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Graded Lie algebras have recently become a topic of interest in physics in the
context of "supersymmetries, " relating particles of differing statistics. In
mathematics, graded Lie algebras have been known for some time in the context
of deformation theory. In this paper we discuss basic properties of graded Lie
algebras and present various new constructs for producing examples of such
algebras. In addition we present a short survey of the role played by graded Lie
algebras in mathematics and review in some detail the recent applications of
supersymmetry in the physics of particles and fields.
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vances with the introduction of so-called "supergauges. '"
J. Wess and B. Zumino (1974a), following a similar algo-
rithm postulated in dual models (Neveu and Schwarz, 1971;

575 Ramond, 1971; Aharonov, Casher, and Susskind, 1971;
Gervais and Sakita, 1971), and simultaneously and inde-

575 pendently Volkov and Akulov (1973), introduced transfor-
mations relating states of different quantum statistics types.
Indeed, since 1965 there had been attempts (Bella, 1973;
Joseph, 1972; see references in these articles for previous
work) to describe the composition of the spectrum of hadron
states through a symmetry whose supermultiplets would
combine bosons and fermions. However, the symmetry

580 generator connecting a boson state to a fermion state (an
"odd" generator in our treatment) is itself a fermion, and
its local density can thus only involve an odd number of

5g4 fermion fields. The fields —canonical momenta relations (in
5g5 this case anticommutators) therefore do not provide the nec-

essary information required for Lie algebra commutators be-
tween two odd generators. There was thus no way of pursu-

588
ing this approach while using Lie algebras, and this effort

589 was discontinued.

The problem has now been resolved (Volkov and Akulov,
1973; Wess and Zumion, 1974a) through the introduction

595 of a different algebraic construct. As we shall show in this
article, the dual model "supergauge" and the new super-
symmetry in Minkowski space all involve graded Lie
algebras (GLA)'s, in which an anticommutator appears as
the relevant Lie product between two odd generators.599

60|
60& Graded Lie algebras have appeared in the mathematical

literature in another context, namely in deforma, tion theory.
602

INTRODUCTION

The application of invariance considerations to relativistic
quantum Geld theory has recently undergone further ad-
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The erst basic example of graded Lie algebras was pro-
vided by Nijenhuis (1955) and then by Frolicher and
Nijenhuis (1957) in their paper. The basic role that this
object plays in the theory of deformation of algebraic struc-
tures was discovered by Gerstenhaber (1963, 1964) in a
fundamental series of papers, while Spencer and collabo-
rators were developing applications to pseudogroup struc-

'More recently, the term "supersymmetry" has been adopted for
the space —time case with no local dependence in the parameters.
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tures on manifolds (Kodaira and Spencer, 1958, 1959, 1960,
1961; Spencer, 1962; Kodaira, Xirenberg, and Spencer,
1962).For two alternative views of this subject see Guillemin
and Sternberg (1966) and Kumpera and Spencer (1973).
The general role, of GLA in deformation theory was pre-
sented by Nijenhuis and Richardson (1964).

From a rather different point of view (motivated pri-
marily by problems of second quantization), the subject
was introduced by Berezin and Kac (1972), who discuss'
the analogs of the classical theorems relating Lie algebras
to Lie groups.

CLk)Ll7 C Lk+l

Cx,y7 = —(—1)' Cy, x7

(1 1)

(1.2)

k can range over some given Abelian group as indexing
group; however we shall principally be interested in cases
where the indexing set is either the group of integers, Z,
or the two e1ement group, Z2. In what follows we shall
adopt the convention that x will denote an element of Lg„
that y will denote an element of L~, and that s will denote
an element of I . We say that L is a graded Lie algebra
if we are given a bilinear map, denoted by C, 7, of L X L —+

L such that the following three conditions hold:

In this paper we discuss some of the basic properties of
graded Lie algebras and construct various examples. The
plan of the paper is as follows: In Sec. I we give the basic
definitions. In Sec. II, which is the heart of the paper, we
develop several different types of examples. Particularly
noteworthy is a construction which associates a graded Lie
algebra structure to a filtered associative algebra satisfying
certain conditions. Applied to the ring of differential oper-
ators on a manifold this construction yields the usual algebra
of Poisson brackets. But it applies equally well to something
like the Clifford algebra and is hence (via tensor product
constructions) likely to be related to the role of anticom-
mutators in quantum field theory. Also noteworthy is the
construction (via spinors) of an algebra intimately connected
with conformal algebra on Minkowski space. This is the
GLA of supersymmetry, introduced by Volkov and Akulov
and by Wess and Zumino.

In Sec. III we discuss some issues connected with the
notion of simplicity of a graded Lie algebra. In Sec. IV we
prove the analog of the Poincare —Birkhoff —Witt theorem
for graded Lie algebras. This asserts that the associated
graded algebra of the universal enveloping algebra of a
graded I ie algebra, U, is isomorphic to the tensor product
of the symmetric algebra in the even elements and the
exterior algebra in the odd elements. In Sec. V we give a
quick sketch of the use of graded Lie algebras in deforma-
tion theory. In Sec. VI we discuss the methods recently
applied by physicists in the construction of representations
of supersymmetry. In Sec. VII we review the physical
applications of supersymmetry and discuss the various model
theories to which that GLA has been applied. We discuss
the results in terms of improved renormalizability, inter-
related fields, masses, interactions and coupling strengths.
We also study the possible ways of explicit or spontaneous
supersymmetry breakdown. The Appendix provides physi-
cists with the essential definitions and results of Clifford
algebras and exterior (Grassman) algebras.

I. DEFINITIONS AND ELEMENTARY PROPERTIES

Let L = Q,LI, be a graded vector space; in other words
L is a vector space, and the most general element of L can
be written uniquely as a finite sum of its components, each
component lying in one of the vector spaces LI,.' The index

~ Formula 2.3 of Berezin and Kac (1970} de6nes a particular GLA,
somewhat similar to the GLA introduced in P 2 of Nijenhuis and
Richardson (1964).' Here the vector spaces are over any 6eld of characteristic different
from two and the L&'s will usually be 6nite dimensional. In much of
what follows the LI,'s can be modules over a commutative ring whose
characteristic is diferent from two.

Cx, Cy, s77 = CCx,y7,z7+ (—1)"Cy,Cx,z77 (13)
Here the meaning of the factor (—1)" is clear for either Z
or Z2 as indexing group. For more general indexing group
we take it to denote some character of the group with values
in the group f &1}which must be given as an additional
piece of the structure. Condition (1.1) simply says that the
bracket rn.ultiplication is consistent with the grading. Con-
dition (1.2) is the graded version of anticommutativity.
Notice that for odd elements it says that "multiplication" is
commutative, i.e., the bracket then represents an anticom-
mutator. These are thus our "supergauge" generators. We
see that the even elements are Lie algebra generators (i.e. ,
physically, they connect states of similar statistics).

Condition (1.3) is the graded version of Jacobi s identity.
For even x it asserts that left multiplication by x is a deriva-
tion of the bracket multiplication, while for odd x it asserts
that left multiplication by x is an antiderivation.

Again notice that Lo is a Lie algebra in the old fashioned
sense and so is the direct sum of, all the even Lg, 's.

We can construct graded Lie algebras as follows: Let
V = SU be a graded vector space. (For instance, to
illustrate a physical application, we might let V be the
relevant piece of the Hilbert space of states, graded accord-
ing to fermion number. ) We let Endj, (V) consist of those
linear maps, x, of V into itself such that xV Q V +i.
CThus an x Q Endj, (V) is given by a whole string of linear
maps, one from each V to V +I„. in general Endh, . (V) will
thus be infinite dimensional even though the individual
V„'s, and hence Hom (U, V +I,), are finite dimensional. ) It
is clear that if x Q Endi (V) and y Q End~ (V) then the
composition xy lies in End&~& (V). We delne a graded Lie
algebra structure on End (V) = Q3Endz (V) by setting

Cx,y7 = x y —(—1)~'y x. (1.5)

It is obvious that conditions (1.1) and (1.2) are satisfied and
a straightforward verification shows that condition (1.3) is

%e shall call an operator D: L —+ L such that D: L —&

L„+p and

D(yz) = (Dy)s+ (—1) 'yDz

a (graded) derivation of degree k. This notion makes sense
for any graded algebra 2, that is for any graded vector
space 2 = A with a bilinear map 2 &( A —+2 such that
A „&& A —+ A +„. (No associativity or commutativity con-
dition on A is assumed. )

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975



Corwin, Ne'eman, and Sternberg: Graded Lie algebras in mathematics and physics 575

satisfied. Similarly, if A = Q)A„ is any graded associative
algebra the above bracket gives a graded Lie algebra called
the commutator algebra of A. If A is any graded algebra,
associative or not, it is easy to check that the set of graded
derivations of A is a Lie subalgebra, Der A, of End A.

It is clear how to define a homomorphism from one graded
Lie algebra to another, where they are both indexed by the
same group. We require the map to be gradation preserving
as well as being a homomorphism of the bracket structure.
By a represer?tat?0?? of a graded Lie algebra, L, on a graded
vector space V we shall mean a homornorphism of I into the
graded Lie algebra End (V).

II. EXAMPLES

A. The algebra End (V) for V two dimensional-
the Fermi-Dirac anticommutator

Suppose that V = Vo V~ where both Vo and V~ are
one-dimensional vector spaces over the complex numbers.
Then

End V = I, g L,o Q L,g.

In other words, the algebra Z graded with I, one dimensional
for i = —1, 1, two dimensional for i = 0, and all other I.,
trivial. We can define it using real 2 )& 2 matrices,

&&or n, v. We can consider those elements of End (V) which
are graded derivations, i.e., which. satisfy

x(or ~ v) = (xor) ~ v+ (—1)'"or ~ xv, or & V„. (2.4)

The set of x satisfying the above equations for various
k define a graded Lie subalgebra of End (V) which we de-
note by Der (V). If W is finite dimensional then V is finite
dimensional and its terms of positive degree are generated
by V& = S'~. Thus every derivation is determined by its
action on Vi and we can identify Derk (U) with

Hom (W*,A~+'W*) = A~+'W" W. (2 5)

With this identi6cation, the action of an element cv u on
a form will be written as (or I3 u) n v, where the symbol
A means the combination of first interior product by I
(i.e., contraction of the antisymmetric covariant tensor v

with the contravariant vector u) followed by exterior multi-
plication by co. It is easy to check that if co I = x and
&v=y, then

Lx,y] = (or u) A —
3 ?r —(—1)"(3 ?r) A or (p u.

(2 6)

This de6nes the Frolicher —Nijenhuis algebra for the case
where 8' is finite dimensional. In general it is convenient
to take Lr, to consist of all alternating (k+ 1) multilinear
maps of Wx xW —+ W. (For finite dimensional W this
definition of Lr, coincides with A~+'W* W.) We then define

& = 2 (0 + 1) y = k(0 —&&v)

the indexing given by the eigenvalues of h:
x A y(wo, . . . ,wy+?)

= Zsgn(e)y(e(w„, . . . ,w, „),w„„.. . ,w„,), (2.7)

eELO, xELi, yEL i

with the bracket relations

where the sum is taken over all permutations, e, of 0, . . . ,
k+ / with the first k+ 1 and last i elements in increasing
order. Then the Lie bracket is again defined as

L&,x] =* Lk,y] = —y, Lx,y]= e, Lx,y] = * y —(—1)"y x. (2.8)
all other brackets vanishing. It is easy to check the graded
version of the Jacobi identity, etc.

[b,b*]+. = 1, Lb, b]~ = 0, Lb*,b*]~ = 0,
P"»*]-= b"r C&rb]- = —b;

thus

(2.2)

One well-known physical realization of this scheme is the
Jordan —Wigner quantization (1928; see also Fock, 1932)
scheme (which incorporates the Pauli principle) for Fermi—
Dirac annihilation and creation operators (we restrict our-
selves to one state)

The fact that this defines a Lie algebra multiplication now
follows from the finite dimensional case since we need verify
identities involving only finitely many vectors at a time.
See Sec. V for a description of the role played by this ex-
arnple and the following in the theory of deformations of
mathematical structures.

C. Cohomology algebras

Suppose we start with a graded Lie algebra, L,, together
with a differential operator, d, of degree e. Thus d maps LI,
into L,I,+„ for each 0 and satisfies the identities

2V h, b* x, b y, e= 1. (2 3)
dLx37 = Ldx, y]+ (—1)'"Lx,d3] (2 9)

Note that in this example, the graded vector space V = Vg,

is the Fermi Fock space, with Vo for the vacuum, V» for
the one fermion state. Indeed, the odd generators b, b* con-
nect a boson (the vacuum) with a fermion.

B. The Frolicher-Nijenhuis algebra of a
vector space

Let lV be a vector space and set V = A. 8'*, the exterior
algebra (see Appendix) over W*, so that V = A W*.
Notice that V is not only a graded vector space but is
actually a graded algebra which is graded-commutative in
the sense that if or Q V and v Q V„ tlleil v A = or (—1)

d' = 0. (2.10)

We define Zr, Q Lr, to consist of those x satisfying dx = 0
and observe that the 6rst identity on d implies that the ZA,

fit together form a subalgebra, Z, of L. We let BI, consist
of those x of the form x = dm and observe that the identities
imply that Br, Q Lr, and that the B's fit together to form
an ideal, B, of Z. Thus the quotient spaces Hr, (L) = Zr,jBr,
fit together to form a graded Lie algebra, H(L), called the
cohomology algebra of L (relative to the operator, d). For
example, suppose we take L, to be the Frolicher —Nijenhius
algebra (example Sec. II.B) of a vector space, W, and let
s be an element of Li Li.e., Deri(V)] which satisfies the
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condition Ls,s) = 0. Then left multiplication by s defines breakdown of the symmetry by a Hamiltonian which obeys
a differential operator on L. SU(3), and is assumed to behave like an octet component.

Since s is in L,~ it defines an antisymmetric bilinear map
of 8' && 8' —+ 8".The identity

Ls,s) = 0 (2.11)

s(s(wp~wi) &ws) + s(s(widows), wp)

+s(s(w„wp), wi) = 0. (2.13)

Thus s defines a standard Lie algebra structure on 8 . A
computation shows that, up to a shift in degree, II(L)
coincides with the usual cohomology of 8', considered as a
Lie algebra under the multiplication defined by s (Chevalley
and Eilenberg, 1948).

D. The (f,d) algebra of Gell-Mann, Nlichel,
and Radicati

This is an algebra graded by Z, , where, as vector spaces,
both I.o and Lj are taken to be the space of e by n matrices
with trace zero. The bracket of an element of Lo with an
element of either I 0 or I.& is given by the usual commutator
of matrices while the bracket of two elements of I.~ is given
by the "traceless anticommutator, " i.e.,

jx,y) = xy+ yx —(2/n) (Tr xy)I (2.14)

for x and y both in L,&, where I is the identity matrix. This
construction is valid for matrices over any held. A slight
modification makes it also work for the case where we take
Lp and Li both to be su(n), the algebra of skew Hermitian
matrices. Here multiplication by an element of L,o is com-
mutation as before, while for two elements of L,~ we define

is exactly the classical Jacobi identity for this bilinear map,
as can be seen by applying (2.7), so that

Ls&s) = s A s(wp&wi&w2) —(—1)' 's n, s(wp, wi, w, ) (2.12)

yielding

Their variational equation is a quadratic equation which
can be formulated as follows: The (f,d) algebra has an
outer derivation of odd degree, /, where l = 0 on L,o and
l:L,~

—+ I.o sends a matrix x into the same matrix, but now
considered as an element of Io. Notice that / is equivariant
with respect to the action of su(n) (or sl(n)) on both Lp
and L,& so that the equation for a derivation is automatically
satisfied for any expression that involves at least one element
of Jo. If x and Y are elements of L,z we have

0 = ltx, y) = tlx, y) —Lx,ly) (2.16)

in view of the definitions of the bracket relation. Cabibbo's
(1968) original equation, rederived by Michel and Radicati
in their algebra, can be written as (see also Brout, 1967)

Lx,x) = tx. — (2.17)

It is interesting to remark that the (f,d) algebra is simple,
in the sense that it has no ideals, and yet it possesses an
outer derivation, l. This is in contrast to the situation of
classical Lie algebra theory. We shall return to this point
in Sec. IV.

We shall see, in Sec. II.H, that the (f,d) algebra can be
realized as a subalgebra of another graded Lie algebra
closely associated with the geometry of certain bounded
complex domains.

E. The di-spin algebra sl(2)
This algebra is Z graded with I., one dimensional for

i = —2, —1, 0, 1, 2, and all the other I.; trivial. The even
terms form the algebra sl(2) while the odd terins form the
two-dimensional representation of sl(2). To describe the
bracket relations explicitly we choose bases

Lx,y) = i(xy+ yx —(2/n)(Tr xy)I). (2.15)
eEL~, xELi, hCIp, yCL i, and f&L

A routine check shows that the axioms for a graded Lie
algebra are satisfied.

One can also notice that if V = IFj IF is a Z, graded
vector space then the "diagonal matrices" of the form

lpga 0) 0 x
~

in Endp V and in Endi (U)
&0 a) x 0

We assume that e, h, f form a standard basis for sl(2) so
that they satisfy the relations

Ph, e) = 2e, th, f) = 2f, (e,f) = —h Lbrackets
for sl(2)). (2.18)

As we want the bracket between two elements of I.~ to be
nontrivial, we can, by multiplying our original choice of
basis by a scalar, if necessary, arrange that

form a graded Lie subalgebra of End V. The scalar matrices x,x) = e. (2.19)

)cI Oq

&0 eii
form an ideal and the (f,d) algebra Lfor sl(l)) is the quotient
algebra.

Michel and Radicati (see Michel, 1969) have used the
(f,d) algebra extensively to study the orbits of SU(3) in the
octet space. Among the applications of this approach, one
can reproduce the variational equation for a spontaneous

4 We follow the convention of using capital letters for the group
LSL(n), SU(n), etc.7 and lower case characters for the algebra Lsl(n),
su(n), etc.7.

Lh, x) = x, Ph, y) = —y, t e,x) = 0, Lf,x) = y,

Le,y) = x, and (f,y) = 0. (2.20)

A computation using the axioms then shows that we must
have

Lx,y) = —(1/2)h and I y,y) = f. —(2.21)

The axioms for a graded Lie algebra then require that
Lh, x) = x, so that x is the maximal weight vector for the
two-dimensional representation of sl(2). This determines a
choice of y by setting Pf,x) = y and the fact that the odd
terms form a representation for sl(2) then yields the bracket
relations
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To summarize, the nonzero bracket relations are given by

Ch, e) = 2e, Ch x) = x

Ch, f) = 2—f, Chy) = —y,

Cef) = h, Cf, ) = y,

Cey) = x,

Cxx) =e,
Cy, y) = f—,

all other brackets among generators being zero. It is very
easy to find the irreducible finite dimensional (graded)
representations of this algebra. Indeed, any such representa-
tion is, in particular, a representation of sl(2). Let n = v

be a highest weight vector for this representation. Then
hxv = Ch, x)v + xhn = xv + xhe so that we must have
zv = 0. Similarly, we see that if v is of weight e, then ye
must be of weight e —1 and cannot vanish if e & 1, since

we must have 2y'v = —fv R. epeated arguments of this type
show that the irreducible representation of sl(2) spanned
by v„ together with the irreducible sl(2) representation
spanned by yv„ is invariant under the whole algebra. This
shows that any finite dimensional irreducible representation
of the di-spin algebra consists of the direct sum of a spin e/2
and a spin (e —1)/2 representation space for sl(2). We let
V„be the one-dimensional subspace spanned by ~, let V
be the space spanned by ye„, etc. so that V„,is spanned by
y'~ . Then V = Vk is the graded vector space of the repre-
sentation. According to the preferred convention for choice
of basis in each Vk one gets an explicit matrix representation.

%ith the basis written as e„, v„~, v„2, . . . , v „ the
matrices are:

0 0 0
0 0 0
n 0 0
0 n —1 0
0 0 n —1
0 0 0
0 0 0
0 0 0

0
0
0
0
0

n —2
0 e
0

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
—2 0 0
0 I —3 0

0
0

0 0 3 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 2
0 0 0 0 0

p ~ ~ ~ ~

0 0 0
0 0 0
2 0 0
0 3 0
~ 0 3
~ ~ ~ ~ 0

0 0
0

0

~ ~ ~ ~

0
0

n —2
0
0
0
0
0
0

~ ~ ~ ~

0
0

tg —2
0
0
0
0
0

~ ~ ~ ~

0 0 0
0 0 0

e —1 0 0
0 n —1 0
0 0 n
0 0 0
0 0 0

0 0
—e/2 0

0 1

1 0
t',n—0—

2
0 0
0 0

0 0 0

0 0
0 0

0 0
0 0
0 0

(~ —1) 0
2

0 0 0
2)

0
p ~ ~ ~

Q

0 1 0
0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

0 0
p p ~ ~ ~

0 0

0 0

0 0 ~ ~ ~ ~

0 ~ ~ ~ ~

0 0
0 0
1 0
0 —1
0 0
0 0
0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 ——' 0 0
0 0 1 0

0 0
0 0
0 0
0 0
0 0

0
0 1

0
~ ~ 0

~ e ~ ~ p

~ ~ ~ ~ 0
~ ~ I ~

~ 0
~ ~ 0
~ ~ 0

0 1 0 0 0 0
0 Q ia 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

~ ~ ~ 0 0 0
~ ~ ~ 0 P 0

~ ~ ~ 1 Q 0

Q ~ ~ ~

0 1

0 0

0 0

0

0
0

n —2
2
0

0 0 0

o 0
0 0
0 0

0 0
0 0

0 0
0 0

1 0
1

0

0 0
0 0
0 0

0 0

0 0

1 0
0 I/2
0 0

0 0 0 0

n 0 0 0 0
O m —1 O O O

O O —2 O O

0 0 0 e —3 0

0 0 —(n —3) 0
0 o o -(e —2)
0 0 0 0
0 0 0 0

Q

0
—(n—

0

0
0

1) 0

F. Dual models (strings) 1971; Aharonov, Casher, and Susskind, 1971; Gervais and
We now turn to the "supergauge" transformations of the Sakita, 1971). Numerous reviews (Schwarz, 1973; Vene-

so-called dual models (Neveu and Schwarz, 1971;Ramond, ziano, 1974; Rebbi, 1974) will assist readers who happen to
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Both are produced by the same algebraic relations, with
"ordinary" Lie generators L (m = 0, & 1, ~2, . . .) and
what we now recognize as "odd" generators of a graded
Lie algebra: G„(r = ~2i, ~pp, . . .) in the Neveu —Schwarz
model, and Ii in the Ramond model. The Neveu —Schwarz
model is given by the algebra:

[L,L„]= (m —m)L +„+ pid(m' —m)b

[I. ,G,] = (—,'m —r)G

{G„G,} = 2L„+,+ pd(r2 —4)„,

(2.22)

d is the dimension of the space —time in which we embed
the string. One hopes d = 4, though this result depends at
present upon the introduction of internal degrees of freedom;
the actual result is d = 10 for convergence to be ensured.

We see that the grading E of the Neveu —Schwarz
X = SÃ algebra is a Z grading, with

L Q X2, G, g 1V2,.

be unfamiliar with this relatively recent development of
dispersion theory, following Veneziano's (1968) discovery
of a crossing-symmetric relativistic strong-interaction ampli-
tude satisfying in addition a bootstrap condition in the
form of finite energy sum rules, FESR, (Dolen, Horn, and
Schmidt, 1967; Igi and Matsuda, 1967; Logunov, Soloviev,
and Tavkhelidze, 1967) and possessing appropriate Regge
asymptotic behavior. The attempt to unitarize Veneziano's
representation has yielded systems which now tend to be
regarded as infinite-component field theories, rather than
as on-mass shell amplitudes. Nambu, Nielsen, Susskind,
and others have replaced the factorized Veneziano model by
a quantized one-space dimensional relativistic string moving
in Minkowski space —time. The quantum excitations of the
string reproduce the Veneziano spectrum; the gauge con-
ditions (including the "supergauge") are necessary for the
removal of ghost states. The next development adjoined a
continuous-spin structure to the linear string, yielding two
related models:

(a) The Neveu —Schwarz (1971) model, yielding a spec-
trum of bosons.

(b) The Ramond model (1971),with a fermion spectrum.

struction. For o(2,3) we construct a graded Lie algebra
whose even components, L, 2, L,p, L~, fit together to form the
algebra of infinitesimal conformal transformations on R'
endowed with the indefinite metric of signature + ——.
We consider R' to be the space of real symmetric matrices

(2.24)

so that det X = ac —b' is a quadratic form of signature
(+ ——), with coordinates such as ( (a+ c)/2, (a —c)/2,
b}.We let the group GL(2, R) act on the space of symmetric
matrices by letting the nonsingular matrix A take the
symmetric matrix

AXA' (2.25)

We let I. 2 denote the space of such X with this action.
Similarly, we let L,2 denote the space of symmetric matrices
under the action

W ~A' 'WA " (2.26)

On I. 2 the matrix A multiplies det X by det A' wh'ale on
L2 the matrix A multiplies det lV by det A . In particular,
the group SL(2,R) acts as isometrics on both spaces. If we
«gard o(2,3) as infinitestimal conformal transformations,
then L ~ is the three-dimensional subalgebra of translations
on R' while L2 consists of the infinitesimal proper conformal
transformations.

We let Lp ——gl(2, R) with GL(2, R) acting via the adjoint
representation, i.e., sending B Q gl(2, R) into &&& '. We
jet L ~ be the space of column two vectors with the action
x ~Ax and we let Li denote the space of row two vectors
with the action s —+sA '. Finally, we define bracket re-
lations as follows (a more succinct but abstract description
of these bracket relations will be given at the end of this
subsection):

[L 2,L p]=0,
[L p, L i]=0,
[x,y] = x y'+ y x', for x,y E I- i

[a,X] = aX+ Xa', a Q Lp, X g L p—
The L are thus even, the G„odd. All N are one dimen-
sional, except for Ep which contains Lp and the identity
operator. The index a is given by the commutator

[—2L„x.]= ax.. (2.23)

L CR'
F Q R'.

The Ramond model has only Z2 grading. The algebra is
similar, except that G„ is replaced by Ii, m = 0,
~2, . . . , i.e., the same values as for the even generators.
We are thus led to use the grading

R= R, a=0, 1

C X = GX~

[a,b] = ab —ba,

[a,s7 = —sa,

[a,W] = —a'W —Wa

[xs7= xgs,
[X,s] = —Xs

[X,W] = —XW,
[sw]= s' w+ w' s

[x,W] = —(Wx)',

[Li,L2] = 0,

[L2,L27 = 0.

aELp, x+L i

a,bQ Lp

a E Lp, s E Li
aELp, WQL2
x&L i, sELi
XCL p, sELi

s~'io Q Li
xEL i, WCL2

G. The conformal algebra o(2,3), the symplectlc
and the Poisson algebras

I-et us start with a specific construction for the conformal
algebra o(2,3). Later on we shall give a more general con-

All remaining brackets are determined by the requirement
of commutativity or anticommutativity, i.e., by condition
(1.3). Notice that all brackets are equivariant with respect
to the action of GL(2,R) and that the bracket (on the left)
by an element of Lp is just the infinitesimal version of the
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action of GL(2,R). This immediately implies that the Jacobi
identity automatically hoMs for any expression involving
at least one a Q Lo, Jacobi s identity is trivially verified
for terms of all strictly negative or all strictly positive degree
since all expressions vanish. Similarly for an expression
involving two elements of L & and one element of L~ or two
elements of L2 and one element of I ~. We check the re-
maining cases. In what follows X, V will denote elements of
L 2, x, yof L, g, s, zvof I.g, andZ, lVof L2. Then

0 = [W,[X,V))
and

[CW,X),V) + [X,[W, Y)) = XWV+ Vwx
—C(VWX+ XWV)] = 0.

A similar computation shows that

0 = [X,[W,Z]] = C[x,w],Z]+ [W,[X,Z]].
We have

Cx,[x,w)) = —[X,(Wx)]',
= XlVx

while

0
c

e
0
0 0
0 —g'

where b = b' and c = c' are symmetric matrices and a is an
arbitrary e & e matrix. We then let L~ and L ~ consist
of matrices of the form

X, +P;, —X; —X; (all, i,j), and X, —X, (i&j). This
shows that the structure is of type C~, i.e., we are dealing
with the symplectic algebra. (Of course for / = 2 we have
82 ——C2 and the conformal algebra in three dimensions is
an orthogonal algebra in five dimensions which is isomorphic
(if over C) to the symplectic algebra in four dimensions. )
We can actually 6nd a representation of the entire graded
algebra which clearly exhibits the even part as the symplectic
algebra: Let Vi be an'u-dimensional vector space (which
we may identify as the space of row vectors) and V i its
dual space. We let Vo ——R (or, more generally the ground
field). We then consider W = V i g3 Vi as a symplectic
vector space and let sp(W) act on V = V—i S Vo 63 Vi by
acting trivally on Vo. Thus sp(W) is realized as all matrices
of the form

[[X,x),W) = 0 0 x 0,
0 0 x'
.0 0 0

0 0 0
s' 0 0
.0 —s 0

[x,[x,w]] = xwx
so that

[X,[x,W]] = {[X,x],W]+ [x,[X,W]].
A similar computation shows that

If we are interested only in the Z2 gradation we can consider
a similar construction for any symplectic vector space S'
(not necessarily decomposed as W = V i Q) Vi). Indeed
we can identify the Lie algebra sp(W) with the space of
symmetric tensors 5'(W), where the symmetric tensor
u[= —', (u v + ~ u)] acts as

CW, [s,x]]= [[W,s],X]+ [s,[w,x]]. (ui)(w) = u(i, w)+ i(u, w) (2.28)
The remaining cases are equally straightforward and are
left to the reader.

As we mentioned, the Lie algebra L 2 I 0 Q L2 can be
regarded as the algebra of infinitesimal conformal transfor-
mations; the subspace I=2 corresponds to in6nitesimal
translations, the subspace Lo to in6nitesimal linear con-
formal transformations and the subspace L2 corresponds to
the in6nitesimal "proper conf ormal transformations. "
Notice that under the action of SL(2) we can identify L 2

with I 2 by sending the matrix X into its "cofactor matrix, "
Xf, defined by the equation Xxr = (det X)I. However,
under the scalar matrices (acting as "scale transformations")
the spaces I, 2 and L2 behave as dual to one another. This
algebra and the di-spin algebra of example E represent
graded generalizations of conformal algebras in (+ ——)
and in one dimension, and will lead us to the Wess —Zumino
(1974a) algebra 'N, when we reach Minkowski space.

Notice that we can perform the same construction over
any field and for any e. Of course we no longer have the
interpretation of the algebra L, 2 Q Lo L2 as the con-
formal algebra. However, it is clear that L, 2 Q I.o L2 is
a simple Lie algebra and that the diagonal matrices (in Lo)
form a Cartan subalgebra. Thus the rank is n while the
dimension is e' + 2n(e + 1)/2 which determines the algebra
(if over C) as being of type Bi or Ci. If A is the diagnoal
matrix with entries (Xi, . . . , X„) then it is clear that the
roots of the algebra, when evaluated on A, are exactly

with (, ) denoting the symplectic form. If we let Li = W
and define the map of Li X Li —+ Lo by Cu, v) = un with
Lo = sp(W) acting in the usual fashion we obtain a Z2

graded Lie algebra. We can construct an analogous Zg

graded Lie algebra using multiplication and Poisson bracket
for functions defined on any symplectic manifold. (Souriau,
1970; Sternberg, 1964). Indeed, let X be a symplectic mani-
fold with symplectic form V7. Let Lo ——F(x) = Li be the
space of C" functions on X and set

Cf,g) = f g = ~(df dg), f, g «0 (2.29)

[8,q) = {8,q) = f 6 Lo, for 8 E Li. (2.31)

Jacobi's identity holds for any expression involving two or
three elements of Lo, since it reduces to the Jacobi identity
for Poisson brackets. The equation

Cf,[v,8)) = C[f,v) 8)+ Cv, [f,8))
just asserts that a Poisson bracket is a derivation for multi-
plication. Finally

C[8,y),X) = 8w(dy&dX) + yw(d8)dP) (2.32)

where '%(df, dg) is the value of the fundamental two form
VF (considered as a contravariant form via the identification
of TX with T*X given by 'VP) on df, dg. Similarly we set

[f,8] = (f,8'f = w(df, d8) E Li, f E Lo, 8 Q Li (2.30)

while
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clearly vanishes under cyclic sum and so we have verified
Jacobi's identity in all cases. Notice that if we take X to be
a vector space we can consider the subalgebra of all quad-
ratic functions in I p and all linear functions in L«. This
reduces to the algebra 8' spB' considered above. If we
are given a splitting lV = V «Q V«we may split the linear
functions up into p's and q's. We may then take L, 2 to
consist of functions quadratic in the p's, take L i to be the
functions linear in the p s, take Lo to consist of functions of
the form a;,p,q, , take Li to be functions linear in the q's
and L2 to consist of functions quadratic in the q's. In this
way we recover the original example. For e = 2 we get the
o(2,3) algebra —and for e = 1 we get the di-spin algebra.
Let us return to the case of the large Poisson bracket
algebra but consider the situation where the symplectic
manifold, X, is the cotangent bundle, T~M, of a manifold
M. In this case it makes invariant sense to say that a func-
tion is a polynomial in the cotangent direction, i.e., that the
function is a polynomial in the p's when expressed in terms
of q, p coordinates with q position coordinates coming from
M. Let L2A, denote the space of functions which are homo-
geneous polynomials of degree k+ 1 in the p's. Thus L 2

consists of functions independent of the p's, and Lo consists
of functions linear in the p s, etc. Similarly, let L i consist
of functions independent of the p's, let Li consist of functions
linear in the p's, and, generally, L2; i consist of functions
which are homogeneous polynomials of degree i in the p's.
As before, we define the bracket by an even degree element
to be the usual Poisson bracket while the bracket of two
odd elements is ordinary multiplication. It is now easy to
check that

Qadi,

,Li, is a Z graded Lie algebra. In Sec. II.J
we shall show how to associate a "Poisson" algebra with a
filtered associative algebra satisfying additional conditions.
These conditions are satisfied for the ring of differential
operators on a manifold and the associated graded Lie
algebra (having only even elements) is the usual Poisson
bracket algebra. These conditions are also satisfied by the
Clifford algebra. In Sec. II.K we show how to form the
tensor product of two such algebras to obtain a third algebra
of the same type. It turns out that the graded Poisson
algebra described above is the "Poisson algebra" associated
with the tensor product of the one-dimensional Clifford
algebra with the algebra of differential operators.

xo + x3 xi + ix2)X=
~

~

x, —zx, x, —x, &

(2.33)

H. The spin-conformal algebra W on Minkowski
space as introduced by V/ess and Zumino (1974a}

It is possible to modify the construction of the preceding
example to the case of the Lorentz metric on Minkowski
space. We let L 2 be the space of Hermitian 2 &( 2 matrices.
If

SL(2,C) as the double covering of the I.orentz group.
Notice that the unitary scalar matrices of the form e'&I

(@ real) act trivially, so that the representation of GL(2, C)
on the space of symmetric matrices is not faithful. We let
I 2 denote the space of Hermitian matrices with the action
as described above and let L2 denote the space of Hermitian
matrices with the action

We define, for X Q L 2 and W Q L,

LX,W) = XW (matrix multiplication)

LXiXg) = 0 X, QL g

pWi, W2) = 0 W; Q L2.

(2.36)

Lwi, w2) = wi w2 + wg wi.

The problem comes in defining Px,w). The only possible
nontrivial choice (up to a scalar factor) is to set Px,w)
= x w. But then Jacobi's identity requires

~«p~2 &y~«p~2 &y~2 )~«
= —(w2x) wi —(wix) w,

and this last expression is not bilinear in x and

w2+ w2 S wi.

The way out of this problem is to modify the action of
gl(2, C) on L, and Li by changing the action of the purely
imaginary scalar matrices, precisely the ones that gave no
effect on L 2 and L2. It is simplest to explain the construc-
tion in matrix form. We can write the most general element
of the sixteen-dimensional algebra L 2 Q I p L2 as

(
8

a ~ gf(2, C), f = b*, o = o*.

t This identifies the algebra as u (2,2), the linear transforma-
tions preserving the form xixs + x2x4.)

All operations are equivariant under the action of GL(2, C)
and we define the bracket by Lo ——gl(2, C) to be the in-
finitesimal version of this action. Then Jacobi's identity
automatically holds and it is easy to see that I. 2 Q3 Lp L2
is a sixteen-dimensional real Lie algebra which is the direct
sum of the fifteen-dimensional conformal algebra Lsu(2, 2)
or o(2,4)) plus a one-dimensional center consisting of the
imaginary scalar matrices. We might expect to procede as
before, letting L 1 consist of column vectors, x, with the
action x -~ Ax, i.e., spinors, and define

fx, ,x,) = x, g) x,*+x, g) xi*.

This does indeed define a symmetric bilinear map of L 1

)&L 1 —I=2 which is equivariant with respect to the action
of GL(2,C). Similarly we would define Li to consist of row
vectors w with the action w ~wA ' and the bracket

det X '= xp2 —x«2 —~22 —x32 (2.34)

det (AXA*) =
~
det A

~

' det X. (2.35)

is just the Minkowski length of X. If A Q GL(2,C) then
AXA* is again Hermitian and a 0

0
.c 0

b
0

J
0fc

We now enlarge this matrix by expanding it to a 5 )& 5
matrix

Thus GL(2, C) acts as. conformal linear transforrnations on
Minkowski space and SL(2,C) acts as Lorentz transforma-
tions; indeed this provides the standard realization of

where

= —2i(im Tra). (2.37)
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0 0 0
w 0 0 EL&

t 0 —vv* 0.
then

0 6 0 x0, 0 0
0 —a~. .0 0

0 ax —Xx
—x c 0

0 cx

0
x*
0.

0
X x*+ x*a*

0

and the matrix on the right is of the desired form since X

is purely imaginary and c = c*.Similarly

b 00, +w—u*. . 0

'a 0
0

(c 0

0 0
0 0

—m* 0.
bze* 0
0 706

a+*I*+X w* 0.
0

—x, + X

0
Fina, lly

0 x 0 0 y 0
vv 0 x~ z 0 y*

'.0 —m~ 0 . .0 —z~ 0 .
0 y 0 1 0

+ s 0 y* w 0.0. —z* 0 0 —m*

xs+yze 0
0 A

,—(w* s+ s* w) 0
where

0
x*
0.

xy*+y x*
0

Q Q Q

& = vey —x*s*+ sx —y*ze*
= —2iPIm Tr(x s+ y w) j.

If we let V = V y - Vo Vy, similarly to the symplectic
case, we have explicitly shown that I=2 Q L ~ Q Lo L»
63L2 is a graded I.ie subalgebra of End V and hence Jacobi's
identity automatically holds. Needless to say, the con-
struction works for u(e, e) for any value of n.

Thus the situation is quite similar to the symplectic case,
except for the imaginary part of the trace of a, which con-
tributes to the middle position. We add the matrices

0 x 0
0 0 x* QLg.0 0 0

be regarded as the "square root" of a geometric object
determining a null line. See Penrose (1967) for the details.
Sternberg and Wolf (1975) have extended the preceding
example by replacing the row and column vectors, x and m,
by rectangular matrices of size e by k and k by e. Then an
expression such as x w*+ w x*is replaced by the sum
of matrix products, xw*+ we*. Otherwise everything re-
mains the same except that the "center block" is now a
k by k skew Hermitian matrix (whi'ch is the generalization
to dimension k of a purely imaginary number) and the
entire (n + k) by (e + k) matrix is subject to the constraint
that its trace be zero. This suggests the possibility of using
the middle u(k) for the purpose of generating internal
symmetries of fermions. This graded Lie algebra of (e+ 0)
by (n+ k) matrices is closely connected to the ordinary
Lie algebra m (e, e + k). Indeed, the odd part of the graded
Lie algebra is a complex vector space, whose complex struc-
ture is invariant under the action of the even part, Lo.
Furthermore, there is a Hermitian form, II, from L, dd Q
L,dq —+L,~,„ C, such that ReH gives the graded I.ie
algebra bracket from L~~d & L„dd —+ I, , and the imag-
inary part makes L, , Q L odd into the ordinary Lie
algebra u(m, n + k). This phenomenon, as pointed out by
Sternberg and Wolf, is quite general: Suppose one has a
real Lie algebra, L. . . acting on a complex vector space,
L~dd, and an equivariant Hermitian form, II, from Lode
L, zd —+ L, ,„. (Equivariant means with respect to the
given action of L, , on L ~~ and the complex extension of
the adjoint action, to give an action of L, , on L, , C).
Then ReH defines a graded Lie algebra structure on L„,
QL,dz if and only if ImII defines an ordinary Lie algebra
structure on the same space. Sternberg and Wolf show that
the Lie algebra of the group of autornorphisms of any
bounded homogeneous domain in several complex variables
has such a structure. Thus a graded Lie algebra is associated
with each of the bounded domains. The spin conformal
algebra introduced above corresponds to the algebra of the
group of automorphisms of the space of all 4 X 5 matrices,
Z, satisfying I —ZZ* & 0.

In order to show the connection between the spin con-
formal algebra and the pseudounitary algebras more clearly,
Sternberg and Wolf (1975) have rewritten the spin con-
formal algebra in a slightly different form, which differs
from the form written above by multiplying appropriate
matrix entries by i or by e2~'i' and e ~'~'. We now briefly
rewrite the algebra in the form presented by Sternberg and
Wolf in order to exhibit an interesting relation with the
(f,d) algebra.

Getting back to the case e = 2, notice that the action of
&I Q gl(2, C) on L q sends x ~ -+ —3ix and on L~ sendsI~ 3iw in contrast to the expected action.

Notice also that the action of the full conforma1. algebra,
o(2,4), on L j B L~ is irreducible. Thus L ~ L~ provid. es
an irreducible eight-dimensional representation for the con-
formal algebra which is, therefore, the spin representation
of the conformal algebra. The elements of this spin repre-
sentation of o(2,4) were introduced, in a geometric context,
by Penrose (1967) who calls them "twistors. " Roughly
speaking, we can regard a Dirac spinor, x, as being the
"square root" of the null vector x x*. Similarly, a pair
(x,m) (satisfying the additional condition Re nV = 0) can

XJ+ JX*= 0. (2.38)

The algebra su(m, m + k) consists of those matrices satisfy-
ing (2.38) and, in addition, the condition tr X = 0. A direct

On complex m+ k + m space, C~+~+~ they introduce the
pseudo-Hermitian form given by the matrix

0 0 I '
J= 0 II, 0

iI 0 0.
where I is the m & m identitymatrix, and II, is the k X k
identity matrix. The algebra u(m, m+ k) consists of all
(m+ k+ m) && (m+ k+ m) matrices which infinitesi-
mally preserve the form, J, i.e., which satisfy the equation
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A E
X = —F* D*

C F

B
—E
—A~

where A is an arbitrary
m&&m complex matrix
E and F are arbitrary
complex matrices with
m rows and k columns

B and C are skew Her-
mitian m)& m matrices,
and

D is a skev Hermitian
k )& kmatrix.

computation shows that an I satisfying (2.38) must be of
the form

We can write u(m, m+ k) = g = g 2+ g 1+gp+ gi+ g2
where g 2 consists of matrices containing nonzero entries
in the C position, g & consists only of F s, go consists only
of A's and D's, g~ consists of E's and g2 of 8's. If we let
L, 5z, denote the usual Lie bracket, i.e., the commutator,
then

[gi)gg 5&'C gi+)' ~

We then define a graded Lie algebra structure on g by using
the commutator bracket for any expression involving at
least one even term, and, for odd terms, define the graded
I.ie algebra bracket of gogd X g&dd

—+ g, ,„by setting

F 2ic 0
0 Fg 0

0 E2—F2* 0
0 F2

0

0

E1+2 +E2~1
0

-+1+2 ++2~1

0
E1 F2+ E2 F1+F1 E2++2 E1

0

E1E2*+E2E1*
0

E1E2 +~2E1

0 8 0
B 0 8
.0 8 0.

B & u(n, )

then we get a graded subalgebra isomorphic to the (f,d)
algebra (again after factoring out the trace).

Returning to the spin conformal algebra, with m = 2,
k = 1, notice that the matrices

0 0 X
y(&) = 0 0 0, XE su(2).—X. 0 0

satisfy the Dirac conditions

Cv(X),b (X),u55 = II&Il'u

for u Q L,qq, where

The fact that this multiplication makes g into a graded Lie
algebra follows from the explicit realizations of both the
Lie bracket and graded Lie bracket as imaginary and real
parts of a Hermitian form. Of course the Jacobi identity
can also be verified directly. It is also easy to check that
this algebra is indeed isomorphic to the spin conformal
algebra (once we factor out the trace). Notice that if we
consider the case k = m = e, and take the subalgebra ob-
tained by considering those elements of I, , of the form

A 0 A
0 2A 0

0 A.

and those elements of L,o~d of the form

of the conformal algebra and to speculate on the possible
physical significance of this fact.

We return to the applications of this graded Lie algebra'N
in Sec. VI.

(G.,Gb} = (~..).&"", (2.39)

where the (p„„) b can be given in terms of d-type coeKcients
and the identity. This algebra might serve as an alternative
to the spin-conformal one and is connected with it. However,
it should be written relativistically in order to be useful. „

this implies using Wigner rotations etc. , to preserve the
J~" in motion.

l. Another algebra associated with sl(n —1}
Let V = Vp+ Vi be a Z2 graded vector space. Then

End V contains a one-dimensional ideal lying in Endo V,
namely the multiples of the linear transformation J, where
J].Qp id and J&&, ———id. We can thus form the quotient
algebra, whose dimensionality will be n' —1.

Let Vo be (n —1) dimensional, and Vi one dimensional.
Thus Jo will be gl(22 —1), Li will be 223 —2 dimensional.
The total dimensionality of the graded Lie algebra will be
n' —1.Note that the excluded generator is not the identity.

Gell-Mann and Ne'eman (1974) have taken 23 = 3. Lo
can then be identified with spin and fermion number, and
the odd operators then appear as "square roots" of rotations.
Complexifying, one can have a system

(xp + x3 xi + 2x2)

&xi —2x, x, —x,, )

II+II = Xo' —X12 —X22 —X32

If we add the terms of degree zero with A Q sl(2, C) then
we get a subalgebra isomorphic to the usual algebra built
up from the Dirac matrices (and the Lorentz matrices as
their commutators). It is interesting to observe that this
algebra makes its appearance as an (orthogonal) subalgebra

J. Graded Lie algebras associated with Clifford
algebras

Let V be a vector space over a field, E, of characteristic
unequal to two, and let Q be a quadratic form on V. We
recall the definition of the Clifford algebra, Co(V), deter-
mined by V and Q. Let T(V) = T (V) S T'(V) B T2(V)

=E P V i3 V .be the full tensor algebra
over V and let I(Q) be the two-sided ideal generated by
the elements v v —Q(v)1 as v ranges over V. Then Co(V)
is defined to be T(V)/I(Q). The composition of the maps
V —+ T (V) —& Co (V) is an injection and allows us to id.entify
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V as a subspace of Cq(V). If y is a linear map of V into
an associative X algebra A with unit such that q (x)'
= Q(x) 1, then q extends to an algebra homomorphism of
Cq(V) —+ A which is uniquely determined and which we
shall continue to denote by y. Thus the algebra Cq(V) can
be characterized as the universal algebra with respect to
maps: V —+ A described above. For two elements, x and y,
of V we have the relation

xy+ yx = 2(x,y)1, (2.40)

where (, ) is the scalar product determined by the quadratic
form, Q.

The filtration by degree on T(V), where

F'T(V) = fB T'(V)

Let C be such a filtered graded algebra, so that C is Z2
graded and Z filtered in the above sense, with the associated
Z graded algebra graded commutative. We claim that the
graded algebra, with a shift of two in gradation degree,
inherits the structure of a graded Lie algebra, which we
shaH call the Poisson algebra associated with C and denote
by P(C). More precisely, let us set PI, (C) = F'+'(C)/F~(C).
If x Q Pl, (C) and y Q Pi(C) we can find x g F"+'(C) such
that x/F" (C) = x and y Q F'+'(C) such that y/F'(C) = y,
where x is in C' or C' according as k is even or odd and
similarly for y. Since the graded algebra associated with the
filtration on C is graded commutative, we know that the
expression xy —(—1)~'yx which u priori belongs to
F~+2+'+2(C) actually has a vanishing highest order piece,
and hence lies in filtration degree two less, i.e., in F~+'+'(C).
We define

induces a filtration, F&C on the algebra C = Cq(V) so that
F~C consists of those expressions which can be written as
sums of products involving at most q factors of elements of
V. The associated graded algebra is just the exterior algebra
AV which is graded commutative. Actually, the "cancella-
tion law" in the multiplication always drops degree by two
so that C is a Z2 graded (but not graded commutative)
algebra where Co consists of sums of even products of ele-
ments of V and C' consists of sums of odd products (Atiyah
et al. , 1964). The elements of Co are filtered by even degrees
and the elements of C' are filtered by odd degrees in the
sense that if two elements x and y lie in F&(C ) and x —y6 F' '(C) (q even) then x —y E F& '(C), and similarly for
x and y in F&(C') (q odd).

Lie algebra oq(V), the infinitesimal orthogonal transforma-
tions relative to the form Q provided that the form Q is
nondegenerate, and the bracket of Po on the P; is the
induced action of oq on A'+'. (More generally, the form Q
gives a map of V —+ V* and thus from V V —+ V is V*
which we can consider as Hom(V, V) if V is finite dimen-
sional and contained in Hom(V, V) otherwise. The image
of Po = h2 (V) Q V V gives a map P' ~ Hom (V, V) and
induces an action of Po on the P, which coincides with the
bracket. ) The subspace P 2 is always a central ideal of
P(Cq(V)), so that one can form the quotient algebra.

In case dim V = 4, a direct computation shows that
LPi,Pij = 0, so that one can make a graded Lie algebra
out of V fB h'i(V) A.'(V). In general PA'(V), A&(V)$ = 0
for i + j) e —2 if V is an e-dimensional vector space.
Indeed, if we choose a basis of V, then any pair of expressions
of the form ej„n . . . w vI, , and v~, A. . . n, ~~,. must have at least
two v's in common, and thus their product drops by at least
two in filtration degree, and the commutator drops by at
least four. Thus P ~ Po Q. . . P„3forms a graded Lie
algebra if we quotient out P 2.

(A 8)„= Q) A;8,
i+j=n

(2.42)

(x; g) y,)(x gl y„) = (—1)' x,x g) y;y„. (2.43)

It is easy to check that if, for example, both A and 8 are
graded commutative, then so is A B. For instance, if
A = h. (V) and 8 = A(W) then A 8 = A(V EB W). If
A = Cq, (Vi), the Clifford algebra of Vi relative to Qi
(which is not graded commutative) and 8 = Cq, (V~) then
A S 8 = Cq, q, (Vi S V2). (Indeed, the map x S y~
x S 1 + 1 S y satisfies (x S 1 EB 1 Ia y)' = Qi(x) + Q2(y),
and hence, by the universal property of the Clifford algebra,
gives a map of Cq, @q,(Vi Q3 V2) into A 8 which is
easily seen to be an isomorphism. )

Let A be a graded commutative algebra and let L, be a
graded Lie algebra. We make A i3 L into a graded Lie
algebra by setting

(A L)„= EB A;L, (2.44)

K. Tensor products with graded algebras

Let A and 8 be two graded associative algebras. We make
their tensor product, A 8, into a graded associative
algebra by setting

Lx,yl = (xy —(—1)"'yx)/F"+'(C). (2.41)
z+p=n

Observe that this is independent of the choice of x or y,
Indeed, if for example we chose some other x, then x —x
has the same parity as x and the filtration degree is two less
so that using x or x gives the same answer modulo F"+'(C).
Once we know that the bracket operation on P (C)= SPI, (C)
is well defined, the Jacobi identity is automatic, because it
holds for the commutator bracket of three elements x, y,
and z when we consider C as a Z2 graded algebra. Also
notice that the Poisson bracket is a (graded) derivation of
the graded commutative structure of grC.

For the case of the Clifford algebra, a direct verification
shows that POLCq(V)1 = A.'(V) can be identified with the

t u x, b S yj = (—1) (deg a) (deg x) &~, ». (2.45)

A straightforward verification shows that this multiplication
is indeed graded anticommutative and that the graded
version of Jacobi's. identity does indeed hold. As a special
case, if I. is an old fashioned Lie algebra, we may consider
it as a graded Lie algebra with I.= L,o. Then if A is any
graded commutative alegbra we can form the graded Lie
algebra, A L. Thus, for example, A(V) L becomes a
Z graded Lie algebra for any auxiliary vector space, V, and
Cq(V) L becomes a Z& graded algebra. The technique of
multiplying a graded Lie algebra, I., by a graded commuta-
tive algebra, A, and, particularly, by the exterior algebra
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has been extensively employed, first in the implementation
of the "supergauge" program in dual models (see references
to original papers and recent reviews in our discussion of
example II.F), and more recently in supersymmetry (see
for example Salam and Strathdee, 1974e). We discuss the
latter in some detail in Sec. VI. Notice that the even terms
in A L, which, as usual, form an ordinary Lie algebra, are
combinations of products of even terms in A with even
terms in L, and odd terms in A. with odd terms in L. Thus,
for instance, if we take 2 = A V, where V is Minkowski
space,

is an ordinary Lie algebra. The Lie algebras constructed
in this manner in the case of supersymmetry have sub-
stantial radicals and possess large dimensionalities as com-
pared with the dimensions of L.

If A is a graded commutative associative algebra and B
is a graded associative algebra, we can form a graded
algebra A B. If L denotes the commutator algebra of B,
then an immediate verification shows that the commutator
algebra of A B is A is L.

Suppose that A is a graded commutative algebra which
(with a shift of two in the grading) also carries a graded
Lie algebra structure so that the Lie bracket acts as a graded
derivation of the associative multiplication. Thus we assume
that A possesses a graded commutative multiplication aed
a Lie multiplication such that

)~i,~ij C ~~+i (2.46)

I a,ysj = (x,yjs+ (—1)"'yLx,sj. (2.47)

For instance, if C is Z& graded and Z filtered, as in the case
of the Clifford algebra with a graded commutative associated
graded algebra A = GrC, then A inherits such a structure
as we indicated above. Suppose that B also carries the
same structure. Then so does 2 B, where the associative
structure is as we defined it above and where

I iii ~ lp ii2 S f 2j ( 1) (L+lp+2j Ca f 1~2

+uiam (p /bi, b2j). (2.4S)

Gr(A B) GrA GrB = C D.
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(2.49)

A straightforward, if rather tedious, computation with the
signs shows that Jacobi's identity is satisfied and that the
Lie bracket is a derivation of the associative multiplication.
If we take 2 to be a graded commutative algebra and give
it a trivial Lie bracket structure (so that all brackets are
zero), and take B = L to be a graded Lie algebra and give
it a trivial commutative multiplication (so that all associa-
tive products are zero), then the above construction reduces
to the previous construction of A g) L. Suppose that
A = GrC and B = GrD, where C and D are Zm graded and
Z filtered algebras with A and B carrying the inherited
structures as indicated. Then C g) D is a Z~ graded algebra
and carries the obvious induced filtration whose associated
graded algebra is A B. A direct verification shows that
the induced Lie algebra structure on A B is the one
described above, i.e., that

As an illustration of this construction, let C be the Clifford
algebra of a one-dimensional vector space with nondegen-
erate quadratic form, so that C is generated by 1 and e
with 1 Q C' and e C C' and where e' = 1. Its associated
graded algebra is generated by 1 and e with the associative
multiplication 1 e = e and e2 = 0 and Lie multiplication
L1,1] = 0 = L1,e] and Le,ej = 2. Let D denote the ring
of differential operators on a differentiable manifold, M.
We shall think of D as a Z2 graded ring having only even
elements and shall filter D by even degrees by letting F'~D
consist of all differential operators of degree at most k.
Then B = GrD consists of functions on T*M which are
polynomials in the cotangent variables. The functions which
are homogeneous polynomials in the p's of degree k con-
stitute B2~ and the inherited Lie bracket on B is just the
Poisson bracket. Then 3 B = Gr(C D) is just the
Poisson algebra introduced in example 6. Indeed, if we let
e' = (1/&2)e and write the even element's in A B as
1 f and the odd elements as e' h = @,we obtain exactly
the bracket relations described in example G.

Notice that this suggests that an algebra of the form
C D, where C is a Clifford algebra (or some other Z2

graded, Z filtered algebra), really lies behind the formalism
of the commutation —anticommutation relations of field
theory. In other words, in a certain sense we can regard the
ring of differential operators as "quantum mechanics"
whose "classical approximation" is given by the Poisson
bracket algebra. In this sense it would appear that an
algebra of the form C D should enter into the "quantum
mechanics" (Sternberg, 1964; Souriau, 1970) whose "classi-
cal approximation" is the algebra of graded commutators-
anticommutators. Indeed the "quantum mechanics" would
consist of using just the Z2 graded structure on C D
and let the (Z2) graded I ie algebra be the corresponding
commutator algebra (with no notice taken of the filtration).
It would be interesting to try to derive the relation between
spin and statistics from this viewpoint.

L21,+i = L21,

and

L i ——L 2+{u),

(2.50)

(2.51)

where we write an element of L2i,+] as 8s, for s C L2i, .We set

(L2kg 2i+15 pL2kpL2E) C L2(a~i)~1.

Ls, 8(oj = 8(s,(aj

with the additional understanding that

LL2~,uj = 0 = Lu, L2ij

if either k or / = —1. (In particular Pu, uj = 0.)

If k, d + —1weset

pL2i+i, L2i+ij = 0

(2.52)

(2.53)

(2.54)

(2.55)

L. Filling in the odd terms

Suppose we are given a graded Lie algebra, L', with only
even terms L' = L2i. (Thus L' is a I.ie algebra in the
classical sense. ) We can always 6nd a graded Lie algebra
L = QLI, whose even terms coincide with the given terms
and whose odd terms generate. Indeed, let us set
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and similarly for k = —1 except that we set

[u,es] = s. (2.56)

This last equation shows that L is generated by its odd
terms. Jacobi's identity is automatically verified for any
expression involving at least two even terms. An expression
involving at least two odd terms vanishes unless it contains
exactly one u, and

[u, [w, tts]] = [u,e[w,s]] = [w,s]
= 0+ [w,s]
= LL, ),t )+[,L,e)]

and

The spin-conformal algebra 'K of Wess and Zumino in
Sec. II.H is simple. However, the subalgebra V suggested
by Volkov and Akulov (1973) and Salam and Strathdee
(1974a) (which is the algebra actually applied in physics
to date), Lo + Lz + L&, is not simple.

Notice that it is mot true that a graded representation of
a graded simple algebra is completely reducible. Indeed, we
have already seen one example of this phenomenon in Sec.
IX.D. Here is another example: for any nondegenerate
quadratic form, Q, on an n-dimensional vector space, v, the
algebra

L = e P,[C,(V))yP, (C.(V))

0 = [u, [ew, es)) = [w, 8s) —Pw, s)
= [[u,ew], s] —[Ow, [u,8s]]

so that Jacobi s identity holds. This algebra is, of course,
very artificial.

III. A CRITERION FOR SIMPLICITY

We define the notion of subalgebra and ideal of a graded
Lie algebra in the usual manner. Thus I is an ideal of L if
x Q I and y & L implies [x,y] Q I. We say that I is a
graded ideal if the graded components of every element, x,
of I belong to I, i.e., if x = x; and x C I then all the
x; Q I. We say tha, t L is simple if it contains no nontrivial
ideals and if its multiplication is not trivial. We say that
it is graded simple if it does not have any graded ideals.
We now present a criterion, which appears at first glance
to be a bit complicated, but is conveniently verified in
practice, which provides a sufficient condition for simplicity.
We assert that if L verifies the following conditions then I.
is simple.

(a) Lo contains an element, d, such that [d,x) = kx for
any x Q L&, for all k.

(b) [L,L ]= L..
(c) L contains no graded ideals lying entirely in L;.
(d) Lo acts irreducibly on L z.

(e) If k & 0, then [ ~,Lx~) = 0 implies x~ ——0.

Notice that condition (a) implies that every ideal must be
graded. Indeed, if x = x, lies in I so does [d,x) = Bjx;
and so does j"x, for any r. For r sufficiently large we can
solve for the individual x, in terms of the j'x; (s & r), which
shows that x, Q I. By condition (d) either I &

——L & or
I &

——0. If I &
= L & then L, = Io by (b), but then, by

(a), d Q I, which implies that L~ ——Iq for k & 0. Thus
L = I. If I ~ = 0, then [IO,L ~) = 0, which, by (e), im-
plies that IO = 0. Proceeding inductively, we see that Iq = 0
implies that I~+q ——0 and hence that I & 'Lq, which,
by (c), implies that I = 0.

has no graded ideals. Indeed, Po is the orthogonal algebra
which acts irreducibly on the spaces P, = A'+'(V). If Iwere
a nontrivial graded ideal then we must have I; = A'+'(V)
for some j. Since [P &,P;] Q 0 for any i ) 0 we conclude
that Io & 0 and hence Io = Po and then that Ig, = E'~ for
allk & e —3.

On the other hand. , we can construct the algebra L' = L
B(d) where d g Lo' and [d,x) = kx for x Q L~. Then L
is an ideal in L' and has no complementary ideal, i.e., L'
is not completely reducible under L. This same example
shows that if we define the analog of the Killing form,
f(a,b) = Tr(ada)(adb) then the analog of Cartan's cri-
terion does not hold. Indeed, it is clear that in any graded
algebra we must have f(L, ,L,) = 0 for j & i. On the-
other hand, for odd elements we have Tr (ad a) (ad b)
=2 Tr ad([a, b)). For a F: P ~ and b Q P~ the element

[a,'b) E o (Q) is an infinitesimal orthogonal matrix and
hence has zero trace. Thus, although L has no graded ideals,
the Killing form f is degenerate.

It would be interesting to see which theorems from the
classical theory of Lie carry over, and with what modifica-
tions, to graded Lie algebras.

IV. THE BIRKHOFF-WITT THEOREM FOR
GRADED LIE ALGEBRAS

In the classical theory of Lie algebras, a central role is
played by the universal enveloping algebra. Roughly speak-
ing, if L is the Lie algebra of a Lie group G, then the ring of
left invariant differential operators gives the enveloping
algebra of L. (We give the mire precise, and more algebraic
definitions below. ) Thus the various Casimir operators lie
in the center of the enveloping algebra, and, in general, the
universal enveloping algebra is important in representation
theory. The first basic structural fact about enveloping
algebras is the Birkhoff —Witt theorem. In this section we
state and prove the corresponding theorem for graded Lie
algebras.

This immediately implies, for example, that the symplectic
graded algebra, example | of Sec. II, is simple. It does not
apply to the Gell-Mann (f,d) algebra which is directly seen
to be simple. Also notice that the only role played by L &

was that it was the first nonvanishing negative component.
For instance, if I is a graded Lie algebra with only even
components (and, thus a classical Lie algebra), we need
only replace L & by L 2 and Lj by L2 to obtain a useful
criterion for simplicity of classical Lie algebras.

Let L be a graded Lie algebra. In what follows, we shall
regard L as I o Q L~, where Lo is the sum of the even graded
pieces and I~ is the sum of the odd. graded pieces. This is
not necessary, but it saves us some indices.

The universal enveloping algebra of L, called UL, , is an
associative algebra with the following properties:

1. There is a canonical linear map e. L —+ UL, satisfying

~(x)~(y) —(-1)""(y)~(x)= ~([x,y)).
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2. If f:L —+ A is any linear map from L to an associative
algebra, 2, satisfying

f(x)f(y) —(—1)"f(y)f(*)= f([x,y]),
then there is a unique homomorphism g: Uz, —+ A such that
f = p o e, or such that

VL
ik

Proof: (1) The monomials span Uz, . To begin with, note
that the monornials x~ (no ordering restriction on 1V) span
Ul. , because L generates Ul. . If i~ & i2, then we can replace
e(*;,)e(*;,) by We(*;,)e(x;,) + e([x;„x;,]). Similarly, if
x; Q Li, then e(x,)e(x;) = 2e([x;,x;]). By repeating these
operations, we are able to see that any x~ can be written
as a linear combination of x~'s, where the 3f's are words.
That proves half the theorem.

L

commutes. (2) The monornials are linearly independent. We first let
V be the free k module with basis {zsz), where M runs
through all words. If i Q I, M = (i,ii, . . .i ), and i & ii
(or i = ii and x;, Q Lo), we shall say i & M and let
iM = (i,ii, . . .i ).

Proposition: The universal enveloping algebra exists and is
unique (up to isoniorphism).

Proof: This follows standard arguments. To construct Uz,
let TI. be the tensor algebra generated by I., and let 0 be
the ideal generated by all expressions of the form x y—(—1)~'y x —[x,y). Then Uz, ——Tr/8. The map e takes
x into the tensor x of degree i. That Ul. has the right
property is easy to check: given f, the universal property
of Tz, says that there is a unique homomorphism f: Tz, —+ A
which extends f to Tz, But P(x y —(—1)"'y S x-
[*,y]) = f(*)f(y) —(—1)"'f(y)f(*) —Lx,y] = o, and so
p takes p to 0. Thus p defines p on Uz, . For uniqueness,
suppose that VL, and e' also satisfy the definition. Then
property 2 says that we have maps g: Uz, —+ Vz, and
f = Vi ~ Uz, such that

UL UL
)k

and commute.

—VL

But then, combining these,

UL
t&

L

UL

commutes. By the uniqueness of the extending homo-
morphism, f o p = identity. Similarly, p o P = identity,
and so Ul —Vl, .

The BirkhoG —Witt theorem gives more information about
the structure of Ul, .We need a modification of the Birkho6-
Witt theorem for ordinary Lie algebras, as given, for ex-
ample, in Serre (1964). What follows (and most of what
preceded) is an adaptation of Serre's treatment.

Theorem. Assume L is free over k. Then the set of mononii als
x~ (where M is a word) is a basis for U(L).

Let {x;)(i g I) be a basis of L; for convenience we assume
that I is well-ordered and that the elements of L~ precede
those of Li. A word of Iwill be an expression M= (ii, ,i ),
with ii & ii « i, and with i; & i~ if x', 6 Li (Of
course, than x,, Q Li, too). We then write xi' = (x;,).
e(x;„).The length of M is l(M) = m.

We shall show that V can be made into an L,-module with
x;s~ ——s;~ for i & M. Given this, the linear independence
follows easily. For V is then a Ul. module as well. Consider
zs (P = empty set). Then xszzz = zsz, as induction on l(M)
shows. [If l(M) = 0, then xsz ——1 and the result holds;
otherwise, M = i', i & Ã, and x~sg = x;x~sg = x;s~ = s;~
by induction. $ So if Zcizxsz ——0, then 0 = Zcszx~zs =
Zc~s~, and hence c~ = 0 because the s~ are linearly
independent.

Everything, therefore, depends on defining the module
structure. We need to define x;s~ for alii, m. Let n; = degx;.
We assume inductively that if l(1V) & l(M), then x,z~ is
defined for all jQ I and x;z~ is a k-linear combination
of z s with l(L) & l(1V) + 1, and that if j & i, then x,z~
is defined. Then define (where a, = deg x,;)

x;s~ ——s;~ ifi &M;
= (—1) ' ~x;(x,x~) + [x;,xjjz~ if M = jN

with j &i;
= 2[x,,x;jz~ if M = iN and x; Q L.

These expressions on the right are well-defined and continue
the inductive hypotheses. Thus x,s~ is now always defined.

We need to show that x~x;z~ —(—1) ' ~'x, x;z~ ——[x,x,jz~.
There are a number of cases. We may always assume i & j
(and i ) j if x; Q Li), by symmetry. We shall not give
all the cases here, but enough to make the argument plain.

(1) j&1V andi) j (ori = j and x, +Lr); then the
result comes from the second line of the definition.

(2) N = kL, and i ) j ) k. We need to show that

(*)x;x,xj,zz, —(—1) ' ~x,x;xzzz ——[x,,x;]xI,zz, .

By induction, we know that (") holds if we permute i,
j, and k cyclically. Also, by induction on l(1V), we may
assume that

xI,xizz = (—1) ' 'xrxj, zz+ [xg„xrjzz)rv'k, l & I.
So (*) becomes

(*1)x,x;x„zz, —(—1) * ~x,x;xzzz ——[[x;,x;],xI,]zz,

+ (—1)~i& '+~~'xzx x zJ. —(—1) *r~'+~~ '+ " 'xkx;x.-zl

We 'know that the versions of (*1)with i, j, k permuted
cyclically (*2 and *3, say) are true. To prove (*1),it suffices
to show that some linear combination of (*1), (*2), and (*3)
gives an identity. Of course, ( 1) must enter nontrivially.

Rev. Mod. Phys. , Vol. 47, No. 3, July 1975



Corwin, Ne'eman, and Sternberg: Graded Lie algebras in mathematics and physics 587

But (—1)~' &(*1)+ (—1) ~ '(*2) + (—1) ' i(*3) is of the a Poisson bracket structure for which L GroU. It would
form be nice to have an analogous theorem for graded algebras.

0 = 0+ ((—1) * "LLx'»~'j»j+ (—1) ' "LE»»'j~ x~3 V. A VERY BRIEF SKETCH OF DEFORMATION
+ (—1) ' 'LLx~»j, x~j)&' ~ THEORY

This last is true, by the Jacobi identity. So the result works
for (2).

(3) There remain cases where some of i, j, h are equal
and the basis element is in Lj. For instance, if i = j = k,
then Px, ,x;jxzsz = 2xj,x~xzsz and the result is clear. The
other cases are similar. This proves the theorem.

The Birkhoff —Witt theorem is usually given in a somewhat
diferent form. We need a number of definitions erst.

I et Ul. be the subspace of UL, generated by all products
of the form «(xi). «(x ), where m & e, let Gr„(Uz)
= U;/U", and let

Gr(Uz) = S Gr„(Uz).
n=O

In some sense, Gr„(Uz) consists of expressions "purely" of
length (ni). Since Uz, Uz, " C: Uz, +", we can define (by
passage to the quotient) a multiplication on Gr(Uz, ) with
Gr (Uz) L: Gr + (Uz). Clearly Gr(Uz) is generatedby the
image of «(L) (in Uz,). In fact, «(L) = Uz, '.

If x or y is in Lo, then «(x)«(y) —«(y)«(x) = «((x,yj)
QUz', and thus «(x) and «(y) commute modulo Uz'. Thus
if we let «(x) be the image of «(x) in Gr(Uz, ), «(x) and
«(y) commute. Similarly, if x and y are in Li, then «(x)
and «(y) anticommute.

Now let 5 (Lo) be the symmetric algebra over L, A (Li) the
exterior algebra over L~, and 'U their tensor product. There
is a natural map p from 'U to Gr(Uz). For, according to
general nonsense, there is a natural map from T(L) to
Gr(Uz, ) LT(L) is the tensor algebra over Lj, and the above
commutation and anticommutation relations show that it
factors through 'U. Moreover, p is onto, since @(x,) = «(x;)
and the elements «(x;) generate Gr(Uz).

Theorem (Birhhog Witt). @is ae—isomorphismif Lish-free.

Proof. We need to show that @ is injective. As before, let
xsz ——«(x,,) . «(x,„) if M = (ii, . . . , i ) is a word; letx~
be its image in Gr(Uz). To say that g is injective is to say
that the only relation of the form

Cszx~ ——0(mod U„ iL)
l(M)=n

is the trivial one. But because the ordered monomials span
U(L), this last statement amounts to saying that the only
relation of the form

Cszxsz —— P Cszxsz
l(M)=n l(M) &n

Thus we are interested in the structure of the "orbits" of
C under the action of the general linear group, G(V). Defor-
mation theory studies this problem from an infinitesimal
point of view'. Suppose we are given an analytic curve

pt p+ tripl+ t+2+ ' ' (5.1)

in Deri A.S'. We wish to find conditions for this curve to lie
on C. We also wish to regard as "trivial" a curve of the form

IJt~ = ga(~)&

where A (t) is a curve in GL(V) with A (0) = id.

(5.2)

The condition for p~ to lie in C is Lp, ,p,j =—0. Expanding
in terms of t we get

I p~&pij =—2ts)&a+ t'(I &zi&zj+ 2L»&~j) + ' '(5 3)

Since Q,p$ = 0, left multiplication defines a d operator on
Der (AV) which we denote by D. The first condition on y,
asserts that

Dyj ——0,

the second, that

Dv'2 = ILL» &Ribb-

and, in particular, that Lq i, grig is a coboundary.

(5.5)

If A (t) =id+ ta+, where a Q Hom (X,W) = D ero &W
then a direct computation shows that

pA(i) p + t)Gqpg + ' '

Here we only outline an illustrative example of the sub-
ject in very bare form. We refer the reader to the article of
Nijenhuis and Richardson (1966) for a very readable exposi-
tion of this example and to their paper (1964) for the presen-
tation of the theory in its general form. Suppose we start
with a vector space, 8', and ask for a description of all
possible (classical) Lie algebra structures that W can carry.
Thus we are looking for all possible maps y. 6' && S' —+ 8'
which are antisymmetric a,nd which satisfy Jacobi's identity.
To say that p is antisymmetric means that

p Q Hom (W A. W, W) = Deri (AW).

The Jacobi condition says that $p,p$ = 0 in the F—N algebra
of O'. Thus the set of all Lie algebra structures consists of
the algebraic variety C, of all solutions of the system of
homogeneous quadratic equations Lp,p) = 0 in Deri (A W).
Now we are really interested in classifying such structures
up to isomorphism. This means the following: Let 3 be
any nonsingular linear transformation of TV. Then A acts
on Deri (n, W) by sending p, ~p~, where p, (x,y) =
Ap(A 'x,A 'y). We wish to regard p and p~ as the same.

has the left-hand side 0.This is a consequence of the previous Thus the 6rst order triviality condition on p, & is given as

theorem. (5.6)—D~G.

For ordinary Lie algebras, the filtration on U gives rise Thus the possible "Grst-order" nontrivial deformations cor-
to a commutative algebra structure on Gr U and hence also respond to the cohomology space H'(&W, D„). The second
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order condition, that [qi,+i) be a coboundary, is inde-
pendent of the choice of 4 & in its cohomology class. If

H'(AW, D») = (0) (5.7)

then every "first-order" derivation can be extended to a
"second-order derivation. " Actually one can justify this
whole formal theory by use of the implicit function theorem
to relate the II' and H' to the study of the orbit through p, .
We refer the reader to Nijenhuis and Richardson (1964,
1966).

W' = f+ ~+(tvA')~A' (6.1)

where a is a constant of dimension (—4), i.e., the fourth
power of a length, and f is a four-spinor (Majorana) anti-
commuting parameter. Considering that the neutrino does
not seem to fit a Majorana description, the actual physical
content would appear rather speculative, but the algebraic
innovation remains interesting. Apart from the nonlinear
realization, the 'U algebra is indeed the one that has been
extensively appli, ed as a supersymmetry, after its reintro-
duction by Salam and Strathdee (1974a) as the physically
interesting subalgebra of the spin-conformal 'VP GLA of
Sec. II.H, discovered by Wess and Zumino (1974a). It is
interesting that Salam and Strathdee even returned to the
question of a possible Goldstone role for the neutrino (Salam
and Strathdee, 1974c).

We now turn to a more detailed study of 'N.

Vl. SUPERSYMMETRY

A. The GLA w and v
The first introduction of a GLA as a supersymmetry of

space —time (i.e., as a symmetry containing the Poincare
group) is due to Volkov and Akulov (1973).They adjoined
to the Poincare algebra 6' a set of four odd generators,
behaving like a Majorana spinor. This is isomorphic to the
Io Q I.i L,2 subalgebra 'U of the spin-conformal algebra
of example 2H which we shall denote by 'VP. Volkov and
Akulov were exploring the hypothesis that the neutrino's
masslessness might indicate that it is a GoMstone particle,
necessary to the (nonlinear) realization of an exact sym-
metry of the physical world, a hypothesis suggested earlier
by one of the present authors (YN), and which had failed
because of the statistics issue (Joseph, 1972; Bella 1973).
They. therefore had to introduce conserved generators which
do not destroy the vacuum, and behave like the physical
neutrinos under the Poincare group, i.e., spinors. To pre-
serve Fermi statistics, the new generators were now also
required to anticommute. The GLA 'U thus had fourteen
generators (this came out of the requirement of algebraic
closure), was not simple, and had to be realized nonlinearly.
For P the neutrino field,

(v",v") = 2g"", ~..= ('/2)Lv„v. ]
and the special matrices v5, P, and C:

VoViV2V5 = (1/4. )o»vpvV

v»+ = W»P '

(6.4)

(6.5)

(6.6)

= C 'yC C+=C ' C = —C Cyg=ys C

Cy5 = y5C. (6.7)

We have to distinguish here between *, denoting complex
conjugation, and +, which now stands for Hermitian con-
jugation; denotes transposition. To form the adjoint
spinor we utilize p,

(6.8)

We use a Majorana representation, i.e., for p, v = j, 2, 3, 0
we have

0 PV+ — 0 P4V v yP gPI pyI v+

0-glV gp, IlgV Vo JllV v ~ + ~ ~ v

(vov")+ = g""vov"; (v5~"")+ = —g""g""v5~"" (6 9)

We find P = bv, , C = cvo. We choose b = 1, c = —1. One
possible representation is

—zpzg'z, y2 = —zp3, y3 = —zpz03,

+0 = p2p

which ensures —poC = &; p5 = ~pj.02.

(6.10)

[J»v pq ig»5Pv + igv5P»

[P»,P"]= 0,
[J»",K"]= ig—»K" + ig""K»,

[K»,K"] = 0,
[K» P"] = 2ig—»"D —2i J»"

[D,P»] = iP»,

[D,K»] = i—K»,

[D,J"]= 0, (6.2)

where J&" are the Lorentz group generators, PI" the trans-
lations, E& the pure conformal transforrnations, and D the
dilation operator. Note that the indexing for the gradation
is provided by doubling the eigenvalue of D, so that the
X of Sec. II.H correspond to K&, and the 8' to PI". In the
context of adjoining I. j I.~ we are led to add a sixteenth
(scalar) operator to the even set. This will be E, correspond-
ing as shown in Sec. II.H to the infinitesimal action of
e'o 1(p real), acting trivially on the even generators,

[E,J„„]= [E,P»] = LE,K»] = [EvD] = 0. (6.3)

To construct I. j L,& in terms of physical operators,
we use the Dirac matrices

We preserve the energy metric of Sec. II.H, g
' = 1,

g" = g" = g" = —1, and g&" = 0 for p, ~ v. For the con-
venience of the reader who is accustomed to the conventions
common in the physical literature, we shall rewrite the
bracket relations of the observables associated to the spin
conforrnal algebra in terms of a standard basis of Hermitian
operators. The physical algebraic system consists in the
conformal algebra SU(2,2) for the even gradation

[J»v Jpv] —+ig»v Jvp &g»p Jvv + 5gvp J»&r &gvvJ»p
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Note the following real. ity and symmetry properties:

vo+ = vo, (v.v.)+ = v.v. ; (v«..)+ = v«..;

(VOV5&»v) VOV50»v v (VOV5V») VOVOV»v

(VoV5)+ = VoV5

(v„c)*=v„c; ( „„c)*= „.c; (v, „.c)*= v, „.c;
(v.v„c)' = v,v„c; c*= —c; (v,c)*= —v c

(v.c) = v.c; (~».c) = ~».c (v5~"c) = v5~"c'
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C = —C; (yoC) = —yoC; (roy»C) = —goy»C.
(6.11)

The charge-conjugate spinor is given by

(6.12)

The generators of the subalgebra 'U are:
J""C ~o

Q GLi,
(6.18)

and for our choice of phases iP' = f*.We also note that a
Majorana spinor is one which is equal to its charge conjugate,

f~ ——iP~' and with our phases, f~ ——/sr*,
4'~=4 Vo (6.13)

which reduces the number of its complex components to
two or real components to four in this choice; we shall
transform later to two complex ones, which can then be
identihed with the column and row vectors introduced in
Sec. II above. From the symmetry properties in Eq.
we find, for iP and X anticommuting Majorana spinors

1/X Xf q lpga»X Xr»lp q i/0'»»X Xg»pl/

&4"v&7»x = ~x ro r»4'q ip'rex = xvaip.

The odd generators of 'N are Q and Rp (~,p = 1. . .4 in
Dirac spinor space) and are Majorana spinors, thus involv-
ing two complex or four real functions each. The even —odd
Lie brackets are the commutators (Wess and Zumino, 1974a;
Corwin, Ne'eman, and Sternberg, 1974; Dondi and Sohnius,
1974)

t:J",e-]
(J»" Rp]
O'",Q-]
L&"Q-]
P",R.]
LD,e-]
[D,R ]
[E,R ]

--:(-")-pep,
--:(-").pRp,

LZ», R.]= 0,

(y.~ ).pR-p,

—(Vox")-pep,

('/2)Q-,
—(i/2)R. ,
»(Y') Qp

3i(y') p—Rp, (6.15)

and the odd —odd brackets consist of the anticommutators

{Q-Rp) = (Vo~"—C)-pJ"" —i(C)-p&+»(voC)-pD,
{e-,e } = -2(~.c).,~, (6.16)
{R.,Rp} = —2(~„C).pIC .

(6.17)

B. Representations of v
Working with the conformal group as a symmetry implies

massless particles (provided the symmetry is not spon-
taneously broken by a Goldstone boson). We first construct
some physically relevant representations of the subalgebra
corresponding to mass zero.

We can also introduce "adjoint" spinors Q and 8 as
per Eq. (6.11). This is especially useful in view of further
generalizations in which we shall introduce internal degrees
of freedom. For sg(n), e & 3, the covariant and contra-
variant representations are not equivalent (3 and 3* in
su(3), etc.] and this will require distinguishing between Q
and Q . The bracket relations are

{Q-A}= (v.~,.)-pJ»" —2'(~.)-pD+'~-p&,
{Q-Qp} = 2(v»)-p&"

{R,Rp} = 2(y„) pIC .

i.e., the even gradation corresponds to the Poincare algebra.
For massless particles, the helicity X (taken here with the
same sign as J") is the only remaining quantum number in
the little group of the Poincare group.

F p+= p'+p'WO, p = p' —p'=0, p'= p'=0
on the states, the little group is generated by p(J'o, Jo' —J'o,
Joi Jol)]

In the odd set of (6.16), only the Q are in the little group.
Using for example the representation (6.10) we find that
the only two nonvanishing Q are Qi and Q4. These are not

(he»city) eigenvectors, and we recombine them into
helicity + 2 and —', operators.

(Q, —ie4)/V2 = x, (Qi+ ie,)&2 —= y
~ {x,y) = e, for 2P+ =—e

.Lh, x] = x, Lh,y] = —y for 2J" —= h. (6.19)

This is just the GI A of our Sec. II.A. Its defining 2 )& 2
representation acts on a vector space containing one fer-
mion and one boson state (helicities o, 0 or any (e+ 2;
e 2).

To discuss the representations, we notice that ni = x + y,
no ———i(x —y) define the Clifford algebra Co, as can be
computed from our defining brackets. It is a 2' = 4 dimen-
sional vector space with basis o.~, a2, nia2, e. Its only ir-
reducible representation is the defining set of 2 & 2 matrices
(see for example Boerner, '1963). However Q, and Q4 are
not parity eigenvectors, as can be seen by using Eq. (6.10)
in the parity transformation,

Q.-..(v.).e
which has (choosing qo = 1 here)

Qi ~ —iea, Q4 ~ ieu.

(6.20)

The Fermi states being helicity eigenstates have to con-
sist of combinations of the type (i/i W i/4) of the real com-
ponents of a Majorana "neutrino, "just as we calculated. for
the Q in Eq. (6.19). Parity thus consists in complex-
conjugation, leading to the conjugate space. The bosons
thus also can be written as (u & in), gc a scalar and e a
pseudoscalar. We still return to this simplest of aB repre-
sentations when we construct appropriate "superfields, "
i.e., 6eld representations of supersymmetry. Note however
that the findings of Volkov and Soroka (1973) fit within
this picture: the massless graviton, with P = ~2, gets a
companion with) = ~~.

To conserve parity, we therefore adjoin a 2-space repre-
senting states with P & 0, I'+ = I"= I"= 0. We 6nd,

(Q. + 'Q.)/~2 =—*', (Q. —'Q.)/~2 =—y' »- =—"
2J' =—h'. (6.21)

This time, we pick m = —1, getting eigenvalues (0,—o) «
L
—I/2, —(m+ 1)/2] for the helicities X.
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Actually, there have been to date very few applications
of the full algebra Vv". Instead, following Salam and Strath-
dee (1974a), the nonsimple Volkov —Akulov subalgebra 'U

was used in its linear realizations ("supersymmetry").
However, any Lagrangian which is invariant under that
algebra, and which is in addition made invariant under the
conformal group (by making all masses and all dimensional
couplings vanish), will also be invariant under the 'K GLA.

Taking here the M & 0 case, we use the rest frame to
find the "little" GLA. First we note that the Eqs. (6.16)
and (6.17) reduce to

{Q-Qp) = 2~-~~

Since yo is diagonal in this representation, the spinors
Qz and Qz+ are parity eigenstates with opposite eigenvalues
(note that )) o will have to be i or —i here).

Q~lj j3,~n, ~& = 0 (6.27)

in analogy to an annihilation operator, we have four possible
actions of

An irreducible representation of the little GLA is thus
obtained LSalam and Strathdee (1974b)j operating with the
Qz and Qz+ on the (2j+ 1) dimensional carrier space of
any representation (j,M) of the (Wigner) little group of
the Poincare group. Because of (6.26), and taking (j3 cor-
responds here to the "new" J"direction)

-{Q-Qx)) = 2(vo)-a~
(6.22)

Q~+: Qx+I j j3)z~~) Qxx+I j j3)z~~)
Qx+Qrx" ljj)3),)~) and lj)j 3,&„~).

The first bracket defines C4, the fourth-order Clifford
algebra (dimensionality 24 = 16); it is just the algebra of
Dirac p& matrices in a Euclidean metric. Its only representa-
tion is in four-dimensional matrices (Boerner, 1963). We
thus know that all M & 0 representations of 'U will reduce
into four-dimensional subspaces, just as the M = 0 ones
worked in doubled two-spaces.

The first two change the spin, j3, parity, and statistics of the
states according to (6.25) and the eigenvalues of yo. The
Qx+Qxz+ action preserves j3 and j but inverts the parity.
We thus have a 4(2j+ 1) dimensional Fock space, with
subspaces

P"Qx] =
L~",Qx+j =
CJ",Qx3 =

P"Qx+j =
LJ",Qx+j =
P",Qx+j =

2Qx, LJ23,exxj = —2Qxz,

—2Qx+, L&23,err+) = ggxr+,
—Qzz, I

J",Qrzj = —Qz,

Qrz+, I j",Qxz+j = Qr+,

4'Qxx, L&",Qxr j = —iez,
iexx+, I

J3z,err+ j = —ier+. (6.25)

The Qz=z, xx and Qz+ thus form independent 2-spinors. They
fulfill

{Q~,ea+) = 24a~, (Q~,ea) = 0, (Q~+,Qa+) = o
(6.26)

The brackets (6.25), (6.26) together with the angular
momentum commutation relations define the little GLA:

J",MQLo (d=4),
Q~ E L i (d = 2),
Q~+ Q Li (d = 2).

To get the "little" GLA in a more familiar form, we
diagonalize yo. In our representation (6.10) yo = —p2, so
that the appropriate unitary operator U will act in p space
only, with

U( —p2)U '= p3 ~ (6.23)

This will rearrange our (Majorana spinor) odd operators

Q-~ UQ-

which has as components

Qx = (Qi+ ie3)/~~

Qxz ——(Q2+ ie4)/v2

and their Hermitian (here just complex) conjugates Qx+,
Qxz+. Transforming the matrices (——,'o")~ U( ——'o")U '
we get the appropriate Clebsch —Gordan coefficients for the
angular momentum commutators in (6.15). We find that
723 is now diagonal,

Notice that fermions and bosons have the same mass.

(e. ",Q "') = 0

Thus Q acts as an antiderivation
I Eq. (1.4)j

(6.28)

a &1&2 &1 &2 &1 a 1 &1

+ (—1)"'Io»~'&(»'I Q-(P2) I »&, (6.29)

where k = 1 is the grading of Q Q Endi, and i = 0 or 1
according to whether x)z' Q V' is a boson or a, fermion.

We present here an additional diagonalization of the Q
which will prove to be useful in the construction of field
representations. It corresponds to diagonalizing iy5 I

= p—io 2

in our representation (6.10)7. The transformed Q
' then

reduce into two 2-spinors corresponding to (we denote the
chiral projection operators by pa and p~)

g. = (1 —'~.)/2Q'= ~ Q', e'= (1+'~.)/2Q'
~L (6.30)

The Q' is no longer real, since it is given by UQ = Q',
U+ = U '. The Majorana condition should then be rede-
fined. We get

Q" = ~((UQ)+vo) = ~&o U*e* = —vo~U*Q*

U 4:
Q

4)

These rest states are then boosted to any p by a Lorentz
transformation U(L~). The action of Q~ and Q~+ on the
boosted states can be derived from our knowledge of the
spinor behavior of the Q~ and Q~+ under Lorentz
transformations.

An additional result derived by Salam and Strathdee
relates to the action of the Q on two-particle states. Since
we have to preserve (6.16),

(Q "'+ Q "' Q "'+ Qo"') = —2(v.&)-a(P(z) + P(2))"

the cross terms have to vanish,
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and in our choice of c =——1, the condition becomes

Q' = &Q = Q" = —ov*e* = U*e*

With y5 real and anti-Hermitian, we thus find

(Q-")*= y-b'Qb'* = v.b'Qb' = Q. . (6.31)

The graded Lie brackets are in general

{e.,e '}= o, {Q. e."}= o, {Q. e"&
= 2 (I P' + o 3P' —o iP' —o 2P'). b

and for M ~ 0 and rest states

{Q 'Q ') = 2~ ~

(6.32)

while for the 3f = 0 case, we again see the reduction into
two subspaces with P + P' A 0, P' —P' = P' = P' = 0
for the first, and the parity-inverted states for the second
subspace. The Qi~ and QP are in one subspace, and the
Q2 and Q2 in the other.

For M Q 0 and rest, Q ~ and Q,~ = Q
~* can thus be

treated as annihilation and creation operators in the con-
struction of representation of states or fields.

C. Realization on a Grassmann algebra as a
generalized {Berezin-Kac) Lie group; superfields

Berezin and Kac (1970), following a similar idea of Lazard
(1955) and motivated by problems of second quantization,
introduced the notion of Lie groups with commuting and
anticomrnuting parameters. Their idea is the following. Let
G be an (ordinary) Lie group. Then G is a differentiable
manifold, and the group multiplication defines a differ-
entiable map of G & G —+G. The group axioms impose
some conditions on this map. Let F(G) denote the ring of
smooth functions on G, and F(G )& G) the ring of smooth
functions on G &( G. The multiplication then gives a map
from F (G) —+ F (G )& G), sending the function f of the single
G variable into the function @f of two G variables defined by

The two 2-spinors Q ~ and Q, z are thus conjugate, and
behave like the Q~ and Q~+ of (6.25), except that J" is
now the diagonal projection of spin. Thus

[J31 Q B] 1Q R. LJ31 Q R] 1Q B.

t Jal Q I] — ie I ~ (Jai Q I] —Le z

x's is graded commutative, i.e., x;x; = (—1)o'"~x;g;
W. e im-

pose the formal analogs of the group axioms, and obtain
what Berezin and Kac call a "Lie group with commuting
and anticommuting parameters. " If f & F, then it follows
from the right unit axiom that

pf (x,y) = f(y) + ZXf'(y) x, + (higher order
terms in x,). (6.34)

In applying GLA's as supergauges in the dual models
(see references in Sec. II.F), the Berezin —Kac method was
used, with Grassmann algebra elements appearing as group
parameters. Wess and Zumino (1974a) applied the same
technique in order to construct field representations and in-
variant Lagrangians. Salam and Strathdee (1974a, e) sys-
tematized the approach, which was further developed by
Ferrara, Wess, and Zumino (1974). However, as we shall
show, although the method does yield very useful results,
its foundations are unclear and lack consistency (Ruhl and
Yunn, 1974; Ne'eman, 1974). Ruhl and Yunn (1974) and
Goddard (1974) have recently tried to supply a better set
of basic assumptions and have indeed removed some of the
inconsistencies, except for difhculties with an indefinite
metric and for the fact that the Minkowski space coordi-
nates x" are still nilpotent elements obeying the requirement
(x&)"+' = 0, (with e = 4 in the conventional solution). In
general, it also seems doubtful whether indeed the gen-
eralized group can be used as a symmetry, except very close
to the identity. We shall now describe the formalism, using
the notation of the Appendix.

We use an 1V-dimensional vector space (over the complex
field) V(=—A'V), generating a 2~ dimensional Grassmann
algebra

The maps f —+ Xi' are linear, and can be thought of as
the analogs of infinitesimal right translation. If we put the
obvious gradation on F, then the map f -+ Xf' is a graded
derivation of Ii, and the X' form a graded Lie algebra. In
this way one associates a graded. Lie algebra with each such
"formal Lie group. "Conversely, starting with a graded Lie
algebra, by use of the analog of the Campbell —Hausdorff
formula, Berezin and Kac show how to construct a "formal
Lie group in commuting and noncommuting variables" to
each graded Lie algebra. The correspondence between the
graded Lie algebras and the "formal Lie groups" is func-
torial in the usual sense.

Qf)(*,y) = f( y) (6.33) N
Av = A"V.

The various group axioms, such as associativity, existence of
identity, and existence of inverses, can all be formulated in
terms of the map p. Since we can. assume that the group
coordinates are chosen so that the multiplication is given
by analytic functions, we can, without harm, replace the
ring of smooth functions by the ring of formal power series,
say Fg Then Fg&&g ca.n be identified with Fg Fg (com-
pleted tensor product). This is simply the assertion that
any polynomial in two variables can be written as a sum of
products of polynomials in one variable, and hence any
formal power series in two variables can be written as a
(formal power series) limit of such sums. We can then write
all the group axioms as a series of conditions on the map,
p: Fg —+ Fg )& Fg. Now let us replace the ring Fg by an
arbitrary ring F of formal power series in variables x;,
where each x, has degree d;, and the multiplication of the

We shall write this property as

{v,,v;}=0 forany i, j, v;, ;Q V (6.35)

with multiplication thus being defined by the n operation.

We shall also use extensively the elements of A'V =—0',
resulting from v;v; products. In this case, graded commuta-
tivity ensures that the elements w~ Q W commute. The
Minkowski space coordinates are identified with dements

The basis ~ectors of V are v~, v~, . . . , ~~,. since the Grass-
mann algebra is graded commutative (A2), the elements
of V anticommute,

v;n v;= (—1)v;n v;.
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"Superfields" are "local" fields, in the variables 8 & A'V,
x& Q A'V. 8 is a Majorana spinor,

e=o =C~ 0'

which amounts to a true reality condition

g g

(6.36)

in the representation (6.10). As to the coordinate, it should
be real in any case,

x~ = (x~)*.

Thus V is at least four dimensional. Indeed, a four-
dimensional quasi-Minkowski coordinate [it is not a true
Minkowski coor'dinate since (x")~+' = 0) in A'V can be
constructed from two 8, O' C V,

(6.37)

which, by Eq. (6.9) is Hermitian and real. From Eq. (6.14)
we observe that

0~~8' = -0'~~8

of TV, x" Q IV = A'V. If we attach a reflection operation
R to the v; Q V, v, —+ —v, , the entire AV splits into two
parts,

A.V = A.V' ~ + A V'+'

~ A"V Q Av& & if r is odd,

C: Av&+' if r is even.

Majorana spinors, so that I'
p

——iC p. To obtain an infini-
tesimal translation by a "constant" parameter c W e (8)

8 ~8 + e, (Q, ep} = 0 (6.43)

The resulting action is then a commutator bracket, as
needed for infinitesimal group action,

'[~ Q 8p) = ~p

The action on x& = 0'y&0 is thus bound to be.

i[~ Q,x") = ~y"8

(6.45)

(6.46)

Assuming now the existence of a "superfield" @(x„,8 ), we
can use a Taylor series to identify the structure of the
infinitesimal operator e Q,

U@(x„,,8 )U ' = g(x„—ay„8, 8 —e )

with e Q V, we have to act with ~ Q, where we use ~

rather than e„ in order to obtain the necessary tensor con-
struction as in Eq. (6.40). Note that exponentiation by ~

follows the Berezin —Kac (1970) method of generating a
generalized Lie group. Integration is defined through

fdv, = 0; Jv, dv; = 1; fv;dv;= (dv;, dv;} = 0. (6.44)

Note tha, t e & e(8) and (Q,e} = 0, as against Eq. (6.41),
require additional dimensions in V.

which can be rewritten, using (6.36), as

(v'v") p8p' = —8 ' (v'v") p8p. (6.3S)

(8,8p'} = 0 (6.39)

and the y y& matrices preserve this feature while taking care
of the spinor indices.

We now turn to the action of the Q on these elements.
From

(Q- Qp} = —2(v.c)-p~" (6.16)

We observe in this expression the (generalized) matrix
structure of the A operation between two Majorana-like
elements of V. It is still antisymmetric, because pop~ is
symmetric; the antisymmetry is thus derived from (6.35),

&a e( .,8.) + o("),

where the generalized group element is

U = 1 —ic Q

&a a = &n a

This yields the explicit structure

8
Q.(Av) =

~
ic.p

—i(~„).p8p ~AV.
88p

"
ax„)

(6.47)

(6.48)

[r„,x ) = —'8„.
Bx"

(6.40)

As far as its action on V is concerned, Q. —r.p(8/88p).
Thus Q is in V* or in Ai V. Note that for 8/88, an element
in V*, we are in the larger A, "V. Thus

88; 8v~.

Q will thus bracket with 8p as Endi V',

(Q-,Qp} = &c-p

(6.41)

(6 42)

where C & V0 appears as the appropriate metric for
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we know that the doubled action of the Q represents a
translation in W. We can thus guess that Q represents such
a translation in V, acting in analogy to

We now come to one of the difhculties or inconsistencies
of this picture. If we regard ~Q as a I.ie group generator,
we get, by Eq. (6.17),

[.-.Q., -pQ) = -.(Q.,Q» = 2-b.)- p&" (6.49)

However, from Eq. (6.14) we know that this vanishes, since
Py„X = —Xy„P. Even if we do not sum over the n and P
indices, we shall at least have vanishing expressions for
p, = 0, slncc yo = 1. This covers ln fact thc entire llttlc
algebra for M W 0 [Eq. (6.22)). We are thus faced with
two choices: either the Lie algebra is Abelian, or, as we al-
ready noted from Eq. (6.43), e and ep' have to lie in new

subspaces of V, which differ from each other and also do not
contain the 8 . In these new subspaces, we may be able to
ensure nonvanishing of the right-hand side. Indeed, the
simplest solution is to add eight dimensions, so as to have
different e and ep' on the right-hand side. The I'" are then
multiplied by 16 —4 = 12 new dimensions in A'V.
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It turns out that we can also add only two dimensions to
V, so that Ã & 6, and disconnect the new dimensions from
the spinor indices in e . Goddard. (1974) has constructed
this system, using two new dimensions. We denote their
basis elements as v5 and v6. This seems the most economical
solution. It may have been hinted at by Salam and Strath-
dee (1973a), but in their solution the number of odd gen-
erators would be doubled: (zt Q ) with a = 5, 6. Ruhl and
Yunn (1974) have pursued this method and come up with
26 generators instead of 14 for 'U. This results from six
for J"", eight for ~Q and 5'Q, 12 for ee'P„. Goddard has
found a way of avoiding the doubling. In the chiral picture
(6.30)—(6.32) we see that only cross terms in y~ and yz
contribute. This is true beyond the rest frame used there. '

Thus Goddard introduces the matrix

a = —:(1—v)"+ -'(1+ '~) = v".+ v".
and writes

= g-Iz&

where $p is a c-number Majorana spinor',

(6.50)

(6.51)

Note that all of this is necessary because the superheld
4(x„,8 ) is acted upon by a Lie group. However, if we allow
for 6nite transformations, 0 will have "crept" into the
new e, e ' subspaces, and our efforts will have been to no
avail. Still, we dare not allow Eq. (6.49) to have a vanishing
rhs since we would then lose the connection with our start-
ing point, in which Q acted as the "square-root" of P~.
We have by all means to recover Eq. (6.16) or (6.17), even
though the information will now be supplied by a
commutator.

The two subspaces of V = Ve+ V„where Vg has ~i 4

as basis, and V, has vz z, generate subspaces A.Ve (d = 16)
and A. V, (d = v) of A. V~+& and A V& '. Goddard's method
utilizes these subspaces for (8 )" and (e ), thus allowing
only infinitesimal transformations of 8 in Eq. (6.43). The
Lie group is thus physically applied only very close to the
identity.

We now follow Salam and Strathdee (1974a). Due to the
anticommuting properties of 8, any function f(8) must be
a polynomial. Since the monomials 0,8, 8 „have to be
completely antisymmetric, expanding g(x",8 ) in powers of
8 is a finite operation terminating at m = 4. The even
monomials belong in the AVg(+), the odd ones in AVg( ).
Altogether, P(xl', 8) is 16 dimensional as long as we do not
allow finite transformations in e . Expanding in 8, we get
Lusing Eq. (6.14)j

y(x, 8) = A (x)
+ ~(*)
+ —,'88F (x) + —,'8yz8G (x) + ,' (z8yzy„8—)A „(x) (6.58)
+ —,'888x(x)
+ —;, (88)2D(*).

We have altogether (before any subsidiary conditions or
equations of motion) eight spinor and eight boson com-
ponents. Foregoing the difhculty about the nilpotence of
x", which does not involve (6.58), we find that A (x), F(x),
and D(x) are scalar fields, G(x) is a pseudoscalar, and A„(x)
an axial vector field. Besides these Bose fields, we have two
(Dirac) spinor fields g and X.We can impose a "Hermiticity"
condition on the superfield,

(6.52) y (x,8)+ = y (x,8), (6.59)

and is real in our (6.10) representation. The y~ and yz are
Hermitian. Under complex conjugation, v5 and v6 are made
to obey

vs = v6& v6 = v5 (6.53)

so that, since yo anticommutes with the y5 in g,

(6.54)

~Q = kgQ = 4-(~5m~+ ~zv')-sQn = 6-S- (6.55)

and the S fulfill the role of generators of a Lie algebra,

O'- S~l = g-vfQv Q—z)gzz
= 2(gv.~a )- P" = 2 (v v.G)-

= »(v v.G)- T". (6.56)

Note that the new (even) Lie generators S yield a new
set of "translations" T". Just as the S Q I.iAV, so is Tl" in
I.~VA. V. We can thus "replace" the physical GLA 'U of
Eq. (6.18) by a "generalized Lie algebra" including both T"
and I'& for the sake of covariance considerations,

(J&" P&,S,TI'): [PI",Sqj = 0, [T",S j = 0,
PP~, T~j = 0,

PJ " T g = — » T"+ ""T (65'7)

Only J&" and E'I' are "physical, "in the sense that they do not
involve nilpotent elements. We shall return to Z when
studying symmetry and unitarity aspects.

Bx = —c(OF + OyzG) + ezyaypOA" ——', cD,

.6D = —2eOx. (6.61)

Notice that the numbers of fermion and boson components
are always equal, as required by our study of the "little"
algebra.

In counting components, we did not consider subsidiary
conditions, However, A„clearly has to obey a condition re-
ducing it to three components (in the M N 0 case). If we

where + implies besides complex conjugation a reversal of
the order of anticornmuting factors. The Bose 6elds then
make eight real components, and the spinors are Majorana
spinors. Had we started with a pseudoscalar P(x,8), all
parities would be inverted. We can also define P"(x,8), a
"vector" superfield, or P (x,8), a "spinor" superfieM, accord-
ing to the Poincare transformation properties

P'(x', 8') = $(x,8); Q '(x', 8') = u ~(A)gp(x, 8) etc. (6.60)

The variation of the fields in Eq. (6.59) under (6.43) or
(6.47)—(6.48) can be found from the equations leading to
(6.48). Identifying coefFicients in (6.58) we find,

'BA = ef
BOA +—', eF + —,'eyzG —+',~zyzy, A",

BF = 2ex —~Op,

' ~G = —keyzx —'YzW'~

W„= 2ezyzy„x —ezyzy„OQ,
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fields P and G have no dynamics and satisfy equations of
motion

we can replace A„ in Eq. (6.58) by A„+ B„B,B a pseudo-
scalar field. X can also be replaced by X + (ip„BQ) arid
D by D —~B„B&A.In that case, (6.61) will also have

8B = —E'r5lp —Z(8il9 ) 6'r56X

and an additional contribution to the P variation,

5lP' = ~ 61'r5'r„cl„B.

Also, the 6X, 6A„, 5D can now be re-expressed in terms of
contributions which involve them only,

5A p
= 2 f1'Z5'rpX —(zi~B /ztyB ) g 6z'y5'r„X

6X = i ,'eyzo—I'"(B„A„—B„A„)—i2eD.

Indeed, the superfield @(x,g) is not irreducible. It can be
made irreducible by applying a covariant and supersym-
metric condition,

(6.62)

where, using the representation (6.49) for Q, which we
shall denote as Q(A V),

(6.63)

This condition cancels three fields, which now make four
fermions and four boson components:

D=O, X=O, A„=O.

Such covariant and superinvariant conditions as (6.62)
can be constructed from powers of Q(h. V), Q(A. V) and their
chiral projections. Ferrara, Wess, and Zumino (1974), Salam
and Strathdee (1974e), O'Raifeartaigh (1974), and Nilsson
and Tchrakian (1975) have developed such a calculus. It is
based on the application of the 16 elements of the Clifford
algebra (6.22) in its A V realization, using Eq. (6.48), thus
yielding differential equations.

To construct supersymmetric couplings, one utilizes the
above method of identifying coeKcients of powers of 8. For
instance, if

The 4 (x,8) are reducible. One can also work with chiral
projections, by imposing conditions

(6.65)

where Q" stands for the AV representation of Q as in (6.48).
These superfields are now irreducible. The scalar (i.e., no
spinor or vector index on P itself) superfield uzi is then
composed of A, Pz, and F . They transform according to

5A~ ——efz, ~,

6g, zz
——yz„zz(F~ —BOA~) e,

.IFFY ———eiflPz„~.

(6.66)

We identify p = @z, @+
——@z,, i.e., p = (@+)*, though

one could also have unconnected projections.

Examples of superfields and Lagrangians will appear in
our review of the physical examples in which renormaliza-
tion and other properties were studied. We refer the reader
to the above mentioned articles (Ferrara, Wess, Zumino,
1974; Salam and Strathdee, 1974e) for other examples of
superfields, both spinorial (@,qb & etc.) and tensoral (g",@""
etc.). Furthermore, Capper (1974) has developed Feynman
diagrams reproducting the superfield couplings; these are
economical when studying the divergences of multiloop
diagrams.

Considering the physical complications involved in the
use of the Grassmann algebra substrate, it may be necessary
at some stage to possess a formalism producing the field
multiplets directly from the GI-A. One can use the (6.32)
set, just as the (6.26) subalgebra was used to construct
irreducible representations. To construct nonunitary ir-
reducible field multiplets (Salam and Strathdee, 1974e) one
applies Q& and Q&

* to a "lowest" representation X)(ji,j2)
of the proper Lorentz group. Assuming

F= 0, 6=0.
Note that the equations of motion for P, A, and B reduce
the (massless) states to one fermion and one boson.

we can identify

A3(x) = Ai(x)A2(x),

$3(x) = Aif2+ piA2,

etc.

or

& = 2(zi~A)'+ 2(~ B)'+ f~&f+ 2P'+ 2G'
——;&„(AB„A) (6.64)

which is indeed an example of a Lagrangian density. The
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Note that since the variation of D in (6.61) was only a
divergence, the "D3"component can be used as a Lagrangian
density (Wess and Zumino, 1974a).For the case @i ——@2 and
W„„qh = 0 one finds,

"D3" = e~»'( 'AB'A +——',i&X&+ -'—(8 B)'+ F'+ G'

we get four submultiplets: two from the action of Qz', Qz2,
Lin (—„0)j and one from their joint action (0.0), plus the
original

The total dimensionality is thus 4(2j,+ 1) (2j2+ 1). One
can also have a supermultiplet with inverted parities by
starting with

These representations are however generally reducible.
One can extract pieces by contraction with powers of
8/BxI', i.e., graded analogs of subsidiary conditions.

In constructing irreducible representations, it is important
to recall that considering, as in Sec. II.A, the boson and
fermion states as forming a two-dimensional graded vector
space V; the boson and fermion quantum fields g(x) and
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D. Inclusion of internal symmetries

I.et the indices i, j = 1, . . . , n denote an internal sym-
metry such as the SU(2) of I-spin, or SU(3). We then have,
in addition to Eqs. (6.16) and (6.17), a set (Salam and
Strathdee, 1974b)

(Q- Qw) = 2~v(v—.C)-pI'

LI'„,Q.;] = 0.
(6.68)

Restricting the system to rest states, we get a Clifford
algebra, C4„, whose dimensionality is 2 " and whose matrix
representation acts on a 2'" vector space.

(Q-Qp) = 2~' &-p~

Thus, for isospin LSU(2)j and assuming that the Q, trans-
form as an isospinor (e = 2), we find the symmetry realized
over a 16-dimensional carrier space. (The Clifford algebra
will have 256 base elements Q;, iLQ;,Qp;g, etc. . . . ) In
fact, we can start with any (j,I) multiplet as the lowest
state, and construct a representation with 16(2j+1)(2I+ 1)
dimensions. The quantum numbers of the states in the case
j = 0, I = 0 are given by the action of the 2n raising
operators only; their graded products form a smaller Clifford
algebra C2, whose dimensionality is indeed 2'"(= 16 for I
spin), which will indeed create the 22" states of the carrier
space. This enables us to get their quantum numbers
directly; (~, ~~), cV(2, 2), i1'(~, i2), A4(2, —,'). In this case these
are just the I6 matrices of the Dirac —Clifford algebra. They
reduce to (j,I)& multiplets:

(0,0)+ (-:,-')" (1,0) (o,1) (l,-') " (00)+.

Going back to the C4„of (6.69) we note that A'Q, will
form the Lie algebra SO(8) Q SO(6) SU(4), so that the
16 states can be grouped in SU(4) (Wigner) supermultiplets
~e4e6e 4'e i.

Indeed, we can use a generalization of Eq. (6.32) instead
of (6.68):

(Q;,Qg;*} = 28,g6;,M, a, b = 1, 2

(Q-,Q;} = o, (Q.,*,Q.,*) = 0
(6.69)

for rest states. Here we have the same number of odd
generators 4e; the results are the same except that A'Q now
contains iLQ „Q&,.*j= S,~& which is clearly the sg(e)
algebra, the rest of SO(8) being given by PQ,Qj and LQ*,Q*j.
Note that this "little" GLA now has Q; Q I i, Qo,* Q I-i,'
1, S„.~& Q I.o.

The (6.69) bracket can be generahzed for cases where the
representation n differs from n*, such as the SU(3) case:

P(x) themselves represent Endo V and Endi V operators,
respectively. Their GLA brackets with the Qi, and Qii are
thus fixed by (1.2). Indeed, one may recover the entire
(6.61) set, without the e parameters, by bracketing the Q
directly with the fields f(x), A(x), etc. Summing up, for
61, a GI.A generator,

(6.67)

constructed the O(3) case (fitting 6.69) and discussed the
totally antisymmetric features of the multiplets, due to the
graded commutativity and filtered structure of the Clifford
algebra. It seemed dificult to reconcile with the physical
states in the quark model assignments. However, it was soon
noted (Wess, 1974) that if one introduces SU(3)„i„
SU(3)g~, the totally antisymmetric representations will
indeed contain the observed states whenever the color
indices will contract or antisymmetrize to a singlet.

Salam and Strathdee (1974b), Dondi and Sohnius (1974),
Lopuszanski and Sohnius (1974), and Firth and. Jenkins
(1974) have further studied the isospin case and written
down some of the Casimir operators of that GI A.

We shall leave the case of a local gauge symmetry and the
problems relating to fermionic charge operators to our dis-
cussion of physical applications of supersymmetry.

L~,Q.'j = o (7.1)

H=QQ 2.
a,i

Conservation is thus guaranteed. In the case of the R
of (6.15), which do not commute with II, conservation is
ensured by

—Pc,Q.j = (—~,~ ).,—zp = o.
dk df

(7.3)

These examples can be generalized in the following
theorem: "A GLA g is conserved if its even subalgebra 2
(the Lie algebra) is conserved, and if its odd generators 8
transform irreducibly under 2 and contain at least one
nonnilpotent generator 8 ."

Clearly, Le~, e~j Q & and does not vanish, so that
(d/dt)6 = 0, leading to (d/dt)8; = 0 for all i, through
the action of Z.

YVe now give a preliminary discussion of the role of the
Noether theorem (for recent advances see J. Schwinger,
1951; Orzalesi, 1970; Y. Dothan, 1972; J. Rosen, 1974) in
the case of a GLA, and in particular for 'N. From (6.64)
as a Lagrangian, and using the variations in (6.61) and
the condition (6.62) we find the conserved (spinor —vector)
current,

j-"(x) = ((V"~~(&(x) —&(x)V~)V"4 (*)))-
—2~(((I"(x) + v~G(x))vV))- (7 4)

Vll. APPLICATIONS OF SUPERSYMMETRY

A. General symmetry considerations

All supersymmetric models upon 'N or its extension by
internal degrees of freedom Las in Eqs. (6.68)—(6.70)g have
in common two simplifying features:

(Q„,Qp, ) = 25 p8;;M, n = 1, . . . ,4. (6.70) Q. = fd'xj. '(x). (7.5)

The Clifford algebra is now C8„, d = 2'", acting on a 2'"
dimensional carrier space. Salam and Strathdee (1974f) have

If we use the superfield p(e,x"), we can recover the con-
servation of Q and j & from the solvable generalized Lie
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algebras of Ruhl and Yunn or of Goddard. However, this
implies a fictitious nilpotent x& and a Hilbert space over
the Grassman elements. The correct answ'er thus consists
in applying the GLA directly. At present, the reinterpreta-
tion for GLA of the Noether theorems is in aceordanee
with the following scheme:

Symmetry of Action 8,
of Lagrangian density 4

(up to B~Z')
of 5-matrix

Vo,U-'= e, UzU-'= z
+8"2,', USU ' = S

'(V/a~)Q = 0

Q = Jd2Xj'(X)

U = expinQ. (7.6)

We replace the lhs by a statement at the level of the algebras,

LQ, O'3= 0, tQ, Z1= a„Z', PQ,Sg =0)
(1/d;)Q = 0, a„j = 0

Q = j' ~' && j'(~) (7 7)

and we now generalize the brackets to include the GLA
multiplication. The physical interpretation of this algebraic
version is again equivalent to a symmetry: the discrete
permutations of field (or superfield) components produced
by the Q charges as generators of'the symmetric group in n
elements (I = r + 1, 2r + 1, 2r, 2r, 7, for the Lie algebras
A„, 8„, C„, D„, G2). This is in analogy to the realization of
the discrete symmetry group of parity by the matrices &0
and I for spinors. For a GLA, we use the same counting,
after first replacing it by the Lie algebra acting on the same
bounded homogeneous domain (Sternberg and Wolf, 19/5).

The inverse Noether theorem yields either a Lie algebra
or a GLA, according to whether the conserved currents (or
charges) all have integer spin, or contain a subset with half-
integer spin. This results from the same considerations as in
the discussions leading to (6.67).

We hope that the methods discussed in Secs. II.J and
II.K and the relations between graded and ordinary Lie
algebras, as discussed in Sternberg and Wolf (1975) will be
used to discuss the Noether theorems from a more geo-
metrical point of view.

The GLA 'U and its extensions (6.68)—(6.70) represent
algebras which contain the Poincare algebra (P, or (P and 5
(the SU(3)@~ SU(3),o&„) as subalgebras. As GLA, they
do not come directly under the cases which have been
studied and classified by L. O'Raifeartaigh (1965) or under
the no-go theorem of S. Coleman and J. Mandula (1967).
However, Goddard (1974) has used Eqs. (6.S5)—(6.57) to
construct the Lie algebra "equivalent" to U, i.e., having
the same vector space as carrier space for their representa-
tions. According to Levi's theorem, any Lie algebra E can
be written uniquely as a semidirect sum

(7.8)

where 4 is semisimple, and 2 solvable, i.e., for 2 "~ = Z,
a commutator brac&et, g'~& = 0 for

some e. O'Raifeartaigh then proves that there are four
classes of inclusions of (P C F: ((P = J~ + Pl')

(1) &"c~; P = ~
(2) I"c~; P c~, x —P ~o, tz,~ g=0

As we can see, the case (6.57) studied by Goddard is
in class (3).The O'Raifeartaigh theorem then. forbids mass-
splitting within a multiplet, if at least one state has a
discrete 2222 eigenvalue for P„P"

~
1).However, we can deduce

the same result directly from Eq. (7.1) for U and any ex-
tension by S, provided. Eq. (7.1) holds.

The Coleman —Mandula (1967) theorem has been extended
by Haag, Lopuszanski, and Sohnius (1974) to GLA sym-
metries of the S matrix. However, it should be remarked
that symmetry breaking according to the Goldstone scheme
will tend to violate the requirement of additivity assumed
by Haag et al. in their "no-go" theorem.

/

Goddard (1974) succeeds in defining a complex-valued
inner product in a quadrupled Hilbert space (one each for
ij5, 2„~2 A ~,, 1), but loses positive-definiteness. In either case,
the Coleman —Mandula theorem doesn't apply.

B. Improved renormalizability in a Yukawa and
y' interaction

The first example of a supersymmetric interaction was
provided by Wess and Zumino (1974b). They added to the
free Lagrangian (6.64),

Pi„,' ——2(B„A)2+ 2(B„B)2+if0$+ 2F'+ 2G', (7.9)

a mass term

= 2222(FA + GB —gP) (7.10)

and an interaction

@,= g)F (A' —8') + 2GAB —f(A —y,B)yg. (7.11)

The terms (7.9)—(7.11) all transform invariantly up to a
4-divergence, under (6.61) as amended through the in«o-
duction of the field 8 )see discussion after (6.61)g. One can
also add a term Lsee 6F in (6.66)g

(7.12)

A and F are scalar fields, B and G are pseudoscalars, and

P is a Ma3orana spinor. F and G are auxiliary and satisfy
the equations of motion,

F= —;g(A2—82—) + 2mA + X/4
—G = —;gAB+ —', n28.

Eliminating F and G from the Lagrangian, we find

(7.13)

2 = —2, (B„A)2+ —2, (8 8)'+ P(id —222)P —
—2,2222(A2+ 8')

ig2i2A (A2 + 82) ig2(A2 + 82)2 gf(A P58)f
——22Xt —;X+222A + -', g(A' —82)g, (7.14)

which represents a nonlinear realization of supersymmetry,
corresponding to the elimination of Ii and G in the linear
(6.61), (6.66). We can regroup the part of the "potential"

Lexampie: inhornogeneous isl(6, c) with 72 "translations"j

(3) J"C A; P" C Z, Z' i = 0

/this includes (6.57)1
«)~n~=0

/example: the conformal algebra su(2, 2)j.
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which involves the A and B fields only,

V = —Z(A, B) = ~2m't A + (X/2m)j + 2m B'
+-'gz(A2 —B') + -'mgA (A2+ B2)

+4g2 (A 2 + B2)2 (7.15)

F, and G,

z = j. —4g'I

I = —i
(7.19)

& = —.(QQ)'(4+4-) ——.QQ(&(4+) + &(4-)), (7.16)

with Q = f~ as lI1 the dlscusslon of (6.66). Q = Q(A. V) 1s
given by (6.48), I' is a polynomial of order three. It is
apparent that the four-volume integral vanishes, trivially,
so that

Z(A—,B) is the "potential" V whose extrema we shall later
study in our search for Goldstone-like solutions. Note that
the P F term can be eliminated by a shift in A. Salam and
Strathdee (1974e) have shown how to derive (7.14) using
the superfield calculus. It results from writing

(2n.)4 (k' + m')' 16m'

No diagonal mass is generated for either A or B.

m. = mZ. (7.20)

The quadratic divergence of the self-energy cancels out
and the remaining logarithmically divergent contribution
is proportional to —p . Similarly, the p self-energy is pro-
portional to iy&p„, and the corrections to the off-diagonal
mass terms mFA and mGB cancel. Thus the only mass
renormalization is that due to the wave function renormali-
zations,

5f d' X 4 = f d4 X ~Q(AV)Z = ~(8/(38)d4 X 2
+surface term = 0.

Corrections to gFA', —gFB', 2gGAB cancel, and the finite
corrections to the Yukawa terms vanish for zero external
rnomenta. One finds

The relevant terms in 4 are obtained by setting 8 = 0,
yielding (7.14). g„= gZ . (7.21)

j "= (&(A —v5B)v"4'+ im(A + v5B)VV
+2ig(A + y5B)'yQ); B~j = 0. (7.17)

The conservation equation can be checked directly, using
the equations of motion and the identity

&(It4) —= V 54 (PV54). (7.18)

Wess and Zumino (1974b) showed that the theory of Eq.
(7.14) is less divergent than if the masses and couplings were
independent. For instance, in the one-loop approximation,
the quadratic divergence of the mass renormalization for
A and B cancels out. The logarithmic divergence of the
vertex correction to the Yukawa interaction also cancels
between the A and B terms, leaving a finite vertex correction.

In its original form, before elimination of F and G, the
theory can be regularized (by the method of Pauli and
Villars, for instance) without spoiling supersymmetry. Thus,
the Ward identities following from Eq. (7.17) in perturba-
tion theory are expected to be satisfied. If one uses 8 f + eC

as the unperturbed Lagrangian, one finds as propagators

(AA) = (BB)—a.,
(~~) = (GG&- a~.,

(A&) = (BG) ——ma, .

In the one-loop approximation, there is only one re-
normalization needed, a logarithmically divergent wave
function renormalization constant Z, common to A, B, P,

Before we study the effects of renormalization (and dis-
regarding the Z~ term at this stage), we already observe
in (7.14) the expected result of a symmetry: A, B, and @
have related bare masses. The three interactions (P', P4,
and the Yukawa term) have related couplings 2gm, 8g', g.
Supersymmetry thus does indeed play the role of a sym-
metry /which we can interpret as a discrete symmetry as
explained in Eq. (7.7)g. After elimination of F and G, the
conserved current is

No divergent trilinear or quadrilinear interactions are
generated. Iliopoulos and Zumino (1974) and Tsao (1974)
have investigated this model in higher orders. For two-loop
dlaglams they calculated explicitly the various contributions
and again found no mass and vertex corrections. They
proved to all orders that the theory is renormalized'with
one single renormalization constant, Z, the wave function
renormalization, so that Eqs. (7.20) and (7.21) hold. Note
that theories like (7.10)—(7.12) are renormalizable even
without supersymmetry (i.e., with arbitrary m, and g;;I,),
but supersymmetry has resulted in highly improved re-
normalizability. There is thus a possibility that some u
priori nonrenormalizable model might become renormali-
zable when supersymmetry is imposed.

The full set of Vizard identities corresponding to 'U super-
symmetry has been derived by Iliopoulos and Zumino. They
have also adapted a regularization scheme based upon the
insertion of higher derivative terms in 4, in particular in
the kinetic energy term Z&„,. They use the insertion

2(~„&A)'+ —2(8 I lB)'+ iOQOI:If+ 2(l:I&)'
+2(OG)'. (7.22)

g~ transforms like gf„,under the Q . It is sufhcient to make
all diagrams finite, including tadpoles.

Explicit syrnrnetry breaking (in contradistinction to
"spontaneous" breaking} is tried by the above authors in
the form of a term

@sa = cA (7.23)

(rather than Zq, which was invariant under 'U). Zss is not
invariant under 'U, and breaks current conservation,

Bqj"= cf. (7.24)

However, the entire renormalization program is un-
aGected, with only finite corrections appearing due to Zs&.
The masses are now only related by the equation

m~2+ mgP = 2m42
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derived in the tree approximation. In higher order the equa- mixes with the vacuum when transforming under the Q .
tion gets finite corrections. Looking at Eq. (6.61) or (6.66) or at a chiral-summed form

of the latter,
The Zsii term can be eliminated by a simultaneous shift

of A and F, A —+ A + a, F —+ F + f, with the equations AA = Cf—,

AB = —Cybf,

~4 = (P+ Gv) —-'~&(A+ Bv),
Ap = —,'iCOiP,

hG = —,'iCyb6$,

4f + 2ma + ga' = 0

2mf+ 2gaf+ c = 0
(7.32)(7.26)

which ensure vanishing of linear terms in 3 or Ii. Eliminating
f we get a cubic equation for a,

a(2m+ ga)((m+ ga) + —'c} = 0.

Taking the limit c —+ 0, this has three solutions,

ai ——0, a~ ———2m/g, ab ———m/g

(7.33)~-ii~4' = (Q- A).
Note that for didactic reasons we have written (7.32) as b„
a, discrete transformation (e = 1) involving only the GLA,
without going through the Grassmann elements A V. Taking
Eq. (7.33) between vacuum states we should get vanishing
contributions, except if the vacuum is not superinvariant.
In the latter case,

(ab is the "central" value). Taking in Eq. (7.14) B = f = 0
and A ~ a we have a "potential" —2 (a) = V(a)

V(a) = -',m'a'+ -'gma'+ —'g'a'+ ca
=-;a'(m+ —',ga)'+ ca. (7.28)

we see that F is the scalar field which is connected to P under
(7.27) the transformation

Our solutions a, correspond to the stationarity points of
V(a). We see that V(ai) = 0, V(a2) = —2mc/g —+ 0,
V(G3) —

b (m /g ) c(m/g) ~ b (m /g ) so that al and G2

produce minima, and a3 is a maximum. This is unstable,
with no possible stabilization through a sign change. From
Eq. (7.14) we see that (for c b 0, i.e., vanishing of explicit

'
symmetry breaking)

mf = m+ ga~0 for a3
f

so that this is a "Goldstone spinor" solution, which is,
however, unstable. Notice that Eq. (7.25) then requires
one of the two bosons to be a tachyon, if the other one is
massive. Indeed, from Eq. (7.14) we have to first order in g

m~2 m2 3gm~ 3 g2g2 for g m~2 —Lm2

(p) = m2/4g ——,'Z (7.35)

so that the vacuum does break supersymmetry "spontane-
ously" as in Eq. (7.34), with the massless Majorana P as
Goldstone fermion. For (7.30) they got the equa, tions

M(A ia) + g&ijk&abc(A jb)(A kc) (p ia)

M(F ' ) + 2ge" e "(A ")(F "') = 0

Diagonalizing the (A+' ) and choosing an SU(2) symmetric
solution (A+'a) = ii ~ I, the equations reduce to the cubic

(7.34)

Indeed, Salam and Strathdee (1974c) showed that the ab

solution (Iliopoulos and Zumino, 1974) of Eq. (7.27) cor-
responds (for c = 0) to

m~ = —m —3gma ——g2g2. for u3, m~' = —2m'. X(M+ 2')(M+ 4'*) = 0. (7.36)

Salam and Strathdee (1974c) have investigated directly
the idea of a Goldstone spinor in that same Lagrangian,
with similar results.

To include the effects of an internal symmetry, Salam
and Strathdee (1974e) have rewritten Eq. (7.16) with @~
and P = @+* as 3 X 3 matrices of superfields, behaving
like the real representation (3,3) of SU(2) I, I3 SU(2) ji (we
use the dimensionalities in this notation, i.e., Il. = II. ,Iji ——1). The result is

& = -'(QQ)'Tr(4- 4+) ——:(QQ)T (4 4 + 4- 4-)
+gQQ(«t 4++ «t 4-). (7.29)

In terms of component fields this is

iag A ia + p jap ia + iipiagpia

+M(A iaP ia + A iaP ia 1yiayia)

+g&ijk&abc(A iaA jbp kc &A i pcb(] +a&+ )pkc
iaA jbP kc iA i~jb(1 Z+ )Pkc) (7.30)

where

A~ ——(1/&2)(A ~ iB), F~ = (1/v2)(F ~ iG), (7.31)

and P' is again a Majorana spinor. Note that "spontaneous"
breaking of supersymmetry occurs when a massless f'

There are thus three solutions P;, all conserving parity:

0, X2 ———M/2g, Xb
———M/4g.

&& corresponds to unbroken supersymmetry. For P 3 one finds

(A/ia) = —(M/4g) 0'a (F/ia) = —(M /Sg) 6'

i.e., both supersymmetry ((F) W 0) and SU(2)z, X SU(2)z
(since (A) & 0) are spontaneously broken. This is an un-

stable solution, with some mesons acquiring imaginary
masses. X2 is stable; it has (F~) = 0, so that there is no
spontaneous supersymmetry breaking. It turns out that
the internal symmetry is spontaneously broken instead,
with the entire I = 1 supermultiplet staying at M& = 0,
while the I = 0, 2 supermultiplets have Mo = M M2 = 2M.
Changing to a partly local gauge SU(2)i «i SU(2)«ab»,
Salam and Strathdee (1974e) showed that some of the fields
in that I = 1 superfield (which now contains a Yang —Mills
field) acquire masses. The Higgs mechanism is working and
provides masses for the spinor and vector fields.

Summing up the situation with respect to spontaneous
supersymmetry breaking, we do not yet have here a stable
example where this really occurs ((F) W 0). Iliopoulos and
Zumino (1974, see the Appendix A) even conjectured that
it might be forbidden, but we shaH. see in the next example
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(supersymmetry with an Abelian local gauge) that it can be I, = 1 multiplet and are both massless. Obviously, this
done. theory is both superinvariant and electric-gauge invariant.

Ferrara, Iliopoulos, and Zumino (1974) have investigated
the Gell-Mann —Low ("renorrnalization group") eigenvalue
equations for the 'U supersymmetric model in (7.14). They
find that as implied by Eqs. (7.20) and (7.21), there is no
eigenvalue solution other than g = 0, a theory of free fields.
Thus the effective coupling increases indefinitely with k'.
The result is the same for m —+0, a VP supersymmetric
theory.

The improved renormalizability of Lagrangian theories
due to supersymmetry has led to the expectation that some
otherwise unrenormalizable I agrangians might become re-
normalizable when supersymmetry is imposed. There is as
yet no example where this has happened. Lang and Wess
(1974) and Woo (1974) tried Lagrangians with A6,
PA P, JAB&5$ 'U supersymmetric terms. Although there
were numerous divergence cancellations, the theory remains
unrenormalizable.

e„„„=e(1+ ie'I), I =
d4k i

(2~)4 k'
(7.39)

In both vacuum polarization and light-by-light scattering
there is no need for any special treatment (regularization
or other) of the diagrams to ensure gauge invariance of the
results.

The construction of this model involves some complica-
tion, with the original Lagrangian appearing as an infinite
power series in e and highly nonrenormalizable. However,
superinvariance, gauge invariance, and an additional sym-
metry corresponding to the commutator of Q with the
"electric charge" local gauge generator provide a choice
of the latter hybrid gauge such that 2 is greatly simplified.
In the one-loop approximation, supersymmetry causes
various cancellations between divergent contributions and
the model is renormalizable. The masses remain equal within
the multiplets, and

C. Supersymmetry and Abelian gauges; existence
of a Goldstone-Higgs ease

Wess and Zumino (1974c) have constructed a model
theory which appears to involve a minimal set of fields
sufFicient for the inclusion of an interaction resembling
electrodynamics, i.e., a coupling to a conserved charge
resulting from an Abeljan local gauge. This is the final
Lagrangian, after the elimination of several auxiliary fields:

L (~A ')' + (~~8')' + ~4"W")
i=1,2

—-,'- g [m'(A,' + 8 ) + imp, P;)
i=1,2

A i ——(A, + 8,)/v2, A, = (A, + 8,)/W2)

8], —(8] A 2)/W2, 82 = (82 A 1)/v2 (7.41)

with mass terms

——(m2+ $e) (Ai2+ Bi2) ——'(~2 —ge) (A 22+ 8,') (7.42)

and a quartic self-coupling,

Fayet and Iliopoulos (1974) have added to this Lagran-
gian a parity-breaking supersymmetric and gauge-invariant
term. It amounts to the appearance of off-diagonal mass
terms between A;8;,

ke(A 182 A281) ~

Diagonalizing, they obtain the fields A;, B;:

z—-'V V~" + —xflx
2

ie2(A 2 A 2+82 82)2 (7.43)

eLV (A 1~ A2 + 81~ 82 &pip f2)

+ &x{(A1+7581)$2 (A2+ Y582)pi})

+ —LV„V~( Q (A '+ 8') + (Ai82 —A28i)')
i=1,2

(7.37)

Here the charged fields A, 8, and P are given in terms
of their real components Pand AB„B—= AB„B —(B„A)8)

{A = (1/&2)(Ai+ iA2), 8 = (1/v2)(Bi+ iB,),
0 = (1/~2)(A+ V2) (7.38)

We observe that beyond the electromagnetic interactions
of the massive charged fields A (0+), 8(0 ), and P(2), we
have a Yukawa-like coupling of the same strength, of x, f,
and A or 8 (as if the electromagnetic field were replaced
by the spinor x). The masses of A, 8, and f (they embrace
two real I, = ~ representations) are equal, and the
couplings are only e and e'/2. This model is similar to the
analogous minimal extension of gravitation (Volkov and
Soroka, 1973) which involves I = 32, 1, 2 together with the
J = 2 graviton. Our fields V& and X belong to a single

We note that the masses of the A, B components are thus
no longer equal to the mass of P, i.e. , supersymmetry appears
broken. The role of the Goldstone particle is played by the
massless X spinor.

There are now two cases. Taking $e ) 0, we have

case a: eP —$e ) 0
case b: m' —fe ( 0.

In case a, the origin is an absolute minimum of the A,
8 fields. Ordinary ("electric" ) gauge invariance in unbroken,
V& is massless and the "electromagnetic" interaction is given
by

i=1,2

g2

+ —V„V [Q (A,'+8, )).
i=1,2

(7.44)

In case b, ordinary gauge symmetry is also spontane-
ously broken, and we shall see that we have a Higgs —Kibble
mechanism at work. Observing that the "potential" is in-
variant under rotations in the (Ad32) plane, we settle on
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the direction of A2 and translate that field,

A2~A2+ a u2 = 2((e —m')/e') 0 (745)
which yields modified mass terms (due to the quartic
interaction),

m'(Ai) = 2m' m'(Bi) = 2m' m'(A2)
=2(ge —m2) ) O; m2(B,) = 0;

m'(V„) = (e —m') 0 (7.46)

As for the spinors, the mass term in the Lagrangian
becomes

2'im($14'1 + f242) ieX+(7542 4'1) ~ (7.47)

This will be diagonalized into the new spinor fields:

gi = 2L(1+ cosp)fi —(1 —cosp)y5$2 —V2 sinpXj,

7)2 = 2L(1 —cosp)r5pi + (1 + cosp)$2 + v2 slnp'ysx)~

= (~2) '»nP(A+ V~A) + cosPX,

p = arctan(ga/m),

and the masses will then be

m(gi) = m(q2) = (m'+ e'a')& = (2&e —m'),
mQ. ) = o. (7.48)

(g —2) —- 4~~4V""
4m

would break supersymmetry, which thereby forbids the
existence of an anomalous magnetic moment. When check-
ing how this occurs in terms of Feynman diagrams, they
found that the Yukawa XAP and Xy,BQ interactions provide
the necessary cancellations:

vP

A. A B& ~B
/

We observe that spontaneous breaking of supersymmetry
is still due to a massless Goldstone spinor, the t. On the
other hand, spontaneous breakdown of the Abelian gauge
invariance has occurred, and as a result of the Higgs —Kibble
mechanism, the gauge field Vi" has acquired a mass. The
B~ field is the Goldstone boson which was supposed to help
break gauge invariance spontaneously and which is now
removable, due to the emergence of a longitudinal com-
ponent in V&. Thus the Higgs —Kibble mechanism has acted
for gauge invariance, while supersymmetry is still in a pure
Goldstone situation. Fayet and Iliopoulos have checked on
the role of the 1 by studying the vacuum expectation values
(A2&, (Bi&, (~2&, (Gi&, «c.

The renormalizability of this Abelian gauge supersym-
metric model has not been checked beyond. the one-loop
approximation. However, - some insight into the cancella-
tions due to supersymmetry was provided by Ferrara and
Remiddi (1974). They noted that a Pauli term in the elec-
tromagnetic interaction

The final Lagrangian becomes

2 = Tr( ——,'V„„V~"+ —,'(D„A) + ', (D„B) + -', iC-@„C

age PA +—~,B, Cf+ -,'g (i(A,Bj2)). (7.49)

All fields are written as Ã )& X matrices, over which the
trace is taken for Z.

Qk g Ck + gfklm fT lCm' (7.50)

c' = —(4 +~4 ),
v2

(7.51)

where Pv is the Majorana field in the V& multiplet, and f~
belongs to a matter multiplet with A and B. The baryonic
gauge is given by

4 ~ e'~c 4*~ e '~4*

The conserved supercurrent is given by

j"= Tr& —
4 V..Lv",v'lv"C'+ &gLA»j»&"C'

i@(A —~,B)q~4). (7.52)

All coupling constants in Eq. (7.49) are given by g, the
gauge coupling. The theory will be asymptotically free pro-
vided the Callan —Symanzik function P in the Gell-Mann-
Low eigenvalue problem remains negative (and if the theory
remains renormalizable). For the case of I massive matter
supermultiplets, and SU (Ã) symmetry (Ferrara and
Zumino, 1974)

P = —(g3/16~2) (3 —~)N. (7.53)

D. The Yang-Mills field; fermion number gauges

Salam and Strathdee (1974d) and Ferrara and Zumino
(1974) have constructed the supersymmetric version of the
Yang —Mills field. , i.e., a supersymmetric Lagrangian which
is also invariant under the action of a local non-Abelian
gauge group (a gauge "of the second kind"). We refer the
reader to the original papers and to the review by Salam
and Strathdee (1974f) for the details of the construction.
The end result involves n "matter fields" which are realized
by a J,„= i2supermultiplet each ("scalar" superfields, in
the notation of these authors) and one J, = 1 super-
multiplet (the Yang —Mills superfield), all lying in the ad-
joint representation of the gauge algebra. In principle, the
matter fields are not restricted to the adjoint representation:
also, they can be massive, whereas the J,„= 1 superfield
is massless because of gauge invariance. However, there is
then no way of introducing a fermion number group. The
spinor component of the J, = 1 gauge field is a Majorana
spinor, which cannot carry a charge since it is its own charge
conjugate by definition. This can be set right through a
mixing with another Majorana spinor, belonging to the
matter fields. For this purpose, the matter fields become
massless (like the gauge field) and are restricted to the
adjoint representation of the gauge group. Masses may then
be due to spontaneous symmetry breaking, but this appears
impossible in the linear version and the hope would thus
be that it can be due to higher order corrections (S. Coleman
and E. Weinberg, 1973).

a+ b+ c = 0.
Thus n & 3 preserves asymptotic freedom, and e = 3

yields a finite renormalization constant (P = 0).
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Suzuki (1974) has studied the possibility of spontaneous
symmetry breakdown and the emergence of masses for the
various fields. It appears that the supersymmetric limit is
not realized as a local minimum in every possible direction
in the parameter space of independent couplings. Neverthe-
less, asymptotic freedom will not be ruined by the inclusion
of "soft" explicit or spontaneous breaking. "Soft" implies
canonical dimensionality less than four. The P functions
are unaffected, but new and superrenormalizable couplings
enter into the renormalization group equation. A search for
asymptotic freedom with a Inassive gauge supermultiplet
failed to produce such an example.

A model in which the gauge is chiral and thus doubles
the gauge supermultiplet provides an alternative way of
generating a complex spip. or gauge field capable of carrying
a baryonic charge (R. Delbourgo, A. Salam, and J. Strath-
dee, 1974). The theory is symmetric between V —A and
V+ A. Explicit masses are still forbidden, however, in the
matter fields.

In Sec. VI Lsee Eqs. (6.68)—(6.70)j we discussed a "non-
trivial" inclusion of internal symmetry (the Yang —Mills and
other cases we discussed here being "trivial" in the sense
that they do not involve a supersymmetry GLA other than
'U or VP). As described in Sec. VI, the main physical result
appears to consist of a reproduction of the quark model
states when the internal group is taken to be SU(3)„i„)&
SU(3)g~. The local gauge result in (7.49) might on the
other hand be taken to represent an important physical
requirement imposed on phenomenological hadron fields in
their no~ 0 limit, which would explain saturation at the
three-quark level through the requirement that physical
states belong to the adjoint representation of the internal
algebra. However, this would point to a special role for
baryons in 8 as against 10.

Ylll. RESULTS AND PROSPECTS

The actual physical results to date can thus be summed
up in the following list:

(1) Like every other symmetry, quantum statistics
(Bose—Fermi) independence (supersymmetry) implies very
strong constraints on couplings and masses. Although all
models studied to date are only formal models which do not
correspond to reality, perhaps a modification of the method
might lead to an explanation of some of the observed
regulanties in the mass spectrum of the hadrons. These
observed regularities, which indicate relations involving
small integers between masses of fermions and bosons, have
been connected to various aspects of the quark model. in a
heuristic fashion. Perhaps these relations might emerge
from a supergauge symmetry for a more sophisticated
Lagrangian. Some better understanding of a relativistic
quark model may already be provided by the GLA ap-
proach Lsee Eqs. (6.68)—(6.70)j.

(2) Renormalizability is sometimes impr'oved. In the
examples cited the supersymmetry greatly reduces the
number of renormalization constants. Previously unrelated
types of interactions become connected via a supergauge
invariant Lagrangian, which may thus help in unification
schemes.

(3) We remind the reader that an independent pathway
leading to supersymmetry was evolved in the search for a
Goldstone role for fermions. Furthermore, other attempts
were made to use fermions in spontaneous symmetry break-
down of the supersymmetric models in strong and weak

' interactions. It seems that the classical solution for a stable
symmetry breakdown cannot be used in the more sophisti-
cated models, but radiative corrections may improve the
situation.

(4) The straightforward generahzation of the Yang—
Mills gauge requires the fermion 6eld to behave like the
Yang —Mills vector 6eld under the internal symmetry. If we
impose the graded Lie symmetry upon the phenomenological
fields, this would explain the appearance of the baryons in
an octet, and thus the nonexistence of quarks. This seems
very intriguing. On the other hand, one may include the
internal degrees of freedom nontrivially in the context of
a larger GLA imposed on the fundamental fields. To repro-
duce the observed multiplets, the internal symmetry has
to contain the color variable as well. We thus are led to the
most interesting challenge: is there a formalism which will
fix uniquely the structure of the fundamental system and its
interactions: quarks, leptons, Yang —Mills "color" gauge
6elds, Higgs —Kibble fields to provide masses, the Wein-
berg —Salam intermediate bosons, etc.
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APPENDlX

In this appendix we quickly review some of the basic
facts concerning Clifford algebras and exterior algebras.
Let V be a vector space over a field K. (In the cases of
interest to us E will either be the field of real numbers or
the field of complex numbers. ) We recall that the tensor
algebra, T(V), is the graded, associative algebra

T(V) = T'(V) + T'(V) + T (V) q" = Z+ V

+VS V+
where T (V) = X, T'(V) = V, and T"(V) is the space of
contravariant tensors of degree k, i.e., T~(v) is the k-foM
tensor product of V with itself. We regard V as the sub-
space, T'(V), of T(V). The algebra T(V) has the following
"universal" property: let k be any linear map of V into some
associative algebra, A with unit. Then there exists a unique
homomorphism, q, of T(V) into A such that q coincides
with / on elements of V.

Let Q be some quadratic form on V, and let I(Q) be the
two sided ideal in T(V) generated by the element» ~
—Q(v)1 as v ranges over V. The quotient algebra, T(V)/
I(Q) is called the Clifford algebra of Q, and will be denoted.
by Co(v). No elements of V lie in I(Q), and so the map
V —+ T(v)/I(Q) = Co(v) is injective, and we can regard
V as a subspace of Co(v). If l is any map of V into an
associative algebra A with unit satisfying the identity

E(~)' = Q(~)1,

then the homomorphism, p, from T(V) to A must va»sh
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on the ideal I(Q), and hence defines a homomorphism,
which we continue to denote by q, from Co(V) to A. Thus
Co(V) can be regarded as the "universal algebra" among
algebras satisfying the above identity.

The generators of the ideal I(Q) are not homogeneous,
and therefore, in general, the gradation of T(V) is lost when
we pass to the quotient —the product v v = Q(v) has
degree zero instead of degree two, and is not zero if Q (v) & 0.
However, the generators all have even degrees, so that
Co (V) is Zs graded: it makes sense to talk of even and odd
elements, and they behave properly under product. There
is one case where the generators of I(Q) are homogeneous,
and that is when Q is identically zero. In this case the algebra
Co(V) is called the exterior algebra or the Grassmann
algebra of V and denoted by A(V). The multiplication be-
tween two elements, p, and v of A(V), is denoted by p n, v.
The algebra A(V) is a graded algebra and is graded commu-
tative, in the sense given to this term in the text. It is the
universal algebra for maps satisfying t(v)' = 0.

i„.e„+ e.i„.= v*(v)id. (A1)

This is valid for any Clifford algebra over V, in particular
for the exterior algebra.

Suppose that V carries a nondegenerate symmetric
bilinear form whose associated quadratic form is Q. Then
we can identify V with V* and write i„ for the interior
product by an element of V, where i„v = (u, v)1 and (, )
is the given scalar product. Applied to the exterior algebra,
A. V, the operator i„is recognized as the annihilation operator
for fermions, and the operator e, is recognized as the creation
operator. In this case the equation (A1) becomes the
familiar anticommutation relation

i„e„+e„i„= (u, v)id

for fermions. If we set

r. = e. + z. and s. = e. —z.,

then

r„r„+r„r„= 2(u, v), s„s„+s„s„= —2(u, v),

and

Thus r gives a representation of the algebra Co (V) on h. (V),
i.e., a homomorphism of Co(A) into End (A(V)), while s
gives a representation of the algebra C @(V) on A(V). The
elements r„and s„, as u ranges over V, generate the algebra
End (AV), since from r and s we can recover e„and i,

The Clifford algebra Co(V) is generated by 1 and the
elements of V. Any graded derivation of Co(V) must
vanish on 1, and is thus determined by its action on ele-
ments of V, which can be arbitrary. In particular, any v*

in the dual space of V induces a derivation which is deter-
mined by sending v to v*(v) 1. This graded derivation is
known as the interior product by v* and is denoted by i,*.
Let us denote left multiplication by an element v of V by
e„so that e,ze = ne. Then

i„ee„rv = i„e(vtv) = v*(v)zv —v(i„*w) = v*(v)tv —e„i.evv,

so that

and these generate since we can clearly move from any one
element of AV to any other element by a succession of
annihilations and creations.

Suppose that we are over the complex numbers and that
V is even dimensional. Let e~, . . . , e~„be an orthonormal
basis of V, and let H/' be a vector space of dimension e,
i.e., half the dimension of V. I.et fi, . . . , f„be an ortho-
normal basis of W and let us map V into End (AW) by
sending e; to rf,. for j & m and sending e, to ~s; for j & e.
Then this gives a representation of C@(V) as an irreducible
algebra on AW, and so Co(V) is a simple algebra. The
representation of C@(V) on AW is known as the spin
representation.

For a more detailed discussion of various properties of
Clifford algebras we refer the reader to Atiyah, Bott, and
Shapiro (1964) and to Kastler (1961).
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