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I ~ INTRODUCTION

Coriolis effects are not very common in our normal
experience. Perhaps the m.ost familiar object where these
effects are large is the gyroscope or the "top," as the toy
version is usually called. The sidewise precession of a leaning
top under the influence of the downward pull of gravity is
indeed a striking behavior, and one whose mystery testi6es
to our unfamiliarity with Coriolis effects. A less common
example, but one much more analogous to the nuclear
effects of interest here, is a ship's gyrocompass. In this
case the tendency of a spinning gyroscope (whose axis is
kept in the plane of the earth's surface) to align its axis
with that of the rotating earth, is used as a navigational aid.
A particle with angular momentum ig. a rotating nucleus
has a similar tendency. In the case of rotational nuclei,
Coriolis effects are Inuch more apparent than in our every-
day experience, and it is the purpose of these lectures to
examine what is known about such effects.

It is easy to estimate the maximum Coriolis energy of a
particular particle in a rotating nucleus. For a particle
orbit having angular momentum, j, in a nucleus with spin
I, and moment of inertia 3, this energy is given by:

In the present paper, Coriolis effects in nuclei will be
reviewed beginning with cases where they are relatively
small, that is, good rotational nuclei (small 5'/23), low-j
orbitals, and relatively low spin values. An example of this
type is the famous case of "~W. Then some intermediate
cases will be discussed; where j is large, I is moderately
large, but A'/23 remains small (rotational nuclei). These
cases are 23'U and the odd-mass Er nuclei. With these as
background, two situations will be consid. ered. where it
appears that the Coriolis effects have changed. the nuclear
structure in a major way. The 6rst of these is the case where
j is large, I is moderately large, and A2/23 becomes large;
that is, in the more "vibrational" nuclei. Under the proper
conditions, odd-mass nuclei of this type seem to correspond
surprisingly well to a new coupling scheme characteristic
of the Coriolis interaction. The other situation is that of a
very large I ( 20) in rotational nuclei, where these effects
can be shown to provide one possible explanation for the
peculiar behavior called backbending. Throughout these
discussions the physical effects occurring will be emphasized.
rather than the mathematical detail, although some of the
latter will be essential.

It is important to keep in mind that in all cases just owe
physical system is treated: a particle (or two) coupled to a
core that is deformed (with axial symmetry) and can rotate.
In the first cases, the deformation of the core is large and the
particle is strongly coupled to it; so that as the core rotates,
the particle follows. The Corolis effects are then a perturba-
tion on the rotational spectra. In the last cases, the coupling
to the deformed shape is weak and/or the rotational fre-
quencies are large, so that the particle cannot follow the
core rotation, resulting in Coriolis effects that can com-
pletely obscure the familiar type of rotational bands. It is
certainly true that at some point, as the coupling decreases
(P gets smaller), this rotational model will cease to apply
to nuclei, but in order to find. that point, the model must be
understood clear down. to the limit of zero coupling. Further-
more, there seems to be experimental evidence accumulating
that suggests the model applies rather well at surprisingly
weak couplings for at least some special states.

In rare-earth nuclei there exist orbitals with j as large as
13/2, and A~/23 is around 0.01 MeV. Thus when I is only
7/2, the maximum Coriolis energy is almost 0,5 MeV, or
quite comparable with the energy separations between
particle states in such a nucleus. This indicates that for
these favorable cases the Coriolis effects can be expected
to affect the nuclear structure significantly, even for such
low spins. Equation (1) also shows that these effects become
larger with increasing spin and also with decreasing moment
of inertia.

*Work performed under the auspices of the U.S. Atomic Energy
Commission. Based on lectures given at Rudziska, Poland, August
1972, and Munich, Germany, August 1973.

$ Prepared for publication in January 1974.

II. CORIOLIS EFFECTS AS PERTURBATIONS IN
ROTATIONAL SPECTRA

A. Two-band mixing in "'W

Bohr (1952) discussed Coriolis effects in his original
paper on nuclear rotation in 1952, but it was some four
years later before Kerman (1956) applied these ideas to a
specific case, namely '"W. This case will be brieAy reviewed,
both because of its historic interest, and because it illus-
trates the effects in a simple case where only two bands are
involved, The basic equations necessary to understand
nuclear Coriolis effects are very simple. Provided a rigid,
axially symmetric deformed core is assumed, the Hamil-
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tonian of the system can be written:
Mixed bonds

H = H„+ H„„=H„+ (M/23)R'

= H„+ (li'/2a) (R ' + E„'),
Initial bonds (exp. )

' — (554.33)
555.54

494.48 i

where H„ is the Hamiltonian of the particle in the absence
of rotation (a Nilsson (1955) Hamiltonian for example),
3 is the moment of inertia of the core, and R is the rotational
angular momentum of the core (rotation is not allowed
around the symmetry axis). A coupling between the par-
ticle and the rotation comes about through the sharing of
the total angular momentum between the particle and the
core. This can be expressed by:

4 l2.06(

( exp. ) 36979 7/236803
9/2

(
308.73

3/2 l99 43 — (208.8 I )

K = 3/2

308.94 ) 29(.85
269.68 - - (29l.7l )

25l.l4 5/2
7/2

( 207.00)

R =I —j. (3) l 21.48 5/2
(99.07) 9 9.29 l ss W

H = H„~ (5'/2~) P (I ~ 1) —E2j + H,

+ (li'/23) P(j') —n')

where 0 = j, and K = I, (the two are equal for an axially
symmetric core), and

H, = —2(A2/23) PI,j,+ I„j„j
= —(~'/») LI+j- + I j+j. -

This term, H„ is conventionally called the Coriolis coupling
term, though it contains parts of both the Coriolis and
centrifugal energies. These are the general equations which
will be used repeatedly later on, but for the present case of
good rotational nuclei they can be simplified. For such
cases, 0 is nearly a constant for a given band, as is (j'). These
terms may therefore be included in H„, giving:

H = H, '+ (h'/23) PI(I + 1)j + H, .

The matrix elements of H, can be written:

(6)

(I, n~ I
i
H, iI, n)

= —(V/2~)L(I ~ I~)(I ~ &+1)g'»(n~ 1 ~j, ~»,

where the matrix element, (0 W 1
~ j+ ~

0), must, in general,
be calculated from the detailed (e.g. , Nilsson) wavefunc-
tions. For the special case where j is a good quantum nurn-
ber, these can be written:

One should distinguish clearly between the particle-rotation
coupling w'hich is considered here, and the particle-core
coupling which is contained in H~. (The major part of the
particle-core coupling is spherically symmetric and of no
interest here; however, if the core is deformed, then there is
also a coupling to the deformation, which was discussed
at the end of the previous section. ) Putting Eq. (3) into
Eq. (2) gives the usual expression for a rotational nucleus:

46 3l 55 573/2(46.4 8)

(0) 0 l/2

K= I/2

FIG. 1. The "'W rotational bands as treated by Kerman.

simple basic equations will be used to treat all the cases of
Coriolis coupling mentioned.

The "~W case treated by Kerman involved only two bands
with 0 = 3/2 and 0 = 1/2, and is shown in Fig. 1. The
initial bandhead energies, H„', K.erman took as parameters,
as he also did the initial A'/23 value for each band. jn addi-
tion he took the 0 = 1/2 band decoupling parameter to be
adjustable. For a given value of these five parameters, he
could calculate the initial energies of the levels in each
band. For the parameters of his final ht, these are shown in
Fig. 1. Taking as a sixth pa, rameter the value of (0 =
3/2

~ j+ ~

0 = 1/2), Kerman diagonalized the 2 && 2 matrix
for each spin, giving the shifts shown in Fig. 1. As is usual,
the levels repel each other; levels of a given spin moving
equal distances up and down. The experimental energies
are listed at the edges of Fig. 3, and it can be seen that the
fit is indeed excellent. Kerman also considered some 20 M1
and E2 transition probabilities, achieving reasonable success
at the expense of five additional parameters.

Subsequent work (Rowe, 1965; Brockmeier et al. , 1965)
on "'W has tended to confirm the basic principles of Ker-
man's analysis, though some problems have arisen. Rowe
(1965) showed that various rotation —vibration (b,E = &2)
admixtures of the type found in even —even nuclei in the
region of "~W permitted one to obtain fits as~ good as Ker-
man's over a rather broad range of the parameters (though
he obtained better fits for two particular sets of parameters) .
Brockmeier et al. (1965) later showed that including other
Nilsson states could also significantly affect the fit. To
summarize these analyses, it seems clear that there is a
significant Coriolis mixing of these bands; however, the
details of this mixing are probably not very well determined
due to the many param. eters involved and the possibility
of contributions from a number of additional effects.

Generally, H, is nondiagonal, connecting bands that differ There are many other cases of moderate Coriolis mixing
in 0 by one unit. However, as is well known, there is a of two or even three close-lying bands. The single-particle
diagonal contribution to bands with 0 = 1/2. These rather transfer reactions have proved to be a powerful method for
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such studies since they give more direct evidence on the
wave functions of the observed bands. However, such de-
tailed analyses will not be pursued further here. The pur-
pose of discussing this case was to display the analysis of
Coriolis eRects in a simple case and to show that even for
low A'/23, j,and I, appreciable Coriolis effects occur Other
examples will now be considered where the eRects are larger
and, at the same time, the calculations are much less
ambiguous. -

j I5r2 bonds in U

0= I5r2
& j+&=3.9

= I 3/2

& j+& = 5. 2

B. Multiband mixing in "'U

The unique-parity high-j orbitals within each major
shell provide much the best cases to observe and understand
large Coriolis eRects in nuclei. It is essential to appreciate
the reasons for this. The most obvious factor is that the
Coriolis matrix elements increase approximately propor-
tional to j for low values of 0, as shown by Eqs. (7) and
(8). For the jts~s orbital, which is involved in "'U, this
implies matrix elements around five times larger than that
found by Kerman for "'%. This situation is typical for all
the high-j orbitals, and leads immediately to the conclusion
that any study. of the largest Coriolis eRects will involve
these orbitals. The second reason for choosing high-j orbitals
is that their properties can be reliably calculated. These
orbitals are well separated from any others of the same
parity, so that, to a very good appproximation, j' is pure.
This can be verified from the Nilsson wave functions of:
(i) the hite orbital in the 50—82 shell, (ii) the it3/s orbital
in the 82—126 shell, and (iii) the jis~s orbital in the shell
beyond 126. This means that pure-j estimates for most of
the properties of these states are nearly correct, and since
the properties of these states are not much aRected by the
small admixtures of other j values, they are not sensitive to
the exact size of these admixtures. Yet another favorable
aspect for Coriolis calculations in the component states of
a high-j orbital is that these states do not Coriolis mix very
much with states from other orbitals. This is both because
of the pure j value and because these other orbitals are at
least one major shell removed in energy. The properties of
the high-j components can be summarized as: (1) they

I I/2

Q=l/2 &j @=7.3

f1-s~sll
& jg& =7. 2

Q =er2
0=5/s( ( t &"- 6.7

&j & =7 I

Q 7/2

& j+&=6 I

FIG. 3. The j»~2 bands in "'U
I as calculated from Eqs. (6) and (9) g

prior to the Coriolis diagonalization. The matrix elements of the opera-
tor y'~ as calculated from the Nilsson wave functions are also shown.
Only a few rotational levels of each band are indicated.

comprise a closed set of states whose Coriolis interactions
among themselves are the largest possible; (2) they have
very weak. Coriolis interactions with states from other j
shells; and (3) their properties can be calculated with the
highest reliability of any states in deformed nuclei.

One aspect of the point a,bout the reliability of calculated
properties is illustra, ted in Fig. 2. Here the components of
an h~~/2 orbital are shown as a function of deformation
(Nilsson, 1955). These components would be one of the
closed sets of levels mentioned above. Since they all belong
predominantly to the same orbital (httqs), their relative
energies are nearly independent of the shell model param-
eters in the calculation, and depend only on the energy
splitting of this orbital with deformation. This gives much
more reliable relative energies than would otherwise be the
case. The energies of the components in a particular case
are read oR at the appropriate deformation. As an example,
a line has been drawn on Fig. 2 at P = 0.275 to show these
energies. In addition to P, the location of the Fermi surface
X and the pairing gap 26 are needed in order to calculate
these energies as they might be expected to occur in a par-
ticular nucleus. The appropriate equation for the observed
energy E(O) in terms of the eigenvalues from Fig. 2, en, is:

5/20-
7/2

I I / 2

7/2

5/2

5/2

I/2

(9)

There is also a uv factor (Bohr and Mottelson, 1969), to be
included on the Coriolis matrix elements due to the pairing,
but that is a, small correction.

I-0$ I

—0.2
I

—O. l 0 O. I 0.2 03

FIG. 2. The solid lines are the Nilsson solutions for the h1112 orbital
as a function of deformation. The dashed lines are the energies given
by Eq. (11). The vertical line marks P = +0.275, and its intersections
with the Nilsson lines represent the relative energies of the various
component levels at that deformation.

If a Fermi surface is chosen near the 0 = 7/2 level, and
Eq. (9) is applied to the Nilsson eigenvalues of the jt„~s
orbitals at P = 0.275, the bandhead energies shown in Fig. 3
result. Rotational bands are then constructed on all these
bandheads according to Eq. (6), where II„' has generated
the bandhead energies, E(Q) . The first few rotational levels
are shown for each band in Fig. 3. The matrix elements,
(fl & 1

~ j+ ~
0), as calculated from the Nilsson wave func-
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OJ

Llj

6.0

5.6

5.2—
~ ~

4.4—

K= 7/2 K=5/2

K =9/2

see easily the anomalies in the 0 = 5/2 and 7/2 bands. In
the calculation all bandhead energies and matrix elements
were taken from the Nilsson wave functions except the
matrix elements, (5/2 ( j ) 7/2) and (7/2

~ j ~
9/2), which

were determined from the B(E2) values as described above.
The one parameter was A'/23, which comes into all the
rotational energies LEq. (6)j and matrix elements )Eq.
(7)g except the above two. The results clearly show the
correct anomaly coming from the 0 = 1/2 band into the
0 = 5/2 and 7/2 bands. However, the final effective A'2/23

values for the 0 = 5/2 and 9/2 bands are not correctly given.

I

IOO
I

200
1 n

300 0
2I2

I p

IOO 0
I

IOO

FIG. 5. Rotational spacings of bands in 2'5U. The points are the
experimental data, with the height of a point covering the error limits,
and the lines correspond to the spacings obtained from the one-param-
eter Coriolis calculation.

The details of the calculations for '35U will not be given
here, but rather an indication of the kind of results obtained.
Figure 5 shows the results for the rotational energies in the
case where only one adjustable parameter was used. This
plot is designed so that it gives a straight line for a rotational
band if the band follows the equation,

C

E = Eo + AI (I + 1) + BI2(I + 1)2 (10)

where the value of the ordinate at I = 0 would be A, and
the slope would be B. This plot is used because it can show
the rotational energies on a suKciently sensitive scale to

rect, but effects of 20% or so in the deduced mixing ampli-
tudes cannot be excluded. Consideration of these features,
and the observed E2 and M1 relative intensities, makes the
"'U case a good test for calculations of Coriolis effects.

The results of a three-parameter fit are shown in Fig. 6.
Here the matrix elements, (5/2 ( j ) 7/2) and (7/2

~ j ~
9/2),

were allowed to vary from the values indicated by the
B(E2) values but their ratio was held constant, and the
matrix element, (3/2

i j ~
5/2), could vary. The former of

these went up by 20%, and the latter went down by 20%.
The fit here is excellent (note the expansion of the ordinate
scale). Also the known relative M1 and E2 transition prob-
abilities were adequately given by these wave functions.
This agreement is a very strong indication that this kind
of calculation is rather well understood. One puzzle emerges,
whose solution is not at present understood. The matrix
elements, (5/2 ) j ) 7/2) and (7/2 ) j ( 9/2), have values
only about half as large as expected. This result comes from
the measured B(E2) values almost completely unam-
biguously. This kind of effect on the Coriolis matrix elements
near the Fermi surface is observed in essentially all other
similar cases, and has been the outstanding mystery in such
calculations. Recently Ring el cl. (1974) have shown that
this discrepency does not occur if the self-consistent crank-
ing model is used instead of the particle-plus-rotor model.
The exact cause of the problem in the latter model is not
yet fully understood, however.

The "'U case has been discussed in some detail to show
rather carefully how one treats a unique-parity j shell, and
also to illustrate that one does know how to make these
calculations. In the next section cases will be considered
where the effects are larger, but the data more meager.

5, 8

K= 7/2 K =9/2

5.6

FIG. 6. This plot is like Fig. 5, except (1) the
lines correspond to the three-parameter Coriolis cal-
culation, and (2) the ordinate scale has been dou-
bled. 5 4

bJ
H

LLI

5.2

5 00 I

IOO
I

200
I

500~ 0 100 ~0 I

100
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CALC EXP
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3/2.7

238.5

167.5

98.1
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FIG. 7. The experimental and calculated positive-parity levels in ""63"'Er according to Hjorth et al. (1970).

C. Odd-mass Er isotopes

The calculated and experimental levels in three odd-mass
Er isotopes (Hjorth et a/. , 1970) are shown in Fig. 7. These
data are for the lowest positive-parity band in these Er
nuclei, and this band is clearly composed of heavily admixed
components of the i»/& neutron orbital. There is a reasonably
normal 0 = 5/2 ba, nd in 's'Er; a band with rather large
anomalies in ' 3Er; and, in '6'Er, a band with such large
anomalies that some level-orders are inverted. The calcula-
tions shown in Fig. 7 were similar to those described for
~~'U, except that no data were available on higher bands.
Nevertheless, the three-parameter fits shown are impressive,
and leave no doubt that the spectra are basically correctly
interpreted. Figure 8 shows the rotational-energy plots like
the ones discussed for '~'U. The plot for '"Er looks much
like that of '"U until one appreciates the ordinate scale.
These effects are much larger than those in "'U, and become
still larger in "'Er and "'Er. In the last case, the inverted
levels show up as negative points on such a plot. It is not
difficult to understand why these effects are large and get
larger with decreasing mass number in these Er nuclei.
The rotational constant, A /23, which comes into the Coriolis
matrix elements (Eq. (7) ), is about twice as big here as in
2'~U and is increasing with decreasing mass number.

In these Er nuclei, the Coriolis eRects are producing large
distortions in the rotational bands. These effects can be
calculated, as has been shown, but it now seems more useful
to broaden the perspective on this problem, rather than to
study such fits in detail. There is no difhculty in solving
Eq. (4) for any deformation (except exactly zero) and it
seems essential to understand, in a general way, the nature
of these solutions. If they contain some new regularities,

then it is necessary to know just what these are so that they
can be recognized if they occur in the Er (or other) level
schemes. Along the same line, it would be interesting to
understand the physical process occurring in these distorted

Er Er-1
ROTATIONAL BANDS IN "'Er, '"Er and16~Er

20-

10-

5-

15—

10—

10—
Po
pa

i t I t

$$ 7y $ 1 'ty 13j 'I sy

I I

17/ 19& 21/
2 2 2

I I

23/ 2$
2 2 2
(21)'

FIG. 8. Rotational spacings of the positive-parity bands in the three
Er nuclei. Some other bands in these nuclei have been plotted on this
figure, which is also taken from Hjorth eI, al. (1970).
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bands. These questions will be taken up in the next section,
and in Sec. III.B, these Er nuclei will be examined again
from a somewhat different viewpoint.

1,2],
+Ij j +I

MG ~Q MG

III ~ CORIOLIS EFFECTS IN NUCLEI WITH
SMALL DEFORMATION

Whether the Coriolis effects will be large or not in a par-
ticular case depends on the relationship of the Coriolis
energy, given approximately by Eq. (1), and the energy
separation between interacting states, that is, the sp1itting
between components of the j shell of interest. This relation-
ship can be easily estimated, provided some simple approxi-
mations are made. The first objective of the present section
will be to extend the mathematical framework in order to
show explicitly this relationship and some of its conse-
quences.

A. Calculations in nuclei with small deformation

J& i&

R a,

I, 2 ii

R„a

w,"=zd „(&) x ~,'„a Q

In cases where the Coriolis effects are large, Eq. (4) must
be used rather than the simplified Eq. (6). There is some
problem here, as the so called "recoil term, "A'/23L(j')—
Qs ], may already be partly contained in the empirical
evaluations of H„. Ho~ever, the simple limiting solutions
are not reached if the recoil term is not taken explicitly
into account, so that in this section, at least, the full Eq. (4)
will be used. If j is a good quantum number, (j ) is just
j(j+ 1), and only shifts all levels by the same energy.
This assumption is reasonably good for the high-j orbitals,
so that the effects of including this term come mainly from
the Q' part (in the odd-mass case considered here).

The quantity B„can be expressed by giving the energy
of the system as a function of 0; that is, as a function of the
orientation of j to the symmetry axis of the core. Under the
conditions that j is a good quantum number and that the
single-particle Hamiltonian is associated with a quadrupole
field oriented along the symmetry axis (the usual Nilsson
(1955) potential), H„can be written:

H„=., +~p '"'. '." " =„+CQ,
4Z(S+ 1)

where e, and e, ' do not depend on Q. The coefficient, C,
determines how widely the Q components of the j shell are
split apart on the Nilsson diagram, and its relationship to
the rotational constant, A = A'j23, determines much of
what happens at the lower spin values. This relationship is
essentially the one mentioned at the beginning of Sec. III,
and an expression for its numerical value will be given later.
It can be shown Lsee Fig. (2)) that Eq. (11) is in good
agreement with the exact Nilsson solutions for the unique-
parity orbitals when

~ P ~
& 0.3.

Substitution of Eq. (11) into Eq. (4) gives:

H = e, + A/I(I + 1) +j(j+ 1)j+ (C —2A) Q'+ H, .

(12)

For a given situation (I,j and P) the first two terms of Eq.
(12) are diagonal and the solution of the particle-plus-rotor
model consists of diagonalizing the last two terms. When P
is large, C is large, and A is small, so that H, is small. If

FIG. 9. Schematic vector diagrams illustrating the strong-coupling
scheme (above) and the rotation-aligned coupling scheme (below),
The 3 axis is the nuclear symmetry axis, and the vertical axis is taken

A A
to be the rotation axis, located in the I, 2 plane.

H, is negligible, then the solutions are eigenfunctions of the
0' term, which are clearly states with sharp 0 values, and
the deformation-aligned (strong) coupling scheme is
applicable. This coupling scheme is sketched in the upper
part of Fig. 9, and the usual deformed wave function is also
indicated. However, C and A are not functions of I, whereas
H, increases with I; so that, eventually the opposite situa-
tion must occur. That is, at sufficiently large I, the Q2 term
will be negligible compared with II„and the solutions will
be eigenfunctions of H, . It has been shown (Stephens,
Diamond, and Nilsson, 1973b) that these eigenfunctions
correspond to a new coupling scheme (rotation-aligned)
where o., the projection of j along the rotation axis of
the system, is a good quantum number. The rotation-
aligned wave functions, the approximate eigenfunctions
of H„are given in the lower part of Fig. 9 and this cou-
pling scheme is also sketched. For large I values, this
rotation-aligned coupling scheme should be generally valid.
When p is very small, Eq. (11) shows that H„ is nearly
constant. It can be seen directly from Eq. (2) that when
H„ is nearly constant (diagonal), the weak coupling
scheme (de-Shalit, 1961) with sharp R values will apply.
The present case would correspond to a quadrupole-
quadrupole particle-core interaction and core states with
the rotor energies. These general regions of applicability
of the three coupling schemes are clear.

However, the rotation-aligned region is extended even to
low-spin states when (C —2A), the coeKcient of Q',
approaches zero due to the cancellation of the tv o terms.
Since A is always positive; this occurs when C is positive;
that is, for prolate deformations in the one-particle II„given
in Eq. (11).For a one-hole H„, the sign of k in Eq. (11) is
reversed and cancellation occurs for oblate deformations.
Both of these conditions amount to requiring that the
Fermi surface be near the low-0 orbitals of the j shell. If
reasonable numerical estimates are made for C and A
around mass 130 with j = 11/2, then the region where
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Ij j I4~a = xa Daven. (13)

C = 2A occurs for P 0.18. However, for a considerable
region (AP &0.05) on either side of this value, (C —2A)
is small and the rotation-aligned scheme is approximately
applicable. Many "vibrational" nuclei lie in this region,
and much of the interest in this coupling scheme stems from
the fact that some regularities in the observed levels of
nuclei in this region of P correspondi to those expected from
the rotation-aligned scheme.

Exact solutions to Eq. (12) can be obtained by diagonal-
ization and, these will be discussed later in this section.
However, simple approximate solutions can also be found
for the rotation-aligned region in the case of one particle
(or hole) in the j shell, and it seems useful to discuss these
erst in order to have available a convenient expression for
the levels, and also to give some physical insight into the
process occurring.

Consider first the normal strong-coupling (adiabatic)
wave function with the single-particle space limited to one
j subshell, which is a satisfactory approximation for the
unique-parity case considered here,

It is not dificult to improve this approximation signifi-
cantly. In the rotation-aligned scheme there is symmetry
about the rotation axis (take this to be the x axis), so that
(j„') = (j 2) = (0'). This leads to the relation:

(fl') = 'Ei (i +-1)— (17)

This value can be used in the 0' term of Eq. (12) to take
account of small deviations from the point of exact cancella-
tion. Also a better approximation to the eigenvalues of H, is:

Hc P~ —2AaLI(I + 1) —Q(Q+ 1)7'12$ '

—2A n I (I + —) —0 /2 (I + 1/2) I P ',

band has been called the decoupled band. %hen I & j, a
better approximation can be derived involving ~ instead of
o., where ~ is the projection of I on the rotation axis. Since
H, is symmetric in I and j, the expression for I (j is
obtained from Eq. (16) by interchanging I and j and
replacing o. with ~. Only half the ~ values are allowed, since
j —

r& must be even, but every I value is allowed in a ~ band,
and these have relative energy spacings given by AI(I + I) .

The diagonal energies of H LEq. (12)J in this representation
are: (Bohr, 1952)

where 0 is some average value of 0 for each n value.

E(Ij~l) =;+ALI(I+1) +j (j +1) Again, the 0' in Eq. (18) can be estimated using Eq. (17).
Putting Eqs. (17) and (18) into Eq. (12), and rearranging

+ g„,&, (—) +&(I+ 2}(j+ ~')7+ (C —2A)Q. (14) terms gives:

The rotation-aligned case occurs when C 2A, so that
the 02 term in Eq. (12) vanishes, and the eigenfunctions of
H are just those of H, (since j is taken to be diagonal). It
has been pointed out above that the approximate eigen-
functions of H, for I )j are:

4w. = Z d'-D(~/2) xn D~a

where the d function is the usual rotation matrix, and n is
the projection of j on the rotation axis. The approximate
eigenvalues of H, were shown in Stephens, Diamond and
Nilsson (1973b) to be —2AIu, but this can be improved
by using I + 1/2 rather than just I as the value of
PI(I + 1)g'~'. The diagonal energies of H in this rep-
resentation are then approximately:

E(Iju) = e;+ A I (I —a) (I —n + 1)

+ LC/ A+ /( I+ )3Lj(j+1) — '1} ( )

Again, Eq. (19) applies when I )j, and I —n must be
even. Compared with Eq. (16), the only change is that the
coeKcient of the L j(j+ 1) —n'j term is no longer just
the rotational constant, A. This affects mainly just the
separation of the a bands. %'hen I (j, one can @gain
interchange I and j in Eq. (19), and replace a by rc, where
j —~ is even.

For convenient evaluation, A can be related to P using the
empirical connection between 8 (E2; 2 —+ 0) and E2+
pointed out by Grodzins (1962):

E~+. ——6A = 1225/87~'P' Mev, (20)
Ep(Ija)

= e, + API(I+ 1) +j(j+ 1) —2o(I+ —;)g

= e'+ AL(I —~)(I —~+1) +j (j + 1) —~'7.

(16) C/2A = 0.3798,'P'/ j(j+ 1) (21)

where 0', is the mass number of the nucleus. This leads to the
expression:

This equation shouM only be used when I ~ j, and n is
restricted by the symmetry conditions so that I —n must
be even. The general features of the spectrum can be seen
from the right side of Eq. (16). For each n value, a band
occurs containing every other spin value (I —n even) and
having the core energy spacings. The highest-n bands lie
lowest in energy (but n cannot exceed j), and, furthermore,
the same I values are separated by higher core spacings in
lower-n bands. The lowest-lying band has n = j, spins
I = j,j+ 2, j+ 4, ~ ~ ', and the core energy spacings; this

which gives 180P' for C/2A when 0'. = 130 and j = 11/2.
Equation (19) is rather accurate under some circumstances,
as will be shown below; ho~ever, it is not very suitable for
comparison with experimental data, due to restrictions in
the model. The relaxation of one of these (restriction to
axial symmetry) has been studied by Meyer ter Vehn
(1973) who has shown that axial asymmetry reduces both
the higher-spin energies in a band and the separation be-
tween bands given in Eq. (19), in accord with the known
data (Stephens et a/. , 1973a; Tjgm et a/. , Andre et al. , 1973;
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FIG. 12. The results of diagonalizing
Eq. (12) for the h»~& orbital at various
P values showing all the yrast states up
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difference between the eigenvalue and
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The exact solutions of the particle-plus-rotor model can
be obtained by diagonalizing Eq. (4) and are shown in
Fig. 12 for the yrast states' up to spin 23/2 coming from
the bites orbital. At each P value the lowest I = j state is
taken to have E = 0, and all energies are in units of the
corresponding even —even first-excited state energy (E&+).
In this calculation the Fermi surface was always well below
the entire h~~/~ orbital, so this is a true one-particle case.
Pairing was included in the BCS approximation, and Eq.
(20) was used to relate A to P. The calculation in Fig. 12 is
again for the mass 130 region.

The three coupling-scheme regions discussed above can
be readily identified. The nearly degenerate multiplets near
P = 0 are clearly those of the weak-coupling scheme, where
one expects such multiplets centered on the core energies.
The range where they can be identified is approximately—0.1 & P & 0.1; however, this corresponds roughly to
E..+ & 1 MeV, and in such cases it is doubtful that any
collective model should apply. Thus, in the present context,
it is not clear that this weak-coupling scheme will be valid
anywhere. The strong-coupling scheme is valid for large P
values and is characterized by normal rotational bands. On
the oblate side of Fig. 12, the 0 = 11/2 rotational band is
recognizable when P is only —0.1, and is rather well
developed by /l = —0.15.On the prolate side, the anomalous
Q = 1/2 band develops quite slowly, and is not yet very
pure even at P = 0.3. It has been shown above that the
rotation-aligned scheme gives energies very close to the
exact solutions for 0.15 & P & 0.2, and is a reasonable
approximation for 0.13 & P & 0.23. An outstanding regu-
larity of this coupling scheme is the occurrence of the de-
coupled band (defined following Eq. (16)). The darkened
lines in Fig. 12 are these states, and this band is seen to
persist across the whole prolate side with very nearly the
core energy spacings (identifiable at P = 0). The weak-
coupling scheme gives the same energies for this band, but
requires in addition that other states,

I
E —j I

& I &
R + j, coincide with them. Note that Fig. 12 is correct
for one (or a few) particles in the hii~s orbital; whereas, for

For a given angular momentum, the state of lowest energy in a
nucleus is called the yrast state.

I

one (or a few) holes the particle-plus-rotor model wolud
give exactly the same results except that the sign of P would
be reversed.

The levels that would be populated following a (HI, xisy)
reaction can be predicted rather unambiguously from Fig.
12. These would be the lowest-lying high-spin states. On the
prolate side this is the decoupled band, and one expects to
see stretched E2 transitions and even —even core spacings.
The unfavored high-spin states ( j + 1,j+ 3, ~ ~ ~ ) lie con-
siderably higher in energy and will be more weakly popu-
lated, if at all. For oblate deformation a normal rotational
band ( j,j+ 1, j + 2, ~ ~ ~ ) develops at quite low deforma-
tions, and a series of 351 + E2 cascade transitions with E2
crossovers should be seen. At very low deformations
(t/ ~ 0.1), the favored and unfavored yrast states lie close
together, but the order of favored lowest on the prolate side
and unfavored lowest on the oblate side is always preserved.
For hole states (nearly full j shell), all these predictions
should occur for the opposite sign of P.

It is now of interest to look at some ocld-mass nuclei in
order to see if the features described above occur. Many
studies have now been made of levels in odd-mass nuclei
located in the "vibrational" regions (0.1 &

I P
~

& 0.25).
Rather unambiguous decoupled bands have been seen in
the Au region (Stephens et a/ , 1973a; Tj.gm et a/. ; Andre
et a/. , 1973; Proetel et a/. ), the light Gd—Yb region (Klein-
heinz et a/. , 1974) (Sec. III.B), the I.a region (Stephens
et a/. , 1972; Kleinheinz et a/. , 1972; Nakai et a/. , 1973) (Sec.
III.C), and the Ru —Pd region (I.ederer et a/. , 1971; Sirnms
et a/. , 1973) . The alternative rotational —bandlike levels
have been seen in light Tl nuclei (Meyer ter Uehn, 1973;
Newton et a/. , 1970) and in the light Ce—Nd nuclei (Gizori
et a/. , 1973). There is already some evidence that both types
of band occur in light nuclei, (Bizetti et a/. , 1973; Protop
et a/. , 1973) but more data are needed in these regions. It
seems that a rather large amount of evidence has already
been accumulated showing that the expectations outlined
above do seem to occur rather often in nuclei. Some exam-
ples of these data will now be considered, beginning with the
Er nuclei described in Sec. II.C.
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In Fig. 13, the energy-level spacings, in units of 6's/23,
are shown for a decoupled band and for a strongly-coupled
rotational band based on the i&3~2 orbital. The rotational
spacings shown on the left are independent of 0 (except for
1/2); and also, the existence of possible lower band members
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B. Light odd-mass Er nuclei

There are two reasons for discussing the light odd-mass
Er nuclei here. The 6rst is that they show very clearly the
transition from a strong-coupling region to a rotation-
aligned region. The second is that they are involved in
some of the arguments about even-even nuclei which will
be made in Sec. IV.
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I'IG. 14. The ratio of AE(I + 2 —+ I) in an odd-mass nucleus
divided by the average of the corresponding transition energies in the
adjacent even-even nuclei AE(I + 2 —j—+ I —j), is plotted against
mass number for the light Er nuclei. The rotational-band and decoupled-
band limits are shorvn, together with the data for the first four such
transitions in the lowest-energy ii»2 band.
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FIG. 13. Level spacings, in units of 5 /23, for an i/3/2 particie in a
normal rotational band (left) and in a decoupled band (right).

A plot of this odd-A-to-average-even-even transition
energy ratio is shown in Fig. 14 for the lowest band based
on the ij3/~ orbital in the odd-mass Er isotopes. The de-
coupled-band limit for this ratio is always 1.0; whereas, the
rotational band limit varies from about 5 to 2. For the 17/2—
13/2 energy spacing, the observed raio drops monotonically
from 3.6 for ' 'Er(P ~ 0.33) to 1.0 for "7Er(P ~ 0.2). This

is irrelevant to the present arguments. It is apparent that
the decoupled band is very heavily compressed (by the
Coriolis interactions), and this compression could serve as
a measure of the extent of decoupling. If an average
Zs+ (6A'/23) is determined from the adjacent even —even
nuclei, then the 17/2 —13/2 spacing divided by this Es+
would be 1.0 for a decoupled band, and 5.3 for a rotational
band. Comparing the 21/2 —17/2 spacing with the even —even
4—2 separation would give 1.0 and 2.9 for the two types of
band. Thus an estimate can be made at any spin value of
the extent of decoupling in an observed band.

is just the trend expected; and it is caused both by the
decrease in P and by a decrease in the Fermi level with mass
number toward the Q = 1/2 state (the one-particle situa-
tion) . The other important trend is with spin, I, and it is
clear that the extent of decoupling increases with increasing
I, as expected. It can be seen, however, that the higher-spin
states at the lower mass numbers approach T.1 or 1.2 rather
than 1.0. The reason for this is not entirely clear, but could
indicate a lower moment of inertia for the core in the odd-
mass nucleus due to the blocked i&3/ level. The i/3/Q bands
in these Er nucjei show very clearly a transition to the
rotation-aligned coupling scheme. Note that "Er and '"Er
have essentially pure decoupled bands even for the lowest-
spin members (I = 13/2).

C. The La-Ce region

Only one "vibrational" region will be discussed, and the
I-a—Ce region was somewhat arbitrarily chosen. A portion
of the Nilsson diagram for protons is shown in Fig. 15,
where some of the orbitals have been fully drawn, and
others have not. For the I.a nuclei, with 7 protons beyond
the closed shell at 50 (at P = 0, this closed shell is at the
bottom of Fig. 3) and deformations 0.15—0.25 (for mass
numbers 137—125) the h»~s orbital is essentially empty in
all cases. Thus the simple one-particle calculations of Fig.
12 should apply, and for prolate shapes (anticipating the
results), decoupled bands should occur for all these I.a
nuclei. Now consider the situation for the 77th and 75th
neutron in '"Ce '"Nd and "'Ce ""Nd, respectively where
P~0.15—0.20. Figure 15 can also give an estimate for
neutrons in this region; the 82 closed shell comes between
the hg/2 and s~~~ orbitals. If the nuclei are prolate, the
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FIG. 15. A portion of the Nilsson diagram for protons, where only
the high-j orbitals have been fully drawn. At P = 0, the 50 closed shell
is at the bottom of the figure, and the 82 shell comes between the sit~
and A'9t~ orbitals.

(7 holes in the 82 shell), the Fermi level has dropped to
around the 9/2 component of the hrits orbital. This gives
three holes in the hei~~ orbital and Fig. 12 does not apply.
Appropriate calculations show that one expects a perturbed
0 = 9/2 rotational band where the j, j+ 2, j+ 4,
levels again lie anomalously low. Thus for prolate deforma-
tion, a unique set of predictions can be made, and an equally
unique and opposite set would apply for the oblate case.

The negative-parity La levels (Stephens et at. , 1972;
Kleinheinz et al , 19. 72; Nakai et a/. , 1973) are shown in
Fig. 16, where they are compared with the levels in the
even —even Ba isotope with one fewer proton. The corre-
spondence in energy of the odd-mass and even —even levels
is remarkable, and comprises the erst, and still perhaps the
best, example of decoupled bands. Other features of these
bands support this interpretation. The lack of population
of other negative-parity states argues against the weak-
coupling scheme, which could otherwise explain these
energies. The spectroscopic factors for population of the
11/2 state in the (rr, t) and (sHe, d) reactions vary from
about 1.0 in "La to 0.4 in ' 'La, in good accord with cal-
culations (Kleinheinz et a/. , 1972; Nakai et al. , 1973) like
those of Fig. 12. Also the dramatic drop in energy, as the
mass number decreases, of the 11/2 state relative to the
positive parity states (dst&, g7ts) in the La isotopes can be
understood in this interpretation. All the known character-
istics of these La levels support their assignment as de-
coupled h~i~~ bands.

X = 77 cases (with 5 holes in the 82 closed shell) will have
one hole in the hi&/~ orbital, so that Fig. 12 should be applica-
ble, except with the sign of P reversed. Thus, normal rota-
tional-bandlike levels are expected, with a tendency for
the levels, after the first one (I = j), to be paired: j+ 1
and j+ 2; j+ 3 and j+ 4; ~ ~ ~ . For the 2V = 75 nuclei

In Fig. 17 the levels recently determined (Gizon et al. ,
1973) for '"Ce and "Nd are shown. The normal rotational-
band order of the negative-parity levels is seen, but the
perturbations favoring the j, j+ 2, ~ ~ ~, levels are quite
strong. This is qualitatively what is expected for a prolate
shape; however, quantitatively the observed spacings are
somewhat less regular than calculated. This is in the direc-
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tion that might be expected if there were some shape (y)
asymmetry, (Meyer ter Vehn, 1973) or softness toward such
asymmetry, and the low-lying second 2+ state in the
adjacent even —even nuclei show that this is very likely to be
the case. Additional evidence that these nuclei are prolate
comes from the large negative A2 coefFicients ( —1.0) in
the angular distributions of the 3f1+ E2 gamma rays in
the 11/2 band. This implies a negative sign for 5, the mixing
ratio, and therefore a positive Qo (prolate), since gx —

giL

will be negative for the /Liit2 neutron and the sign of 8 (and
also of A, for an I—+ I —1 transition) is determined by the
sign of (gz. —gz)/Qo. This rule has been discussed recently
by Nakai (1971). A similar, very useful, rule can be formu-
lated for the rotation-aligned scheme, which applies to
either I~ I —1 or I~ I + 1 transitions between the
unfavored (n = j —1) and favored (n = j) bands. In this
case the sign of A2 in the mixed M1 + E2 transitions should
be opposite to that of the ratio, (g; —giL)/QD. Such transi-
tions have not yet been observed in the I a nuclei, but have
been seen in Ir, Au, and Hg nuclei, (Stephens et a/. , 1973a;
Tjgm et a/. ; Andre et a/. , 1973; Proetel et a/. ) with angular
anisotropies in accordance with this rule. The level schemes
for '"Ce and '35Nd are shown in Fig. 18. They are also rota-
tional bandlike, have 9/2 for the lowest spin rather than
11/2, show more regular energy spacings than the previous
set, and also have the large negative A2 coeKcients for the
M1 + E2 transitions. All of these are in accord with expec-
tations for a prolate shape, and show that these odd-neutron
nuclei are behaving much as the particle-plus-rotor model
would predict.

A question arises as to why a s'.mple axially symmetric
particle-plus-rotor model should work so well in this
La—Ce (or any other similar) region. It seems likely that
many other features are involved in the core states; vibra-
tiorial motion, asymmetric shapes, shape changes, sizeable
individual two-particle amplitudes, etc. Greiner (1972) has
pointed out that part of the answer to this question may be
that so far, due to the experimental circumstances, only the
yrast states (mainly just the decoupled bands) have been
studied. These states are the most likely to show simple
rotational features, and the lower-spin states, Greiner
suggests, may be much more complex. It is therefore, of
considerable interest to study other states based on the
same j shell in nuclei where decoupled bands occur. Members
of the unfavored (cz = j —1) band have been seen in Au,
Ir, and Hg nuclei, (Stephens et a/. , 1973a; Tjftm et a/. ;
Andre et a/. , 1973; Proetel et a/. ) and also a few other lower-
spin states were identified in the Au nuclei. (Stephens et a/. ,
Tjpm et a/. ) These states seem to be in general agreement
with the model, but also suggest that it is important to
include effects due to the asymmetric shapes in this region
(Meyer ter Vehn, 1973).More data are needed on levels of
this type. It would also be of interest to study the states
from lower-j orbitals where additional features (especially
large j-mixing) may occur.

IV. CORIOLIS EFFECTS IN EVEN-EVEN NUCLEI

There are some indications that the Coriolis effects in
high-j orbitals also play an important role in the high-spin
states of even —even nuclei. It is not dificult to see that this
might be the case. If one considers the question of which
two-quasiparticle (2qp) states of an even-even nucleus are
likely to lie lowest in energy at spin 20, then the maximum

Rev. Mod. Phys. , Vot. 47, No. 1, January 1975



F. S. Stephens: Coriolis effects and rotation alignment in nuclei

357.5
wv~ ~ ~~ ~ ~~ 3139

294.9
~if& ~~~ ~ ~~~ 2844

—--——-'I-------- 2609
159.5
189.5

// g zoo.7

2449.5
— 2260.0

2059.0

I 9/2

17/2-
762.6

E2

246.0
Il

75 I.3
E2

1552.3

I 306.3
516.7
M I+E2

1163.6

19/2
727.6

I7/2-
250.6

709.6
E2

1520.5

I 270.0
4 76.5
hh I+ F2

I 5/2

I 3/2
6I9.7

E2

I I/2
M I+E2

9/2-

234.8
s rMI+E2 ~ r

554.9
E2

789.7

554.9
384.7
Ml+ E2

I 70.0
5.4h

15/2-
594.1

13/2
E2

11/2
Ml+ E2

9/2-

Ml+E2
i 232.2

560.3

792.9

560.7
362.2
M I+E2

198.5

o 15min.
13 e75 135 75

FIG. 18. Energy levels in '"Ce and '"Nd. The transitions in the 9/2 bands are shown as solid; whereas the others are open.

Coriolis energy given by Eq. (1) becomes an important fac-
tor. If both particles are in a high-J orbital, then Kq. (1)
applies, approximately, for each particle, and gives a total
energy lowering of 5 MeV for i»» particles. Such an energy
is very significant when compared with the amounts that
might be gained from other processes (pairing, shape dis-
tortion, etc.) at this spin value. While it is clear that the
yrast states in even —even nuclei around spin 20 are not yet
fully understood, this rough estimate, supported by detailed
calculations, suggests that they could well be strongly
influenced by Coriolis eGects. The present section will begin
with a summary of the experimental data bearing on high-
spin states in even —even nuclei, and then continue with a
discussion of two-particle Coriolis calculations and their
application to these data.

A. Experimental data from even-even nuclei

Of the two types of data bearing on the question of very
high-spin states in even —even nuclei, the older one has to
do with the de-excitation cascade in product nuclei follow-
ing heavy-ion compound-nucleus (HI, xe) reactions. This
information has recently been summarized and some of its
implications about the nature of such high-spin states dis-
cussed (Newton et a/. , 1970) . The gamma-ray spectra from
these product nuclei almost invariably consist of a set of
discrete lines on a continuous background. In rotational and
vibrational nuclei, the lines correspond to the transitions in
the ground-state collective band (gsb), ' and represent the
last steps of the de-excitation. Thus the gamma-ray transi-

2 The gsb refers to the collective band based on the ground-state
configuration of a particular nucleus. For the even —even nuclei con-
sidered here, this is a completely paired configuration —no quasi-
particles —,and the levels of this band are the yrast levels at low spin
values.

tions between the highest-spin states are in the continuous
background. Up to now', very few direct studies of this
continuum have been made, so that the information about
the highest-spin states is based on observations of the
transitions between lower-spin states, i.e., the discrete lines.
The following points, made in Newton et aL, (1970), are
relevant to the present discussion: (a) the maximum spin
observed in the gsb ranges from around 20 for rotors, to
around 10 for vibrators, and this maximum is characteristic
of the particular nucleus (not of the reaction); (b) how-
ever, when heavy ions are used to produce the compound
nucleus (bringing in high angular momentum) then the
gsb is fed mostly at or near the highest observed level,
whereas with light projectiles, the feeding pattern is related
to the distribution of angular momentum brought in by the
projectile; (c) the mean time interval between the reaction
and population of the gsb in rotational nuclei is very short,
& 10 psec; and (d) very high-spin isomers —I & 20 6—have
never been observed. It should be emphasized that these
are features observed in (especially) rotational and vibra-
tional nuclei, and would not apply, without modification
or qualification, to closed-shell or near-closed-shell nuclei.

To understand these four points, the de-excitation was
described in Newton et at. (1970) as consisting of three
cascades, whose existence had been previously proposed by
Grover (1967; Grover and Gilat, 1967) based on numerical
studies of the process. These are schematically indicated in
Fig. 19. Since the initial energy (20 MeV) and level density
are high, a, statistical cascade (I) consisting mainly of high-
energy dipole transitions is expected to occur first. This
carries off around half the excitation energy but very little
angular momentum, and is terminated by coming into a
region where the level density is no longer high. This region
is located just above the yrast levels and would be 10
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in a nucleus (with mass around 160) that is the product of an (4'Ar, 4n)
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shown, together with the proposed cascade pathway to the ground
state.

00 l6 24

FIG. 20. A plot of energy vs I for the ground-band rotational levels
in '6'Er, The insert shows the same data in the type of plot generally
used to show backbending behavior.

MeV at I 35 for the example in Fig. 19. At this point the
cascade is forced to begin carrying off angular momentum
and follows, more or less closely, the yrast levels down in
spin. This is called the yrast cascade (II) . At some spin, the
yrast levels become those of the gsb and an energy gap
develops between these levels and others of the same spin.
At this point the population shifts rather suddenly into the
gsb through which it cascades (III) to the ground state.
For lighter projectiles, where less angular momentum is
brought in, the length of the yrast cascade shortens, until
it is essentially absent in reactions induced by 4He.

Two interesting conclusions were drawn about this de-
excitation. First, the very short feeding times and absence of
isomeric states with high spin indicate that energies in the
high-spin yrast region must be very smooth and the transi-
tions between these levels must be enhanced over the single-
particle value if they are E2. (Other choices for the pre-
dominant multipolarity turn out to be much more dificult
to explain. ) Furthermore, to avoid the generation of dis-
crete lines in this region, the population must be spread
over several (& 5) levels. It was suggested (Newton et al. ,
1970) that the presence of rotational bands admixed by the
strong Coriolis force present at these high spins might pro-
duce such features. Mottelson (1970, 1971) has pointed
out that the spectrum of an asymmetric rotor is a particu-
larly simple one fulQling these requirements of the yrast
cascade, and models for the de-excitation based on this sug-
gestion have recently been given (Sugawara-Tanabe and
Tanabe, 1973; Meyer ter Vehn, 1974). The second conclu-
sion was that the feeding point of the gsb was near its
intersection with other levels. No other way could be found
to explain the population patterns. This intersection
implies a major change in the nature of the yrast levels
above this spin value.

An interesting effect has recently been observed around
I 16 in the ground-state rotational band (yrast states)
of some even —even rare-earth nuclei (Johnson et al. , 1971).

It is called "backbending, " and an illustration of what this
name represents is given in Fig. 20. The main plot shows the
yrast states of ' 'Er on an energy vs I plot, and although
this looks rather ordinary, the slope has some distinct
changes around I = 16. The insert shows the currently
popular way to plot these data: as (essentially) the moment
of inertia 3 (defined from the transition energy) vs the
square of the rotational frequency m. The rotational fre-
quency is proportional to the slope of the main curve, and
it is approximated as one-half the transition energy in Fig.
20. The slope changes appear clearly on this plot, and the
origin of the name, backbending, is obvious. The effect is
not a very dramatic one on the main plot but, on the other
hand, A~ (the transition energy) is directly measured, so
that the backbend is unmistakable and quite likely indica-
tive of some interesting phenomenon.

Many backbending nuclei are now known in the rare-
earth region, and a few outside it. Several recent review ar-
ticles on this subject are available (Johnson and Szymanski,
1973; Sorensen, 1973; Kumar, 1970). In order to give an
impression of the data in the rare-earth region, the known
yrast levels of even —even nuclei are shown in Fig. 21 in stand-
ard 3 vs. co~ plots. The backbending is quite pronounced in
the light Er region, and also in some of the Os nuclei. It ap-
pears to be less pronounced, if not absent, in the middle and
lower right portions of Fig. 21, but more data are needed to
be sure of this point. This neutron-rich region is not acces-
sible to the (HI, xey) reactions, and hence data on high-
spin states are sparse.

The above discussion shows that there is good evidence
for a major change in the nature of the yrast levels below
I = 20 in at least some of the rare-earth nuclei; and further-
more, that at higher spin values a new very regular structure
develops. Three types of explanations have been proposed
for these (or parts of these) experimental results. The essen-
tial features of these explana, tions are: (1) pairing collapse,
(Mottelson and Valatin, 1960); (2) rotation alignment,
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FIG. 21. Ground-band level energies in even —even rare-earth nuclei. The plots give the moment of inertia 3 versus the square of the rota-
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rotational to decoupled. This plot is taken from Stephens, Kleinheinz, Sheline, and Simon (1973c).

(Stephens and Simon, 1972); and (3) centrifugal stretching
(Thieburger, 19'72, 1973; Varshni and Bose, 1972; Ross and
Nogami, 1973) . It is not the purpose of the present discus-
sion to compare these various proposals. Rather, the ap-
plicability of rotation alignment to this problem will be
described: first, in terms of a general band crossing; then,
more specifically for a particular rotation-aligned band; and

finally, as to the expected trends in the behavior of even—
even (and odd —mass) nuclei.

B. General features of band intersection

The main features of the population patterns and level
spacings described in Sec. IV.A can be explained in terms

FIG. 22. The solid lines show the energies of
two rotational bands as a function of I. The bands
have different moments of inertia (5'/231 ——15
keV, h, /232 ——10 keV) and are arranged to inter-
sect at I = 16. The dotted and dashed lines show
the energies of the lower mixed band resulting
from cases B and C, respectively, in Fig. 23.
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gsb-2qp ones used in the Coriolis calculations of
Stephens and Simon (1972), B to matrix elements
three times smaller, and A to ones ten times smaller.

0.9—

0.8—

0.7—

0.6—
0.04

I

0.08
I

0.20 0.24

of the ground band crossing another band, with very little
detail necessary as to the ~ature of the other band. It is
useful to examine first these general properties of band
intersection.

In the case where the ground band intersects another
band, many features of the rotational level spacings can be
characterized in general terms (Stephens and Simon, 1972) .
Figure 22 shows the simplified situation of two bands with
constant —but di fferent —moments of inertia around their
intersection point at I, (16 in this ease). The yrast states
are those of the Lowest band, and if there is no interaction
between the bands, they simply change suddenly from one
to the other at I,. When plotted as 3 vs. oP, this makes a
discontinuity as shown by the dashed line in Fig. 23. This
discontinuity causes lower values of &u' above I, if 3,/3, )
(I, + 2) /I, . This might generally be the case around
I = 20 since (I, + 2) I, is then only ~1.1.As an interaction
is introduced between the bands, the discontinuity is
rounded, first into an S-shaped curve like A ie Fig. 23, and
then with increasing interaction, like B and finally C. This
range covers the observed behaviors, those in the light Er
and (Os) region being of the S-shaped variety fA or 8 in
Fig. 23); whereas, the Iower-Z neutron-rich rare-earth nu-
clei appear to be more like C. For intersecting bands, the oc-
currence of S-shaped curves depends on two factors: (1)
the difference between the effective moments of inertia of
the two bands at their intersection point, which determines
the transition to be made; and (2) the strength of the in-
teraction between the bands which determines how sharply
this transition is made.

The population patterns following the (HI, en') reac-
tions in deformed nuclei can also be shown to come from
rather general band intersection arguments. Consider the
case where there are many quasiparticle states, each of
which has a rotational band built on it. If a perturbing inter-
action (Coriolis force, for example) is introduced among
these bands, then a matrix would have to be set up and
diagonalized for each spin value, I. In Fig. 24 the lowest
few solutions from this diagonalization have been indicated
and labeled m = 1, 2 etc. , according to the final energy.
The same is done for spin I + 2, with e as the labeling
index. If the perturbing interaction varies sLomly with I,
then the maim dift'erence between the matrices for I and
I + 2 is that the initial energy of each state differs by the

increased rotational energy. Thus, the main difference in
the solutions will be this difference of a rotational energy,
which is quite smooth with I. To higher order, if the inter-
action is increasing with I (the Coriolis interaction increases
approximately linearly with I) then, in the energy region of
interest, the I + 2 states will be lowered with respect to
the I states, and the mixed band will be compressed in
energy over the input bands. Since the difference between
the I and I + 2 matrices is small, the lowest solution with
spin Iwill have a wave function similar to that of the lowest
solution with spin I + 2, etc.

Now consider the B(E2) values between the states
indicated in Fig. 24. The wavefunctions for a given solu-
tion,

~
I3f, m), can be written:

II~, ~) = Z &x(I) 4x~~x, (24)

where the art(I) are the calculated amplitudes, prr signifies
a particular input configuration, and the X)~z is the usual
rotational wavefunction. The B(E2) value between two
such states can be written:

B(E2;I + 2, is —&I, nz)

= g )
(IM', ~

~
IiI(&2, p) ~

I+ 2 ~, ri) )', (25)

I l

l l

I 0= 2

I+2

FIG. 24. A schematic illustration of the lowest three solutions for
spins I and I+ 2, with some of the interconnecting E2 transitions
indicated.
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where M(E2, ti) is the usual E2 operator. In evaluating
Eq. (25) the B(E2) values between components px. and
@x. are of single-particle strength or smaller unless K = X',
in which case they are the enhanced rotational values,

(5/167r) Q02. Keeping only the enhanced terms gives:

B(E2;I + 2, + ~ I, m) = (5/167r)Q02[p (I+ 2 A 2 0 i

I+ 2 2 I E')ux(I) air (I + 2) g'. (26)

B(E2;I + 2, n ~ I, m)

(3)(5)
Q:LZ =(I) ".(I+2)l8 16n-

For large I the above Clebsch —Gordon coefficients are
virtually independent of X, and approach the limit, (3/8) '".
Equation (26) can then be written:

ground band does cross another band around I = 18, pro-
ducing a backbend in the yrast states. However, the fact
that the upper band is populated suKciently to be seen in
these cases makes them atypical, and one cannot, therefore,
be sure that this is the process occurring in the heavier back-
bending nuclei.

If band intersection is the general explanation of these
high-spin phenomena, the interesting physics involved is
in what kind of band is crossing the ground band. Within the
rotation-alignment model, the answer for the light Er
region is clear a—2' band based on fi3t~ neutrons. In the
Os region this is not so clear, since other orbitals could be
more important. It may be that the pairing collapse and
centrifugal stretching models can also be expressed in band-
intersection terms; however, that is not clear at present. The
next section will take up in some detail the 2qp rotation-
alignment calculations for the Er region.

C. Rotation alignment in 2-quasiparticle states

The remaining summation in Eq. (27) looks like the one
occurring in an or thogonality integral, which would be
written:

p air(I) aI, (I) = 6 (28)

Since it has been argued above that the states e look much
like the states m for n = m, it follows from Eqs. (27) and
(28) that

B(E2; I + 2, e —+ I, m) (15/128m-)Q, ' 6 (29)

that is, the transitions having solid lines in Fig. 24 have the
full rotational strength, and those with dashed lines vanish.
It is easy to see that transitions of the type I + 2, e —+I + 2, n' also vanish, since in this approximation the
Clebsch —Gordon coe%cient again factors out and the sum
in Eq. (19) now really is the orthogonality integral. These
are precisely the selection rules needed in Sec. IV.A to
bring the population down in spin very quickly, while
keeping it spread over several bands. The population then
feeds rather sharply into the ground band at a critical spin
value. The reason for this is that the ground band intersects
the 2qp bands rather sharply near this spin value and the
assumption that the matrices look nearly the same for
adjacent spin values is then not valid, particularly relative
to the ground band. Thus, at the point where the ground
band intersects other bands, not only does the developing
energy gap (with decreasing I) favor population of the
ground band, but the B(E2) values for this population also
peak in just this region. This seems to provide a very gen-
eral explanation for rapid population of the ground band
near this point, in accordance with the observations.

The small extension of the mathematics used in the
even —even case will first be discussed to give a more specific
idea of what is involved. In Fig. 25 the coupling scheme is
indicated, where two particles with angular momentum, j,
couple to a total J, which then couples with R to give I.
The projections of- the two j values on the symmetry axis
are labeled Q~ and 02. Figure 26 shows the lowest few i&3/~

component levels, in a situation where X is between the 3/2
and 5/2 components. The left side shows the main configura-
tion of the even —even ground state, and the right side
shows a 2qp state of the type under discussion. This state
has E = 1, and is connected to the ground state by a large
Coriolis matrix element of the type considered for the odd-
mass nuclei in Secs. II and III. From the lowest three levels
in Fig. 26, Q = 1/2, 3/2, and 5/2, all the 2qp states possible
have been generated, giving the spectrum shown in Fig. 27. ,

The Fermi surface was assumed to be between the Q = 3/2
and 5/2 states in this figure. All the nonzero Coriolis matrix
elements have been shown as lines between the connected
states. One sees that with only these three 0 values, a corn-
plicated pattern develops. However, this system can be
diagonalized in just the previous way; and, in fact, the full

From the preceding discussion it seems that the presently
known features of the high-spin states of the gsb can be
accounted for rather naturally in a band-intersection pic-
ture. n fact, in 5 Gd and 6Dy, there is direct experimental
evidence (Khoo et at. , 1973; Andrews et al. , 1973) that the

FIG. 25. The coupling scheme discussed in the text. It should not be
inferred from this sketch that all these quantities have sharp values
simultaneously.
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reasonable idea exists of what to expect from the calcula-
tions in these even —even cases. It should perhaps be noted
that Eq. (4) applies to such a system if J is substituted for
j, and one needs only the additional relationship:

(30)

5
2

L
The reliability of these 2qp calculations is not expected to
be much worse than that of the one-particle case (Secs.
II and III).

K=0 K= I

FIG. 26. Placement of particles in the states based on the i13/2

orbital in an even —even nucleus with a Fermi surface, X. The left side
of the 6gure represents the most probable situation for the ground
state, whereas the right side shows a low-lying 2qp state. Many lev-
els from other orbitals would be intermixed with these, but for sim-
plicity are not shown.

its~s orbital has been studied (Stephens and Simon, 1972),
including all possible (49) 2' states. Also, the lowest four
0 levels have been used to construct all possible 2qp and

4' states, and this system was also studied; so that

A general view of the energies resulting from these 2'
calculations is shown in Fig. 28 where the lowest two solu-
tions (with the Fermi surface located as in Fig. 26) are
plotted for three different P values: P = 0.3, solid line;
P = 0.2, dashed lines; and P = 0.1, dotted lines. The
P = 0.1 case should not be taken too seriously, since the
model is not so likely to apply here, but it was included to
show the trends. In all three cases, the 2' state begins atl = 0 as a normal band with E = 0 and E 2.5 MeV;
however, it initially gains Coriolis energy so fast from
mixing, that its total energy remains rather Oat out toI 12, and then (now a rotation-aligned band) goes up
with about the ground-band 6'/23 value. In all cases it
crosses the ground band; however, for the P = 0.3 case, the
crossing is very smooth, and not so apparent since the
levels repel each other and do not get closer together than
about 1 MeV. Nevertheless, plotted on an 3 vs. ~' plot, the
yrast line in Fig. 28 does have a typical "kink" in it
(not quite an 5-shape). The earlier intersections in the
P = 0.2 and 0.1 cases are caused mainly by the wider
ground-band spacings which are due to the larger 6'/23

0
E ( MeV)

~ 5. I

I 2
,
+ 5 I

+
I~ + —2.6

5 3
2 Q 2 0 +

—2.I0

0 O.
0 l2 20

FIG. 27. The ten states possible, considering only 2qp states in the
0 = t/2, 3/2, and 5/2 components of the i/3/2 orbital plus the ground
state (Oqp). The interconnecting lines show the locations of nonzero
Coriolis matrix elements.

FIG. 28. The lowest two solutions of the even —even case for P = 0.3
(solid lines), P = 0.2 (dashed lines), and P = 0.1 (dotted lines). The
numbers represent the total population passing through each level.
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value. (Note that in the 2qp band, the wider spacings are
compensated up to I 12 by the increased Coriolis effects. )
One sees that the kink, which was not visible for P = 0.3,
becomes large for P = 0.2, and even produces an I = 12
isomer for P = 0.1 (though this is not at all reliable). The
numbers on Fig. 28 are the calculated total populations
passing through each yrast state. These are obtained from
the (collective) B(E2) values and energies obtained from
the calculations, where equal initial population was assumed
in all (50) levels at I = 30. The calculated populations look
very much like the experimental ones, in general. The feed-
ing in all cases comes in around the intersection point, as
discussed in Sec. IV.B.

Figure 28 shows that an intersection of the gsb with a
rotational-aligned 2qp state based on i/3/s particles can, in
general, explain the observed features in the light Er region.
To compare in more detail with specific nuclei is not so easy,
since there are potentially many parameters entering such
calculations. At this point it is useful to remember that most
of the parameters entering into the 2-quasiparticle calcula-
tion for even —even nuclei also enter in much the same way
into the 1-quasiparticle calculation of the lowest i»~2 band in
an odd-mass nucleus. Such bands are observed throughout
the rare-earth region and it seems clear that backbending in
the odd-mass nuclei should be related to the characteristics
of these bands in the adjacent odd-mass nuclei if the
rotation-alignment- model is correct. A one-to-one relation-
ship, however, should not be expected since other factors,
particularly the ground-band energy spacings and the pair-
ing gap, also inhuence the backbending.

A comparison of odd-mass and even —even Coriolis effects
is shown in Fig. 29, where fits to the lowest i~3~~ band in
'"Er and '7'Hf were made, and then the identical parameters
were used in calculations (Stephens et al. , 1973c) for the
adjacent "'Er and '"Hf. There were no adjustable param-
eters for these even —even calculations, though some quan-

tities that are not relevant for the odd-mass nuclei do enter.
The agreement in Fig. 29 seems excellent; and suggests
that calculations of this type might be able to account for
some of the details of the backbending in even —even nuclei.

More 'general calculations (Krumlinde and Szyma, nski,
1971, 1973; Banerjee e$ al. , 1973; Banerjee, Mang, and
Ring, 1973), including these rotation-alignment effects as
well as pairing and deformation changes, have recentlybeen
made and seem to bear out this rotation-alignment explana-
tion of backbending in the Er region.

D. Backbending in odd-mass nuclei

It has been pointed out that decoupled bands have energy
spacings identical to those in the adjacent even —even nuclei,
and that the bands based on i~3~2 states in the odd-mass
nuclei of the light Kr region tend to be decoupled. It would
seem to follow that these bands in the odd-mass nuclei
should backbend like their even —even neighbors. However,
the situation is more complicated if the decoupled odd
particle is also one that is involved in the 2' rotation-
aligned state in the even —even nucleus. The recent studies
of such effects seem to shed considerable light on the cause
of the backbending, and a brief account of this work
( Grosse, Stephens, and Diamond, 1973, 1974) will be
given.

An explanation for the backbending in even —even nuclei
is illustrated by the solid lines in Fig. 30. The ground-state
band labeled as the paired vacuum state 10), is shown to
be crossed by another band. .The band indicated here is the
2qp rotation-aligned one, where the first quasiparticle has
the maximum angular-momentum projection on the rota-
tion axis, n = j = 13/2, and the second quasiparticle has
the maximum remaining projection on that axis, ~ = j —1.
This is written in the usual second-quantization notation as
~asks nues 10), where n is a creation operator for quasi-
particles, and the subscript refers to the rotation-aligned

I I
I

I & I

l
I 1 I

2.0— Er

IP—

—140

120

IOO

80
0

Ip

20
t

10

I i . . i

I
' ' '

I
' ' '

l

17IH) l72
Hg

60

—140

120

IOO

80
—60

Io)

—I.O—
! I I I I I I I I I

l I

l3 2I 29
2 2 2
Spin (I2 scale)

—40
I I I I l I

0.04 0.08 0.12

—,
' [E(i-r-n]' - It I'

FIG. 29. A comparison of experimental (dots) and calculated (lines)
properties of levels in the pairs of nuclei "Er and ''" Hf. The
left side of the figure shows the 6ts obtained for the lowest z13y2 band
in the odd-mass nucleus of each pair, and the right side shows the re-
sults for the even —even nucleus calculated using the same parameters.
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FIG. 30. This plot shows the intersection points, based on the rota-
tion-alignment model, of the ground band with the broken-pair excited
band in: (1) an even —even nucieus (solid lines) and (2) an odd-mass
nucleus with a decoupled i1~I2 odd particle (dashed lines). The sub-
scripts on the quasiparticle creation operators (n~) refer to the rotation-
alignment quantum number, n.
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quantum number called (somewhat unfortunately in this
context) a. Adding an odd particle to each of these states
(dashed lines), raises both of them by the energy 6 due to
pairing effects; but this can be ignored since only the rela-
tive energy (crossing point) is of interest. The one-quasi-
particle state then coincides in energy with the paired
vacuum state as shown in Fig. 30. However, the same
rotation-aligned two-quasiparticle state involved in the
even —even case cannot be made in the odd-mass case due to
the Pauli principle. The odd neutron is already occupying
the n = 13/2 state. The most favorable states available
to the broken pair are then n = 11/2 and o. = 9/2; so that,
the three-quasiparticle state becomes: ~arsy~ ~»y2 ~9~~ 10).
The energy difference between the one- and three-quasi-
particle states is larger than that between the zero- and two-
quasiparticle states because (1) the n = 9/2 state is less
favorable energetically than is the o. = 13/2 state, and (2)
the additional angular momentum gained by breaking the
pair is only 106 rather than 125, so that 2A more of core
rotational angular momentum is required. The sum of these
two effects can be estimated to be about 1 MeV, so that the
intersection should come at higher spin and rotational fre-
quency as shown in Fig. 30. Thus, backbending in such a
nucleus would only occur at higher spin values, if at all.
Note that if the decoupled odd particle in this example were
an h»/2 proton instead of an ij3~2 neutron, the above inter-
ference would not occur, and the decoupled h~~p band would
be expected to backbend like its even —even neighbors.

The above situation is of particular interest since it
seems likely that the odd-mass nuclei would behave dif-
ferently according to other back-bending models. The pre-
diction of the pairing-collapse model about backbending in
a decoupled i»/2 band can be stated very simply. An odd
particle reduces the pairing correlations due to blocking
effects, and thus the pairing might be expected to collapse
at a lower rotational frequency. This statement can be
illustrated in Fig. 31. The solid lines again show the even—

even situation based on this model: the paired vacuum state
intersecting the unpaired vacuum state. The dashed lines
show the odd-mass situation. For the unpaired case, the
one-particle state, n~3~2t

~ 0), and the even —even vacuum
state,

~ 0), coincide as shown, provided: (1) the vacuum
is assumed to be the average of the two nuclei adjacent to
the odd-mass nucleus; (2) the decoupled i,3~, state lies
exactly at the Fermi surface; and (3) the level density is
reasonably large. However, in the paired case, the one-
quasiparticle state always occurs higher in energy than the
vacuum state by the odd-even mass difference, h. The
dashed line in Fig. 31 for the odd-mass band with pairing is,
therefore, raised in energy by this amount —taken to be
0.8 MeV. As a result, the intersection with the unpaired
band is seen to occur at lower spin and also at lower rota-
tional frequency (earlier). Note that the size of the back-
bend could be smaller in this case, due to the reduced
pairing; but, nevertheless, the moment of inertia should
reach its upper limit (unpaired value) earlier.

The experimental evidence on backbending in the odd-
rnass nuclei in the light Er region is rather clear. In the odd-
neutron nuclei, the decoupled ij3p bands do not backbend
like their even —even neighbors; whereas, the odd-proton
h»~, bands do. The evidence (Grosse, Stephens, and Dia-
mond, 1973, 1974) on "7 '"Er compared with "'"' "'Er is
shown in Figs. 32 and 33, where the spacings in the odd-mass
decoupled band are treated exactly like those in the even—
even gsb. It is apparent that the odd-mass bands neither
backbend nor approach the 23/5' value of the even —even
nuclei after their backbend. On the other hand, '" "' '"Ho
are shown in Fig. 34 to backbend much like their even —even
neighbors. At low-spin values, the Ho points are below the
even —even ones because these h~~/2 bands are not completely
decoupled (the lowest point or two for '"Er also shows
this). This means that the 3 values obtained do not repre-
sent core values, but it cannot change the conclusion about
backbending, which comes directly from the transition
energies. These data on odd-mass nuclei support the rota-
tion-alignment interpretation of backbending in the light
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FIG. 31. This plot shows the intersection points, based on the pairing-
collapse model, of the ground band with the unpaired excited band in:
(j.) an even —even nucleus (solid lines} and (2) an odd-mass nucleus
with a decoupled i13q2 odd particle (dashed lines). Note that the sub-
script on the creation operators (n~ or at) refers to the rotation-
alignment quantum number, n.

FIG. 32. Conventional backbending plots for '""Kr, and for the
decoupled band in "'Er. The following expressions have been used:
23/h2 = (4I' —2)/(El —Er 2) and h,u = (Er —El 2)/2, where
I' = I for the even-even nuclei and I' = I —j for the decoupled band
in the odd-mass nucleus.
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region into one of reasonably good rotors. But if the Fermi
surface is near low-0 states, then there is a, broad region
where neither of these schemes is very good. Due to a can-
cellation of terms in this region, the solutions are approxi-
mately eigenfunctions of the Coriolis operator and these
correspond to a third coupling scheme where the particle
angular momentum has sharp values, n, along the rotation
axis. Such a rotation-aligned coupling scheme has been dis-
cussed and seems to describe rather well the yrast states in
many odd-mass nuclei. This coupling scb,erne might also
apply to non-yrast states, and it is at present a challenge to
see how far the model can be extended in this direction.

0 0.04
I

0.08 O. l 2

FIG. 33, Conventional backbending plots for "8 ~Kr and for the
decoupled band in '~9Er. See caption to Fig. 32.

In the even —even nuclei, the rotation-aligned scheme may
also play an important role. It has been suggested that back-
bending in the light rare-earth region may be just the inter-
section of the ground band with such a rotation-aligned
two-quasiparticle state composed of ii~~2 neutrons. The
observed backbending in odd-mass nuclei, suggests that
this explanation is correct in the light Er region. %hether
this will prove to be the case in other regions is not yet clear.
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I am indebted to many people for discussions on the
various topics covered in this paper. In particular, I would
like to thank Dr. R. M. Diamond for his contributions to
essentially all aspects of it. I apologize to the people in this
field whose work has not been adequately covered. This
paper has evolved from lectures reAecting my ow'n interests
and knowledge of the subject, and is not an attempt at the
more diKcult task of presenting a reasonably complete and
unbiased review of the subject.

Er region, and also suggest a general means to determine
where this model is applicable, and which particles are
involved. This could be useful in the Os region, for example,
where it is not clear if rotation alignment is involved, and
if so, whether i~3~~ neutrons or h9j2 protons are mainly respon-
sible for the backbending.

V. CONCLUSION

Coriolis e8ects in nuclei have been traced from the point
where they are small perturbations in good rotational
spectra, to the point where they apparently dominate the
low-energy spectrum. The situation for a particular case
depends on the relationship of the rotational energy to the
energy coupling the particle to the non-spherical part of the
potential. If the latter energy is much larger, good rotational
spectra exist, whereas if it vanishes, the system is spherically
symmetric leading to a spectrum with no energy splitting
of the multiplets formed by coupling a particle to a core
state. %ith the assumptions and simplifications made in
Secs. II and III, it is easy to make calculations anywhere
between these limits. Adjacent to each limit, one finds
regions where a perturbation treatment could apply. This
would be a particle-core weak-coupling model near the
spherical limit, and a Coriolis perturbation approach near
the good rotational region. If the Fermi surface is near
high-0 levels, these two perturbation regions merge into each
other, and a rather sudden change occurs from a spherical
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