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A tensor equations-of-motion formalism for the excitation of a many-body system
is presented, following the same general approach as the uncoupled formalism

presented in a previous article. It is designed to take explicit account of the
geometrica1 constraints imposed on excitation operators by the requirements that
stationary states should have good angular momentum and, for a
charge-independent nuclear Hamiltonian, good isospin. These developments are
particularly relevant for application to molecular, atomic, and nuclear systems. By
recognizing the geometrical constraints and exploiting the invariance properties of
the excitation operators, the equations of motion becoIne more readily applicable
to nonscalar systems; i.e. to systems with nonzero angular momentum and/or
isospin.
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I ~ INTRODUCTION

Equations-of-motion methods have contributed signifi-
cantly to the conceptual development of many-body theory.
For this reason, they have received considerable attention in
recent years and have been put on a much more rigorous basis
(Kerman and Klein, 1963; Do Dang and Klein, 1964;
Dreizler et al. 1967; Belyaev and Zelevinsky, I962; Maru-
mori e/ a/. 1964a; Marumori e/ a/. 1964b; D. J.Rowe, 1968a) .
We focus here on the double-commutator formalism, intro-
duced in paper I (Rowe, 1968a), which is formally exact,
very simple and which has proved to be extremely useful.
The reader is referred to Rowe (1972) for a summary of
some of its achievements. Not only does it provide a very
compact statement of a number of basic many-body
theories, including the HF (Hartree —Pock), Hartree-
Bogolyubov, RPA (Random Phase Approximation) and
Quasiparticle RPA theories, it also leads naturally to gen-

eralizations of the above in a systematic, straightforward
and computationally practical manner.

One seeks excitation operators Q~t which relate excited
states

I X) to some parent state
I
0) according to the equa-

tions

O),tI0) = I)),
OgIO) =0.

For simplicity, and to accord with previous practice, we
shall usually refer to

I 0) as the grould sta]e, although it
could itself be an excited state.

In the early linearization methods (Lane, 1964) one
attempted to determine the O~t by solution of the equation

Now, in general, this equation does not have imsp/ seolu-

tions, which is apparent from the fact that, if the Hamil-
tonian contains two-body interactions, the left-hand side is
an operator of particle rank one greater than the right.
This difFiculty was circumvented by linearizing the equations
of motion in one of several more or less equivalent ways.
One method was to make a normal ordered expansion of
the left-hand side, with respect to a particle —hole vacuum
state, and to discard the term of highest particle rank.
Without this term the equation could then be solved. This
method was used to derive the B.C.S. theory of supercon-
ductivity (Anderson, 1958) and the RPA theory of excited
states (Sawada, 1957; Baranger, 1960; Sawiclei, 1961).

In paper I, the rather arbitrary linearization procedures
were clari6ed and superceded by the observation that a set
of operators satisfying Eq. (1.1) obey the formally educ/

equations of motion

(o I Lo., &, o"j+ I o) = .(o I I:o., o."0+
I
o)

(1.2)
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where the double commutator (anticomrnutator) is defined

2[o„,a, o, ] = [o., [a, o, ]]+ [[o., &],o.'],

2[o., ~, o"]+—= I o. [&,o"]i + i [o ~] o"I

The equations with commutators (rather than anticom-
mutators) are relevant if the states

~
0) and

~
X) are m the

same system or differ by an even number of fermions. The
operator O),~ is then said to be 'Bose-like' on account of
the fact that the commutator of two Bose-like operators is
simpler (i.e., of particle rank at least one lower) than the
product. For this reason the maximum possible number of
commutations has been introduced into Eq. (1.2) in order
to exploit ta the full the Bose-like character of the operators.

Similarly, the equations with anticommutators are rele-
vant if the states

j 0) and
~
X) differ by an odd number of

fermions. The operator Oqt is then said to be 'Fermi-like'
on account of the fact that the anticommutator of two
Fermi-like operators is simpler (i.e., of particle rank at
least one lower) than the product.

The equations of motion (1.2) will be referred to in this
paper as the 'uncoupled' equations to distinguish them
from the new' tensor-coupled equations to be presented. The
uncoupled equations have been discu sed in detail in pre-
vious papers and their versatility has been demonstrated in
a number of applications. They are appropriate equations
to use whenever one has reason to expect the excitation
operator O),~ to be simple compared with the stationary
states,

~
0) and

~
X), that it relates. If the reverse were the

situation, static approaches, such as the conventional shell-
model approach to the solution of the stationary state
Schrodinger equation would manifestly be preferable.

One particularly appropriate application of the above
equations-of-motion method is to the collective density
vibrational excitations of even (i.e., J = 0) nuclei, which
have been very successfully described in. the RPA (Sawada,
1957; Baranger, 1960; Sawicki, I961; Rowe and Wong,
1970). If the ground state

t 0) in Eq. (1.2) is approximated
by the HF particle —hole vacuum state and if a particle —hole
expansion is made for Oq~, the standard RPA equations
immediately result, as pointed out in paper I (Rowe,
1968a); cf., Sec. V.A. In the nuclear physics context, the
RPA is particularly significant because of its close rela-
tionship, via the time-dependent HF formulation, with the
unified and collective vibrational models (Rowe, 1970) .

However, unlike the linearization and other many-body
methods, the double commutator formalism is not wedded
to a HF approximation for the ground state; for it does not
depend on. an independent particle representation, like the
time-dependent HF method (Ferrell, 1957; Goldstone and
Gottfried, 1959), nor does it depend on a particle —hole
vacuum for a normal ordered expansion or the use of dia-
grammatic techniques. The double commutator equations
of motion have the enormous advantage that they' can be
used with any ground state and this makes it possible, for
example, to extend the HF de6nition of single-particle
states and the RPA theory of excitations to systems with
highly correlated ground states; e.g. , to spin zero (i.e.,

j= .T = 0) open-shell nuclei' (Rowe, 1972; Rowe and
Wong, 1970). The tensor equations of motion, introduced
in Sec. III also make it possible to include J ~ 0 or T & 0
systems (assuming isospin is a relevant quantum number)
(Ngo-Trong and Rowe, 1971;Ngo-Trong, 1972).

The generalization of the RPA to open-shell nuclei w'as

important in order that there should be a single microscopic
theory of the collective excitations, such as the giant dipole
resonance and the highly collective octupole vibrations,
which are characteristic of both open- and closed-shell
nuclei and which are equally described by the phenomeno-
logical collective models.

The extension of the RPA to open-shell nuclei has also
opened up the possibility for calculation of many excited
states of nuclei which were hitherto inaccessible to realistic
microscopic investigation; for example, the giant resonances
of open-shell nuclei of dipole and higher multipolarities
(Satchler, 1972) which are nowadays the object of con-
siderable experimental interest in photonuclear reactions,
electron scattering, p, -capture, nucleon scattering, and
other direct reaction processes.

Note that direct reactions are extremely important probes
of the dynamic structure of any many-body system for the
reason that they only populate states that can be excited
by simple one-body operators. This observation is particu-
larly significant for the equations-of-motion method. For,
while the solutions obtained for some Oqt in a space of one-
body operators may not correspond very precisely to the
individual eigenstates of the system, they do correspond to
the "doorway" states by which the compound states are
reached.

We now come to the objective of this paper, which is to
show how equations of motion may be formulated to exploit
the spherical tensor properties of stationary states and the
rotational invariance (and charge independence) of the
Hamiltonian in order that equations-of-lnotion calculations
might be as economic and as realistic as possible.

It has been emphasized above and in previous papers
that the equations of motion (1.2) are formally exact, and
in principle, completely general, but that they are only of
practical use if the excitation operators Oq~ are simple. Now
a moment's reAection convinces one that, if the objective is
simplicity, the definition (1.1) of the excitation operators
is not the optimum for a non-scalar system; i.e. a system
whose ground state angular momentum is not zero. ' This is
because the operators O&t are considerably complicated, for a
non-scalar system, by the geometrical requirement of gen-
erating states of good angular momentum.

'Note that similar generalizations of other many-body formalisms
may also be possible. For example, it has been shown that general
time-dependent variational excitations also give the equations of
motion (1.2) for Bose-like excitations (Rowe, 1968b). Schuck and
Ethofer (1973) have also suggested parallel generalizations of Green's
function methods.

'For the purposes of this paper we use the expression "angular
momentum, "unless otherwise qualified, to denote whatever set of total
angular momentum, spin and isospin is relevant. In nuclear physics,
for example, this set might be just the total angular momentum and/or
isospin, if the latter is considered to be a good quantum number. In
atomic physics, it might be either the total angular momentum or the-
orbital angular momentum and spin.
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This is illustrated by the following simple example. Sup-
pose that

~
JpMO = Jo) is a member of a (2Jo+ 1) degen-

erate ground state and that an excited state
~
J,J,) can be

expressed

i J&.) = 0 „= i
JoJ ), (1.4)

[ Jjg —1) = (2Jg) "'J
~
J/g) = (2Jg) "'J Oy),t

~
JOJO)p

where J = J —iJ„ is the usual angular momentum step-
down operator (Messiah, 1966). Now, if Oint is a simple
one-body operator, it follows that the excitation operator
for the state

~
J,J, —1) is a two-body operator; i.e., the

operator (2J,) "'J Oi, &,
t. However, the complication is

purely geometrical in origin and the essential simplicity of
the excitation process reappears if the excited states are
re-expressed as coupled spherical tensor products; viz. ,

where Oq„t is the p component of a spherical tensor of
angular momentum ) = J, —Jo. The excited state w'ith

M, = J, —I is therefore

subsequent sections to distinguish the physics from the
algebra.

The new tensor equations of motion are introduced in
Sec. III, and their properties are given in Sec. IV.

The particular application of the tensor equations to a
scalar system is discussed in Sec. V. It is shown that, in this
case, the tensor equations of motion are equivalent to the
previous uncoupled equations. Some applications to open-
and closed-shell nuclei are discussed, and it is shown that
the coupled form of the equations is more useful than the
uncoupled form for practical purposes.

Applications to non-scalar systems are discussed in Sec-
tion VI. Multipole field equations are given for the motion
of a nucleon coupled to a non-zero angular momentum
core, and RPA equations are presented for the excitations
of good isospin of a doubly magic Ã & Z nucleus.

The conclusions and further possible applications are
summarized in Sec. VII.

i
J',M, ) = Q (X Jo p Mo

i
J,M, ) Og„" i JpMO), (1.5) II ~ SOME DEFINITIONS AND PROPERTIES OF

SPHERICAL TENSORS

where (X J, p Mo
~
J,M, ) is a vector coupling (Clebsch-

Gordon) coefficient.

Apart from the simplifications that result, there are also
very significant physical reasons for considering coupled
tensor products. Consider, for example, a single particle
weakly coupled to a J = 0 core (de-Shalit, 1965). If the
core has an excited vibrational state, the coupled particle—
core system exhibits a multiplet of excited states which will
be split if the particle-core interaction depends on the geo-
metrical orientation of the particle's orbit with respect to
the excited core.

Pursuing this example, we also see that polarization by
the particle can modify the character of the core excitation
and even introduce, into the excited state, components with
core excitations of other multipolarity. Thus there is no
real physical reason why the angular momentum of the
excitation operator should be a good quantum number. And
certainly there is no reason why it should adopt the maxi-
mum possible value as supposed in Eq. (1.4). The right-
hand side of Eq (1.5) s.hould therefore be allowed to in-
clude more than one ) component, the amplitudes of which
remain to be determined by the equations of motion. Clearly
the magnitudes of the various components will have con-
siderable physical significance in portraying the character
of the excitation.

The extension of Eq. (1.1) proposed thus closely parallels
the extension of the single-particle model to the weak
coupling of a nucleon to a non-spin-zero nucleus (de-Shalit,
1965). The generalizations of the equations of motion that
result are likew'ise closely related to French's generalizations
of the standard sum rules to multipole sum rules for non-
scalar nuclei (French, 1966).

In the following section, we summarize the properties of
second quantized spherical tensors. This section is based
heavily on the more complete treatment of this subject by
French (1966). It contains all the basic algebraic relation-
ships needed for equations-of-motion purposes and enables

The algebra involved in this work is considerably simpli-
fied by using the very elegant tensorial techniques for
second quantized operators developed by French (1966).
We present here our notations and the particular properties
and algebraic relationships needed for this paper.

A. Tensor products

I.et R~ denote a spherical tensor of rank F and R„~ one
of its (2I'+ 1) components.

The coupled product of two tensors Ri j and 5i' to form
a tensor of rank I' will be written

(2 1)

where (rir2»»
~
rp) is a CG (Clebsch —Gordon) coefficient.

The symmetry properties of CG coe%,cients are listed in
any book on angular momentum. We note here only the
well-know'n relations:

(rir2»»
~
rp)

(2.2a)

(2.2b)

(2.2c)

(2.2d)

where r is an abbreviation. for (2I' + 1)'~'.

B. Racah recoupling

For more than two tensors, the coupled product is well-
defined only when the internal couplings are specified. The
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well-known Racah recoupling relation is written in this
notation

examples are the pure boson creation operators qq~~ of the
harmonic oscillator Hamiltonian, and the pure fermion
creation operators a),„~ of the independent-particle Hamil-

( (+I'g ~ 5I'g) I'is ~ TI'8) I' toMaIl.

= Q Fi2FmW(FiF2FFs, ' FuF~3) (&"X (5"' X T"')"')',
~23 (2 3) F De-excltatlon opel'Btol's Bnd Bdjolnts

where W(FiF~FF3, Fi2F~~) is the standard Racah coefficient.

We note, the following useful relationships:

W(abed; ef) = W(bade; ef) = W(acbd; fe),

Whereas the excitation operator O~„~ is the p, component
of a ~-tensor, its Hermitian adjoint, the de-excitation
operator Oq„, is not. This is for the same reason that the
complex conjugate of the spherical harmonic

I'i-* = ( —1) I'i-
W(abab; fO) = W(aabb; Of) = (—1)~+~ ~d 'b ', (2.4b)

W(aabb; fa + b) = f '(aaa —a
I fO) (bbb —b I.fO). is not the component of a tensor because of the (—1)

phase factor. Thus we define the IIernzi6;att, adj oittt tensor
2.4c '

Oi„as the tensor whose p component is

C. Direct product spaces
(O~). = (—1)"O~-.* (2.8)

Frequently more than one vector space is needed to
describe physical quantities. Depending on the nature of
the Hamiltonian, vre may choose to describe the system in a
direct product space; e.g. , (L, 5), (1., 5, T) or (J, T) . Thus
suppose &j" 5~' TI'3 are all spherical tensors in the di~ect
product space (J, T), the above relations are understood
by means of the following direct product notation:

For a Fermi-like operator, the phase factor (—1)i" will
clearly be imaginary, which can be inconvenient. It is some-
times useful therefore to employ another operator Oq related
to Oz by a phase factor

Oi =— (—1)"Oi,.

Fl (+1 Ti)

( 1)rt —
( 1)&i+»

I' =—J T —= (2J + 1)"'(2T + 1)"'
W'(I'iF2I'F3, Fi2Fg3)

W(ji+2++3 +12+23) W(T1T2TT3 T12T23)

D. Tensor states

We denote by I F)) a tensor state, whose (2F + 1) com-
ponents

I Fp& are the usual Dirac ket vectors. The action of
a tensor operator on such a tensor state is then expressed

Oz, —= (—1)"+"O),—, (2.10)

The operator Oq„ is in fact related to Oq„simply by a
rotation of the coordinate system through I80 about the
y axis. In a particular phase convention, it is also the time-
reverse of Oq„ I

see for example Appendix A of Rowe (1970)j.
Particular examples are the fermion creation and annihila-
tion tensor operators, a),~ and aq, used, for example, in
nuclear applications of the BCS theory of superconductivity.

Using the above definitions one readily derives the
Hermitian adjoint of a coupled product of tensors:

This operator is a spherical tensor of rank X with p, com-
ponent

(&" && I F2»)' = & (FiF»»21 F~)&.i"
I F»~& (2 6) (~I'i ~ 5rg) I't —(5rgt )( gI'zt) r (2.11)

E. Excitation operators

Because of previous practice, excitation operators of
spherical tensor rank X are written Oq~, with a dagger. Their
p, components are conventionally written Oq„~, by which is
meant

The Hermitian adjoint of a tensor state
I F)) will be

written ((I I. It is a spherical tensor of rank F with p
component

(2.12)

G. Tensor products of excitation and de-
(2 7) excl'ta'tlon operators

Excitation operators fall into two classes; those which
are Bose-like, for which P is an integer, and those which are
Fermi-like, for which P is a half-odd integer. Particular

3 Equation (2.4c) is perhaps not ~veil-knmvn. It is derived by con~-
paring the .expressions given by Brink and Satchler C,'1962) for the
particular Racah coefficient appearing on the left edith those given. by
Rose {1957)for the CG coefBcient on the right.

Frequently products of excitation and de-excitation
operators are encountered which need to be expressed in
coupled form; e.g.,

O.) f Oyx'I '

( 1) "(~~ pp I Fp 8) (Oai + Owx' )il'

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975
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(0 I O„„o„,.„t
I 0)

= 4), , &„(—1)'"~ '(0
I (0 x x oyer}'I0& (2.14}

which can also be written, using Eq. (2.9),

where we now use the subscripts x and y to distinguish dif-
ferent operators of the same tensor rank. This expression is
especially useful when only a subset of possible values for
I' contribute in a particular application. For example, the
expectation of (2.13) in a scalar (i.e., zero angular mo-
rnentum) state

I 0) has contributions only from I' = 0.
Using Eq. (2.2d) for the CG coefficient, we therefore obtain

Reordering the C G coeflicient, using Eq. (2.2b), and
expressing the matrix element in the form (2.16), gives

&» I
w.'

I
I"i~i)

= (—1)"+"-2r( Ih~»
I ») I' '(((I'

I
X W" X

I
I'i&&)'.

Comparing this expression with the signer —Kckart theorem

(» I
w.'

I
I'i~i& = (I'i~~»

I ») I' '(I'
ll

w"
II I'i&,

(2.20)

one obtains the very useful identity

(o I O*iuOw~" I 0)
= h), g 8„„(—1) "$. '(0

I (0 g x o„g)' I 0). (2.15)
((«I X W" X I

I', &&)'= (—1)"-~-r (I' ll
W"

II I', &.

(2.21)

In a similar way one derives J. One-body tensor operators

(x) p, I
yx'p, '&

= ~„s„„(—1)-~~-'(((xx
I x

I
yx)&)0

If S'" is a one-body tensor operator, it can be expressed
in terms of its one-body matrix elements in the uncoupled

(2.16) second-quantized form

glvlng wP = QQ (nplwg" IP —v&a„tap „.

(((~g I x
I yg )))o g g)), ( 1)q

H. Commutation relations

(2.17) Expanding the matrix element, with the Wigner —Eckart
theorem (2.20), and re-ordering the CG coefiicients using
Eq. (2.2c) gives

Based on Eq. (2.13), we define coupled commutators of
tensor operators

w&" ——2 & Q-'(~ II
w"

II &&(~&w. I
Q&) ( 1) ~-.—'~t .

which can. be expressed as the tensor identity
LOv:kv Oyx. ' gk

Q ( —1)~ &(M.' —pp,
'

I
I'k)l 0),„,0„),„tf. (2.18)

w" = QQ '(n II
w"

II P)A pt(Q), (2.22)

Anticommutators are defined in a parallel way.

These commutators carry the same information as the
more conventional uncoupled commutators. For example,
pure boson or pure Fermi operators obey the uncoupled
commutation (anticommutation) relations

where A ttt(Q) is de6ned

A-s'(Q) = (~-" &«r)"

For later convenience we note the identity

Ap t(Q) = (—1)"+ &A p(Q)

(2.23)

(2.24)

L'VNXgav 'gyX'Iv' J ~+XX'~pv, "vt 1 =

. I +v:Xyv +y) 'gs' } ~v:W~XX"4p'v

respectively. Inserting these expressions into Eq. (2.18) one
readily derives

which follows from Eq. (2.11), and the definition (2.9).

K. The Hamiltonian

In uncoupled form, the Hamiltonian can be expressed

H = Q +pv+g +v + 4 Q I pvtv'v'+ju &v +v'+Iv'v (2.25)
b-~, gu~'7 = &~&~~ &ro( —1)'"&,

{~z, ~g~'}r = 4,4), &ro( —1)'"&.

I. Reduced matrix elements

pvp1v1

(2 19) where T includes the kinetic energy, one-body spin —orbit
interaction, etc., and V is the two-body interaction.

This Hamiltonian may also be expressed

The matrix elements of a tensor operator 8'" can. be
written

(» I
w "

I
I' ~ ) = (» ~ I ») (» I

(w" x I
I' ))):.

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975
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where the one-body part, Hp, includes a single particle
potential representing the interaction of each particle with
the fields produced by the other particles, and V„, is the
residual interaction. For example, in HF theory,

and the C„„are arbitrary. Furthermore any value of X which
satisfies the triangle relations, i.e.,

where e, is a HF single-particle energy.

is permissible. Thus the most general excitation operators
2.27

which satisfy Kq. (3.1) are of mixed tensor rank

In expressing H in coupled form, we assume it to be a
scalar. Obviously this need not be the case in all direct
product spaces. For example, H may contain tensor forces
in an (1., 5) space or charge-dependent forces in a (j, T)
space. We nevertheles's suppose that a space has been chosen
in which H is a scalar, although this is not necessary and
may not always be desirable.

The one- and two-body components of H can then be
expressed

(3 3)

This lack of uniqueness is a considerable practical advantage
since it improves the chances of finding a good excitation
operator within a given finite operator space. Furthermore
we believe that the amplitudes of the various multipole
components of Qt have considerable physical significance, as
discussed in the introduction. Thus we adopt the general
form (3.3).

H"' = g pe„„(a„~x u-„)',

«" = ——' g Qv, ."((,' x .')" x ( „- x

(2.28a) From Eq. (3.1a) we have immediately

(L~, g.,') x I»&)'= .,(g.,'x l~)&)', (3 4)

where

(2.28b)
where ~ z is the excitation energy of the state

I »&&. This
equation can be converted to an equality between two
numbers by zero-coupling both sides to ((yA I, the Hermi-
tian adjoint of another excited state

(2.29a)

with
I

i'& a single-particle state and
I (pv)O& a normalized

antisymmetrized two-particle state of angular momentum
Q. Note that H~') and H&" may be, respectively, either T
and V or Hp and V„,.

III. TENSOR EQUATIONS OF MOTION

If we denote the ground state by the tensor state
I 6»,

and an excited state by IxA.», we can define excitation
operators 0 q~ of tensor rank P such that

(((y~ I x L~, g..) x I
»&)'

== .,(((y~ I
x q.d x

I ~&&)

= 6,„(—1)~hru p,

where we have used Eq. (2.17).

Written out explicitly, Eq. (3.5) becomes

r, ((((~I x o";)'x (E~ o- ) x I ~&&)')'

= *.2 ((((al x o",)'x (o-.,'x I
a»)')',

(3.5)

(o.,'x I ~&&) =
I ~&&,

ogle» =0.
(3.1a)

= b.„(—1)~Ace, p,

or, making a Racah recoupling and using Eq. (2.21),
(3.1b)

In the first equation the usual tensorial coupling is shown
explicitly, whereas in the second equation all possible
coupled products are required to vanish.

Formally there is a whole continuum of operators 0 ),~

that satisfy Eq. (3.1); e.g. , the set of operators

g (—1)&-~-r-"rW(zp. ;as; rX)

x (~ll (o„-., x la, o...t))'ll»
Q (—1)~ " r "'rW(XA.hb r&)

o*i' = &(I »» x ((~ I)" + Z ~"(I v&& x ((~ I)", x (~ II (o„-„xo... ) r
II ~)

(3.2)

where

X = (—1)~-~X/i,

Now, using the constraint imposed on the excitation
operators by Eq. (3.1a), we can replace the products inside
the matrix elements by commutators. Thus the matrix

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975
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elements become where the matrices M and X are defined

«II (o;., x C~, o*., 'j)'ll ~&

= &~ II Co„-, , La, o,„,.

&~ II (o„-, x o., ')'
ll ~& = &~ II Co„, , o.„'3,r II a&.

(3 7)

Furthermore the symmetry of the equations can be empha-
sized by further replacing the double commutator by the
symmetrized double commutator, defined by Eq. (1.3)

&~II Co„-,„Ca,o., jj ~
II ~&

= &~ II Co„-, , a, o., '3,' ll ~&.

Equation (3.8) follows if

&~ II CCo„-,„o„,'j,r, aj II ~& = o

(3.8)

(3.9)

which holds for any operators O„z,, and 0 z,,t provided only
that

I 6» is an eigenstate of II, which it is supposed to be.

Thus the tensor equations of motion Anally become

g (—1)~-~-r-"rW(~;X,~~ r~)

M...„=g (—1) —-'-"'rw(x, x,aa; rA)
r

x &~ II C.-(~'), ll, «'(~;) 3.' ll »,
x &

= g (—1)'-'-'-"'rw(x x a~. rA)

x &~ II C.-(&'), .~'(&;)3+' ll » (3.13)

The matrices M and Ã are both Hermitian. Equation
(3.12) can therefore be reduced to the form of a standard
eigenvalue equation by the method discussed in. Section V
and in Rowe (1969). As a consequence, solutions of the
approximated equations exist and retain the orthonormality
properties of the exact solutions. This would not in general
be the case had we used the nonsymmetric double commu-
tators, given on the left-hand side of Eq. (3.8), in the equa-
tions of motion, since the identity (3.9) may not hold
exactly for

I 6» an approximate eigenstate.

A particular case of Eq. (3.10) is when the excitation
operator is restricted to a single tensor component of
maximal rank; i.e., X = A —h. As noted at the beginning
of this section, such an operator always exists Ccf. Eq. (3.2) j
although it need not be simple. Using the identity (2.4c),
Eq. (3.10) then reduces to the simpler equation

x &~ II Co„-,„a,o...'D,r II ~&,

= ~.~g (—1)'-'-r-"rWp, ,z ~~ r~)

x &~ II Co„,-„o., 'j,' ll ~&,

(3.10)

g r-i(zx —u,
I
ro) (ass —z

I ro)

x &~ II CG„-„~,o.,'3 'll ~&

= ~„g r-'(~x —x&,
I
ro) (~~~ —~

I
ro)

Since the relationships (3.7) and (3.8) are exact identities
for the true ground state and excitation operators, Eq.
(3.10) is formally equivalent to (3.6). We make the dis-
tinction, however, because, in practical application, some
approximation must be made for the ground state and the
operator space must be truncated. Equation. (3.10) is there-
fore fashioned such that it is as insensitive as possible to the
approximations and, furthermore, retains the symmetries of
the exact equations. Thus it contains commutators rather
than products, because they are of lower particle rank, and
the double commutators are symmetrized in order that
approximate solutions exist and that they will be ortho-
normal. The justification for the latter observation mill be
given later.

(3.14)

This equation of motion could in fact have been derived
from the uncoupled equations of motion (1.2) due to the
fact that the coupled product (1.5) is, in this particular case,
also the simple product (1.4).

An even more particular case is when 6 = 0; i.e., the
ground state is a scalar. The excitation operator is then auto-
matically restricted to a single component of maximal rank,
X = A.. Furthermore only r = 0 contributes in Eq. (3.14).
Since this is a very common situation, we consider it in more
detail in Sec. V.

Consider two solutions X(x) and X(y) of Eq. (3.12).
Since the matrices 3f an.d K are Hermitian,

IV. PROPERTIES OE THE TENSOR EQUATIONS
To solve Eq. (3.10) some approximation. must be made OE MOTION

for the ground state
I
6», and the excitation operators

must be restricted to a finite space of basis operators A. Orthpgpnaljty arid npr~aljzatjpn
(p t (P;) I, which may or may not include the adjoint
operators q (X,). Inserting the expansion

Q iit ——Q X„,(x)g t(X;) (3.11)

into the equation of motion (3.10) gives the matrix equa-
tion for the coeKcients

Xt(y)MX(x) = a) Xt(y)XX(x),
= (v„*Xt(y) XX(x) . (4 1)

MX(x) = (a,XX(x),
Unless cv and ~„* are equal, therefore, both sides of this

(3.12) equation must vanish. Furthermore, since Xt(x)XX(x) is
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(M, complex) . (4 2)

real, we may choose the normalization to give orthogonality
relations

Using Eq. (2.21) we can express the matrix element

(~~ fl
Wo

I f ~)
= (—1)""-"Z((((~l «-., )'&& w" && I ~)&)'

Zero energy solutions (~ = 0) may or may not be normal or making a Racah recoupling,
izeable.

In order that the excited states should be orthonormal,
Eq. (3.10) tells us that the excitation operators should
satisfy the equation

g (—1) '-'-'-"'I'WP, -X aa rX)

&«~ II Lo;.„0-., '3+'ll » = ~" (4.3)

Furthermore, physical excitation energies should be real.
Inserting the expansion (3.11) into (4.3) gives the ortho-
normality requirement in matrix form

Xt(y)1VX(x) = 5,„.

However, we can only require that "physical" solutions
of the equations which truly correspond to excitatioe oper-
ators be normalizeable in this w'ay. Solutions with the other
n.ormalizations, given in Eq. (4.2), can and do occur. For if
the space of basis operators ig t(li;) I includes the adjoint
operators g (K,), it includes not only the excitation operators
Q ~t but also their adjoints. It follows therefore that solu-
tions to the equations of motion exist which correspond to
de-excitatioe operators or linear combinations of them. Such
solutions will be described as "unphysical. " They are a
well-know'n feature of, for example, the standard RPA
equations.

Since the unphysical solutions do not necessarily have
positive norm, the sign. of the normalization in Eq. (4.2)
provides one means of eliminating unphysical solutions.
Unfortunately it is not in general sufhcient identification
and one may have to identify some unphysical solutions of
positive norm by inspection. Fortunately this does not
appear to present any problems in practice. The situation
arises, for example, in the SCS theory of superconductivity
where quasiparticle creation and annihilation operators both
have positive norm as a consequence of the synnnetry of
the anticoxnmutation relations

(» II
w"

II ~&

= (—1)"+'-"+XI W(X;m~;1~)

x (((a I
x (O.g,. ~ w"}")&

I a&&) o.

(» ff
w" ff~)

= (—1)"+~ ~A+ ( —1)~ ~ r "'I'W(X Qhh I'A.)

Suppose, for example, that TV" is a one-body operator,
cf. Eq. (2.22), having matrix elements between many-body
states given by

(» ff
w&

ff ~&

= 2 fl '(~ II
w"

II &&(» II ~-s'(fl) II ». (4.5)

To evaluate such matrix elements we have therefore to
determine the matrix elements of the unit one-body tensor
operators A st(Q).

By way of illustration, suppose that A st(Q) is a member
of the set of basis operators, g~t(X;). Replacing W" by
g~t(X;) in Eq. (4.4) then gives

(» II.,'(l;) II » = (—1)"'"-'~Z (-1)'-'-'-"'
~'r

~ I w(x,x,~a; I'~) x.;*(a ll I ~.(2;), &,t(x, )j,' I I a),

Now, according to the philosophy of the equations of
inotion method, we use the constraint (3.1b) to insert a
commutator into the matrix element on the right-hand side.
Then again using Eq. (2.21) and the definition (2.9), we
obtain

ol

(» ll g,t(lij) fl 6) = (—1)"~+~—~A Q X;*X;,~;. (4.6)

If the ground state is a scalar, the excitation operator
must carry the angular momentum of the corresponding
excited state. Thus the vector coupled product in Eq. (3.1)
reduces to a simple product:8. Transition matrix elements

Note that, in certain situations, ~ can take both positive
and negative values for physical solutions. This is possible
even if

I 6&) is a true ground state because the excited state y AppLlcATloN Yo SCALAR S/STEMS
I »)) may appear in a system of different particle number,
for example a neighboring nucleus, in which case

I »» may
quite legitimately have lower energy than

I 6&).

Given the solutions to the equations of motion, we wish
to evaluate the reduced matrix elements (» I I

W"
I I 6) for

a given transition operator S"".
o,„„tlo)= l~~&),

o.„„fo) = o. (5.1)
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I

The equations of motion (3.10) and (3.14) also simplify

= -*.(—1)'"~-'«
I I o...o*"j"I 0&,

(5 2)

C ~ VQCQAt

VQ l8ACe

(0 I Lo..., ~~, o*..&+ I 0&

422:y(0 I Loyygaq oaken 0+ I 0) ~&gl~&x (5.3)

Comparison with (2.14) makes it clear that Eq. (5.2)
can be written in the uncoupled form

~ amma

t
I
I

I
'Iocc

up lad

l

p OCCUPied

whence it becomes apparent that, in the particular case of a
scalar ground state, the new tensor equations of motion and
the old uncoupled equations, Eq. (1.2), are equivalent.

In fact Eq. (5.3) was expressed in the more useful coupled
form (5.2) and used to calculate the excited states of even
open-shell nuclei (Rowe and Wong; 1970) before the general
tensor equations were derived. The coupled equations (5.2)
are much preferable to (5.3) for practical purposes because
they contain only ground state expectations of scalar
operators, rather than operators of mixed tensorial rank.
This is a considerable advantage, as w'ill be indicated. below.

In the interest of clarity we shall consider only the com-
mutator equations of motion for 'Bose-like' operators for
the remainder of this section. The parallel development of
the anticommutator equations for 'Fermi-like' operators
will be self-evident.

To solve the equations, the excitation operators are
approximated. by an expansion

O.,t = g I I'.(~)~.t(X) —Z. (~) ~„(K) I (5.4)

a) (V(~) ( U V (V(~)

~* ~*) Ez()) E
—V —U*) E~()

(5.5)

with submatrices

A.&" = ~-'(0
I I ~.(x), a, ~t t p.) )o

I o& (Hermitian)

i(0
I Lna(P ) ~ &~ ge(x) jo

I 0& (symmetric)

U.p" = X '(0
I Lg. (X), q p'(3 ) jo

I 0& (Hermitian)

in a finite set of basis operators, which we suppose includes
the adjoint operators, g (X), although it need not. The equa-
tions of motion (5.2) then give the expansion coefficients as
solutions of the matrix equation

FIG. 1. Forward and backward going excitation processes (a) for a
closed-shell nucleus and (b) for an open-shell nucleus.

Having obtained the excitation operators, transition
matrix elements for some spherical tensor operator, lV" can
be evaluated from the general equation (4.4) which for a
scalar ground state reduces to

(» II lv" II 0& = (0 I Lo.~, Iv"O'
I o&.

Inserting the expansion (5.4) we obtain

(5 8)

(~l~ II
w~

II o) = g i v.*(~)(o I I &.(X) wqo
I o&

+ z.'(.) « I
LIV" .t(~)j'

I
0&I.

Other properties of the scalar equations of motion, which
are identical to those of the uncoupled equations, are not
discussed here because they have been discussed at length
elsewhere (Rowe, 1972; Rowe, 1968).

A. Application to closed-shell nuclei

For a closed-shell nucleus (or atom), the equations can
be solved. with a closed-shell approximation for the ground
state and with 0 ),t expanded in a particle —hole space. Thus
if we label occupied single-particle states by h, and vacant
single-particle states by p, as illustrated in Fig. 1(a), the
expansion for 0 qt becomes

This method is described in detail in Rowe (1969). In this
form it is an eigenvalue equation but for a non-Hermitian
matrix. It can be solved either by direct diagonalization or,
if the matrix elements are real as they invariably are, by a
procedure in which only real symmetric matrices are di-
agonalized (Ullah and Rowe, 1971).

V y" = —X '(0
I Lq (X), gp(X) )0

I 0) (antisymmetric).

(5.6)
O.),' = 2 I V»(&)~.~t(li) —~~~(&)~~~(~) I (5.lo)

The supermatrices on both sides of Eq. (5.5) are mani-
festly Hermitian. To obtain the solutions, one therefore
begins by diagonalizing the metric matrix on the right-hand.
side. A transformation of the equation can then be made to
standard RPA form

(5.7)

where A~it(X) is defined by Eq. (2.24).

The equations that result from the above two approxima-
tions are those of the standard. closed-shell RPA. Evaluation
of the matrix elements is particularly simple in this approxi-
mation because of the very special relationship that exists
between the closed. -shell state (the particle —hole vacuum)
and the particle —hole operators. Thus the U matrix, of Eq.
(5.5) becomes the unit matrix, and the V matrix vanishes.
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If the Hamiltonian is expressed as in Fq. (2.28), one obtains
the well-known expressions

A~p„,„p„——e,„bgI, —
~p,.y,b„„—Q QW(phh'p'; I'0) Ug, „g„"

Q

Bpy, ~.p,
——Q QW(pQFh'; p'h) U~ „p„yP.

Q
(5 11)

Substitution of Eq. (5.10) into (5.9) using the expansion
(2.22) for W" also leads readily to

&» fl
W"

II » = Z f I'"*(~)(p II
W"

II »
+ ( —1)"+" "&,y,*(*)(h //

W"
/[ p)I. (5.12)

P(a )& up)", H, (e, )& as) "$'

can be evaluated, without reference to the ground state or
even to the nucleus. They are 0-, one- and two-body scalar
operators, just as the Hamiltonian, and can be expressed in
terms of their 0-, one- and two-body matrix elements.
Detailed expressions are given in Rowe and Wong (1970).
These matrix elements can be determined for any given
Hamiltonian and single-particle basis, by a general computer
code which can and has been programmed.

Having generated the double commutators, . their expec-
tations can be evaluated for any approximate ground state
of any nucleus or atom. Thus unlike almost all other deriva-
tions of the RPA, the closed-shell particle —hole vacuum
state no longer plays an essential role and for this reason
it is a straightforward matter to extend the RPA to corre-
lated ground states and open-shell nuclei.

B. Application to open-shell nuclei

For an open-shell nucleus the single-particle states fall
into three categories, as illustrated in Fig. 1(b); viz. the
occupied, the valence and the vacant shells, according to
the shell model classification.

In the shell-model, the ground state and other lowlying
positive parity states are customarily obtained by diago-
nalization of the Hamiltonian within the space dered as the
valence space. Negative parity excitations, on the other
hand, necessarily require the transfer of a nucleon across

If the backward going terms in the expansion for 0 q~ are
omitted, i.e., the Z coeAjcients are put identically equal to
zero, the equations reduce to those of the standard TDA
(Tamm —Dancoff Approximation) (cf., e.g. , Rowe, 1970).

Although the TDA and RPA equations can be derived
in a large variety of other ways, the above equations-of-
motion derivation is extremely simple and. straightforward,
and has the very significant merit that it exposes very clearly
the approximations involved. Thus it is immediately appar-
ent how' to go to higher levels of approximation; one either
employs a better (correlated) ground state (Rowe ef al. ,
1971) or includes higher order excitation processes into the
operator expansion (Sawicki, 1962; Tamura and Udagawa,
1964). Both such extensions can and have been made.

The vital ingredient of the present formulation, that
makes the former extension possible, is that the double
commutator s

a major shell boundary. This brings the occupied and vacant
shells into the calculation and generally raises the dimen-
sions of the shell model calculation beyond practical limits.
The open-shell RPA makes the negative parity excitations
also accessible to calculation.

In the open-shell RPA, the equations of motion are
solved for the shell-model ground state, restricted to the
valence space. The excitation operators are expanded

Q, t = g II" p(x)A pt(X) —Z p(x)A p(X) },
a)P

(5.13)

where the operator A pt (X) either promotes a nucleon from
an occupied to a valence shell or from a valence to a vacant
shell, as illustrated in Fig. 1(b). If the valence space in-
cludes both positive and negative parity single-particle
states, transitions betw'een different valence shells of oppo-
site parity can also be included.

At this stage it is worth pausing to consider why the
dimensions of an open-shell RPA matrix are an order of
magnitude smaller than those of a comparable shell model
calculation. The reduction is achieved by neglecting the
large number of possible rearrangements of valence nucleons
that occur, in a true eigenstate, in addition to the particle—
hole excitations. However an excitation induced by a direct
reaction must proceed via a single —particle excitation
channel. Rearrangements subsequently occur as the primary
excitation (the doorway state) thermalizes its energy among
the other degrees of freedom. This thermalization clearly
leads to broadening and add. itional structure of the excita-
tion spectrum, which the open-shell RPA does not describe.
However the open-shell RPA can be expected to give the
gross structure, corresponding to the correct positions and
over-all strengths of the doorway states.

The scalar open-shell RPA has been applied to a number
of light nuclei in the 1p and 2s1d shells, with considerable
success (Rowe and Wong; 1970, Wong, Rowe and Parikh,
1974). It is particularly useful for calculating the inelastic
electron scattering form factors for the many states in the
giant resonance region Lcf., Appendix by T. W. Donnelly
to Rowe (1972)g.

The anticommutator equations can be similarly used to
derive independent particle and quasiparticle theories of
open- and closed-shell nuclei. Other possibilities, such as
their application to weak-coupling and two-particle transfer
reactions, have yet to be fully explored.

Vl. APPLICATIONS TO NONSCALAR SYSTEMS

By way of illustrating some of the ways in which the
general tensor equations of motion might be used. , we con-
sider two examples, one for a Fermi-like excitation and one
for a Bose-like excitation.

Insertion of these approximations into the general equa-
tions of motion gives a matrix equation (5.5) for which the
metric matrix is again already diagonal (provided there are
no two single-particle shells in the valence space of identical
spin and parity) and which therefore reduces trivially to
standard RPA form.
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A. Single-particle states for a tensor nucleus

In the self-consistent field theory of single-particle states
(Rowe, 1968, 1972; Rowe and Wong, 1970; Rowe and
Rosensteel, 1975), one considers the motion of each particle
in a potential well which represents the interaction of that
particle with the fields produced by all the other particles.
The single-particle states are thus eigenstates of a Hamil-
tonian

QM„„X„(x)= e Q 1V„.X.(x), (6.7)

where

M„„=Q (—1)~ ~ r I'W(p AA; I'A)

on o.,t itself. Substituting (6.5) into the general tensor
equations of motion (3.10) gives the coeKcients X„(x) as
solutions of the equation

Ho = T+ U = Q e„.a„ta., (6.1) (6 8)

where U is the self-consistent field.

In the uncoupled equations-of-motion formalism, the
single-particle matrix elements are defined

( 1)s—x—r—vIW(pvhk. IA
r

.„.—= (0 I f a„, II, a„t I I 0), (6.2)
Substituting the expression (2.19) for the fermion anti-
commutator, Eq. (6.9) becomes

where H is the full Hamiltonian, and
I 0) is the many-

particle ground state. Inserting the expression (2.25) for
H, Kq. (6.2) becomes

(6.10)

and inserting the expansion (2.28) for H, Eq. (6.8) becomes

.„.= T„,+ g V„„,. (0 I
a„.&a.

I
0),

p/vl

which defines U„,.

(6.3)
M„„= T„„+QU„„r,

r

with

(6.11)

In HF theory, it is assumed that
I 0) is a determinant of

A single-particle states. But it may be more general and
include the correlations of a more realistic ground state.

Now if
I
0) is an angular momentum zero state, it is clear

that Hp ls a scalar. This is demonstrated explicitly by re-
writing the above expression for the field

(—1)~ ~ " "'I'Q W (pvdb, ' I'A) W(pp, 'vv', &I')
p~v~Q

x V„„„"(~II (a.' x a;)'ll ». (6.12)

Consider, for example, the F = 0 component of U. For
I' = 0, Eq. (6.12) reduces to

U„,r=' = g (6'/&'&'6) v,„., "(& II (a, t X a; )' II 3 ),

U" = Z (fl'/~'v') V-" "(o
I ( .' X;) '

I
o&. (6.4)

Thus the single-particle creation operators

n,t = Q X„(x)a.t, (6 5)

I*~&& = (.'x I~»)',
(6.6)

The parent state
I 6)) might be, for example, a vibrational

excited state of an even nucleus, and we wish to consider the
states

I
xh. &) formed by the addition of a nucleon.

For the purpose of defining single-particle states, we

suppose that o.,t can be expanded, according to Eq. (6.5),
in terms of pure fermion operators. It will be assumed that
each basis operator a„~ creates a fermion in a state of good
angular momentum but no such restriction will be imposed

which diagonalize Hp, have good angular momentum. Simi-
larly the (A & 1)-particle states, n t

I 0) and. cx„ I 0), have
good angular momentum and are immediately interpretable
in terms of the (A & 1)-particle eigenstates. However if

I 0) is not a scalar, neither is U and the states u,t
I 0) and

nv I 0) do not have good angular momentum.

For a tensor parent state
I 6», we therefore consider

Fermi-like excitation operators n, , for the ( A + 1) -particle
states, such that

which is seen to be a natural generalization of Kq. (6.4).
However, for 6 & 0, the field contains other multipoles.
Furthermore, since U represents the interaction between the
particle and the parent state, it is not surprising that these
other multipoles should depend on the geometrical factors
expressing the coupling of the particle to the core.

To our knowledge, no applications have been made to date
of the above "multipole" 6eld equations.

B. RPA theory of isospin splitting in N & Z nuclei

Consider, for example, the giant dipole resonance of a
doubly magic nucleus for which the number X of neutrons
exceeds the number Z of protons. For example, "Sr has 50
neutrons w'hich close the ig9~2 shell and 38 protons w'hich

close the 1f7~2 shell. The ground. state of such a nucleus has
vanishing angular momentum but nonvanishing isospin

Jp=0,
To ———', (1V —Z),

where T3 is the third component of isospin.

In the long wavelength limit, the electromagnetic operator
for absorption of an electric dipole gamma ray is a tensor
operator of both angular momentum and isospin unity. It
excites states primarily in the neighborhood of 80 A '1'3

MeV, where A = X + Z is the mass number, giving rise to
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I J=O, To, Tp= To& I J=G,To, Tp= To-I&

FIG. 2 Closed, valence, and open shells for an N & Z nucleus (a)
for a doubly closed-shell state and (b) for an isobaric analog of a
doubly closed-shell state. F~ and FI denote the Fermi surfaces for
the neutrons and protons, respectively.

the well-known phenomenon of the giant dipole resonance.
Now, if To Q 0, an E1 excitation can populate states of
T. = To and To + 1.' Thus for an X ) Z nucleus the giant
dipole resonance splits into two components. This splitting
was predicted by FaHieros et al. (1965), and observed in a
number of photonuclear experiments.

The description of such excitations of good isospin is
straightforward in the tensor equations-of-motion formal-
ism. We denote by

A pt(JT; = 1 r = 0) I
OTOTo)

= W&.p'(JT; = 0, ~ = 0) I OToTo), (6.15)

according as p ) F„or n & F~. This is due to the fact that
for u ( P~ only proton excitations are permitted by the
Pauli principle, while for P ) Fp only neutron excitations
are permitted. For the same reason it can easily be shown
that

one more neutron. The analog state in 8 Sr is constructed
by further operating with T, the isospin lowering operator.
The result is illustrated in Fig. 3(b) and is seen to contain
two-particle two-hole configurations. The necessity for such

configurations in a state of good isospin was pointed out by
Fallieros et al. (1965) and taken into account in their shell-
model calculations (Goulard et al. 1968) of the dipole
states of 'Sr. In the tensor equations of motion formalismp
they are automatically included as a result of the vector
coupling of the excitation operator to the tensor ground
state. Thus it is sufhcient to consider only one particle —hole
components in the excitation operator.

To generate excited states of T, = To it is possible (but
not desirable) to consider only excitation operators of iso-
spin zero. The excited particle —hole con6gurations are then
of the type shown in Figs. 4(a) and 4(b). For excitations
of the type shown in Fig. 4(a) it is in fact immaterial
whether or not one chooses particle —hole operators of iso-
spin zero or one, since it can readily be shown that

(6.13)

respectively, the tensor ground and excited states whose
components constitute the isobaric multiplets of these
states. Note, however, that among the states of the ground
state isobaric multiplet, only the state of maximum T3 = To
is in fact a closed-shell state (or is approximated as such
in the sheH model); cf., Fig. 2(a). The other members of
the multiplet are isobaric analogs of this closed-shell state,
one member of which is illustrated in Fig. 2(b).

Consider now excited particle —hole states of isospin
T. = To+ 1. Figure 3(a) illustrates the member of an
isobaric multiplet of maximum T& ——To + 1. It is generated
from the closed-shell state by a particle —hole operator
which annihilates a proton and creates a neutron. Such an
operator manifestly has isospin unity. In solving for the
To + 1 states in the RPA, we therefore consider excitation
operators

g '(OTOTO
I p~ p(~T' = 0), &,d (&T' = 0) g'

I OToT0)

(6.16)

f-s = (2)'" if a(F~ or P) Fg

otherwise. (6.17)

Q.~' = Z O*zr, ', (6.18)

It is therefore convenient to consider the "orthonormal"
basis operators f pA st(JO}.

If we wish, we may include both isospin zero and one
operators for a ) F~, p & Fr, in which case we admit con-
figurations of the type shown in Fig. 4(c) in parallel with
those for T, = To + 1. In solving for the To excited states
in the RPA w'e therefore consider excitation operators

Z II"- (*)~- '(~, T' = 1 )

—Z s(x) A p(J, T; = 1, —v) i,

where 7 is the third component of isospin, and P~ and Ii~
are, respectively, the neutron and proton Fermi surfaces.

It is instructive to note that if the parent state shown in
Fig. 2(a) is the doubly closed-shell nucleus "Srno", for
example, then the member of the excited multiplet of
maximum T3 = To+ 1, shown in Fig. 3(a), belongs to the
nucleus 'SRb5~', i.e., the nucleus with one less proton, and

4 Note that states of isospin T, = T& —i cannot occur for T3 ——To.
They can occur, however, in the neighboring nucleus of smaller T-..

Z I I'-e(*)l-s~-s'(~1)
~&&w,P&&I

—Z pg(x)f pA p(J1). (6.19)

With the observation that 0 go vanishes identically for
T, = To+ 1, Eqs. (6.18) and (6.19) cover both cases
T = To and To + 1. For convenience of notation, we shall
also simply remember the restriction on the summation
over a and P; namely that n ) F~ and B ( FI for O~J&t.

Since the ground state
I a)) =

I
Jo ———OTo)) is a, scalar
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P

FIG. 3. Particle-hole conngurations in a
T, = To+ 1 excited multiplet of a closed-
shell nucleus (a) for the state of maximum
T3 = To+ 1 and (b) for the analog state
of T3 ——To.

I J,TED=TO+I, Tp= Te &

(b) (b)
l J,T@=To+ I,Tp= To&

(b)

(b)

FIG. 4. Particle —hole con6gurations in a T, = To excited multiplet of a closed-shell nucleus.

C = g TT ( —1)'~'-'-.
T

in angular momentum (but not isospin) space, the tensor where
equations of motion (3.10) partially simplify to Eq. (5.2)
and for integer J become

Q J T( 1) —o s gP'(T—,T—.T—T ~ TT )

X (oTo II LOw~~;, P, O.», ']"ll OT.&

= oo g Q J "T( 1)~' ~ ~ ~'—W(T;T;ToTo TT.)
AT

x &OT II Lo.,—,„o.„,.'3" II OT,

= ~~esp (6.20)

L(T T —r7'
I

TO)I(T' oTToO
I

ToTo) g

X W(T;T,ToTo, TT,). (6.22)

Substituting the expansion (6.19) into (6.21) readily
gives the RPA equations, in matrix form, '

vrhere the superscript OT on the commutators signifies that
they are coupled to angular momentum 0 and isospin T.

In order to exploit the simplifications that result for, a
closed-shell ground state (i.e., a particle —hole vacuum
state) it is convenient to use the Wigner —Eckart theorem,
Eq. (2.20), to write

&OTo II I.O»~' » O.» 7' ll OTo&

= 2 LTol(ToTToO
I

ToTo) j( 1)~' (T'T —r7.
I TO)

X (OT.T.
I I O»~r, .„a,O.„„tjo

I
OT.T,&,

where we have also used Eq. (2.13) to decouple the commu-
tator in isospin space. The equations of motion thus become

Z ~ Cu~(OToTo
I I O»&'~i +~ O»&;~ 3 I OToTo)

= ..gi 'C;;, (OT.T.
I LO„; ...O.„,„-tj

I
OT,T,),

A ~',~e = Z J 'C ~'0 uf»

X (OToTo I P&.p(JT,r), » A»t (JT;r)g'
I OToTo&,

&-u'. »~ = —Z & C'~'0 ~f»

X (OToTo I PA p( JT,~), H, A»(JT, 7-) g'
I OToTo&,

Dan' »~ =Z &. '.~'~~f~nf»
T

X (OToTo
I P~.,t(~T,'), a, A»(~T,') y I

OT T &.oo
(6.24)

' In deriving the RPA equations, it is useful to observe the identities

C'g' = Cg.'T,

Zb;;C;;, =a;;.
T
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Inspection reveals that A and D are Hermitian matrices. where
Thus the supermatrix on the lhs of Eq. (6.23) is also
Hermitian, as such an equations-of-motion matrix should
be. But it has less symmetry than the familiar RPA matrix
for an E = Z nucleus, cf., Eq (.5.7).

H the solutions are normalized in the usual way, i.e.,

if n & F~, P & Fi,
if n) F~, P) F&,

if n) F~, P&Fr. (6.31)

Z fl F p, (») I' —
I
& p, (») I'I = ~1,

Thus one obtains the expression for transition matrix
elements

it can readily be shown, by substitution, that the excitation
operators are orthonormal in the usual RPA sense; vis.

gi 'c...(o-r.r, I I o„;„,o., tg
I
or, r, ) = w~,„,

(6.26)

where the "physical" solutions have positive norm.
(6.32)

(xJT, II
W~r

I I
Oro) = ( —1)r+ro r T,T;

X LZ t.p 'fl-'-w*(~)(nfl W" IIP)+ ( 1)'+r'—+. P-
u)P

—L(ro + 1)/To)'""or. roar, i

x Z f'.p '~-pII'-p. *(.)( II
w" IIP)

+ ( —1)'+ -'&- o*(*)(p II
w"

II

p p p p p, q ons-of-motion
method has been formulated to describe the dynamic proper-
ties of nuclei and other many-body systems. The method is
particularly useful for finite systems since no expansions
are involved which only converge in the limit of large parti-
cle number and there is no violation of the Pauli principle.

(*sr. I f
w»

fl or.)

( 1)r~+TP T~r Q ( 1—) Tp T~ T T;———
iT

X TW(T;T;ToTo, TT,) The formalism is exact and, in principle, completely
general. Nevertheless, as we have emphasized several times,
it is only useful for excitation processes which are relatively
simple. As a consequence, the equations of motion of paper
I were limited, in practice, to systems with scalar (J =
T = 0) ground states. This is because the excitation opera-
tors were considerably complicated by the geometrical
requirement of generating excited states of good angular
momentum and isospin. In the present paper the equations
of motion have been generalized to take explicit account of
these geometrical constraints and to exploit the invariance
properties of the Hamiltonian and the corresponding spheri-
cal tensor properties of the excitation operators, in order
that equations-of-motion calculations should be as economic
and as realistic as possible, and, in particular, applicable
to any system.

X (OTo
I f QO, g~, , W~r~']~r

I f
Oro). (6.27)

Expressing the rhs in terms of closed-shell matrix elements
as before, we obtain

(@jr II
W~r

II Oro) = ( —1)r~+ro r'T, Q C,;,

X (Ororo
I Lo Jr... W.~r g'

I
Ororo). ' (6.28)

To evaluate this expression, we use Eq. (2.22) and the
identity (2.24) to express the transition operator

w" = Q 0 'i ( II
w"

II P)A p (0)

The general expression for reduced transition matrix
elements of a, one-body tensor operator W~r is given by Q/f D($CU$$(pN AND CpgcLU$~pN$
Eq. (4.4), which simplifies in angular momentum (but not
isospin) space, according to Eq. (5.8), to In a er I and the resent a er an e uati

a&P

+ (—1)" --P(P
II

w" il -)~-p(~) f

+ noncontributing components, (6.29)

where 0 = JT..

f p(ororo
I LA p(JO), A, g (J10)O'

I Ororo)i„
= ZB ~Bpog p, (6.30)

The evaluation of Eq. (6.29) is now straightforward if
T, = To+ 1orif T, = ToandT, = O. Howeverif T. = To
and T; = 1 we have to be more careful because the particle—
hole operators A pt(JO) and A pt(11) are not orthogonal
when n & F~ or p ) F&, cf., Eq. (6.15). In fact one can
show that

The extension of the RPA from closed- to open-shell
scalar nuclei has been made (Rowe and Wong, 1970),
using the equations of motion of paper I, and applied to
the particle-hole excitation of "C and a number of even
X = Z sd-shell nuclei with considerable success (Wong,
Rowe and Parikh, 1974). For nonscalar nuclei, the exten-
sion of the RPA has been made on the basis of the general-
ized equations of this paper. Its application to the investi-
gation 'of the isospin structure of the X ) Z Ni isotopes
yielded very good accord with experiments. A preliminary
report of these calculations has already been published
(Ngo-Trong and Rowe, 1971;Ngo-Trong, 1972).

A criticism that has sometimes been levelled against the
above equations-of-motion formalism is that it is incompl'ete
inasmuch as it presupposes a ground state but gives no
prescription for its derivation. %e maintain that this is in
fact a major strength. For we do not believe that there is
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necessarily any simple relationship between the best ways
to describe the dynamic excitations of a system and the
static properties of its ground state. Of course it is well
known that a knowledge of transition densities can provide
considerable information about ground state correlations
(Sanderson, 1965; Rowe, 1968c) and this information
might be used to improve a model ground state and hence
the equations of motion solutions in a self-consistent way.
But the fact that the equations of motion can be deployed
with any static theory of the ground state gives them con-
siderable flexibility in designing realistic model calculations
for a diversity of physical situations.

A number of possible applications of equations of motion
exist. One possibility is to the tw'o-nucleon transfer reactions.
Another is to nucleon scattering and photonuclear reactions
by considering excitations into the continuum. For some
purposes it may well be that variations or extensions of the
equations should be devised; for example, it might be
appropriate to couple excitations built on a number of low-
lying states

I
6,», i.e.,

as in the intermediate coupling model. It is also probable
that the constraint on the excitation operators, that their
Hermitian adjoints annihilate the ground state, is inap-
propriate for some types of excitations, e.g., rotational
states, and that other constraints and equations of motion
should be devised. Some such variations have already been
suggested (Nadjakov and Mikhailov, 1970; Bouten et ul. ,
1973). It should also be remarked that the constraint
(3.1b) that we imposed on the annihilation operator,
although convenient, is not unique. For example, Arm-
strong (1974) has considered an alternative constraint and
derived an open-shell RPA for use in atomic physics, which
differs somewhat from that based on the tensor equations
of motion presented here. These illustrations indicate that
the versatility, of equations-of-motion methods have yet to
be fully explored.
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