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I. INTRODUCTION

* Author of Appendix C.
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The present article is basically pedagogical in nature. It
grew out of seminars and discussions that we had in the
Theory Division at CERN during the autumn of 1973.The
subject is quite broad and we had to choose only certain
aspects of it.

In quantum field theory, the quantities with the greatest
physical interest are the Green functions. It is in terms of
the Green functions that the 5-matrix is constructed and
their analytic properties have been studied in detail.
Furthermore the whole perturbation theory and the renor-
malization program are traditionally expressed in this
language. Finally the powerful computational method of
Feynman diagrams is designed specifically for the explicit
calculation, order by order in perturbation theory, of the
Green functions. A simple way to introduce formally these
functions is by means of a generating functional. I et
Z(p, (x)) be the Lagrangian density describing the system
of rs interacting fields y, (x) i = I, ~ ~ ~, ss, and J;(x)rsc-num-
ber functions of space —time which transform with respect

to all the-symmetries of 4 in such a way that

is an invariant. If we consider 2 + g j,y; and calculate the
vacuum-to-vacuum transition amplitude, we obtain a func-
tional 5&;„tJ;g of t, which, if function. ally expanded in
powers of J;, gives the Green functions of the theory. On
the other hand, by taking the functional Legendre transform
of logs';„PJ;j we obtain a functional I'fq„.g, where y.,
are the conjugate variables to J,, which generates the one-
particle-irreducible Green functions (Jona-Lasinio, 1964).
The latter enable one to express the renormalization con-
ditions.

However, there exist some problems, like, for example, the
one associated. with spontaneous symmetry breakirig, for
which a slightly different language is more convenient. It
is obtained again by considering the functional I'L&p, ,j but
instead of expanding in powers of q, (x), we expand around
the point q, (x) = constant. We thus obtain a new infinite
series of functions, each of which can also be computed
order by order in perturbation, and which can be used to
describe all properties of the theory (renormalizationi, sym-
metries etc. . .) as well as the ordinary Green functions. '
Of course they are not the most convenient for the calcula-
tion of scattering amplitudes, since each one of them equals
the sum of all Green functions taken at special points.
Nevertheless they are very useful for other problems and
here we attempt an introduction to their study. As we
notice, the whole program of field theory can be carried.
through without ever mentioning the Green functions
although, for reasons of physical transparence, we shall
most often use the renormalization conditions dehned in the
traditional way. In order to simplify the notation we shall
limit ourselves to the study of the simplest renormalizable
theory in four dimensions, namely a massive, neutral scalar
field interacting through a p4 coupling.

The paper is organized as follows. In Sec. II we review
the renormalization conditions expressed in terms of the

' Coleman and Weinberg (1973) and references therein. A very nice
review is given by Coleman in "Secret Symmetry, " 1973 Ettore
Majorana Summer School.
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Green functions, and introduce the generating functionals
and the expansion around q, (x) = constant. Section. III
contains the loop expansion and the method of steepest
descent which is the most convenient for calculations in this
scheme. A paragraph on different regularization procedures
is also added. In Sec. IV we give explicit examples of cal-
culations. The first two functions in the expansion, namely
the effective potential V(y, ) and the next function Z(q, ),
are calculated up to and including two closed loops. In
Sec. V we derive the renormalization group and the Callan-
Symanzik equations directly for the generating functionals,
and we use them in order to study the asymptotic properties
of the theory for large values of p, Finally in Sec. VI we use
the results of the previous sectiori in order to argue that
the coupling constant in a q

4 theory must be positive. Several
technical details are gathered in Appendix A and B. Since
the coupling constant can be viewed as the value of the
four-meson scattering amplitude at the center of the
Mandelstam triangle, we asked the question what is known
for this quantity from first principles alone, without refer-
ence to any particular field theory model. Appendix C,
written by A. Martin, contains some results pertaining to
this question. This Appendix can in fact be read almost
independently from the rest of the paper.

An interested reader not familiar with the formalism of
generating functionals will presumably find it useful to
read for instance the excellent presentation of Coleman and
Weinberg (1973).' We could hardly reproduce its content
here without repeating it step by step.

As we said earlier we hardly claim to give very many new
results. As this work proceeded rather slowly several pre-
prints appeared which cover some parts which we expected
to be slightly more original. These articles will be quoted
below. We thought nevertheless that functional methods
becoming rather popular and bridging the gap between
field theory and statistical mechanics are not yet too famil-
iar. Hence this selection of topics might be useful. It was,
however, hopeless to present a complete review nor to give
a detailed bibliography. We apologize at once for our
numerous omissions.

We thank our colleagues and friends at CERN and in
Saclay for many suggestions and discussions.

II. GENERAL FORMALISM

In this section we review, mainly in order to establish the
notations, the general formalism of renormalized perturba-
tion theory.

A. Renorrnalization conditions

As stated above we shall study the simplest renormaliz-
able field theory in four dimensions, namely a massive,
neutral scalar field interacting through a y4 coupling. The
Lagrangian density for such an interaction is given by.'

& = —(Bq) ——p y —(Xj4!)y4+ counter terms, (2.1)

where p, and X are the renormalized mass and coupling con-
stant respectively to be defined precisely below.

P{2) (p2 + ~2)

(2.2)

F() I

l
sym. point M ~M. (2.3)

The condition (2.2) means that the two-point function,
which is the inverse of the complete propagator, vanishes
at P2 = —p~. (We recall that in all our formulae P' has been
rotated into Euclidean space) . Furthermore this same func-
tion is normalized to the value 3f' —p,' at an arbitrary
point p' = —M2. On the other hand, the condition (2.3)
defines the renormalized coupling constant as the value of
the Euclidean 4-point function at the symmetric point:

sym. point M'. P,2 = —M',
j' —1 ~ ~ ~

(P'+ P~)' = —kM'

(2.4)

The function g in Eq. (2.2) is an 0(4) invariant dimen-
sionless function of its arguments which is regular at
P' = —M' and P' = —p'. As a matter of fact, it can be
shown that in the Euclidean space g is a real analytic func-
tion of P', and this result holds true also for the 2e-point
function.

Once (2.2) and (2.3) have been imposed, the 2e-point
function F&'"& depends on the Sm —10 scalar products s;,
as well as on p', M', and X~.

However, no physical quantity can depend on the arbi-
trary point M'. Indeed the renormalizability of the p4

theory implies that a change in the subtraction point M',
can be compensated by a change in the value of the coupling
constant and a corresponding rescaling of the fields. We can
therefore write:

I'{2"&(s, , p', MP, X~,)

Zn( M@22 M2 g )P{2n)($, p2 M2 g ) (2.5)

where s, stands for the Se —10 scalar variables, and Z3'~2

rescales the fields. We shall have the opportunity to use
these relations several times later.

~The renormalization conditions (2.2) and (2.3) are not the most
general ones. One can avoid reference to the physical mass altogether
and, furthermore, the points kI appearing in the definition of the 2
and 4-point functions need not be the same.

Let I'""'(P~,. ~ ., P~ ) be the renormalized, 2e point,
connected, one-particle-irreducible (1-PI) Green function
which, for e & 1, depends on Sm —10 independent scalar
products among the 2n —1 independent four vectors p.
We shall always assume that a Wick rotation to Euclidean
space (implying analytic continuation to purely imaginary
times) has been performed. The I"{2"&'s are uniquely deter-
mined, order by order in perturbation theory, once a suit-
able set of renormalization conditions is specified. In q4

theory, renormalizability implies that two conditions on
F(') and one on F'4& are sufficient.

It is customary to take one of them to determine the value
of the physical mass p', as the position of the pole of the
complete propagator. We can therefore express a set of
renorrnalization conditions by requiring that'.
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Among the choices implied by Eqs. (2.2) and (2.3) some
are of particular interest. The "physical" Green functions,
which are directly related to the S-matrix, are obtained by
choosing M2 = p2. However, for practical calculations the
choice M2 = 0 is much more convenient and we shall adopt
it in these notes (unless otherwise stated) dropping the sub-
script when referring to P 0. We shall therefore write

r—"'(p' ~' ~' ~ *) = (p'+ ') + (p'+ ~')'

~ (v')
(q'+ P') (q' —~')'X de p(q') & 0. (2.12)

normalized 2-point function satisfies a twice subtracted
dispersion relation (Kallen —Lehman representation):

I'&»(0) =— r"'(0, p2,'0, l&) = —p,',

r&»( —&0) —= r&»( —~' ~' 0 x) = o

r&') (p; = o) —= r&' (p; = 0, p', o, x) = —) .

(2.7)

Now, using (2.5), for p' = 0 we get

r ' (0, p, 0, X) = Z, ()&i, p', 0, X) I' (0, y', p, X„)

or, equivalently, using (2.10) and (2.12)

With such a choice the propagator A(P2), which is the
inverse of the 1-point 1-PI function:

Z0
—

'()L&', P', 0, X) = 1 + P'

(2.13)
~(p') = —L1/r"'(p') j (2.9)

B. Generating functionals and effective potential
has a pole at p' = —

))),
' with residue given. by

= [1+Z (—~' ' o, l ) a '

A convenient way to study the properties of Green func-
tions in perturbation theory is by introducing a generating2 ~ (2) 2

7
~ ~2

i 0
~ ~ ~~~~~~

2

functional. Let us assume that we add to the Lagrangian
(2.]0) (2.1) a linear interaction with an external source J(x)

which is a c-number function of space —time, i.e., a term
where g is defined in (2.2). Using (2.5) we can. write J(x)&(x) The g~n~~~ting functional of all Green functions,
(2.10) as including the disconnected ones, is given by the vacuum-to-

vacuum transition amplitude in the presence of the source J
—(8/Bp') r&»(p', p', 0, 3,) !„'= ' = Z0(p' )&),

' 0, X).

(2.11)
Sdi«[Jj = (oout ! oin)z ~

Ignoring for the moment difhculties associated with re-
We can also show that the value of the function Z0 enter- normalization, a formal expression of Sq;„[Jj is given, in

ing (2.11) has to be positive. Indeed the on-the-inass shell terms of path integrals, by

S~'-[Jj = f «pI —f[-'(~4)'+ -'~'0'+ W4')O' —J4j d'x}&[43
f pI —f[l(~4')'+ -' '&'+ (li/4l)P3 d' I&[43

(2.14)

(2.17)r[q,j = S[Jj—f d'xJ(x)q, (x),

where X)[)P] is assumed to be some "positive measure" on called "vertex functions. " It is given, in terms of $[Jj by
the functions )P and (8)P)' is the square of the Euclidean a functional Legendre transformation
gradient of )P:

&~k)'=El ).~ &Bx where q, (x), sometimes called the "classical field, " is
defined by

By functionally expanding Sq;„[Jj in powers of J, we
obtain the Green functions Gq;«(xi, ~ ~, x0„) 0.(x) = SSpj/u(x). (2.18)

co ] 2'R

S„..[Jg = g P [d x,.J(x,)gg„..(x„..., »„),
1k=0 2+ ' 4 0

(2.15)

where, because of the symmetry p —+ —
&&) of (2.1), only the

even order terms appear.

Equation (2.17) should be understood as follows. One has
to invert (2.18) thereby expressing J as a functional of y,
and then replace it in (2.17) thus obtaining r as a functional
of q, . In an expansion of I' in powers of q„one obtains the
1 functions introduced in the previous paragraph. In par-
ticular (2.17) gives:

$[Jj = logs';„[Jj (2.16)

Similarly, one introduces the generating functional $[Jj
of all connected Green functions C(xi, ~ ~ .x ): )2r[&.7

&V.(») ~& .(x.)
= —P(xi, ») j-'

r&»(xi, ») =

J(x) = —br[q. j/&)q. (x)

!

&)'$[Jg

u(x, )~J(x,)I

(2.19)

(2.20)
with an expansion analogous to (2.15), and finally the
generating functional of 1-PI Green functions sometimes evaluated at q, = o.
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It is useful to introduce an expansion of I'[&o,j around the
value p, = constant. More precisely, this in an expansion
of the density of F in powers of the derivatives of p, . Taking
into account translational invariance, we write

—I'[ .3 = f d' LV( .( ))
+ —:Z(&.(~)) (~o.(~))'+" j,

where V, Z ~ ~ are ordinary functions of p, (x). It is easy to
see that (2.21) corresponds to an expansion of the vertex
functions around zero external momenta. In fact let us
write:

00 2n

[v j = Z [( )!3 ' ll [d' 'v. ( ')3 ""'( ". -).
n=0 ~=a

(2.22)

By translational invariance, I'('"& is only a function of the
2e —1 variables x; —x1 and therefore, introducing the
Fourier transforms written without a twiddle, we can write
(2.22) as

00 2n

I'[&.j = Z [(2~)!3 ' ll [d'*'o.(~')j
nm i=1

X Q [d'p;/(22r)' exp(ip;x;) j(22r)'8'(Q p;) I' '"

we write instead

(2n) —(g/gp 2) P(2n) (0 .. . 0)

p (2n) —[g/(gp .p ) gp(2n) (0 ... p)

even though for n & 3 the scalar products p;p; are not inde-
pendent variables. Z is then given by

00 2Ã-
Z(4, ) = P [@j2n—2 P&2n) (0)

„=i (222 —2) ! 22 &&Pio

g —j. I (2n) (0)
22 &)Pi ' P2

(2.25)

Of course further terms in the expansion (2.21) could be
introduced as generating functions for higher derivatives of
Green functions. It is worth pointing out that, at least
formally, V(22, ) can be given the physical meaning of the
energy density of a state where the field ~&o(x) takes through-
out space the constant value q, .

The last step, before describing the algorithm of the
perturbation series in terms of the generating functionals,
is to express in this language the normalization conditions
introduced in the previous paragraph. We thus obtain the
equivalent of Eqs. (2.6) and (2.8):

&& (pi "., p-) (2.23)
(d'/d(. ') V I.,=o = u' (d'/d~') V I.=o = l . (2.26)

Expanding I'&2n)(pi, ~ ~, p„) around p; = 0 and comparing
with (2.21) we obtain

V((o) = —z [(2~) ll '[Aj'"I'""'(0". o).
nm

(2.24)

1&2n)(p, .. . p

"(Pi ' P2 i —Pi —P2 —'' —P2 i)

Clearly

I'(2n) (pi, ~ ~, p,„,)
P(2n)(P, , 0) + (p2+. ..+ p 2) P (2n)

A similar expression, involving the derivatives of the
vertex functions around p; = 0, holds for Z((o,) as well as
for the higher order terms in (2.21). In order to obtain,
as an example, the expression for Z(oo, ) we consider the
vertex function I'&'") (Pi, ~ ~ ~, P2 ), which is 6(4) symmetric
and invariant under permutations of the momenta. Define
a function of 2n —I independent momenta by

The other condition, namely I'&'&( —p2) = 0, which en-
sures that p is the physical mass and appears as the pole of
the complete propagator, cannot be expressed in terms of
V, Z etc ~ ~ since they only involve the successive deriva-
tives of the vertex functions around p, = 0. We see that the
traditional normalization scheme is not well adapted to this
language. However we can abandon the idea of using one
of the renormalization conditions in order to determine the
value of the physical mass, and use instead of I'") (—&(i2) = 0
a condition of the form

ol Z(0) = 1. (2.27)

From the point of view of the renormalization theory, the
set of conditions (2.26) and (2.27) is certainly as good as
any other, and in fact the Green functions calculated accord-
ing to this prescription will be related to the physical ones
by a finite renormalization of the general form of Eq. (2.5) .
For the practical purposes of this paper it will turn out that
the two sets of normalization conditions (2.6) to (2.8) and
(2.26) —(2.27) are equivalent, since the explicit calculations
presented here are not performed at suKciently high order
to be affected by these hnite renormalization eBects.

1(i+j&2n—1
p.p,) p &2n) +... III ~ THE LOOP EXPANSION AND THE METHOD

OC STEEPEST DESCENT

By abuse of language, instead of writing,

I'.""' = -'[~'/(~pi')'31'""'(0 ." o) ~

I'o(2n) (g2/gpio()p2o) I"(2n) (p. .. 0)

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975

In this section we show, through formal manipulations of
Eq. (2.14), how we can reproduce the usual perturbation
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2I+E = 4V, L = I —V + 1 = V+ 1 —(E/2).

A. The loop expansion
Vfe start by introducing a suitable book-keeping method

to count the number of loops in perturbation theory'. For a
connected diagram, if L is the number of loops, I(E) the
number of internal (external) lines, and V the number of
vertices, we obtain

vertex, the internal ones connecting two vertices. The second
condition counts the number of independent integration
four-momenta L. The added +1 appears because of the
factorization of the overall 5 function of energy —momentum
conservation. We see from (3.1) that the power V of the
coupling constant does not determine the number of loops
since a connected diagram of order X~ can contain any
number of loops L & V + 1.

(3 1) The solution to this problem is well known. One intro-
duces a new parameter A, ' which multiplies the whole

The hrst condition means that four lines meet at each Lagrangian, not just the interaction part:

exp
f expI —(1/fi) J[-,'(ay)2+,'„2y2+-(X/4!)P —JP7 d4 }n[P7

f exp I
—(1/5) J[t (t)P) ~ + t p2P + (&/4!)$47 d4~ }~[f7 (3.2)

In a connected diagram, each vertex will carry a factor 1/5,
each propagator a factor 5 and each external line a factor
1/6. Therefore each connected diagram has a power of
R.: (5)~ ' ~. In. order to obtain a diagram in the expansion
of (1/fi)1'[y, 7 we select a 1-PI diagram of (1/fi) 5[J7 and
multiply it by an inverse propagator for each external line.
Therefore the terms in the expansion of (1/A') I'[q,7 vill
have factors

(5)~' = (1/fi) (ft)~

Consequently in the series of I'[y,7 the power of fi counts
the number of loops. For 5 = 0 we obtain the tree diagrams
("classical" approximation). We repeat that this is nothing
more than a book keeping device and we do not have to
assume that A, is "small".

B. Method of steepest descent
A standard way to handle formal expressions like (3.2)

is to apply the method of steepest descent. This will be
shown now to yield the desired 5 expansion. It consists in
expanding the exponent in the numerator of the rhs of
(3.2) around the position Po[J7 at which it is stationary.
The denominator is merely a normalization factor designed
to constrain 5[07 = 0. Let fo be a solution of the classical
(elliptic) equation:

+ (~/3))O.~'+ ()/4!)~'7 d", (3.5)

where we have used (3.3) in order to eliminate the linear
terms. We now impose on the measure X)[$7 to be transla-
tionally invariant and we obtain

5[J7 = 5o[J7+ 55 [07+ fi'5 [Po7 + (3.6)

where

5.[J7 = - J[-,(~~.) + —,.V" + (~/4. )~:—J~.7 d"
= —I(A) (3.7)

Let us choose J(x) to vanish at infinity. The solution of
(3.3) is then unique if it is also required to vanish at infinity,
hence Po[J7 = 0 if J = 0. It is clear from (3.3) that the
relation between fo and J is fi independent.

We now expand the action IPP7

I[07 = J[-'(W)'+ 'I v'+ (-~/4 )O' —J47 d4~ (3 4)

around the function Po by writing P = Po + P

I[47 = I[4'o7+ J[-'(~4)'+ -'(~'+ ()/2)A')@'

( + P )go+ Po'
$1 A = Z ~-V' (3 3)

5[J7 —5.LJ7
exp

J expt —(I/&) f[2(~4)'+ 2(~'+ k) A')P+ ()4/3')8+ () /4!)!!"'7d'*}&87
f expI —(]/$) J[i~(tip)2+ —'p'P + (y/4!)P 7 d ~}~[@7

f -p}—f[-:(~~)'+-'("+ -') ~')~'+ ~"'(~~./3~) ~'+ ~() /4!) ~'7 d'~}~87
J exp} —J[-:(~~)'+ ',"~'+ &() /4t) ~'7 d"}~87 (3.8)

To obtain the second expression we have rescaled the
dummy integration field through P —+ 5'i2$. The first term
Si[go7 is found by integrating the exponential of a quadratic

The loop expansion and its relation to the steepest descent (or
stationary phase method in the Minkowski region) were apparently
introduced hy Y. Nambu (1968). For a review, see Coleman and
Weinberg (1973) and Coleman (1973).

form. The result is well known4, being apart from a common
factor in both numerator and denominator the inverse

4 In writing (3.9) we made use of the functional analogue of
the identity

L(detB)/(detA) j'+ = I II ds; exp —(ZAZ)/f II Ch, exp —(ZEZ),

valid in principle for finite dimensional positive hermitian matrices
A and B.

Rev. Mod. Phys. „VoI. 47, No. 1, January 1975
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square root of the determinant of this quadratic form:

5,[P07 = ——,
' log detK.„(go)/X,„(0)

= —-', Tr logE.„(gp) /E', „(0),

where E „is the symmetric kernel

(3.9)
~5[17

6J
550 J + 0(5) = $0+ 0(5). (3.14)

We first observe that, to zeroth order in $., y, equals po
which is the solution of the classical equation of motion
(3.3). Indeed, using (2.18), (3.3), (3.6), and (3.7), we
find:

E*~(A) = (~*~.+ ~'+ i~A')~'(x —S) (3.10)

.Joe[47 = fC-;(~4)'+ k(p2+ 2~6')8
+ (fi'"X/0/3! )p + (5X/4!)p'7 d'x. (3.11)

It has the following characteristics:

(a) There is no source term for f, in other words we must
calculate only vacuum-to-vacuum diagrams.

(b) The "mass" in the propagators is p,'+ 2iXPO'(x).
Note that in general Po(x) is x dependent. Hence the propa-
gators are not merely diagonal in momentum space as is
usually the case.

(c) There are trilinear as well as quadrilinear couplings
with corresponding "coupling constants"

hi~&XP, (x) /3! and M/4!.

We recall that in all the formulae (3.6) to (3.10), P, is
understood to be a functional of J through the classical
equation (3.3) which does not contain any 5 i.e., Po is given,
as a functional of J, only by tree diagrams of classical per-
turbation theory.

The higher order terms 5~, 53 etc ~ ~ in (3.6) can be read
directly from (3.8) . We see that the exponent in the inte-
grand of the numerator of formula (3.8) represents an
effective action of the form:

FoC~ 7 = —fH(~v")'+ k~'v'+ (~/4!)~.'7 d'x

= —I[q,7 —fJq, d'x. (3.15)

In order to calculate the next terms we write the correc-
tions to (3.14) as y, = $0 + Sy.. We then obtain

5[77 —fJq, d4x —Fo[q,7
= —IBo7 —Fo[~.7 + &si[407

+ A'5 C&o7 + ~ ~ ~ —fJq, d4x

= —1[go7+ 1[(.7+ &si[ga7+ &'52[&07+ . .
$2f[i (g~ )2 + L(~2 + x)P 2)~ 27 d4x

+ Ssi[y, —5p,7+ Ps.[p,7+ 0(5'), (3.16)

where we have used (3.5), (3.6), (3.7), and (3.15). Com-
paring with (3.13) we find:

F Cy, 7 = 5 Cp, 7 = ——Tr log[E,„(cp,)/E, „(0)7
F2[v.7 = 5~[~.7+ f[2(~~')'+ 2(~'+ k&A')~. '7d'x

ss, [p,7
~pc

(3.17)

Therefore the required functional relation fogy. 7 becomes
trivial to zeroth order in 5, and the first term in (3.13) is
clearly given by

If we call V3(U4) the number of three (four) vertices, we
obtain: = S Cp,7+ ',q,E((p,)y, —-p,

'65,[q,7
~Pc

(3.18)

I. = V4+ —', V3+ 1. (3.12)

F[~7 = Fob 7+ «i[~7+ &'F2(~7+". (3.13)

It follows that for a given number of loops I., there is
only a finite number of vacuum-to-vacuum connected dia-
grams which need to be calculated. Notice finally that the
propagator is the inverse of the kernel (3.10) which appears
in the expression for 5~.

Having obtained the generating functional 5[77 by
means of (3.6)—(3.11), we can perform the functional
Legendre transformation (2.17) in order to calculate F[p.7.

A straightforward evaluation of this transformation re-
quires first the evaluation of $0 as a functional of J through
(3.3), and then the inversion of (2.18) in order to obtain J
as a functional of q, . This would give fo as a functional of
cp, and the Legendre transformation of (3.6) would deter-
mine F[q,7. Of course, it is not possible to perform this
series of operations exactly, since they require an exact
solution of the equations of motion. Therefore, in the same
way as we used the loop expansion in order to evaluate 5[J7
through (3.6), we shall try to determine F[p,7 in the form

It is convenient to eliminate y, from (3.18). To zeroth
order in 5 we write

= (1/&) Cv. —A7 = (1/&) C»/» —407

~siBo7 ~A

~go

(3.19)

The final expression for F~[p,7 is therefore the following:

F Cv.7 = 5.[y.7 —'(ss/sv. )E' '(p.) (-ss/sp. )

1 Bsi[q,7 bsi[q.7

(3.20)

In (3.20), 6 is the propagator found before, which is equal
to the inverse of the kernel X given by (3.10) . We can com-
pute the higher order terms of (3.13) in a similar way.
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The meaning Of FLOo,j iS nOW tranSparent, Po ObViOuSly
generates the trivial 1-PI tree diagrams. SiLPog, with Po
taken as a functional of J, generates all the one-loop, con-
nected diagrams, thus SifOo,j = Pi(q, ) gives the 1-PI, one-
loop ones. I'2 contains two terms: S2L&p,l generates the three
vacuum-to-vacuum diagrams of Fig. 1 with the rules a), b)
and c) explained above. The first two of these diagrams are
1-PI but the third is not. However it is precisely cancelled
by the second term of (3.20). Therefore F2 also generates
the 2-loop 1-PI diagrams. It is straightforward but tedious
to generalize this argument inductively to all orders'.

The lesson we have learned can be summarized as follows.
To go from the expansion (3.6) of S to the expansion of P
Eq. (3.13), we simply do the following:

(i) drop the term JJPo
(ii) replaCe Po by Oo,

(iii) keep only the 1-PI diagrams Lin terms of the prop-
agator A(oo, ) g.

If we are only interested in the potential U(oo, ) we must
isolate an overall factor of the space —time volume f d4x,
then set y, = constant and change the sign as explained in
(2.21) .

Up to now we have implicitly assumed that the reader
reacts instantly when shown a Lagrangian by figuring out
the Feyman rules it generates. Nevertheless we conclude
this section with some remarks on these rules and %ick's
theorem derived in this formalism.

The Feyman rules are embodied in the following formula:

f xpI f-'0( —) ~*. '(o.)4(y) d' d'y+ Jk( )4( ) d' I&B3
exp d'x k(xg x)

f exp I
—f 24 (x) ~" '(o.)4 (y) d'x d'y I&L43

= exp-', f k(x) 6 „(o2,) k (y) d'x d'y. (3.21)

Thus, expanding both sides and noticing that odd monom-
ials in. 1P have zero expectation value, we obtain:

[(2P)!] 'J d'xi. ~ d'xo„(1P(xi) ~ ~ .P(x») )k(xi) ~ ~ k(x2„)
= (2"P!) 'J d4xi ~ ~ d x»k(xi) ~ ~ ~ k(x») L(2P)!g '

(3.22)
perm.

We can divide the (2p)! permutations of the rhs into
classes having each 2"p! members as follows: Starting from
a given permutation we can obtain all the members of its
class by interchanging the variables in each 6 separately
and permuting the pairs of arguments among the 6's.
Obviously all members of a given class yield the same result.
By just taking a representative of each class we therefore
obtain S'ick's theo~em:

2$h2$cv

L(gi + g'2 ) C&2S4o —2gigog. (3.26)

but also Z(p, ) at least to low orders, we shall need a special
case of (3.25) where oo, (x) 2 is at most quadratic in x. Even
though this is not exactly what is required we give below
the solution for the case where oo, (x) = q + a.x. The solu-
tion is obtained by noticing its relationship with the stand-
ard harmonic oscillator problem of quantum mechanics.

Let us recall that for a one dimensional oscillator with
P, Q denoting the usual operators satisfying LQ, Pj = i,
one has:

g~ o ~ o g2

distinct terms
~(X2'11 X2'2) ~(X~2@—1 & X~2y) '

Choosing the 0 direction along the vector a, and setting

(3.23)
oo' = (Xa'/2) it then follows easily that:

As we have already noticed, for the calculation of the
effective potential we only need the expression of the kernel
6 for p, = constant. In this case it has the usual represen-
tation

d kg dkp dip

(22r) 2 22r

X exPL2kr(xr —yr) —s(kro+ P,') j

~22 O2c

d'k exp/ok(x —y) 7
(22r)4 k'+ p2+ (X/2)o2, 2

(3.24)

1
X

2m-cosh2us
exp i ko xo +

However for q, varying with x one has in principle to
solve the 4-dimensional equation:

L
—a ~ &2 ~ Zo,2(x)/2gS, „=S4(x —y). (3.25)

Fortunately we shall not be really faced with this uneasy
task. However since we intend to compute not only U(&p, )

5 %e need not give here the complete argument since in the meantime
it has been presented in a recent MIT preprint by R. Jackiw, "Func-
tional evaluation of the effective potential. "

—
qp yp exp—

X
1/2 Qpexp-

2m Sh2us 2c2$&2ms

L(ip2; + o221 ) c&2Ms + 2(pgo2yj. (3.27)

X P(ko2 + qo2) ch2oos —2koqoJ

d3$ co

ds expt ikr (xr —yr) —s(kryo + p,') g
(22r) '

Rev. Mod. Phys. , Vol. 47, No. 1, Jariuary 1975



172 lliopouios, Itzykson, and Martin: Functional methods and perturbation theory

C. Regularization

The expressions derived so far are purely formal due to
the well known divergences of perturbation theory. How-
ever, for renormalizable theories there exists a well-defined
prescription which allows one to extract meaningful results
in any given order of perturbation. (The question of the
convergence of the whole series cannot yet be answered).
The first step, usually called regularization, of any such
renormalization program, is to replace all divergent expres-
sions appearing in the theory by finite ones. It is only then
that the next step, namely the enforcement of renormaliza-
tion conditions such as (2.2)—(2.3), can be applied. There
exist several ways to regularize a fieM theory and each one
seems to be better adapted to certain uses, or certain
theories, than others. A simple and elegant example of such
a scheme is Zimmermann's subtraction procedure which
consists basically in subtracting the Feynman diagram
integrands a sufficient number of times around the origin
in momentum space until finite integrals are obtained. This
method is very useful for giving rigorous proofs of the
renormalizability of a theory, as well as for de6ning opera-
tors as monomials of the basic fields and their derivatives
such as y2", p q, etc. ~ ~ However it is expressed directly
in terms of the Feynman diagrams and it is not known at
present how to incorporate its prescriptions into the I,agran-
gian formalism we have been using so far. On the other
hand, in order to perform explicit calculations and especially
for theories with Gauge symmetries, the method of dimen-
sional regularization is by far the most convenient.

There exist in addition many other regularization schemes,
but most of the topics that will be discussed. in these notes
will be phrased in such a way as to avoid reference to any
one in particular. However, we shall not hesitate for
any given problem to appeal to the one that seems to us
most suitable. For future use we shall present in this para-
graph the classical Pauli —Villars regularization method
through a dimensional cutoff A using the functional lan-
guage. It presents some advantages for our case since: (i) it
can be incorporated very nicely into the formalism, (ii) it is
conceptually very simple since the cutoff A' can be viewed
as the analog of the inverse lattice spacing in nonrelativistic
statistical mechanics, and (iii) the derivation of the Callan-
Symanzik equations is very simple if we use this method.

For this purpose, let us denote by pp and Xp the bare mass
and coupling constant of the theory. The method consists
in replacing the bare propagator by a regularized one
through

00

gq2(n) expL —a(k2+ po2) gdn,$2+ p2 (3.28)

where gq'(o. ) —& 1 for A2 —+ ~ and for fixed A2 vanishes
sufficiently fast for u —+ 0 in order to make all integrals
convergent. Formally this substitution, (which for a general
g~2(n) leads to a nonlocal action) can still be cast into the
form (2.14), i.e., there exists a positive measure dv, and a
function C„, with C, Q 0 in the support of dvp such that:

fII&B,H exp —f d'~( f d"C.-'L'(~4')'+ i.V.'j+ (~o/4l) Lf d~A'3' —~f d~A;I
exp 5~' J

(same with J = 0)
(3.29)

In (3.29) we can integrate over all uncoupled degrees of freedom, i.e., over all f,'s except the combination P = f dv,f,.
In order to do so we introduce a representation of the 8 function, and we write (3.24) as follows

exp(~~'L~j) = (f&Mf&L~1f&L4"j expf f d'*L2~(~)0(~) —(~o/4t)0'+ J4jI
X expI —f d4xf dv, C~t2(8&,)2+ 2ppp, 2+ i( /Co, )&,5)(same with J = 0) (3.30)

The integrations on f, and n can easily be done using (3.21) and yield

f&Bj exp I
—-'ff d'~ d'A(*) It~'(*, y) 0 (y) —f &'*L(~o/4 )0' —~4 jiexp (Sg2LJ1)

(same with J = 0)
(3.31)

where Ez'(x, y) is the inverse of the propagator Az'(x, y) which gives

Az'(x, y) = f (dv, /C, ) a(x, y, ii,2), (3.32)
g '(~) = f(d"/C. ) exp' —~(~' —~o')0 (3.34)

with &(x, y, p2) the free propagator of mass p2.

Hence we have the identification, comparing with (3.28)

dngg'(cx) expL —n(k2 + ii02) j

dv, C,

We see therefore that we have succeeded in formally
incorporating the regularization (3.28) into our formalism.
Now we have various choices each one characterized by
different measures dv, /C, and masses p, . Let us write
dv, /C, in the form dv(y2)/C(ii2). The most common choice
is the standard Pauli —Villars regularization defined as

dn expL —u(p, 2 ~ P2) j
d~(u') /C(~')

= d~'L~(I" —~0') + Z (1/Cx) ~(~' —~o' —~x~') j
X dvp Cp exp —n pp pp' (3.33) (3.35)
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with the sum running over a finite number of terms X, and
Cx and Blr a set of numbers to be chosen so that g~'(n) has
the required properties.

Clearly, once an over-all factor f d'x is isolated in I"[y,7,
we get V(y, ) by just setting &p, = constant. We shall now
compute the first three terms in (4.1). The first one is
trivial. From (3.15) we get

= I dl" {~(I'—~o') + 2 (1/Cx)&(~' —vo' —~xA') f

Vo = (~'/2) v '+ (~/4 1) v.'.

X expl —n(p' —po') g

= 1+ Q (1/CIr) exp[ —nelrh. 'g.
K=1

(3.36)

The normalization conditions (2.26) are fulfilled up to
this order. Let us now look at Vi. Here I'i[&p,j is given by
(3.17). For constant p, the kernel X,„becomes

X.„(ip.) = (B.a„+p'+ zip.2/2)b'(x —y)
For A2~ ~, gz'(n) will tend to one for any fixed n ) 0,
while it is possible to choose CK's and 8K's such that = f[d'k/ (2~) 4g (k' + p' + X~p,2/2) exp [ik (x —y) g.

1+ Q (1/Cx) = 0, Q (ex/C~) = o,
K K

Q (Oir"/Clr) = 0,

which ensure that

(3.37)

Therefore we get:

-', tr log[E(ip, )/X(0) g = —,
' J d'xj[d'k/(2m)'7

X log[(k'+ ti'+ ~&q')/(k'+ p')0

(4.3)

(4 4)

g~'(0) = o, g~"(0) = o .. g~""1(0) = o. (3.38)

A differen. t choice for the measure dv, /C, is one that
gives the Gaussian form with

It is clear that, given an integer e ) 1 we can always
choose 1V in (3.35) suKciently large so that gz'(n) as well
as its m erst derivatives vanish for n = 0. Notice also that
for (3.37) to be true some of the Cx's have to be chosen
negative which means, in ordinary language, that the corre-
sponding fields would have to be quantized in a space with
negative metric.

1
Vi(v. ) =—

2

d4k ~q,' 2

(2 )4 g +k2~ 2
+ &Pc + gc)

(4.5)

This gives us Vi(ip, ) up to renormalization. In fact the
integral in (4.4) is ultraviolet divergent, but the counter
terms must be chosen such as to make the coefficients of
q,2 and p, vanish in a power series expansion at the origin,
since Vo(y, ) already satisfies the conditions (2.26). This
renormalization is sufficient to give a finite result. We there-
fore write:

g~'(n) = O(n —1/A').
where the counterterms A and B will be determined by the

(3 39) conditions (2.26), We find:

Clearly, due to the discontinuity of the 8 function, it is
difFicult to give an explicit representation. But any smooth
clloice, such as for instance ph(A'n —1) + thlg/[1 + th1$
would allow it.

With the preceeding examples, we wanted merely to illus-
trate the point that there exist several possible choices for
the functions gq'(n) with the desired properties and they
are wel1 adapted for the functional formalism. In the rest of
these notes we need not be more specific.

1 d'k XyP/2 X~p,2/2

2 (2vr)4 k'+ p' k'+ p'

1 (Xq '/2)'+—. . . = p,'m(X~p, 2/2 1'),

where the function w(x) is given by:

1 d4k x x
2 (27r)4 k' + 1 k' + 1

(4.6)

IV. EXAMPLES OF EXPLICIT CALCULATIONS:
V AND Z UP TO ORDER A'

1 x2

2 (k'+ 1)'
= [4(4')2] '[(x+ 1)~ log(x+ 1)

A. Calculation of V

Corresponding to the expansion (3.13) we have

V(~.) = V.(..) + «.(~.) + h V.(~.) +.- ~ .
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(4.1)

We interrupt here the formal discussions in order to
illustrate, with some explicit calculations, the use of the
equations derived in the previous section. We have chosen
to calculate the quantities V(y, ) and Z(ip, ), defined in
Eqs. (2.24) and (2.25) respectively, up to two closed loops
in perturbation theory.

—(-;x'+ x) g.

Let us make two simple remarks:

(4.7)

"V(q )/dp M & 0. (4 8)

(i) In order to check whether we have made any mistake
we can compare our result with the one of Coleman and
Weinberg (1973). To do this we have to adapt our normal-
ization conventions and instead of (2.26) we call X the
fourth derivative of the potential at a nonvanishing value
M of the classical field y, .
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(o) (c)
FIG. 1. The three connected diagrams to order 5' in the expansion
of 52! ~.g Only the first two are to be kept in order to find I'2! (p j.
Heavy lines indicate a propagator AI'g, ).

Then we let the mass p, go to zero. The resulting V(ip, ),
using Eqs. (4.2) and (4.5), is

A.q,4 1 Xy,2 ~ @,2 25
V(~p, ) = + log ———+ ~ ~ ~

4! (82r)' 2 M2 6

in agreement with Ref. 2) .
(ii) The expression (4.9), considered as a function of X,

has no singularities for any finite value of the coupling
constant. This is due to the zero mass limit we considered.
For p W 0, the situation is different. Although Vs+ Vi,
given by (4.2) and (4.6), is a very primitive approximation
to the real potential, we see that singularities occur at
y, = ~i(2p/X)'i2 Sinc.e p2 is positive, these singularities
are harmless for X & 0. However for X ( 0 we would find
singularities occurring for real ip, and V(q, ) become com-
plex. We shall later try to prove that X+4 theory makes no
sense for X ( 0. This perturbative argument should not be
taken too seriously at this point. Notice finally that (4.9)
cannot be obtained by simply taking the limit p, —+ 0 of

&2 = f5)LQ) exp —f d xp~(BQ)'+ —'(p + —'gp )pg
X j —(~/4!) f d4~4(~) + —;(X/3!)2

X ff d'&d'yv. (~)P(~)~.(y)F(y) I

X (fX)g j exp —f d4xLi (8$) ' + —;(p' + -'Xp ')Pj)—i

(4.10)

Using Wick's theorem Eq. (3.23) we see that to the first
term corresponds the diagram (a) of Fig. 1. LHeavy lines
indicate the propagator A(y, )j.The second term gives rise
to the two other diagrams, but the last one is to be dis-
regarded in the calculation of F2 according to Eq. (3.20),
since it is not 1-PI. Consequently we obtain

I'2', g = ——sXf d'xD(x, x
I cp ) ' + 3 (X/3 ~) 2

X ff d'*d'yq, (*)p, (y)A(, y I y.)'.

Hence for Ip, = constant, using (3.24)

(4.11)

(4.2) and (4.6). This latter actually does not exist. We can
instead calculate V(&p, ) for p W 0 by using (4.8) as a
renormalization condition; (4.9) will then be the limit of
this expression for p —+ 0.

Let us now turn to the evaluation of V2(q, ). This is
meant as a pedagogical exercise on renormalization. It also
allows us to test explicitly the statements, to be made later,
on the asymptotic behavior of perturbation theory.

We start from (3.8) . Keeping only the P terms we get:

d4kz d4k~ 1
V.(~.) =-

8 (2 ) Ik + +X, /2jLk, '+ + X~ /2j

X'p ' d4kg d4kg d4kg (22r)464(ki+ k2+ k2) + counterterms.
12 2m " kg' p,' P(p,' 2 kg' p' Xq ' 2 k3' p' Py, ' 2

(4.12)

As it stands, this expression is in6nite and the counter-
terms are supposed to take care of this. However this time
they are less trivial than in (4.5). We have to state how
they are to be introduced. What we shall see however is
that the prescription on U alone fixes them uniquely. This
means that in the calculation of U to this order, no use is
made of the condition (2.7) or, equivalently, of the condi-
tions (2.27). These conditions will only come into play
when mass insertions appear and this happens only to order
54 and higher. Therefore, as it was stated in Sec. II, up to

this order there is no difference between using (2.8) and
(2.27) . The counterterms are introduced in the usual way.
We may imagine that three terms of order A had been added
already in the Lagrangian in order to account for the three
infinite terms in q,', p,', and y,.4 occurring in the calculation
of V~. They come now, to order A', when combined with
the other terms in the Lagrangian. Furthermore there are
the new counterterms of order F. The bookkeeping is
simply summarized in the analog of Zimmerman's forest
formula and yields explicitly

d4k 1 1
V2(V.) =—

8 (22r)4 k'+ p'+ X&p2/2 k'+ p,
'

Xp,2/2

(k2+ p,'+ zip.2/2)'

p'y ' d4kg d4kg d4k3 (22r) 484(ki + k2 + ks)

12 (22r)" (ki'+ p,'+!i'd),'/2) (k2'+ p,'+ Xq,'/2) (ks'+ p,'+ Xyg'/2)

3(22r)'64(ki + k2) —global counterterms.
(k 2 + p2) (k 2 + p2) (k 2 + p2 + g~ 2/2)

(4.13)

The treatment of perturbation theory in the presence of external
sources is discussed by J. Schwinger (1951) who in fact is also at the
origin of many of the concepts used in the functional approach. In
the context of electrodynamics, he also relates the occurrence of a
complex effective potential with instability of the vacuum.

The remaining global counterterms are genuine fP ones, and
are there in order to ensure that the overall integral is of
order p, for small q, . The internal divergences have been
cured by the subtractions inside the integrand. The reader
will notice that for these terms the propagators have reas-
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sumed their standard form Lk'+ pPj ' since subtractions
are performed around q, = 0.

TABLE I. Contributions of the various diagrams to the value of
the e6ective potential up to the order of two loops. The potential is
written as

In order to simplify the notations we write

X X@2 X' q~ Xy21

p4 Xq,' AX

&u'' (4 )')
(4 14) aiid x atid n stand for x = ) yP/2p', n = AX/(4n)'.

and the result of an explicit calculation gives
Diagram. Contribution

6(x) = L1/(4 )'jL(1+ x)»g(1+ x} —xy, (4.15a)

6( ) = —L3/(4 )'7Cl(1+ ) l '(1+ )
—2 (1 + x) log (1 + x) + 2xj. (4.15b)

A brief description of the evaluation of the integrals is
given in Appendix A.

Putting together (4.2), (4.6) and (4.14) we can write
the effective potential up to order 5' in the form:

I~ ~I (n/4) ((1+g)'log(1+ x) —(x+ $x~))

p,
' Xp,' AX

X 2p,' ' (4')'
Xp.' XA

2p,' '
(4m)'

(4.16)

The 5 expansion is the a expansion of 'U, and we summar-
ize our results for 'U, up to two closed loops, in Table I. We
conclude with the following observation. Apart from an
over-all factor of p4, JM and y. appear for simple dimensional
reasons only through their ratio p, /p. Therefore the behavior
of V for large q, is related to that for small p, . We shall come
back to this point later.

dE i (n'/g) ((1+~)»g{1+~) —~)'

(a}

(b)

~ —,'n'x (-'(1 + x) log'{1 + x) —2(1 + x)

&log I,
'1+ x) + 2x)

ment and to sum over d'x. Now let us use one of Schwinger's
tricks which gives the following representation of the dif-
ference of logarithms of operators

B. Calculation of Z logA —logB = (ds/s) Lexp( —Bs) —exp( —As) j.

Z ZQ+ 5Z] + 5Z2 + (4.17)

with obviously Z, = 1. Recalling (3.17) we have (Schwinger,
1951)

2Fi(e.) = Tr(log~(v. ) —log~(0)).

Using four operators X„, E„atsisf i ygnI X„,I',j = i5„„, we
can write A(p, ) as a matrix element

Parallel to the calculation of V(q, ) we can compute
Z(y, ) defined in (2.21) and (2.25) . One might at first think.
that instead of computing F(y, ) for a constant y, as was
done to extract V(q, ) it is suKcient now to consider the
case of a classical field q, varying linearly with x i.e., of
the form const + a x. The pitfalls of such a method are
slightly subtle and will be explained below. Thus we do
not make such an assumption at this stage.

We shall use for Z the same loop expansion of the form

From this we obtain

—2I', 4,) + 2 f 0*I,(w.("))

~' Z ( ~ ( ) ) (t) ( ) ) ' + ' ' '

= Tr log(P'+ p'+ —',)).y.2(X})

d'x x log I p'

d'g ds s x exp —s ~ p,2

+ —,'yq, (X)j I x) —(x I exp —sLZ'+ p'

+ l) v.'( )j I x) I.

(4.20)

(4.21)

of the operator

Note in the last integral that the two terrors di6er in that in
~(x~ 3'

I & ) = (* I
L&'+ &'+ 2~w'(X) j '

I x) (4 19a) going from the first to the second the operator X is replaced
by the c nuinber x. Now if the functional F (p.) were known
as an expansion

~(v.) = L&'+ ~'+ 2) ~'(X)3 '. (4.19b) —j ~'xV(q. (x)) + 2Zi(v. (*))(~~ (x))'+".
Indeed, it is in terms of this operator that the log is intro- it would indeed be true that by substitution of y, = const+
duced above, while trace requires to take the x, x matrix ele- a x the coefFicient of u would essentially yield Zi(p, ) up
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f nction itse a

the trivialS Wwe consi er

f d'xZ (q, ( )) (Bqo.(xx) )'+ ~ ~ ~

d'k= — '.f.'-:f ('-')

~'+ 2~q'(x) )&( exp —s(hP+ p
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J d4x-', Zs&+(y, (x)) eely, (x)' = factor of &)y.(x)'
in J d'x'sxb, (x, x

I y,)'. (4.23)

The second contribution from the diagram (b) of Fig. 1 is:

In the last expression we have reinstated our notations
a = )/(47r)s, x = hp, s/2p (not to be confused of course
with the four-dimensional configuration space variable).
Note that Zi(0) vanishes (there is no wavefunction renor-
malization to the order of one loop in y4 theory) .

We have gone through the one loop calculation in some
detail to show that one could avoid summing series of
(ordinary) diagrams with combinatorial factors and some
complicated bookkeeping of derivatives. The price to be
paid was that some care had to be exercised in choosing the
correct x variation. for the classical field q, .

We shall be much briefer for the two loop term. According
to (4.11) the contribution to Zs can be split in two terms.
One pertains to the first diagram of Fig. 1.

where we have collected the results of the integrations. The
actual calculations are summarized in Appendix A. For
clarity of notation when referring to Z expressed in terms of
x and o. we shall denote it z(a, x) that is we set (with A = 1)

Z(y„X) = s(a, x)

n = )/(4~)' x = s) (y.'/u'). (4.25)

The numerical results of this section will be used in the
sequel to discuss the asymptotic behavior of the &4 theory.

V. RENORMALIZATION GROUP ANO CALLAN-
SYMANZI K EQUATIONS

A. The renorrnalization group
In Sec. II we noticed that a simple relation exists between

the Green functions calculated according to the different
renormalization prescriptions. In particular, a change of the
subtraction point Mrs ~ M2s is described by Eq. (2.5)

J d4xtsZs&si(y, (x)) By, (x)s = factor of &iy, (x)s in

—()'/») (JJ d4x d'3y. (x)y. (X) &'(x, X I y)
3J d4xy~(x)s~(x~ x

I y~) J d47~s(x X!0))
+ over-all counterterm.

I'&'"&(s;, p', Mrs, X~,)
Zn(M2 +2 Ms ) )p(2nl(s. +2 M2 ) ) (2.5)

The factor Z& can be easily evahiated by applying (2.5) for
(4 24) e = 1. We thus obtain

The value of the over-all counterterm is dependent on the
normalization scheme adopted as explained in detail in
Sec. II. We leave this choice free as appears in Table II

I'&s'( —Ms' p' Mis )&~ )Zs(Ms', u', Mrs, )&~,) = ' ' ' ' . (5.1)
p

In the same way, Eq. (2.5) for r&, = '2 gives

Diagram Contribution

TABLE II. Contributions up to the order of two loops to the func-
tion Z. The variables x and n stand for x = Xp,'/2p', n = Xb/(4s)s. I"&4&(s;, p,', Mrs, ) ~,)

~M2
Z32

=—R(Mss, ps, Mrs, )&sr,),
Sym. POint M2

(5.2)

'( i 61+ x

where the function R, defined by (5.2), satisfies the normal-
ization condition

Z2

1+ ~ (1+ ~)2

R(u, p', a, )&) = x.

Using (5.2), (2.5) can be written as

I'&'"&(s;, p', Mrs, )&~,)

= Z "I'& &(s;, p, MP R(M p, M )& )).

(5.3)

(5.4)

A x 2S——,
' log(i + x) + +6 1+x 1+x

X (log(1 + x) + 4A/3 —1)—(1+ s)'
4 X2

X (log(1 + x) + —; (A —1)) +—
3 (1+ s)'

+ finite const.

The number A occurring in the last expression is
1 logN, ~ 1 1

du = ~Z
1 —I+ N2 (1+ 3P)2 (2+ 3p)2

= 1.1719536

If we set Mss = rMis, the reahzation (5.4) of the multi-
plicative group ~~ + 7~ ~ 7-~ ~ v-~ of positive numbers is called
the renormalization group (Stiieckelberg and Petermann,
1953; Gell-Mann and I.ow, 1954). Notice that the trans-
formations of the group leave the physical mass, i.e., the
pole of the complete propagator, unchanged. It is only in
this case that simple relations, like Eq. (2.5), hold. Equa-
tion (5.4) is the functional equation of the group, and R is
called the invariant charge, or invariant coupling constant.

Similar equations are satisfied by the generating func-
tionals. For example, I'Ly.g, if we use (2.2) and (2.3) as
normalization conditions, will depend on p2, M2, and X~2 in
addition to the functional dependence on y, (x). Again
all physical results are independent of M2 in the sense that

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



lliopoulos, Itzykson, and Martin: Functional methods and perturbation theory

if we change M' = 3II~' —+ &22 ——~2M' there exists a certain
value of the coupling constant X~,' which is a function of
p' X~ ' M~' and 3f~', and a certain renormalization of the
fields Z3 given by (5.1) such that

The equation (5.8) is only useful if we can express Z3 s1$
and P~, in terms of M2, m~', M» and P~, in the same way as
we did for Z3 and X~, in Eqs. (5.1) and (5.2). In fact,
writing (5.8) for Z(q, ), and using (5.7c) we obtain

F[q p' M' X~,j = F[Z3'~'q p' M22 X~,g, (5.5) I'(Z3 '"Mg, mi2, Mi, X~,) = Z3. (5 9)

or, using (5.2):

F[pg p, Mi ~ Xgfij

= I'[Z'i'q p' M22 R(M22 p' Mi2 X~ )g (5.6)

Since Z(p. , m', M, K~) is known order by order in the
loop expansion, (5.9) gives Z3 as a function of M2, mi2, Mi
and Fiick, . In the same way, writing (5.8) for V(y, ) and using
(5.7a) and (5.7b) we obtain

d'V(~. )/d~' I..=o = m'

d'V(v. )/d~ '
l~.=~ = ~~

Z(M) = 1,

(5.7a)

(5.7b)

(5.7c)

where M and m are positive masses. Notice that m is not
the physical mass and P~ is not the value of the four-point
function at some symmetry point, but for the renormaliza-
tion program to be carried through, the set of constants
m, P~ is as good as p, , X~- which in turn is a good as any
other set. From the three conditions (5.7) only the first
one can be expressed in terms of Green functions in a closed
form since it simply means that F"&(p' = 0) = m'. The
other two conditions involve the values of all Green func-
tions at p; = 0. Again all physical quantities are independ-
ent of the point M in the sense that if for a certain functional
F[y,j defined through a set of constants Mi, mi', X~, we
change M~ to M2, there exist new constants m2' and )~, such
that all physical quantities remain unchanged. The change
M~ ~ M2 can be absorbed into new values of the constants
m' and X and a rescaling of the fields. We therefore write the
analog of Eq. (5..5) as

F[p„mMi2i, Xiii,g = [FZ ' 3pi„2m@, M2, X~,g. (5.8)

This equation is the functional equation of the renormal-
ization group, analogous to (5.4). In fact, (5.4) can be
recovered from (5.6) if we functionally expand this last one
in powers of p, (x).

The functional equations (5.4) or (5.6) are very useful,
as we shall show in this section. However one could object
that, if we want to use entirely the formalism of the gen-
erating functionals and not talk about Green functions,
these equations are not very convenient since the normal-
ization conditions (2.2) and (2.3), upon which they are
based, cannot be expressed in closed form in terms of
V(p.), Z(q, ) etc. The reason is that they involve values of
the Green functions for external momenta different from
zero and hence they need an infinite number of terms in
the development (2.21). We shall continue to use Eq.
(5.6), but, for the reader who wants to avoid reference to
Green functions altogether, we recall that one can use a
variety of normalization conditions expressible entirely in
terms of V(q, ) and Z(y, ). In fact, in the same way that,
we could normalize the Green functions away from the
origin in momentum space, we can normalize F[p.f away
from the origin in classical field space. We can, for example,
use a set of normalization conditions of the form

fl$2 —SS] Z3

Xw, ——Z3 '(d'V/dp. ') I„.=z, «'~, —= -R(M~, mP, Mi, &~i).

(5.11)

Therefore the functional equation of the renormalization
group reads, in this case,

F[q„mi2, Mi, X~,g
= I'[Z3' 'q. , Z3 'mi', M, R(M2, mi', Mi, X~,)j. (5.12)

The equation (5.12) is strictly equivalent to (5.6)
although some of the quantities appearing in the latter, like
the physical mass p, have more direct physical meaning.
Either one can be used in order to study the asymptotic
properties of the theory. Before doing that, we shall derive
another functional relation, the Callan —Symanzik equation,
which will be proved to be equivalent to the renormalization
group equation in the asymptotic region.

B. The Callan-Symanzik equation (Callan, 1970;
Symanzik, 1970)'

The renormalization group Eq. (5.6) or (5.12) derived
in the previous paragraph describe the invariance of the
theory under a change of the renormalization point. In this
paragraph we shall derive a similar equation which will
describe the response of the system under a change of scale.
Having obtained (5.6) or (5.12) we know that there is no
loss of information in working at a particular value of the
normalization point, therefore we shall choose to define the
theory using conditions (2.6) to (2.8) which correspond to&=0.

Up to now we have worked exclusively in terms of re-
normalized quantities, but it turns out that the physical
interpretation of the Callan —Symanzik equation is much
more transparent when derived starting from the unrenor-
malized Green functions, since the properties of Feynman
amplitudes are much simpler when a cutoff ensures con-
vergence in terms of bare quantities. We emphasize that
this change of language is dictated only by pedagogical
reasons, and in fact an alternative derivation without refer-
ence to cutoff and bare objects can be found in the liter-
ature. 7

I-et I „„be the generating functional of the unrenormal-
ized but regularized Green functions. It will depend on the
cutoff A, the bare mass p0 and coupling constant P0. If p,

Notice that, since m2 is no more the value of the physical
mass, it does not remain unchanged in the transformation.

' C. G. Callan (1970); K. Symanzik (1970). For a more formal
proof see, for instance, J. H. Lowenstein (1971).
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and X are the renormalized quantities defined by (2.6) to result is
(2.8), the renormalizability of the theory tells us that:

I'Ly, (x), p', Xj = lim I'„„PZo')'q, (x), po2, Xo, Aj. (5.13)

The bare quantities po and )«, as well as the wavefunction
renormalization Z3, all diverge when A —+ ~, but the left-
hand-side is finite. The conditions (2.6) to (2.8) can be
expressed in terms of the unrenormalized Green functions
and can be regarded as giving po Xo and Z3 as functions of
p, X, and A.. For dimensional reasons we have

= lim I' „(Zo')'(p/A, X) q, (x), H)L)2g'

(5.17)

Subtracting (5.13) from (5.17), we finally obtain the
Callan —Symanzik equation

Xo ——Xo(p/A, X), po ——pg(p/A, ).),
Zo"' ——Zg')'(p/A X)

Two ingredients will be used in the derivation.

(5.14)

= Agy. (x), ))i', X, r j,

(i) We first make the trivial remark that since the limit
(5.13) exists, it is invariant when we scale A ~ rA. We'
shall now define two new, T-dependent, renormalized
quantities.

A coupling constant ), through

(5.15a)

AE)p, (x), j)P, X, rj
~ 'v'0'(~v I ~ »r)

dpo
~pO2

= lim
P2fI21 VI ~,&)

v'rhere 6 is given by

(5.19)

and a shift of wavefunction renormalization through

Zo')2(p/rA, X)p"'r X = lim
Zo')2 (p/A, X,)

(5.15b)

The fact that p is independent of p is trivial since it is
dimensionless, what is not trivial however, is that the
limits (5.15) exist at all. This can be shown by expressing
them in terms of renormalized quantities.

(ii) The second ingredient is provided by ordinary di-
mensional analysis. Since I' is dimensionless, it is unchanged
when all dimensional quantities are scaled simultaneously.
Specifically

and is exhibited as an explicit integral over mass insertions
(the ol/o)po2 operation). It is this physical meaning of A

which is more involved to show when one works directly in
terms of renormalized quantities.

We shall argue later that (5.18) is in fact equivalent to
(5.6) or (5.12) in the asymptotic region. This should not
be too surprising since they both express the same content
of renormalizability. '

C. The differential equations

It is sometimes easier to extract the physical information
contained in Eqs. (5.6) or (5.12) and (5.18) by transform-
ing them into the equivalent differential equations.

I „„Lry,(rx), vapo, Xo, 7Aj = I'„„Pip,(x), )L)o, Xo, Aj. I.et us start with the renorrnalization group equations
(5.6) or (5.12) . By differentiating the former with respect

Let us now apply (i) and (ii). We first write (5.13) for to Mo2 and then setting Mi2 = M22 = M', we find
slightly different arguments:

p')'(~, X)I' '
q, (x/r), p,', X,

o), M' ol, , M'
M2 + P' —o7

o)M2 ))io BX~ ))i J ~)pc

X I'po, p,
' M' X~1 = 0 (5.20)

where

X q. ( / ), p'g'(p/A, &,), &o(p/A, &,), A

= lim I' „PZ3') (p/rA, X) (1/v)y, (x/r), p, g

(5.16)

BZo(Mo', p,', Mio, X))i)y' M' p', X))I = —M'
aM22 M22 M2

(5.22)

where we have used (5.15a) and (5.15b). We now change Equation (5.20) is the functional analog of the Ovsianikov
A. —+A/r, and scale all dimensional quantities by r The (195.6) equations for the Green functions. The correspond. -
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ing equation, derived in exactly the same way from (5.12}, Applying the operator of the lhs of (5.24) on (2.21) we
reads: obtain

M ' —X~ y —,4r

X m2 ——',q, — F[qg„m2, M2, X2rj = 0, (5.23)

with p' and y' given by formulae similar to (5.21) and
(5.22) in which we replace E, Zg, P2r and p2 by 8, Zg, X24

and m'.

Let us now use the same method in order to derive the
differential form of the Callan —Symanzik equation. We
differentiate (5.18) with respect to r and then put r = 1.
We then obtain

{V (&/») + P (l ) (~/») + 2~ (~) f dxq (x) [hlhq. (x) 3I

X F[q, (x), y2, Xg = h[q. (x), p', l~j, (5.24)

where

[ (e») + p(~) Ie») + —,"(~)~.(w~..)&~(. ",~)

= hp(qg„p2, X), (5.32)

I~(~/») + P(li) (~/») + 2V(~) L2+ q. (~/~q. ) 3I

X Z(q„p2, X) = hz(qg. , p2, X) . (5.33)

g(n, X) = (8 2/8 X)'U( n, X), (5.34)

hp(q ~' ~) —= (u'/~)h~(n, x), hz(q. , ~', &)
—= hz(n, x),

(5.35)
and write (5.32) and (5.33) as

[x(a/ax) —P, (n) (ol/Bn) —y, ( n)jg(n, x) = hg(n, x),
(5.36)

In the last section we had found convenient to use the
functions 'U(n, x) and z(n, x) defined in (4.16) and (4.25).
We shall further define:

p(~) = »„/~. l,=,

p(l~) = ap(r, X)/ar ~,=i

(5.25)

(5.26)

[x(B/Bx) —P, (n) (8/Bn) —y, (n) gs(n, x) = h, (n, x),
(5.37)

where we have set
Z„(p/A, P ) = (8/Br) log[r2g2(rp/A, X,)j ~,=i,

h[q, (x), u2, Xg

= lim Z„(p/A, X)po'(8/»o')

X F [Zo'"qg. (x), po', ~o, Ag

(5.27)

(5.28)

~( ) = 2 —[p(X)/Q —~(X)

1 p(X}
p (n) =

( ) ( )
'Yg(n

82
hg(n, x) = — —h~(n, x)

r(n) Bx2

(5.38)

2~(X) + [p(Z)/Xg
r(n)

(5.39a)

V(&) = —2 —(1/~2) h"'(0, ~2, ~),

p(X) = —2Xy(l~) —h&4&(p, = 0 i4' li).

(5.29)

(5.20)

The normalization of 6&2& is chosen such that it satisfies

F&"(p', i42, X)
h(2) ( ~2 ~2 P ) —2~2

p2+ ~2

= —2s '[1 —Z (—~', ~', ~) j.
+2~@2

Equation (5.28) shows that h[q, (x), p2, Xg is the generating
functional of the 1PI Green functions containing an arbi-
trary number of external lines and one zero momentum
mass insertion. When expanded in power series in qg„(5.24)
gives the well-known form of the Callan —Symanzik equa-
tions for Green functions. In this way, we can express p(X)
and p(li) in terms of renormalized Green functions by using
the normalization conditions for F&@ and F'4&, Eqs. (2.6)—
(2.8) . The result is

p. (n) = p. (n),
v(~)

V*(n) =
( ),

h.(, x) = — h, (,x).
r(n)

(5.39b)

Equations (5.20) or (5.23) and (5.24) or (5.36)—(5.37)
determine the asymptotic behavior of the theory for large
q, or large x. Indeed, order by order in A, we can show, using
Weinberg's theorem, that the rhs of (5.24) or (5.36)—(5.37)
is negligible. In an analogous way, we can. show that this
limit is obtained by letting p2 ~ 0 in (5.20). In both cases
we are left with a linear homogeneous 6rst order partial
differential equation, the solution of which is nothing other
than the asymptotic form of the functional equation we
started with, namely (5.4) and (5.18).

An explicit expression of the functions p's and y's per-
taining to g and s is given in Appendix B where we find:

The functional equation (5.24) implies correspond-
ing equations for V(qg, ), Z(q. ) etc. ~ ~ . Indeed, let us
expand h[q, (x), p2, Xj around q, = const. as we did for
I'[q, (x), p2, Xj in Eq. (2.21)

P. ( ) = P.(n) = 2n[3n ——:n'+ .],
~.(n) = 2[3n —2n'+ .
~ (n) = —-'(n'/6) + (5.39c)

D. The dilatation f ow
F[q, (x) j = —f d'x V(q, ) ~ —,'Z(q, ) (aq, ) + ~ ~ (2.21)

The recognition of the existence of the Aow X —+X. with
h[qg, (x)g = —f d'xhp(q, ) + 2hz(qg, ) (Bqg, ) 2 + ~ ~ ~ . (5.31) Xi ——X is a far reaching one, intrinsic to any renorrnalizable
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p&„

or

FIG. 2. Summary of the various stable or
unstable situations in the vicinity of a zero
of P in the ultraviolet (uv) or infrared
(ir) region. We have distinguished the case
of an odd (a) or even (b) zero. The even
case can be thought of as the collapse of
two nearby odd zeros.
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held theory. I.et us 6rst study the underlying elementary We shall limit our discussion to a 6nite, integer e. In the
group structure. From the definition (5.15a) we irnmedi- vicinity of X„, (5.43) gives
ately deduce

(5.40)

Hence, using as variable t = log v, we obtain that for all t

(5.41)
log for vL = 1

where P(X) is defined in (5.25). We see that P(),) is the
generator of the Row and can be compared to the Hamil-
tonian of the Schrodinger equation. If P(),) is known, the
solution can be written explicitly

' n —1 X —X~ X] —X~
for n& 1.

(5.44)

(5.42)

The critical points of the flow are given. by the zeroes of P.
If X happens to be chosen at such a zero, then it is invariant
in t Furthermor. e P determines also the stability properties
of the solution. Let us denote by ),„a zero of P and let us
study the solution in the vicinity of X . Assume that

P(X) a&(X —X„)"+ ~ ~ ~ . (5.43)

This approach was initiated by Kadanoff and Wilson, who investi-
gated the consequences on the effective action of grouping the variables
in domains of varying size. The parallel here is the mapping
Fpy. , pP, ) g ~ rLp'"(v, X)@„p',) g =—r„. The idea is that as ~ ~ ~,
F has a limit which is the fixed point of the transformation, and it is
assumed to describe the asymptotic behavior of F. Notice finally
that one could generalize this approach and study, instead of the scaling
A. + 7 A, the general transformation A —+f(A) where f(A) has a fixed
point at infinity. For a review of these ideas see Wilson and Kogut,
"The renormalization group and the &-expansion, " to appear in Physics
Reports in 1975.This general framework is also presented in a language
very close to the one followed in this work in the lectures by J. Zinn-
Justin, "Wilson's theory of critical phenomena and renormalized pertur-
bation theory, " Cargese, 1973.

~ We can look at the Callan-Symanzik equation

$8/at+ px(a/ax) + Ny(x) j r „~.&'"& = 0

as a Schrodinger equation with H = Hp+ V Hp = p(X)X(8/BX), and
V = my{)). We can therefore write X~ ——exp ef X~ o exp —Ng, etc.

If e = 1 we shall be attracted by ) if ~t ~ —~. Since
one cannot cross the zero we find that X, —) „=t P() )/ting X
e"' —+0 if cot ~ —~. Hence

if &v ) 0 we find an infrared (t ~ —~ ) attractor,
if &v ( 0 we find an ultraviolet (3 —& +~ ) attractor.

This is in fact the situation for any odd e since —(), —
X„)' " is always negative.

For even e, the situation changes. If X ) A„ then A& ) X

and again X&~ 3 as ~t~ —~. If X & A. , then X& & X

and) &~X as cot —+ ~. We illustrate all cases in Fig. 2.

The situation when P has several zeros is now clear:
attractors and repulsors alternate on the X axis. Notice that
multiple zeros shouM be counted accordingly.

From the above discussion we conclude that a critical
point is characterized by three parameters:

(i) its location X„,
(ii) its associated "frequency" ai which determines the

rate of approach. (The approach is slower for smaller or. )
(iii) Its index e. For e = 1 we have exponential decay

to stability exp( —
~

rut ~), while for e ) 1 we have only
power approach

~

) ~
—X

~ ~

cut ~' ". The'larger the index
e, the slower the approach.
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We can carry a parallel discussion for the function y(X).
Using the definition (5.15b) we find:

/

Instead of looking at A.o as a function of p and X, let us invert
the relation and look at X as a function of p and Xo, i.e.,
X = XL(p/A), Xo). We therefore obtain from (5.45), taking
the limit A —+ ~

dt'y(X(t', X)) = exp

(5.45)

P(X) = lim p(B/Bp) X(p/A, Xo) Ii„.

A similar equation holds for y(X) for which we find

y(X) = lim p(B/Bp) logZ~ —'(p/A, Xo) Ig, .

(5.49)

(5.50)
i.e. , p is driven along the Row. If P is a critical point, there
is no a priori reason why it should be a special point of y.
For a simple uv attractor of the form

we assume that a limited expansion of y around the value
is possible and we write y(p) = y(X ) + 0(p, —X ).

We then find

p(&) ~) pfinite& (5.46)

p(r, X) = v&'""&(logs) —&'+"&~"( ~ ~ ~ ) (5.47)

which is a typical situation when nearby singularities col-
lapse to a point.

We conclude this paragraph with a brief description of
what can be learned about the functions P (X) and y (X) of
the p4 theory from perturbation calculations alone. Obvi-
ously no- information can be obtained about the possible
presence of critical points away from the origin, but neces-
sarily P (0) = y (0) = 0 for any renormalizable field theory,
at least when computed in any finite order of perturbation.
Moreover such a computation gives P(X) as an analytic
function (in fact a polynomial). The best one can hope is
that, although P and p need not be analytic around X = 0,
perturbation theory correctly gives their successive deriva-
tives near the origin so that the essential features of Fig.
2 do not change. Needless to say that any other method
that would provide information about the analytic properties
of P and p around X ~ 0 would be very interesting. "

With this assumption, since 0 = 0 will always be a critical
point, we can determine its nature from perturbation. From
our previous discussion we see that it is sufhcient to compute
the lowest, non vanishing order of P('A) . Referring back to
our definition Eq. (5.25) we take the derivative with respect
to r at r = 1 of (5.15a) before the limit A —& Qc is taken. We
then find:

(5.48)

o S. Adler's idea of a "mode expansion" of the path integral could
in fact provide a nonperturbative method of studying field theory and
in particular its asymptotia. See for instance his article, Phys. Rev.
D 8) 2400 (1973).

Analogous formulae hold for higher order zeros. For example
if P ~ cu(X —X ) 2 with cv ) 0, X ( X, we write y(p) ~
p(X„) + (p —X„)y'(X„)+ ~ ~ ~ and we get from (5.45)

P(X) = XL3n —~i7cP+ - ],
y(x) = ——'a'+- ~ ~

(5.51)

(5.52)

where we recall that n = X/(4m)'.

Vl. POSITIVITY, BOUNDEDNESS AND SIGN OF
THE COUPLING CONSTANT

There exists an old belief among theorists that the physi-
cal coupling constant in p4 theory must be positive other-
wise all sorts of horrors may appear. There are several
intuitive arguments which support this belief.

(i) Let us first be very naive and forget about divergences
of perturbation theory and renormalization. In other words
let us just stay at the level of tree diagrams. In this case

Xo and the path integral (2.14) makes sense only for
X & 0. Alternatively, one could argue that the potentia, l

V(ip, ) in this approximation becomes unbounded from
below if X & 0. The trouble, of course, with this argument is
that P 0 is ill defined, and the above "proof" does not seem to
apply to X if higher orders are taken into account. For
example, looking at the expression for V(p.) LEq. (4.16)j
there is no obvious way to guess the correct sign of X without
making arbitrary assumptions about the contribution of the
higher orders.

(ii) Alternatively we can look at the first few terms in
the expansion of V or Z given in Sec. IV. As we have noticed

"For a summary, see for instance Callan's lectures at Cargese
(1973), and references therein.

Equations (5.49) and (5.50) show that one way to cal-
culate perturbatively P and y (and in fact the easiest one)
consists of the following

(i) Express everything in terms of the cut-off A, the
physical mass p, and the bare coupling constant X,.

(ii) Compute p(8/Bp) of X and logZ3 ' keeping Xo a,nd A
fixed.

(iii) Re-express Xo in terms of physical quantities and
take the limit A —+ ~.

For the reader who may feel uneasy with this interchange
of limits, we simply notice that he can avoid reference to
any cutoff altogether and use instead Eqs. (5.29) and
(5.30) which express P and y directly in terms of renormal-
ized quantities. The result in perturbation theory is, of
course, the same.

The actual calculation of P and y is done by several
authors. " A brief description, using our notation, is given
in Appendix B.The result, up to order A~, is
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already, if X & 0, singularities occur for real p, . In fact we
saw that V becomes complex to lowest order if

allows us to use the low-order estimates of P(n) and y(o.),
and (6.3) gives

1+ (~v'/2~') = o. n, (1/o. —-', logx) (6-4)

Since, for a massive theory, V must be real we conclude
that for X ( 0 the theory makes no sense. Again this argu-
ment can be considered at best as heuristic, since it is based
only on the first few terms in the A expansion.

Lx(~/») —(2~'+" ) (~/~~) —8(~ —2~'+" )3
X g..(n, x) = 0, (6.1)

where g„ is the asymptotic form of g(n, x) for large x, and
we have used Weinberg's theorem and assumption (i) in
order to get rid of the right hynd side. The general solution
of (6.1) is given. by the corresponding asymptotic form of
Eq. (5.18) which, for g(n, x), reads:

g, (n, x) = g.,(n„1) exp y(n, ) dx' (6 2)

with n satisfying the equation

I x(B/(3x) + P, (n) (6/Bo.) ga = 0, CX1 = O.'. (6.3)

According to the general discussion of Sec. V, and using
assumption (ii), in the region of n ( 0 and sufFiciently
close to zero, the origin is uv attractive, i.e., the theory is
asymptotically free. In this case the same assumption

"Although positivity of the interaction Lagrangian is very much
at the root of many developments in the domain of asymptotic freedom,
there does not seem to exist in the literature a full discussion of this
point. We heard Coleman's argument during seminars he was giving
during the summer of 1973.

It is obvious that, no rigorous proof can be given as long
as perturbation theory, in one form or another, remains our
only line of approach. The purpose of this section is to
clarify the assumptions involved and state how much can
be said starting from general principles. %e shall follow an
argument due to Coleman"; it is based on two working
assumptions and one conjecture which we whall explain
later. The assumptions are:

(i) Although the renormalization group and the Callan-
Symanzik equations have been obtained by perturbation
theory considerations, they are assumed to -have a much
more general validity, and in fact to govern the asymptotic
properties of the exact solution. Notice that this last state-
ment contains a very questionable assumption, namely that
terms which are asymptotically negligible order by order in
perturbation theory by a solid power of p', do not sum up to
give non-negligible terms.

(ii) The point X = 0 is a critical point and its nature can
be determined by perturbation theory.

These seem to us to be very mild assumptions and we
think that perturbation theory would make no sense would
they be violated.

We now write the Callan —Symanzik equation for V. Using
(5.36), (5.39), (5.51), and (5.52) we find:

On the other hand, the lowest order estimate of g„(o;„1)
is a positive number ( 3), and (6.2) tells us that

lim g„(n, x) = -', (1 ——,'cxlog
I
x I) (6.5)

This in turn means that the potential V(p, ) goes to —~
for large y„which contradicts the intuitive requirement of
the potential being bounded from below.

Let us recapitulate Coleman's argument. First one writes
the asymptotic form of the Callan —Symanzik equation for
the effective potential. One observes that, if A ( 0, the
origin is uv attractive, which means that, for large values
of the classical fields, the effective coupling constant tends
to zero. In this case one assumes that reliable conclusions
can be drawn from lowest order perturbation theory and
then one finds that the potential is unbounded from below.
On the contrary, if A. & 0, the origin is uv repulsive, i.e. ,
the effective coupling constant is driven away towards
higher values for large q„and lowest order perturbation
theory becomes unreliable.

Let us be slightly more general and discuss some renor-
malizable held theory in Euclidean space, involving only
Bose fields in 6nite number, distinguished by a discrete
index that we oiriit for brievety. Dual to this Geld is a
source J, and 6&;, is a functional of J that is formally
expressed as an infinite "Taylor" series in terms of the 2m

Green functions, each of which in turn is at best a formal
renormalized power series in the various coupling con-
stants. Now the path integral representation suggests some
global properties of the functional. However, we know that
it is plagued by infinities. Nevertheless we could use some
Pauli —Villars regularization curing almost all infinities
except perhaps the vacuum ones. These are discretely con-
cealed in the normalization by requiring that Gq;, (0) = 1.
If we think in terms of path integrals a careful studyshows!

"See Symanzik (1970) where further references on this point can
be found.

'4 We thank Glaser for several discussions on this point. He seemed
to be convinced that it was very unlikely that a proof of inequality
(6.7) could be given on the basis of Wightman's axioms only. If true,
these inequalities require most likely some information on the under-
lying Lagrangian structure.

As we see, the agument relies heavily on the fact that,
the effective potential must be bounded from below being
the energy density of a state with q, as the expectation
value of the field. This is a special case of a general property
formulated by Symanzik. " Since this problem is more
interesting than the particular application that is made
here and seems to the authors of this paper not to be fully
elucidated, "we think it worthwhile to present briefly what
it amounts to. We recall that among other applications the
requirement that the interaction part of a bare Lagrangian
(assumed to be non derivative) to define a positive func-
tional on classical function space is very much at the root
of the general discussion of asymptotic freedom of various
field theories.
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that these last infinities have two sources: (i) infinite
volume of space time, (ii) infinite number of degrees of
freedom even in a finite volume for a continuous system.
Nevertheless we shall assume that to a certain extent these
are not fundamental difficulties and as long as the cutoff is
large and the bare quantities expressed as functions of A
and the "physical ones" some sensible statements can be
made that remain valid in the limit A ~ ~. In other words
we would like to extrapolate to the renormalized theory
global statements that are true when various cutoRs are
imposed. This is where more work would certainly have to

and sets by virtue of (6.10)

I'(q, ) = min I"(J, q,). (6.12)

~, (x) = SG(J)/u(x),

If we exclude for simplicity cases of broken symmetry, it is
clear from the concavity (6.10) that the extremum is unique
and is reached for a J(x) satisfying

r'( J, + (1 — )J„p,) & I"(J„~,)

be done. and I'(p, ) coincides with the usual definition of the Legendre
transform. Now the added term in (6.11) being linear, we

Having thus presented our framework we may think of a]so have
the renormalized functional Gq;, (J) in the Euclidean region
as a functional average

Gq;. (J) = (exp(f d'xJ(x)&p(x)) ). (6.6) + (1 —~) I"(J., v.) (6.13)

f d *," a4x,„y(x„~~ ~, x.) G„..i'"& (x„",x,.)
)& P*(x ~i, ~ ~ ~, xg„) & 0 |t' zz VP„. (6.7)

This summarizes the positivity of the measure on the func-
tion space ~ and the fact that G~;.-, (0) = 1. This measure
might not be given for the renormalized theory by the
Feynman path integral formula. But the assumption that
such a measure exists is a far reaching statement. A weaker
form of (6.6) is obtained by expanding the exponential. It
asserts that the renormalized Green functions define positive
kernels. For any symmetric function of e arguments in a
suitable test space one should have

Consequently the minimum I'(p, ) is convex

I'(~v. , + (1 —~)~")

= min I (G(J) f ~—'( x) J( x)&„(x))

+ (1 —~) (G(J) —f d'»(x) ~..(x))1
= min (ni" (J, p„) + (1 —a)I"(J,q„))

& ~1'(v.,) + (1 —~)1'(~"). (6.14)
According to Symanzik'~ a generalization of Bochner's
theorem ensures that from (6.7) follows the existence of a
measure in such a way that (6.6) be true. Clearly an in-
equality like (6.7) cannot be tested by using perturbation
theory, and thus can at best be proved within a general
framework of axioms for field theory. It is remarkable that
the case e = 2 is always true as the reader will easily con-
vince himself, '4

I'(p. ) = —f d'xV(~. (x)) + 2Z(~.(x)) (~p.(x))'+ ..
V(~~. + (1 —~)~. ) & ~V(~.i) + (1 —~) V(v. )

~ Pci& Pc'2 and 0& o. & 1. (6.15)

As a by product of inequality (6.14) we have with the
definition of the eRective potential:

We now show some consequences of (6.6). Recall the
standard Holder inequality. For two positive functions f
and g and any measure dy if the following integrals exist
one has for every 0 & n & 1

f'dlf a" ' & (f dlf) (f dza)'

Extending this result to functionals and writing

Gq;„(J) = expG(J),

'I

(6 8)

(6.9)

G(~J, + (1 —~)J,) & ~G(J,) + (1 —~)G(J,). (6.10)

I"(J,~.) = G(J) —f d'»(x)v. (x)
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This inequality means that G(J) is a concave functional.
In Fig. 3(a) we have described pictorially this inequality.

The I.egendre transformation which allows one to go over
to the one-particle irreducible generating functional I'(q)
can be also obtained by a minimization procedure. Namely
one defines an intermediate quantity

This means that V(p, ) is concave )Fig. 3(c)j, and if it
exists at all it is necessarily bounded from below. We learn
furthermore that if it admits derivatives, its second deriva-
tive with respect to &p, (in the case of a unique field) or the
quadratic form of its second derivative 8 V/Bp, Bq „(in the
case of several fields) have to be positive.

To summarize our brief description of Symanzik s posi-
tivity, we see that the crucial step is the inequality (6.7)
from which follow the boundedness and the concavity of
the renormalized eRective potential. %e refer to Symanzik
(1970) for the discussion of broken symmetry. All these
properties are clearly analogous to those of the partition
function in statistical mechanics.

In Appendix C we shall describe interesting consequences
of these assumptions using entirely diGerent means which
combine the above positivity -in Euclidean space with the
underlying Hilbert space norm of states in the Minkowskian
region of the theory. Although we shall not be able to go as
far as one would wish, this combination shows indeed how
tight is field theory when one tries to combine all available
information.
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n(x)

= [1/(4~)') —x+ (1+ x) da

&( loga{ exp ( —a) —(1 + x) exp[ —(1 + x)a) l,
33(x) = [1/(4m)')[(1+ x) log(1+ x) —x).

Hence

b(x) = [1/(43r)')[(1+ x) log(1+ x) —x)'.

The second function is b(x) given by

(A1)

1

(2') '
(3}

d4k» d4k2 d4k3

(c)

X
() (ki + ks + k3)

(kis+ 1 + x) (kss+ 1+ x) (k33+ 1 + x)

i)(ki+ k.)
(kP + 1)'(k e + 1+ x) )

We use for the propagators the same parametrization as
before except that to take into account the global counter-
terms at a later stage, we cut all a integrations at 1/A. '. The
integration over four-momenta is trivial and

FIG. 3. The convexity properties of (a) the generating functional
G(j) of connected Green functions, (h) the generating functional
j. (g) of one particle irreducible Green functions, (c) of the effective
potential V(y) .

(4m ) 'Ps (x)
00(8)

dn» dO2 da.3
»/A, 2

APPENDIX A. EVALUATION OF INTEGRALS

We erst give here for completeness the explicit evaluation
of the integrals occurring in (4.13) and (4.14) yielding the
second-order contribution to the effective potential. We
compute in turn pi and (3.

X ([exp( —Z a'(1+ x))/( II a'a')')
» »&i&j&3

—3[exp ( —ai(1 + x) —(as + a3) ) /ai (as + a3) ) I

+ global counterterm

& (x) = 33(x)'
d4k |

u(x) =
(1-) (k + 1 + *

1

k + 1 (k' + 1)'I

=(1+ ) f(, l

—&J(, )
+ global counterterm.

da exp( —aA) for 3) 0..

We use Schwinger's parametric form Since k)p'$3 enters the expression for V, the counterterm is a
first degree polynomial in x designed to have $& = 0(x') for
small x. Now we evaluate fi(u) and f, (33) close to u = 0

oo (3}

Then
fi(~) = dai das da3 exp( —Q a,)/( II a,a;)'.

» »&~&i&3

d4kda, [exp( —a(k'+ 1+ x) )
(2~) '

—exp[—a(k'+ 1))+ ax exp[ a(k'+ 1)))k
OQ [exp( —ax) —1+ ax)

(4n-) ' da exp( —a)
A

—t'(u)

= 3 exp( —u)
"da dP exp[—(a+ P))

[~+ ( +~))'
3 exp( —e) )" " expL —e( + k)1

da dP
SP ]» (aP+ a+ P)'

Taking the derivative with respect to u yields

We integrate this expression twice by parts
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(logh. z —og—log2 —1+ "/+'
u —p —1 +'X (1/u+ logu —y—

Returning to $2

—-'(4zr) '&2 (x)
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s3) )exp[——(1 + x) si —($2 +

s '($2 + s3) '
OO

X d$1
exp[ —(si + s2) t»2

($1+ $2)'
B 2 3

1/2

hor, si(a '/b ')X exp[—or thor, 1
—1/2

Sh2or~si

overall counterterm+ (Xa '/4b, )si) + overa

the c s, 1 Januaii'y 1975s. Vol. 47, No.Rev. Mod. Phys. ,

s in Sec. IV.e meaning as in
t th dowers of these quan intities up o

order as wwell as q, x
x ) we findoe%cient of By, x

s after an o

lo [(1+ e ') / (1 —e ) )t'(1/sh8) + log e

(1+ x) (sh8+0

1

)sh'8e —' [(1+ x) sh8 + 2e~ "—

IZ 2

s3 =, ' ra cover v, and
e the s1, 0 space as s1

The result i
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We now change variable to z = log (1+ e 8)/(1 —e~). The complete value of u3 is therefore
The result for u9 is

—log(1 + x) + 1 —&41og2

00 s

(1+ sh2 —z) (1+ 4sh' —'z)

u8 = —L1/(1+ x) 2)glOg(1+ x) + x4(A —1)j. (A1.1)

The remaining integrals are

0o(3) $1$2s8 exPL (sl + $2 + $8) )
dSy dSo d$3

(S1S2 + $2$8 + S3S1)

The remaining integral is with s = —logx

0

OQ 8
cps

(1 + sh' —'z) (1 + 4sh' —'z)

4 ' logx 4 ' logx
dx dx

3 (1+ x)' 3 x' —x+ 1

= —
z4 log2 + ~4A.

00(3) sl exp[ —(sl + s2 + s3) g
d$y d$2 d$3

0 ($1$2 + $2$3 + S3Sl)

We note that

(up —u4)/(1 + x) ' = —(du2/dx+ u3) = 2L(1 + x) 2$—'

The integral giving the number A is a transcendental one

2 (A12)

logx
A = — dx x' —x+ 1

Inserting formulae (A7) (AS), (A10), (A11), and (A12)
in (A6) we obtain the desired contribution after the sub-
traction of a constant

Finally

1 sinx(2r/3)
23' sin(2r/3)

3" 1

2 p (1+3p)' i
= 1.1719&36. (A9)2+ 3p 2j

dilog exp (ilr/3) —dilog exp (—ilr/3)

exp (ilr/3) —exp (—in./3)
Z (5)

= —;~I
——; log(1+ *) + x/(1+ x)

+ L2x/(1 + x) 7glog(1 + x) + ~4A —1g
—Lx2/(1+ x)2jglog(1+ x) + '(A —1)j
+ x4Lx2/(1 + x)'j + finite constant}

as quoted in Table II.

(A13)

1
I
—log(1 + x) + 1 + z42$.

x We shall follow the conventional procedure to compute
the functions P and y according to the discussion of Sec. D.
Q'e will then apply these results to study the asymptotic
behavior of V and Z as discussed in Sec. V.C in order to
check our calculations.

Similarly

1

(1 + x)'
—~og(1+ x) + 2 —

—,
' logg —2 f gg

0
All that is required is thus the cutoff dependence of the

coupling constant and wavefunction renorrnalization.z(1 + 2sh'-,'z)
(1 + sh'-'z) (1 + 4sh'-'z) ' We recall that the steps are the following:

APPENDIX B. CALCULATION OF p AND y TO
ORDER

(A10)

Now

00 z(1 + 2sh' —'z)
ds (1+ sh'-'z) (1+ 4sh'-'z)'

4 ' logx 4 ' logxdx- + dx
9 p 1 —x+x' 9 p (1+x)'

2 x logx
dx3, (1 —x+ x')'

We recognize in the first integral the number A, the second
is proportional to log2 and for the third it is again propor-
tional to A. Finally

z(1 + 2sh'-', z)
cR = 3A —

~~ log2.(1+ sh' —'z) (1+4sh'-'z)'
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p = u(a/ap, )), = —A(8/BA)X

p = p(a/ap) logZ8
—' ———A. (B/BA) logZ3 ' P.p fixed).

(H1)

It is required for consistency that after the above deriva-
tives are taken and everything is expressed in terms of
physical quantities all the logA's dependence cancels.

(i) Introduce a cutoff A in a coherent fashion in order
to give a meaning to the Feynman perturbative amplitudes
expressed in terms of bare quantities.

(ii) Use as parameters, the cutoff A, the physical mass
p, and the bare coupling constant Ao.

(iii) Compute p(B/Bp) of X and logZ3 ', keeping Xp fixed.
(iv) Re-express Xp in terms of physical quantities, and

then let the cutoff A go to infinity
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TABLE III. Calculation of the infinite parts of I'&2& (ps) and I'&4& (0) up to f('.

)&p d'k
&a(k(', yo')

2 (2&r) 4

Los d'k&d'k+4ks
& ' (k( + 4 + 4 —p) &a(k(', pp ) &&t(4 & po') &a(4, yp ) + irrelevant and p independent

3! (2&r) o.

Xpo 1 Ao s As ps Ao

I &s&(p2) —(po + p ) ———A' —po log ——po (1+ y) 3A logq —3yo' — log — + (y+ 1 —log2) log ———log — + &p(;»„(p')pp' + irrelevant
2 (42r) o pps 6(42r) ' 2 pp' pp 2 po

3&o' d'k
L&~(k' p o') 1'

2 (2&r) 4

d'k&d'k2d4ks d'k d'k, d'ko—3&p' 6&'&(k& + 4+ 4) C
&h(k&' p o') j'&~(ks'& p o') ~h(k()' po') —i ~p' (~«(k('& su') j' —g&o' &a(k&' &o') L~A(k ' yo') g'

(22r) ' (2n. ) ' i 22r) ' '
(22r) '

r(i& (0) —)&p
3

log —+ &
—1 —log2

2 (4&r)' p
o'

3)&p' 1 As s hs
log — + log ——(y —log2) + cte

(M) ' 2 ~o' pu

3 &os As Xps As A2
log — + 2 log —(; —1 —log2) + (y —1 —log2)' —— --- —log —— —y —1

4 (4&r)' po' ~ps 4 (42r)' p, ' p, ,
s

g)&2(n) = 8(n —1/A').

The regularized propagator 62&(k', pp') is thus

expt —(k'+ vp') /A'g
&& ( '& 8') (32)

We now compute simply I'&2&(P') and I'&4&(0) in terms of
) 0, po', A' up to two loops. Only those contributions which
are unbounded when A~ ~ are of interest.

The diagrams, the corresponding integrals and the
asymptotic expansion in A' are displayed in Table III.

It turns out, as it is in fact clear from the onset, that the
seagull contributions could altogether be omitted (this
corresponds in the operator formalism to work with a
Wick-ordered Lagrangian). We have kept them here in
order to check their cancellation and hence our algebra.
Also we did not bother to compute to order As a P-inde-
pendent term corresponding to the last diagram in Table
III for I'&» (p') since for our calculation only the p-depend-
ent part of I'~2) enters at the order of 2 loops.

We turn now to the explicit calculation of these functions
up to order A2. We introduce a cutoff A. according to the
generalized Pauli —pillars prescription. To be precise we
make the choice

We are now ready to obtain P and p to order As. With the
help of Table III, we find:

A' X()
'-A~

Zs ' ——1 + — log —+ cte
~
+ 0(5')

12 (42r) ' pps j
ate =—independent of A,

1 Xp ( A2
Sl +' —O')og ——Oe(&+2)+o(&))

2 (42r)' p

3 X02 A2
g, ' 2, —— " A' log —+ (2 —1) —log2),

2 (42r)' pp'

3 X ' A'l' A2

+ — As log —,
~ + 2 log —(p —1 —log2)

4 (42r) ' )«p'i pp

3 ) A. A~
+ (& —1 —log&)*) + — &e' —,—log—

4 (42r) pp Pp

3Xp (1 f A—(1+ v) I+
(42r) 4

&,2 ( pp'

A2+ log —,(& —log2) + e&e) + 0(ll') .
Po

The notation y is for the Euler constant y = I"(1).
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We now eliminate pp2 in favor of p2 and observe indeed Hence to order A2

the cancellation of seagulls. We set:
y = —A'(a'/6) . (86)

a = X/(4m)' ao ——Xo/(4m)'

and find

A2
npZ3 1 —

~ %exp log — p —T —log2
p

Formulae (85) and (86) reappear in the text with A = 1
as (5.51) and (5.52) . We can now apply this calculation to
the asymptotic behavior of V and Z as in Sec. V.C. Accord-

Z, ' = 1+A'L(ao'/12) log(A'/ti') + cteg+ 0(A') (84) ing to (538) and (539

(9 A2 '-A'
+ A'a(P

l

— log — + log —P, (y —1 —log2)
p2 p2

(84)

Terms proportional to A2 have disappeared, only logA terms
survive.

1 P/(4m) ' 1 $3Aa —(17/3) A'a' + ~ ~ .g
2 1 ——,'(P/X+ y) 2 1 ——,'L3Aa] + ~ ~ ~

= —,'aL3Aa —(7/6)A' '+ ~ ~ g (87)

()
1 2y + P/X 1 3Aa —(17/3) A'a' —-'A' a'
2 1 —-', (P/X+ y) 2 1 ——',Aa+

We now apply the definitions of P and y
= —',L3« ——', A'a' + ~ ~ (88)

(89)

8 8
A = 2 logZ3 '

~
a

cr logA' 8 logA' )

That means we should now verify that

E*(~/») —2(a'+ )(~ /~ a) —2(a —a'/2+ ")j
+ Za'aoI —2«0+ A'ao'L4»g(A'/P')

+ —', (y —1 —log2) + 3(p —»g2))I.
X g, {a,x) = 0 mod(a'), (810)

To order' A2 the Z32 in front of the last bracket can be set
equal to 1.

I

Finally we re-express everything in terms of n, that is:

with g given by (5.34) and g extracted from Table I as
the asymptotic behavior of g to order n2. Thus we have:

a- = 3 + -'a»g~+ (3a'l4) L(»g*)' —3log* —1j

0! 3 ( 3 A'= ——A'+ ——A-~ a+ —Aa' log—
6 2 & 2 ti'

We readily find combining (87), (88) and (811) that
(810) is indeed satisfied. Equation (810) reappears in the
text as (6.11).Similarly we should verify that

2 g A2+ y —1 —log2 + —A'a' log—
2 p

3+ -A'a'(3y —1 —3 log2) + ~ ~ ~

2

The expected "miracle" occurs, namely all divergent terms
disappear and we are left with

P(X) = X$3Aa —(17/3)A'a'+ ~ ~ j a = X/(4m)'.

(85)

Note that all y's, log2's, etc. ~ ~ which were due to the par-
ticular kind of cutoff chosen have also disappeared.

The calculation of y is even simpler. Recall that

tt(8/BA. ) logZ3 ' i„,i„—
y = —A(8/ah. ) A'(ao'/12) /log(h. '/p') + ctej

A'(a(P/6) . —

L~(a/») ——;(a+.~ ~ ) (a/aa) + a'/12js„(a, x) = 0

mod(as), (812)

where according to Table II we have

s „(a,x) = 1+ —,'a + —,'a'(loge + cte). (813}

Again, using (87) and (89) we find that (812) is verified.

Of course we could have proceeded in the reverse way.
Namely use our expressions for V and Z to derive P and y.
It is nice however to see the various approaches lead to the
same consistent result. As far as practical experience teaches
it seems that the calculations of the infinite parts in terms
of a well defined cutoff procedure give a quicker and simpler
way to obtain the result whenever they are possible.

APPENDIX C. POSITIVITY OF THE COUPLING
CONSTANT AND ASYMPTOTIC BEHAVIOR OF
THE SCATTERING AMPLITUDE

This Appendix can be read independently of the rest of
this paper. We have seen in Sec. VI that in cp4 theory it is
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1 "A(x, ~4)
F(i'r 4 ir) = 2- dXq

4 X —4r
where A is the absorptive part

(C1)

A (x, ~4) = Q (2t + 1) Imf ( (x)P 1t 1 + 8/ —,
' (3x —4) )) 0;

(C2)

very likely that the coupling constant if small has to be
positive. Furthermore we could as well use as renormalized
quantity not the off-shell value of the four-point amplitude
at zero momenta, but some other value evaluated for
instance when external momenta are on shell. Relating
this information to the usual unitarity will provide further
constraints on the theory. In order to make contact with
the usual language of 5-matrix theory we shall speak of the
on-shell four-point function as the m x' scattering amplitude
in a fictitious world where we would neglect isospin, baryons,

Also s, t, u will have their usual meaning as square
center of mass energies in the three identical channels of
xoxo scattering.

Using standard conventions for on shell unitarity, the
scattering amplitude is in fact the analytic continuation of
I'i ) (pi, p~, p~, p4) with p,' = —p, in our Euclidean metric.
To simplify further, we take p, as the unit of energy. Hence
we see that we can interpret the renormalized coupling
constant as proportional to the opposite of the value of the
mono scattering amplitude at the symmetry point, F(s =
~4, ~4, ~4). We shall see that the knowledge of the "sign" of
the coupling constant will have some observable conse-
quences on the mm on-shell amplitude. If one has more in-
formation like the fact that not only F(&4, z4, ~4) ( 0, but
also ReF & 0, in the physical sheet of the real s, t, u plane
the amplitude will be even more constrained. The latter
hypothesis is in fact no more unrealistic as the previous one,
for there is no a priori reason to choose the normalization
point at the center of the Mandelstam triangle. Here we
want to make a nonexhaustive list of facts which follow
from these hypotheses.

(1) From an 5-matrix point of view, there is no visible
objection to having F(~~, z~, z~) & 0() ( 0). Indeed Atkin-
son (1968) has elaborated a procedure of construction of a
xw —+ mx amplitude which:

(i) satisfies a Mandelstam representation, and in par-
ticular unsubtracted dispersion relations for

~
t

~
( 4;

(ii) is symmetric in s, t, u;
(iii) has elastic unitarity exactly satisfied for 4 ( s (

16;
(iv) satisfies the partial wave amplitude inequalities

required by unitarity for s ) 16.

From positivity and unsubtracted dispersion relations,
we get

F(s, t, n) is positive inside the whole region s ( 4, t ( 4,I ( 4 and, in particular,

)&o
F(4, 0, 0) & 0 (positive scattering length) . (C3)

ImF(s, t = 0) Cs(r,

Hence the first conclusion is:

(C5)

limsa, (s) W 0.

But then, if lim(so &(s) ) is finite and nonzero, we can easily
see by inserting into a dispersion relation that ReF —+ ~
and hence so.&(s) —+ ~. Hence in the asymptotic behavior
of o-& a mass must explicitly appear.

If the assumption (IrnF/ReF) ) n is not made, the con-
clusions are much weaker: we get that in —e & t & 0 there
is a nonzero set where lim

~
F

~
W 0.

Then, for s large

j.
~
F(s, t) i'dt

S

a,i '& consts ' (c6)

where the constant is strictly positive.

(4) The assumption
i
F

~

~C W 0 for s —+ ~ uniformly
at all physical angles, is not tenable.

This assumption would correspond to believing that the
naive lowest order perturbation with a finite, non-zero
coupling constant holds.

Indeed if
~

F
~

—+ C at all angles,

Proof

Jin and Martin (1964) have shown that the (even)
number of subtractions does not change from —e ( t & 0
to t = 4. By assumption, there are no subtractions for—c & t & 0, so there are no subtractions for 0 & t & 4. If
there are no subtractions, positivity in 0 & t ( 4, s outside
the cuts, is evident. %e get positivity inside the whole
triangle by circular permutations of s, t and u.

(3) If F(~, ~, -g') ( 0

lim ( sup I
F(~ t) I) & 0.

8~os —e(t(0

This is just the inverse of the previous statement.

This result would be of a great interest if one knew that
the high energy amplitude is not purely real. Assume that
(ImF/ReF) ) n, then:

hence F(~4, ~4, ~4) ) 0. In (C2) Pt, (x) is the t-th Legendre
polynomial.

a, i C'/s,

then:

so-, g
—+C' & 0, (cr)

Of course we cannot guarantee that the full content of the
unitarity condition can be satisfi. ed because one looks here
only at the two-body sector. Unfortunately, for the time
being, this is the only thing which can be done rigorously.

(2) If F(s, t = 0) —+0 for s —+ ~ and also F(s, t) —+0
for s —+ ~ and —e ( t ( 0 (c as small as one wishes), then
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F(s, t= 0)

(s 2)2 oo

= F(2, t = o)+ 2$ dS S O.qoq~i

(s' —2)'(s" —s')

(c8)
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It is easy to see that if s'0-& & C

F(s, t = 0) —+ —~ (C9)

for s —+ i~. Therefore, by the Phragmen —I indelof theorem,
we cannot have

IF(s, t= 0) I
—+C for s —+ ~~. (C10)

z' 2 ImF(z') ReF(z') dz'
F z '= A+Bz+— z"(z' —z)

(C11)

We know that ImF(z') ) 0; if ReF(z') ( 0 we have for
a&0

0 (
I
F(z) I' & A + Bz. (C12)

Taking s = —x:

x' 2 ImF(z')
I
ReF(z')

I
dz'

&
I

A
I
+

I
B

I
xz"(z'+ x)

(C13)

for x —++ oo.

From this we deduce easily that the bound
I F(z) I' (

A' + B'
I

z
I

holds in any complex direction. Then, by

(5) Assume that F(x4, ze, z4) ( 0 propagates to the whole
physical sheet in the form ReF ( 0. What are the con-

sequences'

One consequence is that the total cross-section cannot
rise to ~ . More speci6cally there exists a sequence of ener-
gies s~s2. ~ .s„, s„—+ Dc for which at, & ~ is bounded and

I
F I/s is bounded.

This is a direct consequence of the Khuri —Kinoshita or
Jin —MacDowell theorems. Let us give a direct proof. We
use the variable z = (s —2)'. We look at the forward
amplitude. (F(z))' = G(z) is analytic in a cut plane and
bounded by z(logz)'. So

standard techniques it can be shown that an average of
(F(z) ) 2 also satisfies such a bound on the real axis. Notice
also that A and B are expressible in terms of —F(s = 2,
t = 0) and (d2/ds2) F(s = 2, t = 0) for which there exist
absolute bounds (Martin, 1965; Lukaszuk and Martin,
1967). So the knowledge of ReF ( 0 gives us a numerical
bound on the limit of the total cross section for s —+ ~,
which is proportional to (I B I)'l'.

Another consequence of F ( 0 in the triangle s ( 4,
t & 4, u ( 4 is that the Bonnier —Vinh Mau (1968) lower
bound of F(4, 0, 0) (the scattering length !) can be con-
siderably improved, following for instance the ideas of
Grassberger and Kuhnelt ( Grassberger and Kuhnelt, 1973).

Is it possible to forbid completely this situations So far
we do not know.
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