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We examine the theoretical possibility that at high densities there may exist a
new type of nuclear state in which the nucleon mass is either zero or nearly
zero. The related phenomenon of vacuum excitation is also discussed.
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I. INTRODUCTION

In this talk. , I would like to discuss some of my recent
theoretical speculations, made in collaboration with G. C.
Kick. As you shall see, these speculations suggest the pos-
sible existence of some rather interesting physical objects,
hitherto unobserved. ' An effective way to search for these
new objects is through the use of high-energy heavy ions,
which is the subject matter of this meeting.

To begin with, we assume the existence of a strongly inter-
acting neutral spin 0 even parity meson field @(x).Such a
field may simply be a phenomenological description of a
composite 0+ state of other particles, say 7rm, or XE.'
Through the transformation @(x)~ @(x) + constant, we
can always choose for the normal vacuum state

(vac
l @(x) l vac) = 0 everywhere.

The state l ) that we are interested in is an excited state; it
has an abnormal expectation value of @(x) in a relatively
large volume 0:

I'IG. i. A pictorial representation of an excited state in which (@{x))
differs from its vacuum value inside a macroscopic volume O.

Pictorially, we may visualize the expectation value (@(x))
in such an excited state as represented by I'ig. I. The linear
dimension of 0 is assumed to be much larger than the usual
microscopic length in particle physics (say, O'Is is, or ),
10 " cm). Thus, much of the description of the field be-
comes almost classical.

In the following, we shall discuss two diGerent circum-
stances:

(i) 0 is filled with nuclear matter, and

(ii) 0 does not contain any nuclear matter.

As we shall see, case (i) may lead to abnormal nuclear
states and case (ii) to pure vacuum excitation states.

= constant & 0

&l~(.) I» =0
inside 0

outside 0

II. ABNORMAL NUCLEAR STATES

We first consider case (i) .For definiteness, the Lagrangian
density is assumed to be

has rapid variation near the surface of Q.
s(~4/»—.)' —&(0 ) —O'V4(V. (~/». )

+ (»~+ g4) j4, (3)

*Based on an invited talk given at the "Annual Bevatron Users
Meeting", Lawrence Berkeley Laboratory, January 19, 1974.

f This research was supported in part by the U.S. Atomic Energy
Commission.

' For some earlier speculations on related subjects, cf. E. Feenberg
and H. Primakoff, 1946, Phys. Rev. 70, 980; A. R. Bodmer, 1971,
Phys. Rev. D 4, 1601; A. B. Migdal, 1972, Zh. Eksp. Teor. Fiz. 63,
1993;V. Ne'eman, 1972, in Physics of Dense Matter I. A. U. Symposium,
Boulder, Colorado.' From a theoretical point of view, one knows that at least in the
low and intermediate energy region, the chiral SU2 Q SU2 symmetry
is a reasonably good approximation, as supported by the Adler-Weis-
berger relation, the Goldberger —Treiman relation, and the various
soft-pion relations. The chiral symmetry leads naturally to either ~~
correlations or a 0+ field, such as in the o.-model.

where

U(@) = -'m 'qP + ~ ~ ~

mq is the 0+ meson mass, m~ is the nucleon mass, and P is
the nucleon field. In (4) the precise form of " ~ "depends
on the theory; for a renormalizable theory, it contains
cubic and quartic powers of P.

Let the volume & of the state
l ), given by Eq. (2), be

simply that of a super-heavy nucleus. Outside the nucleus,
(P(x) ) = 0 and the nucleon mass is miv. But inside the
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268 T. D. Lee: Abnormal nuclear states

nucleus, the "effective" nuclear mass is m, «, determined by Since sr(x) is a pseudoscalar field, we have

m.its = (m~ + g(y&j', (vac i m(x) i
vac) = 0. (12)

which may be quite different from m~. In particular, if we
assume

In the a--model, the potential energy density U is given by

inside 0, (6)
res(~2 + mrs fi2/) 2) 2 (m so ) o. (13)

then the "effective" nucleon mass inside the nucleus would
be —0.The energy difference 6 between such an "abnormal"
state and the normal state may be estimated approximately 2P = mtr 3'~ and 2)'oss = m' —m '. (14)

where os is given by Eq. (11),and the constants X and fr are
related to the cr-mass m, and the ~-mass m by

6 ~ —cVm~ + U( tn~/g—)0 + surface energy If one neglects m, the 0--model is symmetric under the
chiral SU2 )& SU~ transformation. So far as the meson
fields are concerned, this chiral transformation is the same
as the four-dimensional orthogonal transformation between
o (x) and m(x). Consequently, the o-nucleon coupling is
equal to the 7I--nucleon coupling. One has

where X is the total number of nucleons. ' For a sufficiently
heavy nucleus, the surface energy may be neglected. Since
the negative term. in Eq. (7) is proportional to 1V, while the
positive term is proportional to the volume 0, the energy
diQerence 6 in this simple system becomes negative if the
nucleon density n —= X/0 is su6iciently high. To have a
rough idea of the order of magnitude, we may take U(P) ~
isa'qP; the abnormal state becomes the lower energy state
if the nucleon density e is greater (or much greater) t
a critical value e, where

(15)g'/4n —15.

Thus, in the o.-model there is oui/y ore Nekmowri Parameter m, .

1$~ ~ Big Bi~/2g .

han

I-et us apply the ~-model to the problem of abnormal
states in a large nucleus, considered in the previous section.

(8) The effective nuclear mass is now given by

If we assume m& m~ and its coupling g to be of the same
order as the ~ —X coupling (4n.) 'g'~ 15, then at the
critical density, the internucleon distance is

e —'I'~ 1.5 ~ 10—"cm

which is of the same order as the distance between nucleons
in the existing nuclei.

Of course, the above estimation, Eq. (8) is quite crude,
since it neglects the nuclear forces, the relativistic motion
of nucleons, etc. %hile a complete analysis is dificult, some
simple model calculations can be readily made.

III. o-MODEL

(16)

where (o.) and (~) are the expectation values of o and s
inside the nucleus, and both are assumed to be constants.
For simplicity, let us .assume the nucleons to be described
by a degenerate Fermi distribution with a top Fermi mo-
mentum kp. In the simple case of an equal number of protons
and neutrons, k& is related to the nucleon density e by

k = (3 'ri/2)"

The kinetic energy density of nucleons is given by

U~ = (2/x's) k'(k'+ fl,its)'f' dk.
For definiteness, let us assume the well-known 0--model

for the meson field. ' In this model, besides the usual iso-
vector 0—pion field m. (x) there is also an isoscalar 0+
field &r(x) . In terms of the customary notation of o.(x) used
in the literature, the aforementioned field @(x) is given by

@ = o. —(m~/g), (10)

and its mass m~ = O.-meson mass m . In the normal vacuum,
we adopt the convention (vac

~
f(x)

~
vac) = 0 as before;

consequently,

In addition, there is the usual short-range nuclear inter-
action. As a erst model calculation, we shall assume that
because of the short-range interaction (especially if the
repulsive force is particularly strong) the nuclear matter
resembles an incompressible Quid. Therefore, we may keep
the nucleon density ri fixed; the energy density of the system
is then assumed to be given by

8 = U, + Usr —Imper

o.s = (vac ( o(x) (
vac) = (m~/g).

plus an additive constant that may depend on the 6xed
(11) parameter nr.

' For simplicity, we neglect the relativistic correction here; a detailed
calculation is given in the next section.

Here, as well as in the following, the critical density n, depends
only on the ratio ass/gs.

' For references on the o--model, see B.W. Lee, 1972, Chiru/ Dynamics.

6 As we shall see, in order to minimize energy, &m) = 0, and there-
fore m, « = g' (o)' which reduces to Eq. (5) because of Eq. (10) .

~ Later, in a more realistic model-calculation, the short-range repul-
sive interaction wiH be considered explicitly. See the discussion given
in this section after Eq. (23) and in the Appendix.
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FIG. 2. Energy density s in the 0 modei vs g (o. )/ms, .

We shall assume the volume 0 of the nucleus to be suffi-
ciently large so that the surface energy can be neglected.
The solution that we are interested in is one in which (o.)
and (sr) are constants inside the nucleus. Because of
m & 0, from Eq. (13) it follows that in the minimum
energy state the expectation value (sr) = 0; therefore

m.rP = g'(o. )'. (20)

As we shall see, in the hard-sphere model calculation given in the
Appendix, this value for m gives about the correct binding for the
normal nuclear state. See T. D. Lee and M. Margulies, Phys. Rev. D
(in press) for results in which different values of m and g are assumed.

At a fixed nucleon density e, we may plot the energy density
8 against g(o )/m~ (see Fig. 2) .

In this figure m is assumed to be 1.15 GeV.S The dashed
line is for zero nucleon density m = 0, and the solid line is
for e equal to the density in the existing heavy nuclei. The
slight asymmetry between (o ) positive and (o) negative is
due to m W 0. One sees that at zero nucleon density, the
minimum of 8 is at m, « = m~. As e increases, the minimum
slowly decreases from m, « = ns~ to m, « .Sns~ at m =.
L(4s-/3) (1.2 fm)'j '. The point m, rr/m~ —0 is a local
maximum of 8 at e = 0, but it becomes a local minimum
of 8 when e increases to near the density of the existing
heavy nuclei.

In the above figure, the unit of energy density is

(m, m~/g)'. At the density rs = P(47r/3) (1.2 fm)'j ',
this unit energy density corresponds to ~5.2 GeV/nucleon;
the energy difference between the normal state (m, rr—
0.8 m~) and the abnormal state (re,ff:0) is about 80
MeV/nucleon. There is a local maximum of 8 at about
m, « —.25m~. The energy dift'erence between this local
maximum and the abnormal state is about 15 MeV/nucleon
which is quite a sizable potential barrier. Thus, the abnormal
state m, « —0 is a metastable state, if e is constrained at
the fixed value L(4~/3) (1.2 fm')g —'. At the same fixed
value of nuclear density, in order to reach the abnormal
state from the normal state, one has to pass through a
potential barrier of maximum height 15 + 80 = 95
Me V/nucleon.

If the nucleon density can be further increased to exceed
a critical value e„' then the abnormal state becomes the
absolute minimum state. Consequently for the minimum
energy state, the value m, «/m~ makes a discontinuous
jump ate = rs, (see Fig. 3).Inthe abnormal state (n & n, ),
the effective nucleon mass m, « is almost zero, . but not
exactly zero; this is due to m & 0. In the zero pion-mass
limit, m, « ——0 in the abnormal state.

The conditions for the production of such abnormal
nuclear states are

1. X'~' )) 1, so that the surface energy can be neglected,
and

' Here e, is ~1.16 && p(4s/3) (1.2 fm)sj ' for m, = 1.15 GeV, and
(4vr} 'g' = 15
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~~ = -

&
(l.Z &m)

rn~ = I.ls 6@V

(i) Soft co-re interaction

We assume Eq. (23) with ~i GeV)) us ))20 MeV for the
short-range interaction. Thus, so far as the normal nuclear
states are concerned, the repulsive interaction resembles
the hard-sphere interaction with a = diameter of the hard
sphere. However, in the abnormal state, since one deals
with energy change 0 (1 GeV) per nucleon, as a zeroth
approximation this repulsive interaction can be neglected.
As shown in the Appendix, in ord.er for the normal nuclear
state to have a nucleon density n = L(4'/3) (1.2 fm)'j '
and a (volume) binding energy 16 MeV per nucleon, "
one finds

and m. —1.15 GeV."

FIG. 3. A discontinuous transition in the eRective mass m, ff between
the normal state (n ( n, ) and the abnormal state (I & n,).

For the abnormal state, one has m, gg
—0 and therefore

the total energy E is given by

E/X = —kr + m 'rnid'/Sng'+ surface energy (25)

n, ——12 (rn. /mii ) '(4'/g') no, (21)

where

ns ' ——(4nr/3) (1.2 fm)'.

2. e & e,. The precise value of e, d.epends on m and g;
neither is really known with any degree of certainty. For
different values of rn and g, the critical density e, varies as
nt '/g' or more explicitly

where, as before, X is the total number of nucleons and e
is the nucleon density, related to the top Fermi momentum
4 by Eq. (17). In Eq. (25), the first term 4skr is the average
kinetic energy per nucleon, arid the second term rn. srnir'/Sngs
is simply the value of U /cV at o. = s. = 0 where U, is
given by Eq. (13). For simplicity, we have set nt = 0 in
Eq. (25) and also neglect the soft-core repulsion on ac-
collilt. of uo (( 2 GeV. The minnIlum of Eq. (25) ls at
(8/cln) (E/X) = 0, which implies that, after neglecting the
surface energy,

Thus, one expects that by using high energy collisions be-
tween heavy ions (say Pb on Pb at st GeV per nucleon in
the center-of-mass system), one may double the nucleon
density, and thereby produce such abnormal states, pro-
vided that m is not too much higher than j. GeV.

—,'kr —rn. 'rnpP/Sng' = 0;

this gives for g'/4v = 15

(kr/rnid, ) —0.45 (rn. /ntii ) 't'.

(26)

So far we have discussed only the minimum energy state
at a fixed nucleon density n. Next (still assuming Ã't' )) 1),
we would like to examine the optimum nucleon density e,
and inquire whether the minimum energy state is a normal
state e & e„or an abnormal state e & e,?' In order to
answer this question, one must leave the "incompressible
Quid" model. The real physics problem is tied closely to
the strength and the range of the short-range repulsive
force between nucleons. "

For definiteness, let us assume that the attraction be-
tween nucleons is provided by the long-range interaction
through (o.), and the short-range repulsion between two
nucleons (proton or neutron) is of the simple form

From Eqs. (25) and (26) one sees that

E/X = kr, (2S)

binding energy —475 MeV/nucleon

n—' ——(4v-/3) (0.65 fm)'.

and therefore the binding energy per nucleon is (rn~ —kr) .
If one assumes (4v.) 'g' —15 and nt, —1.15 GeV, as given
by Eq. (24), then one finds for the abnormal state

for r&a,
for r& a,

r

where r is the relative distance between the two nucleons.
We shaH consider in the following, two extreme cases (i)
2 GeV ))us )& 20MeV and (ii) uo = ~.The correct physi-
cal situation probably lies somewhere in between.

M The condition Ã'" &) 1 excludes practically all existing nuclei.
"For the abnormal state, since one deals with a large-scale energy

change 0 (GeV) per nucleon, the usual short-range attractive force
does not play any important role.

Since the short-range repulsion is completely neglected in
this calculation, the above large binding energy can only be
regarded as an upper bound of the actual value.

(ii) Hard core interaction-
Xext, we consider the other extreme case that the short-

range interaction is given by Eq. (23) with us ——+Do. The
description of the normal nuclear state is the same as that

"See, e.g., A. Bohr and B. R. Mottelson, 1969, 1Vuclear Structure,
Vol. 1, p. 142.

3 One notes that if the hard sphere has a radius ~(co-mass} ', then
its diameter a is ~.5 jm. .

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975



T. D. Lee: Abnormal nuclear states 271

in the previous case of a soft-core repulsive interaction, and
therefore Eq. (24) holds. As shown in the Appendix, the
binding energy and the nucleon density of the abnormal
state can be calculated approximately. For a hard-sphere
interaction with a diameter —0.56 fm, g'/4~ —15 and
m, —1.15 GeV, one finds for the abnormal state

binding energy —130 MeV/nucleon,

and

ri '= (4x./3) (0.91 fm)'. (30)

In either case, if X'~' is su6iciently large so that one may
neglect the surface energy, then the abnormal state is
stable; it is the lowest energy state with a substantially
larger binding energy per nucleon than that in the normal
state.

Remarks

~4 See also the discussion given at the end of the Appendix.
'5 When Coulomb energy becomes important, the abnormal state

can create e+e pairs; the e+ will be sent to inanity, but the e will be
kept within the abnormal nucleus. As Z increases, the number of e
also increases. The interplay between the added Fermi energy of e
and the Coulomb energy may eventually bring the abnormal state
to the point of instability.

1. The above calculations are approximations serving
only to illustrate the general features of the abnormal states.
Within such approximation, one may ask: suppose that
m is &1.15 GeV; would the abnormal state remain the
lowest energy state? If one assumes a soft-core repulsion,
then from Eqs. (27) and (28), one sees that for (4v) 'g' =
15, the abnormal state is stable provided that m is less
than 4.9m~, and X't" )) 1. In the case of hard. -core
repulsion, for (4v.) 'gs = 15, the abnormal state is stable
only if m & 1.5m~, the corresponding range for metastable
abnormal states is, of course, much wider. Since only the
ratio m, s/gs enters into the calculation, the above range in
m~ also gives the corresponding latitude in g'.

2. So far, we have assumed. the short-range repulsive
interaction to be an isoscalar. There is, in addition, an iso-
vector part due to, e.g., p exchange. This isovector part
makes the short-range repulsion between me and pp larger
than that between np. This difference in repulsion plus the
role of statistical weight lead one to expect that in the ab-
normal state the average number Z of protons is ~~X, so as
to minimize the total energy. '

3. Keeping Z ~X, one finds the Coulomb energy to
be (1/10)m~ when X 104. Thus, for X)) 10', the
abnormal state is most likely unstable. " When X is of
astronomical size, the abnormal state may again be stable
because of gravitation.

4. The general feature of the "abnormal nuclear states'-'
is not sensitive to the details of the 0--model; it depends
only on the existence of a strongly interacting 0+ resonance,
whose long wavelength aspect may be represented by a
Geld. Since we are only interested. in the long wavelength
hmit, the microscopic details of the 0+ resonance should not
be important. This is analogous to the phenomena of Bose-
Einstein condensation and superQuidity. He4 is a composite

composed only of Fermions p, I and e, yet it exhibits
superQuidity and undergoes Bose-Einstein condensation.
Through the B.C.S. pair-correlation, the electrons in metals
exhibit similar phase transitions that give rise to supercon-
ductivity. Recently, it has been observed that even Hes
exhibits superfiuidity. Likewise, the abnormal state that
we are interested in is a similar conderlsed phase of the long
wavelength limit of a 0+ Geld. .

5. As remarked. earlier, in order to produce such abnormal
states it is best to collide heavy ions on heavy ions at high
energy, so as to maximize both X'I' and e. If such abnormal
states do exist, one may observe in the Anal state a stable,
or detestable, nucleus of very large baryon renumber, say
X & 400. Both the bind. ing energy and the radius of these
abnormal states are quite different from the usual extrap-
olations derived from the normal states. The nucleons in
the abnormal states behave like zero-mass particles, and
that should produce rather distinct physical characteristics
in the dynamics of these abnormal states (e.g., in its inter-
action with the electromagnetic field) .

6. It may be of interest to examine a strongly interacting
0+ field theory different from the o.-model. As an extreme
example, one may assume the potential U(@) in Eq. (3) to
consist of only smqsqP without any nonlinear interaction.
In such a case, as the nuclear density m increases, the
transition from the normal state m, qg m~ to the abnormal
state m, qg 0 becomes continuous, though rapid. Once
away from the transition region, even in this extreme
example, the overall characteristics of the nuclear state
remain similar to those in the 0--model; e.g., as seen from
Eq. (8), when n is &&masm~/2gs, the effective nucleon
mass does become near zero and the nuclear state becomes
abnormal, just as in the O.-model.

IV. PURE VACUUM EXCITATION

We now turn to our next topic; a pure vacuum excitation
state. For definiteness, let us consider again a strongly inter-
acting 0+ Geld @, with a Lagrangian density given by Eq.
(3). Like the o model, the potential U(p) is of the form
(see Fig. 4) . However, unlike in the o.-model, we assume the
potential U to have a second local minimum at qb = P, W 0,
as sho~n in Fig. 4."

u ($)

I

~vex

FIG. 4. An example of a potential function U{qb) with two minima.

~ In the o.-model, because of the m. 6eld, U, has only one local mini-
mum at o (ta~/g). The point 0 ~ —(m~/g) is a saddle point,
cot a local minimum.
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Be fore col I is ion:

"norma l"

ff N

a bnor ma l

FIG. 5. Possible production of a vacuum exci-
tation state from collisions between normal and
abnormal nuclear states.

Af ter col 1ision

li J
normal

abnor ma I

VEX = Vacuum Exci ta tion

From our previous discussion, one sees that the condition
for producing the "abnormal" nuclear state in the present
case is identical to that in the o- model. Now, suppose that
we have created such an "abnormal" nuclear state in which
fÃ ff 0, and therefore (p) —m~/g. Let us consider the
collision between an "abnormal" nucleus ((qb) —m~/g)
and a normal nucleus ((p) ~0) (see Fig. 5). After the
collision, there will be various fragments, some normal and
some abnormal. However, among the fragments, occasion-
ally there can appear a new physical object called the
"vacuum excitation" state. The vacuum excitation state
occupies a volume 0, and it carries a 4-momentum I'„.
Inside 0, one has

except near the surface region. Outside 0, one has the normal
vacuum (P) = 0. The rest mass M,„of the vacuum excita-
tion state is given by

1. Degenerate case

We assume in this case U(p) at p = qb,„to be degenerate
with that at qb

= 0; i.e.,

U(4 ~ ) =0 (33)

in which we have adopted the usual convention that for the
normal vacuum g = 0 one sets U(0) = 0. Thus, the rest
mass M, is entirely due to the surface energy. The vacuum
excitation state can decay through meson emission by con-
tracting its surface. From relativity, one knows that the
lifetime v- is of the order

assumed to be much greater than any of the usual micros-
copic lengths in particle physics.

Next, we examine the question of the width of the vacuum
excitation state. It is important to differentiate two cases:

M, 2 = —P„2 = LOU(@, ) + surface energy)2. (32) r ~ O(Q'") (34)

(width/mass) „, O(1/m~'Q) && 1

The baryon number of the vacuum excitation is zero. Thus, Thus, the ratio of the width to the mass is
if one wishes, one may view the vacuum excitation state as
a gigantic meson "blob." The linear dimension 0'I' is (35)

Rev. Mod. Phys. , Vol. 47, No. 2, April 1975
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oiling

Non-degenerote case Degenerate case

FIG. 6. Lifetime ~ of a vacuum excitation state vs its linear dimension 0 @.

in which, as well as in the following, we use m~ ' as a
typical microscopic length in the problem. From Eq. (35),
one sees that the larger the volume 0 is, the sharper is the
vacuum excitation state defined. There is no limit to the
volume 0; it can even be of astronomical size.

2. Non-degenerate case

In this case, we have instead of (33)

U(p ))0. (36)

V. REMARKS

1. In the literature, there have been extensive theoretical
discussions of the "spontaneous symmetry breaking" mech-
anism and other related topics, such as Goldstone bosons,
Higgs phenomenon, etc. In all these discussions, the inter-
action is assumed to be symmetric under a certain group of
transformations (or nearly symmetric, as in the case of the
0 model). The observed asymmetry is due to the specific
expectation value of a certain spin 0 field @(x) in the physical
vacuum state. In such a theory, it is necessary that there
must exist other states which are degenerate (or nearly
degenerate) with the physical vacuum state. A natural
question to ask is what happens to the other degenerate

'~ For further details and the question of quantum fluctuations, see
T. D. Lee and G. C. Wick, 1974, Phys. Rev. D 9, 2291.

It turns out that for Q'13)) mq ', but ln(Q'13tn~) not too
large, the vacuum excitation state decays via the same
"contraction" mechanism as in the degenerate case, in
which through surface contraction, mesons are emitted
near the surface. However, when ln(Q'13mq) )) 1, there is
another decay mechanism, called "boiling" in which mesons
are produced in the interior of the volume, on account of
Eq. (36). In this case there is a limit to the volume Q. We
may plot schematically the width 7=' versus the linear size
Q'13 for these two cases (see Fig. 6).

In the non-degenerate case, the minimum width occurs
at Q'I' = / where 1n(lm) )) 1. In some typical examples, / is
found to be ~O (mnz) . Thus, in both cases, the size of the
vacuum excitation can reach macroscopic dimensions. '

(or nearly degenerate) states in which (@(x)) is different
from its normal vacuum value. It has been often argued
that since we are dealing with an infinite system, only one
vacuum state can be realized in our worM, all the other
states are unphysical, even if they are degenerate with the
physical vacuum state.

This situation is rather similar to the example of Heisen-
berg's infinite ferromagnet. The existence of a ferromagnet
clearly defines a specific direction in space, but it does not
imply a violation of rotational symmetry of the physical
law. If the ferromagnet is of infinite dimension, then it will
be physically impossible to rotate all the spins of an infinite
ferromagnet.

However, as is well known, there can be "domain struc-
ture. " In the case of the ferromagnet, such a domain" may
be created by applying a local magnetic field over a relatively
large region in space. Here, we may make the analog:

(P(x) ) ~ spin

P~y4P ~ magnetic field.

Since nuclear matter interacts linearly with @(x),by having
a sufhcient amount of nuclear density over a large volume
in space, we may hope to create a similar "domain structure"
with respect to the vacuum state.

2. The question whether we live in a "medium" or in a
"vacuum" dates back to the beginning of physics. From
relativity, we know that the "vacuum" must be Lorentz-
invariant, but that does not mean the "vacuum" is simple.
From Dirac's hole theory, one has learned that. the vacuum,
though Lorentz-invariant-, can be rather complicated. How-
ever, so long as all of its properties cannot be changed, so
long as, e.g., the value of vacuum polarization cannot be
modified, then it is purely a question of semantics whether
the vacuum should be called a medium or not.

What we try to suggest is that if we do indeed live in a
medium, then there should be ways through which we may
change the properties of that medium.

Hitherto, in high-energy physics we have concentrated
on experiments in which we distribute a higher and higher
amount of energy into a region with smaller and smaller
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dimensions. In order to study the question of vacuum, "
we must turn to a different direction; we should investigate
some "bulk" phenomena by distributing high energy over a
relatively large volume. The fact that this direction hfJs never
been exp/ored should, by itself, serve ffs an incentive for doing
such experiments. As we have discussed, there are possibili-
ties that abnormal states may be created, in which the
nucleon mass may be very different from its normal value.
It is conceivable that inside the volume of the abnormal
state, some of the symmetry properties may become
changed, or even that the usual roles of strong and weak
interactions may become altered. If indeed the properties
of the "vacuum" can be transformed, we may eventually
be led to some even more striking consequences than those
that have been discussed in this lecture.

large, about 1.5 times the exact value, which implies that
this "Van der %aals type" approximation perhaps over-
estimates the repulsive energy. "

By setting

(a/ao) (P//1V) = 0 and (8/f)r) (E/1V) = 0,

we derive

mff(1 —meff 'T) = (mii —m.ff) '2mffff~

APPENDIX: HARD-SPHERE GAS MGDEL
T = ssff. L1 —0.8(a/r) j, (A6)

In this appendix, we simply approximate the short-range
nuclear force by the hard-sphere interaction of diameter a.
The attraction between nucleons is assumed to be provided
by the long-range interaction through the expectation value
of the 0. field. The result should give us at least a qualitative
understanding of the abnormal state. For seH-consistency
of the model, the parameters a and nz are to be determined
by fitting the known properties of normal nuclear states.

T = 3''/10m. ff (A7)

u. = —',m, '(o —op)'0/X.

where T is the average kinetic energy per nucleon, and I
is the average O.-held energy per nucleon;

A. Normal nuclear states"
In the normal state, we may consider the nucleons to be

nonrelativistic; furthermore, the nonlinear aspect of the 0-

Geld may be neglected, since 0. does not deviate too much
from its vacuum expectation value O.o. The energy per
nucleon is given by

The binding energy (b.e.) per nucleon is given by

b.e. = M~ —X ~E

H we set b.e. = 16 MeV, f' —1.2 fm, and (47r) 'gs = 15
then we obtain

&/&= m.«+ (1/2m. ff) ssP»' + -', m. '( —o frp)'(&/&)

(A1)

u~.56 fm, fPSef f ~ ~858Zjhf

where, for simplicity, we have neglected the surface energy,
m, ~ i.j.5 GeV.

~P ——mfa/g, fief f —gO ~

Q = (4n/3)r X,

Q is the nuclear volume

(A3)

The corresponding value of the average kinetic energy T is
60 MeV per nucleon and the average held energy I ~ 65

MeV per nucleon, which together with m, ff —en~ ~ —141
MeV lead to the 16 MeV (bulk) binding energy per nu-
d eon.2'

and I'g is the top Fermi momentum for the hard sphere gas,
related to the nuclear 'density n = X/0 by B. Abnormal nuclear states

Pf ——L(3fr'/2) ng'~'Lf/(r —0.8a) j.
The above Fermi momentum differs from that of a free
gas" by a factor r/(f' —0.8a), showing that the effective
nuclear radius available to the hard spheres is smaller than
r by a factor 1 —0.8(a/r) . The coefFicient 0.8 is chosen, so
thai for a dilute system of hard spheres, the hrst-order
energy correction in (n'~'u) agrees with the exact calcula-
tion; the second order energy correction turns out to be too

"Iwish to thank R. Serber for discussions. For further details, see
T. D. Lee and M. Margulies, Phys. Rev. D (in press). Cf., also S. A.
Chin and J. D. Walecka, 1974, Phys. Lett. 52B, 24 for a related
but independent calculation of the normal nuclear states. I wish to
thaW Dirk Walecka for sending me a copy of his paper before publica-
tion.

~9 Compare Eq. (1/).

P/1V = s4Pf + mmmm s/8g'n, — (A12)

where P~ is given by (A4) and n —g/g —P(~/3) gSj—1 22

By setting

(f)/f)r) (E/iV) = 0,

~ See, for example, p. 256 of Bohr and Mottelson (1969)."Compare pp. 142 and 245 of Bohr and Mottelson (1969).
If one has the soft-core repulsion, then E~ is replaced by p~,

and (A11) becomes (25).

In the abnormal state, one has 0 = 0 and m, ff ——0. For
the hard. -sphere interaction, upon neglecting the surface
energy and setting m = 0, one has, instead of Eq. (A1),
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one 6nds for the abnormal state

b.e. 130 MeV/nucleon.

r ~.91 fm.

tween neutrons to be greater than that given by Eq. (A10) .
As an iHustration, we may assume a ) .6 fm for a pure

(A13) neutron system; then by using Eq. (A12), we 6nd the
minimum of (E/X) for the corresponding abnormal state
to be greater than m~ + 25 MeV; consequently, the abnor-
mal state for a pure neutron system has a higher energy than

(A14) the (unbound) normal state.

The corresponding value of ~~I'~ is ~490 MeV and the 6eld
energy per nucleon is ~320 MeV; together, they lead to a
binding energy of about j.30 MeV per nucleon, provided
that the surface energy can be neglected.

If one is dealing with a pure neutron system (Z = 0),
then instead of Eq. (A4), I'p is given by

Ep ——(3n-'e) '~'Lr/(r —0.8a) j.
Because of the isovector part of the repulsive force (e.g. ,
due to p exchange), one expects the hard. -core diameter be-
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