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The "action potential" is a pulselike voltage wave which carries information along
a nerve fiber. Starting with fundamental concepts of biochemistry and
electromagnetic theory, the derivation of the nonlinear diffusion equation which
governs propagation of the action potential is reviewed. Our current understanding
of this equation is discussed, paying particular'attention to questions of interest in
physics and applied mathematics.
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I ~ INTRODUCTION

from my main task. I will, however, attempt to place in
context those contributions which have directly led to an

490 understanding of the nonlinear wave dynamics associated
495 with propagation of a voltage pulse, or "action potential, "
500 along a nerve 6ber.
505
50' In 1850 Helmholtz used a cleverly designed apparatus

(see Fig. 1) to show that the signal velocity on a frog's
sciatic nerve is not immeasurably large as was assumed
(perhaps due to the con.tinuing influence of Newton's

524 twenty fourth question) but some 27 mps. Details of this
524 work can be found in Helmholtz (1850), but the basic idea
524 is both simple and elegant. Closure of switch (V) simul-

taneously breaks the primary (P) initiating a nerve pulse
(X), and starts a time measurement on the ballistic galvan-

527 ometer (G). When the muscle (M) twitches, a mercury
contact at k is broken and the measurement terminates. The
difference of times measured for inputs at terminals (3—4)
and (5—6) divided into the corresponding distance along

In the twenty fourth question added to the second edition
of his Optiks, Newton (1718) asked

Qp. z4, Is not Animal Motion perform'd by
the%&'ibrations of this Medium, cxcit~d in the
l~;ain by the power of thc 4'ii. , and propapa-
ted from thence through the 1'olid, penucid a id
uniform Capillamenta of the Ncrvcs into the
Muicles, for contraEting and dilating them &

=„W&'n~p.a

He was fairly close to the mark for, as we shall see, a proper
theory for the electrodynamics of the nerve fiber begins
with the 6eld equations of Maxwell just as does the science
of optics. First, of course, it was necessary to develop the
science of electricity, and this was, in turn, profoundly
influenced by Galvani's research on animal electricity and
Volta's subsequent development of the battery later in the
18th century.

I do not propose to review this early history; the delight-
ful survey by Brazier (1959 Lsee also Harmon and Lewis
(1966)j could not be equaled without an enormous expense
of time and eGort which would necessarily be subtracted

*This work has been supported by the National Science Foundation
under Grant No. GK-37552, by the National Institutes of Health under
Grant No. LM-02281, and by the United States Army under Contract
No. DA-31-124-ARO-D-462.

FIG. l. Apparatus used by Helmholtz to measure the signal velocity
on a nerve fiber /Hermann (1879I)g.
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Dendrit

FIG. 2. A semischematic diagram of neuron structure in the cerebellum by Ram6n y Cajai (190g). (A) mossy fiber input, (a) Granule cell
(8) Purkinje axon output, (b) basket cell, (c) Purkinje cell body, (C—d} climbing 6ber input.

the ne~ve yields a, velocity. Bernstein (1868) described the
details of an even more impressive experimental tour de
force; he measured the shape (potential vs time) of the
action potential on a frog's nerve and showed that the
velocity was equal to the signal velocity measured by
Helmholtz. It is a fascinating experience to read over these
early papers and appreciate the experimental results which
were obtained a full half century before Gasser and Erlanger
(1922) introduced the cathode ray oscilloscope into electro-
physiological research.

The problem was to understand the physical process in-
volved in the propagation of the action potential. Weber
(1873) took an important step with his fundamental study
of the Row of electricity in cylinders; indeed, we shall begin
our analytic consideration with this calculation in the fol-
lowing section. Hermann (1879 II) seems to have the correct
physical ideas in mind. He notes the similarity of nerve
propagation to a line of burning powder but rejects a purely
chemical explanation since this would seem to require activ-
ity throughout the entire cell. He describes circulating cur-
rents which excite the neighborhood of a pulse and indicates
that these equations would lead to a form of the "heat
equation. " This line of thought, he wrote in 1879, "genug/
uberhaupt. . . der gestellterl, Aufgabe nacht "Hermann did.

not appreciate the descriptive power of a eoelint, ar diffusion
equation until later and even then he felt such problems
would lead to "enormous mathematical difficulties" LHer-
mann (1905)j. By this time Bernstein (1902), building on
studies of charge transport in ionic solutions by Nernst

(1888, 1889), and Planck (1890a,b) had carefully stated
in his "membrane hypothesis" that the action potential
was the discharge of a (Nernst) diffusion potential caused
by an increase in ionic permeability of the membrane.

The concept of a nerve cell or "neuron" as an inde-
pendently functioning unit was firmly established through
the extensive anatomical studies of Ramon y Cajal (1908),
and a survey of this work written at the end of his life in
1934 has recently become available in English LRam6n y
Cajal (1954)j. Most neurons display an input branching
structure of "dendrites" called the dendritic trees, an en-
larged cell body, and an output fiber or "axon" which even-
tually branches into an axonal tree. If appropriate firing
conditions are established at the dendritic inputs, the cell
body will send a pulse outward on the axon. An idea of the
variety of neurons whi. ch fall within this basic pattern may
be obtained through reference to Fig. 2 which is from the
1906 Nobel lecture of Ramon y Cajal and indicates some
of the cerebellar (or motor control) circuitry in the central
nervous system of vertebrates. A variety of tree shapes are
observed each, presumably, adapted for the function of a
particular cell. The size of nerve cells also varies widely.
For example the sciatic nerve of a giraffe contains axons
which are several meters in length, and the giant axon of the
squid can be almost a millimeter in diameter. In this review
the term nerve Aber implies both axons and dendrites
although most of the available experimental data are for
large axons.

The following decades saw'. the demonstration of the
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-- looked by electrophysiologists in the U.S.A. ; indeed it is
not even noted in the otherwise exhaustive bibliography of
the book by Cole (1968). The failure of applied mathe-
maticians to undertake a timely study of (1.1) cannot be

, ascribed to technical ineKciency in the face of the "enormous
mathematical difficulties" envisaged by Hermann (1905).
The studies by Boussinesq (1872) and by Korteweg and
deVries (1895) of the hydrodynamic solitary waves de-

standing even before the turn of the century. As Cohen
(1971) has suggested, the difficulty may have been the
assumption by most mathematicians that the diffusive and
nonpropagating behavior of linear diffusion equations would
carry over to the nonlinear case.

FIG. 3. Direct measurement of the increase in membrane con-
ductance (band} during the action potential (line} on the squid giant
axon LCole and Curtis (1938)g. Time marks are 1 msec.

whic'h was related to the biological problem of genetic dif-
fusion. They showed how steplike initial conditions would
evolve into a unique solitary wave solution of the form

g(x, t) = qb~(x —Nt) I const. , (1.2)

developed phase plane techniques for determining @z, and
derived explicit formulas for the traveling wave velocity u.
This uniquely important contribution was completely over-

1 Equation (1.1) should-perhaps be called the KPP equation.
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"all or nothing" nature of nerve 6ber response to stimula-
tion LLucas (1909), Adrian (1914)j, confirmation of the
existence of the cell membrane, and measurement of its
electrical capacitance LFricke (1923)g, discovery of the
squid giant axon LYoung (1936)g, demonstration that the
membrane conductance of a squid giant axon increases
during the action potential LCole and Curtis (1938, 1939)j
(see Fig. 3), and the observation by Cole (1949) that mem-
brane voltage (rather than current) is the more useful de-
pendent variable for a phenomenological description. The
activities of these years are described in detail in the recent
book by Cole (1968). Part history, part careful scientific dis-
cussion, this book should be studied by everyone who wishes
to understand twentieth century electrophysiology. Finally,
the pieces of the problem were put together in the brilliant
work of Hodgkin and Huxley (1952). They showed how
measurements of the conductive parameters of a nerve
fiber can be used to directly calculate both the shape and
the velocity of an action potential on the squid giant axon.

In retrospect it seems that applied mathematicians fore-
went an unusual opportunity to make important scientific
contributions by ignoring the study of the nonlinear di6u-
sion equation. One exception to this generalization was the
work by Kolmogoroff, Petrovsky and Piscounoff (1937) on
the equation'

But one need not turn to Hermann's line of burning
powder or the Japanese incense investigated by Kato (1924)
for a clear physical representation of nonlinear diffusion;
the ordinary candle had been lighting scientific study tables
for centuries. Diffusion of heat down the candle releases
wax to the Game where it burns to supply the heat. If I' is
the power (joules/second) necessary to support the flame,
and E is the chemical energy stored per unit length of the
candle (joules/meter), then the flame (nonlinear wave) will

travel at the velocity I for which

I' = NE. (1.3)

8&+ (P~ = 0, (1.4)

where 8 is energy density, and (P is the power Qow. Wave
problems of class (ii) include the hydrodynamic waves
which were studied by Boussinesq (1972) and by Korteweg
and deVries (1895). In this case solitary waves involve a
balance between the efIects of nonlinearity and dispersion,
and the propagation velocity is an adjustable parameter
in a family of solutions. Such energy conserving solitary
waves sometimes exhibit an in6nite number of conservation
laws and the nondestructive collisions characteristics of
"solitons. " Nothing further will be said here about class
(ii); the interested reader is referred to Scott, Chu, and
McLaughlin (1973) for a review of the current status of
this research. Although the present discussion will concen-
trate upon nonlinear wave problems of class (i), it should
not be assumed that conservation laws are unimportant.
Indeed we shall find that an approximate conservation law
for electric charge can be useful in determine. g the condi-
tions necessary to stimulate a nerve fiber to the threshold
of excitation, and also that a conservation law for pulses

The rate at which energy is eaten (eE) must equal the
rate at which it is digested by the flame (P). Equation
(1.3) is of more than pedagogical interest; when we turn to
the development of formulas for the calculation of nerve
pulse propagation velocity we shall use (1.3) to find solu-
tions of (1.1) with the traveling wave character indicated
in (1.2).

I take the point of view that nonlinear wave problems
can be divided into two main classes: (i) those for which
solitary traveling waves imply a balance between rate of
energy release by the nonlinearity and its consumption and
is indicated by (1.3), and (ii) those for which energy is
conserved and therefore obey a conservation law
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FIG. 4. Cylindrical geometry for electromagnetic analysis of a nerve 6ber.

helps to analyze the evolution of a pulse burst along a fiber.
The Hodgkin and Huxley (1952d) calculation of the

action potential shape and velocity from measured param-
eters of the nerve cell was a scientific achievement of extra-
ordinary significance. They demonstrated that a physical
theory for the electrophysiology of a nerve cell could be
based on a phenomenological description of the membrane
and mooted thereby much of the previous tendency of bio-
mathematicians toward modeling. "The main objective of
this review is to present as clearly and simply as possible
the elements of such a theory paying particular attention
to the contributions of physicists, applied mathematicians,
and bioengineers. Thus I begin with an electromagnetic
analysis leading to appropriate nonlinear partial differential
equations and using ideas familiar to the microwave engi-
neer; and then proceed to a study of ion current Row through
a nerve membrane which should be of interest to the solid
state physicist. For those who are anxious to get on to an
analysis of nonlinear pulse propagation on a nerve fiber,
these sections may seem unnecessarily extensive; but the
problem of deciding vehich equations to analyze is not at all
trivial especially in situations where the traditional geometry
of an in6nitely long circular cylinder is altered. The phe-
nomenological description of nerve membrane electrody-
namics developed by Hodgkin and Huxley is then presented
and used as a basis for subsequent mathematical analysis.
Emphasis is placed upon those aspects of the mathematical
picture where future developments seem likely such as the
theory of motor nerves which are "myelinated" to increase
pulse velocity and the threshold theory for active 6bers.
A final section introduces several problems of current re-
search interest involving the interaction of nonlinear pulses
on nerve fibers.

I I. NONLINEAR PARTIAL DIFFERENTIAL EQUA-
TIONS

curl E, = —p, (BB;/8/)

curl H; = 0;E; + e;(BE~/Bt). Z |
$ 2 0

(2.1a)

(2.1b)

' The mks system of electromagnetic units will be used throughout
this paper. In this section, subscripts denote vector components so par-
tial derivatives will be explicitly indicated.

Stimulated by attempts of Hermann and Matteucci to
understand the manner in which electricity Rows through a
nerve fiber, Weber (1873a,b) carried out a fundamental
study of time independent current density in and near a
partially conducting cylinder. The basic coordinate system
for this problem is shown in Fig. 4; a cylindrical membrane
separates anAsside region with conductivity 0-& and dielectric
constant ~& from an ogtside region with conductivity o-2 and
dielectric constant ~2. Vfeber assumed that the electrical
potential both inside and outside the membrane satisfies
I.aplace's equation and applied suitable boundary conditions
at the membrane. This approach has been followed by
several other investigators up to recent times LClark and
Plonsey (1966, 1968), Geselowitz (1966, 1967), Hellerstein
(1968).Lorente de No (1947), Plonsey (1964, 1965), Rail
(1969), Weinberg (1941, 1942) $ and, indeed, is a very good
approximation for potentials which vary as slowly as is
indicated in Fig. 2. On the other hand it is not more difficult
to proceed with the complete Maxwell equations PPickard
(1968, 1969), Rosenfalk (1969), Scott (1972) and this
approach allows us to comprehend more precisely the impli-
cations of a quasistatic approximation. Thus we write'
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where i = |inside the membrane andi = 2 outside. These
equations are entirely /incur. The nonlinearity in the prob-
lem appears at the membrane boundary where the normal
current density, J», is some nonlinear function of the trans-
verse voltage, v, across the membrane. Thus we can write
symbolically

Ji2 = X(i), (2.2)

but we must be careful to remember that X(v) can be a
rather complex function of v and its time derivatives. In
order to appreciate this complexity, the reader might look
ahead to the discussion of the Hodgkin —Huxley equations
in Sec. IV.

The fact that nonlinear effects occur only on the cylindri-
cal membrane boundary greatly simplifies the study of the
electromagnetic problem. For an infinitely long fiber, the
regions both inside and outside the membrane are invariant
to:

(i) translation in the x direction
(ii) rotation in the 8 direction, and
(iii) translation with time (t).

Thus we can compose the fields of elementary functions
which vary as exp/i(Px —cA + e8)1 both inside the mem-
brane and outside.

k2 = icoyoa*+ p . (2.6e)

Equations (2.6) indicate that Hz is a rather convenient
variable for which to solve. Knowing Hg, one can deter-
mine E, and E. through (2.6b) and (2.6c). Equation (2.6a)
is Bessel's equation, solutions for which are Ii(kr) and
Xi(kr) as defined by Watson (1962). Since Ki goes to
infinity at the origin, I1 is the appropriate solution inside
the membrane; and, since I& goes to infinity for large values
of r, X1 is the appropriate solution outside. The magnitude
of IIy at r = a can be easily determined from Ampere's
circuital law (which is (2.1b) in integral form) from the
total current Rowing in the x direction inside the membrane

2xuHy = I. (2.7)

Thus a complete solution for H which (i) satisfies Maxwell's
equations both inside and outside the membrane, (ii) has
no 8 variation as required by assumption (2.3), (iii) corre-
sponds to a TM mode with a current component perpen-
dicular to the membrane boundary, (iv) satis6es the appro-
priate electromagnetic boundary condition at the origin,
and (v) goes to zero at large radius, is:

a/a8=0 or +=0. (2.3)

The implications of this assumption will be considered below
but for the present it allows us to concentrate our attention
upon those TM (transverse magnetic) solutions of (2.1)
for which

Furthermore we shall begin our analysis by assuming
rotational symmetry of the 6elds as implied by

Beside

I I,(k,r)
Hg =

2na Ii(kia) '

outside

I Xi(kyar)
IIg ——

2ma Xi(k2a)
'

(2.8a)

(2.8b)

(H). = (H). =0 (E)g = 0. (2.4)
where ki2 = i~pooi*+ P' inside the membrane and kP =
icop~02*+ p' outside the membrane.

(H)y = Hq(r) expLi(Px —art)g (2.5)

and similarly for (E), and (E), (where it should be under-
stood that subscripts 1 or 2 are added for fields inside or
outside the membrane) whereupon Maxwell's equations
(2.1) reduce to

O'He/ar'+ r '(aHq/ar) —(1/r2+ k')Hq = 0 (2.6a)

The TE (transverse electric) modes for which (E)„=
(E) = 0 and (H) 8 = 0 are of little interest since the con-
dition (E), = 0 implies zero normal current at the mem-
brane surface. From (2.2) such TE modes would not
interact with the nonlinearity of the membrane.

Then we write the 8 component of the magnetic intensity
vector

At this point in the analysis it is important to recognize
that Eqs. (2.8) have been derived without considering the
nonlinear aspects of the problem symbolically expressed in
(2.2). The appropriate values for co and p out of which the
action potential is to be determined are, as yet, entirely
undetermined. We shall now use (2.8) to develop the non-
linear partial diGerential equations which relate the total
longitudinal current Qowing inside the membrane, i(x, t),
and the (8 independent) voltage across the membrane,
e(x, t), as is indicated in Fig. 5a.

To obtain a pde involving the x derivative of e, consider
the diagram of the electric field components near the mem-
brane in Fig. Sb where the positive reference directions for
the x component of the inside field, (Ei), and the outside
field, (E2)„areindicated. With these references, the sum of
potentials around the path A B C D becomes

E„=—(iP/ ')H, ,

E = (1/o*r) pa(re)/arg.

In these equations 0* is the complex conductivity

(2.6b)

(2.6c)

e(x+ dx) + (Ei(a, x, t)) dx —v(x)

+ (Eg(a, x, t)), dx = 0

for any time. Thus

(2.6d) ae/ax = —(E,(u, x, t) ), —(E2(a, x, t) ),. (2.9)

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975
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i(x,t)
a '( QQ'+i (x, t&

outside

a

x

l rnem rane

where I(P, co) is the spatial and temporal Fourier transform
of i(x, t).

Equation (2.13) is not nearly as intractable in practice
as it might appear at first glance. First it is important to
remember that it is entirely linear; the only nonlinearities
appear in connection with current Qow through the mem-
brane (2.2) and this effect has not yet been considered. .
Secondly the temporal frequency components, u, in a
typical action potential are of the order of 10' rad/sec
(see Fig. 3) and the conductivity, 0, both inside and outside
the fiber is approximately that of sea water (4 rnho/m).
Thus it is a very good approximation to write

0* 0 (a real constant)

u{x) v{x+dx)
6OA (, ~ ) xB i(inside)

x
ii Ii &I ~II ~[ . ii imp' l l

Ii D= — s A
l Eq (a,x,t}i)x (outside)
l 1

1 i
X x dx

FIG. 5. (a) Geometry for an idealized nerve aber, and (b) electric
6eld components near the membrane.

both inside and outside the fiber. Thirdly the radial param-
eter k which appears in (2.12) is given by (2.6e)

k' = 4i/6'+ P'

where

~ = (2/~no~)ij' (2.15)

(2.16)

is the electromagnetic penetration depth in the conductive
medium at frequency ~. For 0.~ 4 mho/m, co ~ 10' rad/sec
and po = 4~ X 10 7 H/m, 6 20/m, which is much
greater than the spatial extent of typical action potentials.
Thus it is a very good approximation to write (2.14) as

Equation (2.9) is the source of the pde we are after. It can
be related to the longitudinal current, i(x, t), in the follow-
ing way. First consider the expansion of (Ei), into its
spatial and temporal components as

Finally the spatial extent of a typical action potential is
typically an order of magnitude or more larger than the
Aber radius, a. Small argument approximations are then.
appropriate for the evaluation of the Bessel functions which
appear in (2.12). For example (2.12a) becomes

(Ei(a, x, t)), = fJEi (a) expIi(Px —cot)gdPCk0 (2.10)
s, = (1/ a,)11+og(k, u) jI, (2.17)

Ei (a) = siI and E2.(u) = @I (2.11a, b)

and similarly for (E2),. Then using Eqs. (2.6c) and (2.7)
we can write

and the most important effect of the 0L(kia)2$ terms is to
introduce an inductive component into z». In a later section
the effect of this inductive component will be studied in
detail and it will be shown to be entirely negligible. Thus
we can write

where z» and z~ are impedances. Assuming Hy —+ 0 as
r —+ ~ gives

z» ~ f»&

where

(2.18)

f 1 kiaIO (kia)
sl i"a*) 2Ii(k,a)

(2.12a)
r» = 1 xa'0.» (2.19)

1 k2aXO (k2a)

n cr,*u' 2E'i(k, a)

is the resistance inside the fiber to longitudinal (x directed)
current Aow. The ratio of outside to inside longitudinal
impedance from (2.12)

Thus (2.9) becomes
s2 Oii Xo(Pa) Ii(Pa)
s, ~2) K, (pa) Io(pa)

(2.20)

av/ax = —jj (s, + s2) I(P, cu) expLi(Px —cu/) j dP Cko, the square bracket of which is plotted in Fig. 6. Neglecting
z2 with respect to z» is seen to introduce an error of no more

(2.13) than a percent.
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.08

exclude non. -TM modes from consideration. Rail (1969) has
studied the question of angle dependence in detail for a
cylinder of fixed length. He has shown that the time con-
stant, r, for angle vai'iation Las exp(ie8) g to disappear is
related to the basic time constant of the membrane, ~, by

a(1 1&
/G

1 fs (oi cist
(2.23)

.06

~ 04
O

where G =—8Ã/Bv is a conductance per unit area of the
membrane. For typical values of the parameters, the right-
hand side of (2.23) is something like 10 '/N. Thus, for
uniform cylindrical geometry, we can expect angularly
dependent fields to relax to the angularly independent
case in a time which is very short compared with the time
scale for solutions of (2.22).

.02

0
0 .2

FlG. 6. Plot of the factor PE'OI&/K~Ioj as a function of Pa. This is
approximately equal to the ratio of external to internal series re-
sistance for pb )) 1 i Scott (1973)j.

Equation (2.1,3) reduces to

Bv/Bx = —r,i, (2.21a)

where r, = ri+ rs ri as indicated in (2.19).This is one
of the two partial differential equations we seek. The other
is nonlinear and relates the spatial derivative of i to. the
membrane voltage v. It is obtained from (2.6b) by noting,
first, that (H)s is proportional to i as indicated. in (2.7)
and, second, that (E), evaluated at r = a gives the current
density normal to the membrane which appears in (2.4).
Thus

B. Uniform fiber cross section

A real nerve fiber is often not shaped as the uniform
circular cylinder indicated in Fig. 5(a); angular bends, local
distention, tapering, and collapse into a ribbon shap'ed
cross section are some of the deviations easily observed.
Judgment is required to determine the degree of confidence
which one can place in (2.22) in such cases. First, of course,
the va' which appears in (2.12) and (2.19) should be
replaced by the cross sectiona, l area of the fiber, and the
2va in (2.21b) and (2.22) should be. replaced by the fiber
circumference. (Some calculations for flat cells are presented
by Minor and Maksimov (1969)j.A more serious diKculty
arises from the scattering of TM fields Ldescribed by (2.22) g
into non-TM modes; this effect is not represented at all.
Furthermore if the nonuniformities vary with x on a scale
short with respect to P ' (the length of the action potential),
the easy transition from (2.13) to (2.21a) will no longer be
valid. On the other hand, some progress has been made with
the solution of the nonlinear problem with a gradual
exponential taper LLindgren and Buratti (1969)j.Another
important case is the so called "myelinated axon" for which
X(v) is approximately zero except at periodically spaced
active nodes. This situation is also considered in detail in
Sec. UIII.

cii/cjx = —2~a%(v) . (2.21b) C. Infinite external medium

It is often useful to combine Eqs. (2.21) to obtain a second-
order equation which involves only the membrane voltage

8'v/Bx' = 2var, X(v). (2.22)

A. Rotation symmetry of fields

A basic assumption connected with (2.22) is that the
membrane voltage is a function only of x and 5 and is not a
function of the angle of rotation around the cylinder axis, 8.
In the course of the analysis, this restriction allowed us to

Equation (2.22) is not quite as simple as it looks since X(v)
is a rather complex nonlinear function of v. But it is perhaps
more simple than one expects for the geometry indicated
in Fig. 5(a) . Thus it may be useful at this point to recapitu-
late the assumptions which were involved in the derivation
of (2.22).

b))P ', (2.24)

where, as was noted before, P ' is of the order of the length
of the action potential. Although this condition is easily
satisfied in experiments on isolated fibers, it also easily
violated. Furthermore cells and fibers are often closely
packed in functioning neural systems; thus the situation
when (2.24) is not satisled deserves careful attention.

If the external current is constrained to Row in a region
b&(P ' (i.e., very close to the membrane surface), the
outside resistance will increase from approximately zero to

rs 1/Aoos, (2.25)

In the development of the expression for outside imped-
ance (2.12b) we assumed that the dimension "b" in Fig.
5(a) is large enough to insure that Xi(ksb) is zero in (2.8b) .
From (2.16) a more precise statement of this requirement is
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where Ao is the cross-sectional area outside the membrane.
However if Ao does not exhibit rotational symmetry, the
TM 6elds will again be scattered into non-TM modes in a
manner which is not described by (2.22). Furthermore if
the changes in Ao take place on a distance scale short com-
pared with P ' the easy transition from (2.13) to (2.21a)
will again no longer be valid. Qualitative effects of various
experimental restrictions in the external geometry have
been reviewed by Taylor (1963). Often nerve fibers are not
isolated but arranged in bundles surrounded by a sheath
of connective tissue. The sciatic nerve of vertebrates (see
Fig. 35) is constructed this way to permit the transmission
of a multicomponent message from the spinal cord to the
muscle. This situation has been carefully investigated by
Clark and Plonsey (1968) who present several numerical
calculations which help to determine the effect of fiber
geometry upon r2.

~1 + i 2 zl + s2 ~ (2.26)

This approximation ignores terms of order (ka)' in evaluat-
ing the small argument expressions for si and s~ in (2.12).
Physically this implies neglect of the effect of time depend-
ent magnetic field on the electric field, or inductive effects.
In a later section, after the nature of the nonlinear propaga-
tion process has been clarihed, we shall see that the only
sensible e8ect of this inductive correction is to preclud. e a
pulse velocity greater than the velocity of light.

A transmission line equivalent circuit can easily be con-
structed which corresponds to Eqs. (2.13) and (2.21b).
For example in the differential ladder network of Fig. 7(a),
the change in series current over a differential distance, dx,
is found from Kirchoff's current law (or conservation of
electric charge) to be

i(x) —i(x+ dx) = 2naX(m)dx (2.27)

which implies (2.21b) . In a similar way the change in shunt
voltage over a differential distance, dx, is obtained. from
Kirchoff's voltage law (or conservation of energy) to be

(2.28)

where 3 and 3 ' respectively represent the Fourier transform
on both x and t and its inverse. Equation (2.28) implies
(2.13).

Transmission line equivalent circuits (TLEC) of this sort
have found wide application in electronics since the devel-
opment of the electric telegraph LKelvin (1855)j and in
electrophysiology since the turn of the century LHoorweg
(1898), Hermann (1905)j.For rather complete reviews see
Taylor (1963) and. Cole (1968). Various attitudes may be
taken toward. the TLEC, two of which are as follows:

(1) The TLEC can be considered simply a mnemonic
device through which the partial di fferential equations

D. Resistive approximation for the longitudinal
impedances

Equation (2.22) specifically assumes that the sum of the
inside and outside longitudinal impedances can be approxi-
mated by a single real number

2mulV = c(Bii/Bt) + j;, (2.29)

where j; is the ion current, and c(8v/Bt) the displacement
current passing through the membrane both per unit length
in the x direction. The decomposition indicated in (2.29) is
especially interesting because there is substantial experi-
mental evidence LCole (1968)g to show that c is a constant
throughout the course of the action potential Lsee, however,
FitzHugh and Cole (1973)j.Substituting (2.29) into (2.22)
yields a new form for the basic equation of nerve propagation

8'v/Bx' —r,c(Bv/Bt) = r.j; ~ (2.30)

Notice that (2.30) has the form of the nonlinear diffusion
equation discussed brieQy in the introduction. In the fol-
lowing sections we will consider the chemical physics of the
nerve membrane and the development of phenomenological
theories to describe the nonlinear dependence of j; upon e.

under consideration, (2.13) and (2.21b), are represented
pictorially. It is often useful to suggest reasonable higher
approximations for further study LScott (1970)g.

(2) The TLEC can be taken as the starting point for
analysis. Equations (2.27) and (2.28) are then considered
fundamental equations from which (2.21b) and (2.13) are
derived. This attitude has characterized much of past re-
search in electrophysiology LCole (1968)j.

It is my opinion that the problems which arise in studying
the electrophysics of the nerve cell are sufIiciently dificult
that neither attitude should dominate. For a nerve fiber
which approximates the idealized geometry of Fig. 5(a), it
is clearly more satisfying (for the physicist, at least) to
begin the analysis with Maxwell's equations. Various
approximations can be itemized and explicit analytic
expressions can be obtained for s& and s&. This analysis, on
the other hand, can eventually lead to the nonlinear pde
(2.22) which is also obtained directly from (2.27) and
(2.28). In situations with more complex geometry, where
the electromagnetic analysis may not be tractable, one can
begin with a TLEC and appeal to the results for simpler

geometry as a justification. Rail (1962, 1964) has demon-
strated the power of this approach through his application
of "compartmental analysis" to study the rather complex
geometrical effects which arise in dendritic fibers.

The general TLEC to be considered in this review is
shown in Fig. 7(b) for which suitable expressions to deter-
mine ri and r2 are given in (2.19) and (2.25). With the
series inductances, l~ and 12, equal to zero, this TLKC was
studied by Oftner as early as 1937 and serves as the basis
for the calculation of conduction velocity for an action
potential by Offner, Weinberg, and Young (1940). We will

continue to assume these inductances equal to zero for the
initial development of the nonlinear analysis. In a later
section explicit expressions and values will be calculated,
and a nonlinear propagation problem will be solved in
order to demonstrate that it is a valid assumption to take
these inductances equal to zero. Notice that the shunt
element in Fig. 7(b) is represented differently than that in
Fig. 7(a) . The reason for this change is that in Fig. 7(b) it
is explicitly recognized that membrane current consists of
two distinct components: displacement current and ion
current. Equating the shunt currents in the two 6gures
yield. s
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FIG. 7. (a) Transmission line equivalent representation of (2.13) and (2.21b), and (b) equivalent circuit for a nerve fiber to be considered in
this review.

III. PHYSICS OF A CELL MEMBRANE

Our next task is to become acquainted with the physical
character of the cell membrane which is indicated merely
as a surface in Fig. 4, and as a homogeneous region in Fig.
S.The existence of a membrane for red blood cells was con-
lrmed by the measurements of Fricke (1923, 1925a,b)
on the conductivity vs frequency of cell suspensions.
He measured a membrane capacitance of 0.81 pF/cms
which, for an .assumed relative dielectric constant of 3,
implied a membrane thickness of 33K.. At about the same
time Gorter and Grendel (1925) demonstrated that these
cells "are covered by a layer of fatty substances that is two
molecules thick. " It is well to devote a moment to the
measurement technique of Gorter and Grendel because it
exemplihes nicely the energetics of membrane structures.
The general structure of a lipid (fatty) molecule is "cigar
shaped" with a charged head group localized at one end
of a hydrocarbon tail. LSee Chap. 10 of Lehninger (1970)
for many chemical details. g Building upon a previous
demonstrated by Lord Rayleigh (1899) that oil 61ms on a
water surface become monomolecular, Langmuir (1917)
/see also Adam (1921, 1922)g showed that the structure of
the monolayer is with the charged head groups oriented

toward the water surface where the electric field energy can
be reduced by the high dielectric constant of water (ca.
80 es), and the hydrocarbon tails maintained in a closely
packed, vertical structure by transverse van der Waals
attraction. Gorter and Grendel distilled the lipid material
from a known quantity of blood cells and found that the
area of the monolayer which could be obtained with this
lipid at an air—water interface was about twice the area of
the cell surfaces. Thus the red blood cell membrane ap-
peared to be largely the lipid bilayer shown in Fig. 8. This
same structure was'proposed (Danielli and Davson (1935),
Danielli (1936)$ from an energetic comparison of various
lipid organizations, as the basic structure of biological cell
membranes. Membrane distillates always contain a sub-
stantial fraction ()50%) of protein LBretscher (1973),
Kilkson (1969)g; and if these are located within the lipid
phase they are called Aztrinsic LGreen (1971)g or iltegral
LSinger and Nicolson (1972)j. Proteins attached weakly to
the surface of the lipid bilayer, called extrinsic or peripheral
are considered to be of less importance for membrane
function. Green, Ji, and. Brucker (1972) have emphasized
the importance of protein domains through which long-
range ordering of (perhaps octal) protein subunits is estab-
lished LVanderkooi and Green (1970)g as indicated in
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FIG. 9. A basic experimental arrangement for physical measure-
ments on arti6cial lipid bilayers.

FIG. 8. Membrane models. (a) The "structure-function unitization
model" redrawn from Green, Ji, and Brucker (1972). Domain geom-
etry is assumed to be highly variable from membrane to membrane.
(b) The "fiuid mosaic model" redrawn from Singer and Nicolson
(1972).

Fig. 8(a). Singer and Nicolson, on the other hand, have
suggested that the proteins may be considered to Goat in
the two-dimensional lipid liquid LFig. 8(b) g. Good general

-surveys of biological membranes are given in the recent
books by Cereijido and Rotunno (1970), Jain (1972), and
Nystrom (1973), and many of the historically important
papers have been collected by Branton and Park (1968).
The direct synthesis of a biological membrane was at-
tempted by Bungenberg de Jong and Bonner (1935),
Devaux (1936), Dannielli (1936), Teorell (1936),' Lang-
muir and Waugh (1938), and Dean (1939) who produced
bulayer films with a capacitance of about 1 tiF/cm' LDean,
Curtis and Cole (1940)g. This work lay dormant for more
than two decades until the ease with which lipid. bilayers
can be formed was demonstrated by Mueller, Rudin, Tien,
and Wescott (1962). The key idea was an observation in
Newton's Optiks on the color patterns of soap bubbles. He
had. observed. that: "after aH the Colours were emerged at
the top, there grew in the center of the Rings a small round
black Spot. . . which continually dilated itself till it became
sometimes more than 1/2 or 3/4,of an inch in breadth. "
Newton was observing that it is energetically favorable for a
soap film to thin into a lipid bilayer. In this case, the charged
head groups are oriented inward toward a remnant layer of
water. Such a soap film appears "black" (i.e., almost reflec-
tionless) because its thickness ( 100K) is very inuch less
than the wave length of light. LI can only avoid the tempta-
tion to say more about this subject by directing the reader to
the dehghtful descriptions prepared. by Lawrence (1929)
and by Mysels, Shinoda and Frankel (1959).g Mueller,
Rudin et at. (1962) showed that the same result could be
obtained for lipid 6lms between aqueous phases.

Ji2 ——pqPN a+j(dP/dr), (3.1)

where q is the electronic charge and p is the ionic mobility.

A diagram of the basic arrangement for measurements on
artificial lipid bilayers is given in Fig. 9. A camel s hair
brush is dipped in the lipid solution and then stroked across
a small ( 1 mm) hole in a two chamber vessel. The result-
ing thick lipid. film thins in about 10 minutes, as Newton
described, to a lipid bilayer of black 61m. Optical measure-
ments of 61m thickness and electrical measurements of
capacity and conductivity can then proceed. The experi-
mentalist who wishes to begin such an investigation is
referred. to the review by Goldup, Ohki, and Danielli
(1970), the careful discussion of experimental details by
Howard and Burton (1968), and the recent book by Jain
(1972).

The processes by which ions Qow across the membranes of
living cells are often divided into passive and active mech-
anisms. Passive transport is considered to be in response to
a gradient of the electrochemical potential. Active transport
involves the Row of ions against the electrochemical poten-
tial; a good discussion of such processes can be found in
Chapter 27 of Lehninger (1970). During the propagation
of an action potential along a nerve fiber (Fig. 3) only
passive transport is involved; active processes merely re-
charge the energy sources. My objective here is to present
a simple phenomenological description of passive transport
from which the ionic current components in (2.2) can be
constructed.

It should be understood from the start that intrinsic
membrane proteins completely dominate ion Row in a living
membrane. To appreciate the truth of this assertion, it is
instructive to begin with an investigation of passive trans-
port of only sodium ions across an ideal lipid bilayer as is
indicated in Fig. 10. The steady state current density from
chamber Qi to Q2, Jz&, will be proportional to the ion density
LNa+g and to the gradient of the electrochemical potential,
t(. Thus we can write the Nernst —Planck equation PNernst
(1888, 1889), Planck (1890a, b), Smith (1961)7
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The expression for sodium ion concentration which satis6es
these boundary conditions and maintains J» constant has
been determined by Neumke and I.auger (1969) as [see
also Boltaks, Vodyanoi and Fedorovich (1971) and Markin,
Grigor'ev and Yermishkin (1971)]

[Na+] = exp[—(v+ w)q/kT] [Na+], exp(v, q/kT)

+ {[Na+]g exp(v, q/kT) —[Na+]g exp(v, q/kT) }

t.N:1
2

X
~

exp)(v+ w)q/hTj dr)

(Water) ( Water)

a+8

exp[(v + w) q/kT] dr (3.5)

which upon substitution into (3.4) yields

P, P

J» = pkT f
a+8

exp[(v+ w)q/kT] dr
~

' Cl

)& I [Na+]g exp(vgq/kT) —[Na+]2 exp(v2q/kT) }.

(3.6)

I

a+

FIG. 10. Simple geometry for passive transport of a single ion through
a uniform membrane.

Assuming that the pressure gradient can be neglected, the
electrochemical potential is

For a detailed discussion of the effect of barrier shape,
m(r), on volt-ampere characteristics see Hall, Mead and
Szabo (1973). Under experimental conditions for which the
membrane structure remains independent of the applied
voltage, they have demonstrated that w(r) can be computed
from volt-ampere measurements. The measured barrier
height is close to the diAerence in electrostatic energy of
the ion in lipid and in water; the shape is trapezoidal as
indicated in Fig. j.o.

P = (kT/q) log[Na+]+ v+ w, (3.2)
Introducing the notational definitions

Sing = Vy
—'V2, (3.7)

where v is the externally applied electrical potential, and m

is the contribution to the electrochemical potential arising
from the presence of the membrane. Since the dielectric
constant of water ( 80 eo) is much greater than that of the
hpid, a major contribution to m will be the image force
at the water-membrane boundary. [In direct physical
terms, the electrostatic field energy associated with the
ion is much lower in the water phase where the ionic charge
can. be neutralized by rotating water molecules. ]The factor
(kT/q) in (3.2) [where k is the Boltzmann constant and
T is absolute temperature] appears from the Einstein
(1905) relation between diffusion constant, and mobility.

Substituting (3.2) into (3.1) gives

and
P

V = (kT/q) log([Na+] /[Na+] ),

we obtain from (3.6)

Jg, ——(kT/q) G[exp[(vg, —V) q/kT] —1]

G(vga —V) for
~

vg2
—V i ( kT/q,

where

(3.8)

(3.9)

(3.10)

d[Na+] [Na+]q d
J~ ———ykT + —(v+ w) j,dr kT dr

(3.3)
G —= pq[Na+]g exp(v2q/kT) exp[(v+ w) q/kT] dr

(3.11)

r = a: [Na+] = [Na+]~, v = vg, w = 0 (3.4a)

r = a+ 8: [Na+] = [Na+]„v= v„w= 0. (3.4b)
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which, in steady state, must be independent of r. The
boundary conditions to be satisfied at the edges of the
membrane are

From (3.2) it is clear that (v~, —V) is the change in elec-
trochemical potential from chamber (I to chamber . For
a small enough diBerence in electrochemical potential,
(3.10) indicates that the relation between voltage and ion
current density should be linear. If the concentration
gradient is zero, [Na+]~ ——[Na ]2, this linear relation
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(a)

.0&

FIG. 11. (a) Sodium ion current density at a small difference of
electrochemical potential. (b) An equivalent circuit for the current
density carried by sodium ions.

should go through the origin as indicated in Fig. 11(a).
For positive ions if pNa+ji ( $Na+$2 and. the current
density is zero, chamber Qi will have a, positive potential
with respect to Q&. If LNa+$1 ) LNa+12, the polarity of the
zero current voltage difference will be reversed. Thus each
ionic species appears in the membrane as Lace Fig. 11(b)) a
bakery of voltage given by (3.8) with its positive terminal
directed toward decreasing (increasing) ion concentration
for positive (negative) iona. In general there will be several
species of ions present which makes the analysis consider-
ably more dificult. In 1943 Goldman derived a generaliza-
tion of (3.6) under the assumption of a constant electric
field (electroneutrality), and Offner (1971) has recently
discussed numerical techniques which do not require this
assumption. See Rosenberg (1969) for a comparison of
resting potential formulas.

Let us now consider an experiment in which a pure lipid
bilayer is carefully prepared in the apparatus of Fig. 9
t Howard and Burton (1968)g with equal concentrations
for all ions so the ionic batteries are zero. The initial slope
of the current density —voltage curve can be as low as
)Goldup, Ohki and Danielli (1970)j

G 10 ' mho/cm'

which, for a membrane thickness of about 100K (~10 '
cm), implies a membrane resistivity

p ~ 10"ohm-cm.

J12 ——G(~» —V) (3.12)

where, as was previously noted, (v» —V) is the negative
of the change in electrochemical potential from chamber Qi

to Q2. The conductivity is not a constant but a nonlinear
function of the experimental variables. The form of (3.12)
merely makes explicitly evident the zero in ion current which
appears when the electrochemical difference for that ion is
zero. Often, the conductance per unit area, G, appears as a
function only of the transmembrane volrage, ~». An excep-
tionally clear example of this has recently been published
by Eisenberg, Hall, and Mead (1973) in connection with
their careful study of the effect of alamethicin on artificial
lipid bilayer membranes. The volt —ampere curve in Fig.
12(a) exhibits a distinct region of negative differential
conductance; but the conductance Lsee in Fig. 12(b) g
shows a simple exponential. rise throughout this region. The
experimental rise is the same as that observed without an
ion imbalance. Thus it is clear that in this case we can write
(3.12) in the form

J12 G(112) (11'2 V) ~ (3.13)

As has been pointed out by Cole (1968, p. 289) and by
Mueller and Rudin (1968a, b), the condition for negative
differential conductance can then be expressed by differen-
tiating (3.13) with respect to v»

dJ»/dv12 = G'(1t» —V) + G

so

facilitating ionic conduction through biological membranes
cannot be overemphasized.

Mueller, Rudin, Tien and Wescott (1962) showed that
the addition of small amounts of properly chosen and
refined proteinaceous material (called EIM for "excitability
inducing material" ) will increase the membrane conduc-
tivity by many orders of magnitude, and can introduce the
nonlinearity essential for generation of an action potential.
At low protein concentrations the conductance has been
observed to increase in quantum units of about 4 / 10 "
mhos )Goldup et al. (1970)). When alamethicin (a cir-
cular polypeptide with molecular weight 1800) is added
to the aqueous phase of a clean experiment, the membrane
conductance is found to increase with the sixth power of
concentration LMueller and Rudin (1968b)j. These ob-
servations suggest that the alamethicin molecuIes may be
co'ordinated in groups of six to permit ionic conduction
through the membrane. Hille (1970) has surveyed a wide
variety of kinetic, electrochemical, and pharmacological
data for biological nerve membranes and concluded that
the conductance changes observed during the action poten-
tial (see Fig. 3) are caused by the opening and closing of
localized conductance channels. The term "pore" is often
used in a generic sense to indicate a localized region of high
conductivity on the membrane. For such a porous membrane
(3.6) is no longer useful. The barrier potential, mt(r), and
the ionic mobility, y, , depend strongly upon the position on
the membrane surface and also upon the membrane voltage.

In this situation it is helpful to return to (3.1) and write
it in the form

Thus a clean lipid bilayer shouM be classi6ed as a vevy good
insulator, and the importance of the protein complex in dJ»/d~» ( 0~ G'(V —v») ) G. (3.14)
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FIG. 13. Membrane equivalent circuit for n ionic species.

12(a) is due to both potassium and chlorine ions. In general
a membrane which separates n ionic species can be repre-
sented as in Fig. 13 whereupon current is related to trans-
membrane potential by [Cole (1968, pp. 193—7) g

which has the same form as (3.12). From the discussion
related to Fig. 11 it should be clear that for positive ious
of concentrations [C+ji and [C+gi

FIG. 12. Measurements on an artificial lipid bilayer membrane in
a 100:1 KCl gradient. Chamber Q&: 0.5 m KCl and 6 && 10 7 g/ml
alamethicin. Chamber Q&: 0.005 m KC1 and 9 && 10 6 g/ml alamethicin.
From Eisenberg, Hall and Mead (1973}.{a) Current vs voltage. (b)
Conductance vs voltage.

V, = (uT/Z) log([C+j,/LC+j, ). (3.16a)

as in (3.8) . For negative ions of concentrations [C )r and
[C—j,

This condition for negative differential conductance was
first demonstrated for an alamethicin-doped artificial lipid
bilayer membrane by Mueller and Rudin (1968b). When-
ever membrane current (Ji2) is related to membrane voltage
(vie) as in (3.13), the condition can be expressed in the
following simple physical terms: negative differential con
ductance wil/ appear whee G is rising rapidly enough below
the resting voltage. Since the resting voltage depends upon
ion concentrations, negative differential conductance of a
membrane can be made to appear or disappear simply by
changing the composition of the external solutionst Thus,
as Agin (1969) has emphasized, the mere appearance of a
negative conductance need not depend upon exotic effects
such as interaction of divalent ions, conformational changes
of macromolecules, micelle transformations of lipid systems,
enzyme reactions, ion specific carriers, redistributions of
pores, chemical gates, etc.

Cole (1968, pp. 287—290) points out that the functional
form in (3.12) is especially useful for description of a squid
axon membrane since 6 remains constant for times up to
the order of 100 @sec. The current Row in response to more
rapid changes in voltage is simply ohmic.

It should be noted that the current indicated in Fig.
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V, = (kT/q) log[C—ji/[C ),). (3.16b)

The resting potential (i.e., the value of vri for Jii ——0) is

V~ = Z (G'V')/ZG' (3.17)

thus if the conductance, 6, for a particular ion becomes
large, the resting potential will approach the battery volt-
age for that ion. To see how these equations can be used,
consider the data of Fig. 12(a). The resing potential, V~ =
53 mV and, from the ion concentration ratios and (3.16),
Vrc = +115 mV and Vci = —115 mV. Thus from (3.17)
we find at the resting potential that Gx/Gci = 2.7 so about
73% of the ion current flowing in the vicinity of the resting
potential should be carried by potassium ions.

Depending upon one's point of view, (3.15) can be con-
sidered as (i) a flexible and useful description of multi-
cornponent ion flow, or (ii) a phenomenological representa-
tion without physical meaning. The second attitude has
been presented in detail by Tasaki (1968). He points out
that if no restrictions are placed upon the functional de-
pendence of the G's, then (3.15) says nothing more than.
(3.12). Furthermore (3.17) is of no value for calculation
of a resting potential unless other information about the
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FIG. 14. Geometry for a space clamped measurement on a squid nerve membrane.

membrane permeability to various ions is available. Tasaki
(1968) carefully considers the calculation of resting poten-
tials from physical considerations under a variety of simpli-
fying assumptions. A complementary discussion is presented
in the recent book by Khodorov (1974).

As an example of the kind of equation which can be
derived for the resting voltage, Hodgkin and Katz (1949)
assumed that each ion obeys the Nernst —Planck equation
(3.3) and that the ion concentration just inside the mem-
brane is a partition coefficient, y, times the corresponding
concentration outside the membrane. Then for univalent
ions

ions outward and potassium ions inward against the resting
potential. We shall see that the electric field energy asso-
ciated with the resting potential is expended in the propa-
gation of an action potential LHodgkin (1964)j. Current
knowledge of the processes for outward pumping of Na+
and inward pumping of K+ has recently been reviewed by
Thomas (1972). There are indications that three sodium
ions are removed for each two potassium ions which enter.
The energy for this process is supplied by the conversion
of ATP (adenosinetriphosphate) to ADP (adenosinedi-
phosphate). The ATP, in turn, is reconstituted in the
membranes of subcellular units known as mitochrondria.

g+ q,~,LC+j, + g—
p,~,LC

—j, IV. ELECTRODYNAMICS OF AN ACTIVE NERVE
&a = (&&/q) log

' ' ' ' . (3.18) MEMBRANEpr; C g+ pr. C

J» ——0 for v» ——V~ —65 mV.

For the squid giant axon LHodgkin and Huxley (1952)j
LNa+j2/LNa+)g 7.5 ~ VN, = +50 mV

where Q+ (Q ) indicates summation over the positive
(negative) ions.

So far we have been considering only passive (i.e. , non-
metabolic) mechanisms for ion transport across a cell mem-
brane. Active ion transport is extremely important in the
operation of a living cell; and, although the details of such
processes are not yet well understood, the broad outlines
are emerging L(Lehninger (1970)g. The inside of a nerve
cell, for example, is usually some 60—70 mV negative with
respect to the outside. Using the convention of Figs. 5 and
10

The most extensive nerve membrane measurements have
been made on the giant axon of the squid Lsee Cole (1968)
for a thorough discussion of the literature and a beautiful
color photograph of the animal(. This fiber is between
0.5 and 1 mm in diameter, and several centimeters in length.
It is easily removed from the squid and continues to func-
tion for at least several hours and often as long as a day. '

A typical experimental arrangement for measuring the
electrodynamic properties of a membrane is indicated in
Fig. 14 PHodgkin, Huxley, and Katz (1952)$. This is called
a "space-clamped" measurement because the electrode
arrangement eliminates the possibility of longitudinal
variation of voltage and the associated wave propagation
effects; it is also called a "voltage clamped" measurement
if a negative feedback amplifier is introduced to reduce the
source impedance and permit v» to be independently
specified. We are interested in interpreting the relationship
between J» and v» to extract the nonlinear character of the
membrane indicated simply by J» ——2V(v») in (2.2). As
was previously mentioned in connection with (2.29), J» is
composed of a displacement current component through

(K+jg/(K+j2 30~ VK = —77 mV. ' An introduction to the surgical procedures for removal of a nerve
fiber is provided by the two part film loop Nerve l77zpulse available from

Thus metabolic energy must be expended to pump sodium Ealing Corp. , 2225 Massachusetts Ave. , Cambridge, Mass. 02140.
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the membrane capacity, and an ion current through the
membrane. Thus

Jrs ——C(dais/dt) + J,, (4.1)

where C is the capacitance per unit area of the membrane
(about 1 pF/cm'), and J; is the sum of all the individual
ionic currents through the membrane. If z1~ is independent
of time, the displacement current is zero, and the ion current
should be a sum of terms as in (3.15). In measuring the
ionic currents, it is therefore convenient to hold the mem-
brane voltage fixed. It was this voltage-clamp measurement
[Cole (1949), Marmot (1949)] which led Hodgkin and
Huxley (1952) to a representation of J; which could be used
to solve (2.30) for a propagating action potential.

The sodium and potassium ion currents are most interest-
ing because they respond nonlinearly to changes of voltage
across the membrane. The behavior of these nonlinear cur-
rents has been described in a simple and appealing way by
Katz (1966) and by Cole (1968) using the equivalent
circuit shown in Fig. 15(a). This representation includes a
sodium battery of about 50 mV directed inward and a
potassium battery of about 77 mU directed outw ard. As
was noted in the previous section, the ion batteries account
for the tendency of sodium ions to diffuse inward and for
potassium ions to diffuse outward. These batteries are in
series with a sodium conductance per unit area, GN„and a
potassium conductance per unit area, GH, respectively as is
indicated in Fig. 13. A small boy (named "Nat") senses
the voltage across the membrane and adjusts GN according

(b)

I'IG. 15.- (a) A simplified equivalent circuit for a unit area of squid
membrane. (b) The reaction of Rat to displacement of membrane
voltage from the resting value. (cl Ditto for Kal LCole (1968l, p. 272/.

to some rules of his own, and another small boy (named
"Kal") does the same for GK. What Nat and Kal do is con-
veniently described in terms of the change of potential
inside the membrane with respect to its resting value. Thus
we d.efine

(4 2)

If the voltage inside the membrane is made more negative
(hyperpolarised), the membrane conductances remain small
with little change in value. If the voltage inside the mem-
brane is made less negative (depolarized), the reactions of
Nat and Kal are indicated in Fig. 15(b) and (c). The
individual ion current components can be measured by
assuming the validity of (3.15) and adjusting the external
salt solution to make VN or VH equal to zero.

The curves in Fig. 15 indicate the way Gz, and G& change
with time for a axed change in voltage. If the circuit is not
voltage clamped, however, it will "switch. "The reason for
this is that a small depolarizing voltage (v ) 25 rnV) in-

creases the conductance of the membrane to sodium ions.
Thus sodium ions Row into the membrane which increases
the depolarizing voltage causing the sodium ion conduct-
ance to increase even more. It is a positive feedback effect;
once initiated the membrane will rapidly approach the
sodium ion battery voltage vip = VN~ or & = VNa VB—
115 mV due to the inrush of sodium ions. Then GN, will fall
back toward zero

t Fig. 15(b) g and GK will. rise (Fig. 15(c)j
allowing an outQow of potassium ions. This outward
potassium ion current will bring the membrane potential
back to its resting value. Increasing the potential inside the
membrane by 25 mV or more is something like pulling the
chain on the hopper; once the process starts it goes through
the complete cycle. In large 6bers the total ionic Aow during
one switching cycle is a, very small fraction of the total ion
concentration; many hundreds of thousands of firings can
occur in a squid giant axon before the ionic batteries be-
come discharged. In smaller fibers, such as those shown in

Fig. 2, the ionic Row per impulse' can be a substantial frac-
tion of the total ion concentration.

This is a description of ~hat happens. t/I/"hy it happens is
not yet understood, but some -interesting clues can be
gleaned from an investigation of the total ion current which
flows in response to a fixed voltage (so Jis = J;). From
Fig. 16 it can be seen that if the voltage v1~ is held at a value
less than VN„ the current Jrs is first negative (inward),
then positive (outward). From these curves it is possible
to define an initial peak, J„,and a final steady state value,
J„asis indicated for the curve at v1~ = —20 rnV in Fig. 16.
Both J~ and J„canthen be plotted against the correspond-
ing value of the voltage step as is indicated in Fig. 17(a).
The early, J„,branch of the curve is primarily sodium ion
current; while the steady state, J„,branch is primarily po-
tassium ion current. The membrane appears to be in a high
conductance state for v1~ & —40 mV and a low conductance
state for v12 & —50 mV. Returning to the inequality condi-
tion for differential negative conductance expressed in
(3.14), we see that in the range —50 mV ( vis ( —40 mV
the conductance is rising "rapidly enough. "

Similar data for other electrically active biological mem-
branes are plotted in Figs. 17(b)—(f). In each case there is
an early current density (J„)or current (I„)which exhibits
negative differential conductivity and eventually relaxes
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natural membranes involves a transition between two con-
formational states of the membrane. Figure 17 certainly
suggests the ubiquitous nature of two conductivity states,
and more detailed data includes: (i) direct observation of
two conductivity states when Ca++ is used as the external
cation LInoue, ef al. (1973)$, (ii) observation of switching
between these states by variation of the temperature, (iii)
changes in extrinsic Quorescence during the time course of
an action poteritial PTasaki 1974af, (iv) electron micro-
graphs of con6gurational transitions involving collapse and
extension of "headpiece stalks" in mitochondrial mem-
branes fHatase et al. (1972)j, and of lattice structure on
electrically excitable membranes of insect photoreceptors
L Gemmel (1969)$, (v) nonaxoplasmic birefringence changes
during the action potential LCohen et al. (1970),Watanabe
ef al. (1973), Sato et al. (1973)$, (vi) protein binding of a
nontoxic dye during the action potential (Levin el al.
(1968)$, and (vii) direct observation of spatial nonuni-
formity during switching of a squid axon )Inoue ef al.
(1974)j.The absence of birefringence change in pure lipid
bilayers reported by Berestovskii ef al. (1970) reinforces
the attitud. e of Green et al. (1972) that protein complexes
play the key role in membrane function. The physical ideas
recently suggested by Frolich (1970) may clarify the under-
standing of protein conformational states.

FIG. 16. Typical response of squid membrane current density to
fixed steps of voltage LCole (1968), p. 326$.

into a steady state current density (J„)or current (I,.)
with only positive differential conductivity. In Figs.
17(a)—(d) the early current is carried primarily by sodium
ions and the later current is carried primarily by potassium
ions. In the measurement on Aplysia califormca shown in
Fig. 17(e), Geduldig and Gruener (1970) find clear evi-
dence for a calcium ion contribution to the early current
Lsee also Kryshtal', Magura and Parkhomenko (1969) and
Chap. 5 of Khodorov (1974)j. The data in Fig. 17(f) are
from a plant cell, the fresh water alga Tigella. This plant,
which produces giant internodal cells with about the same
dimension as the squid giant axon, has been described in
detail by Scott (1962). For 1Vitella it appears that the early
current is carried by an outward Aux of chloride ions, while
the later current is primarily outward potassium. The time
required to relax from the J„branch to the J., branch is the
order of seconds for Tigella in contrast with a time of the
order of milliseconds for the animal fibers in Figs. 17(a)—(c) .

No universally acceptable theory has yet been proposed
to explain the relation between membrane electrodynamics
(Fig. 17) and meinbrane biochemistry (Fig. 8). An impor-
tant recent contribution to this quest, however, is the review
of various proposed mechanisms in Chapter 9 of the book
by Khodorov (1974) . These mechanisms include (i) mobile
carriers with aflinities for particular ions, (ii) special pores
with ionic selectivity and the ability to open and close,
(iii) conformational changes in membrane micromolecules,
and (iv) special mechanisms for artificial membranes.
Khodorov's discussion is particularly valuable because it
brings the work of Russian scientists into focus.

As Tasaki (1968, 1974b) and Changeux (1969) have
demonstrated, there is a considerably body of experimental
evidence to suggest that the basic process of excitation in

+ Gl. (eis —Vr.), (4.3)

where GH and 6N are, respectively, the maximum potas-
sium and sodium conductances per unit area, and GL, is a
constant leakage conductance. The phenomenological var-
iables e, m, and h lie between zero and unity; the potassium
conductance is "turned on" by e, and the sodium conduct-
ance is "turned on" and "turned off" by m and h, respec-
tively. It is assumed that e, m, and h are independently
relaxing toward equilibrium values m0, m0, and h0, with
characteristic times r, v-, and 7q. Thus

de/df = —(m —rlo)/r„, dm/dt = —(m —ms)/r

dh/dt = —(h —hs)/rp, (4.4a,b,c)

It should be emphasized that the concept of a conforma-
tional change during activity of a natural membrane does
not confiict with the idea that ions Qow through channels
or "pores" in the membrane which was discussed in detail
by Hille (1970). The two points of view can be considered
as complementary aspects of a more complex reality. On
the other hand, one should not conclude that the switching
observed on the leading edge in Fig. 3 is direct evidence of
membrane macromolecular dynamics LChangeux ef al
(1967); Lehninger (1968); Nachmansohn and Neuman
(1974)j. The basic positive feedback mechanism which
drives an action potential is that discussed above and dia-
grammed in Fig. 18 LHodgkin (1951, 1964)$. Several scien-
tists have indicated how one might proceed from an essen-
tially conformational membrane model to the ionic current
data of Fig. 16 which, in turn, implies the feedback mech-
anism of Fig. 18 LGoldman (1964), .Jain et al. (1970),
Chizmadzhev et al. (1972, 1973)j.

In 1952 Hodgkin and Huxley introduced a phenomeno-
logical expression for the ion current density through a
squid membrane with the form

Ji ——GKri'(vis —VK) + 6 .Nm' (hv i—s VN. )
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result might be anticipated from a comparison of Figs.
17(a) and 17(b).

The relaxation parameters (np mp hp 7. r, and r@) can be
determined as functions of voltage such that (4.3) will
reproduce voltage clamp data as in" ig. 16. The nature of
this functional dependence is shown in Fig. 19(a) where the
constant values given by Cole (1968) are also indicated.

Hodgkin and Huxley obtained analytic expressions for
the parameters in (4.4) of the form

(4.4'a)

(4.4'b)

(4.4'c)

dn/dt = n. (1 —n) —P„n,
dm/dt = n (1 —m) —P m,

dh/dt = np„(1—h) —
pp, h.

When the corresponding variables are determined for the
active node of a frog myelinated axon (area 20 p,'), the
results are strikingly similar as shown in Fig. 19(b). This

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975

FIG. 17. Voltage clamp data from various active biological membranes. (a), (b), and (c) redrawn from Co]e (1968), (d) redrawn from Deck
and Trautwein (1964), (e) redrawn from Geduldig and Gruener (1970), and (f) redrawn from Kishimoto (1965). J„and g are defined in

Fig. 16.
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Then, as functions of the voltage v = v~&
—V~ deIIined in

(4.2) and measured in millivolts,

0.01(10 —v) .

[exp(10 —v) /10 —1] ' (4 5a)

P = 0.125 exp( —v/80),

0.1(25 —v)

[exp(25 —v) /10 —1] '

P = 4 exp( —v/18),

ag = 0.07 exp( —it/20),

(4.5c)

(4.5d)

(4.5e)

x = exp[(T —6.3)/10]. (4.6)

Clearly (4.3) and (4.4) provide wide flexibility for fitting
voltage clamp data similar to that displayed in Figs. 15
and 16. Although the ion battery potentials (V~, VN, and
Vl.) are fixed by the respective concentration ratios, the
maximum conductivities (GK, GN, and Gi, ) can be adjusted
in addition to the six functions of v required to specify
(4.4) . Furthermore the choice of powers appearing in (4.3)
is somewhat arbitrary. The fourth power of e was chosen
to yield the "sigmoidicity" in the initial rise of potassium
conductance evident from Fig. 15(c); and, as Hodgkin and
Huxley note, "better agreement might have been obtained

[exp(30 —v)/10+ 1] '

where the units are msec '. Equations (4.5) give the rate
constants measured at a temperature of 6.3 C. For other
temperatures they should be multiplied by the factor ~

where

with a fifth or sixth power, but the improvement was not
considered to be worth the additional complication. " A
later study by Cole and Moore (1960) suggested that the
twenty-fifth power of m is more appropriate in order to
reproduce the time delay which appears when the membrane
is switched on from the hyperpolarized state. 4 Similar con-
siderations apply to the m'h factor in (4.3). The task is to
represent a sodium conductance which erst rises then falls
as is indicated in Fig. 15(b). Such an experimental result
can be described by dependence upon a single variable
which obeys a second-order differential equation or upon
two variables each of which obeys a erst-order differential
equation. Hodgkin and Huxley note, "the second alterna-
tive was chosen since it was simpler to apply the experi-
mental results. "

The Hodgkin —Huxley expression for ion current density
(4.3) is well defined, and useful for a variety of numerical
and intuitive checks on experimental results. It has stimu-
lated an everwidening analytical study which extends far
beyond the professional boundaries of neurophysiology.
Thus there is an inevitable (and regrettable) tendency to
consider (4.3—5) as "graven on a stone tablet. "The applied
mathematician should be more concerned with the qualita-
tive features of (4.3) than the algebraic details. The bio-
chemist, on the other hand, should concentrate upon the
development of a fundamental theory of membrane dy-
namics which can reproduce the voltage clamped data as
displayed in Fig. 16. Useful reviews of the Hodgkin —Huxley
equations include Noble (1966) and Moore (1968) in addi-
tion to the books by Cole (1968) and Khodorov (1974) .

Uarious other suggestions for analytical representations
4 A suggestion which "wasn't recognized for tongue-in-cheek" (Cole,

1975) .
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of the potassium conductance include the work of:

(i) Tille (1965) who takes

experiments seem to confirm this prediction P.andowne
(1973), Cohen and Landowne (1974)g.

where

dN/dt = c,,X + ~i2X'+ a,X'+ u4r' ~ a,X'

(4.7) V. THE HODGKIN-HUXLEY AXON

%e are now in a position to discuss the nonlinear dynamics
of the nerve fiber shown in Fig. 5(a) .The first order partial
differential equations are (2.21) together with (4.4). Com-
bining (2.21b) with (2.29) we can write these as

and the a, are appropriately chosen functions of membrane
voltage,

av/ax = r,i, — (5.1a)

(ii) FitzHugh (1965) who obtains (4.7) with
exp( —p,) and

dp/dt = n —pp (4.9)

where n. and P are functions of the membrane voltage, and

(iii) Hoyt (1963) who uses (4.4a) from Hodgkin and
Huxley (1952) then empirically determines the functional
form for GIr(e). She finds deviation from a power law at
larger values of e.

In a discussion following the presentation of FitzHugh
(1965), Cole points out the wide range of functional expres-
sions which can represent the sigmoid nature of the potas-
sium conductance rise with roughly equal accuracy. During
this discussion Cole, Hoyt and FitzHugh are in agreement
that there is no uniquely superior analytical form. For the
Purkinje fibers in the mammalian heart, however, Noble
(1962) has described. a modified representation for the
potassium which accounts for the slow recovery indicated
in Fig. 17(d) . This slow recovery is necessary for the gen-
eration of heartbeats.

Analytical study of the rise and fall of sodium conductance
/Fig. 15(b)j has been of more fundamental importance.
Frankenhaeuser and Huxley (1964) have shown for mye-
linated axons of the toad (Xenopus laevis) that an m'h
dependence is more appropriate. Hoyt (1963, 1968) and
Hoyt and Adelman (1970) have demonstrated that for a
squid giant axon the sodium conductance is somewhat better
represented by dependence upon a single variable which
satisfies a second-order differential equation or, equiva-
lently, two variables which satisfy coupled first order equa-
tions. Hoyt and Adelman state: "These conclusions imply
that the mechanism responsible for the increase in sodium
conductance is more likely to be dependent upon the pro-
duction of an intermediate sta, te than on the competition
of two antagonistic but independent processes. . ."; but
see also Jakobsson (1963). Molecular theories leading to
coupled equations include the work of Mullins (1959),
Goldman (1964), Fishman et al. (1972), and Chizmadzhev
et al. (1972, 1973). Other models for membrane dynamics
with varying degrees of phenomenology and membrane

'

biochemistry include the work of Jain, Marks, and Cordes
(1970), Offner (1970, 1972, 1974), Moore and Jakobsson
(1971), and Jakobsson and Scudiero (1975). Hoyt and
Strieb (1971) and Landdowne (1972) have independently
suggested that the time course of the sodium conductance
)Fig. 15(b) J may be explained by assuming the current
to be carried primarily by ions stored withe the membrane.
This implies a temperature dependence of ion Aux which
is much weaker than is indicated by (4.6), and initial

ai/ax + c(av/at) = —j;(v, n, m, h),

an/at = —pe —rio(v) )/r (v),

am/at = —Pm —mo(v) j/r (v),

ah/at = —Lh —h, (v)/r&(v) j,

(5.1b)

(5.1c)

(5.1d)

(S.le)

where j; in (5.1b) is the membrane ion current per unit
length. From here on it is typographically convenient to
use the voltage variable v = vi2 —V~ defined in (4.2);
evidently this makes no difference on the left-hand sides
of (5.1a) and (5.1b). From (4.3)

The "average axon" chosen for numerical study by
Hodgkin and Huxley (1952) had the following parameters
in addition to those specified in the previous section.

Resting potential: V~ = —65 mV.

Axoplasm conductivity: a = 2.9 mho/m.

Axon radius: a = .238 mm.

Membrane capacitance: C = 1 tiF/cm'.

One approach to the analysis of these equations is to seek
traveling wave solutions where all dependent variables
(v, i, h, m, h) are functions only of a moving spatial variable

$= X —Nt. (5.3)

This can be considered as a special case of the more general
independent variable transformation

a/ax -+ a/ap,

so

t —+r=t a/at —+ a/ar —e(a/ag) (5.4)

Assumirig independence with respect to r in the ($ r)-
system, we can replace a/ax by d/dp, and a/at by —Nd/dg,
whereupon Eqs. (5.1) become the ordinary differential

j; = gKe'(v —Vz —VK) + gN, m'h(v —V& —VN, )

+ gI. (v —Vz —Vr.), (5.2)

where gK ——2vaGK, gN, = 2v.AN, and gz, = 2vaGI, .
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equations IOO -- 40

dv/d$ =— —r~$,

dZ/d$ = Yqcg'L . Jg)

dn/d& =- (n —np)/ur„,

dm/dg = (m —mo)/ur,

dh/dg =-. (h —ho)/ur„.

This is an an)onomous set of equations LHurewicz (1958),
Lefschetz (1962)$ since the derivatives are uniquely defined
as functions of the dependent variables. Thus phase space
techniques can be helpful in understanding the structure of
solutions $Kolmogoroff et al. (1937)j. It is important to
note, however, that e (the velocity of the moving spatial
coordinate in (5.4)) appears as an adjustable parameter
in (5.5). In general one can expect the topological character
of the phase space trajectories to depend upon the value
chosen for the velocity e. Only those trajectories for which
the dependent variables are bounded will be of physical
interest. In particular a trajectory corresponding to the
action potential shown in Fig. 3 should have the qualitative
character indicated in Fig. 20(a). The values v = 0, i = 0,
and (n, m, h) = (0.35, 0.06, 0.6) are a solution of (5.1) so
the corresponding point in the phase space of (5.5) is a
singular point (SP) at which all the $ derivatives are equal
to zero. The task of finding a pulselike traveling wave solu-
tion for (5.1) involves determining the proper value of the
velocity I at which a trajectory which emanates from this
singular point (at $ = —~) eventually returns to it (as
( —+ + ~ ) . Such a trajectory is sometimes called homoclt'nic,
while a heteroclimic trajectory would pass between two dif-
ferent singular points.

A homoclinic trajectory was determined by Hodgkin and
Huxley (using a hand calculator) in 1952. Voltage and
membrane conductance are plotted as a function of time
from this calculation in Fig. 21 for the proper value of
18.8 mps. This value is in satisfactory agreement with the
measured value of 21.2 mps; and, as a comparison of Pigs. 3
and 21 will show, so also are the waveforms v(/) and G(t).
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I''IG. 21. %aveforms of the action potential and membrane con-
ductance calculated from (5.5) at 18.5 C. Redrawn from Hodgkin and
Huxley (1952d) .

From a theoretical point of view, the discovery of a
pulselike traveling wave solution for (5.1) from an investi-
gation of the phase space topology associated with (5.5)
does not mean that the pulse is stable to perturbations of
its shape. Such waveform in, stability involves depend. ence
upon r, and (5.5) was derived with the specific assumption
of independence with respect to ~. We will study this ques-
tion in detail below. Another form of instability which
appears in these calculations is numerical instability during
the integration of (5.5). This arises because the assumed
pulse velocity, I, is an adjustable parameter in the analysis.
Choosing u slightly too small or too large may cause the
computed waveform to diverge as is indicated in Fig. 20.
Such numerical instability of a solution to (5.5) seems to
be a necessary condition to avoid a wa, veform instability
in the corresponding solution of (5.1) LScott (1970)).

Machine computations for the space clamped membrane
were first reported by Cole, Antosiewicz, and Rabinowitz
in 1955, and for the propagating axon by FitzHugh and
Antosiewicz and by Huxley in 1959. Huxley demonstrated
the existence of a second pulse solution (shown in Fig. 22)
which propagates with only 30% of the velocity of the full
action potential. This pulse has an unstable waveform; it
will either decay to zero or rise to the full action potential
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I'"IG. 22. (a) A full sized action potential and (b) an unstable
threshold pulse for the Hodgkin —Huxley axon at 18.5'C. Redrawn from
Huxley (1959).

FIG. 23. Amplitude and velocity for a traveling wave pulse on a
Hodgkin —Huxley axon vs a "narcotization factor, " g, which reduces
the sodium and potassium conductances. Redrawn from Cooley and
Dodge (1966).

and thus represents a boundary or threshold state of the
fiber. Huxley (1959) also indicated the possibility of a
subthreshold wave train which would correspond to a closed
cycle in the phase space sketched in I'ig. 20. The observation
of a threshold pulse was conhrmed by Cooley and Dodge
(1966) through direct integration of (5.1) . They extended
the result by assuming that the e6ect of a narcotic agent
would be to lower gN, and gK by a factor g. The results are
plotted in I'ig. 23 where it can be seen that mo attenuation-
less propagation or threshoM e6ect obtains for g & qo =
.26k. At smaller values of this "narcotization factor" a
"decremental" pulse t Lorente de N6 and Condouris (1959j)
propagates with slowly deminishing amplitude as shown in
Fig. 24. Since this pulse is not a function only of the argu-
ment x —ut, it is not represented by solutions of (5.5) and
requires the complete set (5.1) for its description. Such
decremental or "graded" pulses have also been extensively
discussed by Leibovic (1972). Decremental pulses have
been of great interest to physiologists in decades past and
some of the flavor of these discussions is captured in the
accounts by Kato (1924, 1970). Numerical analysis of the
Hodgkin —Huxley axon not only indicates the possibility of
decremental conduction, but the experimental conditions
under which it shouM be observed. Recently Kashev and
Bellman (1974) have introduced a new method of "dif-
ferential quadrature" for more rapid integration of (9.1) .

It is interesting to relate the results of these numerical
studies to the notion of power balance which was introduced
in (1.3). The u —g locus in Fig. 23 indicates where pulse
solutions can be found which satisfy (1.3) . Since the lower
branch is unstable, the inside Q+ region is where pulse solu-
tions for (5.1) can be found with uE ) P. In the outside

region, uE ( P for all pulse solutions of (5.1). For q
slightly less than qo, we expect that NE for a pulse with
appropriate shape and velocity will be almost equal to P.
In this case an approximate calculation using only data
from the traveling wave analysis may be useful. To see

Lu —uo(g) g' = &(~ —~o), (5.6)

where up =—2(u++ u ) and k = 74 mo/sec'. When q = gp,
there will be a traveling wave pulse with the Fourier trans-
form, Fp(p) .

noix —uo(go) tg = Fp(P) expgiP (x —upt) j dP. (5.7)

-When q ( go, (5.6) indicates a complex value for the travel-
ing wave velocity

I = +o&agi (5.8)

where u; =—Lkp(qo —q) O' . The primary effect of the
imaginary component of velocity is to modify the magnitude
of the Fourier transform. Thus an approximate expression
for the evolution of a decremental pulse is

v(x, t) Fp(p) exp( I p I u;t) e—xptip(x —upt) j dp.

(5 9)

The reason for taking the absolute value of p is to keep the
Fourier transform symmetric so n(x, t) remains real; the
justification is that the roots in (5.8) may be interchanged
without in.troducing a physical discontinuity when p = 0.
Equation (5.9) may of course be written as the convolution
of 'vp(x —uot) with the Lorentzian pulse

this, note that the data in I'ig. 23 are fairly well represented by
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FIG. 24. Propagation of a decremental pulse on a Hodgkin —Huxley axon narcotized by a factor of 0.25. Curves are voltage waveforms at I cm
intervals. Redrawn from Cooley and Dodge (1966).

which has unit area and a half-width of 2n, t. For large t,
(5.9) implies decay as t i rather than exponentially which is
clearly incorrect. A numerical evaluation of (5.9) is cur-
rently being made for intermediate values of time.

Impedance bridge measurements by Cole and Baker
(1941) indicated that the membrane appears to have an
inductive current component at small ac amplitudes be-
tween 30 cps and 200 kc. For the membrane equivalent
circuit representing 1 cm of membrane shown in Fig. 25(a),
they found C = 1 pF, E. = 400 0 and L, = 0.2 H. Hodgkin
and Huxley (1952) investigated the dynamical relation
between small changes in voltage and current in (4.3) and
directly calculated in values R = 820 ohms and I. = 0.39 H
with a threefold increase in L, for a 10 fall in temperature.
Such an inductance is much too large to have any connec-
tion with magnetic helds; thus a physical interpretation is
illustrated in Fig. 25(b) which depends upon the experi-
mental fact that membrane conductance LG in Eq. (3.12)j
remains constant for times of the order of 100 psec or less
LMauro (1961)). If the current is concave in the direction
of depolarization, a sudden change of current from J~ to J~
must be associated with a change of voltage from v~ to e2'.
The voltage will then slowly relax toward a smaller differ-
ence v2. These conditions are met by the e and h dependen-
cies in (4.3) both of which contribute to the inductance
indicated in Fig. 25(a). Extensive studies of this effect
include those by Chandler et al. (1962) and Mauro et al.
(1970). Offner (1969) has related membrane reactance to
the dynamics of internal ions.

The phenomenological inductance also in'. uences the
propagation of alternating subthreshold waves on the axon;
this is evident from the "overshoot" in the return to rest
of the action potential in Fig. 21. Subthreshold oscillatory
propagation has been studied in detail by Sabah and
Leibovic (1960) LLeibovic (1972)$ using Laplace transform
techniques and by Mauro, Freeman, Cooley and Cass
(1972). Mauro et al. use both numerical analysis of (5.1)
and experimental observations on squid axons to show that
phase velocity of an oscillatory subthreshold wave is rather
closely related to the pulse velocity of an action potential
as indicated in Table I. LSee also Optowski (1950) in con-
nection with this relation. g In electronic jargon the squid
axon looks like a low Q, bandpass filter tuned to about
100 cps when it is stimulated by a subthreshold, oscillatory
current.

Cooley and Dodge (1966) also computed the response of
a Hodgkin —Huxley axon to a steady stimulation by longi-
tudinal current Pi(0, t) = const in Fig. 5(a) g. For a steady
current around 3.4 pA a periodic train of spikes was gen-
erated with a frequency rather insensitive to the stimula-
tion. This result is in contrast to the real axon which gen-
erates a burst of only a few spikes. FitzHugh (1969) has
suggested that the real axon exhibits an "adaptation"
effect which tends to decrease excitability with a time con-
stant of the order of a second. Such an effect, which is not
represented by the Hodgkin —Huxley equations, may be
connected with slow changes in ion concentration or in
temperature.

Rev. IVlod. Phys. , Vol. 47, No. 2, April 1975



Alwyn C. Scott: Electrophysics of a nerve fiber

TABLE I. Velocities of the action potential and a subthreshold
oscillation vs temperature for the H—H axon. )Mauro et al. (1972)g.

Temperature
('c)

Pulse velocity
of action

potential (rnps)

Phase velocity
of subthreshold

oscillation (mps)

I L

18.5
1-2.5
6.3

18.8
16.1
12.7

16.1
14.6
13.3

becomes simply a function of voltage j;~ j(v), where

j() = g--"(V.)( —V-- V-)

+ gNBWO (V) ko(VB) ('v —VB VNs)

+ gr. (v —Vz —Vr, ) . (6.1)

O

C3
t4

~~
O
O
CL
0)

Cl

—r,cv& ——r,j(v) (6.2)

which is the equation for nonlinear diGusion discussed in the
Introduction. Together with (6.2) it is convenient to write
(2.21) in the form

This approximation is valid only for dynamical processes
which occur in times long compared with r and short com-
pared with v„and 7-~, but, as reference to Fig. 21 indicates,
the leading edge transition comes close to fulfilling these
requirements. Equation (2.30) then takes the form'

e, = —r,z (6.3a)

i, + cv, = —j(v) (6.3b)

(b)

FIG. 25. (a) Membrane small signal equivalent circuit measured
by Cole and Baker (1941}. (b) Physical explanation of the phe-
nomenological inductance.

Vl. PROPAGATION OF THE LEADING EDGE

Comparison of numerical results reported in the previous
section with corresponding experimental data indicates that
the Hodgkin —Huxley equations (5.1) are of considerable
value in describing the facts of electrophysiology, but it is
also of interest to consider approximate forms of (5.1)
which can be analytically investigated. Physical motivation
for one such approximation stems from the observations
(see Fig. 21) that (i) the most rapid dynamical change
occurs on the leading edge of an action potential, (ii) this
leading edge transition carries the membrane potential
from its resting potential to approximately the sodium
diffusion potential, VN„and (iii) the velocity of the lead-
ing edge determines the velocity of the entire' action poten-
tial. For the squid giant axon the functions eo, mo, ho, r„,

, and rq are sketched in Fig. 19(a) from which it is evi-
dent that the relaxation time, 7-, for sodium turn on is
about an order of magnitude less than 7-„andv ~ for potassium
turn on and sodium turn off respectively. Thus it is interest-
ing to consider the approximation LFitzHugh (1969)j

whereupon the ion current through the membrane (5.2)
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dv/d] = r,i-
di/dg = r,cubi —j(v) . —

(6.4a)

(6.4b)

Singular points for this set occur where i = 0 and j(v) = 0,
i.e., at v = 0, V» and V~. If we de6ne

g(v) = dj/dv, (6 5)

then g(0) and g(V, ) will. be positive, and g(Vr) will be
negative as is indicated in Fig. 26(a). From this one can
show /Scott (1970), McKean (1970)g that the singular
points at (i, v) = (0, 0) and (0, Vs) are saddle points, while
the intermediate singular point at (0, Vq) is an inward
(outward) node or focus for m ) 0 ((0). Kunov (1967)
used "Bendixon's negative criterion" LAndronov et ai.
(1966)g to show that (6.4) has a homoclinic trajectory,
corresponding to a "pulselike" solution of (6.3), only for
zero velocity. Thus the basic solutioris with nonzero velocity

' From here on the conventional subscript notation for partial dif-
ferentiation will be used wherever it is typographically convenient.

as an equivalent set of erst order pde's.

Equation (6.1) does not have a particularly convenient
analytic form, but we expect it to go through zero at the
origin (the resting potential), at a higher voltage Vs ——

VN,. —V~, and at a voltage, V~, somewhere between. %ith
this in mind, let us apply the transformation (5.4) dis-
cussed in the previous section to (6.3) with the assumption
that r7/Br = 0. Then the set of ordinary equations which
are equivalent to (5.5) becomes
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V

-- V( —— &&u

g -x- ut

(a) (b) (b)

FIG. 26. (a) A representation of j(ll) as in (6.1). (b) Propagating
waves which change the voltage level.

2 j./2

j(v') dv' (6 6)

Although, as we shall see below, this solution is unstable, it
is of interest because it specifies the condition for threshold
stimulation of a fiber. Lindgren and Buratti (1969) have
shown the pulse velocity to be nonzero for a tapered 6.ber.

A family of analytic solutions for the wave forms and
velocities indicated in Fig. 26 can be obtained by writing
LScott (1974)g

dv/d( = T(v),

whereupon (6.4) requires that T must satisfy

(6 7)

T' = j(v)/T —r,cu. (6.8)

For u = 0, the pulselike trajectory of (6.6) is recovered.
Now suppose u W 0 and j(v) is a polynomial of order n, and
T(v) is a polynomial of order m, then T' is of order (rn —1),
and from (6.8)

are the "level change" waves shown in Fig. 26(b). From
the phase space point of view, the velocity of such a transi-
tion is Axed by the condition that an isolated trajectory
leaving one saddle point (at $ = —~) must become an
isolated trajectory approaching the other saddle point
(as g ~ ~ ) . Yoshizawa (1971) has demonstrated that
these waves can either charge the membrane capacitance
when area A2 is greater than area A~, or discharge the
capacitance for A~ & A~. In either case, the power balance
condition (1.3) must be satisfied.

If A~ ——A2 these velocities are equal to zero which is a
special case of the zero velocity pulse indicated in Fig. 27
for the case A2 ) 2&. From (6.4) with u = 0, it is easily
seen that a pulse lik.e solution is obtained by substituting
into (6.4a) the homoclinic trajectory

FIG. 27. (a) j(v) with A» A1. (b) A stationary pulse solution.

where B is a constant (with units of mho/V') chosen to
make j(v) approximate 2v.aJ„from Fig. 17(a) as closely
as possible. Since m = 2, a suitable quadratic trajectory is

i = Kv(v —V2)

which, upon differentiation, gives

ds/dv = 2Kv —KV2.

But di/dv can also be evaluated by dividing left- and right-
hand sides of (6.4) to obtain

di/dv = cu+ (B/r, K) (v —V,).
Thus K = —(B/2r, )'~~ so

= (B/2...) i (v, —2v, )

and (6.4a) can be integrated to

(6.11)

v = -', V~I 1 + tanhL-', V2(-', Br,)'12(x —ul) j). (6.12)

Note that the velocity given by (6.11) changes sign as Vi
becomes greater than V2/2. This corresponds to the area
condition indicated on Fig. 26(b). Similar results have been
obtained for other nonlinear wave systems simulating the
nerve axon by IL'inova and Khokhlov (1963) and by
Parmentier (1969).

Another approximation for j(v) which permits an analytic
solution for (6.4) corresponds to the case m = 1; so from
(6.9) n = 1 and we have a piecewise linear curve indicated
in Fig. 28. Below a voltage V» the membrane is assumed to
remain in a resting state with low conductance; above V~ it
is assumed to switch into an active state of much higher
conductance. Such an approximation is certainly suggested
by several of the curves for J~ vs v» in Fig. 17. Using the
notation of Tasaki (1968), we write LScott (1962), McKean
(1970)j

Q 2' (6.9)

j(v) = Bv(v —Vi) (v —V2),
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(6.10)

The case rn = 2 implies n = 3 so j(v) must be approxi-
mated by a cubic polynomial LNagumo, Arimoto and
Yoshizawa (1965), FitzHugh (1969)g

j(v) = g„v
= g-(v —V')

forv& V~

for v & V~. (6.13)

The discontinuity at Vi is acceptable because Kqs. (6.2)
and (6.3) do not involve derivatives of j(v). With j(v)
approximated as in (6.13), Eq. (6.2) is linear both above
and below V&. Thus the nonlinearity in the problem mani-
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F IG. 28. Piecewise linear approximation for
j(v) LTasaki (1968)j.

fests itself only where v = V&. To simplify the discussion
we will begin by assuming that g,. = 0. Equation (10.4)
can be written

d2v/dP + r,cu(dv/d$) —r,j(v) = 0

which becomes

leading edge must absorb energy (electrical energy in the
membrane capacitance) at the same rate it is being produced
for a steady traveling wave to exist. Approach (ii) is
equivalent to (i) a,nd somewhat more convenient. From
(6.15) and (6.4a), i($) is easily calculated for the ranges
$ & 0 and $ ( 0, and current continuity at $ = 0 implies
r2(V2 Vi) piVi which is readily solved for the velocity
as

d' /dvP+ r,cu(dv/d$) = 0 for v ( Vi, (6.14a)
u = Pg /r c'j'"t (V& —Vi)/(V V )'"j (6.16)

d v/dP + r,cu(dv/d$) —r.g, (v —V~) = 0 for v & Vi.

(6.14b)

If, for convenience, we choose f = 0 to be where v = Vi, a
leading edge which makes a transition between zero and V&

Lsee Fig. 26(b) j and satisfies (6.14) is easily constructed.
Thus

The case g„W0 has been studied in detail by Kunov (1966)
and by Vorontsov, Kozhevnikova and Polyakov (1967) who
use a similar technique to hnd

l((V. —Vi)/Vij'g- —g I

(» c EV2(~'2 Vi) /Vi 3 I L( V. Vi)/Vllg + g I )'"

(6.17)

v = Vi exp( —pic)

and

fore& V~, (6.15a)
Lsee also Kompaneyets (1971)j.It can be seen that a neces-
sary condition for a steady wave of transition from e = 0
to V2 is ( V2 —Vi) 'g & Vi g„.This again. implies again that
the areas A2 and A1 in Fig. 28 must satisfy the inequality

v = Vg —(V~ —Vi) exp(p2$) for v ) Vi, (6.15b) A, &A, . (6.18)

where yi ——r.cu and yi = (r,cu/2) (—1 + (1 +4g,/r, c'u2) '~'j.
The velocity of propagation is not yet determined in (6.15)
but it may be computed in either of two ways /Scott
(1962)j:

(i) Equate the total power being produced by j(v) and
absorbed by r, over the waveform to ~cV.'I, the power being
absorbed by the membrane capacitance at velocity I; or

(ii) Demand continuity in the longitudinal current, i, at
$ = 0.

Approach (i) is employment of the power balance idea
behind (1.3) which was discussed in the Introduction. The

The eBect of "narcotization, "discussed in the previous sec-
tion in connection with Figs. 23 and 24, is to reduce g .
Eventually the inequality (6.18) is violated and only decre-
mental conductance can take place.

The value of (6.16) can be assessed by using it to calcu-
late the velocity of the action potential for the Hodgkin-
Huxley axon shown in Fig. 21. From the Hodgkin —Huxley
axon parameters given in the previous section, the factor
( /gc'r)'~' is equal to 33.2 m/sec. Taking V2 ——V»—
V~ ——115 mV and (from Fig. 17) Vi = 40 mV gives
u = 36.6 m/sec which is almost a factor of 2 higher than
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that calculated by Hodgkin and Huxley. The source of this
error seems to be the assumption that r = 0 which was
made at the beginning of this section. This assumption
implies that sodium current will begin to Aow fully as soon
as the membrane voltage changes by 40 mv. But inspection
of Fig. 19 or Fig. 21 indicates that this is not so. The time
delay associated with sodium turn on requires the membrane
voltage to change by about 60 mV before the membrane
conductance rises to half of its fu11 active value. Taking
Vi ——60 mU gives I = 22 m/sec which is quite satisfactory
considering the nature of the approximations which have
been made.

The importance of time delay in the conductance rise was
emphasized by Offner, Weinberg, and Young (1940) who
developed a velocity formula similar to (6.16) shortly after
Cole and Curtis (1939) recorded the waveforms displayed
in Fig. 3. This delay is also of theoretical importance since
(6.16) and (6.17) imply

propagation on a nerve fiber. To examine this question
LScott (1971)g we will again ignore turn on delay and
assume r = 0, 7„=r„=~. The erst order partial dif-
ferential equations corresponding to Fig. 7(b) and (6.21)
become

v. = —li —ri,

i,, = —Ci, —j(n). (6.23)

Taking j(v) as in Fig. 28 with g„=0 and assuming a steady
wave of propagation, v(x —et) = v(&), then yields /Scott
(1963, 1970)j

(V. —Vi)'
Q

r,c' Vg Vg

This implies that series inductance will have a negligible
effect upon velocity if it satisfjes the inequality

as V~ —+0; (6.19)

but, with r Q 0, the effective value of V~ cannot reach
zero. Thus an infinite propagation velocity is prevented by
the nonzero value of r .

Early attempts to calculate the propagation velocity of
an action potential have been reviewed by Offner, Wein-
berg, and Young (1940). Since that time, additional ap-
proaches have been developed by Rosenblueth, Wiener,
Pitts, and Garcia Rarnos (1948), Huxley (1959) Kom-
paneyets and Gurovich (1965), 8alakhovskii (1968),
Namerow and Kappl (1969), Smolyaninov (1969), Pickard
(1966), and Markin and Chizmadzhev (1967), of which the
last two references relate propagation velocity to the rate
of rise on the leading edge of the action potential. Such a
relation is easily obtained from (6.15a) since

Bv/Bt
~

„=—m dv/d$ l~=o = yimV1.

Thus

I = fw, , , /r. cVijiI', (6.20)

8'v/Bx' —l.c(8'v/Bp) = r, (c(8v/8t) +j;) + l. (aj~/at). .

(6.21)

The numerical instability discussed in connection with Fig.
20 can then be avoided if both sides are individually set to
zero at a velocity

u = D,cj—'I'. (6.22)

Uan Der Pol (1957) has proposed a similar model for
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as is readily verified. for the waveform in I'"ig. 21. This is the
formula used by Zeeman (1972).

We now turn out attention brieAy to the effect of mag-
netic fields, which are associated with the longitudinal cur-
ren. ts and represented as the inductors l; + lo ——/, in Fig.
7(b), upon the propagation velocity. This question arises
because it has been suggested PLieberstein (1967a, b, 1973),
Brady (1970), Isaacs (1970), Lieberstein and Mahrous
(1970)j that (2.30) should be augmented to the form

(6.25)

The left-hand side of (6.25) can be evaluated from (2.12)
and (2.14) using small argument approximations for the
Bessel functions as

&' + so (1/'carol*~') + '~(~0/41r) L1 —2 log(P~) j
(6.26)

the second term of which gives the series reactance from
magnetic fields both inside and outside the fiber. Thus

1, = (/lo/4') t 1 —2 log (Pa) j (6.27)

where po = 47r X 10 7 H/m is the mks magnetic perme-
ability of nonmagnetic materials. Taking Pa 10 2 implies
l, ~ 10 H/m. The right-hand side of (6.25) is greater
than 100 H/m, thus the inequality is satisfied by eight
orders of magnitude, and magnetic energy storage will have
no measurable effect upon the normal propagation of an
action potential. This conclusion is further supported by the
numerical studies of Kaplan and Trujillo (1970). Solutions
of (6.21) at the velocity given in (6.22) for which both
sides of the equation go to zero would correspond to a
decoupling of. high frequency electromagnetic waves from
the membrane. While this may have been what Newton
(1718) had in mind when he posed his "twenty-fourth
question, " it does not correspond to normal nerve activity.

Vll. THE FITZHUGH-NAGUMO EQUATION

The previous two sections have bracketed (in the sense of
an artilleryman) the representation of a propagating nerve
fiber. The Hodgkin —Huxley equations, (5.1) and (5.2),
give a fairly accurate description of spike propagation but
are somewhat diNcult to analyze without the aid of an
automatic computer. The nonlinear diffusion equation
(6.2) is simple enough for analytical investigation and
yields some useful results Le.g. , Eq. (6.16) for the conduc-
tion velocityj, but it fails to reproduce the qualitatively
important feature of pulse recovery which is necessary for
repeated 6ring of the Aber. In this situation I'"itzHugh
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(1961) and. Nagumo, Arimoto and Yoshizawa (1962) pro-
posed a modification of the nonlinear diffusion equation
which would retain its simplicity but allow the action poten-
tial to return to a resting level. In properly chosen units of
space, time and voltage, (6.2) can be written V, —V, =
F(V), where F(V) is a function with the character indi-
cated in Figs. 26(a) or 28. Augmenting this equation with a
new "recovery" variable R to LFitzHugh (1969)g

V..—V, = F(V) + R,

where

Rg ——e(V+ a —bR) (7.1a, b)

yields the desired recovery. To see this note that R in
(7.1a) acts as an outward ion current which tends to
decrease the area A2 in Figs. 26(a) or 28. With reference to
the Hodgkin —Huxley equations (5.1) and (4.4a), there is a
correspondence between

and Nagumo (1964), Sato and Miyamoto (1967)j and are
closely related to the dynamical equations for active super-
conducting transmission lines which employ tunneling of
either normal electrons (Giaever-type) or superconducting
electrons (Josephson-type) [Scott (1964, 1970), Par-
mentier (1969, 1970), Johnson (1968), Nakajima, Yama-
shita and Onodera (1974), Nakajima, Onodera, Nakamura
and Sato (1974)j. Considered as a model for. the nerve
axon, (11.1) neglects (i) turn-on delay for the sodium cur-
rent, (ii) the fourth power dependence of potassium current
upon n, and (iii) the dependence of r„upon@.More exact
second-order systems have recently been considered by
Krinskii and Kokoz (1973). A good general survey of these
problems is given in the thesis by Kunov (1966).

The analysis of (11.1) was begun by Nagumo, Arimoto
and Yoshizawa (1962) who considered the ordinary dif-
ferential equations for traveling wave solutions of the form
V = V(x —et) = V($) and R = R(x —et) = R($) as
indicated in (5.3) . Then V and R must satisfy

dV/d$ = W,

dW/dg = F(V) + R —uW,

(7.2a)

(7.2b)

E.

dR/df = —(bR —V —a). (7.2c)

where g is the "temperature factor" indicated in (4.6) . The
constant a in (7.1b) can be absorbed into the definition of
R and F so there is no loss of generality in setting it to zero.
The constant 6 is often arbitrarily assumed equal to zero.
Since e is proportional to ~, it can be considered as a param-
eter which increases with temperature.

Equation (7.1) is beginning to assume the role wjth
respect to nerve Aber propagation that the equation of
Van Der Pol (1926, 1934) has played with respect to oscil-
lator theory. "Van Der Pol's equation" displays the quali-
tative features of many oscillators (spontaneous excitation,
limit cycle, continuous. transition between sinusoidal and
blocking behavior, etc.) without necessarily being an exact
representation of any particular dynamical system. As
recent studies LCohen (1971), Hastings (1972), Greenberg
(1973)j indicate, such a, model is very stimulating and
useful for the applied mathematician. Equation (7.1) is
often called "Nagumo's equation" LMcKean (1970), Green-
berg (1973)g although FitzHugh (1968, 1969) refers to it
as the "BVP equation" in recognition of the introduction
by Bonhoeffer (1948) of phase plane analysis into the
study of the passive iron nerve model, and of Van Der Pol.
The reference to Van Der Pol, however, is somewhat un-
fortunate for in 1957 he introduced his own modihcation
for application to nerve problems which failed to consider
the diffusive character of the nerve fiber. Thus the name
"FitzHugh-Nagumo equation" used by Cohen (1971),
Rinzel and Keller (1973), and Hastings (1975a) seems most
appropriate.

The general utility of (7.1) can be appreciated by con-
sidering the design of a neuristor or electronic analog of the
active nerve fiber proposed by Crane (1962). Equations
(7.1) describe the most natural technique for achieving
pulse return in an electronic neuristor LNagumo et al.
(1962), Crane (1962), Scott (1962, 1964), Berestovskiy
(1963), Noguchi, Kumagai and Oizumi (1963), Yoshizawa

F(V) = -', V' —V. (7 3)

Velocities of the two branches vs. the "temperature
parameter" e are shown in Fig. 29. FitzHugh (1968) also
made a motion picture entitled "Impulse propagation in a
nerve fiber'" which is based upon numerical integration of
(7.1). Some selected frames from this film are reproduced
in Fig. 30 which show the propagation of two pulses away
from a point of stimulation. In the fully developed pulses
LFigs. 30(f), (g) and (h) g, the recovery variable, R, follows
behind the voltage, V. These pulses correspond to the upper
velocity (A') at e = 0.08 in Fig. 29. The lower velocity
pulse (8') is unstable. Again the locus of allowed traveling
wave velocities in the I —e plane indicates where the power
balance condition (1.3) is satisfied. For e ) e„only decre-
mental conduction is possible.

Arima and Hasegawa (1963) have considered a general-
ized form of (7.1) with R, = G(V). With suitable restric-
tions on Ii, 6, and the smoothness of the initial data, they
show that auniquesolutionexistsinthehalf-space

l
x

~
) ~

' Available on loan from the National Medical Audiovisual Center
(Annex) Station K, Atlanta, Georgia 30333.

They assumed F(V) to be cubic, took b = 0, and obtained
numerical evidence for the existence of two homoclinic
trajectories for suKciently small values of e. At a critical
value, e„these solutions merged and for & & ~, no homo-
clinic orbits were found, just as in Fig. 23. Such results
suggest the existence of two pulse like traveling wave solu-
tions to (7.1), as in Fig. 22, and experiments on an elec-
tronic analog indicated that only the pulse with higher
velocity is stable. These results were confirmed by Fitznugh
(1968, 1969) through numerical studies of (7.1) and (7.2)
with b & 0 and
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hiv From Fig. 29 it is clear that the approximation

u~uo+ use (7.10)

is useful over a substantial portion of the upper (stable)
branch; and, it is important to notice, the determination of
uq~ in (7.9) requires only knowledge of the singular pulse
V.(~)

For the orbit 8 in Fig. 31, uo ——0 and (7.9) cannot be
used. In this case Casten et a/. write

FIG. 32. Voltage pulse corresponding to orbit A in Fig. 31 with
e&0.

V = Va+ ~'12V~+

R = e'"Rg+ ~ ~ ~
7

u = e"'u + ~ ~ ~

(7.11a)

(7.11b)

(7.11c)

involves a rapid transition between the outer zeros of F ( V)
as was discussed in detail in the previous section. Q2 A
"slow relaxation" from E. = 0 to a new value R» determined
by (7.2c) with the condition F(V) + R 0. Q3 A rapid
downward voltage transition between the two outer zeros
of F(V) + R~. The value of Rq must be such that this trail-
ing edge will have the same velocity as the leading edge (see
Fig. 26) . Q4 Finally there is a slow relaxation from R = Rq
back to zero.

to obtain

d'VD/dp —F(VO) = 0,

d'Vg/dP —F'(Vo) = Rg —uP(dVO/d&),

dRg/d& = —Vo/up.

(7.12)

(7.13)

(7.14)

The orthogonality condition still holds for the left-hand side
of (7.13) so

The velocity, No, of the singular orbit A is just that veloc-
ity discussed in the previous section. Assuming a = 0,
6 = 0, ands) 0, wecanwrite eP=+( V'dg (7.15)

u = uo + eu + 6 u + (7.4a) Again we see that the approximation

V = Vo + (VS + e'V2 + ~ ~ ., (7.4b) (7.16)

R = Ro+ eRg + e'R2+ ~ ~ ~ . (7.4c) is useful over much of the lower branch in Fig. 29.

d V./«+ .(dV./«) —V(V.) + R.j = 0, (7.5)

Ro = const, (7.6)

d V&/d@+ uo(dV~/d5) —VP (Vo)

= Ri —ui (dVo/d$), (7.7)

We can then substitute into (7.2), and equate powers of e

to obtain

Closed trajectories satisfying (7.2) correspond to the
periodic wave solutions which were originally suggested by
Huxley (1959) for the Hodgkin —Huxley equations. The
existence of such closed orbits has been studied by Hastings
(1974a) and. by Carpenter (1974) using the concept of
"isolating blocks" (Conley (1973)j around a singular
orbit. Rinzel and Keller (1973) have studied solutions of
(7.2) with a, = 0, b = 0, and

F(V) = Vfor V( Vg

dRg/d$ = —Vo/uo. (7 8)
= V —1 for V O V». (7.17)

Using (7 5) nd t, t b, t t ' t d.~ lt This is the function of Fig. 28 with g, = g„sothe phasesing .Sg an some integration by parts, it is not difficult
f h d 'd f (77) '

h l

'
p - eq to ~ e l e ~ ~ ~ pt ' g h»'"' V = V

For a periodicitv defined by

(d Vo/dg) exp(uog) .
V(k) = V(k+ ~) (7.18)

Thus, from (7.7) and (7.8), uP is determined as

,i O'Vo
u~" = —— Vo($') d$'

~ exp(uog) d]
uo ~ ~ / d$

oo dV 2

exp(up&) d(.
d$

(7.9)

some numerical values for velocity, I, and amplitude, A,
are shown as functions of P in Fig. 33. Again there are two
waves for each period, the slower wave being unstable.

Currently it is of great interest to extend such exact
results to the full Hodgkin —Huxley equations (5.1) or to
the corresponding ordinary differential equations for travel-
ing wave solutions (5.5). Evans and Shenk (1970) have
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20 Myelin

FIG. 34. Structure of a myelinated nerve 6ber
(not to scale).

6 /1 XX8 XA fl 8 XXZ 1A f8 8 /8
111111J I Y11111 Y.Ill )I

Active nodes

TABLE II. Data on frog myelinated fiber.

Fiber radius (a)
Myelin thickness (b)
Distance between active nodes (D)
Area of active node
Internal resistance per unit length
Capacity of myelin per unit length
Conductance of myelin per unit length
Capacity of active node
Resting resistance of node
Conduction velocity

7 p,

2 Jg

2 mm
2.2 X 10 7 cmm

140 MO/cm
10—16 pF/cm
2.5—4 X 10 ' mho/cm
0.6-I.S pF
40—80 MQ
23 m/sec

s

t

is

'Ail

!

a%aHK~
FIG. 35. Comparison of cross sections for the squid giant axon
(above) and the sciatic nerve bundle controlling the calf muscle of a
rabbit (below). There are about 400 myelinated 6bers in the rabbit
nerve each conducting puises at about 80 meters per second (Young
(1951)j.

The square root of the ratio of squid fiber radius (238 ii)
to that in Table II is 5.83. The inverse square root of the
fraction of exposed area multiplied by the ratio of total
capacitance to node capacitance is 10.6. Thus (8.1) and
(8.2) imply that the squid axon velocity should be 0.55
times that of the frog, axon whereas in fact they are about
equal. This simple estimate ignores: (i) the effect of con-
centrating the active membrane at isolated points, (ii) the
differences between frog arid squid membrane dynamics
indicated in Fig. 19, and (iii) differences in conductivity
of the axoplasm. The first of these corrections can be brought.
into focus by noting, from the considerations of Sec. II,
that the myelinated fiber is closely approximated by a
linear diffusion equation which is periodically loaded by the
active nodes

I
Pickard (1966), Markin and Chizmadzhev

. (1967)j.This picture can be further simplified by lumping
the internode capacitance of the myelin together with the
nodal capacitance. This leads to the equivalent circuit indi-
'cated in Fig. 36, where

R = 28MB,

C = 2.6 —4.7 pF,

and E(i) is the ion current calculated at the ith node from
Eqs. (4.3) and (4.4) using the data in Fig. 19(b). Equa-
tions (5.1a, b) are then replaced by the difference di merel
tiara equ, ati ops

(8.3a)

ments on myelinated fibers the reviews by Tasaki (1959)
and Hodgkin (1951, 1964) are suggested. in addition to the
discussion by Cole (1968);here we list some representative
data on the frog myelinated fiber collected by Hodgkin
(1964) .

i;+i —i, + C(dt's;/dt) = —I(i). (8.3b)

To determine a conduction velocity the traveling wave
assumption, displayed in (5.3) and (5.4), must be replaced
by a search for solutions which satisfy the condition

It is interesting to note how close this average conduction
velocity is to the value of 27 m/sec measured by Helmholtz
in 1850.

v, i(t) = v;(t —T),

i, i(t) = i, (1 —T)

(8.4a)

(8.4b)
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l

V
l

FIG. 36. A difference differential represen-
tation of the myelinated nerve 6ber.

where T is a section delay. If T can be found, the conduction
velocity for the myelinated hber is evidently 1000 I I t t I I I I /I

(8 5)

In solving for the section delay, it is interesting to begin
by assuming I(i) = I(v;), where

500—

200—

IOO

I
I

II' II I
I

I
I

I(v) = 0 fore;& Vj,
50—

= G(t, —Vs) for v; & Vi, (8 6) 20—

as we did in (6.3) for the smooth axon. Then, for R and G
suKciently small, the differences in (8.3) can be approxi-
mated as x derivatives and (6.16) gives

IO'—

I' = C&G'/Gj'"C(Vs Vi) '"/(V —Vi) 3 (8.7)

The problem is to determine T as a function of R, C, 6, V&,
and Vs when the approximation of (8.7) is @sot valid. This
problem was carefully studied by Kunov and Richer at the
Electronics Laboratory of the Technical University of
Denmark during 1964—65. A detailed description of this
work is included in the thesis by Kunov (1966) from which
some of the salient points have been published LKunov
(1965), Richer (1965, 1966)$. Kunov's thesis describes a
variety of analytical studied including: (i) numerical
integration of (8.3) for a finite number of sections, (ii) an
iterative computation to find solutions with the form (8.4),
(iii) a Laplace transform solution, and (iv) measurements
on an electronic analog LKunov (1965)$. These studies
indicate that the ratio of conduction velocity on the mye-
linated axon, u, to that calculated from (6.16) for the
smooth axon, No, is a function of the parameters EG
(Vs —Vi)/Vs. Thus

0.2—
um
u =09

O. I
r 0

O. 05—

t

I

O.O I I I I I I I I I I

0 .I .2 .5 0 .5 .6 .7 .8 .9 I.O

0.02—

V2 -V)

Yp

u /up ——ytRG, (Vs —Vi)/Vs],

and
FIG. 37. Ratio of myelinated conduction velocity (ii ) to that of
the corresponding smooth 6ber (u0) given by (6.16). Dashed lines
indicate extrapolated or interpolated values.

and curve specifying p are reproduced in Fig. 37. For the
frog axon, the data in Fig. 19(b) give G = 0.57 pmho so

whereas our rough estimate obtained above by comparison
of squid and frog fibers was

~ = 0.55.

and in Sec. VI the value of V» which seemed to account for
delay in sodium turn on was about 60 mV. Thus

(Vs —Vi)/Vs = 0.5.

Prom Pig. 37 these two values indicate a reduction in
velocity of the myelinated fiber over that of a smooth axon
by the- factor

y = 0.4,

This is rather close agreement considering the uncertainty
in the capacitance C and the indication in Fig. 19(b) that
the frog membrane responds somewhat more quickly than
that of the squid. Furthermore the appropriate value for
G may not be as large as 0.57 pmho since potassium and
leakage currents Qow in the opposite direction and, in addi-
tion, leakage current through the myelin and the resting
conductance may have a noticeable eBect as indicated in
(6.17) t Kompaneyets (1971)g.

Richer (1966) has made an important contribution to
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able wave

IX
FIG. 38. Nasonov diagram for a mye-
inated nerve fiber.

Stimulus (s)

this problem by finding an exact solution for the case
G = ~ which he calls "smitch-line. " This solution gives
an implicit relation between normalized section delay,
T/RC, and (V, —V&)/V, as

(v —v&)/v = exp (—

(8.9)

Equation (8.9) appears a bit unwieldy, but fortunately it
can be closely approximated by the much simpler expression

( V —V ) / V (1 + T/RC) (8.11)

which is found to be asymptotically correct for both large
and small values of T, and overestimates T by about 10%
at T/RC equal to unity. A simple algebraic relation which
interpolates between (8.11) and (8.7) is

RC V2 —Vg Vg RG Vg
(8.12)

This equation agrees well with digital computer solutions
for a long but finite system and also with the results of
analog simulation (Kunov (1966)g. Richer (1965) has
also considered the addition of resting conductance as in
Fig. 28 and has shown that only a positive or negative
level change can propagate (not a pulse) just as in the
smooth axon. It is interesting to note that he finds an inter-
mediate range for which neither wave can propagate.

where

F(~, T/RC) —= (2/m) tan 'P(cten) tanh(2T/RC sin 'oJ.

(8.10)

Kunov (1966) considers recovery models or discrete
FitzHugh —Nagumo systems, and Markin and Chizmadzhev
(1967) discuss propagation when the internodes are de-
scribed by the linear diffusion equation. FitzHugh (1962)
computed the initiation and conduction of pulses on a linear
diffusion equation periodically loaded with Hodgkin-
Huxley nodes, and improved computations have recently
been reported by Goldman and Albus (1968). The high
velocity (stable) and low velocity (unstable) pulses which
appear in Figs. 23 and 29 for the Hodgkin —Huxley and
FitzHugh —Nagumo equations can be appreciated on the
myelinated fiber by considering the "Nasonov diagram"
LAverbach and Nasonov (1950), FitzHugh (1969)g in
Fig. 38. If it is assumed that: (i) each node has a "sigmoid"
stimulus-response curve, and (ii) a fraction, 1/cx, of the
response for each node is presented as a stimulus to the
next, then stationary levels of activity occur where the
sigmoid curve intersects the line R = ~S. The lower ampli-
tude intersection is unstable since a small increase in 5 will
lead to a larger increase in R, etc. The upper intersection,
on the other hand, appears to be stable. As the parameter
n is increased, these two intersections eventually merge;
and above this critical value of o. only decremental conduc-
tion obtains.

IX. WAVEFORM STABILITY

In Sec. V—VIII we have considered the problem of finding
traveling wave solutions for the partial or diGerence dif-
ferential equations describing nerve fibers. For pde's the
analytic technique was to assume that dependent variables
are functions of x and t only through the argument $ =
x —N)I as indicated in (5.3) . This is equivalent to introduc-
ing the independent variable transformation (5.4) and then
assuming no dependence upon 7. (8/Br = 0). Having found
such traveling wave solutions, it is interesting to know
whether or not they are stable with respect to perturbations
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V —Vg = F(V), (9 1)

traveling wave solutions for which were considered in detail
in Sec. VI assuming a cubic form for the function F(V).
Equation (9.1) is simple enough for exposition and the
results to be obtained serve as a basis for stability investi-
gation of the FitzHugh —Xagumo and Hodgkin —Huxley
traveling waves.

Under the transformation (5.4), (9.1) becomes

Vp + NV) —V, = F(V), (9.2)

where V is now considered a function of P (space in a coor-
dinate system moving with velocity I) and r (the same time
scale as t). The traveling wave solution Vr($) must satisfy

which might reasonably be expected to arise in an experi-
mental situation. To study the time evolution of such
perturbations, it is necessary to consider the 7- dependence.

To introduce the basic ideas of waveform stability analysis
we will investigate the KPP form of the nonlinear diffusion
equation (1.1),

Elementary solutions to (9.7) will either decay exponentially
with time, grow exponentially with time, or remain con-
stant. Thus, ioifh respect fo the liriearised eqnotioe, we can
say the system is: (i) asymptotica1ly stable if all elementary
solutions decay, (ii) nonstable if any elementary solution
grows, and (iii) stable if (i) and (ii) are not satisfied.

This is a neat scheme but we Inust be wary of drawing
conclusions from (9.7) which are not relevant to the applica-
tion of (9.5) in a real situation. While we might conclude
asymptotic stability with respect to (9.7), for example, it
may not be reasonable to assume perturbations small
enough for (9.7) to apply. As Eckhaus (1965) puts it
"infinitesimal disturbances are certainly unavoidable, but
not all unavoidable disturbances may be considered infini-
tesimal. '" On the other hand if (9.7) indicates elementary
solutions which grow, these will eventually be bounded by
the nonlinear character of (9.5) . Such a bound may be so
close to the original solution that the system is, in effect,
stable. With these caveats in mind, let us proceed to the
analysis of (9.7).

If V& is constructed from elementary product solutions
of the form

Vr,g+ esVz, ( = F(Vv) (9.3) Vp y(&) exp( —Zr), (9.8)

and a general solution of (9.2) can be considered as the sum then @ must satisf the ei envalue e uation

of a traveling wave 'solution and a perturbation Vi (f, r).
Thus @(p + u@p + X —G Vr $) (9.9)

V($, r) = V&($) + V&($, ).

Substituting (9.4) into (9.2) gives

(9 4)

Vi,~g+ uVi, p VQ, —F(VQ+ Vv) —F(Vr) (9.5)

F ( Vi + V~) —F ( Vv) dF/d V
~
r rr X Vi

=—G(Vr) Vi, (9.6)

whereupon (9.5) is "linearized" to

as a nonlinear and f-dependent pde for the evolution of the
perturbation. It is important to recognize that eo approxi-
mations have been made in going from (9.1) to (9.5).

Investigation of (9.5) for the evolution of Vi ((, r) sub-
ject to prescribed initial and boundary conditions consti-
tutes the "waveform stability problem" for a traveling
wave solution to (9.1) with velocity u. This equation has
been studied in connection with the propagation of: (i)
flames (Zeldovich and Barenblatt (1959), Kanel' (1962)$,
(ii) "Gunn effect" domains in bulk semiconductors,
LKnight and Peterson (1967), Eleonskii (1968)j, and (iii)
traveling waves on "neuristors" and electronic analogs for
the nerve fiber (Parmentier (1967, 1968, 1969, 1970),
Buratti and Lindgren (1968),Lindgren and Buratti (1969),
Maginu (1971)j.

One approach to the study of (9.5) is to assume the
perturbation small enough so the right-hand side can be
approximated by

The condition for asymptotic stability is that all the eigen-
values, X, which are allowed for solutions of (9.9) must
have positive real parts. This would require that the
magnitude of the corresponding elementary solution (9.8)
will decay exponentially with time. In a certain sense
asymptotic stability is never possible. To see this, differen-
tiate (9.3) for the traveling wave solution with respect to
$ to obtain

(V, )„+(V, ), —G(V )V, = 0, (9.10)

and note that this is the same equation obeyed by @ when
X = 0. Thus the eigenfunction of (9.9) with zero eigenvalue
ls

@= Vz, t fork =0. (9.11)

The physical meaning of this result is seen by considering
an infinitesimal translation, n, of Vr along the $ axis. Since

(9.12)

this is equivalent to adding an infinitesimal amount of the
P = 0 eigenfunction. But we expect a translational perturba-
tion neither to grow nor decay. The observation that the
perterbatioe eigerifurictioe correspoedimg to sero eigenvalue is
the derivative of the travelieg zvave is quite general and not at
all restricted to solutions of (9.1) . Many investigators avoid
this situation by defining stability with respect to a metric
which permits arbitrary transla. tions with g [Zeldovich
and Barenblatt (1959), Kanel' (1962), Maginu (1971),
Evans (1972), Brooke Benjamin (1972), Sattinger (1975)j.

Vi, tp+ uVi, p
—V~„=GLVz ($)jVi. (9.7) 8 Those who experiment with real nerve 6bers will probably agree.
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Next it is of interest to determine whether or not X =0 is
the lowest eigenvalue; if it is not, (9.8) indicates instability.
We shall make this determination with respect to the bound-
ary conditions

o.V&,~ as r —+ ~. To second order V&&'& must satisfy

Vp, «(2) + NVp, )(2) Vp (2)

= F'(V ) V +-,'F"(V )(V ) . (9.19)

@—+0 as(g( —+m, Differentiating (9.3) twice with respect to f gives9.13

which imply perturbations of 6nite energy. If the change of
dependent variable

y = expt —(u/2)Q&

V. ««+ ~V. ,«~ = F'(V.) V.,«+ F"(V.) V.',~ (920)

The variable

is introduced into (9.9) LParmentier (1967)j, P must
satisfy the Schrodinger equation

m =— Vp&') —~n'Vg, gg

obeys the equation L(9.19)—i~n' (9.20) j or

(9.21)

4«+ i~ —-'I' —GEV~(t) JI4 = 0 (9.15)
'w«+ Rwg —w~ = F (Vp)w

+ -,'F"(V.)r (V ") —- V.',~j. (9.22)

for which the eigenvalues are real and bounded from below
/Morse and Feshbach (1953) pp. 766—8). If X = 0 and
G ~Gi ) 0 as g ~+~, @ must also satisfy the boundary
condition (9.13). Then X = 0 is the lowest eigenvalue if
the corresponding eigenfunction d V~/d$ has no zero cross-
ings. This condition is satisfied. for the "level change" waves
in Fig. 26 but not for the pulse wave in Fig. 27. Thus the
smooth level change waves are sfaMe with respect to the
linearized equation, but any solution for which V& is not
monotone increasing with $ will have eigenvalues X ( 0
and, from (9.8) will be unstable. This conclusion is inde-
pendent of the form of the function F(V) in (9.1).

This result can be extended. to perturbations which are
not infinitesimal by expressing the right-hand side of (9.5)
by the Taylor series

F(VT + Vp) —F(Vr)
= F'(VT) Vp+ —',F"(Vp) Vp'+ ~ ~ ~ (9.16)

for V~ within the appropriate range of convergence. I.ind-
gren and Buratti (1969) have constructed a Lyapunov
functional which implies nonlinear stability from linear
stability if V& is small enough compared with the first posi-
tive eigenvalue in (9.15). Maginu (1971) has obtained a
stronger result. He writes

Vp = Vp&" + Vp&') + ~ ~ ~ (9.17)

Vp ~ V~(E+ ~) —V~(8 as7~~. (9.18)

This is nonlinear stability with respect to a metric which
permits translations in the $ direction. The only restriction
on V~ is that it must lie within the range of convergence in
(9 16).

To see how this proof goes, note first that we have already
demonstrated, through analysis of (9.7), that Vp&" —+

where Vp&') + Vp&" + - ~ ~ + Vp&"' satisfies (9.5) to nth
order with the right-hand side approximated up to the eth
derivative in the Taylor series (13.16).Then he shows that
as r —+ ~) Vy "—+nV~) Vy ' ~ —'cPV~)p . . . , Vy " —+

(o.~/~ l) V~ (~

But, as v- —+ ~, this approaches

w«+ Rwg —w~ = F (V~) w (9.23)

which is identical to (9.7), so w —& &).i', ~. Then from (9.21)

Vp&') + Up&') ~ (n + ai) V~, ( + ',n'Vz«-, (9.24)

as 7- ~ ~ .The addition of o,~ to o. in the erst term constitutes
a second-order correction to the translation caused by the
initial perturbation; it can be absorbed simply by redefining
&). in (9.21) and (9.22). Higher order estimates are treated
in a similar manner.

Consider finally the nonlinear bounds on those traveling
waves, V~($), which are not monotone increasing and there-
fore unstable with respect to the linearized equation (9.7).
These will grow no further than the stable, monotone in-
creasing transition wave and they will decay no further
than zero. It seems reasonable to speculate that these are
the bounds of interest.

It should be emphasized that these conclusions do got
apply to transition waves between 0 and V~ in Fig. 26.
Since the singular point at VI corresponds to negative dif-
ferential conductance of the membrane, it is unstable even
under space clamped conditions. The stability of such waves
is studied in connection with a problem of genetic di6usion
where the dependent variable must be less than or equal to
its value at the singular point LFisher (1936), Kolmogoroff
et al (1937), Can.osa (1973), Rosen (1974)g. Aronson and
Weinberger (1975) have carefully compared the asymptotic
behavior of (9.1) for F (V) equal to V(1 —V) with
V(1 —V) (V —Vi).

A corresponding stability investigation for a traveling
wave solution of the FitzHugh —Nagumo equation (7.1) is
considerably more difFicult because the linearized problem
is third order. Thus the eigenvalue problem, corresponding
to (9.9), cannot be made self-adjoint and the eigenvalues
are in general complex. The eigenfunction for X = 0 is still
V~,~, but there is no simple relation between the number of
zero crossings of the eigenfunctions and. the order of the
real parts of the corresponding eigenvalues. However we
have already shown branches Qi and Qa of the singular
orbit Q~ in Fig. 31 to be stable, which is consistent with the
numerical results of FitzHugh (1969) and Rinzel and
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V, —Vg ——Pp(V, zvi, . . . w„),
w;, , = P;(V, w, , . . . 7o„) 1) 0 0 0 Sy (9.25)

where the F's are twice continuously differentiable. This
set reduces to (i) the KPP equation for e = 0, (ii) the
FitzHugh —Nagumo equations with m = 1, and (iii) the
Hodgkin —Huxley equations with e = 3. Writing 8 =—

col(V, wi, . . . w ) and assuming a traveling wave solution
of the form W(x, t) = Wr(g —nt) = Wr(f), a general
solution can be written W(P, r) = Wr(g) + Wi ($, r). The
linearized equation for Wi is then Las in (9.7))

+ eWi, g
—Wi „=AWp, (9.26)

0

Keller (1973) indicating stability along the high velocity
branch for particular functions F(V) .

In a series of papers, Evans (1972) has investigated a
generalization, of the Hodgkin —Huxley equations with the
form suggested by FitzHugh (1969)

The stability investigation of waveforms on myelinated
fibers is yet to begin. Beyond the speculations associated
with Nasonov diagrams (see Fig. 38), there is only the
work of Predonzani and Roveri (1968) which treats equi-
librium stability of a lossless transmission line that is
periodically loaded with active bipoles. Thus much remains
to be done before the study of waveform stability is com-
plete. This work should not be dismissed by the experi-
mentalist as merely of mathematical interest. The point of
Sec. IV is that a fundamentally correct theory of ion cur-
rents has not yet been established. Stability theory is
necessary to decide what a given description of the mem-
brane will predict to occur in the laboratory.

X. THRESHOLD FOR AN ACTIVE FIBER

The classic experimental procedure for determining
threshold conditions of a piece of nerve membrane is the
"strength-duration" measurement. A current of strength
(I) is applied for a time duration (r) which just causes the
membrane to fire /see Fig. 39(a) g. Then both I and r are
adjusted to find their functional relation under this condi-
tion. For the space clamped membrane shown in Fig. 14 the
relation between I and v- is easily understood. When 7. (& r„
and ri„the current pulse must supply the charge, Qe, neces-
sary to change the potential across the membrane to a
value at which the ion current Qows inward. From the
curves of Fig. 17, this is about 20 mV. Thus

where A is an (rt+ 1) X (n+ 1) matrix with elements
obtained by differentiating the Ii's with their arguments
and evaluating at 8 z. Evans shows:

Ir = Qp. (10.1)

(i) The solution for (9.25) decays exponentially to
W~($+ a) (from a suitably small initial perturbation) if
and only if the solution for (9.26) decays exponentially to
Wg, (.

(ii) The solution for (9.26) decays exponentially to
8'p, ~ if and only if the associated eigenvalue equation

+ ~Ct. + (X —A)C = 0, (9.27)

0

where

has no eigenvalues with negative real parts, and 4 = 8'~,~

is the owly eigenfunction for X = 0.

A similar result has quite recently been obtained by
Sattinger (1975) for a more general system which allows
the P's in (9.25) to depend upon the w;, , The zero eigen-
value of the linear operator must be isolated at the origin
of the complex plane, and the remaining eigenvalues must
lie within a certain parabola in the right half-plane. Evans
(1974) has extended his work to show that there must be
an unstable pulse as well as a stable pulse.

As I is reduced, the duration necessary for threshold
excitation increases; and, eventually, I reaches a level
below which steady application will never cause inward
ion current. This level is traditionally called the "rheobase. "
If the stimulating current is turned on slowly (with respect
to r„and ri, ), the outward potassium current begins to flow
which offsets the inward sodium current and increases the
rheobase. These effects have been phenomenologically
described by the "two factor" theory of Rashevsky (1960)
and Hill (1936). See Katz (1939) for an excellent survey
of the early studies; recent work has recently been carefully
reviewed by FitzHugh (1969).

Here our attention will be focused on similar calculations
for the nerve fiber. The experimental situation is as indi-
cated in Fig. 39(b) where the longitudinal stimulating
current, i(t), is conveniently chosen to have the character
indicated in Fig. 39(a). In this case also the strength-dura-
tion curve is given by (10.1) for small values of r, and
reaches a rheobase for large 7-. Computations by Cooley and
Dodge (1966) for the Hodgkin —Huxley axon are presented
in Fig. 40 which agrees well with experimental results
I Noble and Stein (1966), Cole (1968)j. As Noble (1966)
has emphasized, the threshold condition for a fiber cannot
be calculated from the condition that the voltage at the end
of the fiber change by a fixed amount. Indeed, attempts to
derive a strength-duration curve from this condition in-
variably lead to a relation I(t) "~ = constant for small r
which is manifestly incorrect PKunov (1966),Scott (1973)j.

One simple and fundamental way to evaluate Qp for a
propagating axon is to notice that for small r and large I,
l c pin/Bt l )) l j; ~

in (5.1b). Thus (5.1b) can be written as
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TABLE III. Comparison of Q& for fully developed action potention
until Qo threshoM charge.

Temperature
( C) Qo (C) Q (C) Qe/Qo

18.5
6.3

2 52 X 10 9

4 23 X 10 9
1.33 X 10 '
1.71 X 10-9

0.53
0.41

ff)
IO

O
(3

(10.3) is readily evaluated as

Qo = V, /ur. , (10.4)

IO

-- M IL L I SECONDS

FIG. 40. Calculated strength duration curves for the Hodgkin-
Huxley axon. Redrawn from Cooley and Dodge (1966).

the approximate coriservatiori lato LScott (1973a)g

ai/Bx + B(cv)/Bt 0. (10.2)

Qo = idk.
~

~

~

I'lead ing edge]
(10.3)

From (5.1a), i = —v,/r„and, from (5.3), v, = —v~/u so
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Longitudinal current, i, is thePow, and (cv) is the derIsity of
the approximately conserved quantity which is, therefore,
a quantity of charge. Equation (10.2) is approximately
satisfied on the leading edge of an action potential since the
displacement current is greatest (i.e., Bv/Bt is maximum)
and the turn on of sodium current is delayed by r LHodg-
kin —Huxley (1952)j. Thus the amount of approximately
conserved charge carried by the leading edge of a pulse can
be evaluated as

where V„„„is the height of the action potential. Estimates
of Qo for the fully developed action potential on the Hodg-
kin —Huxley axon are compared with the corresponding
values of threshold charge, Qg, (from Fig. 40) in Table III.

The fact that conserved charge carried in the leading
edge is about twice as large as the threshold charge should
not be surprising. This "safety factor" is necessary in order
to insure reliable propagation of the pulse in the presence of
inhomogeneities of the fiber PSmolyaninov (1968), Markin
and Patushenko (1969), Patushenko and Markin (1969),
Khodorov, et al (1969—.19.71), Berkinblit, et al. (1970),
Aronov and Kheifets (1971), Polyakov (1973)g. Table III
implies the relation

, g = A O~ (10.5)

where n is a constant approximately equal to 1/2. In general
it can be estimated as the ratio of leading edge charge for a
threshold pulse to that of a stable action potential. On this
basis the curves in Fig. 22 indicate n = 0.63.The discrepancy
is probably connected with the fact that the approximate
conservation law (10.2) is not so well satisfied for the leading
edge of the threshold pulse. More precise measures of thresh-
old pulses using an appropriately defined I-yapunov func-
tional LParmentier (1970), Elias and Ghausi (1972)j may
be useful in improving these estimates. In myelinated 6'bers
the threshold conditions are somewhat more complex
t Tasaki (1959), BeMent and Ranck (1969)g but a recent
study by Bean (1974) indicates that a threshold. condition
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FIG. 41. (a) Experiment of Katz and Schmitt (1939) to measure
interaction in parallel 6bers. (b) Change in threshold on O2 caused by
presence of a pulse on OI.

of fixed voltage change, corresponding to a nodal charge, is
appropriate.

Xl. PULSE INTERACTIONS

A. Single fiber interactions
The well established experimental fact that two oppo-

sitely directed nerve pulses will annihilate each other upon
collision is readily understood from our previous develop-
ment of leading edge dynamics. Consider the interaction of
two oppositely directed leading edge transitions shown in
Fig. 26. If the approximate conservation law (10.2) is
assumed, then together with (5.1a) the leading edge inter-
action is governed by the linear diffusion equation which
can be written

8'/Bx'(v —V~) r,e(B/Bt) (v —V~) . (11.1)

Thus we expect a relaxation toward v = V& for j(v) as
indicated in Fig. 26(a) if (11.1) remains valid until the
voltage rises above Vi. As soon as (v —V;) lies within the
range of convergence for the Taylor series expansion for
j(v) about V&, v must decay to V2. In terms of (10.4), we
can say that the eel approximately conserved charge for the
leading edges is zero. Referring back to Fig. 32 for the action
potential of the FitzHugh —Xagumo equation, we expect
next a slow relaxation with a time constant r . The third
stage is the interaction of the trailing edges which, accord-
ing to the same argument employed for the leading edges,
should bring the voltage to a negative value followed by a
slow relaxation toward zero.

B. Parallel fiber interactions

Xo more than a glance at the lower photograph in Fig. 35
should be necessary to justify an interest in the interaction
of pulses which are traveling on parallel fibers. The study
of this eGect was initiated in an elegant series of experi-
ments by Katz and Schmitt (1939, 1940, 1942). Working
on a pair of naturally adjacent 6bers from the limb nerve
of a crab, their basic apparatus was as shown in Fig. 41. A

reference pulse was initiated at AB on fiber Qi at a fixed
time; and at an adjusted later time the threshold for pulse
excitation on fiber Q2 at CD was measured. The result is
recorded in Fig. 41(b) and is interpreted as a stimulation of
fiber Q2 which is roughly proportional to the derivative of
the voltage (or from (5.1a) the membrane current) in
fiber Qi. They also observed the effects of mutual pulse
interaction between impulses simultaneously initiated on
the two fibers which produced various combinations of
speeding or slowing depending upon the phase relation. In
particular, syechroeizaHoe of the pulses could be observed
if their independent velocities did not differ by more than
about 10%. All interaction effects could be increased by
reducing the conductivity of the interstitial Quid. Similar
effects have been observed by Crane (1964) on neuristors
and by Kunov (1966) on electronic analogs for nerve fibers.

Recently Markin (1970a, b) has developed a nonlinear
theory for parallel fiber interactions. Starting from a TI.EC
representing two fibers which share the external medium,
he derived a pair of coupled nonlinear diffusion equations
with the form

(1/v) I (r. + ra) vi, **—r3v2...j —eivi, ~
= ji,

(1/ r I t (rl + ra) v2, x* rsvl, * q e2v2, i j 2

(11.2a)

(11.2b)

fort&0,
for 0 & t & r~,

for ri ( t ( ri + r~,

for ri+ r2 ( t, (11.3)

where the condition Jjr~ ——J&r2 is imposed for zero net
charge transfer and pulse return. A similar form was as-
surned for j~(t) but with an adjustable time delay. This
simple description of the nerve pulse was previously shown

t Markin and Chizmadzhev (1967), Undrovinas et al.
(1972)j to give both the stable (upper) and unstable
(lower) velocities which arise in the FitzHugh —Nagumo
description. They found that two pulses on adjacent fibers
can have three stable bound (collective) states if the un-
coupled velocities are sufficiently close together. More
recently Markin (1973a, b) has extended this approach to
the study of interactions in fiber bundles. The derivation
and solution of coupled nonlinear diBusion equations should
be of considerable interest to physicists and mathematicians
during the next few years.

C. Interactions at branching points of axons and
dendrites

As we saw in Fig. 2, the action potential propagates away
from the cell body along an axon or outgoing fiber which
may or mav not be myelinated. This outgoing pulse travels
up to the axonal tree and eventually delivers inputs to
many other cells through chemical contacts called synapses
On the input end, the dendrites and cell body receive many

where r, , ci, ji, and vi are the series resistance/length, shunt
capacitance/length, membrane ion current/length, and
transmembrane voltage for fiber Qi and similarly for fiber
Q2. The interstitial resistance/length is r3 and p —= rir2+
r,r3 + r2r3, so as r3 —+ 0, (11.2a, b) become two uncoupled
equations with the form (2.30) . Nonlinear pulse interaction
was studied by representing ji(t) as
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Qo ——kd@'. (11.4)

For conduction from a parent of diameter d~ to two daugh-
ters each of diameter d~, the leading edge charge carried
by the parent must equal the sum of the threshold charges
required by the daughters. This requirement implies

synaptic inputs which somewhow contribute to a firing
decision by the cell body or the main axon. Extensive
branching occurs both in the axonal (output) tree and
dendritic (input) trees. The behavior of pulses near these
branching points does not yet appear to be well understood.

On the axonal side it is often assumed that the "parent"
fiber excites all "daughters" at each branching point so the
signal travels without interruption to every distal (distant)
twig, but experiments by Barron and Matthews (1935),
Krnjevic and Miledi (1959), Chung, Raymond, and Lettvin
(1970), Parnas (1972), and Grossman, Spira and Parnas
(1973) cast doubt on this simple picture. In these studies,
the branch points of some axons emerge as regions of low
safety factor where high frequency blockage and alternate
firing can take place. Some understanding of this situation
may be obtained considering the concept of "threshold
charge" expressed in (10.5). From (10.4) it can be seen
that Q, is proportional to d'" (where d is the fiber diameter)
so we can write [Scott (1973b)]

dp

FIG. 42. A simple dendritic bifurcation.

There are experimental results which indicate that infor-
rnation proceeds through the dendritic trees of some neurons
by purely passive means [Purpura and'Grundfest (1956),
von Euler, Green and Ricci (1956), Grundfest (1958)g,
and a corresponding mathematical theory of passive den-
drites has been developed [Rail (1959, 1962a, b, 1964, 1967),
Pokrovskii (1970), Pickard (1947)$ which essentially in-
volves solving a linearized version of (2.30) with the coeK-
cients taken as functions of x. Rail (1959, 1962a) paid
particular attention to impedance matching conditions and
pointed out that the characteristic adnuttance 7'0 (defined
as the square root of the ratio of shunt admittance/length
to r.) is proportional to the 3/2 power of the fiber diameter.
Thus

d, /d, ) (2n)21', (11.5)
(11.6)

where the equality indicates marginai transmission. From
our approximate estimate n 1/2 (see Table III), marginal
conduction should occur when the parent and daughters
are of roughly equal size. Cond. uction through the branch
point under marginal conditions might be influenced by
small changes in local geometry and electric coupling from
pulses on neighboring hbers as well as fatigue from repeti-
tion. Thus axonal branch points might provide a location
for modification of neural transmission or learning.

On the dendritic side of the nerve cell, the situation is
even less clear. Much of the confusion is connected with the
iniplications of the "all or nothing law" of propagation
[Lucas (1909), Adrian (1914)j on an active fiber which
has dominated the thinking of electrophysiologists for over
half a century [Lorente de N6 and Condouris (1959)j. If
this "law" is interpreted as implying that an action potential
will fire all active fibers to which it is connected, then the
integrative function of the dendritic trees cannot be under-
stood unless they are assumed to be passive or at least
decremental. But the situation is not so simple. In the first
place, as FitzHugh (1955, 1969) has pointed out, the con-
tinuity properties for the Hodgkin —Huxley equations
[Lefschetz (1962)j do not permit a discontinuous jump
from "o6" to "on" as the initial conditions are changed.
Either the latent period before firing goes to infinity or the
latent period is bounded and the derivative of response
with respect to stimulus is also bounded. Of course dis-
continuous response could be invoked by assuming. fast
regeneration in the phase change of the membrane which
was discussed in Sec. IV; and, on the other hand, a continu-
ous rise of response can be so steep that it is indistinguishable
from a discontinuous jump in the presence of unavoidable
laboratory noise. In sum, therefore, it seems that threshold
problems should be approached through careful study rather
than imprecise generalities.

which was used to define an "equivalent dendritic cylinder
[Rail (1962b)g, satisfying the condition Zd I' = const at
each successive branching, in order to simplify dendritic
computations.

But experiments indicating passive dendritic conduction
are open to various interpretations [Bishop (1958), Eccles
(1960), Rail and Shepherd, (1968), Rail (1970), Bogdanov
and Golovchinskii (1970)g, and there have been several
studies which imply that action potentials can propagate at
least on the larger branches of some dendritic trees [Lorente
de N6 (1947), Cragg and Hamlyn (1955), Eyzaquirre and
Kuffler (1955), Fatt (1957), Hild and Tasaki (1962),
Anderson, Holmquist and Voorhoeve (1966), Llinas,
Nicholson, Freeman and Hillman (1968), Luk'yanov
(1970), Nicholson and Llinas (1971),Llinas and Nicholson
(1971)).Lorente de No (1960), Arshavskii eI, al. (1965),
Gutman (1971), Waxman (1972), Scott (1973b), Llinas
et al. (1969) and Gutman and Shimolinuas (1973) have
pointed, out that the dendrites should be able to perform
elementary logical operations at branching points if they
can propagate action potentials or even decremental pulses.
However the elementary application of the "all or nothing
law" must be replaced by a consideration of threshold condi-
tions at each branching point.

A simple argument to indicate the nature of active dendri-
tic logic can be presented in connection with the bifurcation
shown in Fig. 42 [Scott (1973b)j. The "OR" condition
obtains if an incoming pulse on either branch A or branch
8 can provide the charge necessary to stimulate an active
pulse on branch C. From (11.4) the leading edge charge
coming in on a daugher branch is kd~'I . This charge will
divide between the parent and the other daughter in a
ratio which is Axed by their respective characteristic ad-
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FIG. 43. Cochlear neurons of (a) monkey, (b)
hedgehog, (c) owl and (d) bat from Bogos-
lovskaya et al. (1973).

mittances below threshold as given in (11.6). Then a frac-
tion d2' '/(di + d2' ) of the incoming charge will reach
the parent and this must exceed o.kd2'I' in order to fire the
parent. This condition is equivalent to

di/d» L~/(1 —~) j"' (11.7)

as the requirement on the diameter ratios for "OR" logic at
the branch point. If the inequality in (11.7) is not satisfied,
input pulses on both daughters A "AND" 8 are necessary
in order to fire the parent. Corresponding expressions are
easily obtained when the daughter fibers are unequal, or for
the threshold number of daughter fibers which must be
excited on the "tufted" branching points which Ramon-
Molinar (1962) describes as being typical for dendrites of
sensory neurons. Pastushenko, Markin, and Chizmadzhev
(1969a, b) have conducted a much more detailed analysis
of this problem using (2.30) to describe the nerve, but with
j, as in. (11.3). Their basic boundary condition was Kirch-
hoff's current law and their threshold requirement was
that the voltage rise should reach a preassigned level
at t = 0 in (11.3). They derive relations corresponding to
(11.7), and they account for nonsynchronous effects in
"AND" junctions. Berkinblit et al, . (1971) have studied the
problem numerically using the Hodgkin —Huxley equations
(5.1) to represent the three fibers. In addition to confirin-
ing previous results, they were able to demonstrate iehibi-
tioe by a subthreshold pulse on one daughter of a properly
delayed pulse on the other daughter. Some time ago, Tauc
and Hughes (1963) demonstrated similar effects during

experiments with axons of nerve cells io a mollusk.

The possibility of dendritic logic opens intriguing lines
for speculation and future research. As an example, con-
sider the dendrites of the cerebellar Purkinje cell shown in
Fig. 2. These trees lie in a plane about ~ )& 4 mm' and
about 6 p thick for man and receive some 80 000 synaptic

inputs from perpendicular parallel fiber axons (Eccles
(1973), Szentagothai (1968)j. The output axon provides
inhibitory signals for muscle control; and, as has been sug-
gested by Marr (1969) and Albus (1971),the cell may func-
tion as a "Perceptron" )Block (1962), Block, Knight and
Rosenblatt (1962)g which merely calculates a weighted
sum of the inputs and decides whether or not it is above a
threshold for firing the cell body and/or the axon. But if
each of the branching points can function as a logic gate,
the computing power would be much greater than that of a
Perceptron. Rail (1962) has suggested that careful den-
dritic studies may also be relevant to the problem of learn-
ing and memory. Rose et al. (1960), for example, have sug-
gested that the regrowth of cortical dendrites observed
after radiation damage may be due to a "normal, continuous
growth of central neurons. " Thus the logical character of
an existing branch point might be modified by changes in
its geometry or in the geometry of neighboring cells. It
might be possible to observe such effects in tissue culture

experiments similar to those conducted by Hild and Tasaki
(1962).

ERorts to understand the nature of propagation on non-
uniform fibers LSmolyaninov (1968), Khodorov et aL

(1969), Pastushenko and Markin (1969), Khodorov et ut.
(1970), Khodorov and Timin (1970, 1971), Pastushenko
and Markin (1973), Parnas et al. (1973), Goldstein and
Rail (1974), Khodorov (1974)g should be viewed in rela-
tion to the question of axonal and dendritic logic. A widening
of the fiber leads to a propagation delay I Markin and
Pastushenko (1969), Berkinblit et at. (1970), Khodorov
et al. (1971), Goldstein and Rail (1974)j which appears to
be caused by charging of the extra membrane capacitance
to a threshold level. Bogoslovskaya et at. (1973) suggest
that varicose regions in the dendrites of cochlear neurons
(see Fig. 43) may be related to information processing
functions.
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D. Pulse burst dynamics

Whitham (1974) has developed a technique for finding
solutions to nonlinear wave problems that are locally
periodic, but for which the frequency, wave length and
amplitude Rl e slo'Kg/ Pet/'bing functions of space Rnd tlIDe.
Such periodic solutions are not sinudoidal (often they are
elliptic functions) and the corresponding dispersion equa-
tion is of the form &v = Q(p, A), where

/i~ -PU
.l5—

.05
0.05
O. 3

co = 2'/T and p = 27r/X (11.8a, b)
0
0

and T, X, A are, respectively, the wave time and space
periods, and the amplitude. Two quasiIinear equations for
the slow evolution of ar, P, and A are obtained from variation
of a Lagrangian density which has been averaged over a
cycle of the periodic wave. Such a Lagrangian density can
be obtained from an energy conservation law (1.4). A
third quasilinear equation is conservation af wane crests

ap/at + aco/Bx = 0. (11.9)

For nerve fiber problems, we do not have conservation of
energy; propagation is governed instead by the power
balance condition (1.3). Furthermore, as Fig. 33 indicates,
the frequency, propagation constant and amplitude for a
stable periodic wave are fixed by the local propagation
velocity

il = co/p.

Thus co = cv(1), P = P(u), and A = A(u), so only (11.9)
is needed to describe the slow evolution of &u, p, and A.
Conservation of wave crests becomes

biochemists who are attempting to solve this intriguing
riddle. Second, nerve fiber studies present a number of well
defined problems (e.g. , pulse properties, pulse interactions,
threshold effects, decremental conduction, stability, elec-
tromagnetic consideration of nonuniform fibers, etc.) which
should be challenging for many physicists and applied
mathematicians to consider. Finally there is the program,
outlined by Caianiello (1961),which begins with an appro-
priate description of neural elements and proceeds toward
an understanding of brains. In addition to providing a
sound "atomic theory" for this program, study of the nerve
fiber provides an excellent ex'ample of the "hierarchy of
boundary conditions" which Polanyi (1962, 1965, 1968)
finds characteristic of life. The organization of protein
bearing lipid membrarIes into branching tubes with different
internal and external salt solutions clearly introduces
"higher principles" associated with special forms of the
nonlinear diffusion equation. These principles must neces-
sarily be understood in order to describe the dynamics of
nerve pulses and they exist not in convict with the principles
of phvsics and chemistry but in addition to them. Problems
of perceiving and understanding such higher principles
become acute as one considers more complex dynamic
systems, but the danger for those who miss the point has
been emphasized by Goethe'

Wer will was Lebendig's erkennen und beschreiben.
Sucht erst den Geist heraus zu treiben,
Dan hat er die Teile in seiner Hand,
Fehlt leider nur das geistige Band.

Bu/Bt+ U(u) (Bm/Bx) = 0, (11.11)

where

(11.12)U(m) —= des/dp

is a eomlieear group velocity. For the periodic wave described
in Fig. 33(a), a typical cv —P diagram is sketched in Fig.
44(a) . .Along the stable (high velocity) branch it is clear
that

(11.13)

as was noted by Rinzel and Keller (1973).Thus, as is indi-
cated in Fig. 44(b), the compressed region of a pulse burst
should drift to the rear. The question of "rear end colli-
sions" [Crane (1964)j may be important for a nerve fiber
just as it is in a corresponding study of automobile traKc
dynamics [Whitham (1974)j.
XII. CONCLUSION

It may be appropriate to end this review by presenting
some reasons for which I believe a physicist should be in-
terested in studying the nerve fiber. First, as we saw in
Secs. III and IQ, a fundamental connection has not yet
been established between a dynamical description of the
nerve membrane and the underlying biochemistry. The
special knowledge of solid state physics may be helpful to

9 Quoted by Franz Boas in his introduction to Ruth Benedict's I"at-
terns of Culture.

(11.10)
FIG. 44. (a) co—P diagram for a curve from Fig. 33(a). (b) A slowly
varying train of pulses.
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