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We investigate the hypothesis that difFractive scattering is dominated (as s ~ eo) by a
Pomeron Regge pole [n~(t)]. This hypothesis is particularly attractive since a Regge
pole and its attendant cuts satisfy t-channel unitarity. For a complete theory the constraints
of s-channel unitarity must also be satisfied. In addition to Froissart s bound and its well-
known consequence, up(0) & I, s-channel unitarity implies a large number of decoupling
theorems for an isolated Pomeron pole with np(0) = 1. Here we systematically review
these decoupling theorems. The theorems are treated in order of increasing strength so as
to clearly distinguish the "strong theorems"- which can be used to prove the complete
decoupling of the Pomeron (e.g., o T„~0) from the "weak theorems" which cannot.
This review is undertaken with two goals in view: (1) To focus attention on possible points
of departure for more realistic treatments of difFractive scattering, and (2) to emphasize
the importance of s-channel unitarity which is expected to strongly constrain diffractive
production in certain regions of phase space regardless of the exact nature of the Pomeron
singularity.
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IIowever, the theory of relativistic diffractive scattering
cannot be that simple.

630 A. Regge theory of diffractive scattering

Unitarity in the exchange (l) channel (see Fig. 2) is
inconsistent at t = 4m ' with this fixed power of energy
(s, a independent of t) Indeed i.n models with t-channel
unitarity Le.g. , potential theory (Regge, 1960) or&' theory
(Amati et al. , 1962b; Lee and Sawyer, 1962)g these fixed
powers are replaced by the behavior s (') arising from a
factorized Regge pole at j = n(l). Thus t-channel unitarity
suggests that diffractive scattering may be given by a
factorized Regge pole' called the Pomeron, which has tra-
jectory nr (t) and coupling P&(l). Its contribution is

boa(s, l) —e f ~i'&'»s r «&P~«(l)P~s&(l) + cuts, (1.3)

where ni (t) ~ni (0) + n't+ 0(t') so that with nr (0) = 1
the cross section goes to a constant. The cuts give corrections

~ For an excellent and up to date reference for virtually all the basic
concepts used in this article see D. Horn and F. Zachariasen (1973).

631

I. INTRODUCTION

Diffractive high energy scattering for hadrons appears to
oGer rather simple phenomena, at least in contrast to the
complex resonance and exchange effects at low energies.
The "asymptotic" cross sections (Amaldi et al. , 1971)' are
roughly constant (see Fig. 1), and the exchanges (in

~ Text based in part on lectures presented at the University of Cali-
fornia Santa Cruz Summer School on Particle Physics, 25 June —6 July
1973, and talk at Argonne Symposium of the Pomeron, 1 March 1973.

t Supported in part by the National Science Foundation, under Grant
GP-41111X.

t Supported in part by U. S. Atomic Energy Commission.
~ I ogarithmic departures from constancy are regarded as "6ne

structure" and are discussed in Sec. IV.

t-channel) carry only vacuum quantum numbers. It may
not be a utopian dream that a simple and consistent theory
of diffractive scattering can precede a detailed understand-

607 ing of ha, dron dynamics. '
609

610 Indeed one is reminded of the simple geometrical de-
scription for classical di6ractive scattering. The elastic

(j]3 amplitude for a+ b —+ a+ b (see Fig. 2) is expressed as
absorption fram a disk of radius R = r + rs and opacity C,

614
6lg g~s(s l) ~isrrcg'e' 'I (1.1)
618
6l9 at small t and large s. (s = E, 'l~ —E'sin'Hj2 in terms

of center of mass energy F. and angle 8). The optical theorem
then gives a constant cross section

622
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I I I I I III Alternatively, we can say that the s-channel unitarity
requirement (1.5) restricts the Pomeron intercept to

p(0) & 1. (1.7)

Even further s-channel constraints on the Pomeron can be
obtained for the critical value of the intercept crt (0) = 1.
It is found that an isolated Pomeron pole with crt (0) = 1
must essentially completely decouple from all processes.
This raises the possibility that an even stronger bound
exists, namely n&(0) ( 1 or
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FIG. 1. The total pp cross section oT,p&(s) from Amaldi et al. (1973).

down by inverse powers of log s at t = 0 and are assumed
to account for the observed departure from constant cross
sections. The fact that Regge poles and their attendant cuts
are the only structures' known to be consistent with
t-channel unitarity is one of the most attractive features of
the Pomeron Regge pole hypothesis. '

We note that this hypothesis has immediate and powerful
consequences. For instance, the differential cross section
must shrink at a universal rate (Giacomelli, 1972; Bartenev
et a/. , 1973) (rr' 0.3, see Fig. 3) and total cross sections
factorize, '

ab cc P ae(0)P bb(0) (1.4)
Both these predictions are absent in the classical pictures
Lsee Eq. (1.1)j and are supported to some extent by the
present data (for other consequences see Sec. I.B).

Of course, a theory of diffractive scattering must also
satisfy s-channel unitarity. Indeed it is well known that
s-channel unitarity gives constraints as s —+~. The cele-
brated Froissart bound (Froissart. , 1961)

7r
0 T, ' & — log's,

SZ~2

follows from s-channel unitarity (Im at(s) ) p&a&(s)at*(s))
and t-channel analyticity in the neighborhood of t = 0. Since
the Froissart bound uses only a small part of the full con-
tent of unitarity and analyticity, stronger bounds may well
exist. For example, if we assume the Pomeron pole solution
to t-channel unitarity (1.3), we obtain from Eq. (1.5) the
stronger bound'

O-T« ' s &"& ' & const. (1 6)
' We should emphasize that we do not regard Regge theory as funda-

mental. Indeed, it should be derived from unitarity and analyticity re-
quirements. Roughly, it appears that (i) t-unitarity and (ii) s-analyti-
city give Regge poles plus cuts but with many undetermined parameters
I n(t), IS(t), etc.g; and that (iii) s-unitarity and (iv) t-analyticity con-
strain these parameters (as illustrated by this article). The realistic
hope for a theory of diffraction supposes that for s —+ ~, (i)—(iv) are
soluble (by iteration) with few unknown constants.' Other popular choices are: colliding —', root cuts, a(j,t) =

I (j —1)'
—Rbstp & to saturate the Froissart bound; a fixed pole a(j,t) = (j—1) and a masking cut; Schwartz square root branch points with
n, (t) = 1 + a(—t)&. None of these have been shown to be consistent
with t-channel unitarity.

5 Diffractiv production cross sections also factorize. For evidence
for this see I.eith (1972).

For logarithmic shrinkage one can obtain the intermediate bound
~zo& & C logs. APPlying o.ey & a'Toy to the amPlitude AeI (s,t) —if(s)
expl —,'b(s)t + s-,'d(s)t j you get o T,b ( 16 n b(s) or or«& 32 urn' lns for
logarithmic shrinkage.

as s ~~. However, we believe that it is much more likely
that Regge cuts play a crucial, and, as yet, not fully under-
stood role which will allow the construction of a theory with
o.T,i ' const (see Sec. IV). Regge cuts are, of course,
required by t-channel unitarity through the iteration of the
pole.

Here we wish to focus attention on these issues by study-
ing in detail the idealized case of,an isolated Pomeron pole
with cri (0) = 1. For other discussions of Pomeron structure,
see Gribov (1972) and White (1973). LThis work generally
follows the outline of Brower and Weis (1'973).g

In Sec. II we give a systematic review of the Pomeron
decoupling theorems (Gribov et a/. , 1968a; Abarbanel et a/. ,
1971;DeTar et a/. , 1971;DeTar and Weis, 1971;Abarbanel
et a/. , 1972a, b; Lee, 1973; Jones et a/. , 1972) derived from
s-channel unitarity. We present those theorems in order of
increasing strength of assumptions necessary for their
derivation and consequent increasing strength of their
experimental implications. In particular, we separate those
results (weak theorems) which are consistent with o-T« —+

const. from those results (strong theorems) that conflict
with 0-T t —+ const. It is conceivable that the weak theorems
are satisfied in nature but the strong ones are not.

In Sec. III we combine the strongest decoupling results
of Sec. II with t-channel analyticity to show the vanishing
of the elastic couplings of the Pomeron (Brower and Weis,
1972) (e.g. , vanishing of total cross sections). This shows
the complete decoupling of an isolated Pomeron Regge pole
at zero momentum transfer.

A (s t)

Pb FIG. 2. We use the convention that
the high energy limit s = (p + pq)2~ ~ is controlled by exchanges in the
t = (p —p ')2 channel.

In Sec. IV we use the decoupling theorems as a focus
for discussing some theoretical possibilities for complete
theories of diffractive scattering. Multi-Pomeron cuts play
a very weak role for cr&(0) ( 1, but an essential role for
t'" cr'(0i) ) 1 in eikonal models. The situation for the

critical value of n&(0) = 1 is not, as yet, fully understood.
However, considerable progress is being made by the appli-
cation of renormalization group techniques to the Gribov
Reggeon field theories Lsee discussion in Sec. IV.B and the
review of White (1974)j. While it appears that absorptive
effects can cause some of the theorems of Sec. II to break
down, they may at the same time destroy some of the
popular phenomenology based on a simple Pomeron pole.

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975
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In conclusion, we note that regardless of the Pomeron dne
structure (i.e., the detailed nature of the j-plane singularity
or, alternatively, powers of log s), s-channel unitarity con-
ditions of the type discussed here will place strong con-
straints on diffractive behavior in certain regions of phase
space.

We conclude this section with a discussion of the Pomeron
pole hypothesis in order to establish our notation and re-
mind the reader of some of its attractive features.

Ter-Martirosyan (1965) and White (1972) of course re-
quires the cross section to rise to this constant.

(2) The elastic peak. shrinks for small t at a universal rate,

d /d 'b)
& =——ln

l l

= a, + ab + 2n' lns
df E df i

~ Qgtb(e)

B. Pomeron Regge pole dominance and
applications

We have assumed that the Pomeron is a Regge pole Latj = np(t) j passing exactly through j = 1 at t = 0. More-
over, the leading tips of the multi-Pomeron cuts (Fig. 4)
have trajectories

n,„,&"&(t) = exp(f/n. ') —ir + 1 (1.9)

However, much of the theoretical and phenomenological
interest in the factorized Pomeron Regge pole consists in
its application to production amplitudes. In multibody
amplitudes almost nothing is known about the Regge cut
contribution. So we make the conventional (and naive)
hypothesis that the Pomeron pole also dominates at t = 0
in these multiparticle amplitudes. This assumption yields
a unified theory of diverse phenomena. To emphasize this
unification and to clarify the assumption we list the major
consequences.

and also pass through j = 1 at t = 0. Very little is rigorously
known about these cuts, but if, as indicated in models
(Goddard and White, 1972; Muzinich et a/. , 1972) for the
elastic amplitude, their discontinuity is nonsingular at the
tip, and they give nonleading contributions~ by factors of
1/Ins. Hence, for elastic amplitudes we expect the Pomeron
Regge pole to dominate at t = 0.

Experimentally (Fig. 3) for the pp cross section b is inde-
pendent of t for —0.1 & t & 0 and n' = 0.3. Present esti-
mates of the cut corrections give around 25% effects at
Serpokhov energies, so that these features (1) and (2) are
visible even with moderate lns. Note, however, that a cut
leads the pole away from t = 0 (n, „& sn'f+ 1) and that
if it is negative in sign it can cause a gradual decrease in the
rate of shrinkage. Also, if the cut has a broader t distribution
(~e'") as given in models, interference effects are expected
(Chou and Yang, 1970; Sukhatme and Ng, 1973) and have
been observed (Aachen Conf. , 1972) for & = —1.4 (see»g.
5).

(3) Feynman —Yang scaling is obtained for the inclusive
reaction a + b —+ c + anything. This scaling limit is defined

by taking the energy s = (p + pb)' to infinity with
x = 2p[ ~

' /sI and p„ fixed, where p~ ~' and p, are the
momenta along y and transverse to y, respectively, in the
center of mass of a and b. With ni (0) = 1, the limiting
distribution for x & 0 is (see Sec. II.A.1)

/~a b

=ebb(0)F '-'(*,p") + o(1/l»),
d pg

(1.12)

where the fragmentation vertex IiI~ ' is independent of p~~

and because of factorization of the Pomeron it is independent

(1) Cross sections are asymptotically constant for large
lns and factorize

~T.b"=P~-(0)P~"(0) + o(1/»~). (1.10)

A negative cut as favored by Gribov, Pomeranchuk, and

7 As the reader will see in the conclusion this assumption is equivalent
to the-"weak coupling" solution to the Gribov Reggeon 6eld theory. For
our present purpose any contribution less singular than a pole would
suflice, as for example (j —u, q)' ' gives (lns) ' suppression.

FIG. 4. In the Regge model, diffractive scattering is given by a
Pomeron Regge pole (giving o'got, + s +() ) plus a series of multi-
Pomeron cuts (6ne structure). Presumably for nr (0) = 1, the cuts give
small departures from constant cross sections, interference e6ects, long-
range correlations, etc.
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FIG. 5. The dip at t —1.4 in the elastic pp cross section (Aachen
et a/. , 1972) is predicted by a pole plus interfering cut model as for ex-
ample in the prediction of Chou and Yang {1970).

FIG. 7. The rapidity distribution for a+ b —+ c + X with c in the
pionization region. The rapidity of particle c is a fixed distance from
(y + yq}/2 s' lns as y -+~.

(4) Pionization (or AFS scaling) occurs for the inclusive
reaction as s ~~ with p„,™fixed in the center of mass of
a and b (i.e., x = 0). That is

do.a'
E —Pp (0)Gpp (P&,)Pp" (0) + O(1/ins), (1.14)

d3 ~

where G'(p„) is independent of p~~, and, because of fac-
torization of the Porneron, independent of a and b. In ra-
pidity space (Fig. 7) the pionization region is centered about
(y, + yq)/2. Pionization has been observed at the ISR at
CERN in the process p+ p —&m+ anything, but until
~+ p ~ ~ + anything is measured at NAL factorization
cannot be checked.

(5) Double fragmentation is obtained by measuring two
particles in an inclusive reaction, a+ b~ c+ d + any-
thing, with c in the fragmentation region of a and d in the
fragmentation of b. One has

of b. Here factorization has been checked to about 80%%u~

for several reactions (Chen et u/. , 1971).

For x ( 0, p„~ ao and the limit gives the fragmentation
of b into c (Fs '). Often it is convenient to use the rapidity
variable y which smoothly connects these two regions, x ) 0
and x ( 0. Rapidity y; is de6ned by

p((,./E, = tanhy; (1.13)

and the fragmentation region of a (x ) 0) or b (x ( 0) is
(y —y, ) or (y, —y&) finite as the total rapidity I' =
(y —ys) ~

%e may visualize the longitudinal phase space of the
final state c+ X (anything) in a rapidity (or longitudinal
momentum) plot (see Fig. 6) extending from y|, to y of
length I' = y —yq = 1ns + const. This is shown in Fig. 6
for the rest frame of b

y& = 0, y = I'~lns.
For the process a + b —+ c + X, in the fragmentation region
of a particle a (or b), y, is a finite distance from y (or y&)
as y —y~~ lns —+~. The region between the two frag-
mentation regions contains the pionization or central region.

jv jv~
d pad pd

= Fp'-'(x„p~, )Fp "'(x,,P~„) + O(1/lns), (1.15)

jV jV„
CPPgd Pa

(1.16)

is given entirely in terms of cuts to order (s) &le' ' = 1/s&

exp( ——,
'

~ y, —yq ~
).The correlations due to this lower Regge

term are clearly seen in the data giving the characteristic
correlation length of two units of rapidity. With ultrahigh
energies one can also look at the double pionization region
(with y —y„y, —

y& and y&
—y& large)

E,Eg do.
Gpp (pr )Gpp (p,.) + 0 (1/lns) . (1.17)

aaa d Pcd Pa

Ci C2

where by factorization FI is precisely given by the single
fragmentation experiment (Brower et at. , 1973a). This may
give a sensitive measure of cuts since the correlation,

Fragmentation of b Fragmentation of a

7b

ya= Y= lns

4-O(ins)

FIG. 6. Rapidity plot for 6nal state in u + b —+ c + X. Particle c is
identi6ed in the fragmentation region of u, a 6nite distance from y as
y —

yg, ~ ~.X contains all the other outgoing particles (lines).
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FIG. 8. The rapidity plot for the exclusive reaction a + b ~ c1 + ~ ~ ~

+ c„in the Regge limit with the rapidities for the left cluster (y&, . . .,
y&) in a flLnite interval about y and the rapidities for the right cluster
{ye+1, . . ., y ) about ytI, .
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There is an infinite set of these inclusive limits for a+ b —+
ci+ c2+. + c~+ anything given in terms of the same
functions F and 6, although they rapidly become experi-
mentally inaccessible.

I 2 3 4

P P P P

(6) Double difffractive dissociation is given by factori-
zation in the exclusive process a+ b ~ ci+ . . +c„.We
choose momenta p, so that there is a left cluster (pi, p2, . . . ,
pi) and a right cluster (pi~i, . , p„) with rapidities at finite
distance from the rapidity for p and ps respectively, as
s~~ (see Fig. 8).

V Aa (p .p )ag&(t)—1V Bs
~pi' '~pa

(1.18)

Vi" (or Vi es) depends on the fixed cluster variables p,"p;
for i, j=a, 1, . . . , /(or i, j=/+1, . . . , n, b) and
the fixed ratios p; p,/p ps with i = a, 1, . . . , /, and
j = /+ 1, . . . , n, b. Factorization has been checked for a
number of reactions (Leith, 1972).

We conclude this section by noting Fig. 9 which estab-
lishes our notation for the various Reggeon vertices dis-
cussed here and in the rest of the article.

II. DECOUPLING THEOREMS FROID UNITARITY

Here, we present a review of the constraints imposed by
direct channel unitarity on diffractive production (Abar-

a;(t;)

a,. (t)

= /8; (t) c = v. (t-,t, K)

(V}

a. (t)

a;

a; (0)

ij" (
i ' j & k&+ij s liks'9jk)

aI, (t)

(o, t, t)

{iv}

(Vi}

a ; (t., )

= V; (t;,tj,K)

a; (tj)

= F',. (P„X,)
a 0

al (t)

(V I I)

a j(t)

(t, M )

a , (0)
c

E aj(O)

C= Gij (P~c)

VX
ij

VAa
1

(ix} (x)

FIG. 9. The various Reggeon vertices encountered in this article are
drawn here to establish our notation. Note that particles are indicated
by superscripts (u, b,c, . .) and Reggeons. by subscripts (ij,k, .;.).
Dotted lines indicate a discontinuity of amplitude with respect to the
energy variable for the cut Reggeon. Vertices (v)-(viii) are encountered
in inclusive reactions u+ b —+ c + X so the discontinuity is taken in
Ms = (p + pq —p,)s and the kinematics is restricted to the forward
direction for e+ b + c~ e + b + c. Clusters of particles are desig-
nated by capital letters (A,B,X, . . .}.The reader is referred to the text
for a Inore precise definition of the vertex functions.

I'IG. 10. The multiperiperal con6guration used in proving the I'inkel-
stein and Kajantie decoupling theorem.

Historically, the earliest decoupling theorem for di6ractive
production was obtained by Finkelstein and Kajantie (1968a
and 1968b). They considered the multi-Regge (or multi-
peripheral limit) of an exc/usive process a+ /i~ ci+ +c„,
and concluded that. the Pomeron —Pomeron c;vertex vanishes
at zero momentum transfer for the Pomeron exchanges
(Fig. 10).

V (t, =O t =0K=m } = 0 P

fA

C

o = o (2.1)

This decoupling theorem, and its obvious generalization to
the case where c, represents a group of particles, also goes
right to the heart of the decoupling problem, since with the
assumption of uniformity of interchange of certain limits
all of the decoupling theorems discussed here can be derived
from it.

However, the extension of the leg ge hypothesis to
Azc/usive processes a+ b-+ ci+ + c„+X (summing
over X) by Mueller (1970) now provides a more elegant
and economical derivation of the decoupling theorems. We
shaH therefore begin our discussion with the s-channel
unitarity constraints on inclusive processes. But we shall
return to the constraints on exclusive processes and the
Finkelstein —Kajantie argument in Sec. II.B.2 since the full
power of unitarity is manifested there. For example, the
triple Pomeron zero removes (lns)" violations of exclusive
sum rules instead of the lnlns violations of inclusive sum
rules (Brower et a/. , 19Dc).Of course, to obtain the stronger
constraints from exclusive processes, stronger assumptions
about the existence of multi-Pomeron exchange are neces-

This separation is also motivated by an observation we have made
on couplings in then(0} = 1 gauge invariant dual theory (see Appendix
C).

banel et al. , 4971; DeTar et a/. , 1971;DeTar and Weis, 1971;
Abarbanel et a/. , 1972a,b; Lee, 1973; Jones et a/. , 1972).
We have attempted to present a rather complete list in order
of increasingly stronger assumptioes. This has two ulterior
purposes beyond pure pedagogy: First, although we shall
only present the constraints for the leading Regge pole with
cr(0) = 1, we feel that the suppression of diffractive scatter-
ing (decoupling theorems) may be qualitatively valid in a
wide class of models. Second, as we shaH demonstrate in
Sec. III, the strongest decoupling theorems are inconsistent
with our hypothesis of O.g const. Hence we would like
to separate the "dangerous" results (leading to this incon-
sistency) from the "harmless" results. It is of great interest
to test the experimental consequences of the decoupling
theorems to clarify this separation. Also, we hope to work
backward from the "dangerous" results to expose the most
natural further complication of Regge cuts that can save
the Regge description of constant cross sections (see dis-
cussion in Sec. IV).

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975
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c c

FIG. 13. The triple Pomeron contribu-
tion to a+ b —+ c+ X (anything) for
~ = (~-+ ~.)'»~ = (~-+ ~. —~.)'
p) 1.

=0

FIG. 11. Scaling limit for a+ b —+ c+ X expressed as a Mueller
discontinuity in the mass of x (Mtl.

sary so these results may also be more likely to fail in a
theory with constant cross sections.

1. Triple Pomeron zero

We consider the inclusive process a + b —+ c + X, whereI is any undetected state, and the center of mass momentum
of c is p (ptt = xs~/2, pi are components parallel and per-
pendicular to p ). The Feynman —Yang scaling hypothesis
says

/~a 5

Pttt) tp (b—0b)Jt c (& p )
d'p, 162r

(2 2)

where s = (Pc + Pb)' —+co, and x, Pi are fixed (see Fig. 11)
and ctP(0) = 1. The Pomeron exchange in the Mueller dis-
continuity accounts for scaling Lwith ctP(0) = 1j in strict
analogy to the manner in which the Pomeron via the optical
theorem accounts for constant cross sections.

The total cross section is the totally inclusive process
a+ b —+ X(anything), which the optical theorem relates to
the elastic amplitude A "(s,t,')

0- „'s —ImA" (s 0)
162rX'(s,m ',mb')

1 1—Disc,A '(s,0),
16~x-: 2z

(2 3)

c a

A. Weak decoupling theorems

In the inclusive approach to the decoupling theorems,
all the results follow from the vanishing of the "triple
Pomeron" vertex. " This condition, which was 6rst dis-
covered by Gribov and Migdal (1968a), is fundamental to
an iterative approach to diffractive cuts in the Gribov
calculus ("weak coupling" ) and the multiperipheral boot-
strap (Abarbanel et al. , 1971).

Alternatively, we may consider the diffractive production
of a fixed mass state M' plus c,

do '
jV,

tPpc

+~ac (tt) )2
(s/M2)2aP (t)fPb~Pb(M2 ~)

16xs
(2 5)

where f is the imaginary part of the "Pomeron" plus b

elastic amplitude APb(M2, t, t'bb) at ebb ——0 (see Fig. 12).

Now taking the high 2'' limit, we have

fPb~Pb(M2 tI) ~ (M2)aP(0)p bb(0) f ~ (0 tI tI) (2.6)

The caret (") over the P indicates a discontinuity taken
through that Reggeon (discontinuity in M'). The leading
(Pomeron) term gives that portion of diffractive production
that contributes to scaling and is the so-called "triple
Pomeron term. ""Hence for s)) M')) 1 and t fixed (see
Fig. 13)

Ec(d~/d'pc) = GP(t)saPt'& '(s/M')'a" ~"

~-«) = (16-)- t.~.-«» f-.-(0,~,~)~--(0)

We now ask whether the factor,

i 2a' t+ap (0)

(s/M2)2 P(t)—aaP(0) ~
~t

(2.7)

X = s'+ m '+ mb' —2sm, ' —2smb2 —2m 'mb'.

For the Pomeron exchange

b(s 0) ~ 2$ a(P0)P aa(0)P bb(0)

we obtain constant cross sections. For the inclusive reaction
a+ b —& c+ X, we use the generalized optical theorem of
Mueller to do the sum over X (see Fig. 11)

do~~ 1 1 1—DiSCttltA cb '(t,S,M2) (2.4)
d'p, 162r X:(s,m.s,mb2) 2i

where M' = (P, + Pb —P.)', s = (P, + Pb)', t = (P, —P,)'.
The Pomeron exchange in the forward six-particle amplitude
for a+ b+ c —+a+ b+ c,

1—Dlscst'2A ttb c (M2) P(0a)PPbb(0)PPa~c(& P&)
2i

as s —+~ with x, p, fixed gives scaling (2.2).

t=o

FlG. 12. DiQ'ractive production for g+ b —+ c+ X expressed as a
Mueller discontinuity in M~.

The dynamical origin of fIzz = 0 from t-channel unitarity has re-
cently been extensively studied in an S-matrix approach by Bronzan
(1972, 1973).

1' Actually, for the six particle amplitude, this is a helicity pole limit
on the outside Pomerons Lsee Appendix A, tttt, ttct —+ cc in (A.5)j.
Furthermore only one term in the triple vertex contributes to the dis-
continuity in M . Therefore note that f,";&(O,t,t) is symmetric in j and k,
but not in i and j.The amplitude f~~ + is the maximum spin Qip helic-
ity for Pomerons with helicity X = n(t). Theoretical evidence for this
di-helicity Regge term comes from &3-theory (Chang et al. , 1971; Gor-
don, 1972; Mueller and Trueman, 1972; Neff, 1973) and dual theories
(DeTar and Weis, 1971), while experimental evidence has come from
the recent ISR and NAL data.
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of energy sum rule requiresThe conservation o ene g
et at. 1971b))

do
ab — dbp p ga(pu + pb) o Tot (s) (2.8)

dar ~= j~ »at the phase space bound yg p
on

'
h nitarity and cons aonsistent witu uni a

(DeTar
. 14. The Reggeon diagramam for the

the triple Pomeron I (
ri ov's language the

t collision in e
sum rule, or in rj, ov s
"enhanced graph. " t2

e. . m., IC, X, etc.).ver all article types c (e.g., m.,w e
h -of m .. .P+r component in t e ceTaking the energy compo

=s we ge t the exact unitarity sum

da'b )
~ "(s) =-'2 d p dx] Z. —

C

well. We have approximroximated G& by

(2.13)t t' t") e"e "
and neglected pha pase s ace terms of 0 s w

Performing the I', t integra
we have

where x = 2p»/s'.

2"()& ms &&p& ' dp,s
0

XGI (t)(1 —x) +' ', (2.10)

l,e = a) and thephaseves to the chancre c = u
an

Restricting ourselve
e tri le Pomeron, we have adominated by the tnp e ospace region om'

inequality

(2.14)

(2.15)

Qf
a+ny

the ole above the cutwherebis t e ih displacement of t e po e

(t) = 1 — (o)+ l 't.b = n~(t nzzb

riables,We make the change of variab

= b + ab/n yp ——ypp a/n'Z= y
~est/pea/u'bM' = Mp'e ' '

g(t) = pre' e

w ere I — —e n't + 0(tP) and Pi ' = —t+where nI (t) = 1 —e + n
~min (Sy&. ( ). For the present let us

oes to zero. Integra
g " ' g y

For s&) M', tmjn goes o
pP, we obtain

Sac(t)
e—'s'

dz

and separa et the cut from the pole

aJ (t)
t)—

s

(2.16)
i + const

1 —* &ln(1 —x))2A'

ral over —dLln(1 —x)g, the in-and performing the integra over-
tegral diverges

ab&Tot
mGp(0)

at t = 0 givesanishin triple Pomeron aC sequently a nonvanis ingonseq
—+~ . Consistencya term it in violation o O.T t

with constant OTpt requlles

(2 11)1=0.for/I ~I (O, t, t) = 0,

The integral for F g.i. 14

I —Sar(t)
dS

eclat

eat
L—&, (t,t', t")gb 1 —x

I a~ (tl I)1+a~(t)—a/ {t')—a/(t )
&& (1 —x (2.12)

' n. Other contributions to p
~ ~ ~ ~

the ole
h rt

po
c eom o
l this iece since they are pcannot cance t is pie

ult is the collision of the Pomeron

see this we evaluate the trip e aw
collision, yb going away from $ =
both.

51n(s/~p )

is —ln
~
b

~
and the second may—+ 0 the first integral is —n aAs B~, e Is —Il a

be approximated (for

dZ —(c—51ne) ~—e
Bln(s/Mp ) Z

for 6 lns —&0 and 8 lns —+~.
8jn(s/Mp')

(2.17)

Sa {t)
(2.19)

b 8 ln (s/Mp')

ole and negativeecut (b(0. The
buth do o 1,

w ic i
sin ular residues t aole and cut ave sin

i k t the limit b lns —+ifweloo a e
'

—ln —+ ln ln(s/Mp') ~. 2.20I —s~&&'& ln —+ s c"& —n-

—+ 0 and at collision we getes cancel as b —+, anThe singular residues ~ an

(2.21)I~ g(t)s I'(ln ln(s/Mp') const .

The resulting expression

( 8 In (s/3E, '&

(2.18)

but 8 Axed, the tripl~d for $ = 0. Fol $ ~~,can be stu ie
Pomeron gives
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Notice that the cut is negative when it trails the pole but
that it is positive when it leads the pole (b & 0).

To see further the j-plane structure we note that

a(j,t) =
g —n p(t)

ac(&) djig(i' —i)yo

(2.22)
rI-x:

FIG. 15. The region of integration
giving lnlns divergence in triple
Pomeron integral.

is the partial wave amplitude with a pole-cut collision (i.e.,
multiplicative pole and cut) that gives exactly our asymp-
totic amplitude (2.16) after the Sommerfeld —Watson trans-
form is performed.

Since lnlns comes from a pole-cut collision, one may ask
whether the cut should not be inserted in the sum rule at
the start. Obviously, the answer is yes. However, how cuts
do or do not a8ect the sum rule arguments is not yet fully
understood and we defer a discussion of this point to Sec. IV.

2
Mo S

is the triple Pomeron.

0/ Qo

The lnlns term comes from the region (see 'Fig. 15)
e & 1 —x & Ms'/s with e arbitrarily small. One can avoid
in a sense the divergence by reducing the range of integra-
tion (Neff, 1973) with the replacement c —+ s & or Ms'/s —+ e'.
However, such modifications are tantamount to eliminating
what is usually called triple Pomeron behavior, i.e., a
1/(1 —x) behavior in the scaling function. Such modifica-
tions could conceivably come about as a result of absorptive
corrections (Neff, 1973; Ciafaloni and Marchesini, 1974),
but this destroys conventional phenomenology unless the
onset is delayed to ultrahigh energies.

I (al b)I' & (ala)(bib). (2.23)

We choose
I a) and

I b) to be certain multiparticle states and
the inner product to be a sum over a complete set of inter-
mediate states

2. Schwartz inequality theorems

Since the triple Pomeron vertex arose from a sum over
di8ractive dissociation processes, we might ask what its
vanishing implies from these individual processes. A cute
way to obtain constraints on these processes is to use the
Schwartz inequality (Abarbanel et a/. , 1972a,b; Lee, 1973)

b 0 b 0 (2.25)

For tt ——0 we can compare the coe%cient of (s/cV')' ~~ ~ on
both sides of (2.25) and use fItI t ——0 to obtain

l

ip

X= 0

0 (2.26)

for any state X. If Porneron cuts are weak this can be ob-
tained for arbitrary tj of the lower Pomeron. It should be
carefully noted that one Pomeron in (2.26) has a discon-
tinuity taken through it.

Clearly from (2.26) one can obtain an endless variety of
decoupling theorems. For example, X may be a two-particle
state (p, —+ p, ) in the inclusive process, a'b' —+ c'+ any-
thing. Then the triple Regge vertices" (Abarbanel et al. ,

L

l

M

fppj {00 f)

0

0

a, (t)

(2.27)
C

. ~/

As long as these represent multiparticle processes inside the
physical region, unitarity can be used to replace the sum
over intermediate states by a discontinuity in M'. Taking
Ms and s s/Ms large, the leading term on the right-hand side

"Again the caret (") indicates the Reggeon with a discontinuity
taken through it. Actually as we explain below and in Appendix A, the
notation f;;&(0,0,t) is ambiguous because for t W 0 a series of helicity
poles contribute and the vertex depends also on helicity angles.

1971a, b; Lee, 1973) must all vanish (e.g. , PPP, PPf,
PPp, . . .). It should be noted that the full triple Regge
vertex occurs in (2.27) and not just the contribution of the
maximum helicity for the cut Pomeron. A decoupling of the

(2 24) maximum helicity amplitude would be obtained if (2.25)
held for a helicity limit (Goddard and White, 1971; DeTar
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R. G. Brower and J. H. Weis: Pomeron decoupling theorems

If X is taken to be a single-particle state (with vacuum
quantum numbers), we have

P
= 0

0

This appears to be the Finkelstein —Kajantie decoupling of
the Pomeron —Pomeron —particle coupling (Finkelstein and
Kajantie, 1968a and 1968b). However, here a discontinuity
of the vertex is taken and one can easily show that this
result is not strong enough to imply the vanishing of the full
vertex.

Another example of particular interest is the case when J
is an outgoing two-particle state (p„pq) with large invariant
mass (p, + pq)'. Using the Regge expansion, we have

et aL, 1971a; Jones et at. , 1971). However (2.25) holds
only in the physical region and a helicity limit is only
inside the physical region if the three momentum transfers
of the vertex satisfy (Misheloff, 1969; Abarbanel and
Schwimmer, 1972)

X(tx, t~, t )3= tP+ t2 + t3 —24t2 —2t2ta —2tq4 ( 0.
Therefore (2.27) can only be obtained for the full triple
Regge vertex including the contributions of all helicities.
(At t& ——t, = t3 ——0 the helicity limit can be taken, of
course. At least for Toiler quantum number M = 0 tra-
jectories this will coincide with the t —+ 0 limit of the full
Regge vertex. ) We refer the reader to Appendix A for a
detailed discussion of the structure of triple Regge vertices
and this point.

X)M

FIG. 16. The kinematic variables for the Jones et al. (1972) sum rule.

The part of the vertex in (2.29) is, by factorization of dis-
continuities, the same as that in the discontinuity in s& of
Fig. 24. From Eq. (3.15) we see that this is Vp, which by
(3.19) does not contribute to the poles at n~ = 0, 1, 2, . . . .

Thus far all the theorems we have derived have been weak
in the sense that they do not require the vanishing of the
Pomeron's elastic coupling and thus AT~ ~ 0. It is amusing
to note that all these theorems can be satisfied by requiring
that the Pomeron couple like a conserved vector current at
l = 0. Of course, since the Pomeron is a Reggeon at a zvrong
signature integer, it is not precisely like a vector particle.
In particular, helicities X & &1,0 are present. It is only the
) = &1, 0 helicities of the Pomeron which have couplings
like a conserved current. The Pomeron-conserved vector
current analogy is developed in detail in Appendix 8 and
we refer the reader to it for a precise definition.

To demonstrate conclusively that the decoupling theorems
up to this point are consistent with nonvanishing elastic
coupling, it is useful to construct an explicit example. V/e
have investigated the usual planar dual model and found
that all these theorems are realized, because with n(0) = 1
it has a special gauge property. The dual model is discussed
in detail in Appendix C.

0

(2.28)

From (2.28) it might appear that the Pomeron —Reggeon
particle coupling must vanish and thus, by continuation to
t = ns2, the Pomeron —particle —particle coupling and total
cross sections must vanish. However, this is not true because
of the discontinuity taken (Moen and White, 1972). To see
this we note that it is expected that discontinuities of multi-
Regge amplitudes factorize just as do the full amplitudes
themselves (Weis, 1973, 1974). Thus (2.28) can be written
as the product of the appropriate discontinuities of the upper
and lower vertices. The vanishing of the upper vertex does
not imply the vanishing of the elastic coupling whereas the
vanishing of the lower vertex part does. Thus the weakest
assumption is

B. Strong decoupling tbeorems

1. Theorems from inclusive cross sections

We now derive essentially the same decoupling theorems
that one can obtain from (2.23) but in a strong form without
the discontinuity taken. To obtain the strong decoupling
theorems we again consider inclusive cross sections. YVe can
use a relationship like (2.8) between the two-particle in-
clusive cross section and the single-particle inclusive cross
section Lor, equivalently, imagine using (2.8) when a is an
external Pomeron j.

The energy-momentum sum rule relating to the double
inclusive (a+ b~ c+ d+ X) to the single inclusive cross
section (a+ b —+ c+ X) is

do ((p-+p -p)" =E dpi' "I
dp, tlap pdpgl

where dp =—d'p/(2E). Introducing the Feynman variables
x, = 2p», /s~, x& = 2p, , g/s& we obtain for the sum of the
energy and p, & component of (2.30),

0
do 1

d'pi~
dp. 2

dxg t' do"'

1 —x, kdP„P,
(2.31)

m~=0

(2.29)

In the limit x, —+ 1, this becomes an inequality for the triple
Pomeron vertex.

fppp(0, t,t) & —' fd'p, gjdy(1 —y) p&'&B(tp, ts,y,~), (2.32)
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~ ~ ~

Y

Y= Ins

FIG. 17. Rapidities of produced particles in typical multiparticle
event.

where y is the Feynman parameter for P(t) + b —+ d + X
with Mueller discontinuity B.In terms of M2= (p +pd —p,)'
andi@' = (p + pd —p, —pd)' (see Fig. 16), we have

1 —&-$7~/m and ~ = m (p. + pd)'/s. (2.33)

For tr 0, the i—n—tegral gives a lower bound on fI I r (0,0,0)
and must therefore vanish. The integral is a positive definite
phase space integral so that

m

VpR(0 tR I= Al -tR)2
p R

o
0

(2.37)

There can be no explicit co dependence because the Pomeron
is a nondegenerate (Toiler M = 0) trajectory, and therefore
V~~ must be analytic in t~ and tI for fixed ~.

for all t~ & 0. The restriction to ~ = m' —t~ follows from
the fact that we must approach the limit y —+ 1 and tI —+ 0
from inside the physical region, thus real co in

2(t~t~)* costs —fI —t~ + m'

x (ti,t~,m2)

0 0 In Jones et al. (1972) other regions of phase space for 8
are also considered. For example, with pd in the central
region, we get

8 {O,tR, y, K) 0

(2.34)

identically for pd in the physical region (Jones et a/. , 1972).
This is an extremely strong result with many consequences.
In particular if we consider the limit y ~ 1 (e.g. , s)) M
))'M )) 1), we may pick out the Regge pole in the Pomeron
d-channel, which gives"

8 ~ (1 —y) '~ii &'ii'if''zR (O,tz, tz)
~
Vi ii(O, tz, K)

~

' = 0
(2.35)

or representing this diagramatically we have

0 (2.3S)

X

Further, by considering inclusive processes with more
particles one can obtain an infinite number of decoupling
theorems, now in the strong form. For example,

0
0

0
0

(2.39)

0

For an application to couplings of Regge cuts, see Iwasaki
and Yazaki (1973).

0 0 (2 36) 2. Decoupling theorems from exclusive
cross sections

Therefore either fI ii~ or VI ~d must vanish. The vanishing
of f&~z is easily seen to lead to the vanishing of the Pomeron
elastic coupling (and thus 0T,t) since fp~~ has particle
poles at t& = m' t see Eq. (4.5)),

fpRB p dd

(/ig —m')'

In order to avoid this result at this stage, we therefore
require

' This limit is actually a rather unusual one. In fact, it is not a con-
ventional Regge or helicity limit on the eight-particle amplitude (A. R.
White, unpublished). When (2.34) or (2.36) is viewed as a sum over in-
termediate states and Regge pole factorization is assumed for each of
them, (2.35) will follow if the sum over states commutes with the limit
M~ —+ ~. It is conceivable that this is not the case and that the vertices
in (2.35) are not the usual Regge vertices although no completely satis-
factory example of this has as yet been constructed. For a discussion of
this possibility, see I. O. Moen and W. J. Zakrzewski (j.973, j.974).

In this subsection we study the constraints on Pomeron
couplings that can be obtained by studying the cross sections
for multiparticle production that can occur through multiple
Pomeron exchange. Thus we shall need to make stronger
assumptions about Pomeron exchange than we made in the
previous subsection —i.e., that factorized multiple-Pomeron
exchanges exist. However, although we obtain no new de-
coupling theorems, we will obtain stronger forms of the old
ones (Brower et al. , 1973). We find that a nonvanishing
triple Pomeron vertex fr" QQ(0,0,0) leads to contributions to
the total cross section growing like (1ns)" with e an arbitrary
integer. These contributions are much larger than the lnlns
contribution obtained from the inclusive sum rule above and
indeed violate the Froissart bound by an arbitrary power of
lns. In addition we can exclude counter examples to the sum
rule decoupling proof which have trajectories with infinite
slope at t = 0 [note the factor 1/n' in Eq. (2.10)] (Henyey
and Zakrzewski, 1973;Oehme, 1973~. Indeed any trajectory
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which gives a diffraction peak shrinking less or as rapidly as
Plnsj ' is inconsistent with constant total cross sections. "
Finally, at the end of this subsection, we reproduce the
Finkelstein —Kajantie decoupling theorem (Finkelstein and
Kajantie, 1968a and 1968b).

I—Ins2

lns

pA

Pb

ps

(m, coshy„0, m, sinhy ),
(mb cosllyb, 0, mb sinhyb),

(m&; coshy;, p&,, m&; sinhy;),

(2.40)

where mi;s = pi;s + m;s. For large energies s = (p, + p, )'
in the laboratory frame

Since we will be dealing with multiparticle final states at
high energy, it is convenient to use the rapidity and trans-
verse momentum variables. Thus for the process a + b —+

1+ 2+ . + tb we write

FIG. 18. Typical event contributing to o(2).

tribution comes for t = 0,

1 (000)P b"(0)js
p "(o)-

16~ 2A

fl"'l'P(0, 0,0)[jul'" (0)g'
Pi -(0) — —ln lns

2cl

and Eq. (2.41) requires fl"l l (0,0,0) = 0.

(2.43)

y = 0

y~ lns = Y.

Our attention will be focused on the rapidities, y;, of the
produced particles, since empirically the transverse momenta
remain quite small. for large s. Thus we characterize multi-
particle events by the y; as shown in Fig. 12.

In order to introduce the type arguments to be used in
this subsection, we reproduce the triple Pomeron decoupling
result in a slightly different way. Consider the rapidity
configurations of all the final states produced by the collision
of a and b at a given energy. Take that subset of events
in which y„differs from Y by a finite amount and all
the other rapidities are less than Y —6 (d large); i.e., take
all events with a large gap in rapidity next to the leading
particle rb (the conlguration in Fig. 12 satisfies this condi-
tion). Since the subenergies s;„= (p;+ p„)' are large, we
assume Pomeron exchange between n and the remaining
cluster. If we call M' the invariant mass of the cluster,
then summing over all events of a given M', we obtain the
(Pomeron-particle a) total cross section which again is
dominated by Pomeron exchange. Since the events satisfy-
ing our condition are a subset of all events, their partia1
cross section 0.&'& satisfies

aQ Q ~2 (2.44)

A typical event is shown in Fig. 18 where the masses, M,',
of the clusters are

1nM,'~ p, , yo ( p,; ( X; ln$ Q 2 ln$. (2.45)

Since the energy across the gap is large Le" "' ""'~'1 the
behavior will be controlled by Pomeron exchange. Similarly,
for large p, ~ and p2 we have Pomeron exchange in the two
Pomeron-particle total cross sections. Thus we have

16ms'

eh1lns eX2lns

02

dM2' dt

)( f happ(o, t,t)Ms Pp (0)

p aa(0)p bb(p) milne

dpi'

Xg,inc

We now consider (Brower et at. , 1923c) the partial cross
section for "two cluster production, " 0&'), defined as the
cross section for all events with no particles in a large
rapidity gap, fixed at a given point, say y = 21ns."Of
course,

0 Tot POl +02

On the other hand,
)«s~'&" » »'Lfrpi'(0)t—)t) j—'-

P c a(0)P bb(0) [f~ (0 0 P) ]& xilne

16Ãs
dtp -(0)&vs-i'&f. & (o,r,~)

X2lne

2CL

dp, 2
——

Y —py —p2

@pl

(2.46)

dp dkpi ~~(0)fi"i I (o,t,t)e'~'l" »—Scaling ib, by }ns (bi, = tb; jns), we find

Ui"»(0~0 0))'
~"' —p~-(0)p~" (o)

(16'.) (2n') s

(2.42)

where t = (pb —p )' and ib = lnM'. Since the main con-

"Shrinkage greater than (lns) 2 for elastic cross sections is excluded
by unitarity —see Roy {1972).Thus no escapes of this type are possible.

'~ We should emphasize that our de6nition of a cluster or fireball
differs from that often used. In our case, there can be large rapidity
gaps (i.e., Pomeron exchanges) among the particles contained in the
cluster, whereas many authors dehne a 6reball as having no large in-
ternal rapidity gaps. It is important in our case to include the events
with large internal gaps so that the full Pomeron exchange, as opposed
to a "bare" Pomeron, will be built by the sum.
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I& ) is the double integral, and-'-~ -(0)~ "(0),1&" twhere 0 Toy

d the contribu tion forinterested inwill always be in d
2=0 }1t, = 0 Where pz, 2 ——,W

dp&P

[-) (t'-, t', —p")j' d(d = 2x'. (2.53)

tegral in thhe folio g

e e Pomerone we assume 0a s are argeAs before, since the gap
exc

'
factorsexchange giving

2a(ti)

(
$;,,+I

M 'M;+I22

2
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We therefore obtain

2 +nI (2~)2n—2

Xilns n—1

II

2A

1 PCi+PCi+1+Viln S+Bb

PP-(0)PPbb(o) (fP"PP(0,0,0))' '" "
( ) FIG. 21. Decoupling of the Pomeron-

Reggeon-X vertex and continuation to
the particle pole.

»I'+1
5( 2 1' —Z»' —I').

5=2

~(n) ~ o e(b2/ 2)rn
—2~ n II(—n) (in+)n 1—

where

(2.57)

The 1, integral extends over a gap of minimum +Bi length
v; lns. Scaling the integration variables»s, = 2», lns,
= z, lns gives trivially a factor (lns) n ',

Sy, i—j.Si+1,n
(f')-- =

j. n

exp( P p~) exp( g»);)
j=1 j=i+1

7

s
(2.62)

not increase with s, the minimum momentum- transfer does
not vanish as s = ~,'~

Xi

1(n) ' —
( II « 'l~ II

e(+e(+1+vs

n—2

1
dZ,

Z; —2»; —2»,+IJ

where s;,i ~ and si+j,„are the masses of the blobs produced
on either side of the momentum transfer t;. Thus we need a
weak energy dependence in b. Suppose 8 lnlns, then
I = 1ns/lnlns and

X~(gz; —g~, —1).
i=2

(2.58) eb ~ (n)

We see that multiple Pomeron exchange with nonvanishing
triple Pomeron vertices produces a violation of the Froissart
bound by an arbitrary power of lns.

As a second application of (2.55) we obtain generalized
Finkelstein —Kajantie decoupling theorems. In this case we
choose only a subset of the intermediate states in a ~ and
o- ~, and fix the p,', for example,

&eP [jg ea(0)]25(+ 2
2/2 2)

&Pb Q bb( )0] 2(5+ 2 ~ 2)

(» '00) = Ll'PP" (» ')]',
(2.59)

where V~~~ is the coupling of two Pomerons to a 6xed state
X' (or fixed group of states). We drop the integrals over»I, '
since we consider a fixed state, and again scale 1, = z, lns,

'
exp (1ns ln ln lns/ln ins)

(V e2) Ins/Inlns —1

lns
(2.63)

Finkelstein and Kajantie (1968a and 1968b) originally
derived Eq. (2.64) for the case of X, a single particle, but the
generalization we have presented here is clearly trivial. This
result is clearly very powerful. All the decoupling theorems
discussed in the previous subsection can be obtained from
Eq. (2.64). For example, the vanishing of the triple Pomeron
vertex is obtained as follows. I et X be a sum over all states
of a given mass e~, then

1'PP (»)' = ~ (») = o

The inequality in (2.63) is violated unless (see Fig. 20)

(2.64)

P (0)P "(0)' (Ll ( '&]')" '
0 (n)

2-+I(2~)2--2 k 2~' )
X/n

5(g z; —1),

lns

(2.60)

for all p. Taking & largess

~" (») —fP"PP'(000) = o.

Thus the Finkelstein —Kajantie decoupling theorem is at
once the most general and the strongest.

vi+ ei/1n s

where e, = »(;+»I;+I + 5; and 5, is the lower bound on the
energy across the ith gap for which the Pomeron dominates.
We can take vi~0 and still have multiple Pomeron ex-
change. In this limit the si integrals diverge as

We close this section with a remark which will lead us into
the discussion in the following section. We can imagine de-
riving further decoupling theorems by going to particle
poles in the momentum transfers. Suppose for example we
start with VJ ~~ and let X be a multiparticle state with one
large subenergy, so

n-2

II ln = (ln ins)" 2,
o = ~as~ = Vta~'~zI~' (2.65)

so
If we continue to the particle pole on the Reggeon" we have

(lnlns)n 2

o (n) fv x(»b )]2n—2

lns
Cn

(Fig. 21)
2.61

Vg~ ——0 (2.66)

In this case.we can let n increase as s increases while still
keeping the energy across each Pomeron above the minimum
rapidities 1);~ B. Thus Eq. (2.61) holds for 22 lns/5. How-
ever, if the minimum rapidity gap across each Pomeron does

"See also footnote in NeB (1973).
'2 This could have been done from the start in obtaining (2.63) from

(2.55) as long as /s/lns -v 0 as s -+ sa .
This line of reasoning has been pursued by R. Rajaraman (1972).
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Pe
S

FIG. 22. Amplitude for e + N —+ e + 1V* in the
limit s —+ ~ and q2 —+ 0.

A. Heuristic argument

There might be optimism that the decoupling of the
Pomeron —Reggeon vertex for t~ & 0

m

This procedure involves an analytic continuation from
t~ & 0 to t~ ——m ' and thus clearly is outside the scope of
the type of argument considered in this section. We discuss
the validity of such analytic continuations in the following
section and conclude that they are generally valid, although
there are some potential hazards, particularly in the case
X = a. We remark that in the multiperipheral model
(Amati et al. , 1962; Lee and Sawyer, 1962; Chew and
Pignotti, 1968) the validity of such continuations has always
been assumed since the production amplitudes are ampli-
tudes like Fig. 10 with alternating Pomeron and pion
exchanges. Thus the inability to obtain n&(0) = 1 without
a consequent vanishing of the elastic coupling is quite clear
within the context of these models.

Concluding Sec. II, we note that Le Ballac (1971) has
given an argument for the elastic decoupling directly from
inclusive cross sections which avoids the analytic continua-
tion. He notes tha, t a pure pole Pomeron exchange in the
central region implies that the average e-particle correlation
function (C„)increases like lns and as a consequence o.,1

—+ 0
faster than (lns) "+'. However, as Ellis, Finkelstein, and
Peccei (1972) emphasize, (C„) (lns)" ' behavior is ex-
pected as soon as Pomeron —Pomeron cuts are allowed, and
then o.,l (lns) ' with no decoupling of the elastic Pomeron
vertex. Therefore, unlike our argument from analyticity,
the standard soft I'I' cut circumvents LeBallac's conflict
with O.To~ —+ constant.

Indeed we should emphasize that all the results of Sec. II
are valid in the presence of a Pomeron pole that is only
separated by a factor of (lns) ' from its cuts at t = 0. Tha, t
is why no waive cut mechanism avoids their convict with
constant cross sections.

III. DECOUPLING THEOREMS FROM ANALYTICITY

In this section we discuss further decoupling theorems
that can be obtained by analytically continuing the results
of Sec. II from the physical regions where they were origi-
nally obtained. Before discussing these results in detail, in
Part A we give a simple example (Gribov, 1972; Brower and
Weis, 1972) which illustrates some of the technical difficulties
in such analytic continuations.

In part B we investigate the Pomeron particle —particle
elastic coupling with a more detailed study of the analytic
structure in the case of continuation of the Pomeron-
Reggeon —particle vertex to the particle pole. We conclude
that the coupling does vanish (Brower and Weis, 1972).
In part C we consider other couplings obtained by con-
tinuation. Of particular interest are the "elastic" couplings
occurring in the Mueller analysis of inclusive cross sections:
the Pomeron four-particle fragmentation function and the
two Pomeron two-particle pionization function. These have
not been studied in detail but we believe they also must
vanish.

YPR (02 tR K = m —tR)2
P R

Q

0

(3.1)

might be consistent with the elastic pole at f~ ——m2. This
optimism is based on the analogy with the longitudinal
photon entering into electroproduction of a resonance (e.g. ,
e + N —& e + N*). Here the leading behavior at high energy
has a form factor that vanishes at 1l2 = (p. —p.')' = 0 (see
Fig. 22)

FNN*(g ) q2 = 0,

but the elastic form factor is nonzero and equal to the charge

FNN(q') = e q2 0

Might not the Pomeron decouple in the (inelastic) Pomeron-
Reggeon —particle vertex, but not in the elastic vertex
(t13 ——m2)? Our example clearly identifies the false element
in this analogy and thus destroys the optimism based on it.

The Pomeron three-particle coupling generally has the
form

g (t)$2/$1q$3/$1)$12q$231$31) y

wllel'e $12 + $23 + $31 —2131 + 2132 + 2133 + t Howevel tile.
vanishing of (3.1) is only known in the physical region for
t = 0. In this case there are further constraints among the
variables (corresponding to ~ = rr322 —s31 in the double
Regge limit)

Sy $2 Sq
(3.2)

$2' —my $3j f02 $12 m32 2

Equation (3.2) is derived in Appendix 8—see Eq. (85).

Since inelastic resonances decouple at this kinematical
point for a gauge invariant Pomeron or photon (see Ap-
pendix 8), it is plausible to consider just the sum of the

25

2 s

)
FIG. 23. Pomeron three-particle cou-
pling.

12

Suppose we can analytically continue the Pomeron-
Reggeon two-particle vertex (or the two Pomeron —four-
particle amplitude) to the particle pole to obtain the de-
coupling of the Pomeron from three particles (see Fig. 23).
We would like to know whether it is possible to make a
further continuation to an internal particle pole to obtain
the vanishing of the Pomeron particle —particle coupling
(and thus total cross sections); i.e. , a continuation to, say,
Sy3

——m2 .2
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S1 pl s2p2

s3g —Mg'

s3p3

gg2 —M3'
(3.3)

three poles in the s,; channels, as a simple model for g. Then

A5 Pp (t)[&PI'(—np(t))s~ "'jg FIG. 24. Variables for five-particle
amplitude. P

P 3 R 4

pi —p2 —p3 = o

and not the individual elastic couplings P;.

(3.4a)

where P, is the coupling of the Pomeron to particle i at t = 0.
Using Eq. (3.2) and s& —s&, s3 —s&, the vanishing of
Eq. (3.3) implies only

The double Regge behavior is

Ag P(tp)[(PI'( —np)sp jvpR(tp, tR, K)

x[&RP(—np)SR Rgp(tR),

where

K = SpS~ S.

(3.10)

(3.11)
We can also consider the reactions obtained by crossing

pairs of particles and obtain

p~ —pr —ps = o,

pa —p2 —pr = o

(3.4b)

(3.4c)

pi = p~ = p3 = o (3.6)

Therefore in this simple model the vanishing of elastic
coupling is obtained, but it requires a knowledge of the
crossing (signature or charge conjugation) properties of the
Pomeron (3.5). This input is nontrivial since for exchanges
of opposite signature like the photon we do not obtain de-
coupling. Indeed for the photon, charge conjugation is
minus one,

p, —+e, , where (3.7)

and all three equations (3.4) reduce to the same charge
conservation equation

ej —e~ —e3 ——0. (3.8)

The analogy between the Pomeron and the photon (at
t = 0, j = 1) breaks down for those properties related to
signature or charge conjugation.

B. Vanishing of total cross sections
In order to 6nd the implications of the vanishing of the

Pomeron —Reggeon —particle vertex discussed in Sec. II,
Eq. (2.37),

UpR(tp = 0, tR, K ——m' —tR) = 0 (3 9)

for the Pomeron particle —particle coupling, we need to
analytically continue in tR from tR & 0 where Eq. (3.9) was
originally obtained to t& = m2. The correct performance of
this continuation requires a detailed knowledge of the struc-
ture of V(tp, tR, K). Thus let us discuss this structure and
the arguments with which it has been derived (DeTar and
Weis, 1971; Drumond et al. , 1969; Goddard and White,
1971; Halliday, 1971; Weis, 1972). In doing this it is con-
venient to consider the vertex as it occurs in the 2 —+ 3
amplitude. By factorization this will of course be the same
vertex which occurs in the doubly inclusive cross section
considered above (Weis, 1973, 1974). Therefore, we consider
the 2 —& 3 process shown in Fig. 24.

Since the couplings of the Pomeron to particle and anti-
particle are equal,

(3.5)

Equations (3.4) clearly give

From now on we shall drop the single Regge vertices
P(tp)P(tR) since they play no essential role.

The first step is to decompose the amplitude into signa-
tured amplitudes which have only right-hand cuts in s~, s~,
and s. Since in general those three invariants have both
right- and lef t-hand cuts with no particular relations between
them, we need 2' = 8 different signatured amplitudes in
order to have enough freedom to describe a general ampli-
tude. These eight amplitudes arise from positive and nega-
tive signatures ~~ and v-~ for the two angular momenta
(jp in tp-channel and jR in tR-channel) and positive and
negative signature associated with the helicity m at the
central vertex. ' Thus we have

A 5 (sp, sR,K, tp, tR) ([A'P'"'v(sp)sR)K, tp)t R)

+ rpA P R v( —sp~ sR~ K& tp, tR)

+ rRA (spq sRq Kq tp) tR) +
rprRA' ' 'v( —sp, —sR, K, tp, tR) + rv[K~ —K)).

(3.12)

The next step is to discuss the Regge behavior of the
signature amplitude,

A'P R'v = I'(— )n(psp) PV (tp, tR, K—)
XP (—R) (—SR)". (3.13)

The double Regge residue of the signatured amplitude V
has the behavior

V = (—K)-.pvp(tp, tR,K) + ( K)=RV (tp, t,.),—(3.14)

where Vp and VR have no cuts in K (DeTar and Weis, 1971;
Drumond et at. , 1969; Halliday, 1971).This is necessary to
assure that A has no simultaneous discontinuities in over-
lapping invariants (i.e. , sp and sR) in the physical region. m'

2' This signature, which is a new feature of multiparticle amplitudes,
has been introduced by P. Goddard and A. R. White (j.971).

"See A. R. White (1972}for a thorough discussion of this problem.
~ For a recent discussion of this Steinmann property, see H. P. Stapp

(1971).

The assumption that signatured amplitudes A'~ &'v have
partial-wave projections with good (Carlsonian) continua-
tions to complex angular momentum and helicity is the
weakest link in our discussion. However, while their exis-
tence has never been rigorously proven, "the structure of the
amplitudes which result has been found in all models of
Regge poles studied (Drumond et a/. , 1969).
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Combining Eqs. (3.13) and (3.14) one easily verifies this
property:

g rprRrV —( S)~P( SR)~R ~PVP

+( S)~R( SP)~P ~RVR. (3.15)

Combining Eqs. (3.12), (3.13), and (3.14) we obtain the
contribution of a double Regge pole with definite signatures
(Brower and Weis, 1972; Goddard and White, 1971; Weis,
1972; Roth, 1972)

&5 = s"sR "EPkRPP( nP—)P( nR—)
X[VP(tp)tR, Ir) + TPTvVP(1P)1Rp K)]
+s sp $R)pRP( np)P( nR)

X[VR(&P)1R)&) + ~R~vVR(~P) iRy &)]y (3.16)

g srczj +
$,; = e 'r& ' ~& + r,r;, (i, j = I' or R). (3.17)

The signature factors in (3.16) give the full complex phase
of the amplitude since the Vi are presumed real below the
thresholds in tp and tR. Comparing Eqs. (3.10) and (3.11)
we see that V~~ is not real

Armed with Eqs. (3.18) and (3.19), which exhibit ex-
plicitly the behavior of the double Regge vertex in t&, we
can now examine the consequences of (3.9). We are inter-
ested in the behavior for nP —1, rP = +1, and nR —0,
rR ——+1 (since we are considering for simplicity a spin-
zero particle). Keeping only the dominant behavior in Eq.
(3.18), we may parametrize the vertex as

P ( np—)I' ( nR—)Vp

TP'

u~ —1
7

(np —1)(nR —np+ 1)
(3.20)

P( —np)r( —nR) VB
nR(nB —np+ 1)

(3.21)

gi1l CLQ

0~

&
—vrnR 1

—U rV(1 + & ) Ui'v(1 —rv)

We have exhibited the vertex signature explicitly in Eqs.
(3.20) and (3.21) since in general both signatures can be
present. '4 inserting these expressions in (3.18) we have

LV ()+ V ( )]
+~P 'gPR. R[VR(~) + rB«VR( —~)]. (3.18) 1

+ Ui (1+ rv) — = 2Ui+' (3.22)
The phase of VPR results from the necessary cuts in ~ (3.14)
and, roughly speaking, is associated with cuts in s.

The 6nal step is to obtain the structure of the Vi. This is
done by arguments of the following type (DeTar and Weis,
1971).The poles at nP = JP must have polynomial residues
of order J~ in the overlapping invariants s~ and s. For n~
nonintegral one sees from Eq. (3.15) or (3.16) that they
can occur only in V&. The double poles at n& = J& and
nR = JR are accommodated by poles in VP (and VR) at
nP —nR integral. We 6nally have (DeTar and Weis, 1971)

r(—np)r( —nR) Vp(1p (Ri K)

= 2 P(—np+ i)P(—nB+ np+ i)U(np —i, 1p, 4)—
i=o i!

(3.19)

and similarly with I'+-+ R. The function U has no singu-
larities in the ti below threshold. 2'

We remark that our basic formulas (3.13), (3.14), and
(3.19) can be quite elegantly obtained using complex angular
momentum and complex helicity analysis. However, we
have preferred to give a rather direct. derivation and refer
the reader to Weis (1972) for discussion of complex helicity
approaches. We only remark that the terms ~ ~+i and

"+i in V arise from singularities in complex helicity at
X = o.~ —i and P = n~ —i. For nonnegative i these are
"sense" helicities, i.e. , helicities less than the (complex)
angular momentum. The absence of terms with negative i
in Eq. (3.19) corresponds to the absence of "nonsense"
helicity couplings (Brower et a/. , 1973b).

U(n~ —i, tI, tg) can have simple poles if nonsense wrong-signature
multiplicative fixed poles are present (see leis, 1972).These are located
at cd + 'RP = 0 i rP = ( 1)~P+'7 uR + nR = oi rR = (—1)"R+'7 and
~R rrP + rlRP = Of rPrR = ( 1} RP+'7, Where the n are negatiVe
integers. These can be shown not to affect our conclusions.

In general the contributions of V~ and V~ occur in V~~
with different phases so they must individually vanish. For
u& = 0, the contribution of V& is purely imaginary and
vanishes, so it gives no constraint on Uo and U~, but the
contribution of Vz is real and only vanishes if

Uz+' = 0. (3.23)

However, returning to Eq. (3.18) we see that the vertex
at nR ——0 (that is, the Pomeron —particle —particle coupling)
is

Pp(0) = lim VpR(tp, tR ——m', B) = 2Ui+'.
tg~o

(3.24)

Therefore the vanishing of the Pomeron —Reggeon —particle
vertex implies" the vanishing of the Pomeron —particle—
particle elastic coupling (3.24).

24 Planar models have no left-hand ~ cut (equal v.~ =+ 1 and ~y
= —1 contributions), but nonplanar models have left-hand ~ cuts (see
Ross, 1972).

~5 Equations (3.18), (3.19), and (3.20) can be applied equally well to
the photon, since they just give the required polynomial dependence of
the residue. The Regge argument can be compared step by step with the
simple pole argument given in Sec. III.A for both Pomerons and
photons.

We would now like to make a number of comments on
this result. As we noted in the introduction to this section,
the signature of the Pomeron plays an essential role. In
Eq. (3.22) there is a term 1/~ which, due to the kinematic
constraint (3.10), is 1j(m2 —tR) and looks like the particle
pole. However, it is multiplied by the factor HARP, which is a
wrong signature factor for a~ = 1 and therefore cannot
compensate the particle pole in V~. The harmlessness of
this potentially dangerous kinematic singularity is thus a
result of the positive signature for the Pomeron. For the
photon, "on the other hand, only V& contributes, and cur-
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rent conservation requires that the kinematic 1/» singularity
exactly cancel the particle pole.

Signature plays a crucial role in another amusing way.
Consider a Regge trajectory of negative signature so a& = 0
is a wrong signature point. Such a trajectory, if it has the
same nz(ts) as the positive signature trajectory, surprisingly
has the same behavior as (3.22) near a~ = 0. In this case
from Eqs. (3.18), (3.20), and (3.21) we have

2
Vr ~(0, t~, ~= m' —t~) ~—Q

Zii &v

Uo'~(1 + rv)

Ug "&(1 —~v) U)'"(1 —7 y)

4 U+' 4 U+'
(3.25)

The signature factor &~~ is now right signature so the 1/a
kinematic singularity contributes.

I

Equation (3.22) immediately suggests a mechanism for
avoiding the vanishing of the elastic coupling. If the nega-
tive signature trajectory is exactly degenerate with the
positive signature trajectory for t& & 0 (exchange de-
generacy), then the decoupling theorems will apply only to
the sum of both their contributions since they cannot be
separated by their asymptotic behavior. If the negative
signature trajectory also has n~(tn') = 0, then its contribu-
tion will cancel the particle pole if Uo+'(r~ = —1) =
Ux+'(r~ = +1).so In this case there is a nonuniformity of
interchange of the limits tI —+ 0 and t~ ~ m'. The particle
pole at t~ = m2 occurs in V~ which is multiplied by
$~$~~(r~ = +1) + gggJ ~(rg = —1) = 2(~. Combining
this with Eq. (3.21) we see the term with the particle pole i

s

—~ —Zg

nz —+a+ 1 +z CXg —1 —CXg 0.'g
(3.26)

Unfortunately this exchange degeneracy mechanism for
circumventing the vanishing of total cross sections is not
physically reasonable. The pion's exchange degenerate
partner would have the quantum number of the A. & meson.
Such a trajectory could very well exist. However, there is no
evidence for a trajectory with Ig = 1+ and J~ = 0+ ap-
proximately exchange degenerate with the p. While decou-
pling of the p might be tolerated by some people, this absence
of such a trajectory also requires the pion to decouple. This
can be shown by considering the Pomeron~-x-p vertex
which can be shown to vanish using the inclusive sum rules
or Finkelstein —Kajantie argument (see Fig. 25).

While the exchange degenerate ~A~ eliminate the left-
hand cuts in s this is not sufhcient to cause the coeScient

Recall that Kq. (3.22) is multiplied by e ' + 1 and E'q. (3.25) by
~-A.a~

The coefficient of 1/n~ is finite for the limit ts —+ ms(n~ ~ 0)
followed by tp ~ 0 (n~ ~ 1) but zero for the limit t~ ~ 0
followed by t~ —+ m2. If one traces the origin of the factor
$~ in (3.26), one sees that it arises because the amplitude
now has no left-hand cut in s~.

Q b

FIG. 25. A six-particle amplitude with I', ~HI, and p exchanges.

of 0. ' to vanish at tI = 0. The reason is basically that,
while a single Regge trajectory of definite signature gives a
factorizable contribution to the amplitude, the contribution
of a Regge exchange without delnite signature (e.g. , an
exchange degenerate pair) does not factorize. Thus the

xA~ "vertex" occurring in the 2 —+3 amplitude
and vanishing is not the same E —m- —mA ~ "vertex" occur-
ring in the 2~4 amplitude, so the vanishing does not
progagate to more complicated amplitudes. "

If the analytic structure of the Pomeron —Reggeon-
particle vertex is different from that discussed here, the
elastic decoupling theorem could be vitiated. We mention
two possibilities. First, a singularity of the form

(3.27)

in Vg Lsee Eq. (3.21)g could cancel the particle pole in
(3.22). Such inverse powers of a correspond to "nonsense"
singularities in complex helicity, and we have argued,
though not completely rigorously for the case of the 6ve-
particle amplitude, that these are not allowed (Brower
et al , 1973b)..Second, if 1/a is replaced by

(3.28)

the particle pole can still be cancelled. Again these behaviors
are not expected in Reggeon couplings (Brower et at. , 1973).
No known model for Regge poles produces the behaviors
(3.27) or (3.28), so before one doubts the general arguments
and takes these behaviors seriously he should And a mecha-
nism which produces them.

There is one source of singularities in the Pomeron-
Reggeon —particle vertex which must be taken seriously. This
is the collision of the Reggeon pole with the Pomeron-
Reggeon cut at t~ = 0. Although it is commonly assumed
that this collision is weak (this idea is further supported by
the vanishing of the Pomeron —Reggeon —Reggeon vertex
obtained in Sec. II LEq. (2.27)j},if it were strong it. would
change the behavior of the Regge pole for t~ & 0 drastically.
In Sec. IV we mention two proposals which vitiate the elastic
decoupling theorem. We emphasize here that any such
proposal means a nonuniformity of the interchange of limits
tp —+ 0 and t~ —+ nF. This should be a quite drastic eBect
for the pion. Specifically, it means that if the pion —proton
or pion —pion cross section is determined from the Chew —I ow
extrapolation, no Pomeron contribution will be found. This
type of nonuniformity should be testable.

C. Other decoupling theoreme

The crucial difhculty with continuation to particle poles
in the elastic case is the presence of kinematic singularities

~7These statements can be readily verified using the analysis de-
veloped in J. W. Weis (1972l.

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975



R. C. Brower and J. H. Weis: Pomeron decoupling theorems

(a)

P P
(b)

I'"j.'G. 26. Examples of Mueller vertices (right) and possible connections
to other vertices.

at the same point. In other cases the kinematic singularities
do not coincide with the particle pole so we expect that the
continuation can be carried out without difficulty, although
we have not investigated this point in detail.

There are other couplings which are rather like the elastic
particle —particle coupling, however. These are the couplings
occurring in the Mueller analysis of inclusive cross sections
(see Fig. 26). These are similar to the elastic vertices in
that the momenta of the particles on opposite sides of the
discontinuity are equal. One might try to obtain decoupling
of the Mueller vertices by analytically continuing the ver-
tices on the left of Fig. 25 which vanish by the arguments
of Sec. II. The analytic structure of such vertices is com-
plicated, however, and to our knowledge no one has analyzed
this problem completely. It is our feeling that the continua-
tions can be performed to give vanishing of the Mueller
vertices. We have investigated this question in the dual
resonance model where the Pomeron is treated as an ordinary
trajectory with intercept one. It is found that neither the
vertices on the left nor those on the right in Fig. 26 vanish,
and to obtain vanishing of those on the left we have to
multiply in factors of tp which cause those on the right to
vanish also. 2' (See Appendix C.)

IY. THEORETICAL ALTERNATIVES AND
IMPLICATIONS

A. Theoretical alternatives

Here we briefly discuss what role the decoupling theorems
for a simple isolated Pomeron pole with n~(0) = 1 might
be expected to play in a full theory of diffractive scattering.
We conduct this discussion within the context of three
popular models for diffractive scattering:

Pignotti, 1968). The parameter e is related to the triple
Pomeron coupling G~ (Abarbanel et a/. , 1971), and oT,~-

//(e)s '(e ) 0). Generally then the size of G~ or P controls
the point at which the cross sections are no longer nearly
constant and P(e) —+ 0 as e —+ 0. The cuts are strictly non-
leading by a power $0(s ')), and thus the fine structure in
the j-plane is inessential, as far as the Pomeron couplings
are concerned.

The diKculty in the MPM with taking nz(0) ~ 1 may
well be a consequence of the positive sign of the two Pomeron
cut. Roughly, since the t-channel iteration adds to the cross
section, unitarity bounds are difFicult to satisfy. In any
event, there are several "advantages" to a negative cut.
The interface of a negative cut "explains" both a (tem-
porarily) rising cross section P —(a + n' lns) ' is an increas-
ing function) and the dip at t —1.4 by destructive
interference (Fig. 5).

However, it is interesting to note that Chew has shown
that further fine structure can give a temporary increase in
the cross section due to double diffractive production. In
this model, fireballs (see Fig. 19) are defined as a cluster of
particles with no rapidity gaps larger than 6 2, and the
sum over these particles is assumed to give a bare Pomeron.
(This sum is not equivalent to our sum in Sec. II, since we
made no cutoff at a maximal gap size. The unrestricted sum
must give the full Pomeron, whereas the restricted sum
leads to an unphysical signularpty which may or may not be a
Regge pole (bare Pomeron) as in the two-component model
(Bishari et a/. , 1974; Bishari and Koplik, 1974)). Chew has
shown that this model gives a leading pole, a positive cut,
and complex conjugate poles. The complex poles cause
oscillations that can explain a temporary rise in a cross
section. Also for moderate lns the j-plane is approximated
by a pole and a negative cut.

Hence the crucial feature of the MPM model for n~(0) —+ 1
is whether a positive cut is theoretically tenable as an exact
principle. Gribov and White have advanced arguments that
the negative sign is required by t-channel unitarity (Gribov
et a/ , 1965; White, . 1972). We are impressed by both the
phenomenological and theoretical arguments for a negative
cut.

(i) o. ~ 0 like s '; e very small and the theorerns are
approximately true Le.g. , MPM (Amati et a/. , 1962a, I.ee
and Sawyer, 1962; Bertocchi et a/. , 1962) or MRM (Chew
and Pignotti, 1968) model with ni (0) ( 1);

(ii) o. —+ const; some mechanism circumvents the de-
coupling theorems Le.g. , Gribov Reggeon calculus (Gribov,
1968) with n~(0) = 1);

(iii) o ~~ Pe.g. , ln s in certain eikonal models (Hass-
lacher et a/. , 1970; Cheng and Wu, 1970) where, effectively,
ng (0) ) 1).

(I) ~(0) «
The multiperipheral model (MPM) is perhaps the most

highly developed model of diffractive scattering (Chew and

'8 For some study of this question, see also C. H. Mehta and D. Silver-
man (1973).

(ii). ~i (0) = I

Unitarity in the t-channel requires that with each Regge
pole there are associated a series of cuts at n, „~& & = ncx(t/rP)

n+ 1.—If n~(0) = 1, all of the cuts will coincide with the
pole at t = 0 and actually lead the pole in the scattering
region t ( 0. Therefore in this case the j-plane 6ne structure
is potentially a crucial feature. The dificult problem of the
interaction between the colliding pole and cuts has not been
completely studied as yet so our discussion here will be only
qualitative. The most sophisticated approach has been the
application of the Renormalization Group approach to the
Gribov local field theory approximation of the Reggeon
calculus. We discuss the relationship of this work to de-
coupling problems in Sec. IV.B.

It is fairly clear that naive cuts do not affect the decou-
pling theorems. By naive cuts we mean contributions which
look just like the pole contributions except divided by powers
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of lns. For example,

sac(t)
p(t)

Ins
(4.1)

FIG. 27. An absorptive correction to the usual triple
Pomeron term.

where P (t) has no singularities not present in the full ampli-
tude. For example, in the inclusive cross section we might
have

more other Reggeons —see, for example, Figs. 27 and 28.
Such contributions have a structure quite different from the
pole or naive cuts and, as we shall see in an example below,
can be quite singular. It is possible that such contributions
spoil all the arguments presented in Secs. II and III.

(In sr M~)~

(4.2)

ag) ' ——x dx
des

(4.3)

Separating the contribution of the triple Regge region (say,
M'/s & 6) from the rest of the fragmentation region, we
have for e = 1 —n~(0) ) 0

(4 4)

S
—26

=As ' —R -+As '+
lns lns

Even though (4.2) dominates the triple Regge term for all
t& 0, it is clear that its integral is (1ns) ' « lnlns and so
it does not affect the decoupling proof.

l

To see this another way, consider again the energy mo-
mentum conservation sum rule (DeTar, 1974 and Veneziano,
1974)"

The most drastic effect of such contributions could be to
allow a nonvanishing triple Pomeron coupling at t = 0 and
thus violate the basic decoupling theorem. A popular plausi-
bility argument for such an e6ect has been the analogy
between the triple Pomeron diagram and the usual simple
Regge cut diagram LFig. 28(a)j. The usual heuristic argu-
ment for a negative sign of the two Reggeon cut says that
the discontinuities through the Reggeons C~ in Fig. 28(a)
reverse the positive sign of the AFS term obtained by dis-
continuity C&. Similarly, one might expect that the dis-
continuities C~ of the triple Pomeron diagram LFig. 28(b)j
reverse the sign of the usual term C». In other words, there
are other contributions to the cross section asymptotically
as big as the triple Pomeron contribution. Such effects in
planar Feynman diagrams (which in fact lead to a cancella-
tion of the triple Pomeron term since a Peynman diagram
like Fig. 28(b) actually has no cut) have been explicitly
studied by Halliday and Sachrajda (1973).

I et us examine this effect in more detail. Whereas the
discontinuity Ci in Fig. 28(b) corresponds to single diffrac-
tive dissociation with a dominant contribution to the single-
particle inclusive cross section (2.2) near x = 1, the dis-
continuity C2 corresponds to an absorptive correction to
the usual multi-peripheral process and is expected to con-
tribute almost equally for all x—see Fig. 28(c). Therefore
it corresponds to a negative contribution to the inclusive
cross section in certain regions of the phase space. Unlike
the simple cut diagram Fig. 28(a) where such contributio'ns
are (1/lns) and nonleading, this contribution is O(lnlns) and
dominates. Positivity can only be insured by the presence
of other still larger I

e.g. , (lnlns)', (inlns)', . . .j contributions
to the inclusive cross section such as the contribution cor-
responding to a discontinuity through both right-hand

where E is the fixed pole residue in Pomeron particle scatter-
ing and arises from the low M' part of the first term. The
cut contribution from the remainder of the fragmentation
region C can be such as to give the usual cut residue, i.e.,
C = —R'+ R How. ever, as a~0 with fj~~(0,0,0) W 0,
the first two terms become singular and give lnlns [see Eqs.
(2.18)—(2.21)j. A compensating singularity is not expected
in B or C since a negative lnlns behavior would give a
negative inclusive cross section in some region of phase
space in the absence of an even greater singularity.

FIG. 28. Analogy between (a) Regge
cut diagram and (b) triple Pomeron con-
tribution. (c) Exclusive process contribut-
ing to discontinuity C~ of (b).

+s ——kkHIHHkljlHHH--
c

I

lllllllll Ill llllll Ill

——ci

(b)

The obvious place to look for a nontrivial role played by
cuts is in contributions where one Reggeon spans two or

'9 We are indebted to C. E. DeTar and A. Patrascioiu for discussions
on this point.

I ill I

~p
(c)
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FIG. 29. Term leading to violation of argu-
ment for Vzz = 0 proposed by Cardy and
White (1973a,h).

Pomerons in Fig. 28(b). Such contributions probably mean
that we really do not have a theory with a~(0) = 1."

Because of the likelihood of arbitrary powers of lnlns,
we feel that the possibility of a nonvanishing triple Pomeron
can only be treated in a framework where all orders are
summed, like the eikonal model. Blankenbecler, Fulco, and
Sugar (Blankenbecler et at. , 1974; Blankenbecler, 1973)
have studied this problem. They hand that to lowest order
the sign reversal of the triple Pomeron takes place as dis-
cussed above and

O-T, t C —G~ lnlns

and full eikonalization gives

(4.5)

f7Yot—
C + G~ ln lns

(4.6)

Thus constant cross sections can only be obtained if the
triple Pomeron coupling vanishes at t = 0.

For some recent work on these possibilities, see also
Ciafaloni and Marchesini (1974).

We feel it is much more likely that absorptive effects play
an essential role in the strong decoupling theorems of Sec.
II.B. As a related example, let us 6rst discuss a mechanism
proposed by Gribov (1972). Let us suppose the diffractive
dissociation of one particle into two is required to vanish
at t& ——0 (this might be obtained by continuing the
Pomeron —two-particle —Reggeon vertex to the particle pole).
Gribov writes this amplitude as

Of course it is obvious that what is usually called triple
Pomeron behavior, namely F(x, t = 0) (1 —x) ' for
xs & x & 1 —Mes/s, is probably inconsistent with con-
stant cross sections, since the inclusive cross section is posi-
tive de6nite. Any scheme which gives constant cross sections
must change this behavior. The change could be mild Dor
example, F(x, t = 0) (1 —x) 'Lln(1 —x)j 'j or more
drastic /for example, restricting the range of validity to
1 —Mrs/s& & x & 1 —Ms'/s as suggested by Neff (1973),
which means the triple Pomeron region shrinks to zero as
s ~~ j.Strictly speaking then, the triple Pomeron behavior
is destroyed, and this may also destroy the attractive
phenomenology based on a simple pole.

Thus in addition to the usual pole terms there is an absorp-
tive correction to one of the poles. I et us discuss the struc-
ture of this term in more detail (Baker and Weis, unpub-
lished). In the Pomeron channel it has also a two-Pomeron
cut and in the particle channel it has a Pomeron —particle
cut. Roughly speaking, at tp ——0 it has a behavior like the
function

(s,r —ms ) + (lns) ' (4 8)

In the scattering region s3~ ( 0, it behaves like the three-
pole terms as s —+~ and will allow (4.7) to vanish if

Pr =A=Ps=t3 (4 9)

However, it has no elastic pole at s3~ ——m~', so the elastic
couplings are unchanged.

Unfortunately this specific scheme has several undesirable
features. It requires all elastic couplings (and consequently
asymptotic total cross sections) to be equal. This means the
theory is not relevant at present energies. Perhaps more
importantly, in order to obtain this singular behavior a non-
vanishing triple Pomeron coupling at t = 0 is required. This
seems in coact with the requirement of a vanishing triple
Pomeron coupling from inclusive sum rules or the Reggeon
calculus. However, Gribov has suggested a modification of
the vertex which allows the contribution to (4.7) to be non-
zero but the contribution to the inclusive sum rule (2.6)
to vanish. However, if we look at the inclusive cross section,
we And

Quite generally one can imagine that the Pomeron-
Reggeon cut can mask the contribution of the Reggeon
Le.g. , in Eqs. (2.36) or (4.7)$, Thus the full contribution
can vanish for t~ & 0 where the Pomeron —Reggeon cut
leads the, pole, but have nonvanishing couplings for t~ & 0
and, in particular, ter = ms. Quite general classes of func-
tions with such behavior can be written down (Brower and
Zachariasen, unpublished), but consistent models which
produce them have not been constructed. We note that
such strong collisions between the Regge pole and the
Pomeron —Reggeon cut will also mean that our assumptions
on the analytic structure of the Pomeron —Reggeon —particle
vertex in Sec. III will undoubtedly be violated.

F(x t) or fI r I (0)(l —x) '
Ll —2u't ln(1 —x)j.

(4.10)

The usual triple Pomeron coupling now does not vanish at
t = 0 but there is an additional contribution to the cross
section which is not positive definite.

"This is essentially the same point made after Eq. (4.4).
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Cardy and White (1973a,b) have recently made an ex-
tensive study of cuts in the Reggeon calculus. They argue
that contributions of the form of Fig. 29 will cause the sum
rule arguments of Sec. II.B for the vanishing of Pomeron
couplings to break down. Contributions like these are very
similar to those proposed by Gribov- LEq. (4.7)j and have
corresponding singular behaviors. In the proposal of Cardy
and %hite the bare triple Pomeron coupling is nonzero and
the zero of fr"JI*(0) arises only after a, sum over all two-
Pomeron iterations (Bronzan, 1972, 1973).Thus if the bare
coupling is used in Fig. 29, the diagram will have the re-
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quired singular behavior. However, it is not at all clear why
exchanges of further Pomerons between I'j. arid I'~ should
not generate the full vertex f~~~(0) and thus remove the
desired singular behavior.

The detailed form of the inclusive cross sections has not
yet been studied in the scheme proposed. by Cardy and
White. However, any mechanism like this and the others
discussed above which violates the proof of the vanishing
of the Pomeron —Reggeon —particle coupling is expected to
violate some of our cherished phenomenological notions.
In particular the Chew —Low extrapolation would be ex-
pected to fail for the Pomeron part of wm scattering since
the Pomeron —Reggeon cut masks the Reggeon (pion) in the
scattering region. This phenomenon is explicitly illustrated
by Eq. (4.8).

We remark that it is possible that all the weak decoupling
theorems hold and only the strong theorems are violated,
although this is not what Cardy and White envisage. In
Sec. II.A we have noted that the weak decoupling theorems
are all satisfied by a pure pole if it has a specific gauge
property. The hypothesis of such a "gauge invanant
Pomeron" is attractive because it is possible that such a
pole may approximately satisfy unitarity with cuts rele-
gated to a minimal, albeit vital, role. The analogy with
Q.E.D. where gauge invariance gives stability to a pole at
j = 1 at t = 0 is also inviting. 'We refer the reader to
Appendixes 8 and C for a brief discussion of the properties
of such a Pomeron (Ravndal, 1971).

Finally, it is possible that all the unitarity decoupling
theorems of Sec. II hoM and that only the analytic con-
tinuation argument of Sec. III breaks down. We have dis-
cussed and dismissed several possible mechanisms for this
there. We believe this is a rather unlikely possibility.

(iii). ~~(0) ) 1

(4.11)

and exponentiatqs the Fourier transform to insure elastic
unitarity

A, i ——i exp(ix, g, )(1 —e ~), (4.12)

exp (—
2 a+ a'lns 5 a+ a'lns]

By replacing a ~ a —
~ (im)a' and X —+ X exp( —x2 (i~)La~(0)—1j), the correct Regge phase can be introduced.

If we expand e we get a series

Ps—a )n1—
oT.g(s) = Q s 'X

lns/so)
(4.13)

which gives the Regge pole plus multiple cuts. For a(0) ) 1,
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Case (iii) was suggested by Froissart (1961)and has been
developed in the eikonal model (Cheng and Wu, 1970;
Hasslacher, 1970). Here one begins with a pole with
a&(0) ) 1 (or any "input" singularity above one)

Ae 's P'" a~(t) = 1 —a+a't

the limit lns —+~ cannot be interchanged with the sum,
and the sum actually goes like log's. There is a singularity
at lns = ~ in lns. Here cuts play a dominant role.

It would clearly be very interesting to extend this ap-
proach to production processes and see how the unitarity
constraints are satisfied in detail. So far little is known about
this in general. Caneschi and Schwimmer (1972a,b) have
studied the behavior of the model of Finkelstein and
Zachariasen (1971) for a self-consistent Pomeron with
O-T, t, ln's. They find, for example, that

or t d'P/E

scales and has the behavior (1 —x) 'Pln(1 —x)g ' forx~ 1 and t~ 0. Recently the absorptive mechanism for
satisfying the Froissart bound has been employed to con-
struct models with a bare Pomeron with a~(0) = 1 and
nonvanishing triple Pomeron coupling (Amati et a/. , 1973;
Finkelstein, 1973).We shall discuss the philosophy of these
approaches further below.

We remind the reader that whereas s-channel unitarity
is built into such models and thus constraints like those of
Sec. II will certainly be satisfied, t-channel unitarity will
now be the crux in constructing a complete model. It has
not been shown that j-plane singularities of the type

'

occurring in the eikonal model are consistent with t-channel
unitarity. Thus what is explicit in the Regge model becomes
nontrivial in the eikonal mod. el, and vice versa.

IB. Renorrnalization group approach to Gribov
Reggeon field theory

In the entire discussion so far we have avoided, for the
most part, any effects due to the infinit accumulation of
multi-Pomeron cuts at t = 0 fora+(0) = 1.Recently, signifi-
cant progress has been made in summing the infinite series
of cuts near 1~0 and j~ 1 as they appear in the Gribov
Reggeon calculus (A. A. Midgal et a/. , 1974a,b; Abarbanel
and Bronzan, 1974a,b). While the precise relationship be-
tween these results and the s-channel decoupling problems
is still a little obscure, considerable progress has been made.
Here we briefly review the results and comment on their
possible implications. (For another review, see %'hite, 1974).

Some years ago Gribov and co-workers (Gribov, 1968, and
subsequent papers) showed that the unitarity conditions on
Regge poles and cuts at low momentum transfer were
similar to the unitarity conditions on nonrelativistic 6eld
theories. Hence the Pomeron and its cuts near t ~ 0 could
be studied by an analogue method, treating the Pomeron
as a nonrelativistic quasiparticle, where rapidity (y) and
impact parameter (b) play the role of one time and two
space dimensions. The conjugate variables are "energy"
E = 1 —jand the transverse momentum k = (k„k„)given
by Mellin and Fourier transforms of y and b, respectively.
Gribov and others used perturbation theory and. other
standard field theory techniques, and proposed two types
of solutions —a "strong coupling" solution (Gribov and
Migdal, 1968b) in which a T,~ rises as (logs)&, and "weak
coupling" solution (Gribov and Migdal, 1968a) in which
or,~(s) goes to a constant with (log) ' corrections. The
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We should emphasize the limited domain of the Gribov
field theory formulation. The discontinuity formulae, the
linear Regge trajectory, and the local form of the triple
Pomeron interactions in Eq. (4.18) is only valid if we are
permitted to expand them for small (E,,k). Also we treat
the external particles as sources for the Reggeon field so
e-Pomeron to m-Pomeron Green's functions F('" & also con-
tribute (see Fig. 31). But under rather general conditions
it' is believed the igp~%'(N+ N+) interaction s contribu-
tions to 7{i'i = LG{i "j ' is the dominant effect of multi-
Porneron cuts (Abarbanel and Bronzan, 1974a,b).

FIG. 30. Lowest order (+}' corrections to the propagator j. (") and
the triple Pomeron vertex F('2).

For the Pomeron trajectory near t = —k' 0, we have
the energy-momentum relation

E' = 1 —j = Dp + ap'k'+ O(k') (4.14)

with Dp = 1 —n(0) 0, and we recognize the standard
Regge pole as the Green's function,

"weak coupling" solution only occurred if the triple Pomeron
vanished in accordance with the decoupling theorem. Re-
cently, renormalization group techniques have been applied
to Reggeon field theories to obtain both the "strong cou-
pling" (Migdal et a/. , 1974a,b; Abarbanel and Bronzan,
1974a,b) and the "weak coupling" (Brower and Ellis, 1974;
R. Jengo, 1974).

To calculate the infrared limit of the Green's functions,
Migdal, Polyakov, and Ter-Martirosyon (1974a,,b) and
Abarbanel and Bronzan (1974a,b) have employed the re-
normalization group equations of Callan —Symanzik

&&
I'&' '& (E k g n' Ei() = 0 (4.19)

where Ez ( 0 is the arbitrary renormalization point of the
renormalized Green's function F(' '), and the renormalized
intercept ex(0) is fixed at one. The infrared behavior is
governed by a stable fixed point at g = g* determined by
P(g*) = 0. By applying the e-expansion about d = 4 (where
d = 4 —p = 2 transverse dimensions is physical), the
anomalous dimension

Gp(i, i) (E k) =
E —~'k' —Ap j —~i (t)

for the (free) Schrodinger equation.

(4.15)

q = —y(g*) = —LI + 0.64 j+ O(e') —' at p = 2
12

(4.20)

was calculated. At k = 0, (8/Ba')P = 0, so LE(B/BE) +
y(g*) —1jI' = 0 or F (E)"+' leading to

So we may introduce a nonrelativistic Pomeron held
%(y,b) with a free Lagrangian

(TT.,(s) —(lns) &. (4.21)

z 8
zp(y, b) = —M —N —np'8%" B% + hpNM,

2 Bp'

Although the convergence properties of the e-expansion look
bad, the existence of a Axed point has probably been

(4.16) established

where we calculate the high y = lns contribution to the
elastic amplitude by the Mellin transform

A.{(s,t) s
27ri

e ~"Gp{' '&(E,k). (4.17)

Zr ————,'(igp)+++(++ ~) ——;(imp)(++8% 8%'

+%K+ K+)+ (4.18)

For n(0) = 1, the most singular multi-Pomeron corrections
~ to the pole arise from the triple Pomeron region. Hence we

introduce (+)' interactions" (Fig. 30)

In addition to this solution, a "weak coupling" solution
has been found (Brower and Ellis, 1974) by adding a deriva-
tive interaction i2,(Xp) j%+BN. BN + %(i%+ 8%+1. This solu-
tion has a fixed point at (g*,X*) = (0,0), and leads to con-
stant cross sections. Now let us discuss these solutions from
the standpoint of the decoupling theorems.

obvious shortcoming of the Gribov field theories
is the obvious lack of uniqueness, corresponding to the
choices for n( —k ) and Z;«One possibility is that only a
small subset of these theories obeys s-channel unitarity

and replace Go by the full renormalized Green's function
G(E,k) for k ~ 0, E~ 0 in Eq. (4.17).Of course calculating
G(E,k) is dificult, but in principle the high energy contribu-
tion of multi-Pomeron exchange consistent with all j-plane
unitarity discontinuities (near E k = 0) is reduced to a
Geld theoretical infrared problem.

Ap({s,t) =

n, m=l

'~ The anti-Hermitian form for the trilinear contributions to Z. ~ is
required by the same argument that Gribov (1965) gives for the nega-
tive sign for the Pomeron —Pomeron cut. FIG. 31. The contribution of the I'("» Green's functions to A,q(s, t).
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constraints. For example, we may consider the "weak
coupling" solution in this light.

Weak coupling

Unitarity in the s-channel may as in the decoupling
theorem demand a triple Pomeron zero. Indeed, the deriva-
tive term ii2X( ++8 O'. 8%'+ h. c.) introduced above gives
precisely a nonsense wrong signature zero

ki k, a(t) —n(l, ) —n(l, ) + 1

and in the weak coupling solution it is maintained in every
order of the perturbation expansion. Hence, the objection
that this solution is "unlikely" because it requires a con-
straint on g as a function of X can be answered by the claim
that unitarity in the s-channel forces this constraint. This
position mould. be Inore attractive if we could understand
the constraint as the result of an underlying symmetry on
the Lagrangian. "While we are aware of the gauge property
in the dual theory that gives rise to these zeros (see Ap-
pendix C), as yet such a gauge has not been formulated for
the Gribov Lagrangian.

Further consistency of the "weak coupling" scheme with
s-channel unitarity is still an open question. Although the
Froissart bound is guaranteed, the convicts with the elastic
couplings presented in Secs. II and III require a knowledge
of the renormalized couplings of the Pomeron and its cuts
to the lower Regge trajectories and to the external particles.
These extensions of the "weak coupling" solution have not
yet been computed, so we are not certain whether the con-
victs with s-channel unitarity will persist in the presence of
the infinite number of "soft" cuts.

Clearly, these new results in the Gribov theory are en-
couraging, although more work on calculational techniques
and extensions of the calculus to include multibody produc-
tion in the s-channel is needed. Further work may well
settle the question of whether the infrared properties of
multi-Pomeron cuts do indeed resolve all convicts with
s-channel unitarity.

G. Phenomenological implications

We have discussed briefly above several theoretical al-
ternatives. However, we would like to stress that diffractive
behavior will be highly constrained by the s-channel uni-
tarity conditions of Sec. II regardless of the precise nature
of the j-plane fine structure (i.e., powers of 1ns for s ~~).
As an illustration of this point we discuss briefly the partial
cross section 0-(") for the production of e clusters —see. Sec.
II.B.2, and Fig. 19.

It is easy to trace the origin of the behavior o'"' (lns)"
in Kq. (2.57). The multi-Regge phase space contributes
(lns)" ' through the 1, integrals, the integrals over the
cluster masses p; give (lns)", and the integrals over the l;
give (lns)"+' coming from the shrinkage of the diffraction
peak. s. In order to satisfy o-("' & 0-T", the growth of 0-("~

caused by increasing phase space must be compensated for
by the shrinkage of the diffraction peaks and/or zeroes in
the amplitude at ti = 0. Suppose now there is some com-
plicated fine structure in the j-plane leading to a o-'") which
behaves as f,2&' for large f, = 1ns, ,+i, behaves as p, ,"' for
large p,; = lnMi, and which has diffraction peaks shrinking
as (t, —u, —p;+i) "' and vanishing as t,'"" as l, —+ 0. It is
easy to see that we then have o.~"& (lns)", where

Sbong coup'lying

In the strong coupling scheme there is another rebuttal
for the challenge of arbitrariness. Except on a measure zero
subset of interaction Lagrangians 2; t, there will occur in
the iteration of the renormalization group the tri-linear term
i%'+N(N+ 4'+), which will control the critical behavior of
the theory. " A common "folk theorem" of critical phe-
nomena is that the exponents (e.g. , g) are independent of all
but the most basic features of the theory, e.g. , symmetries,
dimensions of space, etc. (see Kadanoff, 1971;White, 1974;
Brower et al. , 1975). If this be the case, some features of the
"strong coupling" solution are very model independent.

This raises the vital question: Is "strong coupling" con-
sistent with s-channel unitarity? So far even the Froissart
bound (q & 2) has not been proven to hold for "strong
coupling. "However, Migdal, Polykov, and Ter-Martirosyan
(1974b) have given plausible extensions of the "strong
coupling" theory to production amplitudes (inclusive and
exclusive) and checked the s-channel sum rules of this paper.
It is encouraging that in their calculations to first order in
e = 4 —d, they And no violation of the unitarity sum rules.
Although this is far from a proof of consistency, an inter-
esting screening mechanism is at work which may restore
s-channel unitarity.

~2 In analogy with asymptotically free non-Abelian gauge theories, the
special scaling properties are then a result of a special symmetry prop-
erty.

"An exception would be 2;„t,with only even power of +, but this has
a special symmetry 4' —+ —%.

(4.22)

for e & 2. The constraint on the parameters g, , q, , P;, and
v, which follows from (2.49) is very general and thus rather
obscure. As a first illustration, suppose there is a weak
generalized factorization and the parameters are inde-
pendent of i and e. Then we have

(n —1)[2g+ g+ 2 —v(X+ 1)j+ g & g

which for n & 2 becomes

2g+ g+ 2 & v(X+ 1).

(4.23)

(4.24)

'4 Consistency for the single triple Pomeron contribution o(') assum-
ing g = 0 has also been studied by Sivers (1973).

Thus if g and g are not negative a certain amount of shrink-
age and/or vanishing at t, = 0 is required. '4 For the weak
coupling solution p = p = 0, the inequality is satisfied
with shrinkage (v = 1) and a linear zero in the triple
Pomeron P = 1). For the strong coupling scheme, q = g =
e/12 and v = 1+ «/24 but the effective triple Pomeron
vanishes just so as to satisfy the inequality. Indeed this
iteration is eBectively the renormalization of the propagator
that gives rise to the anomalous dimension q. As a second
i1lustration, suppose. O.To~ ln's and

d o/dydt (1 p) "p"f(x t)

with ~ = 2 so that d'o/dpdt 1n's for fixed x and

Jd f(xl, t) 1/(1 —u)'
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FIG. 32. Pion pole contribution to inclu-
sive sum rule.

a T,g
—4m' X(1 —e lns)—

X'(1 —2e ins)

4(a + n' 1ns)

so that the shrinkage is ln~s as for the elastic cross section.
Then 0-&') ( O.T ~ requires that g = 1. For q = 1, the cross
section for single diffractive dissociation for fixed M' goes
like lns. This is the same behavior given by Cheng and
Wu (1971). On the other hand, Caneschi and Schwimmer
(1972a,b) found Ij = —1 in a specific self-consistent model
for absorptive CGects on the model (Finkelstein and Zacha-
riasen, 1971).

%e would also like to stress that the constraints on di8rac-
tive processes have direct bearing on the validity of the
Chew —I ow extrapolation. Thus if the pion pole does give
a good approximation in production amplitudes, the exis-
tence of multiple pion exchange and diffractive pion-
ploll scattcllIlg 1Illphcs multiple diff 1actlvc behavior (c.g.,
multiple Pomeron exchange) in the production amplitudes.
One is then directly led to the Finkelstein —Kajantie de-
coupling problem. The same reasoning applies to the in-
clusive sum rules; thus the pion pole gives a contribution of
the form Fig. 32 to the sum rule (2.34) or (2.36) 3' There-
fore, as we have mentioned in the discussion of alternative
(ii) above, circumvention of the decoupling theorems may
force us to abandon simple properties like the Chew —I ow
extrapolation for multiparticle amplitudes.

The discussion above has been essentially devoted to
theoretical questions about the asymptotic behavior of
diHractive scattering. The alternatives we have discussed
are distinguished by the detailed nature of the Pomeron
one structures, i.e., powers of lns as s~~. However, for
lns large but 6nite these alternatives may be dificult to
distinguish experimentally. For example, we can expand
the eikonal form (4.12) in e lns and (n'/u) lns to get

tions to 0.T,& considerably. Thus the triple Porneron con-
tribution (2.8) is growing like lns. This growth is a result
of the increasing phase space for the process and is inde-
pendent of the detailed behavior of the amplitude, including
whether or not fI'I*I (0) vanishes Lonly the domination of the
shrinkage factor causes ( = 0 to dominate in (2.18)j.
Similarly the cross sections for multiple diffractive dissocia-
tion 0(") grow like lns'&" '). A very interesting phenomeno-
logy has grown up based on the identification of the lns
triple Pomeron term with the apparent growth of O.T & seen
at ISR (Amati et al. , 1973; Finkelstein, 1973; Capella et al. ,
1973; Kronenfeld, 1973).

Thus we conclude by concurring with the point of view
which is becoming more and more popular: because of the
smallness of multiple-diBractive dissociation, the detailed
nature of the Pomeron may be unimportant for understand-
ing phenomenology at present energies. The same pheno-
menology can result from e ( 0, . e = 0, or e & 0.

Thus for phenomenological purposes for the present non-
asymptotic energies, an expansion in powers of (1ns) ' about
a.T,i = const (i.e., a Laurent expansion about j = 1) may
be more appropriate than an expansion about O.r,~(~). If
the relative strengths of the terms in such an expansion are
adequately constrained by unitarity, a predictive scheme
might evolve without a commitment on the exact singularity
structure in the j-plane.
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APPENDIX A. STRUCTURE OF THE TRIPLE
REGGE VERTEX

In this appendix we discuss in more detail the conditions
imposed on the triple Regge vertices by the Schwartz in-
equalities discussed in Sec. II.A.2. In order to do this we
need to study the analytic structure of the triple Regge
vertex in some detail.

(Xn'
-4Ir9 1+I + ——e Il +

&4a 2a )
(4.25)

Since s ' 1 —e lns, and L1+ (n'/a) lnsj '~ 1 —(n'/a) lns
the precise nature of the j-plane singularity may not be
phenomenologically important. For example, temporarily
rising cross sections can be obtained for 6 Q 0' E. = 0, and.
e & 0.

Indeed the recent data from ISR seems to indicate that
we are in such a nonasymptotic regime. For example,
n'/a~ IIO and lns~ 8. Therefore the s-channel unitarity
constraints may not yet be coming into force in the asymp-
totic form in which we have discussed them. Since (a'/a) lns
is not large, shrinkage of the di6raction peak is not yet play-
ing a major role. This changes the role of various contribu-

'5 However, the pion pole does not necessarily give a lower bound for
f~~p. As we noted in Sec. III.B, the contribution of an exchange degen-
erate trajectory, Eq. (3.25), can cancel against it.

FIG. 33. Variables for the triple Regge vertex. The lines can represent
groups of particles.

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975



R. C. Brower and J. H. Weis: Pomeron decoupling theorems

The triple Regge vertex is a function of the three momen-
tum transfers and two Toiler angles. It is convenient to use
the three variables q12, F23, q31 instead of the Toiler angles,
since the former are simply related to the invariants:

s,

br' ~

81 ig

Sip

sisg'
(Ai)

where the invariants are defined in Fig. 33 and the three
q;, are related by the constraint

O312 + O323 + O381

The triple Rage contribution to a signp, tured amplitude
which has only right-hand cuts in the s; and s,, '3 is then
given by

LI'( —n;)(—s;) '1V(t, ,ts, t8;3t12,3i28,r111). (A2)

s„J

VI25
i=1,2,3 I'IG. 34. Possible simultaneous discontinuities in asymptotic invari-

ants in the triple Regge limit.

V2, ——LI'{—nl)F( —n2)P( —ns)j ' Q I'( —n2+ i + k)
'i, j,k~

X r (—n8 +j + k)I'( —nl + n2 + n8 —i —j —2k)

The absence of simultaneous discontinuities in overlap-
ping invariants in the physical region (Weis, 1972) allows

residues be polynomials gives joeTar and Weis, 191'1
only the configurations of simultaneous discontinuities in
the s; and s;, shown in Fig. 34. The vertex V must have
singularities in the g;, to satisfy this requirement. The
nature of these singularities is easily obtained by requiring
consistency of Eq. (A2) and. Fig. 34 (DeTar and Weis, 1971).

The decoupling results of Sec. II apply to a discontinuity
of the vertex across one of the Reggeons. The discontinuity
across n1 is the discontinuity in the energy s1 of that Reg-
geon. From Fig. 34 we see that only the V» contribution
has such a discontinuity. Its contribution is

sin2r (nl —n2 —n3)

slngl A1
F12 'y31 'V23.

This is to be inserted in an amplitude with the full Regge
propagators (2F(—u2)s2 ' and )3I'(—u3)s3 ' and the cut
prOpagapatOr $2r/P(ul + 1)1S1 '.

I et us now discuss the structure of V» in more detail.
Only V23 can contribute when both a2 and a3 are positive
integers, since only it gives a residue which is a polynomial.
The further poles for a& integral can only be accommodated
by singularities at n1 —u2 —a3 integral. Requiring that the

'~ In order to analyze the structure of the vertex we must assuage that
such signatured amplitudes exist. The contribution to the full ampli-
tude is then a sum of the eight terms obtained by including terms with
the pair of lines at each external vertex interchanged. Here we neglect
the further signatures associated with the Toiler angles which must be
included to obtain the most general vertex; these will not acct the con-
clusions below. A complete discussion of signature is given for the sim-
pler case of the double Regge vertex in. Sec. III.B.:

V(t13t21t8 j '9123'f283'f31)

= ( '912) ( rt81) V28(t13t21t3 j 3i1233i283'931)

+ ( 3i23) ( '912) V81(t13t23t8 j 3l12)'g2833t31)

+ ( '981) ( '928) V12(tl3t23t3 j 3ll23'f233'981)

+ (—3il )k(al+as a3) ( rt )i(a3+a3—a1)( ~ )i'(a3+al—a3)

X V12 (tl&t23t8 j 3i 123'f231'g 81)1 (A3)

where the V;; and V,;~ do not have such singularities in the
lU'

J3'rtsrrt12)
2)» 'rt» '

I l
dent*'32(t13t23t3)3

jfjIPI rt23

where p(tl, ts, t8) is regular for t, below threshold. 82 '3

(AS)

%e now consider the implications of the decoupling
theorems. Suppose all three trajectories are Pomerons, and
tl, t2,t3~ 0. From Eq. (A1) we see that 3)» and rt81 become
infinite so only the term i = j = k = 0 in (AS) remains.
The decoupling of the Pomeron vertex (A4) then gives

(ul u2 u3 + 1)Po,o, o (A6)

for tl ~ t, ~ t3 ~ 0. This will be satisfied as long as po, o, o is
finite at t1 = t2 ——t3 = 0. Neglecting Regge cuts, this is
just the requirement of no multiplicative fixed poles (DeTar
and Weis, 1971).The helicity of the Pomeron ui is n2+n3 = 2
so 0.1 = 1 is a nonsense wrong-signature point and the
vanishing can arise from the nonsense wrong-signat28re sero
at ul —u, —u3+ 1 = 0.

"Equations (A3) and (AS) have been explicitly verified in the ordin-
ary dual model by DeTar and Weis (1971) and the nonlinear dual
model by Sukhatme (1972).

p can have simple pole signularities in the n; if 6xed poles are pres-
ent. These do not affect our discussion. We have also assumed that the
trajectories have Toiler quantum number M = 0, which excludes (t;)&
singularities.

The Schwartz inequalities give the vanishing of Eq. (A4)
for the much more general situation where only one of the
(uncut) trajectories is a Pomeron at zero momentum trans-
fer, say t2 ——0, u2 = 1. Only terms in Eq. (AS) with i +
k & 1 contribute. Furthermore, from Eq. (A1) we have

rt 12 ———tt28 ——(t3 —tl)
—'

2 (tits) i coso318 —tl
'931 =
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FIG. 35. Single-particle ex-
change in a many-particle amp-
litude.

A vector exchange contribution will be an arbitrary linear
polynomial in the overlapping invariants

n n'

A = Q Q Cipr, ; Pn;,
I

where C,, is a function only of Pz, , Pl. , Pp„pz„, and Q'.
Choosing p, to be the momentum PI., from (83) we have

Pl b

Equating powers of the free variable q3~ then gives

PL' ' PB'

PL; PB

Q Pn;

Q. Pib

r(~, g1)r(—~, + j)
gi~gai"-i[(~a —~i —g)t3o,;,0r (ni —a3 + j + 1)r ( n,—)

where PB is a fixed one of the PB, This holds as long as

PiP W (Q+ Pn)', Po, 'W (Q+. Pn, .)'. (8

(tb tl)P1, j,o + jPO, j—1,1$
Similarly

A7

This condition will generally be satified by a relationship
between the P,,b. The nonsense wrong-signature zero clearly
is not sufFicient to satisfy Eq. (A7). In Appendix 8 we show
that the condition (A7) can be interpreted as the requirement
that the Pomeron couple like a conserved vector current at
t=o.

PI„'PB

PL'PB

Ps.,"Q

Pl. Q

P,2 g (Q —P,)2 P, 2 g (Q —P, )2

(87)

We remark that Eqs. (A6) and (A7) are satisfied in the
ordinary planar dual model. In this case all p;, b ——1. See
Appendix C for further discussion.

APPENDIX B. KINEMATICS FOR THE POMERON
AND CONSERVED VECTOR COUPLINGS

We first discuss the kinematics of vector particle exchange
in an arbitrary amplitude (Fig. 35) at high energy s and
t = Q' = 0. We group the mornenta to form the quasi-
four-particle amplitude for a + b —+ c + d. In the rest frame
of particle b

pa

Pb

pc

pd

(E-,0,p-),
(M b,0,0),
(E.,p. ,p». ),
(E~, —y., piib). (81)

For large s, one can show that t = Q' = (p —p, )' = 0
implies Ip&

= 0. Then

p. E.(1,0,1),

pb M b(1,0,0),
p. E.(1,0, 1),

Q = p, + p, (E + E,)(1,0, 1). (82)
Since M, ~ = (Q —p 2) = (p. + p, —p, )2 = ~p-
2Mb(Ea + E,), we have

+ E. = (Mg' —3Ib')/2Mb.

For Mq & M~ we thus have the important relation

p ~p, ~Q
for s~~, t = 0.
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(83)

In this appendix we show that many of the Pomeron de-
coupling theorems (weak theorems) can be interpreted as
the requirement that the Pomeron couple like a conserved
vector current at t = 0.

where PL is a fixed momentum in the set PL, Combining
Eqs. (86) and (87) we have the fundamental result

PI PBP.; P., = (Q P.;) (Q P.,)
(Q P~)(Q Pn)

Factorization of the vector exchange requires

C,, = C, (pr, „)C;(P&,).
Combining Eqs. (84), (89), and (810) we have

PL PR

(89)

(810)

A —[Q gC,P„.g[Q PC,P~,j.(811)
(Q P.)(Q P.)

Equation (811) shows that the vector exchange amplitude
has the remarkable property that the divergences of the
vertices VL& = ZC; PL, I" and VB& = ZC,'PB,.I" are what de-
termine the asymptotic behavior as s~~ at t = 0. Equa-
tion (811) holds as long as momenta P~ and Pz, can be
chosen with

PR W (Q + Pii)', PL W (Q PL)',

i.e., Q Pri W 0, Q P& W 0."This is always possible unless
the set L, or R consists of two equal mass particles. For
example, if L, consists of two equal mass particles we then
have

A —Cl„[Q.Q C;Pri,j
PR

of, if both consist of only two equal mass particles,

A —C'L,CB,PL, PB, (813)

From Eq. (811) or (812) we see that decoupling of a
vector exchange contribution in an inelastic process re-
quires that the couplings of the particle satisfy the current
conservation divergence condition

Q„Vn&(pn, ) = 0 for Q' = 0. (814)

"The conditions I'z,.' & (Q + Ez,.) are generally satisfied except for
isolated values of the invariants associated with the cluster. We can
stay away from-such points.
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Conversely, current conservation implies the vanishing of
the leading asymptotic term at t = 0 except for elastic
processes (813). Thus we recover the well-known property
of photon exchange, that only elastic cross sections have the
Coulomb singularity for large s.

s ~

—DISC

I'"IG. 36. Decoupling theorem from
Schwartz inequality.

Since the Pomeron has wrong signature at n = 1, it does
not correspond to a pure vector particle exchange and the
decoupling theorems cannot generally be translated into
divergence conditions (814). However, we can isolate
pieces of the Pomeron exchange amplitude which do have
the same structure as a simple vector particle exchange. For
example, in Sec. III.A. we showed that the Pomeron —Reg-
geon —particle vertex gave a contribution to the five-particle
amplitude

A5 —s sic " Pgp(j—ipr( eip)I'(—nji)V —p
+s ~sp p "$REPRI'( eip)I'(—eiR)VR—. (815)

The first term has the signature factor jp and thus only the
residue of the pole in I'( —eip)I'( —o.ji) Vp contributes. This
residue shares all the properties of a normal vector exchange
amplitude. Thus the vanishing of this part of the vertex
can be translated into a divergence condition like (814).

We recall that vanishing of Vp in Kq. (815) was obtained
from the Schwartz inequality constraints as well as from the
inclusive sum l ule constraints whel e the vanishing of V~
was also obtained. Quite generally the decoupling theorems
obtained from the Schwartz inequalities are equivalent to
divergence conditions. These theorems involve an amplitude
like that in Fig. 36. If we assume the existence of signatured
amplitudes with only right. -hand cuts in s and either right-
or left-hand cuts in the s, , we can write the full amplitude as

A P(—s) V(s,/s, P,"P,) + TpPS

X V(s,/se'4', P, P,), "
where @ = 0 if s, has a right-hand cut and p = —2n- if s;
has a left-hand cut. If we decompose V into apiece VJ which
has no singularities in s,/s and a remainder piece Vji, we
have

A p(ps Vp(si/s, P, P,) + ps fe"' "pVji(s;/s, P,"P,)
+rpVji(s~/se'i', P; P,)g. (817)

The Vp piece has the signature factor Pp so only the residue
of the pole at n = 1 contributes and V~ = 0 is equivalent
to the divergence condition (814). The Vji piece does not
have the structure of a vector particle exchange. The dis-
continuity of the amplitude in 3f (Fig. 36) by the Stein-
man relations should be a regular function of the s; and thus
be entirely in V&. Since the Schwartz inequalities require
only the vanishing of the discontinuity in M they are equiv-
alent to divergence conditions.

The Schwartz inequalities only require the vanishing of
the 3f' discontinuity for large M'. I et us discuss briefly,
however, the consequences of a Pomeron with conserved
vector couplings for all M'. By conserved vector coupling
we mean the vanishing of the Vp contribution in Eq. (817)
or, more generally, those contributions to Pomeron exchange
which are proportional to (p and thus pure spin one. The
fact that these requirements are equivalent to divergence
conditions immediately suggests a Pomeron —photon analogy.
Such an analogy has been proposed by Ravndal (1971).

Since he has developed it only for quasi-two-body reactions
(e.g., resonances in M') which clearly have only a Vp part,
his use of the analogy is permissable. Independent of the
validity of the Pomeron —photon analogy and the conse-
quent relations between electromagnetic and diffractive
processes, the conserved vector coupling of the Pomeron
implies the vanishing of the diffractive production of re-
sonances at t = 0. Furthermore, at t = 0 the Deck mecha-
nism would receive contributions only from the real parts
of the exchanges in the blob on the right of Fig. 36 (e.g. ,
the parts with left-hand cuts in the s,). Thus diffractive pro-
duction would take place only through real Deck-like
mechanisms and not resonance production at t = 0. LSee
discussion in Sec. IV, and Appendix C, Eq. (C19).j
APPENDIX C. GAUGE INVARIANT (POMERON}
COUPLINGS IN THE DUAL MODEL

I

We have maintained throughout that the decoupling
theorems fall into two classes: strong theorems that con-
vict with elastic couplings and weak theorems tha, t do not
convict with these couplings. In Sec. III we showed that the
analyticity requirements for Regge residues force this con-
Qict between strong theorems and elastic couplings. Here
we show that no conflict based oe aealy6city can be formu-
lated for weak theorems. To do this we construct an explicit
example of the Pomeron couplings which satisfies all weak
theorems with nonzero elastic couplings and proper analytic
properties.

Our example is provided by the dual resonance model
(Veneziano, 1972) with a trajectory at n(0) = 1 of positive
signature. The existential question of whether this is the
Pomeron is not relevant here, since we only wish to 6nd a
realization of the weak decoupling theorems. When and if
a dual model is found with an output (second order) diffrac-
tive pole at n(0) = 1 (present models give n "'(0) = 2!),
we may investigate its decoupling properties.

Our example is the standard dual beta function (Vene-
ziano, 1972) B~(pi, p2, . . . , p~) = B~(ci;,) for jV particles
with momenta p; and trajectories

's,;+,, (0)

in the channel s;; = (p, + p;+i+ . + p;) . The full
amplitude A~(p, , . . . , p~) with singularities in all channel
invariants is given by summing over the permutations of
the external hnes. (See Fig. 37.) B~ is given by

+ij Oiij+ eii+i,j i , eii,j i eii+—1,j—
dZ~dZgdZc

, any a, b, c. (C2)
Z~ ZQ ZQ Sg Sc ZQ
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Sl( I ep(t)

I 2 3 4 N-3 N-2

~N ~pi spa s "spN~
permutations
of (Pi) Xl XR X5 .~ ~ ~ XN 5

FIG. 37. E-particle amplitude AN(p;, . . . , pN) as a sum over permu-
tations of BN(p4, ps, . . . , pN) with poles in subenergies of adjacent lines.

These amplitudes are a remarkably simple laboratory for
multi-Regge theory compared to 43 theory where each
multi-Regge limit requires the summation over a dt'jJerelt
inhnite set of graphs. Here one N —3 dimensional integral
possesses all multi-Regge limits '.

FIG. 39. The J3~ con6guration for the calculation of the Regge limit.

= —hr, + 24x'q p, for q = pt + p, because of the trajectory
condition LrrU(0) = ns, (0)), also that as ~s~~~,
2~'p; p; ——s~'q; for q, 6xed (0 & p; ( 1).Taking n' = 1,
and p, = x2x3 ~ .x, ~ with the approximation

(1 —xrpt) "'(1 —pt) "'

It is well known that when all cr;, (0) = 1, the dual model
has strong gauges that remove all ghost states (Brower,
1972; Goddard and Thorn, 1972); however, earlier it was
realized that less stringent constraints give leading tra-
jectory gauge conditions (Brower and Weis, 1971). (This
fact was used by us in an attempt to introduce conserved
currents into the model. ) Taking the "Pomeron" to have
cr(0) = 1 and all other trajectories with like quantum
numbers to have the same intercepts n(0) ( 1, the state at
j = 1 in the Pomeron channel is a gauge vector particle.

For example consider the diffraction production amplitude
of Fig. 38, with crt, (0) = 4rp(0) = 1 and channels that differ
by the Pomeron (vacuum) line to have like intercepts

trt, (0) = cr(0s); j = 4, . . . , jul' —1. (C3)

We shall now show that this amplitude vanishes as
t» ——t~0. The B~ function in the configuration of Fig.
39 Lchoosing (z,zs,z,) = (zN „zN t,zN) = (1,~,0)) is

dxtdxs. dxN sI(xs, , xN s)

X Lx&
—~N4 —&(1 x )

—44P(4)—&(1 xtxs) —»4. . .

(1 —xt . . xN s) &4.N—2]

X Lxs ~N4 r(1 —xs) ~44 ~(1 —xsxs)»4

We symmetrize the amplitude in pr and p, to give positive
signature to the Pomeron trajectory a» = nz. By inserting
this into the left-hand side of the Schwartz inequality of
Kq. (2.24), one can see that all the weak decoupling theorems
involve discontinuities of this amplitude in M = s3,~ ~ for
lalge s = sy~.

s(1 —p;))

~ exp
3'~i pi

(1 —p') ""',
p*

we can do the y integral from 0 to ~ to get

BN ——(—s) ~&'&rI —np(t)] dxs . .dxN sI(xs, . . . , xN s)

xsx3 +.x2 + rt4—x2 1 —x2x3

p4 pp
Ol
41J

Pt PN

q pi'
q pN

(C7)

so that the residue at np(t) = 1(q' = 0) is a perfect differ-
ential in x,.

dx, Pxs—"~~'(1 —x,)-s~ »
d$2

XS' ' 'XN—3

[x '' '(1 —x) '' '
1 xs ' 'xN —3)

&( (1 —xsxs)
—'& ~4 . . (1 —xs xN s)-' "-'] (C6)

The factor (—s) & exhibits the right-hand cut in s. Adding
the term with pt ~ p, replaces (—s) ~p by (s) ~ (1 + e ' )
=g &gp. Now as we take tt, = t —+ 0 (np ~ 1) we pick out
the residue of the pole in P(—rr p), which is zero by a gauge
condition. From Appendix B (B5) we have the kinematic
condition as t = q2 ~ 0 that

(1 —xs . .xN s) 'N —s] (C4) (1 —x, x„,)—s'»-s] = 0 (Cs)

In the Regge limit we make the substitution xr ——1+ y/s
fOr S = SNt —+ —4C . We nOte that &4; ———&U+ (Ar, +As;)

This proves aO the weak decoupling theorems in our dual
constructs, since they all follow from taking a discon-
tinuity in M' as M'~~, withe~, ~ ~ ——nJ.

M

N-I

FIG. 38. Dual amplitude BN with cars(t) = 44p, and a nonzero discon-
tinuity in M'.

l

lP

0

x=0

(C9)
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Sp

4
as

2 4

FIG. 40. The three contributions to Pomeron ex-
change in As: A", A'~, and A"' have poles in (s2, t~),
(ss,444), and (444, ts), respectively. (Dualists use the
cross to indicate the twist operator that exchanges
4 and 5.)

U2

A A A

In this example the Pomeron does not completely de-
couple at t = 0, because there are contributions involving
the exchange of the p~ and p; (i = 3, . . . , X —1) lines in
the dual function. These have no poles in M', so they do not
contribute to discontinuity in M' (of the Schwartz in-
equality), but they do give contributions at t = 0. To see
this orle must take care in dehning the signature phase in
the physical limit Lsee Appendix 8, Eq. (816)J.

For X = (p„pq) in the limit s.s —+Qe we have

0

The factor [1+ r)sxs/(1 —xs) + . . ] gives cuts in the
g planes which can in general .give additional phases not
included in $~ = 1+ e ' ~. We considered the sum of two
terms which were real as s —+ (&0e) and u; = 2p,'p; —+

(&0e), respectively, so that all rj; = —u, /s are held positive
and 6xed throughout. However, if p)v and p), are inter-
changed, the functions would be real for s~ (&~) and
N, ~), ~ (&De), so we have real amplitudes for )); & 0 and
continue in the p plane to the physical region. Using the
+ie prescription gi~es rj —+

~
)) j &is for the two terms

L(1,2, . . .) and 1+-+ 2 interchanged ) so, as we show below in
the ease X = 5, phases from discontinuities in g contribute.
For these pieces we cannot use the gauge identities relating
to the wrong-signature pole in I'(—n~) at rr~ = 1.

It is instructive to consider the special cases LEqs. (2.27)—
(2.29)j that follow from the general theorem (C9) as they
are realized in the dual theory.

0 (C12)

for c and d on the trajectory n)r Pm, ' = mz' = —az(0)/n'j.
As discussed in the text this leads immediately to

0

Ri

I t (C13)

The importance of the discontinuity in these theorems may
be easily studied in this example. We consider Eq. (C6) for
1V = 5 (x = 1 —x2) symmetrized in pt and p2 (see Fig. 40
for invariants)

The 6rst decoupling theorem in the dual model was dis-
covered by Gordon (1971) for X = (Ps,P4, . . . ,PN 1) re-
placed by a single particle. LX + ~(1 X)jag»X—g(t4) —t(1 X)

—4( s)—& (C14)

0
=0

(C10)

For X replaced by a Reggeon

Here the restriction to nU(0) = ns, (0) forces c to lie on the
Pomeron trajectory (u'm, ' = —1, 1, 3, . . .).

where $~ ——(1+ e ' "&) Since g. = rjs = sq/s ) 0, the en-
tire phase comes from the factor P~. As t, —+ 0 (nz —+ 1), we
have

q Ps Mss —ts

g ps ss —Mt

and the integrand is an exact di8erential, so A" —+ 0.

In addition to the A" contribution above with poles in
s2 and t~, there is a second contribution with poles in s2 and N2

0 a;(t)

fpp; (O, O, t)

0

g L x+ &'(1 x)1&&x ~ ('+2)—&(1 —x)—»»(») —' (C15)

with t)' = —pt p4/p& ps ) 0 and the phase given entirely
by $~, and there is a third contribution with poles in 44, and
ts (see Fig. 40). In the third term,

we obtain decoupling for the case cr;(t) = a~(t). In Appendix
A, the general manner in which this is satished is thoroughly
d1scussed.

P t 'Ps/P t 'P4
sy —s

& 0 (C16)
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2 3 4

FIG. 41. The two contributions to the positive signature Pomeron,
A'" = B(PI,P2,P3,P:,P4) + B(P2,PI,P3 P P4), respectively.

so that care must be taken in defining the phase of Px+

term (see Fig. 41) coming from B(pi,ps, ps, ps, p4) is real for
s ) 0 and si & 0, so the phase by the +is prescription com-
ing from the cut in rt is s ~Lx —(g + is) 1 ~. But the piece
coming from 8(ps, pi, p, ,p„p4) is real for s ( 0 and si ) 0,
so the phase is e * rs r rid

'—
(rt —ie)j r, Consequently

the correct expression for the A'" term Pin contrast to that
given in the literature (Doren et al. , 1971)j is

As'" ——s i'I'( —np) gi dx(x —rl + te$ x '&'»

X (1 —x) "'"" '+ 2i sinn' e '

dxt;rl — j & —«' &-'(1 —*)— &"'&—' . (C17)

In the full expression for As ——As" + As'"+ As'", the last
integral in Eq. (C17) does not vanish as tt~ 0 (n& —+ 1).
Instead we get as t~ —+0,

2mlSn

nt +nu,

d
dx —Lx

—'(1 —x)—"j
ds

n's, ( n

n, & ni k n] (C18)

In the double Regge limit with n„(u,) —n's, —+~

gott ~ Ag

As(ni ——1) 2s-i(n'si) (n'ss) ' (C19)

For a nearby (pion) pole, this gives us a real Regge power
(s, ) and an exponentially damped (pion) pole exchange

' exp(n + n log( —n ))g, with rlo recurrences! The
diffra, ctive production is pure Deck mechanism.

Indeed in the dual model the Pomeron at t = 0 couples
to the elastic state and only the elastic state. This decoupling
from all the inelastic resonances is not required by the weak
theorems, but it is certainly an attractive possibility for a
gauge invariant Pomeron theory (Brower and leis, 1972;
Ravndal, 1971).In spite of the subtlety of gauge invariance
for the Pomeron, we still 6nd it an attractive hypothesis
that it plays sonze role in an n&(0) = 1 self-consistent theory.
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