt); bq+ ~ exp(+icoqt).

Let us briefly return to the question of the validity of the
adiabatic principle. When the laser is pumped more and
more, the relaxation time of the field amplitude becomes
shorter and shorter. Thus the adiabatic elimination of the

In a classical description, b~+, b~ are time-dependent ampli-
tudes; while in quantum mechanics b&+, b& are the well-
known creation and annihilation operators of light quanta
(we assume ui, properly normalized).

Rev. Mod. Phys. , Vol. 47, No. 1„January 1975



H. Haken: Cooperative phenomena

A typical Hamiltonian then reads

H = Au&„b„+b„+ Q Acu),bi+by+ A'gb, +W(b)

+ Ag*b„W(b+) + b„+Ac exp( —i~„t)

+ b~kc* exp(i&u„t) . (4.3)

certain threshold c = c~q„coherent field configurations
emerge with stable, nonvanishing amplitudes by+, as is well
known from laser physics. To obtain this result all hitherto
known papers L Graham and Haken (1968a), Graham
(1968a,b, 1970, 1973a), White and Louisell (1970), Haken
(1970d)j proceed as follows:

We first eliminate the main time dependence by replacing

by+ ~ bi+ exp(z(sit) .

)For special cases see e.g. , Bloembergen (1965), Yariv and
Louisell (1966),Louisell (1964)$. The first expression is the b„+~ br+ exp(i~„t),
energy of the incident "pump" wave, the following sum the
energy of the other waves X (it is understood that from now
on X does mot comprise p). The terms g, g* stem from the
interaction energy and describe e.g. , the annihilation of a W h n a s for the damP'ng co stants
quantum p and the simultaneous creation of several other
quanta of types ) . We quote a few examples: z„)& w),

(4.9)

(4.10)

slbharmoeic oscillator and eliminate the pump adiabatically. From Eq. (4.7) we
obtain

W(b) = bri, with w = 2u&

b,+ = (1/~„) I ig*W (b+) + ic* + F„+(t) I (4.11)
parametric oscillator

W(b) = bib', wltll Q)& = G&r + Mi (4.5)

higher order parametric process

W(b) = bi"' ~ bv"~ with (v„= iiicui + ' ' '+ a~co~

(4.6)

= (ice, —~„)b„++ig*W(b+) + i ce px(ice„t)

The last two terms in Eq. (4.3) describe a, completely
coherent driving force generating the pump wave p.

So far all processes are completely coherent and the
problem of a disorder-order transition does not arise. This
situation changes immediately, however, when we include
damping and fluctuations. We do this in the frame of the
equations of motion which in classical and quantum physics
have exactly the same form:

which, inserted into (4.8), yields Langevin equations for
the bq+'s, b~'s alone. Using prescriptions given in Sec. XII,
XIII, and XIV one readily establishes the Fokker —Planck
equation or in the quantum mechanical case the density
matrix equation and subsequently the generalized Fokker-
Planck equation, where higher-order derivatives of the dis-
tribution function with respect to the variables by+, bq must
be neglected. For specialists we note that the Fokker —Planck
equation is derived by means of the Wigner distribution
function

I
Graham (1970b, 1973a); Haken (1970d)). If all

~q's are equal

(4»)

and W is of one of the forms (4.4), (4.5), (4.6) the appli-
cation of a theorem described in Chapter XI LHaken
(1969a)j allows us to construct the explicit stationary solu-
tion, f, immediately. It has the following form LGraham
(1970b, 1973b), Haken (1970d), Woo and Landauer
(1971)):

+ F~ (t)

~~+

(4 7) f = N exp( —@), (4.13)

= (icing
—~i) bi++ igb„+(BW/rabbi) + Fi+(t).

where
(4.8)

These equations must be supplemented by their complex
(Herrnitian) conjugate counter parts. The terms —~„b~+,—~qbq describe damping of the waves (e.g. , by scattering)
and F~+(t), F&,+(t) are the fluctuating forces which neces-
sarily accompany dissipation. The physical content of
Eqs. (4.7) and (4.8) is this: The coherent driving force
(e.g. , a laser) ~c in Eq. (4.7) first generates the pump
field p. In Eq. (4.8) the term b„+ then creates, together
with the other b's occurring in BW/Bbi, , a field by+ in a self-
consistent way. The bz+'s then react on b~+ in (4.7) via
W(b+), leading to a saturation of b„+.

@ = (2/«u) (c*gW + cg*W*) + (2
I g I'/'«)

I
W I'

+ 2Z I@I'. (4.14)

(Note that bi, , bi+ are now complex numbers and no longer
operators!)

A still more general class of processes in which several
pump fields occur and to which our theorem on page 107 is
still applicable has been elaborated by Graham (1973b).
Returning to Eq. (4.14) and inserting e.g. , (4.4) we obtain
I Woo and Landauer (1971)g

A detailed analysis (see also below) reveals the following
result: For small external force c, no coherent waves b~+

can be maintained. The fields X are completely randomly
excited so that the statistical average (bq+) = 0. Above a

qb = (2/Ir~~) (c*gbi'+ cg*bi*') + 2
I

bi I'

+ (2 I g I'/«n) I bi I'. (4.15)
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Putting b = q exp(iq), we find a striking analogy with the
model of Chapter II, showing us the applicability of all
concepts presented there including again the phase-transi-
tion analogy.

In the above example a coherently driven pump field is
decomposed into new fields showing disorder (incoherence)
or order (coherence). Recently examples have been found
in which a completely random pump field may by the process
(4.5) generate a new field with a stable amplitude bi, i.e., a
coherent field. In this case c is put equal to zero, and it is
assumed that F„+ creates a Gaussian photon distribution
in the same way as Fl+ and F2+. Provided the internal
coupling constant g is bigger than gi, g. (and ~y&& «„) the
photon distribution can be found explicitly (Haken
(1974b) ). Referring the reader who is interested in further
details to that paper, we merely quote the result if the
photon numbers eq are treated as continuous variables
(Haken (1973d)). The distribution function of the gen-
erated modes 1 and 2 reads

f(ei, e2) = %exp( 4)—, (4.16)

where

for hl —=e2 —el & o.
(4.17)

The solution for hl & 0 may be found by exchanging
everywhere the indices 1 and 2. e„, eq are the mean thermal
photon numbers, due to the coupling of the modes to their
respective reservoirs at different temperatures. The inte-
gration of Eq. (4.16) over e, yields a distribution function
f(ei) which describes the photon statistics of that mode.
Provided n&&&e2, el«e„and Kl & K2 with Kl K2« K&,

one obtains a pronounced non-Gaussian distribution which
comes very close to the pho'ton distribution of the single
mode laser (3.31), (3.30) . This proves that one may obtain
an amplitude stabilized field mode from a completely
chaotic pump held.

V. TUNNEL DIODES

The physical properties of active devices using as essen-
tial part tunnel diodes as representative components have
been treated by I.andauer (1961, 1962, 1967, 1971a,b) in-
voking cooperative phenomena in the spirit of the present
article. VJe will follow I andauer in the main steps of our
presentation.

First a brief reminder about tunnel diodes starting with
the usual semiconductor. A single electron in a semiconductor
may be described by a plane wave with wave vector k
which is modulated by a periodic factor. As is known from
quantum mechanical calculations, the corresponding energy
levels are grouped in "bands" which are separated by gaps.
The simplest case is shown in Fig. 3. If we consider regions
in space x and in k space so that Heisenberg's uncertainty
relation 6 x Ak & 1 is fulfilled, we may simultaneously
plot the energy levels as a function of spatial coordinate x
(Fig. 3). The ordinate represents the energy of a particle,
the abscissa its space coordinate. The energy levels are now
filled with electrons of opposite spins according to the Pauli
principle.

In a semicondu. ctor at the absolute temperature T = 0
the valence band is completely filled and the conduction
band completely empty. Doping the semiconductor with
charged impurities shifts the local potential energy of an
electron and consequently the energy bands. If the doping
is high enough the energy scheme of the tunnel diode (com-
pare Fig. 4) arises. Because the Fermi level remains constant
in the crystal at equilibrium the electrons are now redis-
tributed among the energy levels: we find empty states in
the valence band and occupied states in the conduction
band. The application of an external electric field causes an
additional displacement of the energy levels. Depending on
the direction of the electric field, we now find the energy
schemes of Fig. 5. Clearly, if a small voltage is applied the
electrons of the conduction band find free states of the
valence band into which they can tunnel. LNote that the
concept of tunneling applies also to transitions between
energy bands ("Zener tunneling" for the transition valence
band —+ conduction band, "Esaki tunneling" for the transi-
tion conduction band —& valence band). g If the voltage is
increased still further, the number of occupied initial states
in the conduction band which can tunnel through to acces-

conduction
band

conduction
band

energy gap
energy gap

valence
band

valence
band

X

FIG. 3. Energy levels of the energy bands versus coordinate x.
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FIG. 4. Occupied and empty energy levels of a . tunnel diode
(schematic) .
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FIG. 5. Energy bands for different voltages and the corresponding points on the characteristic of the tunnel diode.

sible states in the valence band is decreased. Thus the cur-
rent decreases until finally the situation shown in Fig. Se is
reached. These considerations explain qualitatively the
current —voltage relation ("characteristic") of the tunnel
diode, represented in Fig. 6 (Landauer (1961). The be-
havior of a tunnel diode is a typical cooperative effect:
Tunneling probabilities depend on voltage and therefore
on the number of charges on the capacitance. In this way
it is analogous to a ferromagnet in mean field theory, where
spin Rip probabilities depend on the local field, and therefore
on the net magnetization.

%e now want to demonstrate, following I andauer, the
way in which such tunnel diodes allow us to build circuits
in which stable or metastable dissipative states are main-
tained. Consider as a first example a battery, a tunnel diode
and a resistor in series (Fig. 7, Landauer (1962)). In Fig. 6

we present the current voltage characteristic' of the tunnel
diode again, w'here V denotes the voltage across the tunnel
diode. The voltage across the resistor is then given by

V'= V~ —V,

where V~ is the voltage of the battery. The current i pro-
duced by V' is plotted in Fig. 6, as a function of V for Axed
V~, as a dotted line. If there is a difference between the
dotted and the solid line at a given V, we obtain a current
Rom which charges or discharges the tunnel diode capaci-
tance. In a stationary state the current must vanish so that
the crossing points of the solid, and dotted lines give the
voltage and current combinations for which we obtain sta-
tionary states. Note that these states are maintained by a
current, i.e., by an energy Rux, so that these states are kept
away from thermal equilibrium.

The first most obvious question is this:

(1) Which states are stable, which metastable, which
unstable? The answer to this question is of direct technical
relevance because we then know in which state we can
reliably store information. It vill become obvious below,
that under certain conditions there are two stable (or
metastable) states A" and C", which may be identified with"0"and "1"of a computer element.

=V
FIG. 6. Negative resistance characteristic (solid line) with load line
(dashed) . Zero and one are stable states, U is unstable Laf ter Landauer
(1961)g.

FIG. 7. Tunnel diode fed
through series resistance R and
diode capacitance C. V is the .- E
potential across the diode /after
Landauer (1962)g.

I

C .i
i

I

l
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The next class of questions concerns in a certain sense the
reliability of our device:

(2) How probable are voltage (current) fluctuations' ?

(3) Is there a certain probability the device may go
spontaneously from "0"to "1"or vice versa' ?

(4) How quickly does the system relax to its stable
states or leave the unstable state?

Before we demonstrate, following Landauer, how such
questions may be answered, we mention that similar con-
siderations may be applied also to devices composed of a
battery, a tunnel diode and a thermionic vacuum diode in
series or compos'ed of a battery and two tunnel diodes in
series. The latter device had been proposed by Goto et al.
(1960) for switching (bistable elements for computers).

We now proceed to formulate the problem mathem. ati-
cally. A formulation starting from 6rst principles ought to
start with the equations of motion of all the electrons of the
total device. "A much more elegant approach rests on the
order parameter concept. We use as order parameter the
number X of electrons representing the capacitance charge
on the tunnel diode LLandauer (1962)j.To treat the system
statistically X is considered as a stochastic variable. Let
e( V) be the number of ensemble members with 1V electrons.
Here e(1V) changes with time because electrons pass from
one side of the tunnel diode to the other or vice versa. We
denote the transition rate from a state with E electrons to
one with 1V' electrons by I" (1V, 1V'). Because in the limit
dt ~0 there is no probability that two or Inore electrons
make a simultaneous transition, the rate equation for n(1V)
reads"

Be(V)/Bt
= P(1V+ 1, V)ts(tV+ 1) + I" (1V —1, 1V)n(1V —1)
—I'(V, 1V+ 1)n(1V) —P(1V, 1V —1)n(1V). (5.1)

Though it is not always permissible (as has been stated
quite clearly by van Kampen (1961) and Landauer (1962))
to replace the difference Eq. (5.1) by a differential equa-
tion, "we gain considerable insight into the physical proper-
ties by making this approximation (which indeed holds
very well at the stationary points). We therefore use the
expansion

f(1V + 1) = f(») + f'(-V) + lf" (1t') +
Because the transition probability multiplied by the charge
e has the units of a current we use the abbreviations

The capacitance charging current is given by the difference
between (5.4) and (5.3). For reasons which will become
clear below, we write

(5.5)

with

q= eÃ, (5.6)

and where ( ~ ~ ~ ),„denotes the ensemble average.

We now put

f(q) dq = Xse(1V) d1V, (5.7)

where 1V& is chosen in such a way, that f(q) is normalized to
unity and can be interpreted as a probability density. We
readily obtain from (5.1) the equation

Bf B e B'

B$ Bg
2 g Zg) Zg ZD

2 ting

(5.8)

Keeping in mind that 2'D, i, are functions of the charge q

t compare Eqs. (5.3), (5.4), (5.6) ), Eq. (5.8) has the form
of a Fokker —Planck equation where the drift and diffusion
coe%cients are q dependent.

Let us first discuss the q dependence of the drift coe%-
cient (ic —iD) by looking at Fig. 6. Putting CV = q, where
C is the tunnel diode capacitance, the drift coefficient is just
the difference between the currents at charge CV and can
be interpreted as a q-dependent force. This force possesses
an effective potential in the sense discussed in Sec. II.
From the potential we may deduce approximately which
states are stable, unstable, and metastable. For a more
exact calculation it is, however, necessary to take the q
dependence of the diffusion coeKcient

D = s&(sa+ tn)

into account, which we will do below. D represents shot
noise because (5.3) and (5.4) are transition rates (aside
from the factor e) and thus the noise is proportional to the
sum of the two uncorrelated currents Rowing in opposite
directions. We now solve Eq. (5.8). We write (5.8) in the
form

eP(&V, 1V —1) = ig)(1V)

eP(1V, cV+ 1) = ic(1V)

(D: discharge),

(C: charge) .

(5.3)
Bf/Bt = —(Bj/Bq)

and split j up into
(5 4)

(5.10)

"Such considerations apply, of course, to any electric network.
From a physicist's viewpoint one ought to treat the motion of al}
electrons of the network. Instead, one introduces macroscopic quantities
like currents and charges. In this sense the corresponding equations
are "order parameter equations. " Furthermore, the microscopic
"underground" still manitests itse1f by fiuctuations (noise} of the
order parameters. Seen from this point of view, it is perhaps not
astonishing that similar concepts apply both to electric networks and
to other physical systems.

Carrier density fluctuations have also been treated by Burgess
(I950) and others, with different emphasis, however.
"It is also possible to solve the difference equation (5.1) exactly

(Landauer, 1962}.For the general method see Sec. XI.E.

j = v,f —D(Bf/Bq) (5.11)

with

"= (~)- —(BD/BV). (5.12)

Note that at other places in this paper, e.g. in (2.33), the
right-hand side of the Fokker —Planck equation is split up
differently. According to Landauer it is this present form
which gives Lin the term (5.12)) the motion of ensemble
members due to the forces which favor a nonuniform
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ensemble distribution. (q), , without the correction term
BD/Bq, also includes terms due to mobility gradients,

which arise from the fact that the ensemble member can
jump farther from a given point in one direction than the
other, but these terms do not correspond toward tendencies
for nonuniform equilibrium distribution. For a detailed
discussion of the appropriate splitting up of the different
terms of the Fokker —Planck equation and their physical
interpretation, which is of particular interest for research
workers in the field of diffusion, compare Landauer and
Woo (1973).

From Eqs. (5.10), (5.11),and (5.12) we find immediately
the stationary distribution function. We have only to put

fundamental importance. %e merely quote Landauer's
result (1962)

(1/~) = (2m7&) 'Iexp( —&A) + exp( —bC) I. (5.15)

~, = —(q —q~)/ s. (5.16)

Here v& is a measure for how quickly the system leaves B.
The "free energies of activation" AA and AC are de6ned
such that

The quantities 7.~, AA, 68 are defined as follows: v~ is the
"relaxation" time, occurring in the linearized Langevin
equation near the unstable point q = q~

and find explicitly

(5.13)
exp(bA) = Ns8(A)/Nss(B)

and

(5.17)

f =fo exp. f (~ /D) dq. (5.14)
exp(AC) = 1Vss(C)/Nss(B) (5.18)

The negative exponent of (5.14) has, qualitatively, the
form of Fig. 1, of Sec. II though it may be asymmetric.
Most important, one may change the fictitious potential
from the shape of the solid curve to the shape of the dashed
curve of Fig. 1 by changing the battery voltage (note that
the crossing points A, D, C are shifted by that changel)

A comparison with the considerations of Sec. II shows
that all the concepts of phase-transition theory such as
symmetry breaking instabilities, soft mode, critical fluctua-
tions etc. become applicable to our device. These and related
considerations are fundamental for questions concerning
energy consumption, and the reliability of switches (Land-
auer 1961, 1962, 1967). Here we sketch only some aspects,
referring the reader for a detailed treatment to Landauer's
papers, and consider the following switching process

Let us assume that we have information stored in the
stable state A. Then by continuously changing the fictitious
potential 'V of Fig. 1 (Sec. II) we may eliminate the barrier
and then wait until the fluctuations have driven the system
into the other states where it remains now locked if the
potential is returned to its original form. The information
state has changed; C is now occupied. From considerations of
this sort one may derive expressions for switching speeds,
for error probabilities during switching (probability for
remaining in the undesired state) and for the extra energy
consumption required by the switching process. The two
information states (A, C) are separated by a "barrier" (B).
Qualitatively the higher the barrier, the harder the inten-
tional switching becomes. Lowering the barrier spoils the
reliability, however, because the information may diffuse
more easily from A to C, without external switching. This
diffusion process is the second aspect ~e want to discuss.

Let us assume that we have put the system into the
neighborhood of its stable point A. Its distribution function
fo(q) is then centered around q = q~. This critical distribu-
tion fo(q) is, however, by no means the stationary solution
(5.14), which has maxima both at A and C. Because fo(q)
develops after a certain relaxation time r into f(q), we may
find the system with practically equal probability (depend-
ing on the exact form of f) in both states. The device has
lost its information. The determination of v- is thus of

Here Nss(A), NBs(C) are the integrated probabilities of
finding the system in the wells A or C respectively, whereas
Nsa(B) is defined by

Nss(B) = f(qadi) (2~D(qa)/~a)'' (5.19)

f(q) " exp( —I'/l&T), (5.20)

where the potential energy V can be obtained in a formal
way by integration

exp — - dq (5.21)

Multiplying numerator and denominator by the particle
mobility p we obtain

exp — .y —dq (5.22)

%hen we are d.ealing with the Brownian motion of a particle
with the mobility y, we know that the numerator under the
integral in (5.22) is just the particle velocity q, whereas the
denominator pk&T is the diffusion constant D. Now we may

'5 Landauer, in his original papers, went the other way, showing that
the Boltzmann distribution is a special case of Eq. (5.I4) .

A closer inspection of Eq. (5.15) reveals that the behavior
of r as a function of the system parameters is governed by
an exponential function of the form (5.14). Thus if the
potential barrier is increased even only modestly, the system
can be efficiently protected against diffusion. "

In conclusion, let us make the following remarks: The
present example is to our knowledge the first in which the
analogy between the distribution function of a system away
from thermal equilibrium and the Boltzmann distribution
function was discovered (Landauer 1962, 1971a,b, 1972).
To demonstrate this analogy we rederive (5.14) in a formal
manner. ' The Boltzmann distribution would be given by
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immediately identify the resulting expression where np is the initial concentration of atoms A. Inserting
Eq. (6.4) into (6.3), we obtain

exp (5.23) n = (n —y)e —pn' (6.5)

with Fq. (5.14). Though it was possible by a formal analogy with the constants

to deduce (5.14) from (5.20) an important difference
should be noted. Equation (5.14) is much more general cr = krts

because D need not depend on the temperature, as in the 7

case of Brownian motion, and furthermore it can be a corn- V = & +&,
plicated function of q.

(6.6)

(6.7)

VI. COOPERATIVE EFFECTS IN CHEMICAL
REACTIONS

A. Rate equation approach

1. Competition and selection of molecule
prod Uct Ion

We first consider the following autocatalyti c reacti oe:
Molecules of type X are generated from molecules of type
A by the autocatalytic action of molecules X, so that

A+ X —&2X, (6.1)

where k is the corresponding rate constant. We further
assume that by action of molecules 8 the molecules X are
decomposed to form molecules C with the rate constant k'

+8 —+C. (6.2)

Because chemical reactions take place between several
varieties of molecules, there exists an interaction in a rather
trivial sense. What we have in mind, however, is a more
sophisticated cooperative effect which leads e.g. , to instabili-
ties of the chemical reaction and even in some cases to
oscillatory behavior. As order parameters for such chemical
reactions we may take the concentrations of molecules which
may depend on. space and time. This implies that we are
dealing with some sort of local equilibrium, which has been
pointed out and investigated in detail by Prigogine and co-
workers (see e.g. Glansdorff and Prigogine (1971)).As we
have seen in many instances cited in the present article one
may either consider equations for the mean value of the
concentrations ("rate equations"), or an equation for the
distribution function allowing also for fluctuations ("sto-
chastic equations"). Here we want to treat two simple
examples illustrating these two approaches.

An equation of type (6.5) is well known from the single
mode laser (compare Sec. III). For cr & y, i.e., for the pro-
duction rate smaller than the l.oss rate, there is no production
of molecules X. On the other hand, in the opposite case
there is at first an exponentially increasing number of mole-
cules X, but due to the nonlinear term a stable state is
6nally reached which is caused by the limited "food"
supply. This kind of equation can be generalized to several
types of molecules X; which again are all created from the
same initial substance A. The rate equation then reads'6

cj kj 'PQ'pzj pj'pzj ~ (6.8)

where the production rate depends on e~ which has for
instance the form

N

(6.9)

One may easily show that equations of the type (6.8)
with (6.9) lead to the selection of molecules of a certain
type, namely those, which have the highest gain coefficient
k; and the lowest loss coefficient pj. Actually the same equa-
tions hold for certain types of laser modes (compare Chapter
III) where m, denotes the photon number of those modes.
In this latter case mode selection has been studied in detail.
In this context, it had been suggested LHaken (1971,
1973)j that laser-type equations may be applicable even
to certain types of biological processes. This is indeed the
basis of Eigen's theory of evolution of biological macro-
molecules PEigen (1971)g, though from the mathematical
point of view he starts with Prigogine's formulation. In
order to proceed from selection to evolution it is necessary,
exactly as in the laser case, to include spontaneous produc-
tion of molecules where spontaneous means without auto-
catalytic action. Denoting the spontaneous production rate
by p, the equation then reads

ri = kate —k'm~e. (6.3)

We now consider the case in which there is only a limited
supply of molecules of type A, because by each production
of an additional X molecule an A molecule is consumed.
We thus adopt the relation

We denote the concentration of molecules X by e, those of
A and 8 by e~, n~, respectively. The temporal change of the
concentration of molecules of type X is then given by

ri; = k,n~n, —y,~;+ P, (t). (6.10)

They are in complete formal analogy to laser equations and
allow for instance the study of phase transition-like be-
havior, e.g. the occurrence of a macroscopic occupation
number. The basis difference between the laser and the
process of evolution is that laser modes form a closed system,
whereas by spontaneous production of new molecules (i.e.
by mutation) new species are continually fed into the total

Ãp

"Rate equations of this and related types occur also in population
(6 4) dynamics (see, for example, Goei et at. , 1971; Montroil, 1972).
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system. These new molecules compete with each other and B. Stochastic equations (master equation
with the old ones again undergoing a selection process. treatment)

2. Oscillations and spatial structures

Clearly enough, passing on to more complicated reactions
leads us to deal with rate equations of the general form

(6.11)

We assume the autocatalytic production of molecules of
type X from the basic substance A but now take the number
of molecules of substance A to be much greater than those
of substance X and thus neglect saturation. " Instead we
assume a bimolecular decay process. Furthermore we allow
for a spontaneous production from the original material and
consider the anal decay of this molecule. Thus this process
reads

Such coupled differential equations'which are in general
nonlinear allow for a variety of solutions including self-
sustained oscillations with small or even large amplitudes. '~

VVe mention as an explicit example the following auto-
catalytic model which has been studied in detail by the
Brussels group: LLefever and Nicolis (1971),Lavenda et at.
(1971)).

ky

A+ X~+ 2X,
k2

k3

A —+X,

X+ B~C. (6.15)

A —+X,
B+X—+Y+D,
2X+ Y —+3X,

X—+E. (6.12)

The inverse reaction rates are neglected and the initial
and Anal product concentrations A, 8, D, E are maintained
time independent throughout the system.

Normalizing the concentrations e, so that the rate con-
stants become unity the rate equations for the intermediate
products read

df(n, t)/dt

= cx f nj(n —1) —(e + 1)f(e) I,
+t~f ( +1)S( +1) — ( —1)f( )I,
+ y f (n + 1)f(e + 1) —ef (m) I, (6.16)

It is a simple matter to derive the master equation for the
distribution function f of the number of molecules of type
X. (we assume k3 = k~)

rix ——e~ —(es+ 1)nx+ ex'n. r

Ap' —BQR~ 0+ Ãp'2

(6 13)

(6.14)

n = kg+~,

p=k2,

y = k4e~. (6.17)

For certain values of n, ( j = A, B) a limit cycle may bi-
furcate from the steady state. Such models thus allow for
an understanding of chemical and perhaps even for biological
clocks."Taking into account matter transport by diffusion
or convection we may generalize equations (6.11) by in-
clusion of spatial derivatives. In the case of the model
(6.12), diffusion was introduced by adding terms

n = g rif(e).
n=0

(6.18)

Multiplying (6.16) by e and summing up over m we obtain

We briefly indicate how to obtain an equation for the
mean number which is defined by

Dx(d'/dx') ex, Dr(d'/dx') mr dn/dt = a(n+ 1) —yn —P(e' —n). (6.19)

to Eqs. (6.13) and (6.14), respectively. (Prigogine and
and Lefever (1968), Lefever, (1968), Herschkowitz —Kauf-
rnan and Nicolis (1972)). Among the different types of
solution chemical waves seem to be extremely interesting,
particularly with respect to biological processes. Further-
more spatially inhomogeneous solutions may occur. Experi-
mentally, striking wave-propagation phenomena of chemi-
cal reactions, including rotating reactions, have been
found more recently (Zaikin and Zhabotinsky (1970),
(1973); Winfree (1973)). Clearly enough the rate equa-
tions e.g., of type (6.10) refer to mean numbers, saying
nothing about fluctuations. %e finally show by means of a
simple example how fluctuations may be taken into account.

0

The 6rst mathematical model was given by I otka (1920).
8 Ghemical oscillations have been found in the laboratory, e.g. , by

Bray (1921), Belousov (1959), and Zhabotinskij (1964), and are at
present being studied very intensely.

If the Quctuations of m around the mean value are small we
may put

~2 ~ ~2 (6.20)

Finally neglecting 1 compared to n we obtain

dn/dt = (n —p)n —Pn'

which is of the form of Eq. (6.5) discussed above.

(6.21)

"%e follow essentially the paper by K. J. Meweil and D. F. %alls
(1974). A -related problem (the Lotka —Polterra problem} has been
treated by Nicolis (1972).

Equations of the type (6.16) have been found and dis-
cussed e.g., in the section concerning tunnel diodes. Applying
Landauer's method of solution (compare also Sec. XI.E)
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the stationary solution is found to be

f(~) =f(o)(~/v)" II (&+~~) '
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(6.22)
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where one obtains damped waves. If, however, the Rayleigh
number exceeds a certain critical value R„ the solutions
become unstable. The procedure is now rather similar to
the one which we have encountered in laser theory (com-
pare Sec. III). The solutions which become unstable define
a set of modes. We expand the actual field (u, T) into these
modes with unknown amplitudes. Taking into account the
nonlinearities of the system we now obtain nonlinear equa-
tions for the mode amplitudes which quite closely resemble
those of laser theory leading to certain stable mode con-
figurations. If we include thermal fluctuations we again end
up with a problem dehned by nonlinear deterministic forces
and fIuctuating forces quite in the spirit of Sec. II. Their
interplay governs in particular the transition region, R R,.

B. Mathematical treatment

1. The basic equations and the boundary
cond ltlons

stem from the so-called local descriptiou in fluid dynamics.
As is well known, the following relation holds for an arbi-
trary quantity A (e.g. , momentum component, energy,
etc.)

dA/dt = (tA/(tt + uVA. (7.6)

(7.7)

The left-hand side of Eq. (7.6) is the rate of change of the
quantity A of a Quid particle as it moves in space. The two
terms on the right-hand side represent the local change of
that quantity A.

Keeping in mind the analogous treatment in laser theory
we erst consider the stationary state for R & E, without
Quctuating forces. (For the explicit definition of R see
(7.20) ) . In the stationary state there is no Quid motion so
that

T= Ts= To —Ps,

We start with the so-called Boussinesq approximation We further put
from which the equations of fluid mechanics acquire the
following form: The comtieuity equation reads

(7.8)

(7.1)

Here and in the following, double indices imply summation
over these indices. The equation of ftuid motion reads

where P is the temperature gradient in the vertical direction
needed to describe the spatial dependence of the tempera-
ture. With (7.7) and (7.8) one readily fulfills the equations
(7.1) and (7.4) (without fluctuating forces:). From Eq.
(7.2) one determines the pressure

p = po —gpo(& + zc(p& ). (7.9)
+ (1 + tIp/po) X, + v V'u, + P, ("' (x, t) . (7.2)

Here po is the mean density of the Quid, 6p is the deviation
from the mean density due to thermal expansion (with the
expa, nsion coefficient c()

We now consider the general case including R & R,. and
transform Eqs. (7.1)—(7.4) further putting

(7.10)

(7.3)

X, are the components of external forces, in our case the
gravitation field X = (0, 0, —g), v = ti/po is the kinematic
viscosity, and p is the coefficient of viscosity. The fIuctuating
force F,&") has been added to the usual Boussinesq equa-
tion."Finally the ectuatioe for the he(rt conduction reads

The boundary conditions for the quantities u, 6 are as
follows. We consider a layer infinite in horizontal extent
and the fluid between the planes s = —(d/2) and s = (d/2)
For a viscous Quid we have at rigid boundaries

(7 11)

and at free boundaries

BT/Bt = u, (BT/Bx, ) +—KV'T+ P(r)(x, t), (7.4)
u, = (8/Bs)e, ,t,u(, ——0 = 0. (7.12)

where ~ is the thermometric conductivity. F&~) is again a
fluctuating force. The fluctuating forces stem from thermal
fIuctuations and are. as usual connected with the dissipation
of the system (compare Sec. XII.A).

2. The equations in dimensionless quantities
As usual we proceed to dimensionless quantities de6ned by

In the following we adopt I.andau's point of view and
assume that the fluctuating forces are 6 correlated in space
and time, but that F&"& and F&~& are mutually uncorrelated.
Before proceeding further we note that the nonlinearities'

u, = Ku, '/d; 0 = vKe'/ngd', t = d~t'/K

G7 =. p/po+ g(S 2p(KS) = KM/d

(7.13)

u, (()u,/Bx, ) and u;(BT/c)x;) (7 5)
P(u) —P(u) 'K2/d3 (7.14)

"See, for example, Chandrasekhar (1968).
"Fluctuating forces vrere introduced into fluid dynamics by Landau

{see, for example, Landau and Lifshitz, F/lid Dynamics) and used
more recently by Zaitsev and Shliomis {1971).

P(') = P(')'vK'/nd'g (7.15)

After dropping the primes from the new variables, our
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system of equations reads and ~('& by

(7.16) v"& = zv(x, y)g(z). (7.29)

BR; BQ, Bc@= —u; — + POX, + I'AN; + F;&"&,
8$~ 8$;

The functions m and g(s) are defined as follows: For free
boundaries (the origin of the coordinate system is put in the
middle of the layer) Lsee e.g. Pellew and Southwell (1940)g

BB BBI;, ——+ Ru, + 66 + F'".
Bt Ox~

(7.18)
g(z) = (~'+ k')' cosh~is = (ir'+ k')' costs (7.30)

Here

(7.19)
w (x, y) = g 2g exp (ikx), (7.31)

is the Prandtl number and
where the coefficients A~ are still arbitrary, and k lies in
the x, y plane,

R = Clgpd /PK (7.20) k = (k„, k„), (7.32)

k = m-/W2.

the Rayleigh number- If the temperature gradient m. s having tbe absolute value
direction varies with time we must replace LKrishnamurti
(1968)j (7.33)

by

Rn, —Rg'sN, .

(7.21)

(7.22)

Without going into all details of the neutral solution we
merely mention that the neutral solution may be described
by a super-position of formal vectors

Here q' is connected with the time-dependent temperature
&8 by

(7.34)

and the boundary conditions now read

For the following we define the transpose of (7.34) by
(7.23)

(7.35)

Ts = —,'hT+ gt

Ts = —g~T+ g~

(7.24)
The 8&")'s can also be given explicitly.

4. Solution near R = R, (nonlinear domain)
effective Langevin equations

u ~ exp( —pt); (7.26)

%e now define the critical value R, as the one for which
y tends to Q. R = R, thus defines the marginal (neutral)
states. A lengthy but straightforward calculation shows that
the ne'utral solutions may be defined as follows LSchluter
et al. (1965)g

As we will see below such inhomogeneities are necessary in
order to explain hexagonal formation.

3. Damped and neutral solutions (R & R,)
We treat now Eqs. (7.16)—(7.18) as follows. We first

assume that R & R,. I.inearizing the nonlinear equations
around the values u = B = 0 we obtain, after some calcula-
tions, damped solutions

We now expand the velocity field u (and correspondingly
the temperature field) according to Eq. (7.34) into the
neutral solutions )compare also Eq. (7.31)$

G(x) = Q Agug (K), (7.36)

where the coe%cients A~ are still to be determined. We shall
even allow the amplitudes 2& to vary slowly with time
and space. LWhere "slowly means "slowly compared to
exp(ikx)".1 The main goal is now to establish a set of
equations for the coeKcients A~ in a region where the
Rayleigh number R is di8erent, but still in the vicinity of
the critical Ray}eigh number R,. Introducing a small quan-
tity e we define as usual an iteration procedure by Lsee e.g.,
Schliiter et al. (1965)j

n;&'i(K) = B,n"&,

where the operator 6, is given by

(7.27) u(X) = dl"'(X) + Al»(X) + ~ ~ ~

8(x) = c8&'&(x) + e'8»(x) + ~ ~ ~

(7.37)

(7.38)

h; = (8'/Bx;Bs)— )i, = (0, 0, 1), (7.28) R = R&'~ + eR&» + e'R» +- (7.39)
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The performance of the iteration procedure is not very
difficult but rather lengthy so that we refer the reader to
the original literature. We just quote the final result. We put

where P is the Prandtl number introduced. by Eq. (7.19).
8/Bx&k) is the derivative in the direction of the k vector
occurring in A&, y{&) the derivative perpendicular to it. We
further have

(R —R,)/R. = e'x (7.40)

and use concomitant with Eqs. (7.37)—(7.39) the scaling
(Neweii and Whitehead. (1969)) .

Pkk' P

and put

for k = k', (7.50)

t = e2t) X= ex, I' = (~)"'y. (7.41)
Pkk' P (1 + Pij) for k & k'. (7 51)

In the final equation we then formally put e = 1, and
replace X, I' by x, y. By neglecting the additional terms de-
scribed by Eq. (7.22) etc. we find the following set of
equations

For the following discussion the explicit form of P,; is not
very important. We only note that all P;; are positive. If the
inhomogeneity described by Eq. (7.22) is taken into account
an additional term of the form

Z Akz Ak2 ))k&+kWk, o
k1,k2

(7.52)

v Ak+ ~Ak
ax{k) ~2' ay{/)

—g Pkk
~

Ak I'Ak + Fk(x, y, )') (7.42)

( (p(~)))
&k(x, y, &) =

kP"))
(7.43)

which has the form of Langevin equations for the A~'s. The
only thing we have to do beyond the hitherto known pro-
cedure is to repeat all the necessary steps including the
fluctuating forces (Haken (1973f)j. They are found as
projections of the original fluctuating forces on the neutral
solutions i.e., as follows:

BAk/Bt = IAk+ 2Vk(IA}) + Fk, (7.53)

must be added to the right-hand side of Eq. (7.42) where
P'o.r the sake of completeness we mention that the

inclusion of Eq. (7.22) requires a "renormalization" of R„k
and an altered function g(z) in (7.29). Because this does
not change the structure of our following equations, we
suppress a detailed discu'ssion here).

An equation of the form (7.42) is now well known to us.
We know it already from the chapter on laser theory and
we can exploit the methods of solution which have been
described there. Before doing so we write (7.42) Lif neces-
sary under inclusion of (7.52) J in the form

The brackets ( ) denote an. average over the space coordi-
nates over a region large compared to 1/~ k ~, but small
compared to the wavelength of the resulting Quctuations of
Ak.

where I- is the linear operator occurring on the right-hand
side of Eq. (7.42), whereas Xk contains all the nonlinear
terms of that equation.

From this definition one readily derives the following 5 The Fokker-Planck equation and its stationary
correlation functions: solution

((F (x y, ~)P'(x' y' ~')))
= gkk 6 (x —x') 6 (y —y') 6 (t —t') Q. (7.44)

It is now a simple matter to establish the corresponding
Fokker —Planck equation which reads

The double brackets ((~ ~ ~ )) den. ote the statistical average
over the thermal fluctuations. We obtain

df= dx dy g (IAk(x, y)dt 6Ak(x, y)

vr'P' I"vkgg. T
4(1+ P)' R,~'d po

d' g' &AT'

P I): po&v
(7.45)

+ &~))~)' v) ))) + c c )f

i.e., the strength Q of the fluctuating forces has the form ~ff ' ~+w. )*, )I~."&, )~; (7.54)

Q = CiT + C2T'. (7.46)
We seek its stationary solution in the form

The coefFicients a, P, p in. Eq, (7.42) are defined as follows:

y = 4P/(P + 1), {7.47)
f = %exp@ (7.55)

n = (3P~'/2(P + 1)7.L(R —R.)/R.],
P = P/2(P+ 1),
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solution

=2 (B i B'2 7~k*
I

Q k L,Bx(k) 2'I'~ By(k)'j

+ 2 ~
I
~k

I

—
3 2 (B~kt ~ks ~ks Bkt+k2+k~»+ c c')

k1k2k3

—-'*use 14 1'
I

&~ I'l d~A
kkI

(7.56)

FIG. 9. Construction of hexagons from basic triangle (for details
also Graham (1973b). In Eq. (7.56) we have included terms
stemming from (7.52) .

@ = @(I ~kl') (7.57)

we introduce the new variable

= Wk (7.58)

The values wk for which @ has an. extremum are given by

6. Stable mode configuration
It goes, of course, far beyond. the present article to treat

Eq. (7.56) in. its whole generality. We want to demonstrate,
how such an expression (7.55) and (7.56) allows us to dis-
cuss the threshold region and the stability of various mode
configurations. %e neglect the dependence of the slowly
varying amplitudes Ak on x, y. We further put 8 = 0. Equa-
tions (7.55) and (7.56) give us a suitable means for the
discussion of the stability of different mode configurations.
Because @ depends only on the absolute values of Ak

A comparison. between Eqs. (7.62) and (7.64) reveals that
the single mode has a greater probability than the multi-
mode configuration. Our analysis can be generalized to dif-
ferent mode configurations leading again to the result that
only a single mode is stable. This is in agreement with
previous stability investigations by Schluter et al. (1965)
and others.

Let us discuss the form of the velocity field of such a
single-mode configuration, using Eqs. (7.27) to (7.30).
Choosin. g k in the x direction, we immediately recognize
that the s component of the velocity field, u, is independent
of y, and has the form of a sine wave. Thus we obtain rolls
as stable configurations. How do we explain the still more
spectacular hexagons' To do this we include the cubic
terms in (7.56) which stem from the 'spatial inhomogeneity
in s direction. Admitting for the comparison only three
modes with amplitudes A, , A,*, i = 1, 2, 3, the potential
function is given by

=0,
VOk

or Z pkk'wk' = 0~
k/

(7.59)
C' = ~(l ~i I'+

I ~s l'+
l
~s [') —&(~ *~ *~s*+c.c.)

p (7.65)

B p/Bwk Bwk~ = pkkl ( 0. (7.60)

For symmetry reasons we expect

and the second derivative tells us that the extrema are all
maxima where the k sums run over the triangle of Fig. 9 which arises

from the condition k)+ ks+ ks ——0 and
l

)s;
l
= const.

Lcompare Eq. (7.33)j.
To find the extremal values of 4 we take the derivatives

of (7.65) with respect to A, , A;*, and thus obtain six equa-
tions. Their solution is given by

wk ——w(1/N) .

From Eq. (7.59) we then obtain

(7.61)
Ai ——A2 ——A3 ——A. (7.65a)

4(w) = s(~'/0),

where we use the abbreviation

Using (7.65a) together with (7.27)—(7.35), we obtain e.g.,
(7.62) uc, (x). Concentrating our attention to its dependence on x,

y, and using Fig. 9, we find (with x' = s./V2x)

1
s Q Pkk'

N, (x) ~ AIexp(ix') + exp( —ix')

+ expi( —x'/2 + yVS/2) + (7.65b)

We now compare the solution in which all modes partici-
pate, with the single mode solution for which

or in a more concise form

u, (x) ~ 2A Icosx' + cos(-', x' + -',&3y')

+ cos(—', x' ——,'v3y') }. (7.65c)

holds, so that

~( ) = —:(-'/0).

Using the solid line in Fig. 9 as an auxiliary pattern one
easily convinces oneself that the hexagon of Fig. 9 is the

(7.64) elementary cell of N, (x) (7.65c).
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@ ..(A) = jj-;a+ -', i2u —A, (2@~ —', i3—)i. (7.66)

Here we have used the abbreviations

ZPA, x = «3 (7.67)

cx = n/P (7.68)

6 = 8/P. (7.69)

We now discuss Eq. (7.66) for two different limiting
cases:

In conclusion we discuss the probability of the occurrence
of this hexagon compared with that of rolls. To this end
we evaluate Eq. (7.65) with aid of (7.65a) which yields
(using the explicit expression for A):

p+-(~+, ~-) p-+(~+, ~-) ~

characteristic features of an opinion. Of course "the opinion"
is a very diffuse concept. However, similar to the measuring
process in physics one can make a measurement of public
opinion —e.g. , by votes. In order to be as clear as possible
we want to treat the simplest case w'here there are two
kinds of opinions denoted by plus and minus. An obvious
order parameter is the number of individuals e+, e with
the corresponding opinions + and —,respectively. The
basic concept now to be introduced is that the formation of
the opinion, i.e., the change of the numbers n+, m is a
cooperative effect: The formation of the opinion of an indi-
vidual is influenced by the presence of groups of people
with the same or the opposite opinion. We thus assume that
there exists a probability per unit time, for the change of
the opinion of an individual from plus to minus or vice versa.
We denote these transition probabilities by

82)) cx.

In this case we obtain

@maw(A) ~ gP~ Amax ~

(2) P « a.

@,(A) = ~'/2P.

In this case we obtain

(7.70)

(7.71)

(7.72)

(7.73)

We are interested in the probability distribution function
f(m+, N, «) . One may easily derive the following stochastic
equation:

Often+. , e; «j
8$

—t,e+p+ Pn„, e g+ 0 p~Pe+, e )i f/'+, n; «j

+ (~+ + 1)p+-t ~+ + 1, ~ —1JfL~, + 1, ~ —1; «j

+ (~ +1)p+L~+ —1, ~ +1)fL~+ —1, ~ + 1;«g.

A comparison between (7.71) or (7.73), respectively, with
a single mode potential (7.62) reveals the following: for
Rayleigh numbers R & R„which exceed R, by a small
amount, the hexagon con6guration has a higher probability
than the roll configuration. But a further increase of the
Rayleigh number finally renders the single mode conhgura-
tion (rolls) more probable.

VIII. FOKKER PLANCK EQUATION TREATMENT
OF INTERACTING SOCIAL GROUPS

Intuitively it is rather obvious that forination of public
opinion, actions of social groups, etc. are of a cooperative
nature. On the one hand it appears extremely dificult if
not completely impossible to put the treatment of such
phenomena on a rigorous basis because the actions of indi-
viduals are determined by a number of (very often) un-
known causes. Within the spirit of this article, we have seen
that in systems with many subsystems there exist at least
two levels of description: one which analyzes the individual
system and its interaction with its surroundings, and another
which describes the system's statistical behavior by using
macroscopic variables. It is on this level that a quantitative
description of interacting social groups becomes possible.
This remark is, of course, basic to the whole field of insur-
ance business, marketing, and economics, and is indeed
mentioned in every introductory textbook on these subjects.
In this chapter we will present a detailed mathematical
model which has been used more recently by Vfeidlich
(1971, 1972, 1973) to treat interacting social groups.

p+ Pe+, ~ j = p+ (q) = v exp

=v exp( —(kg+ h) J,

—(Iq+ H)
e

+(Iq+ H)
p +Pn+, e j =—p~(g) = v exp 8

= v exp(+ (kq + h) i, (S.3)

The crux of the present problem is, of course, not so much
the solution of this equation, which can be done by standard
methods, as the determination of th.e transition probability.
As in problems in physics where not too much is known
about the individual interaction, one may now introduce
plausibility arguments to derive p. One possibility which
has been discussed in detail by %eidlich is the following:

Assume that the rate of change of the opinion of an indi-
vidual is eDhanced by the group of individuals with the
opposite opinion, and diminished by people of his own
opinion. Assume furthermore that there is some sort of
social over-all climate which either facilitates the change of
opinion or else makes it more difficult. Finally one can
think of external influences on each individual, e.g. , infor-
mation from abroad. For a physicist it is not too difficult
to cast these assumptions into a mathematical form, if he
thinks of the well known Ising model of the ferromagnet.
Identifying the spin direction with the opinion +, —,we
are led in analogy to the Ising model to put

As a first step we have to seek the macroscopic variables where I is a measure of the strengths of adaptation to
describing a society. First of all we must look for the relevan. t neighbors. H is a preference parameter (H ) 0 means that
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opinion + is preferred to —), e is a collective climate
parameter corresponding to kgT in physics (kg is the
Boltzmann constant and T the temperature), v is the fre-
quency of the flipping" processes. I'inally

q = (~+ —n )/2n, (8.4)

For a quantitative treatment of Eq. (8.2) we assume social
groups big enough so that q may be treated as a continuous
parameter. Transforming (8.2) to this continuous variable
and putting

+-(q) = +p+ E+, --j = (-:+ q)p+-(q),

tt~(q) =—e p~Pe+, e g = n(g —q) p~(q), (8.5)

E'& (y)f„(q) = cr,-'(q) exp I2 dy)-i(s &s(y)
(8.6)

Ey(q) = v(slnh(kq+ k) —.2q cosh(kq+ k) I

ICs(q) = (v/e) (cosh(kq+ k) —2q sinh(kq+ k) I. (8.7)

As one may expect from a direct knowledge of the Ising
model, there are typically two results. One result corre-
sponds to the high temperature limit: on account; of rather
frequent changes of opinion we find a centered distribution
of opinions. If the social climate factor 8 is lowered or if the
coupling strengths between individuals is increased, two
pronounced groups of opinions occur which clearly describe
the by now' well known "polarization phenomenon" of
society. It should be noted that the present model allows
us to explain, at least in a qualitative manner, further

Q, O

we transform (8.2) into a partial differential equation (see
e.g. , Sec. V of this review article). Its solution may be
found by quadratures in the form

processes, e.g., unstable situations where the social climate
parameter is changed to a critical value. Here suddenly
large groups adhering to an opinion are formed which are
dissolved only slowly, and it rem, ains uncertain which group
(+ or —) finally wins. Using the considerations of Sec. II
it is obvious that again here concepts of phase-transition
theory become important, like critical slowing down (re-
member the duration of the 1968 French student revolution,
which led Weidlich and the present author to a discussion
about the possibility of such analogies), critical fluctuations,
etc. As has been stressed by Weidlich, such statistical de-
scriptions certainly do not allow unique predictions due to
the stochastic nature of the process described. Nevertheless
such models are most. valuable in understanding general
features of cooperative behavior even of human beings,
though the behavior of a single individual may be extremely
complicated and not accessible to a mathematical descrip-
tion.

The model described above has been generalized by
Weidlich to several interesting examples, for instance inter-
action of a small group with a big group (e.g. , management
and employees, or government and population etc.). Such
treatments reveal in particular how, and how quickly, public
opinion may change. It is quite obvious that many general-
izations can be now worked out, some of which are already
given by further papers of Weidlich (1972, 1973).

IX. NEURON NETWORKS

In the present chapter we want to demonstrate how the
concept of macroscopic variables or order parameters
proves to be useful in a description of cooperative phenom-
ena in neuron networks. %e follow closely the work by
Wilson and Cowan (1972) and Wilson (1973) on a homo-
geneous cortical tissue model. %Ye leave aside those papers
which deal with the neurons itself though they are also
very appealing to physicists Lsee e.g. Giittinger (1972,
1973), Hahn and Giittinger (1972)j. One may readily
convince oneself that neuron activity in the cerebral cortex
must be cooperative in nature. This follows from the fact
that nerve cells can become active only if they receive
signals from at least 10 other cells, in a finite time interval
(of the order of 10 msec). This property evidently sup-
presses random noise and gives rise to cooperative effects.
One may further show that there is a local redundancy of
cell function which allows us to treat the functioning of the
cortical tissue as a two-dimensional problem.

Actual calculations have been performed with respect to
a one-dimensional model in the framework of a deterministic
dynamical system which neglects the impact of noise. "The
model starts from the fact that there exist two types of
cells, namely excitatory and inhibitory cells. Their distribu-
tion over the tissue is taken to be homogeneous with surface
densities p, and p, , respectively. We denote by E(x, t) the
excitatory neuron activity, or more precisely p,E dx dt is

FIG. 10. (a) Centered distribution in the case of rather frequent
changes of opinion (independent decision). (b) Distribution at the
transition between independent and strongly adaptive decision. I'c)
"Polarization phenomenon" in the case of strong neighbor-neighbor
interaction.

"Here we have in mind the conventional concept of "noise."
Landauer (private communication) has defined a generalized "noise"
in the following sense. "Noise" may be anything which causes ensemble
members which are together initially to depart from each other with
time. In this sense the distribution function D, (al )compare Eq.
(9,3) g, just like a lack of reproducibility in computer components, is
really noise. It causes 8-function distributions to become spread out,
just as thermal agitation does.
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the number of excitatory cells becoming active during the
time interval dt in the space interval dx, or in short, E is the
transition rate of the neuron to its active state. In a similar
way we define the inhibitory neuron activity I(x, t) . In the
following we will derive equations for E and I using plaus-
ability arguments.

Consider a single cell (or a distribution of equivalent
cells) . It is known that the so-called post-synaptic potential
PSP generated in that cell is caused by activity in all other
cells. On the other hand the post-synaptic potential, after
reaching a certain threshold, allows the cell to emit signals.
We denote the transfer functions transferring signals be- .

tween excitatory and inhibitory cells by P.,„P..., P. .., P...,
and assume that postsynaptic eGects are additive. For the
corresponding processes the postsynaptic potential of exci-
tatory cells reads

PSP.(x, t)

of excitatory cells at x which are sensitive at the time
t + tit is given by 1 —rE(x, t), where r is the duration. of the
refractory period. We are now in a position to establish the
equation for E. If there were no signals from other cells, E
would decay within a time v- so that its equation would read

r(dE/dt) = E. —

On the other hand, the rate at which cells become active is
given by (1 —rE) 5(PSP,) . Replacing PSP, by Eq. (9.1)
we obtain the final equation

r(BE/Bt) = E+ (—1 —rE) SLP„ E —P,.S I
+ P(x, t) j. (9.5)

In a similar manner, one obtains for the inhibitory activ-
ity, the equation

p., (i x —x'
~) E(x', t) dx'

r(BI/Bt) = I+ (1 ——rI)SLP„ E —P,, S I
—0(» t) 3. (9 6)

P,, (i x —x' i)I(x', t) dx'+ P(x, t) (9 1)

PSP, (x, t) = P„SE —P,, S I + P(x, t). (9.2)

where P(x, t) is an external input for the tissue from other
parts of the brain or from sense organs. Denoting spatial
convolution by , Formula (9.1) may be written as 5(PSP) = I1+ exp) —u(PSP —8))I—',

p(~ x —x'
~) = ti exp( —

~
x —x' ~/g).

(9.7)

(9.8)

Equations (9.5) and (9.6) are nonlinear equations for E
and I. They have forms which also occur in physical prob-
lems and must be solved by computer. Wilson and Cowan
have used the following explicit forms for 5 and p.

5,(PSP,) = D.(8) d9. (9.3)

A typical function (9.3) is plotted in Fig. 11.Apparently it
describes some sort of saturation behavior. The proportion

Equation. (9.1) assumes that the transmission of signals
occurs instantaneously.

We now derive the equation for E. As already mentioned
a cell becomes active only if its PSP exceeds a threshold
value, 0, and furthermore if it is sensitive, i.e., if it is not
refractory. The number of cells becoming active is propor-
tional to the proportion of excited cells above threshold
times the number which is sensitive. If there is a distribu-
tion of threshold D, (O) the number of cells 5, receiving
superthreshold excitation is given by

Equations of that sort are typical for active circuits.
Three different kinds of modes w'ere found by computer

solutions.

(1) Stable and spatially in.homogeneous steady states.
Such states may play a role in active short term memory,

(2) Limit cycle type oscillations in response to rnain-
tained stimulation. For sufficiently broad stimuli one can
obtain edge enhancement. This class of solutions includes
coherent oscillation and frequency demultiplication (corn-
pare Fig. 12) .

(3) An. active transient mode which remains spatially
localized. We mention that through this model comprising
1), 2), 3) a number of experiments on vision for in.stance
but also on other eRects, hand their explanation. It would
take us beyond the goal of the present article to enter into

0.50

CL.

~ 05—
CA

FIG. 11. Plot of a typical.
sigmoidal function. The
particular function shown
here is the logistic curve:
s(PsI') = 1/Lt + exp
( a(I'sl' —8))] with e =—
S, ~ = 1. (After H. R.
Wilson (1973) in Syner-
getics. )

0.25-

I
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I
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t in Isaac

I
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FIG. 12. Frequency demultiplication in the neural response to a
stimulus pulse train. Each stimulus pulse had a narrow, rectangular
spatial pro6le. (After H. R. Wilson (1973) in Synergetics. )
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the details of these interpretations. It seems important to
note in our present context, however, that reasonable
modelling may explain a number of observed brain responses.

Moments are defined by

m. = (P); (10.7)

PART II: THE MATHEMATICAL APPARATUS

While in the first part we have given a number of explicit
examples of cooperative eBects in systems far from thermal
equilibrium, in part II w'e want to present a coherent
account of the methods enabling us to deal with su, ch sys-
tems. We have tried to include in particular very recent
developments, such as methods for solving master equations
and Fokker —Planet equations. This second part is organized
as follows: Sections X.—XII deals with classical systems; Secs.
XIII—XV with quantum systems. In Sec. XVI we present
the method of quantum ' classical correspondence which
allows us to transform the quantum mechanical problem
into a c-number problem. For the article to be self-contained
we start with a few reminders of concepts of probability
theory.

They may be obtained from the characteristic functions as
derivatives

m„= (1/i") Pd"e((u)/du"5
) 0.

Cnmglaets k„are defined by

(iu)"
e((m) = exp Q

,
k

I
.

n=l

(10.8)

(10 9)

0„= (1/i )Ld" ln8((u)/du"g ~„0. (10.10)

Taking the logarithm of (10.9) on both sides, the coeffi-
cients k„of the Taylor expansion with respect to n are given
by

X. SOME BASIC CONCEPTS OF PROBABILITY
THEORY WITH APPLICATIONS TO PHYSICS AND
RELATED DICIPLINES"

A. Random variables and probability densities.
Definitions

The first cumulants read

k] ml)

k2 ——m2 —mi2.

(10.11)

(10.12)

Consider a random variable $ which may adopt continuous
values. Each measurement gives rise to a realization of the
random variable. Those realizations are denoted by Pi $2, ~ ~ ~

We define the meara value (expectation value) by

If $ has discrete realizations ti, one has to replace the 6
function b(f —q) by b~,„, and correspondingly define the
average value of g(f) by

(10.1)
(&(e) = Z g(u) f(». (10.13)

and that of an arbitrary function g of $ by

n

(g(k) ) = »m (1/I) Z g(k.). (10.2)

Using Dirac's b function we define the probability density by

If g has both continuous and discrete values one has to
replace the integrals by Stieltjes' integrals. The above
definitions are readily generalized to several random vari-
ables g, ,

~ ~ ~, g„. (Note the change of definition of the P's,
because the indices now denote no more realization of the
single stochastic random variable but distinguish different
random variables!) .

The probability density is defined by
f:(q) = (b(~ —q)) (10.3)

f~ t, (qi. "q )"= (b(6 —qi). b(E. —"q.) ) (10.14)

(g(~, ~ ~ ~ ~,) )

Because often the value of q is denoted by the same letter
as the random variable $ itself, we replace f~(q) by f((g) and the average of an arbitrary function g of g, to g, by
Dropping the redundant subscript we obtain f((). The
probability density must be normalized

ff(k) « = 1
= f. ff(t, " $.)r(6,".4) « "«,. (10.15)

f "ff(~, ~ ~ ~, ~,) «.~ ~ ~ «, =1. (10.16)

The meart va$ue (expectation value) of a function g(~) is Equation (10.14) implies the normalization comCktiori

obtained by means of f through the formula

(c(&)) = fg(~) f(~) «.
The characteristic furlctiort, is defined by

(10.5)
We introduce the abbreviation

f(6) = ff(6, t2) «2 (10.17)
Bi(u) = (exp(iud) )

= f exp(iu~)f(P) «. (10.6)

~'Readers interested in more details are referred to the excellent
review articles and books by Lax (1960, 1966a, b) and Stratonovich
(1963, 1967), respectively. l 2 1) 2 2 (10.18)

where f($&) gives the probability of finding $i irrespective
which value of P2 is accepted We then d. efine the cortditiortat
probability density as follows: for two variables we have
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and in the general case we define the conditional probabiHty
density

f(bt, 4 i 4+i, , kr) = f(b). , k.) If(b+» t c2),

(10.19)

f(&~+ ",4) = f" ff(4,"., 4) d4" d4 (10.20)

f, (q. ,",q„t.,",t,) = (~(q - ~(t.))" ~(q, —~(t,)))
(10.21)

Correspondingly the characteristic function is de6ned by

8 (ui ' u'tt ''' t)

If we let the indices 1, ~ ~ ., r become continuous variables
and identify them with the time t, the set of random varia-
bles P may be described 'as a random function &(t). Now
taking a discrete time sequence tj, ~ ~ ~, tr, we may transcribe
the definition (10.14) into the definition of the probability
density of a random function

)t. ) t„ (10.26)

We consider the conditional probability density

fkq(t ) I q(t ),",q(t-) 3 =
f —Lq(" ) '' ' q(t )3

(10.27)

A process is called Markovian if the left-hand side of Eq.
(10.27) depends only on q(t, ) and not on the preceding
process. Thus we may write instead of (10.27) /with
q' = q(t'))

begin with a motivation for this analysis. As we have
seen, in practical examples we are often dealing with macro-
scopic variables or order parameters w'hich change slowly
compared to the motion of their subsystems. Or using
the still more familiar example of a Brownian particle,
the velocity at each moment of the Brownian particle
depends on the last push it. has received. We now de-
6.ne this property in mathematical terms and call it Warhol
Process. Let q(t) be a random process and (t, , t2 ~ ~ ~ t„) be a
given time sequence with

= (expi(u, ((t,) + ~ + u„&(t„))), (10.22)
f(qi I q2t' '

t qtt) = P«tt(qit q2) (n & 2). (10.28)

and the cumulants by We call

e„(u„,u„ t, , , t, ) Ptttt(qit q2) ~(qi
l q2) t (10.29)

in straightforward generalization of the corresponding defi-
nitions (10.6) and (10.9), respectively. We now come to a
very important notation. The random function. $(t) is said
to represent a Gaussian process if all cumulants other than
the first tw'o vanish, i.e., if

the transition probabiHty Multip. lying Eq. (10.27) on both
sides by f„, and then applying this formula recurrently
using (10.29) we find the formula

f(q»' t qn)

ptttt(qlt q2) ptttt(q2t q3) ' ' 'Pt~ tt„(qn —lt qtt) f(qtt) ~

(10.30)

fpttt2(qtt q2)p 2 33(3q2qt3) dq2

43=k = ~ - ~ =0 (10.24)
Using the definitions (10.19), (10.20) and (10.29) one
immediately obtains the Chapman KolnMgorot) equat—ion

holds. In that case the characteristic function is represented
by

8,(u„~ ~ ~, u„; t, ~ ~ ~, t„) = Ptttt(qit q3) t (ti & t2 ) t3). (10.31)
r r

= exPIi Q k, (t )u„——,'Q k2(t, tP)u ueI.
n=1 e,P=I

It may be generalized to an n-dimensional vector q and then
reads

If one defines moments in generalization of Eq. (10.8) one
extablishes immediately from Eq. (10.25) that all moments
may be expressed by the first two cumulants 1, 2 or, because
the first cumulants may be expressed by the first and second
moments, all higher moments may be expressed by the
first two moments. If gi, ~ ~ ~, P„have discrete realizations one
has to replace the integrals by sums, and if both discrete
and continuous realizations are present one has to replace
the integrals by Stieltjes integrals.

B. Markov process and stochastic equations

f "fpt .(qi, q2) p, t, (q2, q3) d"q.

= pt, t, (qi, q3); (ti & t. ) t3). (10.32)

f(q, t) = fP, .(q q) f(qo to) dqo (10.33)

in one dimension, or

If q acquires only discrete values the integrals must be
replaced by sums. Multiplying both sides of Eq. (10.31) by
f (q3) and integrating we find another form of the Chapman-
Kolmogorov equation, namely

We now come to a second definition w'hich plays an im-
portant role in many practical applications. We therefore f(q, t) = f".fpt;to(% qo) f(%o to) d"qo (10.34)
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in n-dimensions, or if discrete values are present

f(n„, .~, n„, .t)

we put

f(q) = P . .(q, qo), (10.43)

p, „(,n„~, n„; ni„~ ~, ni„) f(nii, .~, ni„, tp) .
mI, '',mr'

(10.35)

and find the so-called "forward Kolmogorov equation"

We obtain the so-called stochastic equation if we take on
both sides of (10.35) the time derivative (t = to+ r with
r —+0).

f(n„~ .,.n„; t)

~p), »&(q& qo) = —~—t &i(q)p«. (q qo)3
t9q

1 cP+ 2z—,E&.(q)p«. (q, qo))
28q

(10.44)

7, , „(n„",n„m„"., m„) I,=„

g f(r)ii, ~ ~ ~, ni„; t). (10.36)

subject to the initial condition

Poo(q qo) = ~(q —qo) ~ (10.45)

The "backward Kolmogorov equation" is defined as theDenoting the transition probability per unit time by S' we
equation adjoint to the Fokker —Planck equation

f(n„~ ~ ., n„; t)

W(ni, .~, n„; nii, ~, ni„) f()ni, ~ ~, ni„t) .

(10.37)

~p«. (q, q ) ~p«. (q q ) Xi qo
Bt0 Bq0

p))0(q& qo) Ei qp) .
2 Bq0

(10.46)

We now return to the case in which q is a continuous
variable, Then one may deduce from Eq. (10.33) by a
formal expansion in (q —

qo) (compare also Sec. XI.A)
the stochastic (kinetic) equation

The preceding considerations may be generalized to many
variables ql, ~ -, q . The multidimensional stochastic equa-
tion reads

f(qi& '
1 8

f(q) = 2 —
~

—— L& (q)f(q)), lS~ Bq
(10.38)

vI=1 v2=l vm=i ()&i I)&) 1 ' ' ' i& t)

with the definitions

E,(q) = lim Lni, (q)/rj

and

(10.39)

with

vl g vni

(~"' - ""(qi ." q-) f(qi " q-) 0
Bql 8q

(10.47)

ni. (q) = ((q. —q)'). (10.40) , &»&(q ... q )

The formulas (10.38)—(10.40) may be used rather simply
e.g., to derive the Fokker —Planck equation from Langevin
equations by determining q, for small values from these
latter equations. The derivation of Eq. (10.38) from (10.33)
may be justified in several explicit cases on physical grounds.
For instance one introduces the inverse volume as expansion
parameter (compare Sec. XI) . It should be noted, however,
hat such an expansion may require an infinite number of
derivatives, for instance near instabilities (phase transi-
tions)'. On the other hand in many important cases it is
sufficient to terminate the expansion (10.38) after the first
two derivatives. If X3, E4, ~ - ~ = 0, the process is called a
continuous Markoi& process and one obtains the I&okker-
Planck equation

= »m(1/r) ((qi —qi) "'"(q- —q-)""). (10.48)

When only the first two derivatives are kept, Eq. (10.47)
reduces to the Fokker —Plunck equation

8
f(qi q ) = —Z L& (qi q )f(qi. q )3

a=i q0.

$9-+ k Z E -o(qi, ",q-) f(qi, ",q-) j,
,P=l 8q BqP

(10.49)
where the drift coeQcients are given by

E'„(q„~,q„) = lim(1/r) ((q, —
q ) ),

f(q) = —(~/~q) L&i(q) f(q) j + 2 (~'/~q') L&~(q) f(q) j. x~0

(10.41) and the diffusion coeQcients by

(10.50)

If the initial distribution function at t = t0 is a 5 function &- (q,",q-) = »m(1/r) ((q-. —q-) (q ~
—

q ) ).

f.(q) = ~(q —q.),
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XI. SOLUTIONS OF STOCHASTIC EQUATIONS

A. Reduction of the Chapman-Kolmogorov
equation to a Fokker-Planck equation with
"normal fluctuations"

1. One-dimensional example

First we indicate by means of an one-dimensional example
how the Fokker —Planck equation (10.41) may be derived
by an expansion of the so-called master equation in a power
series of e = 1/V, where V is the volume of the system.
Taking the time derivative of the Chapman —Kolmogorov
equation (10.33) we obtain, in a way which is completely
analogous to the method leading to (10.37), for discrete
values:

Following van Kampen (1961) and Kubo et al. (1973)
we put

g = y(t) + e'"t (11.10)

i(t) = ci(y), (11.11)

where ci is defined in Eq. (11.9). Putting further f(z, t)
f($, t), Eq. (11.8) is transformed into

where $ is assumed to be of order V'. Here y(t) is chosen to
satisfy the equation

f(q t') = fW(q qp' t) f(qp t) dqp,

W(q, qo; t) = (d/dt) p, „(q, q,o) i,=„. , (11.2)

00 g(&—2) /2

+ & (—)"
~

— -(y+ ""5)f(k, t)
n=2 n! B$

which in the limit e —+ 0 reduces to

(11.12)

We cast Eq. '(11.1) into the usual form of the master equa-
tion by putting

(B/Bt) f(5, t) = —(B/BE) ci' (y) 5f + ', (B'/B—P)c2 (y)f
c,' = dc, (y)/dy (11.13)

W(q, qp, t) = m (q, qp., t) —6(q —
qp) fw(q', q; t) dq'.

(11 3)
Equation (11.1) then reads

which has as solution a Gaussian distribution

f = X exp}—(1/2e)o--'L, —y(t) 7'} (11.14)

f(q, t) = fw(q, qp, t) f(qp, t) dqp —f(q, t) fm(q', q, t) dq'.

(11.4)

We write the transition probability zv(q', q; t) in, the form

w(q, r, t); q'= q+r. (11.5)

%e now assume that the probability of such a transition
taking place in an infinitely short time interval is propor-
tional to the size V and is determined by the intensive coor-
dinate g = q/V so that we write

a(t) = 2c,'(y)0(t) + c, (y),

respectively.

(11.15)

2. The general case
The above procedure can be readily generalized to many

variables Lvan Kampen (1961; Kubo et at. (1973)$: The
distribution function f(q, t) which fulfills the master equa-
tion (10.37) with continuous variables can be written Pin
the same (e —+ 0) approximation as in XI.A. 1j as

(X:normalization constant) with y(t) and 0 (t) determined
by Eqs. (11.'11) and

~c(q, r, t) = VS(q, r, t) .

Thus Eq. (11.4) is transformed in, to

e(B/Bt) f(q, t) = —fS(q, r, t) drf(rt, t)

+ Co(g —er, r, t) drf (g —er, t) .

(11.6)

(11.7)
y, (t) = ci;(y), (11.17)

f(n, t) = & expI —(1/2e) Z (~ ')~'L92 —yJ(t) j
x Lm —yu(t)]+". }, (11.16)

where 1V is the (in general time-dependent) normalization
constant, and the coefficients 0-,& and y, obey the equations

(Incidentally we make the replacement f(q, t) —+ Vf(rt, t) ) .
Expanding the right-hand side of Eq. (11.7) into a series
of powers of e we find

ci;(y) = f drr, m(y&, ~ ~ ~, y„, ri, ~ ~ ~, r„), (11.18)
w ( )n B n—f(g, t) = Q

(

e ' — c„(rt, t) f(g, t),Bt „=1 e I

with

(11.8) and

8C1y, BC1~'lPj Z 'l + ll)+C
L ~PL ~PL

(11.19)

c„(q, t) = fr~&(g, r, t) dr (11.9)

Equation (11.8) is also called the Kramers —Moyal expan-
sion. The extension to many variables is straightforward.

with

c»~(y) = f d, .~(yi, ",y., ri, "., «.),

respectively, Lcompare also Eq. (10.51)j.
(11.20)
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The question of whether Eq. (11.16) remains valid in the
m, eighborhood of critical points seems to require further
investigations. Furthermore, in other applications the
expansion parameter e may have a different meaning and
the decomposition (11.6) may not be permissible. We men-
tion a few examples: In the case of single and multimode
lasers it was shown LHaken (1970a) p. 154, Haken and
Vollmer (1971)j that one may use an ordinary Fokker-
Planck equation, but with nonlinear drift coefficients. In
certain electronic devices higher-order diffusion terms must
be included if the drift coeKcients are nonlinear Lvan
Kampen (1961)g. Recently, the above procedure has been
considerably generalized by Mori (to be published), to
treat different classes of dynamic equations in which the
"coherent" motion and the fluctuations scale in a more
general way than described in the foregoing.

Here o(~) is determined by

Co(~) + o(~)C~ = —2Q, (11.28)

where we have used the abbreviations

C= (C;;), (11.29)

(11.30)

f(q) = G(q, q', 00) = (ir" Deto(~)) 't'

X expI —g (a.—');;(~)q;q;I (11.31)

and the superscript T demotes the transposed matrix. In
particular the stationary solution reads

B. Time-dependent and time-independent
solution of the Fokker-Planck equation, if the
drift coefficients are linear in the coordinates and
the diffusion coefficients constant

elf 8 ~f—+ 2 ', —(qf) = —:&0"
qBt;; ~q; ', g' g&

(11.21)

We abbreviate q1, . ~ ~, q~ by q. The Green's function of
(11.21) must fulfill the initial condition

G(% q 0) = Qb(q q ). (11.22)

In a certain class of applications one may assume that
drift coefficients can be linearized around certain stable
values of the coordinates and that the diffusion coefficients
are independent of the coordinates. If we denote the elonga-
tion from the equilibrium positions by q, , the corresponding
Fokker —Planck equation reads

C. Time-independent and time-dependent
solution of the Fokker-Planck equation of a
system weakly coupled to reservoirs

To elucidate our method (Haken 1973c), we first treat
the following model:

1. Fokker-Planck equation of a system of
interacting Brownian particles"

We consider T particles which interact with each other
arid which may also be subject to "coherent" external
forces. Denoting the coordinate and moment of particle j
by q;, p;, respectively, we describe their motion by a Hamil-
tonian 2(pi, ~ ~, pg, qi, ~ ~ ~ y ) . Furthermore, we assume
that these particles suffer collisions with other much lighter
particles and that these collisions may be described as in.
the theory of Brownian motion by a friction force —p,p;
and a fluctuation force F;. The Langevin equations then
read (compare Sec. XII)

The solution of Eq. (11.21) with Eq. (11.22) reads explic-
itly (see e.g. Wang and Uhlenbeck (1945))

j;= —(8II/Bq;) —y;P, + F,,

q, = (aH/Bp, ).

(11.32)

(11.33)

G(q, q', t) = (~"Deto(t)) 't2 The Fokker —Planck equation associated with this problem
acquires the form (compare Sec. XII.B),

x (q; —»;t(t)q') }, (11.23)
f = Lof+ Lif,

where the operators I.o, I& are dehned by

(11.34)

where

O= (0;;), (11.24)

(11.25) and

8 BH 8 BH

~Pi ~qi qi ~Pi ~qt ~Pi

(11.35)

The function b;, which occur in Eq. (11.25) obey the
equations

Li = Zv (~/~pt) I P + m k~T'
(
E. &pi

(11.36)

We focus our attention on the "unperturbed problem"
6;, = QC;,b... (11.26)

Lofo = 0, (11.37)

with the initial conditions

b,,(0) = b,;

'This problem has been dealt with by many authors, e.g. , Cox.
(j.955) and Lebowitz and P. G. Bergmann I,'1957). We have chosen
this model to demonstrate the basic ideas of our general method of

(11.27) solution.
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and discuss the manifold of its solutions fo. Because the
right-hand side of Eq. (11.35) is the Poisson bracket with
the Hamilton function, the solutions of (11.37) are given
by constants of motion of the unperturbed problem:

We treat I~ as a perturbation, where the solutions of the
unperturbed system are given by fo(hi, ~ ~ ~, hpI) . In order to
perform the perturbation theory with respect to the de-
generate system we must require that Lifp vanishes in the
subspace spanned by all solutions of Eq. (11.37), i.e.,

hi(p, q), ~ ~, her(p, q). (11.38)

We assume that the set (11.38) is irreducible in the sense
that no one of these functions can be expressed as a function
of the other ones.

We discuss the number M of constants of motion. Naively
considered, the answer could be as follows. For X degrees
of freedom, we have 2X initial values qp, pp, on which the
solutions of the equations of motion depend. Thus

Jg(hi(q), , 4 (q) )Lifo(hi(q), , hz(q) ) d~q = 0,

(11.44)

d g= dgy ' dgy. (11.45)

where g is an arbitrary function. The integration volume is
abbreviated by

q = q, (q' t)

p = p(q' t).

(11.39)
Performing the differentiations in Eq. (11.44), according

(1140) to (11.43) we obtain

~=~(p q p (11.41)

Elimination of time t leads us to 2X —1 relations
gi(q, p; qo, po) (= g&) which may be considered as constants
of motion. Thus we expect 2X —1 constants of motion.
This conclusion is wrong, however, as is well known in the
statistical mechanics community. The reason is that: the
elimination of t requires that one of the relations (11.39) or
(11.40) be inverted. This is in general not possible, how-
ever, because

Lf =Z 'q f+Z~()Z f
Rgb g ~ (9k'

~ ~

BQ;; Bfp Bh„(q)

Bqj p Bk~ Bqj

8' h( q) Bfo Bh„(q) plh„(q) a2f

p Bq; 8qg Bk~ ~„Bq; Bq~ Bkp Bkp

(11.46)

cannot be determined uniquely where t is a multivalued
function (think of Lissajou's figures!). In general there
exist only very few constants of motion, M (& 2X. In many
practical cases, M is of the order of unity. The basic idea in
solving the total Fokker —Planck equation is this: Any func-
tion of h~, ~ ~, h~.

where p, , v = 1 ~ ~ ~ M; j, i = 1 ~ ~ ~ X. It is apparent that
(11.46) can be written in a more concise form as

8
Li q, —fp(hi(q), . ~ ~, h&(q)) = Li q,

—~fo(hi, . ~ ~, h&).
Bg

'
Bhi

fo(ki, ., 4r) (11.42) (11.47)

is a solution of Eq. (11.37). Thus the unperturbed problem
(11.37) is highly degenerate. This degeneracy will be lifted
by the application of Li (11.36) . We determine the resulting
fp in the limit y, -+0. We now formulate the problem in an
abstract way:

2. The genera. l case: Time-independent solution
We describe the system by coordinates qi, ~ ~ ~, qz (where

q may also stand for momenta!). I.et Lp be a, linear operator
depending on qi, . ~ ~, q~ and its derivatives (we admit even
higher-order derivatives) or an integral operator which has
the following property: If Eq. (11.37) is fulfilled by a set
of functions hi, ~ ~, hM, then an arbitrary function (11.42) is
again a solution of (11.37) . We assume Li in the form

Og(k, .".. h ) g b(k —h (q) )L (q, a/ak)

X fo(hi, . her) Pqd~h = 0. (11.48)

Because g is an arbitrary function in the space spanned by
the variables hi, ~ ~ ~, hM, Eq. (11.48) is only fulfilled if

(
M 8us[~ —a„(q))r, q,

—d~qjgs, , ~ ~, ~ ) = o
X=1

We now introduce a product of 6 functions in the following
way which leaves Eq. (11.44) unchanged in mathematical
content

Li = Z (~/~q~) ~ (q) + Z (~/~q') Q' (q) (~/~q~) (11 43)

though later on it will become obvious that our general
procedure applies also to operators 1.1 which contain higher-
order derivatives (q without index stands for qi, ~ ~, q~).
Though we do not treat the process of non-Markovian
heatbaths explicitly, our procedure applies to those heat-
baths as well.

Li(h)

holds. Equation (11.49) reads explicitly

Lifo(h) = G(k) fp + g b" (k) (Bfo/8')

+ Q c'& "&(8'fg/Bh„Bh„) = 0,
pv

(11.49)

(11.50)
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where we de6ne the transform T by

T'(V(V)) = I II ~(~i —~~(V))V(S) ~"a

and

a(h) = Q T(8/, (q)/Bq;), (11.52)

3. Examples for the application of Eq. (11.59)
In order to demonstrate its usefulness and to show that

this method leads to nontrivial results, we treat a case in
which the dynamical system described by Io has only one
relevant constant of motion (for instance the Hamiltonian) .
Then Eq. (11.59) reduces to the one-dimensional Fokker-
Planck equation

(11.60)
&'"'(&) =Z&(4(q) ": )+ET( (Q' —")),

8k@ BIEy l

c( "&(h) = QT Q;,
Bq; Bqj)

(11.53)

(11.54)

Equation (11.50) can be cast into a more elegant form if we
assume that we may perform partial integrations in the
integrals (11.52) and (11.53). Inserting the explicit form
of (11.47) into (11.49) the following quantities occur

where

G~= G;, G;,~" = G;;. (11.61)

f, = iv exp{—f (gG;/PG;;) dhI,jj
(11.62)

Taking into account the boundary conditions, the general
solution of Eq. (11.60) reads

t
M Bh„(q)+ (')(h —h (q))l;(q)

" d)))'q = G; (h),
X 1 Bgj

where X is a normalization constant. In order to elucidate
the content of both Eq. (11.62) and Eq. (11.59) we now
treat the problem described in (11.34), (11.35), (11.36).

+ t)(p„p„(q)) '
d&q = g G,.) (It) (11 56) A system of interacting particles Here w. e assume h in the~t~(q)

forQ1

M Bh„(q) Bh„(q)rI ~(t. —t.(q))e„(q)
X~1 Rgb Rgb

h = H = g p;2/2e;+ V(qx, q2, ~ ~ ~ ). (11.63)

'V p

(11.57) We further adopt the attitude of statistical mechanics: We
assume that h is in the present case the only constant of
motion. G; and G;, )compare Eqs. (11.61) and (11.36)j
are now de6ned by

8+ B(h), —h), (q)) ()(h, —h„(q))
v XQy Bh,

v

g
p(q)

8g; Bg~

8
G . .pv

v ~y

Equation (11.49) acquires the form

(11.58)

G, = JB(H —H(p q))y;p;(BH/Bp;) d~p d~q (11.64)

G" = ft') (H —H (p q) ) t); ~ m ksT (BH/8 p;) 2 d~p d~q

(11.65)

Inserting Eq. (11.63) into (11.64) and (11.65), both
integrals have the same form apart from different nu-
merical factors:

G; ~ G;; ~ j&(H —Q p /2m, —V(q)) p,'/m, d~qd~q.

(11.66)
Making the replacement

where

8 ( 8
Lfo(&~" &~) = Z (G"fo) + Z —

l

G"" fo =—
gy ~~y k ~p

(11.59a)

Gv;v g G,PV (11.59b)
pp/m; = (;, (11.66a)

This is our main result. It demonstrates that the problem of
solving the high-dimensional Fokker —Planck equation
(11.34) f = 0, with I.o representing a broad class of Liou-
ville operators and with I.~ given by Eq. (11.43), can be
reduced to solving a Fokker —Planck equation whose dimen-
sion is given by the number of relevant constants of motion. f = &expL P.«H(p, q) j, — (11.67)

one immediately realizes that the integral (11.66) is inde-
pendent of the index j, With this in mind w'e obtain instead
of formula (11.62)
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~here the effective temperature T,« is now defined by extend our result (11.59) to

(11.68)
8

fp(hi, ~ ~, h)(r, t) = P —(G&(t) fp)„Bh„

In contrast to equilibrium systems, the distribution func-
tion now depends explicitly on the damping constants y;. If
all temperatures are equal, Eq. (11.67) reduces to the well-
known Boltzman distribution function.

Further examples have been found in laser theory L'Haken
and Wohrstein (1973)j and in nonlinear optics PHaken
(1973d)g. The relevant conservation laws are discussed in
Secs. III and IV of our present article.

4. Time-dependent solutions
We show that our above method can be extended to the
time-dependent case, at least under certain conditions. We
still assume that L,o is time independent and has the same
properties as above, but we admit a time-dependent L,1.
Li(t). The class of solutions of the unperturbed problem

+ z —'(p'(p ' f.) (11.76)

2) x~ s)

E,(x) —+ q(s). (11.77)

where the G's are defined in Eqs. (11.55) and (11.57).

5. Continuously many variables
Fokker —Planck equations may also be formulated for

systems described by continuously many variables. Con-
sider as an example the i component of the electric field
strength, F,(x) . We adopt the following notation. We
replace both the continuous space coordinate x and the
discrete variable i quite generally by a variable s and write
q(s) instead of E,(x):

Jpf(P) = df(P)/dt (11.69) We write L,i in the form

comprises (11.42), but also time-dependent distribution
functions. We treat as an example

g) s ds

X Q(q, s, s') ds ds' (11.78)

Lp = —Z (»(q) " ),
v=1 g)

with

~ 8k„—= 0
v=1 ~gv

(11.70)

(11.71)
h (fq(s) I) (11.79)

which incidentally may serve as an explicit example of the
structure of Ip. Here t and Q may be functionals of q(s).
We assume that the relevant solutions of Eq. (11.37) are
spanned by the basic set of relevant functions hi, (q) ~ ~ ~,
h„(q), where

Imposing the initial condition

f"'(q;0) = II ~(q —q')
v=1

is a functional of the functions q(s). A straightforward
analysis leads to the final Fokker —Planck equation (11.59)

(11 72) with the following definitions

f(P) is given by
G)' = JG)'(s) ds; G&" = jfG&"(s, s') ds ds', (11.80)

f"'(q; t) = II ~(q —
q (t))

v=1
(11.73)

G&(s) —= G&(h, s) = II f)(h), —h), (q))l(q, s) - "
Dq,

()h„(q)
)=1 ()q(s)

(11.81)

Here q„(t) are the solutions of the equations of motion
G&'(h s, s')

q„(t) = k„(q(t) )

subject to the initial conditions

(11.74)
()(h —h (q) )Q(q, , '), Dq.

6h, (q) tIh„(q)

X=1 Bq(s) bq (s')

(11.82)
where Dq denotes functional integration.

q (0) —q„(P)

The manifold of solutions (11.73) is, of course, bigger than
(11.42). Thus, even in the unperturbed case, we cannot
treat the fully time-dependent problem only by means of
(11.42). The situation changes, however, if we admit as
initial distribution only those of the form (11.42) . If
furthermore L,1 is small and changes slowly enough, we may

D. Exact stationary solution of the Fokker
Planck equation for systems in detailed balance

In this section we mainly demonstrate two things /Gra-
ham and Haken (1971a), Risken (1972)j:

(1) We derive sufFicient and necessary conditions for the
drift and diffusion coeKcients of the Fokker —Planck equa-
tion so that the principle of detailed balance is fulfilled.
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(2) We show that under the condition of detailed balance
the stationary solution of the Fokker —Planck equation may
be found explicitly by quadratures.

While the principle of detailed balance is expected to hold
for practically all systems in thermal equilibrium, this need
not be so in systems far from thermal equilibrium. Thus
each individual case requires a detailed discussion (e.g. , by
symmetry considerations) if this principle is applicable.
Also the inspection of the structure of the Fokker —Planck
equation will enable us (see below), to decide whether de-
tailed balance is present.

1. Detailed balance
We denote the set of variables q&,

~ ~ ~, q& by q and the set
of the variables under time reversal by

(11.83)

where ~; = —1 (+1) depending on whether the coordinate
q, changes sign (does not change sign) under time reversal,
and 2 stands for a set of externally determined parameters.
The time reversed quantity is denoted by

(11.84)

where v; = —1 (+1) depends on the inversion symmetry
of the external parameters under time reversal. %e denote
the, joint probability of finding the system at t& with coor-
dinates q and at t& with coordinates q' by (see Eq. 10.21) )

holds. %e de6ne the transition probability per second by

m (q', q; 2) = P(d/dr) P (q'
~ q; r, 3 ) j,=o. (11.90)

zv(q', q;2) f(q, x) = w(q, q';2) f(q', X). (11.91)

It has obviously a very simple meaning. The left-hand side
describes the total transition rate out of the state q into
a new state q'. The principle of detailed balance then re-
quires that this transition rate is equal to the rate in the
reverse direction for q and q with reverse motion e.g. with
reverse momenta.

2. The required structure of the Fokker-Planck
equation and its stationary solution

We now derive necessary and sufficient conditions on the
form of a Fokker —Planck equation so that the principle of
detailed balance in its second (and first) version are satis-
fied. Using the conditional probability P (which is nothing
but the Green's function) we write the Fokker —Planck
equation (or generalized Fokker —Planck equation having
infinitely many derivatives) in the form of the equation

—P (q'
~ q; r, ~) = 1(q', »P(q'

~ q; r; X) . (11.92)

Taking the derivative with respect to 7- on both sides of Eq.
(11.88) and putting r = 0 (but q & q') we obtain

(2) the condition of detailed balance (second version)

f (q', q, &, & ). (11.85)

In the following we consider a stationary system so that
the joint probability depends only on the time difference
t2 —ti ——r Thus (11..85) may be written as P(q'

~ q; 0, 0) = b(q' —q). (11.93)

Note that, if not otherwise stated, L, may also be an integral
operator. The solution of Eq. (11.92) is subject to the initial
condition

f2(q', q; &2, &i) = ~(q', q;.). (11.86) The formal solution of Eq. (11.92) with (11.93) reads

We now formulate the principle of detailed balance. There
are two definitions available:

P (q'
[ q; r, 2) = expLL(q', 2) r]B(q' —q) . (11.92a)

Putting into (11.92) on both sides r = 0, (11.92) acquires
(1) The principle of detailed balance (erst version). LSee

e.g. , de Groot and Mazur (1961)j. It reads

K'(q', q,r; 2) = W(q, q', r;X) . (11.87)
w(q', q;0.) = L(q', 0.)b(q' —q). (11.94)

(dldr)P(q'I q;r, ~) = L+(q, ~)P(q'I q;r, &), (».95)

The backward equation (backward Kolmogorov equation)
Because the joint probability may be expressed by the is defined by
stationary distribution f(q) multiplied by the conditional
probability p t compare Eq. (10.30) g, where we now write

P (q'
/ q; r, X) i~stead of p, &(q', q),

we may reformulate Eq. (11.87) as follows

P(q'
I q;, &) f(q, &) = P(q I

q';, » f(q', ». (11.88)

f(q, &) =f(q, ~) (11.89)

Here and in the following we assume that the Fokker-
Planck equation possesses a U,nique stationary solution.
One may then show directly that

where L+ is the operator adjoint to L,. Again specializing
Eq. (11.95) for r = 0 we obtain

~(q', q;&) = L+(q, »b(q' —q) (11.96)

L(q', &)b(q' —q) f(q, ~) = L+(q', ~)b(q' —q) f(q', ~).
(11.97)

Proceeding in Eq. (11.96) to time-inverted coordinates and
then inserting Eqs. (11.94) and (11.96) into (11.91) we
obtain
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b(q' —q) = B(q' —q) (11.98)

We now demonstrate how one may derive an operator
identity to be fulfilled by I, L+ which is a consequence of
Eq. (11.97). On the left-hand side of Eq. (11.97) we replace
q by q' in f. On the right-hand side we make the replacement

(a) the irreversible drift coefficients

D;(q, X) = —,'(E;(q, X) + ~;E;(q, 0.)) = D,'"

(b) the reversible drift coefficients

(11.105)

It is convenient to define the following new coeKcients:

With these substitutions and bringing the right-hand side
to the left-hand side, Eq. (11.97) acquires the form

J (q 2) = -'(E' (q 2) —~ E (q X)) =—D" (11.106)

L (q', 2) f(q', 2) 5 (q' —q) —f(q', 0 ) L+(q', 0 ) B (q' —q)

= 0. (11.99)

Because the 6 function is an arbitrary function if we let q
accept all values, Eq. (11.99) is equivalent to the following
operator equation L(Risken (1972)j

L(q', 2) f(q', 2) —f(q', X)L+(q', 0.) = 0. (11.100)

(L(q', ~) )"f(q', ~) = f(q', &) (L+(q', ~))"

We multiply Eq. (11.101) by r"(1/n!) and sum up over n
from m = 0 to e = oo. Now making all steps w'hich have
led from Eq. (11.97) to Eq. (11.100) in the reverse direc-
tion, and using Kq. (11.92a) and its analogous form for L+
we obtain Eq. (11.88) and thus Eq. (11.87). We now
exploit (11.100) to determine the explicit form of the
Fokker —Planck equation if the system fulfills the condition
of detailed balance. Because (11.100) is an operator
identity each coe%cient of all derivatives with respect to
q; must vanish. Though in principle the comparison of
coe6cients is possible for arbitrarily high derivatives, we
confine ourselves to the usual Fokk.er—Planck equation
with an operator L, of the form

In Eq. (11.100) L acts in the usual sense of an operator well
known from quantum mechanical operators so that Lf is
to be interpreted as L( f ~ ~ ) where the points indicate an
arbitrary function. So far we have seen that the condition
of detailed balance has the consequence (11.100) .

We now demonstrate that if Eq. (11.100) is fulfilled the
system even has the property of the first version principle
of detailed balance (which appears to be stronger). First
we note that Eq. (11.100) may be iterated yielding

f(q, 2) = X expL —p(q, 2) g, (11.107)

where X is the norinalization constant and @ inay be inter-
preted as a generalized thermodynamic potential. The condi-
tions read

E;&(q, X) = e;e&E;p(q, X),

BEo, , B@
D' —4Z * = —-'ZE'. —

ga I ~pa '

(BJ, B@&

Zi —'-~; -i=0.
&Bq;

'
Bq;)

(11.109)

(11.110)

If the diffusion matrix E' possesses an inverse, (11.109)
may be solved with respect to the gradient of @

(11.111)

This shows that (11.109) implies the integrability condition

(B/Bq;)A; = (B/Bq;)A, (11.112)

which is a condition on the drift and diffusion coefBcients
as defined by the right-hand side of Eq. (11.111'). Substitut-
ing A;, A; by Kq. (11.111),the condition (11.110) acquires
the form

For applications it is important to note that J, transforms
as j; under time reversal. We then obtain explicitly the
necessary and sufficient conditions for Eo„D; 'and J, so
that the principle of detailed balance holds (Gra. ham and
Haken (1971a)).'i We write the stationary solution of the
Fokker —Planck equation in the form

L(q) = —Z (B/Bq ) .E (q ~) + 2 Z (B'/Bq; Bq.)
(11.113)

X E;&(q, X).

and its adjoint

L+(q) = Z E'(q, &) (B/Bq') + 2 Z E'~(q &)

X (B'/Bq, Bqj,)

(11.102)
Thus the conditions that detailed balance holds aie given

finally by Eqs. (11.108), (11.112), and (11.113).Equation
(11.109) or equivalently (11.111) then allows us to deter-
mine @ by pure quadratures, i.e., by a line integral. Thus the
stationary solution of the Fokker Elanck equation may bp-
determined explicitly (The deeper reason for these results
will become more obvious in Sec. XI.E.)

We always may assume that the diffusion coefficients are
symmetric

(11.104)

'7 The conditions (11.108)-(11.109) had been previously dt;rived by
van Kampen (19S7) and UMborn (1960) in a somewhat diGerent
manner. We wish to thank a referee for drawing our attention to these
two references.
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3. Useful special cases
We mention two special cases which have turned out to

be extremely useful for applications.

(1) I; = 0 yields the so-called potential conditions
(Stratonovich (1963)) in which case (11.110) and thus
(11.113) are fulfilled identically so that only (11.108)
and (11.112) remain to be satisfied.

(2) In many practical applications one deals with com-
plex variables (instead of the real ones)' and the Fokker-
Planck equation has the following explicit form

Bf f 8 8 ) 8'

Bf z ttBAz BN& Pz' BZEy BR&

f(n;2) = P w(n, m;0.) f(m, X) —f(n, X) P w(m n a)

(11.121)

Putting f = 0 we consider the stationary state. We intro-
duce the time reversed variables by

n (&1'iii ' ' ' &1V'AN) (11.122)

where ei ——+1 (—1) if the variables are even (odd) under
time reversal. We use a similar notation for X. Then the
principle of detailed balance requires that

with
(11.114) w(n, m;2) f(m, X) = w(m, n;Z) f(n, Z)

is fulfilled.

(11.123)

Qz, = 4,Q;, Qz= Q. (11.115)

C = BB/Bu*+ I "&

C; = BB/Bu; + I;~2&,

and the following conditions must be satisfied

(11.116)

(11.117)

Then the above conditions reduce to the following ones
(Haken (1969a)):C;, C, must have the form

Equation (11.123) represents a set of homogeneous equa-
tions, which can be solved only if certain conditions are
fulfilled by the m's. Such conditions can be derived, for
instance, by symmetry considerations or in the case that

can be replaced by differential operators. We are not
concerned, however, with this question, but want to show
how Eq. (11.123) leads to an explicit solution. In the fol-
lowing we assume that f(n; 2) & 0. Then Eq. (11.123) can
be written as

z,t&~ z;e&) = o,
$8B BB

(Bu;
' Bu;*

(11.118)
f(m;2) w(m, n;5)
f(n; 2) w(n, m; 2)

(11.124)

(BI;&'& BI 2'

& Bu; Bu;*

Writing ID = n;+&, n = Q;, we pass from Il0 to n~ by a chain
of intermediate states. Because there exists a unique solu-
tion, at least one chain must exist. We then find

f=Xe~, (11.120)

As a result the stationary solution of Eq. (11.114) reads f(n~, X)

f(no, x)

~—'w(n;+i, n;, X,)
w(n;, n;+i, 2)

(11.125)

where

~ = 2B/Q (11.120a)

Equation. (11.125) generalizes a result obtained by Landauer
(1962) (one variable and nearest-neighbor transitions) to
an arbitrary number of dimensions and arbitrary transitions.
Putting

E. Exact stationary solution of the master
equation for systems far from thermal
equilibrium in detailed balance

In this section we start directly from the master equation
and prove the following: If the master equation LLandauer
(1962), Haken (1974a)j has a unique stationary solution
and fulfills the principle of detailed balance, this solution
can be obtained explicitly by mere summations or, in the
continuous case, by quadratures.

We denote by m (or n) a set of variables (mi, . ~ ~, mid).
Here 2 denotes a set of external parameters. The transition
probability per second from state m to n under the inhuence
of 2 is denoted by w (n, m; 2) . The distribution function is
denoted by f(n, 0). The master equation then reads (com-
pare Eq. (10.37)

I

'8To establish the connection between these variables, note that
Re u is an even variable, whereas Im u is an odd one.

f(m, X) = X exp(f (m, X), (11.126)

where X is the normalization factor, Eq. (11.125) may be
written as

y(nN, 2) —@(no, 2)

= Q 1nIw(n;~i, n;;X,)/w(n;, n;+i,. 2) i.
j=0

(11.127)

F. Exact and approximate relations between
moments

We consider a Fokker —Planck equation or a generalized
Fokker —Planck equation. We split the corresponding opera-
tors of the equation of motion into a part which refers to

Because the solution was assumed to be unique, @(m&,2) is
independent of the path chosen. Taking a suitable limit one
may apply Eq. (11.127) to continuous variables.
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the proper system and another one which describes the
coupling of the proper system to the external world (reser-
voirs). We demonstrate that by use of conservation laws
/see Eqs. (11.37), (11.38) $ referring to the proper systems,
exact relations hold for certain moments, valid for all tem-
peratures and coupling constants of the reservoirs LHaken
(1973e)g. Using the concepts of Sec. XI.C we describe a
perturbation theoretical approach which allows us in a
simple manner to determine a number of important correla-
tion functions (moments of the total system). We assume
that the system is described by Eq. (11.34), where Lp is the
Liouville operator of the proper system. Here L& describes
the coupling of the proper system to reservoirs. To exhibit
the coupling strength explicitly, we extract from L1 the
parameter describing the strength of the coupling to the
external world: L1 —+)L». Thus our basic equation reads

Multiplying Eq. (11.128) with (11.134) from the left and
taking the average yields

hyLp + XhpLi = 0 (11.136)

where the first term vanishes. Expressing the second term
by means of Eqs. (11.134) and (11.132) we find

Q X;Q FytDi; = 0
E

(11.137)

which gives a set of relations between the moments X;
which hold independently of the coupling strength ) of the
proper system to reservoirs.

b. Perturbation approach

We now assume that X is a small expansion parameter. We
put the distribution function f in the form

We consider moments of the form f = fp+ ~fi + &'fp + (11.138)

~
ny ~ ~ .~

n~
Z — 8] 8+ (11.129)

YVe denote the operators adjoint to Lp, L& by I p, I&, respec-
tively. We assume that the L's and L's respectively, may be
represented by superpositions of derivatives with respect
to q; multiplied by superpositions of moments of the form
(11.129). This restriction may easily be overcome by using
more general functions instead of (11.129) as will become
evident from what follows. We now form in obvious steps

(x,f) = (x,f.) g x(x,f,)+ ~ ~

—= X"'+ XX "i+ ~ ~ ~ (11.139)

If the unperturbed problem (X = 0) is nondegenerate, Eq.
(11.138) exists in a straightforward way. If it is degenerate
the procedure of Sec. XI.C must be applied. According to
the decomposition (11.138), there exists a corresponding
decomposition of the moments

(X;Lof) = ((LoX;) f) = Q C,~x; (11 130) Inserting Eq. (11.139) into (11.133) yields, by a compari-
son of equal powers of P, a recurrency relation of the form

where the brackets denote the integration over all the
variables, for whj. ch we have used the abbreviation gc x &» = —gD x&~-» (11.140)

In a way analogous to Eq. (11.130) we find

(X,Lif') = g D,„X;.

(11.]31) Because the method of Sec. XI.C allows us to determine
fp, at least a number of correlation functions of the first
order may be found.

(] 1 132) 2. Time-dependent relations

(d/dt)hk = gx, gz„,D„
j E

(11.141)
(11.133)(d/dt) (X,f) = g C;;X + y g D,;X;.

We now proceed to specialize this relation.

1. Time-independent relations (f = 0)

Note, that on the right-hand side the matrix DE; depends
only on damping and diffusion constants, but no longer
contains internal parameters of the proper system.

XII. GENERALIZED LANGEVIN EQUATIONS
a. Exact relations

th t L s lf d' ' t d ss t} } A. Derivation of generalized Langevin equations
exist constants of motion of the form ~ ~In many cases of practical interest we want to study the

behavior of a certain system 5 which is coupled to reservoirs
so that we ought to consider the total system 5+ R. On
the other hand we are finally interested only in the behavior
of the system 5 itself. This suggests that we find a formalism
in which the variables of the system R are' eventually
eliminated. If we can describe the system 5+ R by first-
order diGerential equations we can achieve this in a rather

ha = Q &a~xi (11.134)

so that

Lphj, ——0. (11.135)

%e only mention an example for which X; is replaced

We now multiply Eq. (11.128) from the left with X; and
take the average. This yields
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simple manner. As a result we will And that the system E.
acts in three different ways on the system 5:

(1) It brings about an additional interaction within the
system 5 which may be considered to be instantaneous.

(2) It brings about a more or less retarded interaction
which may give rise to a frictional force.

(3) On account of statistics inherent in the reservoir
system there occur random forces in the proper system 5.

For simplicity we assume that the reservoir system is com-
posed of harmonic oscillators. It should be noted, however,
that the derivation could be done mope generally. Note that
our analysis is not confined to physical systems. It may
equally well apply, e.g. , to electrical or.neuron networks or
other fields in the sense discussed in our article. We assume
equations of motion of the proper system 5 in the form'

ized Langevin equation

q(t) = K(q(t); t) + A(q(t); t)L 'B(q(t))

A(q(t); t) expt L(t —r) ]L 'C(q(r) ) q(r) dr

+ A(q(t); t) expLt tr(0) —L 'B(q(0)) I. (12.6)

The reservoir coordinates enter into it only through their
initial value r(0). The first term on the right-hand side is
the initially present force, the second term describes an
instantaneous force brought about by the reservoirs. The
integral describes a general retarded interaction and the last
term may be interpreted as a fluctuation force. We regard
the expression

q(t) = K(q(t); t) + A(q(t); t) r(t) (12.1)
F(t) = exp(Lt) Ir(O) —L- B(q(O)) I (12.7)

where q stands for a set of variables of the proper system,
r for the reservoir variables, K may be a time-dependent
"force," and A describes the strength of coupling to the
reservoir coordinates r. On the other hand we assume the
equations of motion for the reservoirs in the form (r(0) ) = L- B(q(0)). (12.8)

as the noise source. Its statistical properties depend on the
statistical properties of r(0). We assume at time t = 0 the
system R possesses a Gaussian distribution with mean
values

r (t) = Lr (t) —B(q (t) ), (12.2)

where L is a constant matrix and 8 may depend in an arbi-
trary manner on q. We will assume that L possesses an
inverse. If we let q stand for both coordinates and momenta
and interpret K and Ar as suitable derivatives of a Hamil-
tonian, Eq. (12.1) contains as a special case the Hamil-
tonian equations of motion. Equation (12.2) possesses the
solution

L2

(12.9)

Now with applications to physics in mind, we assume that
the reservoir is composed of a set of physical svstems each
of which is kept at an individual temperature T;. We assume
that the matrix L may be decomposed into

t

r(t) = exp(Lt)r(0) — expPL(t —r) jB(q(r)) dr

(12.3)

which may be transformed by partial integration into'o

r(t) = L-iB(q(t) ) + «p(Lt) Ir(0) —L-iB(q(0) ) )

Incidentally we decompose r and F into the subvectors r;
and F,, respectively, where i = 1, ~ ~ ~, iV corresponds to the
indices of L in Eq. (12.9). Furthermore we assume that we
may put

L;= z;L;, (12.10)

expLL(t —r)gL '6(q(r))q(r) dr

where we have introduced the matrix

(12.4)
where z, is a direct product of antisymmetric matrices of the
form

c(q(.)) = (c„)= (aa, ig,„). (12.5)
0 1

E—1 0)
(12.11)

Inserting Eq. (12.4) into (12.1) yields the desired general-

290ur treatment generalizes a recent paper by Zwanzig (1973) to
non-Hamiltonian systems coupled to reservoirs at different tempera-
tures.

' This partial integration which amounts to distributing the "deter-
ministic" and "fluctuating" forces in a certain way is not always
needed, so that then Eq. (12.3) can be directly inserted into (12.1).
Because usually the form of the "deterministic" forces (which are
essentially friction forces) can be foreseen, e.g. , on physical grounds,
one may easily decide in practical cases which way to split up the terms
in the equations.

(M, (0)hr, (0)r) = 5, ,,kT;L; ', (12.12)

where Ar; is defined by hr; = r, —(r, ), and the superscript
T denotes the transposed matrix. Using Eq. (12.12) one

which take care of the fact that the Hamiltonian equation
carries two different signs with respect to the equations for
coordinates and momenta, respectively. Here L, is assumed
to be symmetric and nonsingular. Assuming that the difer-
ent reservoirs are uncorrelated we have
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110 H. Haken: Cooperative phenomena

readily derives the following property for the noise sources equations in the form

&F-'(&) F~(&')') = ~v&~T' exp((& —&') L') L' ' (12.13)
m

q = ~ (q)+Z g, (q)4(t)
j=l

I = 1 ~ ~ ~ p (12.19)

which establishes a relation between the fluctuations (left-
hand side) and the dissipation (right-hand side), because
the expression

where q& are the variables of the system, and k& and g&j
function of q. Here $;(t) are independent Gaussian 5-corre-
lated random functions with

exp((t —t')L;)L, ' (12.14)

just occurs as essential part of the "friction force" in Kq.
(12.6) (see also (12.17)) . For practical cases it is important
to note that in quite a number of applications one may
demonstrate that the noise sources are 6-correlated in time.

If our above formalism is specialized to a single reservoir
kept at a temperature T, it reduces essentially (with some
modifications) to an equation recently derived by Zwanzig
(1973). Following Zwanzig we illustrate the above pro-
cedure by an example. We consider a single particle with
coordinate Q, momentum P, and mass M in the potential
U(Q). The systems Hamiltonian is

(12.20)

(12.21)

One may show that Eq. (12.19) is equivalent to the follow-
lowing Fokker —Planck equation t Stratonovich (1963)):

f(q»" q-)
m

= —2 (~/~q)[E (qi .
q )f(qi .

q ))
p=l

+ —: Z (~/~q. ~q.)L&"(qi" q-) f(qi" q-))
p, v=1

H, = (P'/2M) + U(Q). (12.15) (12.22)

The reservoir Hamiltonian is where the drift and diffusion coefficients are given by

&~ =, Z kp,'+ Z 2~'(q —v'Q/~")'. (12.16)
&((q) = &((q) + 2 Z (~g(/aq~) g~, (12.23)

(12.24)
We assume linear coupling between 5 and E.. The general-
ized I.angevin equation then reads

M dQ(/dt = P(

(fP,/dt = —U'(Q ) — dt'i (t') P, , /M + F(t) .

The friction coeKcient i (/) is
(12.17)

i (f) = g (y'/cv')' cosco~t.

The fluctuation-dissipation theorem takes the form

(12.18)

(F(~) ) = 0, (F(~)F(t') ) = k~Tg(t —f). (12.18a)

B. Connection between Langevin equations and
Fokker-Planck equations

Langevin equations are contained in Eq. (12.6) as special
cases. We want to show that such equations may be equiva-
lent to a Fokker-Planck equation. We assume the I.angevin

Sy a special choice of frequencies and coupling constants
one is led to an equation which is approximately Markovian
(compare e.g. R. J. Rubin (1960), Ullersma (1966), G. W.
Ford, M. Kac and P. Mazur (1965). We finally note that
the above procedure applies equally well if the coordinates
q and r are quantum mechanical operators. In that case the-
generalized I.angevin equation becomes an operator equa-
tion with stochastic operator forces F(t) which have been
e.g. , extensively used in laser theory (Haken (1964, 1966,
1970a), Lax (1966c, 1968)).

UEU ' = (E,06,,),

we find

G = U—'L(K,')"'6,,)U,

and from Eq. (12.23) k(.

K,o& 0, (12.25)

(12.26)

Xlll ~ QUANTUM STATISTICS: THE DENSITY
MATRIX EQUATION

In this and the following sections we sketch methods of
quantum statistics applicable to quantum systems far from
thermal equilibrium. The underlying concept is the same
as for classical systems treated in the preceding chapters.
The quantum system under consideration is kept far from

Obviously, if Eq. (12.19) is given, the drift and diffusion
coefficients are fixed by (12.23) and (12.24). However, the
inverse is also true. If the drift and diffusion coefFicients of
the Fokker —Planck equation (12.22) are known one may
invert the relations (12.23) and (12.24) in order to find
k and g.

Consider the matrix K = (X( ) which is supposed to be
syrnrnetric and non-negative definite. (Note that the con-
dition of non-negative definiteness need not hold in systems
where the Fokker —Planck equation(12. 22) corresponds to a
stochastic process connected with a quantum system or to
a certain nonequilibrium system). If the above condition,
however, holds, according to linear algebra there exists a
real, symmetric, nonnegative definite matrix, G = (gg,),
with O' = K. Introducing U = (n;, ) with
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thermal equilibrium by its coupling to other quantum sys-
tems with which it may exchange energy, masses, momen-
tum etc. Thus w'e are always concerned with the proper
system 5 coupled to reservoir systems denoted by E. Since
we are ultimately interested only in the properties of the
proper system, we have to dev&se methods of eliminating
the variables or operators of the reservoir system. At present
there exist two main elimination techniques, depending on
the description of the quantum system R + 5:

(1) The total system is described by the density matrix
equation in the Schrodinger picture. The elimination pro-
cedure just mentioned leads to an equation for a ~edlced
deesify matrix, again in the Schrodinger picture.

(2) The total system is described by Heisenberg equa-
tions of motion for a suitable set of operators, The elimina-
tion procedure leads to qlantum mechmzical I.amgevin eqla-
tions.

Inserting Eq. (13.6) in.to (13.4) we obtain Zwanrig's gen-
eralized master equation

PW(t) = iP—LPW(t)

d7PL expL —s(1 —P) Lr j(1 —P) LPW (t —r)

—iPL exp/ —i(1 —P) Lt)(1 —P) W(0), (13.7)

P= ETr~ with TER = 1, (13.8)

An important problem rests in the choice of the projec-
tion operator P', because one has to make later on assump-
tions (or in other words, certain approximations) whose
validity depends on this choice. Zwanzig has defined P such
that PW is the diagonal part of W(t) in some specific repre-
sentation. Following Argyris and Kelley (1964) we may
define P as the following trace operation:

A. Derivation of a reduced density matrix
equation by means of the projector formalism

PW(t) = R Tr~W(t) = R, (t). (13.9)

W(t) = PW(t) + (1 —P) W(t),

where p is a projection operator with

(13.1)

We describe the elimination technique; following Zwanzig
(1964)" We denote the density operator of the coupled
system 5 + R by W(t) . We decompose the density operator
by the identity

L = L~+ Lz+ Lza. (13.10)

Here E is an operator in the reservoir subspace of the
Hilbert space and can be chosen arbitrarily with the con-
straint of normalization so that P is a projector. De@.oting
the Liouville operators by indices referring to the proper
system 5, the reservoir system E., and the interaction be-
tween both systems (R5), we decompose I. into

p2 —p (13 2) Using the abbreviation on the right-hand side of Eq. (13.9),
Eq. (13.7) is then transformed into

Later on we will dehne p as an operator projecting onto the
proper system. (Note that P is not an ordinary operator in
the Hilbert space of wave vectors, but acts on the operators
in that Hilbert space) .

p(t) = —iLsp(t) —i Tr~(L~sRp(t) )

+ dTQ(r) p(t —r) + I(t) (13.11)

The density matrix equation is written in the form

W(t) = iLW(t) = —(i/5)LH, W(t) j (13.3)

where I and H are the Liouville operator and Hamiltonian,
respectively. " Inserting Eq. (13.1) into (13.3) and multi-
plying (13.3) with P or (1 —P), respectively, we obtain the
equations

with the abbreviations

I(t) = i Trg(L~g expL —i—(1 —P) Ltg(1 —P) W(0) I.
(13.12)

Q(r) ——Tr~ I LRg expL —s(1 —P) Lr)PL~S + L~&R }.
(13.13)

PW = iPLPW —iPL(—1 —P) W, (13.4)

(1 —P) W = —i(1 —P) LPW —i(1 —P) L(1 —P) W.
In practical applications one usually expands Q(r) into a
power series of the interaction operator L~8 or a part of it.
For more recent examples of applications see e.g., Haake
(1969, 1973).

To eliminate e.g. , (1 —P) W we integrate Eq. (13.5)
obtaining the formal solution

(1 —P) W(t) = expL —i(1 —P)Ltj(1 —P) W(0)

dr exp/ —i (1 —P) Lrj(1 —P) LPW (t —r) .

"For a recent review article with applications, see Haake I'I973}.
3' One may also treat a more general case, in which I contains also

dissipation parts stemming from a preceding elimination procedure.

B. Explicit examples of reduced density matrices
The derivation of reduced density matrices in which the

operators of the reservoir system have beep. eliminated up
to second order is well known in the literature LBloch and
Wangsness (1953), Argyres (1963), Willis and Bergmann
(1962), Weidlich and Haake (1965)). We therefore present
only the main results.

According to Eq. (13.10) we decompose H into

(13.14)
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112 H. Haken: Cooperative phenomena

g' = exp''(i/A') Hot jW expL —(i/5) Hot),

H~s = expt (i/A')HotjHas expL —(i/5)Hot).

We now assume that H~~ has the form

H~s (t) = fi Q Si, (t) Ri, (t),

(13.15)

(13.16)

We put Ho ——HB+ H~ and proceed to the interaction
representation

Further putting A2i ——$, Ai2 ——8 = $ exp( —Ka&/kT), we
find the following density matrix equation" )Weidlich and
Haake (1965))

dt/dt = ~(L&+t &3+ D+ p&3 + E(L&p, &+j+ L&, p&+j},

(13.23)

where b = b(t). The physical meaning of 6 and g becomes
obvious by equations for averages defined by

Si(t) = Si, (0) exp(ihvi, t), (13.18)
«) = T"(0.-) (13.24)

where Si, (t), Si(0) are operators of the proper system S, in
the interaction and SchrOdinger representations, respec-
tively, whereas R& are operators of the reservoir system.
Explicit examples will be given below. If the reservoirs have
a short relaxation time and if the R~'s have no diagonal
elements in the energy representation of R, the following
reduced density matrix equation results:

{b+) obeys the equation

d{b+)dt = —(g —~}{b+) (13.25}

d{b+b)/dt = 25 —2(( —8) (b+b). (1,3.26)

so that (&
—6) can be interpreted as a decay constant, ~,

and (b+b) obeys the equation

dp(t)
dt

= Q ILSi (t) p(t), Si(t) jAii,

+ )Si,.(t), p{t)Si,JAsi, 'l =—L,.ap, (13.19)

Its stationary solution

(») = ~/(~ —~) (13.27)

where the definition of the reduced Liouville operator is
obvious. In Kq. (13.19) p is the density matrix of the proper
system S in the interaction representa, tion, Pa, Pg =
nP —Pn, and A, A' are defined as follows:

exp( iAvi, r) TrR—(Ri, (r) Ri,.(0)pa(0) ) dr,

is the mean number n of photons in thermal equilibrium
with the reservoir, so that 6 = ~n.

2. Arbitrary quantum system described by
projection operators P, ;

We identify

(13.20)

exp{—ib.vi,r) Tra(Rv, (0)Ri, (r) pa(0) ) dr.

(13.21)

Here p~(0) is the density matrix of the reservoir R at time
t = 0. In many applications one may assume tha, t pz(0) is
a product of canonical distribution functions of reservoirs
held at diferent temperatures T,. If only a single reservoir
with temperature T is present, one may derive the relation

Hs = 2~v'»~,

Si(t) = P,t(t)

(13.28)

(13.29)

(13.30)

(13.31)

and use A,;,,' = A..,.,*.The reduced density matrix equa-
tion takes the simple form

ReAi ~
——ReA&~. exp(Advs, /kaT). (13.22) dp(t)/dt = g It P,,p, P„jA..,.; + $P;;, pP, ,)A;,„;*I,

In practice, the coeKcients A may often be correlated to
experimentally observable damping constants etc. (see
below). We now represent two important special cases.

1. The damped harmonic oscillator
Describing the harmonic oscillator (or "Bose field" ) by

the creation and annihilation operators b+, 6, respectively,
we may identify

(13.32)

(d/dt) (P „)= (ian„„—~ „){P „),

("/dt) {P ) = + (P') ' {P ) Z

mme
(13.33)

(13.34)

where P,; = P,;(t). To shed light on the meaning of the
A' s, we represent the equations for {P „)= Tra(P „p),
following from Eq. (13.32):

"Because the imaginary part of the A's gives rise to mere frequency
shifts which can be included in the frequency of the actual oscillator
we have kept only the real parts of the A' s.

Rev. Mod. Phys. , Vol. 47, No. 1, Janoary 1975



H. Haken: Cooperative phenomena 113

where we have introduced the abbreviations

~jm = 2 Re~jmm. jp

The solution of the master equation of a system described
by the Hamiltonian H and weakly coupled to reservoirs,

(13.35) all kept at the same temperature T, is well known:

~flmn, = g Im(~niin + &miim ) q

Vmn = 2 Q (ii'ai + immi) ~

(13.36)

(13.37)

p = X exp( —H/kT).

In the following (as elsewhere in this article) we explicitly
treat systems uzi ay from thermal equilibrium.

Obviously mj may be interpreted as transition rate from
state j to state m.

3. Atom subject to the action of reservoirs
Consider an atom with energy levels i. Denote the crea-

tion and annihilation operators of an electron in level i by
a;+, a, , respectively. Putting

The reduction procedure. We seek the steady state solu-
tion of the master equation

p= Jp, (14 1)

where I is the Liouville operator. More explicitly written
Eq. (14.1) reads

(13.38) p = —(i/A') PH, p) + hip+ pA2+ g M;pX; (14.2)

4. Proper system composed of interacting
subsystems

The usual procedure is this: One first neglects the inter-
action (H;„&) between the subsystem and obtains the re-
duced density matrix equation of the total system in the
form

dp/« = Z L«, ip, (13.39)

allows us immediately to apply the above formalism to the
present case, provided only a single "Leuchtelektron" is
treated.

L= Lo+Li, (14.3)

where L,0 contains the Hamiltonian and under certain situa-
tions also a part of the operators stemming from the
coupling to reservoirs. The unperturbed problem is defined
by

where II is the Hamiltonian of the proper system and,
A] ~ A2~ lV j& Ej are operators which describe the coupling of
the proper system to reservoirs. For explicit examples see
Sec. III and IV. In the following, we decompose the Liou-
ville operator into two parts

where J„z,; is the reduced Liouville operator of the subsys-
tem j Lcompare Eq. (13.19)).One then adds (—i/5') LH;„&,p)
to Eq. (13.39). This procedure works well if the coupling
of the proper system to reservoirs is stronger than within
the proper system. The opposite case is still under discus-
sion. In that case, damping terms may be considered as
phenomenologically introduced.

L'OPO (14.4)

Q1, ~ ~ - Q~ (14 5)

are operators describing conserved quantities we require
also that each polynomial in Eq. (14.5) fulfills (14.4), i.e.,

XIV. SOLUTIONS OF THE REDUCED DENSITY
MATRIX EQUATION Lo(Q;,"' ~ 0,„"~) = 0 (14.6)

Several methods of solution of the Fokker —Planck equa-
tion described in Sec. XI possess direct analogues in the
present quantum mechanical case.

A. Time-independent and time-dependent
solution of the reduced density matrix equation
of a system weakly coupled to reservoirs

We 6rst give a brief outline of our method (Haken
(19/4b)). We decompose the Liouville operator of the
master equation into a part describing the "proper system"
and another operator describing the interaction of the
proper system with a set of reservoirs. If the proper system
is described by a Hamiltonian, the corresponding solutions
of the density matrix equation are spanned by M constants
of motion and are thus highly degenerate. We demonstrate
how this degeneracy is lifted by perturbation theory for
degenerate systems and reduce the solution of the original
master equation to a much simpler equation of 3I quantum
numbers.

which is e.g., the case for systems described by a Hamil-
tonian:

(14.7)

In the following we require this general property (14.6) . We
write the most general solution of (14.4) in the form

po = fo(fbi, , fl~), (14.8)

(14.9)

'4 For the genera1 case see Haken (1974b) .

where fo is a function still to be determined. We confine our
analysis to the case where the Q's commute'4: Then the
operators (14.5) possess simultaneous eigenfunctions with
the corresponding eigenvalues l1 ~ ~ ~ l~. These eigenfunctions
are denoted by

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



114 H. Haken: Cooperative phenomena

, n are further quantum numbers which are not specified by
the Q's. Each- density matrix, in particular ~, may be
written in the form

with

co = 2 I
l', ~'&p&', ', ~,-«, (14.10) (l', ~'

f
M, i l, ~&(l, ~

f
lV;

/

l', ~'&. (14.22)

p, ...., , .= (l', ~'Ifo(n„, n~) I l, a&

(14.11)

In the following we use the abbreviation

fo(h, , lM) = fo(l)

and write correspondingly

pp ——g i l, u)f, (l) (l, cx
i

Z, cx

(14.12)

(14.13)

or, in a shorter way,

u = Zfo(l)pi, (14.14)

Multiplying Eq. (14.8) with the eigenfunctions (14.9) and
using (14.10) yields immediately

We have thus reduced the problem of solving Eq. (14.1) to
the solution of Eq. (14.21), where the dimension of "vari-
ables" / is now considerably decreased. While, strictly
speaking, this reduction scheme applies to the stationary
solution of the density matrix equation, it may be extended
to certain classes of time-dependent problems (compare
Sec. XI.C.4) .

B. Exact stationary solution of the reduced
density matrix for systems in "detailed balance" .

The problem is identical (at least in a formal way) with
that of Sec. XI.E if we identify f(m) with p, , and sub-
stitute w(m, n) by w(m~, ma, n~, n2) in some representa-
tion. What is meant here by detailed balance requires a
more detailed discussion which goes beyond the scope of the
present article. See e.g., Agarwal (1973a), Walls (1974) .

where we define the projection operator I'z by

I', = P i l, a&(l, n [.

In order to determine the function fo we form

(14.15)

C. Exact and approximate relations between
momen'ts

The procedure is completely analogous to that of Sec.
XI.F, if the q's are replaced by operators, f by the density
matrix and I-o, L1 by the corresponding quantum mechanical
operators.

TrPz I-1pp = 0. (14.16) XV. QUANTUM MECHANICAL LANGEVIN
EQUATIONS

This yields for the operator A&p, which occurs in Eq. (14.2)

(14.17)

A. Derivation of generalized Langevin equations

The situation in the quantum mechanical domain is corn-
pletely analogous to that in the classical described in Sec.
XII. We again start from a coupled system 5 + R, which
is now described by a Hamiltonian

or, after an evident transformation & = &s + &a + &zs (15.1)

11 Zf0(l) Z «, ~
I
~i

~
l, ~&~lt'

Correspondingly we find for pA2

(14 18) After having chosen an adequate set of operators s; and rz
of the systems 5 and R, respectively, we derive Heisenberg
equations by means of the general rule for an arbitrary
operator (which does not explicitly depend on time)

(14.19) 0 = (i/5)tH, Qj. (15.2)

I3,; ——+f0(l) Q (l', n'
( M; ( l, n&(l, a

~
X,

~

l', n'&.

(14.20)

P E.(l', l) f.(l) = 0, (14.21)

Summing up over Eqs. (14.18), (14.19), (14.20) we obtain
our fundamental set of equations

To establish a complete analogy with Sec. XII we assume
that H~8 is linear in the operators rz, and that II~ represents
(coupled) quantum mechanical oscillators. The equations
of motion for 8, and iz take a form identical with Eqs.
(12.1) and (12.2) (if there q is replaced by s) . The method
of solution is also the same as in Sec. XII, provided the
correct order of operators is retained. In practical applica-
tions so far known to the present author, the partial inte-
gration (12.4) need not be performed and Eq. (12.3) may
be immediately inserted into (12.1). The structure of the
resulting generalized I.angevin equation is the same as Eq.
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(12.6).'s However the fluctuating forces are now operators We decompose M into
which in general don't commute. In the next section we
rePresent examPles of correlation functions of fluctuating ~ jib.aoh+ ~iaooh
forces.

where M "stems from a Hamiltonian

(15.10)

B. Examples for correlation functions of
fluctuating forces

1. Bose fields (quantum mechanical harmonic
oscillators)

H'=Qc „P

so that

(15.11)

b+ = (i' —z)b++ F+(t),

b = ( ice——a) b + F(t) .

(15.3)

(15.4)

We assume that the equations of motion for the creation
and annihilation operators b+, b contain damping terms of
the form —~b+, —~b, respectively, i.e., without retardation.
The quantum mechanical Langevin equations read PSen-
itzky (1960, 1961),Lax (1966), see also Haken (1970a)J:

jib 1112ijlj2 (sj@)(cjlalb j212 ca2j2b j1+1) ' (15.12)

The "coeKcients" c „may still be (time-dependent) oper-
ators of further quantum systems to which the system
described by (15.9) is coupled. M~~ describes all processes
which stem from the elimination of the reservoirs. No
retardation is assumed. Assuming that the R.uctuating
forces F,, (t) are b correlated, their correlation functions are
given by

If the fluctuating forces F, F+ (which are operators) are
dropped, the solutions of Eqs. (15.3) and (15.4) would
obviously violate the commutation relation

bb+ —b+b = i.

A detailed analysis reveals that this relation is satisfj. ed by
the solution of Eqs. (15.3) and (15.4) if the fluctuating
forces are taken into account. The correlation functions read

(F,„,(t)) = 0

(F&1&2(i)Fjlj2 (I ) ) G&1&2' jlj2b (i i )

where

G~l&2i jlj2 2 (I b&2 jr~&l j2i~n b~ j2~~1'12i~jl

(15.13)

(15.14)

(F+(t) ) = (F(i) ) = 0

(F+(i)F(i') ) = 2~+(T}b(& —j'),

(F(t) F+(&') ) = 2~(n(T) + 1)b(& —t'),

(F(i)F(t )) = (F+(t)F+(j')) = 0,

(15.5) bm, &1~jrj2; 12n j ) (Pm, %) ' (15.15)

(15 6) It. 1s 1111pol tant to Ilote that iI1 Eq (15 15) jirlcoh drops out
so that M can be replaced by M'"~h.

(15.7)
XVI. THE METHOD OF QUANTUM-CLASSICAL

(15.8) CORRESPONDENCE

where n(T) is the photon number in thermal equilibrium,
provided the osciHator is coupled to a single heat bath at
temperature T. If different "modes" A. described by opera-
tors bq+, bq are coupled to different reservoirs, their Ructu-
ating forces are uncorrelated. It should be noted that the
Quctuating forces are not exactly 6-correlated. For a detailed
discussion see Lax (1966c) and Kubo (1968).

2. Arbitrary quantum systems described by
projection operators P;;

The equations of motion for the operators P,j(t) are
assumed in the form"

Pi11s(t) Z ~'lll2, jij2Pjljs(j) + Fjlg2(i)

This method establishes a correspondence between
quantum mechanical quantities and classical quantities
as shown in Table II.

The quantum-classical correspondence allow's us to replace
the solution of a density matrix equation by the solution
of a classical differential equation and to calculate quantum
mechanical correlation functions by pure c-number pro-
cedures. We represent the two cases which have been worked
out completely in the literature.

TABLE II. Correspondence between quantum mechanical quantities
and classical quantitites.

2122
Quantum mechanical quantity Classical quantity

"Generalized Langevin equations for open systems have been
recently derived by Kawasaki (1973a, 1973b) along somewhat different
lines using Mori's treatment (Mori, 1965).

"Our treatment generalizes the result obtained by Haken and
Weidlich (1966), see also Haken (I970a), who treated the case P;; =
a;+aj where a;+ and u; are creation and annihilation operators of an
electron in a one-electron system, and who used the principle of
quantum mechanical consistency. The same special case was treated
by Lax (j.966a), using generalized Einstein relations.

Density matrix
Operator
Density matrix equation

Expectation values {traces}

Time-ordered correlation func-
tions of operators

(Quasi) distribution function
Variable or/and diRerentiation
Stochastic equation (generalized or

ordinary Fokker —Planck equation)
Expectation values (averages over

distribution function)
Correlation functions of classical

quantities
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A. Bose operators (quantum mechanical
harmonic oscillator)

Tr (g~(b, b+) p) = ffg~(u, u*)P (u, u*) d'u,

Tr(gz(b, b+)p) = f fg~(u, u*)Q(u, u*) d'u. (16.4)
1. Definition of distribution functions

This case has been extensively treated in the literature
I Wigner (1932), Glauber (1963a,b, 1964), Sudarshan
(1963), Lax and Louisell (1967), and othersg. There are
different possibilities of establishing a one-to-one corre-
spondence between the operators b, b+ and the classical
variables I, u*;

In Eq. (16.4) g~ and g~ means that g(b, b+) has to be
arranged by use of the commutation relation bb+ —b+b = I
in such a manner that g~(g~) is in normal (antinormal)
order. To prove Eq. {16.4) we assume that g~(gz) can be
expanded in a Taylor series. Therefore we have to prove the
relations only for

Tr ((b+) "b p) = ff (u*)"u"P(u, u*) d'u

Tr (bn (b+) mp) f funn4mQ(u u8) d2u

(a) Wi gner distribution function

W(u, u*) = (1/~') ff exp( —iPu —iP*u")

X TrLexp(iPb + iP*b+) p) d'P (16.1)

The proof of Eq. (16.5) follows from the fact that the inte-
gration of P and Q in (16.5) corresponds to a differentiation
of the Fourier transforms, i.e., of x~ and g@

(u*) "u P(u, u*) d'u

d'p = d(ReP) d(Imj9).

(b) Glauber Sudarshan -P representation-

P(u, u*) = ~ 'f f exp( —iPu —iP*u*)

X TrLexp(iP~b+) exp(iPb) p)'j O'P.

(c) Q representation

Q(u, u*) = n='f f exp( iPu ——iP*u*)

X Tr(exp(iPb) exp(iP*b+) p) d2P.

(16.2)

(16.3)

gP ) P=PO=0)

u" (u*) Q(u, u*) d'u

p = 1.(b+, b) p (16.6)

3. Replacement of density matrix equation by
generalized Fokker-Planck equation

The density matrix equation

All definitions correspond to the definition of the distri-
bution function in probability theory of classical variables
where b+ and b would be random functions and e.g.
Trgexp(i(Pb+ P*b+))pg = x~ would just be the charac-
teristic function. The difference between Eqs. (16.1),
(16.2) and (16.3) is due to the prescription of the order of
the operators b+, b under the trace. Still more general
"mappings'-' are possible, but will not be discussed here.

The relations between W, P, Q are

Q(u, u*) = (2/~) ff exp( —2
I

u —~ I') W(~, ~*) d'~,

W(u, u*) = (2/m) ff exp( —2
I

u —n I') P(n, n*) d'n,

Q(n, u*) = (1/~) ff exp( —
I

u —~ I')P(~, ~') d'~

can be replaced by a. (generalized) Fokker —Planck equation
using the following prescription: (we give as an example the
P representation)

p —+ P(u, u*),

b+p —+ Lu* —(8/Bu) ]P,
bp —+ NP,

pb —+ Lu —(8/Bu*) 5P,

pb+ —+ N*P.

For products of operators the correspondence is established
by induction yielding

0 —= Q~(b+, b) pQ2(b+, b)
. Ca cu ation of expectation values by means o

the distribution functions
In quantum mechanics one is interested in expectation B Arbitrary quantum systems described by

values like projection operators

&g(b, b')
&

= Tr (g(b, b+) p) .

The advantage of using the distribution functions is to
obtain these expectation values by simple integrations:

1. Definition of distribution function for
expectation va lues

Again, as in XVl.A. 1, different definitions are possible,
depending on the sequence of operators. Here we define f
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by Haken (1969b)~

f(v) = XJ exp( —Q v, ~,),)
i7c

&& Tr(Q exp(x;),P,),) p) dfiiI (16.7)

where E is the normalization constant, and ~,1, are classical
complex quantities, with »(P'. (t )P'".(t ) "P'. .(t-) p(to)) (16.16)

where the integration runs over all variables v, t, (=vi, ;*)
over the whole complex plane.

If p(t) obeys the usual density matrix equation (13.19)
(which is of first order in its time derivative, the heat baths
being Markovian) it is possible to calculate multitime
averages of the form

with

The z,7,
's are classical variables which are associated with

each projection operator: ) f2 Po ~ oPf

&i7 ~ +i7 j &i7 = &7i . by means of a single-time distribution function.

%e order the operators in the following way

0 = OI,O~O~ = Q exp(~,7,Pa, ), (16.8)

2. Replacement of density matrix equation by
genera l ized Fokker-P la nck equation

The density matrix equation

where

O& ——(1, 2) (1, 3) (1, 4) ~ ~ ~ (1, n) (2, 3) (2, 4) ~ ~ ~

~ ~ ~ (2, n) ~ ~ ~ (n —2, n —1) (n —2, n) (n —1, n)

(16.9)

p(t) = p(to) + X«)(t, r)p(r) dr
tp

+ drI Q E,),g. ;.(t, r)P, ),p(r)P), .;
tp iki~k~

+ Q K,),o)(t, r)P),p(r) + Q K;),&')(t, r) p(r)P;), I
= (1 1)(2, 2) "( )

Oii ——(n, n —1) (n, n —2) (n —1, n —2) ~ ~ ~

(16.10)
(16.17)

~ ~ ~ (n, 2) (n —1, 2) ~ ~ ~ (3, 2) (n, 1) ~ ~ ~ (3, 1) (2, 1).
(16.11)

can be replaced by the generalized Pokier —Planck equation
LHaken (1969b)g

We have used the following definitions

a&k,

(i, k) = exp(&gP;), ) = (1+ &gP,„) (16.12)

f(t) = f(t.) + K«)(t, r) f(r) dr

t t9+ dr Q X,i)', (t, r) Q 3fy, gc. y „—vt&
t0 iki~k~ 'Ap

i=k

(i, i) = exp(P;,P,;) —= exp( t,Pr, ;) = 1+ Lexp(q;) —1]P,;
8+ Z&»"'(&, ) Z&»»»' —».}ft )

i',

z&k,
x*) = t'),

(i, k) = exp((;),P;),) = (1+P;)P,),).

The expectation value of Pi is given by

Tr(P,~p) = f .fv,~f(v) divl,

(16.14)

(16.15)

g v;, = 1. Using the rule

~g, —+ —(8/Bv, i,), (16.19)

we define the quantities M, X"&, X'@ as follows.

~ijt, ,k'it, kp

= Z ~') m»A i »&Omu) exp(x» —Kii), (16.20)

This equation is to be supplemented by the constraint

'7 This type of distribution function had been introduced by Haken,
Risken, and Weidlich, Z. Phys. 206, 355 (1967), where instead of P;I,
we had used a,+ul, . u;+ and aj, are the usual creation and annihilation
operators of Fermions. In the one-particle subspace, u;+aI, just obeys
the relation of projection operators P@PI,t = b, qPit. The definition
(16.7) secures that f is a real function (which is not always positive,
however}. Equation (16.7} allows for a number of modi6cations and
extensions.

where

~ iA'mn ~ imoL ~8m&i OL p

&'7, = 4 Oa ' —~7 ~ (7'
(16.21)

(16.22)
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and 6 &; ——1 for m & i, and =0 otherwise. Here Then

OI, ~mk + Z Kmigii44' ' ' ~lik OB = ~ml + Q iimli' ' KE24iilgi

and the summation runs over all ways from m to k with and the sum runs over all ways from l to m with

m & l1 & l2 ~ ~ ~ & k

0mk 0
fork& m,

form& k, (16.23)

m& l;& l;,"-&l, & l» l

Og '=0
form& l,

form& l, (16.24)

~'kl = ~' l(4 —~k& i' ),
/ii(k,
I l&m,

'i =—k,

Cik, lm Dii, lm ~ilier', m)

+i@,lm

i

shi) k,

= 8k (S,i
—~i,S,&i) exP( —~,;+ ~kk), ~, l ) m, (16.25)

C.7, lm = 0, otherwise,

= &' (4 —
haik & &k),

&ikmn = &ik,mn = &im(&kn iikn&n&k) + iimn~n&m~in(okn iikn~n&k)y

Z &ikm'n' «p ( m'imam' iin'n') Om~n'mnp
min~

z&k, (16.26)

N, (') =0 for i& k, m&n,

Fik, li ~ii4i iili~l&i4l)

+iklm Fi lmk'4m(tali Kli~i&i) + ~k&lm~l&m(~il iili~l&i)q

m~n~
z&k,

(16.27)

(~) —0 fori & k, l & m.

Because the operator acting on f on the right-hand side of
Eq. (16.18) is /i+ear in vz„, the Fourier transform off obeys
a partial differential equation which is of only first order
in its derivatives. Thus the solution of this equation may
offer certain advantages over the direct solution of Eq.
(16.18) .

3. Projection onto macroscopic variables
Our Eq. (16.18) applies to a single atom with two energy

levels, or a spin 1/2, to multi-level atoms, as well as to a
complicated many-body problem. For a discussion of its
solutions, it is thus certainly necessary to treat speci6c
examples. "On the other hand, under certain circumstances
it is possible to perform strong simplifications even in
rather general cases. Indeed, in many cases of practical
importance, the system under consideration consists of
many equivalent subsystems. Examples are spins in external
fields, or laser-atoms interacting with the light held. In
these examples the individual subsystems interact with the

external fields in a similar way, i.e., by their total (macro-
scopic) electric or magnetic moments (after certain phase
factors have been transformed away, see e.g., Sec. III).
In these cases, it is advantageous first to introduce projec-
tion operators for each subsystem: P;&,„and to formulate the
density matrix equation by means of these P,~,„.It reads

r(r) = Lr(~) (16.28)

where L is a linear operator Lsee Eq. (16.18)j.In our present
case, L consists of a sum over the subsystems:

I = ZL.(I"k;) —= Zl (I"k;) (16.29)

where the latter equation expresses the fact that the sub-
systems are equivalent. %e now introduce macroscopic
variables:

'8 For example, in the case of a tv o-level atom, f if built up of 8-func-
tions (W. Weidlich, private communication) . V'k = Q i 'kn (16.30)
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and define

f(t) = f d f tcI exp I
—P lc;sV,sI tr((Q 0„)p), (16.31)

where

distribution, which changes but little. Thus in many cases
of interest it can be shown that we may neglect derivatives
of e.g. , higher than second order, so that Eq. (16.38) then
actually reduces to an ordinary Fokker —Planck equation.

0„=g exp(tcg, J',s „). (16.32) ACKNOWLEDGMENTS

Because the 0„'s commute, we may decompose

rr 0. = rr'"&0. 0.,

where (tt) indicates, that the factor v = tt is to be omitted.
We multiply Eq. (16.28) from the left by 0 and take the
trace with respect to the whole system:

Tr(Op) = Tr(OJp(r)) = ~ tr(01.(Z;s,„)p)

= Q T '"'L(Q ' '0,) T „(Og(P; „)p)g. (16.33)

It had been shown (Haken 1969b, 1970a) that

Tr.(O.I'(I".,)p) = h(»'. , ~/~«'~) Tr.(O.p) (16.34)

Note that 0„ is a function of xg, due to Eq. (16.32). The
right-hand side of Eq. (16.33) can thus be written in the
fOrlTl

(16.33) = Q Tr~"1L(+ ~"10„)h(tc;s, it/its;s) Tr(o„p) )

= Q T LTt. O„h(, cl/ct; )O„p).

(16.35)

(16.36)

Note that we can always use the cyclic properties of the
traces, if needed.

Now let us make use of the fact that h is of first order in
the derivatives it/ittt, 7, Lcompare Eq. (16.18)1.According to
Leibniz's rule of differentiating products, we immediately
find

Tr (Op) = h (tc,s, ct/cite;s) Tr (Q O„p) . (16.37)

We multiply Eq. (16.37) with

exp( —g K sV's)

and integrate over ~,~. This leaves us with

f(V;s, t) = x(V;s, cl/flV, t) f(V;s, r), (16.38)

where x is a linear operator de6ned on the right-hand side
of Eq. (16.18), if the small v;&'s are replaced by the big
ones, V,&'s. A simple analysis shows that the condition
g,v, , = 1 is now to be replaced by g V;; = X, where X is
the number of subsystems. The importance of the result
(16.38) is the following rule: while f(v... t) of a single sub-
system may show wild fluctuations (e.g. , it consists of 3

functions), the macroscopic variables V,s possess a smooth

I am grateful to Profs. Kubo, Tomita, glori and Kawa-
saki for fruitful discussions. Furthermore I wish to thank
my secretary, Mrs. U. Funke, for her great help in the
preparation of the manuscript and Mr. A. Wunderlin for
his critical checking of the calculations. Finally I have to
thank Dr. N. Rehler for a critical reading of the
manuscript.
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