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The theory of a free string is first presented classically and quantum mechanically both in a covari-
ant and a nonexplicitly covariant treatment. Then the concepts and techniques obtained from
the free string are used to build the operator formalism of dual models. Both the conventional
Veneziano model and the Neveu —Schwarz-Ramond model are presented. The self-consistency of
these models at the tree and loop levels is investigated, and the interpretation of the results obtained
is given in terms of the string picture.
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quantum gravity is still a rather academic subject, progress
has been made towards computing corrections to the
classical theory. In weak interactions there is now interest
in the so-called unified theories of weak and electromagnetic
interactions which have the advantage of being renormal-
izable so that finite corrections can be computed.

What these three fields have in common is the following:
they are all described by quantum field theory, the coupling
constants are small so that expansions in perturbation
theory are relevant, they describe a small number of par-
ticles (for fields), they are all theories which have a gauge
group leaving the Lagrangian invariant.

%hen we consider now the field of strong interactions we
find that no theory yet exists which can claim to encompass
all available data. The essential reasons for the theorists'
failure to find such a theory are the following:

(1) The large number of particles or resonance states one
has to take into account.

(2) The fact that the strong interactions coupling con-
st@,nts are not small.

By themselves, these facts do not necessarily dismiss the
possibility that local field theories may describe strong
'interactions in terms of a few elementary fields. Indeed, a
lot is learned about strong interactions by postulating that
hadrons are made of spin 1/2 "quarks" (Gell-Mann (1964),
Zweig (1964) ) . Further the interaction between quarks can
be thought of as mediated by spin 1 gluons. From the
theorists point of view, Yang —Mills theories of quarks and
gluons are by far the most interesting LFritzsch, Gell —Mann,
Leutwyler (1973)j, and hence one may speculate that
strong, weak, and electromagnetic interactions could be
unified within the framework of a gauge theory where the
symmetry of the Lagrangian would solely be broken by the
vacuum.

Interactions among particles are classified into gravita-
tional, weak, electromagnetic, and strong. Of these the 6rst
three are rather well understood. The electromagnetic inter-
action is of course the best understood of all because not
only do we know the classical theory of electromagnetism
but also, thanks to quantum electrodynamics, we can com-
pute the quantum corrections to the classical theory. The
agreement between the mathematical apparatus and experi-
ence in quantum electrodynamics is quite remarkable. For
gravity, the classical theory is well understood, and although
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These theories however have to face the challenges that
quarks are not seen experimentally so that one has to find
a containment mechanism for them within the framework
of field theory. Secondly even if such a mechanism exists, to
go from the simple quark —gluon world to the actual had-
ronic world is not easy since it involves summing the whole

perturbation expansion.

The S-matrix approach grew out of this need to bypass
the problems associated with field theory and to deal only
with physical quantities. The axioms of the S-matrix are
Lorentz invariance, unitarity, T, C, and I' invariance,
analyticity in the complex plane of the Mandelstam varia-
bles, maximal analyticity in the complex plane of the angular
momentum (we will refer nontechnically to this axiom as
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124 J. Scherk: An introduction to the theory of dual models and strings

"Regge behavior"), factorizability of the residues of particle
poles with real coupling constants, (particles coupled
through imaginary coupling constants are usually referred
to as "ghosts" and are according to our last axiom, highly
und. esirable in any theory).

The 5-matrix can be built in a perturbative expansion in
terms of a dimensionless coupling constant g. At the lowest
order in g, the "Born term" of this expansion should satisfy
I,orentz invariance; T, C, I' invariance; analyticity with
only poles; crossing symmetry; Regge behavior (without
fixed poles); factorization of the pole residues with real
coupling constants.

With -the exception of Regge behavior without fixed poles,
these postulates are satisfied by any Born term of a decent
6eld theory. The distinction between held theories and dual
models comes of the fact that Regge behavior without
fixed poles and analyticity imply the existence of an in6nite
number of resonances even at the level of the Born approxi-
mation, and this clearly takes us beyond the realm of con-
ventional field theory.

In addition to these natural postulates, one generally adds
the requirement that all particle poles (except those which
have vacuum quantum numbers) lie on linear Regge tra-
jectories of universal slope n' 0.95 GeV 2. Thig has both
a theoretical reason (in the sense that it is difFicult to concoct
satisfactory dual models with nonlinear trajectories) and an
experimental reason, since both mesons and baryons seem
to fall on such linear trajectories, as one can best verify for
non-strange baryon states from J = 3/2 to 11/2. One also
adds the natural requirement that the spectrum in the
Born approximation be as realistic as possible so that loop
corrections may be small. Practically this amounts to requir-
ing that the initial spectrum has the same features as one
may expect from a quark —gluon scheme.

The presumed smallness of loop corrections in such an
"ideal" model is linked to the observation that compared to
the typical scale of strong interactions (1/a"12~ 1 GeV)
resonances are narrow, the widths of the well-established
resonances being at most 0.35. Further, properties which
should be broken by loop diagram, like exchange degen-
eracy are well established experimentally and hence at least
in certain energy regions, the loop contributions should be
small.

Given their guesswork origin, dual models went much
further along the way than one might have expected. First,
generalizations of the Veneziano formula to X-point func-
tions describing the scattering for X scalars were found
(Bardakci and Ruegg (1968), Virasoro (1969), Chan
(1968), Goebel and Sakita (1969), Bardakci and Ruegg
(1969)j. Then it was shown that these X-point functions
did satisfy the nontrivial property of factorizability of all
particle poles LFubini and Veneziano (1969), Bardakci and
Mandelstam (1969) and an operator formalism was devel-
oped. (Fubini, Gordon, Veneziano (1969),Susskind (1970)$.

The spectrum which emerged from the factorization of
the Veneziano model (often called "conventional model" )
revealed a degeneracy at each mass level, asymptotically in-
creasing exponentially with the mass, a result which coin-
cided with the prediction of the statistical bootstrap model
of Hagedorn (1968) and Frautschi (1971). In addition, the
study of inclusive reactions within the context of dual

models revealed a sharp cutoff in the momentum transfer,
a result also predicted by the statistical bootstrap model
LVirasoro (1971), Gordon and Veneziano (1971), De Tar,
Kang, Chung-I Tan and Weis (1971)g.

A remaining very important problem was that this
spectrum seemed to contain both positive and negative
norm states (ghosts), a natural consequence of the Lorentz
covariance of the factorization procedure. Virasoro (1970)
discovered however that an infinite set of gauge identities
were satisfied in the model, provided that the intercept of
the leading trajecory a(0) was set equal to 1. This was
clearly a step away from reality (where n(0) 1/2 would
be much preferred), but it also led. to a more satisfactory
situation from the theoretical point of view since it per-
mitted to prove that in this case all negative norm states
were indeed decoupled LBrower (1972), Goddard and
Thorn (1972)$. An additional property of the model
emerged namely that the no-ghost theorem held only if the
dimension of spacetime was smaller or equal to a critical
dimension (26 in the conventional model). Another dual
model, closely related to the Veneziano model, but restricted
to meson states of vacuum quantum numbers was discovered
by Virasoro (1969) and generalized by Shapiro (1970), and
it was also shown that if the intercept n(0) of the leading
trajectory was 2, and D (dimension of space —time) less or
equal to 26, its spectrum was also ghost-free.

For D = 26, it was shown that the model was unitarizable
PLovelace (1971)j and that a spectrum of bound states
appeared even at the one-loop level, which was factorizable
LCremmer and Scherk (1972), Clavelli and Shapiro (1973))
and identical with the ghost-free physical states of the
Virasoro-Shapiro model LOlive and Scherk (1973a,) j. The
Regge behavior produced by this new set of states was
typical of what one could expect from a bare pomeron
LAlessandrini, Amati and Morel (1972)g with slope 1/2 of
the reggeori slope. Hence it was shown that there was room
in the theory for a pomeron even though its intercept was
most unrealistic (2 instead of 1) .

Of the same lines as the Veneziano model, a modification
of the conventional model based on the work of Bardakci
and Halpern (1971) was proposed by Clavelli and Shapiro
(1973) and Schwarz (1973) . It has all the features we have
previously described except that 26 is replaced by 26-X
where Ã is an integer associated with an internal 5U(X)
symmetry group. Although this model is not realistic it
teaches us that the "critical" dimension of space time in
these models has something to do with the symmetries of
the model.

An even more sophisticated model could be built based on
the work of Ramond (1971) and Neveu and Schwarz
(1971a,b). In addition to the features we have mentioned
before, it contains both fermions (half integral spins) and
mesons (integral spins), and a kind of G parity classifies rne-
sonic states in two categories. The positive definiteness of the
spectrum holds if the intercept in the ferrnion sector is 1/2,
in the meson sector 1, and if the dimension of spacetime is
less or equal to 10. $Goddard and Thorn (1972), Schwarz
(1972), Brower and Friedman (1973), Schwarz (1973)g. En
addition, if D = 10, ghost-free fermion —fermion amplitudes
can satisfactorily be constructed, and have duality )Olive
and Scherk (1973b), Schwarz and Wu (1973), Corrigan
(1974), Corrigan, Goddard, Olive and Smith (1973)j. All

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



J. Scherk: An introduction to the theory of dual models and strings 125

these results are dependent on a larger algebra of gauges
working in this model than in the conventional model. The
tachyon problem which plagues the conventional model with
cx(0) = 1 is also improved since only one tachyon appears
in this model which is not on the n(0) = 1, but on the
a(0) = 1/2 trajectory (so-called "pion"). Hence it is clear
that although still unphysical, this model is much more
realistic than the conventional model.

It is hoped that there exists at least one, and maybe
unique, model working for D = 4 and having the good
features of the previous one. It has been shown that the
inclusion of an SU(3) of color /Schwarz (1973)g or para-
statistics t Hopkinson and Tucker (1974)j does bring down
D from 10 to 4, but unfortunately the fermion —fermion
scattering amplitudes in this model have wrong duality
properties; so the search for a hypothetical "right model"
still goes on.

It is quite likely however, that if such a "right model" was
found, it may still have unphysical intercepts (massless
vector mesons, spin 2 "graviton, " massless spin 1/2 and
may be associated tachyons) . Hence it is quite possible
that mechanisms of spontaneous symmetry breaking are
needed in dual models as they are in the massless Yang—
Mills theory. At least one such example has been found
LCremmer and Scherk, (1974)) and one can show that the
renormalized mass of the singlet vector meson at the first
level is non zero, in spite of the gauge identities. More
general mechanisms may exist giving a mass to all vector
mesons initially massless LBardakci (1974)g.

Another most important development in the history of
the subject was the (almost) complete elucidation of its
properties in terms of an underlying Lagrangian formalism
describing one-dimensional structures (instead of pointlike),
called "strings. " This Lagrangian formalism exists at the
classical level, at the first quantized level and it is almost
certain that it also exists at the second quantized level.
Originally proposed by Narnbu (1969), Nielsen (1970) and
Susskind (1970), the string picture became very clear after
the work of Goddard, Goldstone, Rebbi and Thorn (1973)
(G.G.R.T.) who were able to derive everything found
previously about the free spectrum of the conventional
model from a first quantized Lagrangian describing a free
string. They found that the Lagrangian had a big invariance
group which generated the Virasoro gauges, and that the
conditions on D and n(0) came only after first quantization.
Also it was possible to quantize the theory in two different
ways, one where explicit covariance is maintained but
where the absence of ghosts is nontrivial; the other one,
where only spacelike oscillators appear, but where Lorentz
invariance has to be proved. The first of these ways leads
us directly into the operator formalism. The other way
leads us into the functional integral formalism set up pre-
viously by Gervais and Sakita (1971,1973) where scattering
of strings is described by the simple picture of strings break-
ing and joining at the end (Mandelstam (1973)g. Hence
from the string picture one easily obtains the "twig" dia-
grams introduced by Zweig (1964), and generalized to dual
diagrams by Harari (1969) and Rosner (1969) provided
that one localizes the "quarks" at the ends of the string
and the string itself be identified with the neutral "glue"
binding the quarks. Finally according to recent works of
Ramond '(1974) dealing with the free string and Kaku and

Kikkawa (1974) the. formalism of Mandelstam can be
derived from a second quantized Lagrangian formalism
where fields are quantized on null planes. These fields them-
selves depend on a space-time path rather than on a point.

Hence dual models, originally very close to the S-matrix
approach have gone closer and closer towards field theory.
The identification of dua, l models with conventional (local)
field theories is still a fascinating subject. It was shown that
if one lets the slope of the dual models a' go to zero and
keeps some masses fixed, one can obtain from dual models
various field theories: X@' if the mass of the ground state
scalar is held fixed $Scherk (1971), Nakanishi (1972)),
massless Yang —Mills if the mass of the first vector meson
is held at zero LNeveu and Scherk (1972a) j, massive Yang—
Mills theory with spontaneous symmetry breaking if the
mass of the first vector meson. is held nonzero LGervais and
Neveu (1972)). It is also specula, ted that the inverse direc-
tion could also be followed. The essential distinction between
dual models and field theories as we said previously, is that
the first have Regge behavior at the tree level while the
second do not. However. , if one sums the perturbation
expansion in field theories, the theory may eventually
Reggeize, and it was shown that necessary criteria of Regg~-
ization are met by the Yang —Mills-type theories (Cornwall,
Levin, and Tiktopoulos (1973), Grisaru, Schnitzer, and
Tsao (1973), Schnitzer (1973)$. 't Hooft (1973) was able
to show that in a weak coupling limit of a Yang —Mills
theory of quarks and gluons with an internal 5U(cV) where
2V is very large, the dominant diagrams have the planar
structure typical of duality diagrams and hence one could
conjecture that the Born term in a dual expansion may well
be an infinite resummation of field theoretic diagrams as
suggested initially by Sakita and Uirasoro (1970) and.
Nielsen and Susskind (1970). If this could fully be proved,
it would bring a unification of dual models with gauge
theories which have already much in common. Another
line of approach followed by Nielsen and Olesen. (1973) is to
show that stringlike solutions exist even in local field theory
in certain limits as exemplified by the existence of vortex
lines in superconductivity.

As we shall see, in the models that we shall present, the
ends of the strings ("quarks"?) are massless and the reader
may wonder if an introduction of masses at the end of the
string may not be the solution to the unphysical intercepts
and could not also take care of the breaking of SU(3). The
classical theory of such a string exists but due to the non
linearity of the problem it is impossible to solve the equa-
tions of motion classically and to set up a Hamiltonian
formalism (Chodos and Thorn (1974) and unpublished
works of Gell —Mann, Rebbi, Dashen, Schwarz). This is
why spontaneous symmetry breaking seems a better solu-
tion to this problem.

We have deliberately presented many lines of thought so
that the reader may realize the avenues still open in the
studies of dual models. In the approach we shall follow we
use the string picture classically and in the first quantization
to set up all the concepts and machinery which will later be
used in the operator formalism. In our opinion the treatment
of interacting strings via operator formalism is not superior
to functional integral techniques. We shall use the operator
formalism mainly because of personal taste and also because
of the general consensus that whatever has been proved
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via functional integrals needs rechecking at the level of the
combinations of diagrams P't Hooft and Veltman (1973)j,
so that the existence of an operator formalism is needed
anyhow. Secondly, functional integrals and operator for-
malism correspond to the quantization of the same Lagran-
gian in two different gauges and hence it is precious to show
tha, t both formalisms lead to the same results (so far, this
has always been the case). Since for lack of space it is
impossible to treat both, we shall refer to the review article
of Rebbi (1974) for a complete treatment of the string.

The guideline in our approach will be the unity between
string pictures and operator formalism, and gauge invariance
will be our Ariadne's thread throughout the paper. Because
gauge invariance is so strongly emphasized, subjects like
duality are treated rather sketchily and the reader is invited
to read existing reviews on the subject, especially the review
of Alessandrini, Amati, le Bellac, Olive (1971) where the
duality properties of tree graphs are treated in great detail.
We also recommend strongly the review of Schwarz (1973)
which treats the no-ghost theorem in a different way and
presents the 26-X model. Also recommended is the review
of Veneziano (1974), more oriented towards the S-matrix.
In Sec. I we shall start with Nambu's Lagrangian for the
free string. We shall solve the equation of motion both in a
covariant and in a transverse gauge, and the gauge identities
of Virasoro shall appear at that stage already. In Sec. II we
quantize the free string and prove the Lorentz covariance of
the transverse gauge and the no-ghost theorem in the
covariant approach; the conditions D = 26, cx (0) = 1 appear
at that state. In Sec. III we follow the covariant treatment
and introduce interactions which respect the gauge identities
necessary for the decoupling of ghosts and obtain the dual
amplitudes. Sec. IV is a short review of the results obtained
from the loop diagrams and show how the Pomeron is
obtained from the nonplanar one-loop diagram and can be
identified with the dosed string. Section V covers the spin-
ning string (Neveu —Schwarz —Ramond model) beginning
with the elegant equations of Wess and Zumino (1973),then
solving them and quantizing them. Fermions and mesons
are obtained from two opposite boundary conditions of the
classical equations. The same line of construction is followed
as in the Veneziano model and hence proofs are shortened.
This section includes the most recent results on fermion-
fermion amplitudes.

(Bx/Bt)' = 1 —(Bx'/Bt)' & 0.

on the other hand, one also has

(Bx/Ba)' = —(Bx'/80. )' & 0.

If we make a Lorentz transformation x„' = A„„x„;hence in
general xo will depend on 0. and 7. If we give the two-dimen-
sional surface x& = x"(0., r), the evolution of the string in
any Lorentz frame is obtained by slicing the surface with
the family of planes p&x„= r.

In the particular frame we have previously discussed, at
each point of the surface, there is a spacelike and a timelike
tangent vector. This has to be true in any frame and the
necessary and sufficient condition for this is expressed by

(Bx~ Bx„)' Bx&'l' (Bx" '
E~~ ~~) ~r) (1.4)

This is deduced by requiring that

LBx"/Bv + X(Bx"/Ocr) P

takes both positive and negative values when X is varied.
To simplify notations we shall use

x = Bx"/87, x = Bx~/80, (I.6)

where the integrated is the length of an infinitesimal element
of world leone.

The simplest step beyond a pointlike object is a one-
dimensional object, i.e., a string. It is parametrized by two
internal coordinates 0. and r. The first can be thought of as
labeling the points along the string, while the second plays
the role of the proper time. During its evolution, the string
spans a two-dimensional surface in space —time given by
x~ = x~(~, r).

If we identify r with the time: x = t = r, at a given
time t, the string is a curve in the three-dimensional space,
parameterized by the functions x' = x'(0, t) .

We note that if we do not want the string to propagate
faster than light at any of its points, its motion must obey

I ~ THE RELATIVISTIC STRING'

1. Classical theory of a relativistic string

We shall use the metric g
' = —g" = +1 g" = 0, if i N J

and the units 5 = c = 1.

The path followed by a point particle is classically para-
metrized by one parameter, r, which can be the proper
time. Here x& = x&(r) describes the position of the particle
for each value of the parameter r. The relativistic action for
a point particle is

and we shall often suppress Lorentz indices when not
explicitly needed.

2. Action principle for the string

In analogy with the relativistic action of a point particle,
Nambu (1970) suggested that the relativistic action for a
free string be proportional to the area of the surface spanned
in spacetime by the evolution of the string.

For a two-dimensional surface embedded in space —time,
the area element is

b

5 = —m L(Bx&/87.) 'g't' dr,
a

(1.7)

' The material covered in this section and the next one closely follows
the work of G.G.R.T.

The quantity under the square root is positive if the
surface is of the kind previously discussed.
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We can also introduce a more symmetric notation for the
space of the two parameters a- and w

(I.8)

The metric tensor of this two-dimensional space is given by

x„-+ x„+ Bx„(o., r),

65 =
Tj

8L d 8L d
do —Bx» + , —Bx» ),

8x» dr 8x» do j
7I QL T2

do 5x» + dr, Bx»
P 8$~ Tj Tg BSP,

—g~/2(i ) = 8 x»8//x», (I.9)
//'8 8I 8

dr do.
{
— +—,

)
ox».

2
. (Br 8x„8o 8x'»)where the indices a and P take the values 0 and 1, and one

checks that

[—detg(i) l'/2 do. dr = d2A.

To determine the trajectory of the string, we vary by keep-
ing the initial and final positions of the string fixed

(I 1o)

The geometrical meaning of the surface element is
rejected in its invariance under any change of parametriza-
tion. If -we set

5x»(r = r,)
= 0 = 8x»(r = r,),

This gives us:

8x»(o. = 0, 2r) is arbitrary.

f'= t'(io, ti),

then we have

BI.
(1) the edge condition:, = 0,

BXp
cr= 0, ~, (I 18)

8x» 8x» 8x» 8f/, 8x» 8t g

which we can write as:

(I.12)
8 BJ 8 BL

(2) the equations of motion: — +—,= 0.
87 l9x~ Bo Bx~

(I.19)

g.~(i-) = ~.. .g;(t-)~,&,

but since: M b
——8i,/8t bT: tr'ansposed, we see that:

—detg = —detg (detcV) '

and since

We can also perform the variation in a different way: the
initial and final positions of the string are not kept fixed,
but only actual motions of the string are allowed, i.e. ,
which satisfy the previous equations. This second type of
variation is used to compute the momentum and the angular

(I.14) momentum of the string.
I.et us perform a translation for instance

d'i = dh di 2 = di 2 di 2/~ det~
)

(I.20)

the infinitesimal d2A is invariant. So we postulate the fol-
lowing action for the string':

We can get the variation of 6S for a small surface o-1 & 0 &
~2, ~1 & 7- & 7-o

T2

2' 0!
do I

—
detgl

'" 6S = ada (8L/8x») + dr(8L/8x„') ghx».
(c)

(I.21)

j T2

d7-
2&cx

do j (x, x/) 2 x&2x2) 1/2
From this we deduce the Row of energy momentum along
any curve (c) on the surface spanned by the string. I.et us
define the energy momentum current on the surface 0-, ~.

We have considered that the initial and final positions of
the string are given by x„(o., ri), x„(o, r2) and that 0 &
o- & x. Here 0-, ~ are dimensionless parameters. Since
$5j = 0

t in mass units' and Pd2A) = —2 Ln'$ = —2, i.e.,
o.' has the dimension of the inverse of a mass square, or the
square of a length. YVe shall see that n' measures the slope
of Regge trajectories.

P,» = 8L/8x„, —P," = —8L/8x»')

(doP, » + drP. »)

if (c) is a closed curve, P» = 0 because

(I.22)

3. Equations of motion for the string

let us perform an infinitesimal variation of the path
traced by the string during its evolution in order to find
the equations of motion from the principle of least action:

'This action was first written by NaInbu (1970). See also Chang
and Mansouri (1972), Hara (1971), Goto (1971) and Minami (1972) .

doP, »+ drP. »

(c)

(P.») (do)= Aux of
{ { through the line

l

kP.") I d-)
/'8 8..;~~ —~. + —~.) = o.
(Br 8o

(I.23)
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128 J. Scherk: An introduction to the theory of dual models and strings

Since the second equation of motion states that' the
current

Let us now write explicitly the equations of motion

P„~=-
X@,

1 (* 'x') x ' —x"x„
2v.n' ( (x x') ' —x"i') '" ' (I.34)

is conserved on the surface

(8/Ba)P. &+ (8/87. )P,& = 0.

The total momentum of the string, PI", is given by

(I.24)

1 (* x') x„—x'x'~

2~n' ((x x')' —x"x') 'i'

So the equations of motion read:

(x x').x„—x'x„'
(1) edge condition: x.x~ 2 x&2x2 I/2

(I.35)

P~ = daP, ~+ d~P.~ = doP, ~,
(t.) 0

(I.25)

where c is any curve going from one boundary to the other.
It is conserved since

for cr = O, m,

(x x') x ' —x"x„(2)—
8 ((x'x )' x"~')"')

(I.36)

BP"/Br = da(8/Bv )P,"
a (x x') x~ —i'x'~+-

Do ((*'.x') ' —x"x') "' (I.37)

do (8/Bo-) P,&

Under this form they are obviously unsolvable. We note
the following identities however

= P.~(a = 0) —P.~(a = ~) = 0. (I.26)

x„' = x„+BA„„x„,

Let us similarly perform an infinitesimal Lorentz transfor-
mation on the string:

P,".x„= 0,

P~".x„= 0)

P,' + x"/4''n" = 0,

P.'+ P/4~'n" = 0. (I.38)

Since for o- = 0, m we have P I" = 0, we deduce that
x'(o. = 0, v.) = 0, i.e. , the end points of the string move at
the speed of Light

x" x' + 2x„x„5A„„=x' if: 5A„„= —t(A.„, (I.28)
4. Covariant solution of the equations of motion

6$ = daP. ~OA.„„x„dTP.~OA„,x„,

der P "x„—P,"x„d7 P "x„—P "x„

(I.29)

(I.30)

I.et us now And general solutions to the equations of
motion. As we have seen, the action integrand, and hence
the equations of motion, are invariant under reparametriza-
tion o. = a (o, r), 7. .= ~(o, r). Hence we can choose a
parametrization which will give a simple form to the equa-
tions of motion. The simplest choice is an orthonormal
system of coordinates on the surface, i.e. :

x'x=O, x" + x2 = 0. (I.39)

(M~" M ~") M~" = P~x" —P "x~ (I.31)

So we can de6ne an angular momentum current on the
surface The + sign in the second equa, tion is due to the fact that

x" is spacelike, while i is timelike. In this parametrization:

Because I. is I,orentz invariant we know that 6$ = 0 which
means that for a closed curve

P, = (1/2v-n') x„,

P.~ = ( —1/2~n') x'~.

(I.40)

(I.41)

(I 32) The edge condition is

for 0- = O, m. . (I.42)
this implies that the angular momentum current is con-
served The equations of motion

8 8—M~" + —M~"= 0
BT 80

(I.33) x„—x„"= 0. (I.43)

This equation can also be checked directly by using the
equations of motion.

The general solution of the equations of motion is

x„= x„('&(o —~) + x„('&(o + r). (I 44)
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So we can solve in general the equations of motion. A Let us introduce some new variables which allow a certain
general solution satisfying x„= 0 o- = 0, x is simplification of the notation

+00

X~ = X„"COSno ) (I.45)
np = 2n'pp" n„= (2n') '"(e) '"a

(I.60)

and the equation of motion becomes In terms of these new variables, one now has

x.~+ ri'x. ~ = 0,

Let us introduce

n = 0, 1, 2, ~ ~ ~ (I.46)
x'+ i = g n„& exp/ ie(—r + o) j, (I.61)

a ~ = L1/2(2n'e)'~'j(x I' —irix»), (I.47) (x'+ i)' = —g exp/ —in(r + o) )2L„2n', (I.62)

from the equations of motion it follows that

a & = a„&(0) exp (—inr),

a„"p = a *~(0) exp(+inr) .

This works for n Q 0. If e = 0

(I.48)
L- = (—1/2) Z n-=n-(1/2n'). (I.63)

(I 49) So the constraint equations are now expressed as an infinite
set of initial conditions (independent of time)

i„~= 0 (I.50) LpI = (—1/4n'} g n~ „n = 0.

has for solution

xp" = qp" + cr,

Note in particular the constraint L,o = 0 which gives us the
mass shell condition

I'„p~ = /c2~ 'n= (1/~}pp~, xp" = qp" + 2n'pp"r
M' = p' = —(1/2n') g ea„*~a„~. (I.65)

Solving for x.&

2(2n'e)'I'a "= x„"—wax ",

x " = iL(2n') ' '/B' 'j (a ~ —a *"),

so that

x„(o., r) = qpI'+ 2n'ppl'r —i(2n')'~'

xg" ta„*&(0) exp(Ger) —a &(0) exp( —Acr) j

(I.52)

(I.53)

(I.54)

cosfto .

We have in this way solved the equations of motion and
expressed the constraints in a completely covariant manner.

After quantization, the L~ conditions will become the
gauge conditions discovered by Virasoro (1970) . Chang and
Mansouri (1972) were the first to notice that these condi-
tions could be derived from the string Lagrangian and did
not need to be imposed as additional conditions to the
equations of motion. Because of the existence of the con-
straints, clearly the variables a &, u„*& are not dynamically
independent. For quantization it is useful to give up mo-
mentarily Lorentz covariance and find a smaller set of
dynamical variables which will be unconstrained.

5. Constraints

The above formula solves the equations of motion. How-
ever, the constraints x.x' = 0, x'+ x" = 0 have not yet
been taken into account. We note that if we extend analyti-
cally x„(o., r) from 0 & o. & m to —m & cr & m. we have

6. Noncovariant solution of the equations of
ITI ot Ion

The conditions x x' = 0, x' + x" = 0 do not specify
completely the choice of coordinates along the string since
there exists an infinity of orthonormal systems on a surface.
We are now going to choose a unique system.

*'( o)= x(o), —. (I.56) x x'=0 x'+ x" = 0. (I.66)

x'( —o-) = —x'(o ) .

We can unify the constraints by requiring that

(I.57) Let us make a change of variables o. = o(o, r), r .= r(o-, r)
and impose that the orthonormality conditions are pre-
served. Since

(x'+ x)' = 0

x' + x = 2n'pp"

for —~&o-&~, (I.58) BX 8X Bv BX Bo

87" 87 87 8(T $97

we obtain

8X l9X 80 BX BV

80 Bo 80 Br 80
(I.67)

+ (2n')'~'Q I (ri)'"a *expL+in(r + o) g
n=l

+ (e)'~'a„exp/ —ie(r+ o) ji.
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0 87

7 80

Bo O'T

80 BV
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This implies that tion, i.e., nI'E„,, is constant along g. So

l9 8 7==0,
B7 t9(T

t9 8
cr —— cr= 0

87 F90'
(I.69)

n. P. = (n.P)/,
n x = 2(n. P)r

(I 78)

(I.79)
i.e., the new variables satisfy the d'Alembert equation with
respect to the old ones.

Let us choose an arbitrary timelike vector n)'(n2 ) 0).
We can choose as our new variable

are the equations defining our choice of gauge. In addition
we have also the equations of motion

(8/82)P. + (8/Ba)P. -= 0, (I.SO)

n„x~(~, ~) = Xr. (I.70)
P = 0, 0. = O, m.. (I.81)

This is compatible with the d'Alembert equation since x&

satisfies the d'Alembert equation. So we assume the con- Projecting the 6rst of these on the vector e, and using
(I.78) we deduce that

x x' = 0, x'2 + x2 = 0 (I.71) (8/80) n. P = 0 and from (I.81) n P = 0. (I.82)

since one has It is now easy to show that this last equation, together
with the explicit expression of P

P,~ = (1/2~a')x„

in orthonormal coordinates. Hence

(I.72)
1 (* x') x '—x2x '

2~~) L(x.x)) 2 x)2x2$1/2
(I.83)

n„P," = n„x„/22ra' = X/22m'

and the total momentum is obtained by integrating 0 from
0 to x. Then

implies that:

x g' = 0.

Similarly, using explicitly P one gets that

(I.84)

n„P" = n„x„/2n = X/2n ) X = 2a'e„P'", (I.74) x" +x2= 0, (I.85)

and the parametrization is fixed by

n„x~ = 2n'(n„P~) ~.

The meaning of this equation is simple: we intersect the
surface x)'(o,r) with the plane n„x)' = 2a'(n„P)') 2.. In
itself the function x)'(a, 2.) does not. specify which pa-
rametrization is used, but once the surface is intersected
by the plane n„x" = 2)2.'(n. P)2-, the r variable is uniquely
defined, as well as the lines of constant v or the surface.
Note how restricted this parametrization is since the lines
of constant r are in general not contained in a hyperplane.

n~ ——(1/2'") (uo W ui), (I.86)

uv = n+v + u v+. —N, v;, (I.87)

I;, e;: transverse variables.

and hence our assertion that our gauge is an orthonormal
gauge is verified.

We now define the transverse gauge as the gauge where
n is a light-like vector n = (1, —1, 0, 0) . It is convenient to
introduce light cone coordinates:

Now that the lines of constant r are defined, the orthogo-
nal family of the lines of constant 0 is also well defined and
in principle we can deduce the 0- parametrization from our
choice of v and the orthonormality condition. It is, however,
easier to choose the 0 parametrization in a specific way and
show that together with the equations of motion it implies
the orthonormality condition.

The equations dehning the gauge are now

X+ = 2o,V'+v,

P.+ = (1/~)P+. (I.SS)

Define o. as follows

E'„= total momentum

n "P„=2m"P„'(a') 2')

(I.76)

(I.77)

P,~.x„' = 0,
x"

P.'+, = 0.4x'a" (I.89)

This reads

I et us see immediately that the only dynamical variables
are the transverse ones. In a general gauge (even non
orthonormal)

and cr is proportional to the projection of the total energy of
the string on E'~ or the energy —momentum density projec- (1/m. )P+ 0

P+ x '+P x '= P'x' (I.90)
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covariant gauge. The total angular momentum is defined by

x ' = (m/P+)P x,', (I.91) ~pv do ~py v Xvy p,

(2/m) P+P ——P 'P = x,"2/4m'n",

= (1/2 p+) L '(P ')'+ (x'')'/4 "3.

(I.92)

(I.93)
(I.103)

As before, the equations of motion are Substituting the expression for x& in terms of oscillators
we get

(I.94) M " = q„p, —q„p„—i Q Pa„* a„"—a„*"a„g.
n=l.

(I.104)

for the transverse variables. When the x;(0, r) are known,
x+, x are known, up to an integration constant q . Hence In this expression not only transverse oscillators enter. We
the independent variables are x;(0, r), q, p+. define

We can expand as before

x;(0., r) = q;+ 2a'p, r

cospro

~1/2

Using the notations

n'= 2np' (). ' = (2n')"'a (e)'"

we have

—i(2n')'12 g Pa„+' exp(iver) —a„' exp( inr—)j
n~l

(I.95)

(I.96)

M»" = q„p„—q„p„+ 5„„. (I.105)

The classical spin of the string can be computed from the
equation:

J' = ', I 5»„5—»„—(2/M') P„S.,P,S»]. (I.106)

An interesting inequality between the spin and the mass
can be obtained by considering an orthonormal parametriz-
ation of the string such that x is identi6ed with v, and.
choosing the frame of reference to be the rest frame of the
string. Then due to the fact that a„= 0, the second term
in (I.106) vanishes. Comparing J2 with n'2M' one is led to
prove the inequality (I and m are not summed. upon)

x»((T) r) =
q» + cY0»r 'L Q Pcx ~» xep(11' )r

n=l &mm(a* a)(a * a ) (I.107)

costa.—cx„» exp( —iver) j n
(I.97)

u„—= (1/2a'p+) L„~, (I.98)

(I.99)

So a discrete set of independent variables is the

I ~-', q , p+ I. -
7. Mass and angular momentum of the string

We can obviously express through the constraints a in
terms of u„', cxo+. One finds:

which follows directly from Schwarz's inequality. In this
expression the scalar product is taken over all spacial com-
ponents of a„~. Hence for all motions of the string

J & n'M2

and the equality is reached only for a rigid rotating string
where only the first mode of oscillation is excited. The string
picture accounts thus naturally for the nonexistence of
particles of high spin and low mass (so-called "ancestors"
in Regge literature) .

II. HAMILTONIAN FORMALISM AND
QUANTIZATION

1. Hamiltonian formalism for singular Lagrangians
M2 = 2P+;I' —I';I"

and according to the constraint giving us

no ——2n'P = (1/2n'P„) Lo~

we get:

M' = 2P+P —P P' = (1/n') Q r)u *'a '

(I.100)

(I.101)

(I.102)

The parameter v has heretofore been considered as an
evolution parameter. It is therefore normal to consider

P,» = —(BL/Bx»)

as the momentum conjugate to x"(0, r) . 0 then denotes the
collection of points along the string. However if we try to
express L as function of x»((T, r), (8/Bo.)x»(0., r), P„", it
turns out to be impossible because of the relations

Hence we check that M2 & 0, a fact not obvious in the
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This situation is similar to the case of a relativistic point
particle where

Dirac showed then that the Hamiltonian of the system
is given by

I. = —m f (Bx~/a~)'g'I'
Bx"/87

P~ = m, „, (II.3) H= Hp+Qi @ (p;, q), (II.7)

and we have the constraint

P2 —m2 = 0 (II.4)

where the p are constant in the p;, q, . Choosing them is
equivalent in usual language to a choice of gauge. Note that
II has not necessarily the dimensions of an energyt The
"time" evolution of a'n arbitrary function f(p, q) is given by

In this case it is possible in order to establish a canonical
formalism either: f(p q) =

f f H} + ~f/~r (II.8)

(a) to disregard the constraints and compute all Poisson
brackets and then afterwards to impose the constraints on
the dynamical system. This is the Dirac (1950, . 1958)
method of quantization and it is covariant, but leads, when
quantized, to an indefinite metric space.

(b) to reduce the number of degrees of freedom and
eliminate all redundant variables. Then we have only to
assume canonical Poisson brackets for the independent
variables. This leads when quantized to a positive metric
space, but the procedure is not explicitly covariant.

2. Covariant Hamiltonian formalism

We shall follow Dirac (1950, 1958) and Fadeev (1969) in
the treatment of Lagrangians which imply primary con-
straints. Let us recall briefly the results of Dirac: Let us
consider a Lagrangian

The observables of the system are functions such that at a
given time

(11.9)

The closed algebra of the constraints implies that

(1) if the constraints are applied at r = 0 they are valid
at any later time.

(2) if a function. is an observable at a given time, its
time evolution is independent of the choice of the n (p, , q, ).

Let us apply this first to a point particle whose Lagrangian
is given by equation (II.3), so that we have the constraint
expressed by Eq. (II.4). Then

Hp —— Pl'(Bx„/Br—) —L = 0

L(q', q') identically so that (II.6b) is trivially satisfied. Equation
(II.6a) is also trivially satisfied, since we have only one

such that there is a set of algebraic constraints between the
q; and p; denoted by the equations

H —= v(p' —nz').

(q;, p) =0, n=1 2 ~ ~ M (II.5)
The equation of motion is

%e assume that these equations are independent and
irreducible in the sense that the surface M defined by these
equations, called links or primary constraints, is such that
any function vanishing an M is a superposition of con-
straints. We assume further that the constraints @ and the
canonical Hamiltonian

Hp ——Qp;q, —L

„= fx„, H'} = —2pp„

expresses the motion on a straight line, but also specifies 7
in terms of v. %Then the system is quantized the constraint
II = 0 is now imposed on the state vector and we get the
Klein —Gordon equatian, while the v evolution of the system
is disregarded as irrelevant because r and p2 cannot be
specihed independently. So one is left with the equation

form a closed algebra through Poisson brackets

f4' ~ A} = Z & sv@v

fH„y.} = Zc.~,.

(II.6a)

(II.6b)

(p' —m')
i 0 ) = o.

Let us now apply this to the string where

q;~ x"(p, r),

p, —+ P.&(o, r) = —(BL/Bx&).

(II.10)

(II.11)

Often (II.6b) is realized by the vanishing of Hp itself due to W, th; l p; s bracketsalgebraic relations. In these equations we are reminded that:

Bi Bg

~pi iraqi .

fx~(0, r), x"(p-', r) } = 0, f P,~(~, r), P."(~', r) } = 0,

(II.12)

is the dehnition of the Poisson bracket. f x~(~, ~), P.~(~', ~) } = —g~"b(~ —~') .
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And we have the following links or primary constraints: So the choice H = Lo corresponds to the orth onormal
parametrization seen before.

I', -x' = 0, P,'+ x"/4zr'n" = 0. (II.13) Expanding as before:

We extend the definition of o. from [0, n] to [—zr, zr] by x„= q„+ np„r+ z g n„&[(coszzo/)zz], (II.23)

P."( ) = P."(+ )

—zr ( o. ( +m.

x„'(—o) = —x„'(o),

(II.14)
P,„= (1/2mn') fnp„+ Q n „coszzo}. (II.24)

Then the constraints can be expressed as
Using the equation

1 +
L„= ——

4
do exp(zzzo) [ir(2n') 'I'P, + x'/(2n') "']' coszza. coszzo. ' = m[8(o + o') + 6(o —o')], (II.25)

= 0 (II 15)

for all e. They are indeed independent and irreducible. %e
check then that

{n ", n "}= 2izzn'g""8,

fq, np j = —2ng"

(II.26)

(II.27)

do{—xP, —I}= 0 Expressing these Poisson brackets in terms of the a„& oscil-
lators, we get

identically since L = —iI',

so that the second equation is trivially true.

Further the Poisson bracket algebra of the L„closes as
it should

fa i', a "+} = zg""8, ,

and

(II.28)

(II.29)

{L,L j = i(m —zz)L„ (II.16) H = —n'p' Q zza I'*a„„=Lp
n=l

(II.3o)

So the 7. evolution of the system is solely generated by the
constraints and

then

a.„i' = —{H,a„"}= —zzza„&.

H = gii„L„. (II.17) Hence

The choice of the v s is arbitrary, and choosing a v is equiva-
lent to choosing a gauge. A very convenient gauge is the
one where:

a.~(r) = a„~(0) exp( zzzr). — (II.31)

At 7- = 0 the constraints I„=0 are imposed and are then
valid at any later time.

H= Zo. (II.18)
3. Quantization in the covariant formalism

x„= fx„, Hj = do'{ (zrn'P, ' + x"/4n"zr), x„(o, r) j,

We can now compute the r evolution of x„(o, r) We now regard the dynamical variables a„&, q&, p& as
operators whose commutators are given by the correspond-
ence principle

x„= 2zrn'P, „(o., i-) . (II.19) z f P.B.j —+ [commutator].

Similarly one gets So we postulate:

P, = fP„II}= (1/2n'zr)x„".

So we recover the equations of motion

(II.20) [a i', a +"] = —gi'"B,

[V", p"] = —zg"",

(II.32)

(II.33)

x„—x„"=0, (II 21) and

and the constraints are [x&(o, r), P,"(o', r) ]= —g&"6 (o —o') . (II.34)

ix'= 0, x'+ x'2 = 0. (II.22) We have now to define the Hilbert space on which the
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oscillators operate. So we introduce a
I o, p) vector such that

a~I0, p) =0, p"
I 0, p& = p"

I o, p&, (11.35)

where
I 0, p & is an eigenstate of the momentum operator.

The excitation levels of the string are now defined as any
vector of the type

{IIa-,.+"")
I o& (II.36)

This space has an indefinite metrix because of the g&" in
Eqs. (II.32, 33). It is often customary in dual models to
choose the unit of mass such that 2o.' = 1 since it simplifies
the equations a lot. In these units the I'ubini —Veneziano
(1970) fields are defined as follows:

j. dx dy f(*)g(y):P(y)::P'(x):,
4 p, 2~xx 2ury

(II.44)

For
I

x
I
(

I y I
the left hand side is not well defined (since

the normal ordered product is non singular at x = y) and
we must be careful when writing P„(x)P„(y) that the con-
dltlon

I
x

I
&

I y I
is satisfied.

In this equation the quantity —g„„l xy/(x —y)'g plays
the role of the "contraction" used in Wick's theorem to
express the product of operators in. terms of their normal
ordered product. Computing the commutator of two L,
operators we are led to

I

f(*)g(y):P'(*)::P'(y):
1 dx Cly

4 p, 2ixx 2imy

Q„(s) = q" —ip~ lnz —i g La„+s" —a z ")/(n)'ls
n=1

(II.37)

where

r, =
I
x

I
&

I y I, r, =
I
x

I
«

I y

P„(s) = is(dQ„/dz) = p&+ Q (e)'Isl a„+s"+ a s—"j.
n=l

Q„(e') = x„(, = 0)

have been chosen such that the products of operators inside
the integrands are well defined. To evaluate .Ps(x)::P'(y):

(II.38) we apply Wick's theorem remembering that contractions
within a normal ordered product do not occur. We get four

Wenote the connection with thefieldsintroducedpreviously terms with one contraction and two terms with two con-
tractions of the type

and
:P( )P( )::P( )P( ):

I

P„(s) = (x+ x') (o., i) for z = expLi(r + ~) j.
(II.39)

xy xy x y=
gpav g""

(x —y) (x —y) ' (x —y)
= D

L = (—1/4s. ) do exp(in~):P'I exp(iLr + o) jj:,

PI' should not be confused with P,I".

The L, constraints are now operators defined as

where D is the dimension of spacetime. Hence we see
clearly that the commutation will contain a c number
depending on D, and that this is an inescapable consequence
of the quantization procedure. This provides the reason
why the theory depends so crucially on D. So

(II.40)

where the . '. indicate normal ordering. It is readily checked
that I,„ is 7 independent, and that L,„can be expressed as

L = —
~ dy 2ixy y".P y 2'. ,

:P'(x)::P'(y): =:P'(x)P'(y):
—L4 y/(* —y)'j:P(*)P(y): + 2DI: Y/( —y)'3

The rest of the computation is easy: We interchange x, y
and notice that inside the normal ordered product we can
interchange P (x) and P (y) freely, one obtains

where integration is performed around the origin. More
generally we can define "genera, lized Virasoro gauges"
through the formula

dX
I Lr, L,j = . . f(x) g(y) I

—
I xy/(x —y)'j

.p 24&x 2$%'y

Lf = ~~ dy 2smy y .P y 2. . (II.42)
&(:P(x)P(y): + DI x'y'/2(x —y)'gl,

where

(II.46)

To work out the algebra of the Lf operators we note that'

P.(x)P.(y) =:P.(x)P.(y):
—g..Cxy/(x —y)'3 if I*I & I y I.

The x integration is evaluated simply. by taking the residue
at x = y and one obtains

'The method which follows can be generalized for commuting any
bilinear forms in the operator P(x) LBrink, Olive, Scherk (1973)j. (Lr, Log = Ls+ c, (II.47)
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h(y) = y(g'f —gf')

The covariance of this quantization procedure follows from
the fact that the momentum operator E'& and the angular
momentum operator

. L(yf (y) )
'

(yg(y) )
D

—(yf(y) ) '(yg(y) )"3. (II.48)

M~ =-'
2 do(x~P, " + P,"x~ —x"P,~ —P,~x")

(II.56)

The difference between the operator algebra and the
Poisson bracket algebra is thus essentially the c-number
term which depends on the dimension of spacetime and
plays an essential role in dual models: For f(x) = —x",
g(y) = —y we obtain the Virasoro (1970) algebra

obey the algebra

LP~, P"] = 0,

1
P&, M ~g = i(g~ P~ —g»P ),

(II.57a)

(II.57b)

PL„, L g = (e —m)L„+ + (D/12)n(rP .—1)5

(II.49)
PM"", M~ j = i (g"~M& —g»M" + g& M"& —g" M»)

(II.57c)
So the quantized constraints form again a closed algebra
up to c-number terms. Normal ordering problems arise
when going from the classical form of Lp to its quantum
expression. Hence the classical constraints: L,„=0 for all
n are replaced by

as follows. from the canonical commutators of Eqs. (II.32)
and (II.33) . These operators commute with the gauge
operator I.„and hence de6ne Lorentz transformations and
translation of the states satisfying the equations (II.53a—b) .

&A I
(I-- —n(0)S-,o) I A) = 0 for all m,

Noticing that

where n(0) is an arbitrary c number. This amounts to
imposing constraints in the weak sense as is done for instance
in the Gupta —Bleuler formalism in quantum electrody-
namics. x+ = 2n'P+~, P,+ = P+/m, (II.58)

which define the transverse gauge.

4. Hamiltonian formalism in the transverse gauge
and quantization

We have obtained previously the following equations:

1 +
~ ~ &n—m&m.4n'

= —pa (m)'"+ ~ ~ ~ if m&0, (II.51)

x = (7r/P+) P 'x

P, = (1/27rP+) I7r'(P ')'+ $(x,')'/4u'2j}, (11.59)

L = —pa+(e)'"+ ~ ~ . if e&0, which express the primary constraints.

it is natural to assume that the weak constraints are ful-
filled by imposing the subsidiary conditions

x; —x;" = 0, x,'= 0, for cr = O, x,

(L„—n(0) 5„,p) ~ fp) = 0 for n ) 0 only, (II.53a)

(L —n(0) 6,p) = 0 for e & 0 only. (II.53b)

Because of the indefinite metric we are not sure that the
solutions of these equations contaiD. no negative norm
states. The problem will be solved in a subsequent section
and it will be shown that it is true provided that

P ' = (1/2am')x'

g = 2&x P )

(II.60)

q = qp + 2(xP r.

which are the equations of evolution of the independent
variables q, P+, P,', x'. The last equation can be solved so
that

if D &.26 'OI Ap + if D& 25. qp is now an independent dynamical variable and we
postulate the following Poisson brackets among these
variables

The time evolution of x„ is given by the equation

ix„= Lx„, Lpf. (II.54)

If we examine the mass spectrum and the spin spectrum
in the covariant quantized version of the theory, we 6nd
that the leading trajectory is now given by J = n(0) +
n'M' so that n(0) is the intercept of the leading trajectory.

lx', x&} = IP', P&}=0,
'

Ix'(o., r), P& (o', r) } = 6'&6(o —o.'), '

Iqp, P+} = —1,

IP+, x'} = lP+, P;} = lq, x, } = lq, P } = 0.

(II.61)
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It is easy to find the Hamiltonian of this system. It is

H= 2nV' E' = ma' da- E' ' x" ' 2n'm '
0

(II.62)

To check this, one verifies that the equations of motion
follow from the canonical Poisson brackets and. the Hamil-
tonian formalism

Let us forget for a second about quantization and just con-
sider Poisson brackets instead of commutators. Then in
Eq. (II.68) only the first term on the right hand side sur-
vives and one can check that MI'" and I'" ~erify the algebra
of Eqs. II.S through Poisson brackets.

Coming back to the quantum case we have to verify the
Lorentz algebra for the commutators of M&". It turns out
that all the commutators give the expected result, except
for: [M', M& g which should be zero. This commutator is
the hardest one to evaluate explicitly because

f = (Bf/Br) + I f, EIl.

Expanding in normal coordinates we have

(II.63) M'-= :(V'p +—pV') —
V p'

—i m
—' n n'nn- —n „—nn'

n-1
(II.70)

H = n'P, 2+ Q ea„*'a„'= 2n'P~P
n=1

so that
OO

M' ——,Q wc*'a '= 0
n=1

(II.64)

(II.65)

This computation is very lengthy and we shall not describe
it here. However we see that some anomalous terms pro-
portional to D —2 and no will arise because of the com-
mutator [11.68$. Further when one commutes for instance

—n'n, —m~~m = ~—n' n, O'—m~ O'm

It is now trivial to quantize the system: we assume canonical
commutators for the operators a ', a +', qo, I'+, I", q,

[a ' a +'] = 5"i5 etc, ~ ~ ~ . (II.66)

Now because of the disappearance of the time component
the space of the vectors

II (~-+)""
I

o &
n 1

= (1/P+) [L —S„~(0)), (IX.67)

where the c number n(0) appears due to normal ordering
ambiguities in I.o. Here I„ is the transverse one

7~n =
g ~~n —m~m-

5. t ovariance of the transverse gauge

It is possible to implement Lorentz transformations and
translations in the transverse gauge provided that one can
define generators of the Poincare group satisfying the fol-
lowing commutation relations of Eqs. (II.57a—c) . The
natural choices for E& and M&" are of course, as in the rela-
tivistic quantization, the energy IDomentum and angular
momentum of the string. However, difFiculties arise because
of the peculiar algebra of the cx operators

[a, n j= (1/P+) (n —m) o.~ + 5„. l
—(2n/P+)

&& n(0) + [(D 2)/12(P+)23m(N2 1) f& (II 68)

has positive definite metric. The states of the string are
hence described by purely transverse oscillators.

The nontransverse oscillators are expressed in terms of the
transverse one through the equations

+ [~—ay~ —mg~m ~n +~ n~ mP—~n p—~m 7

+ ~ m[~—n& ~m—j~n

and evaluate all these commutators, one would find cancel-
lations if the order of terms was disregarded and anomalous
c number ignored. However to obtain the desired cancella-
tions some operators have to be commuted again which
makes an essential difference between Poisson bracket corn-
putation which involves only the first stage and commuta-
tion which involves two stages. Finally, . one obtains

[M'-, M'-3= ., Z ~i1 ——(D —2)
IP+' ~=i E 24 )

1 t'1+ —
i
—(D —2) —n(0) i (n 'n & —n &n ').

)m (24

(II.71)

Therefore for arbitrary values of D and a(0), the theory is
non-covariant. If we require covariance we have to set
D = 26, o.(0) = 1. n(0) = 1 can be und. erstood easily be-
cause transversality for a vector meson requires it to be
massless. However D = 26 has no such physical interpreta-
tion. The only mathematical reason for D —2 = 24 is that
in computing the commutator of the L,„afourth order pole
at x = y occurs which introduces a 1/4! In a refinement of
the Veneziano model where X quantum numbers are intro-
duced, 26 is replaced by 26 —X. [Clavelli and Shapiro
(1973), Schwarz (1973), Bardakci and Halpern (1971)g.

If we still think that the quantized string makes any
sense, the fact that it can be quantized only in some peculiar
dimension of space —time gives to the problem a kind of
bootstrap aspect: Covariance and positiveness of the metric
for an extended system determine the dimension of space-
time. Problem: find out which extended system can be
-quantized for D = 4&

while

[n', a '1= nB"8,

The choice n(0) = 1 is more unfortunate because it
implies the existence of a tachyon at n'M = —I. As we

(II.69) shall see by studying the Neveu —Schwarz model, tachyons
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(II.76)
n=l

are not an unsolvable problem in dual models. Several Spurious states are those states belonging to X~I of the
possibilities are open: First one can try to find a model with form
no tachyon. Second, tachyons may well disappear when the
interaction between strings is included, as well as massless
particles.

%'e have seen indeed that striking differences occur when
the classical string is first quantized. It is reasonable to
think that second quantization (interaction among strings)
may again change things. It turns out that things seem to
change for the better rather than for the worse and that not
only is the second quantized theory consistent for D = 26,
ao = 1 but that it may cure some of its own problems
(namely n(0) = 1). The main justification for continuing
our study of dual models rather than leave it there is
that we shall see features emerging which seem independent
from D, o.o and have direct comparison with experiment.

They are called spurious because they are orthogonal to any
physical state: if

I @) is physical, and
I 5) is spurious then

(~l~) =o.
We shall first build a subspace of R~ called traes~erse4

subspace which has obviously a positive definite norm.
This will be our first step towards proving the no-ghost
theorem. The transverse states are defined as follows:

The momentum p of the states we shall talk about is
constrained by p' = 2 (X —1) . We choose a frame where

6. No-ghost theorem in the covariant quantization

We now wish to show that the cov'ariant quantization of
the string is also ghost-free. The Fock space of the states
with which we are working is not positive definite and is
spanned by the states:

p = [iV/(2)'12 0 ~ 0 (2)'i'(1 —-',X)].

We then pick the lightlike vector

& = (1/(2) "', o, , o, —1/(2) "')

such that k p = 1. We shall call

I «) = II II (~-. +)""""
I o, p). E„=k.n,. = k'(m)'"a, E„+=E „.

The number operator is We now define transverse states through the conditions

&= —dna +a"" and R
I r) = M

I r), L„I&)=a„Ir)=0, (11.77)

where
It is clear that the transverse states have positive semi-
definite norm. Indeed, in light cone coordinates

(II 72) K = (e) '~'a„,„=n„,+.

is the level cumber M = 0, 1, 2, ~ ~ -.

We shall call R~ the space of states at the level M.
Obviously this space contains both positive and negative
norm states.

[n„+,n, „.$ = [n„,n, j = 0,

[n,„n„, ] = —eb, (II.78)

The physica1 states in the covariant quantization are So in light cone coordinates the last commutator creates
these states which satisfy negative norm states while the two first create zero-norm

states.
L. l~) = o,

in addition to the mass shell condition

(Lo —1) I4) = o.

(II.73)
Using K

I
t ) = 0 we deduce that

I
r ) does not contain

any a„creation operator, and hence its norm is positive
or zero. It is more dificult to prove that because of the L,„
conditions, the transverse states have strictly positive
norm and we need two lemmas to establish this.

We set n(0) = 1 for the moment and shall see later if it can
or cannot be relaxed. As we have seen these constraints
come from the orthonormality of the gauge which we
have chosen. An on-shell state belonging to R~ has its
mass given by

Lemma 1.' I.et us consider a transverse state
I r) belong-

ing to R~, such that (r I
t ) W 0. For such a

I
r ) the states

I Ix, pI, f) = L "'I. "' ~ .L ""E'-.K "
I r),

'

(II.79)
p' = 2(M —1). (II.75)

The physical subspace of R may or may not have positive
definite norm. We shall prove that it does provided that
D& 26.

' Transverse states were originally introduced by Del Giudice, Fubini
and Di Vecchia (1972). ln our treatment we shall not need their explicit
form.

' This lemma and the next one were derived by Goddard and Thorn
(1972).
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where

Q rX„+ g sp,, = .V —M ) 0

form a linear independent span of some subspace of R~.
Further, this subspace contains no solutions of

Proo:

(a) Suppose that we have a linear relation between
the vectors

I {X, p}, t)

tor which does not produce E„w'ith r ( 0 is
I Ki, L ig = 1.

For this commutation p, is not increased.

Let us now consider a superposition of
I {X,p, },t) vectors

(with
I t) fixed) and ask that this superposition be anni-

hilated by all E„. The vectors in the superposition with
maximal p, will be mapped into vectors with greater value
of p, which then have to cancel by themselves. This is im-
possible because of the independence theorem already
proved and hence we conclude that)2 = X~ = ~ ~ ~ ——X„= 0.
Applying again E& on a term which contains only L, j"& and
E operators, we see again that X1 = 0 is the only solution.
So we conclude that

CZ cLX, p]L P' ~ L ~""K i"' ~ K ~u™)
I t) = 0

fk, pg)

I y) = P c{p}K,v&. ~ EvI t).'
fs}

(II.82)

(II.80) Applying again now L„of
I p) we see that because

I t) being obtained by applying creation op'erators on the
vacuum. If we expand L, 1~' in terms of creation and anni-
hilation operators the part made with creation operators
must cancel with each other necessarily. If we pick the u&+

oscillators,

L, ~"& -.L, „"E 1» contributes a term of the form

(p.ai+) "i(ai+ ~ ai+) "2(ai+ a)+) "~ ~ ~ ~ (gi+ a„ i+)""(k~ ai+) vi

and these terms have to cancel with each other. Consider
the terms in the sum which maximize Xi + 2X2 + X~ + ~ ~ .+
&„+pi. When expanded, each will yield a term which will
maximize this number, plus additional terms. These maxi-
mal ter'ms have to cancel with each other. But obviously
they are independent unless all the terms which maximize
the above quantity have the same X~, X2, ~ ~ ~ )„,p1. But if this
is the case there is no cancellation possible, and we therefore
conclude that A, y = ~ ~ ~ = X„= py = 0. It is then obvious
that all C{X,p} are zero.

(b) Let us now prove that this subspace contains
no solution of L„ I @) = K„

I @) = 0. e ) 0.

[L,K„7 = —eK~„,

(L„,K ] = rrIK„ and L. It) = 0

we shall obtain a superposition of
I {0,p}t) vectors where

p,
' will be increased. Then the only solution is p, &

= ~ ~ ~ =
p = 0 which is forbidden, since in our definition of

I {X,p}, t)
states we have set g rX„+g sp, ) 0.

In this first lemma, what we have done is the following:
Because of the commutation relations PE, L „)= nL „
and (E, K „$ = rlK „L „and E „raise the eigenvalue of
E by e in units. So starting from a transverse state belong-
ing to E~ we have constructed an independent set of vectors
belonging to R~:X = g rX„+g sp, + M & M; these
vectors are obviously orthogonal to all transverse vectors of
R~. Further, the subspace of these vectors does not contain
any transverse vector itself.

In order to obtain a complete basis for E~ we still have
to vary I t) and this is done in the following lemma.

L,emesa Z.

If
I t, M, v) is an orthonormal basis for. T~, the states

I {X,p}, t, M, v) defined in Eq. (II.79) give a basis for the
states with R=g rX„+g sp. +. M = X and as X varies
for the whole Fock space. Further T~ is positive definite.

PE, K„j= 0, (II.81b)

(II.81c)

Proof:

I t, X, v) is a transverse state belonging to R~. The sub-
space of the transverse states is called T~. Let us call G~ the
set of all

I {X, p, },t, M, v) belonging to R~ such that g rX„+
g sp, & 0. We construct T~ and G~ as follows:

Let us apply first K„on a state
I {P,, p}, t). So we use

K„L = L K„+~K„
Commuting E„ through the I ~" we produce some

further E, where r & m. We move them to the right until
those K„which have r & 0 will annihilate on

I t). Some E,
with r & 0 will have been created in the process: The I
may not be any more in the order of Eq. (II.79) but we can
bring them back in this order by using the commutation
relations of Eq. (II.81c). And so we see that

where p' = esp, ,' ) p = g sp, . If e = 1 the onlycommuta-
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We start from the vacuum, i.e., X = 0. It satisfies
L„IO)=K„IO)=0forn)1. Hence T = {IO)} G
{0}.From them we construct G' = {L i

I 0), EiI 0)}and'
build its orthogonal complement. It is readily seen to be
made of states annihilated by I.&, E& and is found to be

T'= {a +IO). i = 1, 2, . ~ ~, D —2}.

From To, T' we build now G2 = {L iai, ,+ I 0), L ~ I 0),
E iai, ,+ I 0), E ~

I 0)} and construct its orthogonal com-
plement T' and so on: Let us make sure that this construc-
tion is indeed possible and that at each stage T~ is made up
of transverse states. We do it by recursion and assume that
we have been able to construct P' T' - ~ ~ T~ ' and G, G' ~ ~ ~
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G~ ' which is true for lV = 1, 2. We riow attempt to con-
struct T~, G~.

G~ is constructed by raising all the states of T, ~ ~ ~, T
by I. „and K „operators as done before. All the states thus
obtained are

t {X,p}, t, M, v) states. They are all independ-
ent. We have shove this in the above Lemma for fixed

~
t, M, v). However, states with different

} t, M, v) can never
be dependent because it is readily seen' that

({)',li'}t', M', v'} {X,p}, t,, M, v)

= 6~~ b„„.f(X, X', p, p', M, v) .

We now construct T~ as the orthogonal complement of
G~ and show that it is made of transverse states. Since

1, X, v) belongs to T~ it has to be orthogonal to all vectors
{X,p, },1, M, v) because of their independence just proved.

Hence:

(t, V, v
~

L P'L,"' L „"-X,"' ~ .K ~"-
~

&, M, v')

= (t, X, v
t
L tLL P'—'L ."2 ~ L „"~

&& E',». .E „""
I 1, M, v') = 0 (II.83)

for all X1, ~ ~ ~ A, p1, ~ p, , M, v. The vectors

This is due to the fact that the I. „,E „can be commuted to
the left and E, I, to the right until they annihilate and the
only surviving contributions will come from c number or L p

operators which are diagonal in
~
M, v) { in M it is obvious,

in v because we have selected an orthonormal basis for
Ts, ~ ~ ~ T~ ' by hypothesis]. So the

~
{X,p, },1, M, v) states

form a linearly independent basis of G~. We have used here
the recursion hypothesis that T~ is made of transverse
states.

it is easy to show that if
~
t) is a zero norm state belonging to

a semi positive Hilbert space, then it has to be orthogonal
to all the other states of this space, i.e., it has to be a +lit'
state. If there was such a state in T~, it would also belong
to its orthonormal complement G~, i.e., in G~ there wouM
be a transverse state. But by Lemma 1 we know that this
is impossible and hence T~ contains no zero norm states
and hence we can apply the orthonormalization procedure
to it, which closes the recursion hypothesis. Hence the
Lemma 2. In the wording of the Lemma 2 the } {X, p },t, M, v )
states include the states where ), = p, ; = 0, i.e., transverse
states.

Hence we have been able to construct for each eigenvalue
of R, a positive definite subspace T~. Also we have con-
structed a complete basis for R~ = T~ O+ G~. This is so far
independent of D and on the mass. shell condition as well.

We now go back to the problem of the norm of physical
states which at each level, span a subspace of R~, which we
shall call P~ ~ T~. To compute their norm, it is useful to
devise an operator which will project any state of R~ into
T~. This projection operator~ is useful for many purposes
and it is the reason why we construct it now rather than
directly proving the no ghost theorem. ' We shall first derive
its form in a heuristic fashion and then check that it has all
the required properties.

Physical states are such that (@ } (L —6„,o)
~

P') = 0 for
all ri. In terms of the operator P(z) of which the L are
Laurent coeKcients, it means that (@ ~

(:P'(z):+ 2) }
@') =

0. If:P'(z): + 2 = 0 was imposed as an operator state-
ment it would mean that we are working with th- transverse
gauge and that: 2:P+P: —:P;P":= —2. In this gauge
P+ as we have seen is completely determined in terms of
P', P by the relation

L P' 'L P' .E &"
} t, M, v') P+ = (1/2P ) L

—2 +:P;P': j = Pp, r, (II.84)

form a complete basis for R~ ' by hypothesis, and hence
(t, 1V, v

~

I. t ——0 identically. To prove now that

(t, &, v}L i ——0

where the T index refers to the transverse gauge.

Introducing the Laurent expansion of an arbitrary oper-
ator x(z)

we use the fact that by commuting I. „with each other
another independent basis of G~ is obtained by ordering
the L in the order L P'L P' ~ .L „"",(in fact, any order
will do) and because we, have an independent basis for
R~ ' we conclude that (t, X, v }

I. s ——0. Hence

x(z) = g (x(z) ) z ",

(x(z) )„= (dz/2iirz) z"x(z) .

(II.85)

(II.86)

(t, X, v}L „=0 We see that in the transverse gauge the total momentum of
the string in the + direction, P+ equals

by repeated commutations of L, ~, L, 2, and then we show
easily that (t, S, v

~

E t&' ~ .E &"
~

t, M, v') = 0 implies
(t, X, v

i
K = 0.

Hence the orthogonal complement of G~, T~ is made up
of transverse states. We still have to ensure a point which
has been used in the recursion hypothesis, namely we can
construct an orthonormal basis for T~. This will be ensured
if we can show that no zero norm vector occurs in T~. We
know already that T~ is positive semidefinite. In such a case

' For the detailed reasoning, see Brower and Thorn (1971).
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P+,r ——(P+(z) )s ——(1/2P —
) (L—2 +:P,P': j)s. (II.87)

= (P (z) ), = &ZP (z)P (z)/2P (z) ),. (II.88)

7 It was derived by Brink and Olive (1973).
8 The no-ghost theorem could now easily be proved using the method

of Goddard and Thorn (1972). The original proof of the no ghost
theorem, due to Brower (1972) follows a different line of reasoning.

In the covariant quantization, the total momentum
operator of the string along the + direction is given simply
by
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Obviously the two operators P'+,~ and P+ are different, How-
ever, since the two ways of quantizing the string should give
the same physical result there should be subspaces of states
in each R~ such that the matrix elements of P'+, ~ —P+
vanish in these subspaces. Hence we form the following
operator'

P..—P+= &L1/2P ()jL-2 —2:P+()P-():
+:P, (s)P'(s): ])o

LL, D g = —(2n + m) D„+,

AD„, D 7=0,

PL„,E„j= mK—~„,

fE, K„j= 0,

PE, D„$'= 0.

. (II.95b)

(II.95c)

(II.95d)

(II.95e)

(II.95f)

= (L1/P —(s) lL 1:P'(s):3)o. (II.89) Evaluating now the commutators of L„, E„, D„'with P
yields

ff„,&j = riL„+ —
L (D —26) /12 jn'(n —1)D,

—!:P'():= ZL'-. ,

1/P —(s) = QDs ",

(II.90)

(II.91)

PE, Ej = 'eK„, —

LD„, Zg = —~D..

(II.96a)

(II.96b)

(II.96c)

where

D = d2'2ixs s" 1 P 2'

On a transverse state belonging to T~ we see readily that E
vanishesII.92

Hence
EIt, x, v)= 0. (II.97)

P+,r —P+ = —Do + g D .L . (II.93)

We have-been very careless about normal ordering. I.et
us 6rst check that the D„coe%cients are well defined. We
see that

P (s) = k P(s) = 1+ Q (E „s"+ K„s—")
n=l

E = P+,r —P+ = (Do —1) (Lo —1)

because k P = 1. Hence we can set P(s) = 1+ e, and
expand in powers of e. The integration on s will pick up a
6nite number of terms for each power of e and hence D„ is
well-de6ned. Further, if we consider D„with e & 0, we see
that D„ is given by a series of terms each of which contains
at least one E with m ) 0. Hence, since PE, , K;g = 0,

'

D„ I 0) = 0, if m ) 0. Similarly (Do —1) I 0) = 0. So if we
require that P~,r —P+ vanishes on

I 0), even off-the-mass
shell, we are led to rewrite Eq. (II.93) in the following
order

This is a consequence of the fact that each Do —1, D„con-
tains E, operators with i ) 0 and hence annihilate

I t, 2V, v),
and that L

I $, 2V, v) = 0. Hence we have indeed found a
subspace T~ on which E = 0. In order to find the other
eigenvectors of, E we apply it on a basis of R~

EL,"' L ."-K &» K „~-
I &, 3f, v).

Because of the D„ term in Eq. (II.96a) this cannot be
computed unless D = 26. If we assume D = 26, using
(L —n)E = EL „and (E„—n, )E = 'EK we obtain

(Z r7 „+Z s~,)L—,"'" L „~-K;~ "K
I t, M, p

So in the case D = 26 and in this case only we can assert
that.

1. The eigenvectors of E span the whole Pock space.
2. The eigenvalues of E are negative integers.
3. The eigenvalue zero corresponds to, and only to, the

transverse subspace.

+Q (D L„+L „D„).
n=1

It is now very easy to construct a projection operator onto
(II.94) the transverse subspace. Define

where we have added a term —(Lo —1) which vanishes on
the mass shell. From now on, we shall work with this
operator E and forget about the heuristic argument which
led to it.

The algebra of the operators L, , D together with the K„
closes

PL„, L j= (n —m) L„~ + (D/12) n, (n' —1)8„,

3 = dY 2''6

It is clear that (II.98) is a Hermitian projection operator
unto the transverse subspace at each level E. We see easily
that for each quantity X„=L„, E„, D„one has Lfor
D = 26/ X„P = (E —e)X„and from this relation, one
deduces

(dy/2i7ry) y~ "X„. —(II.99)

' This derivation follows the work of Rarnond (1973).
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hand side vanishes

XI=0=OX „

Also, expanding

if+&0. (II.100)

orthogonal to all physical states of I'~

&~'
I (1 —~) I ~) = 0

Such states have the form

1 = &P
—(s)/P-(s) )0 ——g D „K„ or (I. , + -',L,')

I
t,, X —2, v&

=QD „K„+K„D„+Dp,
j.

where we have again used E0 ——k.p
'= 1, we get

Do —1=+D „E„+E„'D„
1

(Do —1)0 = 0.

Let us see if we can now enlarge the result of the theorem
by relaxing some of the assumptions. First if D & 26, i.e.,
D = 26 —Ã we can add, X additional oscillators to the
Fock space to enlarge it again. Then the no-ghost theorem
for D = 26 ensures us that the physical states of the Fock
space which do not have the X additional excitations have
positive norm. Hence the no-ghost theorem holds for
D ( 26. However, the completeness of transverse states
between physical states is no longer true: we have also
additional "longitudinal" states.

(II.102)

(II.103)

as one can check. explicitly LBrink, Olive, Scherk (1973)j.
(11.1O1)

And hence E3 = 0 so that

32 = 3. (II.104)

D & 26 leads to negative norm states as can be seen by
checking that

So this proves that 3 is a projection operator, correctly
normed, on the subspace 3~.

We now prove the no-ghost theorem for D = 26. I.et us
consider an on-shell physical state

I @&, belonging to I'~.
I.et us now compute &@ I

3
I @&. Because 3 projects onto T~,

&@13 I qb» 0. On the other hand &@131&&can be evalu-
ated in the following way: Let us compute

y

&41(y —1) 14& =
&O I

&
1

=
&@ I g D .L„dh ~-s'I @&

n=l 1.

14» = (L + -:L ')
l 0&

is a physical state and its norm is

So D = 26 is the upper bound above which the no-ghost
theorem fails. For D & 26 we can also relax the assumption
a(0) = 1 by considering those states (let us fix D = 4 for
instance) for which there are no excitations of a, ,+, i =
5, 6, . ~ .26, however, there is a conserved non zero 5th
momentum p4 which can be thought of as a conserved
quantum number. Then the mass shell condition on such
states

I p& becomes

dss~ —' g D .L„ I @) = 0. (II.105)
(L. —1) 14& = (& —P/2 —1) 14 &

= (E P'/2 —1+ P4'/2—) I @& = 0

Integrating over y this result we get where

I@&= &@I ~I@&)o. (II.106)

And this proves the absence of negative metric states, among
physical states. Note that we had to make use of the mass
shell condition and the I conditions on both sides. For two
different physical states we have also

i = (Po " P4 o .")
P= (Po". P3 o".)

And the intercept of the leading trajectory is n(0) =
1 —P42/2 which can be chosen arbitrarily. Since we can
add only a spatial component P42 & 0 we have n(0) & 1.

(II.107)

7. The closed string

&@ I
(& —1) 14 &

= o. It is clear however that these modifications are somehow
artificial and in fact we shall see that in spite of this excur-

And this expresses the completeness of transverse states sion into a more realistic world we are led back in the fol-

with R~. Transverse and physical states are not quite
identical however. If

I @& g I'~ we can write

I ~& = &
I @&+ (1 —&)

I e&. (II.108)

Here 31&& belongs to T~ while (1 —3) I @) is still a
physical state, however it clearly is orthogonal to T~ and
belongs to G~; in fact, it is a zero norm state which is

In the preceding sections we have dealt with the theory
of open strings. However we could have also considered
closed strings, i.e., rings. The only difference in their.
mathematical treatment is the absence of the boundary
condition of Eq. (I.18). Integrating 0- from Lo, 2mj, the
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new boundary condition, which expresses that the string is
closed is now

x„(r, o. + 2m.) = x„(r, o.),

and the action reads

5 = (—1/4a.n')
'r2 2K

dr do i (x x')' —x"x'l''s.
0

x„(o, r) = q„+ P„r + i g Lexp( —i+7.)/m5(n„cos, mo.

+ n„,„sineo.) .

%e have two sets of gauge conditions

The expansion of x„(o,r) now contains both sines and
coslnes

Closed strings play, an important role even in the open
string theory. As we shall see the interaction for open strings
is obtained by allowing them to break and join at the
extremities. Then obviously a closed string can open itself
into an open string and vice-versa. It turns out that when
radiative corrections are computed they exhibit poles
corresponding to this kind of transition. Hence open strings
cannot be considered by themselves: even if we de6ne the
tree diagrams of the theory in terms of them, closed strings
will appear in loop diagrams. LOlive, Scherk (1973a)5.

III. THE INTERACTING STRING

1. Rules for dual diagrams

Ultimately we shall be interested in a dual theory working
for D = 4 dimensions. So the normalization coefFicients
which follow have been derived for that case only. We choose
the following normalization of the fully connected part of
the S-matrix LBogoliubov and Shirkov (1959)5

where in the de6nition of I,„,I„one uses (p„",p; I sl p;„„",p~)

no" = no" = (P"/2) (2n'). (2 )'~'(Z p' —Z P ) II ((2 )'2P") "'

If n' is the same quantity as the one appearing in Eq.
(I.13), one shows easily that for a closed classical string
J & (n'/2) 3f'. One can see that easily by taking two rigidly
rotating strings, sticking them together at the ends: the
spin of the system doubles, the (mass)s is multiplied by 4
and we have obtained a closed string.

%hen the theory is quantized one has two sets of mutually
commuting annihilation and creation operators, 0.„~, n ~.
The gauge conditions now read

X T'w(Pt, . ~ ., Ps). (III.1)

D(p') =— 'ltd 1

(27r)4 Ip —1 —ie
(III.2)

This propagator is analogous to the Feynman propagator

To compute the scattering amplitudes T~, we shall dehne
a propagator for the string

I--
I O& = I-„

I g& = 0,

(Lp —Lo) 14& = o,

and the mass shell condition

m&1,
(2') 4 I' —p' —ie

'

since

LLo+ Lo —n(0)514& = O.

The resulting model is the Virasoro —Shapiro model
i
Vira-

soro (1969), Shapiro (1970)5. It is ghost-free if D = 26,
but now n(0) = 2. Hence the theory contains a massless
"graviton. " A projection operator on the transverse states
of this model can also be constructed. (Olive and Scherk
(1973)).

Because one also cannot attach quantum numbers to a
closed string it will play a particular role in reactions where
vacuum quantum numbers can be exchanged in one channel.
It may then well have some relation with the Pomeron
singularity appearing in these processes. Experimentally,
the Pomeron trajectory has slope n„'(0) 4 (GeV)
below 100 GeV. At higher energies it decreases but we
cannot expect the tree approximation to be valid there
anyhow. So it agrees qualitatively with the ~cx' slope we
have obtained. However of course n„(0) ~~ 1 while we have
obtained n~(0) = 2 in this model. Obviously this is the
same type of difFiculty we have met before and it is still
unsolved.

I-o —1 = n'LM' —P'5,

where

M' = (1/n') Q ~a„+a. —(1/n')
n=1

is the (mass)' operator. So whenever p' equals one of the
eigenvalues of the (mass)' operator, the propagator blows
up. The ie prescription has been introduced in accordance
with the Feynman rules. The propagator can be represented
in two different graphical ways: In Fig. 1a) we remember
that this is a string propagator and we represent the two
boundaries of that string. The string itself spans through

FIG. 1. Dual propagator represented as: (a) a string propagator,
(b) a solid line.
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and require that m, = (pi+ ps+ ~ ~ ~ + p;) be constrained
by 7r,s = 2(X —1), where X is an integer. The residue of
the pole in that channel is then given by the expression

~~ = &oi I
~~

I y.&,

a
whereFIG. 2. Dual vertex represented: (a) in terms of quark lines, (b} as

the absorbtion of a scalar.

5K~ —— dx 2zmx x~0—'

(III.4)

(III.S)

its evolution the blank space in between. Diagrams built in
accordance with this rule are usually called dual diagrams. '0

The orientation of the lines is added, in order to be able to
compute the factors arising from an internal SU(X) sym-
metry as we shall see below.

In Fig. 1(b) the string picture has been forgotten and
we simply represent the propagator by a line. One obtains
then a set of diagrams called I'eynman like diagrams
(FLD's) . Now we need to introduce a vertex for a 3 string
interaction. It is difFicult to do so directly and historically
the vertex to emit the scalar ground state from a string line
was first introduced (usually one speaks of "Reggeon"
lines instead of string lines for historical reasons)

is the projector onto the Xth level, and

I A& = v(p+, )" v(p~, ) I 0, p~&,

&~. l

= «, p. i v(p. ) "v(p, ).
Defining

I Pi &
= ~~

I A&, , I A &
= ~ip I A&

R~ can be rewritten as

&~ = &4i' IA'&

(III.6)

(III.7)

(III.S)

'U(p') = iLg/( )"'32 )'V(p'). (III.3) Since 5E~' ——SKAG. The absence of ghosts will follow if we
can prove that

I
fi'&,

I
fs'& are physical states, i.e., that

V(p, ) shall be a dirnensionless operator constructed from
the u„, a„+ operators and the zero-mode operator, and de-
pending on the momentum p, of the incoming scalar. Two
possible representations of the vertex are shown in Fig. 2
(a) in terms of quark lines, or as (b) where only the absorp-
tion of a scalar is indicated on the F.I..D. In the following
we shall work only with the dimensionless quantities
1/(Lp —1) and V(p) and leave all normalization factors
aside, and set o,' = 1/2 for convenience. We shall first con-
sider tree-graphs, i.e., those which do not contain any
loops, and more particularly "multiperipheral" trees

= g '«, p I V(p)L1/(Lo —1)3
&«V(ps)" L1/(Lp —1)3V(p~-i) I 0, p~&

I 0, p~) is an incoming ground state scalar on the right.
(0, pi I

is an incoming ground state scalar on the left.

So that the graph is represented by Fig. 3(a) or by Fig.
3(b). Such an expression satisfies obviously the require-
ments of factorizability of the particle poles. The essential
ingredient in the determination of the vertex is that it
should satisfy Ward identities guaranteeing the absenice of
ghosts. The distinction between ghosts and non-ghost
resonances holds only on-the-mass shell: so in order to see
if the above amplitude contains ghost states in a given
channel, say the channel where particles (1, 2, ~ ~ .i) —+

(i + 1, ~ ~ .X) we go to a particular pole in that channel,

L„IP,'&=0, m&1, (Lp —1) IP,'&=0, i=1, 2.

(III.10)

The second identity is obvious since (Lp —1)BR~ = 0. So
we have to require that

L„m~
I P) = 0.

Since

(III.11)

Lr~5Kpf —5Rp7 L~ p

where

5R~" = dx 2zwx x 0+"

L-I 0& = (Lo+I —1) If&, e& 1. (III.12)

Introducing

W„=Lp —L +e —1

mZ~"(Lp+ e —1) = 0,

we are led to require that the
I P) vectors satisfy the Ward

identities

FIG. 3. Multiperipheral diagram
represented: (a) in terms of quark
lines, (b) as a Feynman-like
diagram.

~ ~ ~

"Dual diagrams were originally introduced by Harari (1969}and Rosner (1969) and are a generalization of Zweig's "twig" diagram de-
scribing mesonic decays}. (Zweig (1964)).
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we must now look for a vertex operator V(p) such that it
satisfies nice commutation relations with the gauge opera-
tors 8'„.The following vertex satisfies these requirements

where x;,. = x; 1xi. ~ x; 2 is the product of the variables
contained between z and j. So one obtains the following
expression of the E-point function

V(p, ) =:exp —ip,'Q(1): (III.13) 1N—3

+ dx;x,—&'*&—'
1(i&g(X

(1 —x;,)

where Q(s) is the position operator defined in Eq. (II.37) .

Commuting the gauge W„ through V(p, ) yields For X = 4 we obtain the Veneziano formula

(III.23)

I:W-, V(P ) 3 = (~/2) p '. (III.14)
dxx '& '(1 —x)- &'&—'

And commuting again 8"„ through the adjacent propaga-
tion yields

LW- V(P ) L&/(Lo —1)2
= V(p, ) I 1/(1.o —1)3~(1+ p,'/2). (III.15)

Hence the gauge operators can be commuted past a vertex
and a propagator if p,' = —2, i.e. , if all absorbed scalars
are ground state tachyons on the mass shell. If this is
satisfied,

W„I&P& = 0, r)i0 (III.16)

W„IO, P~& = 0

If& = exp(f~+) Io&

is a coherent state, and satisfies

which again implies the mass shell condition. Notice that
we can generalize Eq. (III.16) by replacing I 0, p~& by any
physical on-shell state of the string

I
A

&
without losing the

gauge conditions.

It is now very easy to evaluate the amplitudes B~. One
uses coherent state techniques.

= g'8( —n(s); —n(t))
= g'Li'( — (s)) I'( — (~))/I" ( — ( ) — (t) )),

(III.24)

where

S 1 2

2. Duality

The four-point function we have obtained is symmetric
under the exchange of s and f This w. as not imposed o, priori
but it is a consequence of our choice of vertices. Our FI D's
hence have properties which are very much unlike those of
ordinary Feynman graphs (see Fig. 4) . In field theory both
diagrams have to be added and contribute to the S-matrix.
In dual models, only one of them must be included because
it contains these two diagrams in a "hidden" way. The
properties of tree diagrams with more than four legs are
even more amazing. One can show that B~ is invariant
under a cyclic interchange of the momenta pi, ~ ~ ~, p~.
Further, B~ has all the singularities that one may deduce
by using the rule of the last figure for internal lines, keeping
the order of the external less fixed. For an example, see
Fig. 5. The set of these properties is what one usually means
by dzIalzty. Dual amplitudes were originally derived with
n(0) & 1. The modification is to include in the integrand
of Eq. (III.23) a factor

(1) ~If& = f If&,

(2) «p(a~+)
I f) =

I f + a&

(3) (f I g) = exp(f'a),

(4) x" If) =
I xf)

Each of the A —3 propagators is now written as

(III.17)

(III.18)

(III.19)

(III.20)

(111.21)

II (1 —&') "' '

and to remember that p,' = —Ln(0)/n'$. The proofs of the
properties of duality were carried directly on the integral
representations of the E point function.

Because of the property of duality, the counting of
Feynman graphs is very diferent from the counting of
FI-D's: since each Feynman graph type of singularity can
be obtained from an FLD drawn in multiperipheral form,

where

Sz — 1 2 ' ' +]. z=12 ~ ~ - 3T —3

Using the properties of coherent states and taking the
vacuum expectation of the zero mode one obtains

(0, pi I V(pi)xi V(pi) ~ ~ .xi'-a V(p~ i) I0, p~&

1&i&j&X
( 1 x, ) ua&g. — (III.22)

I'IG. 4. The basic Quality equation in graphical form.

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



J. Scherk: An introduction to the theory of dual models and strings 145

2 5,

FIG. 5. Example of a duality transformation.

it is enough to obtain the whole amplitude (in the tree
approximation) to sum over noncyclic perrnutations of the
external legs of multiperipherally drawn FLD's

~N Z JPN(tppl) +p2) ' '+pi@)
Non-cyclic

To a given FLD correspond many different FG's. Each
FLD can be decomposed in a sum of

(2e —4)!/(e —1)!(e —2)!

subgraphs which have each the singularity structure of
one, and only one F.G. LNakanishi (1971)j.

Duality is an obvious consequence of the underlying
string picture: if we trust our set (a) of graphical representa-
tion of the Feynman rule, then simply by enlarging or
shortening the space between the lines we obtain all the
properties of duality. (That is why strings were also called
"rubber bands" by Susskind (1970). Duality is a property
which has a direct meaning in terms of graphs, and does
not necessarily depend on the underlying operator formal-
ism. So the properties of the compatibility of duality with
factorization and absence of ghosts have to be checked at
each state. The test is fully successful for tree graphs: one
can define 3-Reggeon vertices operators LSciuto (1969),
Caneschi, Schwimmer and Veneziano (1969)g such that
joining them with propagators one obtains X-Reggeon
vertices (see the review of Alessandrini et al (1971) .for
their definition) such that when the matrix elements of
these X-Reggeon vertices are taken between ground states,
one obtains the X point functions B~. So equalities like
those of Fig. (5) can be given a precise meaning in terms of
the operators. The matrix elements of the Ã Reggeon
vertices between pltysical states removes the last distinction
between internal and external (scalar) lines: the external
particules become any physical excited state of the string
and this is a kind of bootstrap property where the scattering
of a set of particles reproduce these same particles as bound
states in all resonant channels. (Again, it is not surprising
if we think in. terms of the string. ) The compatibility be-
tween the duality and absence of ghosts requires n(0) = 1
and can be checked in all channels. Since the tree amplitudes
are not explicitly D dependent we can assume D & 26, but
in loop diagrams we shall be forced back to D = 26.

We have introduced the word twist" which we shall have
to use again in our discussion for loop diagrams. We shall
not give its technical definition in terms of operators which

FIG. 7. Graphical representation of the action of the twist operator.

can be found in Alessandrini et at. (1971), Schwarz (1973).
Let us just say that in terms of the string it does represent a
twist of the "rubber band" (see Fig. 6) and in operator
language it is an operator which reverses the order of lines
on its right (see Fig. 7) .

An additional very pretty feature of tree diagrams is their
behavior at high energy, where they exhibit Regge behavior
rather than fixed pole behavior. This property does not
depend on D or n(0), and distinguishes sharply dual models
from field theories where Regge behavior can be obtained
only by infinite sums of graphs.

By studying the high-energy behavior of E point func-
tions one can show that it is completely compatible with
Regge theory and that further one may get insights as to
how a Reggeon calculus can be constructed. One can also
study the inclusive cross section by computing discontinuities
of the six point function and one exhibits a gaussian cutoff
exp —4n'p' in the transverse momentum, which qualita-
tively agrees with experiment at intermediate energies but
is too strong at ISR and XAL energies: perhaps the loops
are responsible for correcting this.

3. Quantum numbers

In the above dissucusion we have neglected to introduce
quantum numbers. Duality takes it full predictive power
when coupled with the requirement of the absence of exotic
resonances; to be sure, this statement is a phenomenological
one: it may have to be revised someday. However, as indi-
cated above, we a,ccept this requirexnent that no resonances
occur in exotic channels. This distinguishes very strongly
exotic and non-exotic channels. In an exotic channel the
imaginary part of the amplitudes is zero in the tree approxi-
mation and of order g' when loops are included: exotic
resonances may appear in a dual model when all loops are
added, but they do not appear at any finite order of per-
turbation theory.

We now look for a mathematical formulation which can
be consistent with the above FLD's rules and embodies the
no-exotics requirement. We have assumed previously that
all mesons have a qq content, i.e., belong to the 1 or 8
representation of 5U(3). Hence to each of the external
mesons we associate a well-defined combination of the
X,I i = 0, 1, ~ ~ ~ 8$ matrices of SU(3) . We include the Xo

matrix which is proportional to the unit matrix.

For each vertex we multiply the operator contribution by
(X;) s and to each quark line one associates the contraction
8 p. From this rule it results that the expression of Eq.
(III.23) is multiplied by the factor: (Chan and Paton
(1969)).

FIG. 6. Graphical representation
of the twist in terms of quark lines. —Trp, &X2 ~ . ~ X~g (III.25)
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1. Because a product of X matrices is a X matrix and that:

Trg. ;X,j = 2();;

one can show that

(III.26)

—' Tr[X„~ ~ X „)= g —' TrP, ~ X,,X j
k=o

X -', TrP.&).„,~ ~ ~ &. &. (III.27)

(the factor 2 is introduced here for normalization purposes).
This choice has the following advantages:

the Feynman rules have been derived in a particular gauge
and that the disappearance of unphysical states from tree
diagrams which is due to gauge invariance does not guaran-
tee that these states do not appear in the loops if we use the
same set of Feynman rules. In fact to ensure unitarity oI.e
has to modify the Feynman rules by introducing the so
called Faddeev-Popov ghosts. (1967). An alternative deri-
vation of the rules found by Faddeev and Popov is offered
by Feynman's tree theorem. [Feynman (1972)g. Let us
sketch very briefly Feynman's argument for a single-loop
diagram containing scalar particles. Each propagator AF
can be expressed in terms of the retarded A~ and the 6+
Green's function so that:

This, together with the factorization property of B~ shows
that:

Fg ———Trig ~ Xy]Bg

is also factorizable and that the intermediate states also
belong to the representation 1 and 8 of SU(3). Hence no
exotic resonances appear in the tree approximation. If all
particles are identical, we retain crossing symmetry also.

This treatment of the symmetry properties can be in fact
applied to a general SU(1V) group. Because in Kq. (III.36)
k runs from 0 to 8 at each mass level we find both a singlet
and an octet. An immediate consequence is the existence of
degenerate singlet/octet trajectories which is well observed
in nature (for instance p —f degeneracy) . This is what is
called exchange degeneracy. In dual models exchange
degeneracy is exact at the tree level, but breaks down at
the loop levels as one would expect. So the symmetry group
in dual models should, strictly speaking, be called U(X)
rather than. SU(2V).

In the special case of SU(2) because

7 a7 b . 8~ W 2"Enbc7 c

one can restrict the spectrum in the following way: let all
external states be isospin i p mcsons. Then we see that in
even waves we shall obtain isospin 0 and in odd waves
lsospln 1 whcIl we sum ovcl noncyclic pcI"mutations of thc
external lines. This spectrum looks more like the experi-
mental one, but it leads to trouble in loop diagrams: one
has to introduce non orientable diagrams where mcsons
have a qq rather than a qq structure. Hence in what follows
we shall keep the spectrum following from U(2V) and this
will lead to the disappearance of these troublesome graphs.
(Shapiro (1971)) .

The assumption of duality and absence of exotics leads
to many predictions in good agreement with experiments.
These are described in the article by Jacob (1970) which we
invite the reader to consult.

IV. LOOP DIAGRAMS

1. Loop diagrams and projection factors

In complete analogy with the Yang —Mills theory, or the
quantized theory of gravitation it is not possible to define
the loops in the dual model simply by using the propagators
and vertices which we have used so far. The reason is that

where

A~ ——1/(p' —m' —imp'),

= 2~i8(p')()(p' —m') .

AF ——1/(p' —m' + ie),

(IV.1)

If we consider a loop where all propagators are retarded,
its value is obviously zero. Expressing then each propagator
in terms of d,~ + 6+ we obtain. an identity which relates the
loops containing all AF propagators to a sum of "loops"
containing at least one 6+. These "loops" are in fact, as is
easily seen, integrals over tree diagrams, since the "cut"
lines (those containing 6+) are on-the-mass shell. Feynman's
proposal is to use this identity to defiee loops in. the Yang-
Mllls OT IIl quaIltlzcd gravity. Now thc cntcrlng and leaving
particles on the "cut" lines are not only specified by their
momenta and quantum numbers but also by their polariza-
tion tensors. Since we- want to include in the unitarity sum
only those states which appear in the tree diagrams, we
have to include only the transverse states. The result is
identical to the one obtained by Faddeev and Popov.

A~ = p —4 8(p')8(p' —~2(m —I)) f (dx/2~ x)x~' '.
n=O

(IV.2)

Each AF propagator is represented in a parametric form as

1/(J-o —1) = (dx./x. )x.z' ' (IV.3)

The summation over all states leaving and entering a cut
loop is a trace over all oscillator modes. So we are led to
consider for instance the following expression where the
line I has been cut, 2, 3, ~ -.E are uncut

~~ ~~ ~

dy dx& ~ ' dx.
Tr[yzxg~o 'V xg~' 'V2 ~ ~ V~j.

2x'zy 2&l xy g=2 0 x~

(IV.4)

Similarly in dual models we can project each cut line
onto the subspace of the transverse states using the Brink-
Olive projection operator. This mill restrict us to work in
26 dimensions rather than four. Although it is also possible
to dedne loops in less than 26 dimensions, they exhibit bad
properties which will be discussed later. The cut dual 6+.
propagator is equal to:
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Using only the expression of E, the commutations of I.
and D operators, I.„y~ = y~—"I.„, and the commutation
of t„with the vertices, Brink and Olive (1973) were able
to show that the above expression is equal to:

dS dx'—f '(m) Trgx, ~' 'V,—~' 'V ~ ~ ~ V ],2' X1 i=2 p Si

(IV.S)

where w = x~ ~ .x~ and f(w) is the partition function
FIG. 9. (a) Planar, (b) nonplanar one-loop diagrams drawn as
Feynman-like diagrams.

(IV.6)

A nontrivial aspect of this result is that although the de6ni-
tion of 3 is not covariant the result obtained is covariant.
We see that the Feynman rule of the graph has been modi-
6ed by the projection operator and this is analogous to the
Faddeev and Popov construction of loops in. the Yang-Mills
theory. Collecting together the various terms obtained
from Feynman's tree theorem, one obtains the correct
unitary expression for the loop:

N 1

Ld&l(2 )"]II (dx~/ 'V( ) '
i=1 p

&( TrLx ~' 'V ~ ~ xg~' 'Vg] (IV.7)

It differs by the f(w) ' factor from what one would have
guessed if we had applied the ordinary Feynman rules. The
integration dk is performed over the 26 dimensional space.

2. Classification of loop diagrams

We shall restrict our discussion to one-loop graphs al-
though classihcation theorems are well known also for X-
loop diagrams. LKikkawa, Sakita, Virasoro (1969), Kik-
kawa, Klein, Sakita, Virasoro (1970), Gross, Neveu, Scherk
and Schwarz (1970a)].It is particularly simple to work with
the alternate string picture of our Feynman rules. A one loop
diagram is then represented by a surface with one hole, and
the external momenta enter at the boundary of the surface.
Nonorientable diagrams corresponding to a Mobius strip
disappear in a theory with U(X) invariance since cutting
the strip gives us a qq content rather than a qg content.
Hence we need only to consider an annulus, with particles
entering and leaving at each side of the annulus. Two cases
can be distinguished:

(a) no momenta enters the inside annulus,
(b) momenta enter the inside annulus.

3. Evaluation of traces and integration

The integration over the momentum k is a Gaussian and
hence can be performed in a region where we have no
singularities and by performing a Wick rotation

dDkx '~' = iL~j—n' lnx]D'2 (IV.S)

is the basis formula required for performing this integration.

The traces are computed by inserting inside the trace
the unit operator written in terms of coherent states LAmati,
Bouchiat, Gervais (1969)].

The 6rst case is the planar, while the second is the non
planar orientable loop. With our conventions (a) they are
drawn as Fig. 8.

If we wish to draw this diagram in terms of our set (b) of
Feynman rules we can do it in the second case by twisting
the inside lines to the outside and obtain Fig. 9.
These diagrams are apt to be extremely misleading because
of duality properties. For instance using the duality property
several times one obtains the equalities displayed on Fig. 10.
So in fact these graphs contain many Feynman graphs. If
we de6ne that two FLD's are equivalent if they are related
by a duality transformation one can show for one loop, and
more generally for n-loop diagrams that the correct unitary
counting is to count each inequivalent FLD with weight
one, a particularly simple result. (Gross, Neveu, Scherk and
Schwarz (1970b), Frampton, Goddard and Wray (1971)).
All the duality relations of Fig. 10 are easily checked from
the expressions of the loops when the traces are computed.
However the equivalence between the (a) and (b) repre-
sentations is much more subtle and is discussed below. We
shall concentrate first on the case of the nonplanar loop
because the planar loop is a particular case of the non
planar loop when no momenta are present on the inside
boundary.

')-( and using the formula for the integral of a bilinear form
(against a Gaussian!):

FIG. 8. (a) Planar and (b) nonplana1 one-loop diagrams drawn in
terms of quark lines.

exp —
I
a

det(1 —C) ( 1 —C )
(IV.9)
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FIG. 10. Various duality identities verified by the following Feynman-like diagrams: (a) the planar loop, (b) the nonplanar loop.

where

24

II d*.-- „ II
i=1 ( lnw) i&i« i&%

(IV.10)

where C is an infinite matrix, 2, B are infinite vectors, and
the integral is performed over all Z„. For one-loop graphs,
C is either diagonal or can be brought in a diagonal form,
These two types of integrations combine with each other
in a nice way so that one obtains the following expression
for the loops: LGross, Neveu, Scherk and Schwarz (1970b),
Gross and Schwarz (1970)g,

(a) pLanar Loop:

ln'x lnx lnw)
P(x) = —26' exp 8,

2 lnw 2~i 2~ij
(IV.12a)

planar loop is a particular case of the second one for M = 0
C, , is the product of the x and y variables between the legs
i and j.The integration variable for the non planar loop has
to be defined carefully.

Here f(w) obtains raised at the power 24 rather than 26
due to the projection over physical states. The function P
has to be used if p;, p, belong to the same boundary, Pr if
they belong to different boundaries. They are expressed in
terms of Jacobi e functions /See Bateman (1953)j

y() =rI(1—
n=1

(b) nonp/anar Loops:

ln2x lnx 1 lnve
P, (x) = 2~ exp Or +—

2 lnve 2m-i 2 2~i
lnw

er' 0
2~i

(IV.12b)

N f(w)24
Fv ~ (2m)r3g~+~—— Q dx, dy, w—'

( lnw) 13

x II L4(c„)
i&i&j&x

Pr(c")3 """. (IV.11)

In the second case, we have E particles on the external
boundary, M on the inside. The Anal expression, for the

Under this form we can expand the parts of the integrand
which do not contain logs in power series. One obtains
then a series of cuts and one can verify perturbative uni-
tarity. One can also check the duality equations of Fig. 10.
The above loops do contain infrared divergences, and thresh-
olds at negative (mass)' because of the tachyon, but we
rather look for ultraviolet divergences. Clearly those must
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come from the zv = 1 corner of the integration region be-
cause there the partition function blows up exponentially.

4. The Jacobi transformation

The Jacobi 8 functions 8(v/r) have remarkable properties
under the interchange of r into —1/r Fo.r instance

v 1)
8, (v I r) = i(1/r)'&'exp —i~(v'/r)8, I

— ——I.r)

This change of variable is equivalent to introducing the
variable q = exp(2ir'/lnio) which goes to zero when zo —+ 1
and angles 8, = 2ir 1nx, /1nio. Using these properties of the
8 functions, and transforming the partition function as well
by use of the Hardy —Ramanujan formula

( —27r/1nx)'~ f(x) = x""q 'I"f(q')
I

readily without Jacobi transformation. (Hsue, Sakita and
Virasoro (1970)).

Let us see what happens when q
—& 0. If p' ( —8 the

integrand converges. We can. analytically continue in p'
and find a series of poles in p' at n„(p') = 2Ã X = 0,1, ~ ~ ~ .
Hence the nonplanar loop is mot ultraviolet divergent at alit
It is finite, and the ultraviolet divergences have been re-
placed by a series of poles. These poles are traditionally
associated with the Pomeron in spite of the fact that the
intercept is wrong a„(0) = 2, but after all so is the p inter-
cept we started from. The reason is that the Chan Paton
factors associated with the nonplanar loop are the product
of the traces of the A matrices of the outer boundary with
the trace of the P matrices on the inside boundary as one
can see from Fig. 8: no quark goes from the inside to the
outside of the graph: Hence the channel where this singu-
laL'ity occurs, has vacuum quantum numbers. Further, the
channels dual to this channel have no resonances, and con-
tain only pure background, as we see easily on Fig.

~N g

1

dqq ' "'"f(q')" II d8'II F(8' —8~) "'"',
2 i(j

(IV.13a)

(b') norlplariar loop:

and making these changes of variables one obtains a com-
plementary expression for the loops: LGross Neveu, Scherk
and Schwarz (1970b), Cremmer and Scherk (1972)j

(a') planar loop: FIG. j.j.. s- and t-channel contents of
the nonplanar box; the s channel ex-
hibits reggeon and pomeron poles, the
t-channel exhibits two-body unitarity
cuts.

t I
l
I
I

S ~ ~ ~ ~~(~ ~~ma~
I

I

1

Fiv ~ ——g ™(ir/2)"' dqq
' ~v'""f(q')" d8

0 0

x IId8, IId4, II (0«0r)
2 2 i(j

(IV.13b)

(1 —2q'" cos28 + q'")
P(8) = sin8II

1 q'in 2
(IV.14a)

1 —2q2" ' cos28+
Fr(8) = II

n~l q
fl

(IV.14b)

5. The Pomeron singularity and the closed string

I et us concentrate on the non planar loop first. In its new
form it is very close now to the string picture we have
drawn before: we can picture two concentric circles of radii
q and 1, with the external momenta on the outside boundary
characterized by the angles 8&

——0, 02, ~ ~ 0~, the internal
momenta on the internal boundary of position given by the
angles 8, 8+ @2, 8+ @i,~ ~ 8+ @~. The logs of tP and tP~
are precisely the Green's function of the two dimensional
electrostatic problem of this annulus. Through functional
formalism one obtains indeed the expression. (IV.13)

where if p, , p, belong to the same boundary p = p(8, —8,)
or p(@, —@;);and if p, , p; belong to different boundaries,
one uses ter ——Pr(8 + P;+ 8,); P is the sum of the mo-
menta entering the outer boundary. Obviously p = 0 for the
planar loop and again the planar loop is a particular case of
the nonplanar loop. nv(p') us defined as n„(p') = 2 + 4p'
(note that a' = ~). The functions P, Pr are defined as

= (4 I (o ~ I v( +, b, b)
I
o-)D (p')

X (o. I
1'(a, b+, b+)

I
0b ) I 4'2) (IV.15)

The vertex V induces transition between the Reggeon
space (characterized by the oscillators a„, and the Pomeron
space (characterized by the b„, b„oscillators). We shall not
describe its rather complicated form.

D.(p') = (dq!q) f(q') 'q" (IV.16)

The s-channel of this graph contains the Pomeron poles and
the t channel contains cuts and no resonances. This is in
conformity with the Harari —Freund Ansatz. Note that it is
almost a mathematical miracle that the Pomeron singu-
larities turn out to be poles rather than logarithmic branch
points. Lovelace (1971) was the first to notice that for this
to happen, it was necessary to work in 26 dimensions, and
assumed that the partition function appeared raised at the
power 24 rather than 26, at a time where the Brink-Olive
projection operator had not yet been found.

It remains now to have an interpretation of these new
singularities. Obviously they are boued states. One must
also show that these bound states are facforizabie, ghost free-
poles. Factorizability can be proved (Cremmer and Scherk
(1972), Clavelli and Shapiro (1973)) by finding a proper
propagator for the "Porneron" state, D„(p') and a vertex
for the transition between Reggeons and Pomerons such
that the nonplanar loop now reads
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FIG. 12. Identity between the nonplanar loop and
reggeon —pomeron —reggeon transitions.

one can show that (@i i
satisfies the Ward identities

for all n. This structure of Ward identities is very different
from any we have worked with. It involves a pattern
whereby an incident gauge L, „of the Pomeron sector is
partially transmitted through the vertex as a linear com-
bination of L gauges of the Reggeon sector, which
annihilate on (P, ~, and is partially reflected as a I„gauge
to the right. This pattern is very similar to the one observed
at the interface of two optical media of different indices.

It seems that the Pomeron sector is very similar to the
Virasoro —Shapiro model (closed string) except that the
gauges and the propagator are different. One can show that
this difference is just a change of gauge: I-et us exchange a
closed string between the states (@i ~, ~ @z); more precisely
let us compute

(gq/2zrzq) q
~+ o

~
@2). (IV.17)

This is the residue at a certain pole: p' = 8(M —1) of the
exchange between (@i j, and

~
@z) of the transverse states of

the Virasoro-Shapiro model, hence it is ghost free. Using
the gauge identities satisfied by Q» ~, ~ @&), one shows that:
LOlive and Scherk (1973a)$

(IV.18)

But this is precisely the residue of the Mth pole in the
Pomeron sector of the amplitude (IU.15) and hence these
residues are ghost free and saturated by the transverse
states of the Shapiro —Virasoro model. So the "Pomeron"
we have obtained is nothing else than the closed string and
the vertex "Reggeon —Pomeron" is the vertex for opening
a closed string into an open one and vice-versa. As amazing
as it sounds it is not surprising if we have a blind faith in

is a strange propagator since it contains a partition function
in it. The states

~ f,) and i Pz) describe the external Reggeon
trees ending with a propagator 1/I.o

—1.

The above equation has the graphical representation dis-
played on Fig. 12, where the wavy line is the Pomeron
propagator, and the dot is the Reggeon —Pomeron vertex.
It remains to be shown that this Pomeron sector is ghost
free. Hence one has to find the Ward identities satisfied by
the vertex V. Calling

our set (a) of graphical rules. In Fig. 8 we see open strings
arriving at the inside boundary, coalescing into a closed
string which propagates to the outer boundary and breaks
up finally into open strings. It is also possible to see in this
figure an open string whose ends are attached on each of the
boundaries propagating along the circle and closing upon it-
self. Hence the set (a) and (b) of graphical rules are really
complementary pictures of each other. If we look at the last
figure we see a loop diagram being equated with a tree dia-
gram containing bound states. If we had worked with D &
26, none of this would have been true because the Pomeron
singularity would have been made of cuts rather than poles
and perturbative unitarity would have been violated. Hence
the covariant quantization of the string which in principle
allows us to work with D & 26 leads to inconsistency with
unitarity at the one loop level if D & 26. On the other
hand, if D = 26, perturbative unitarity is preserved, bound
states appear where one may have expected divergences,
and these bound states are just the excitation states of the
closed string. So we are led to the equation

Bound states of Reggeons = Pomeron = Closed String.

A final point which is worth mentioning is that gauges
also operate from the Reggeon to the Pomeron sector with
a similar pattern of reflection and of transmission of an
incident gauge. A consequence of these gauges is that the
Reggeon states coupled to the Pomeron states are also
transverse on the mass shell; This was not quite obvious
a priori because we constructed the loop in such a way that
only transverse Reggeons couple in the imaginary part. By
duality transformation we obtain Fig. 12 on which it is not
obvious that we have transverse Reggeons, but this is the
case. So transversality and duality are still compatible with
each other at the loop level. (Brink, Olive and Scherk
(1973)).

6. The Pomeron and spontaneous symmetry
breaking

Since bound states are created even at the one-loop level,
there is a possibility that spontaneous symmetry breaking
may occur because of the presence of bound state particles
of zero mass. The analysis of the Pomeron sector at zero
mass reveals the existence of a spin two particle ("gravi-
ton"), an antisymmetric tensor, and a scalar ("dilaton").
An interesting-phenomenon occurs because of the presence
of the antisymmetric tensor: it mixes by direct transitions
with the singlet "photon" of the Reggeon sector to yield a
massive antisymmetric tensor. If we were working with
four dimensions, the antisymmetric tensor would be re-
ducible to a scalar ("Goldstone boson") which, coupling
directly to the massless "photon, " would yield a massive
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vector boson. This mechanism of spontaneous symmetry
breaking is a dynamical one since it occurs through bound
states appearing from the unitarization of the theory. The
(mass)' acquired by the singlet photon is positive, of order
g'. If g' is large enough, one thus, gets rid also of the singlet
tachyon which is on the same trajectory as the isosinglet
"photon. " So we see that the nonplanar loop has reserved
us a lot of interesting surprises. (Cremmer and Scherk
(1973)). Similar conclusions were reached by Kalb and
Ramond (1973), starting from the string formalism.

The term we have thrown away near q = 0 can be shown
to be interpretable as a pure renormalization of the coupling
constant g, and a wavefunction renormalization at the
same time. (Neveu and Scherk (19'72b)). To throw away
such a term is the usual renormalization procedure which
was originally proposed by Neveu and Scherk (1970) and
Frye and Susskind (1970) when D was equal to 4; the
result was finite and still unitary, crossing symmetric, dual
and factorizable. It is possible to show that it is also com-
patible with the gauge identities.

~~ = (4 I (0~. I
I'(~+ » 5) I o-&D. (p' = o)

V
&&

—(a = 0, b+, 6+)
~

Ob, ), (IV.19)

where (f ~
is a Reggeon tree. In this equation. we see Reg-

geons being converted into a Pomeron line (closed loop),
evaluated at zero momentum, which then is coupled through
a particular vertex to the vacuum, i.e., it stops to propagate.
Hence an alternate graphical representation of the planar
loop is shown on Fig. 13. The )& sign designates a coupling
to the vacuum; sin.ce V is of order g, V/g is of order 1, and
hence this is a large coupling. Again there is nothing sur-
prising in this equality if we trust our string representation
a) of the Feynrnan rules because we see there a closed string
disappearing at the inside boundary. (See Fig. 8).

This equality shows that the loop is merely divergent
because the propagator of the Pomeron is evaluated at
p' = 0. So, performing an integration by part on q yields

P~ —LgN

7. The planar loop

As one easily sees from Eq. (IU.10) the planar loop, con-
trary to the nonplanar, diverges exponentially when zv —+ 1.
This would seem a hopeless disease if we did not know that
under the alternate form of Eq. (IV.13a) the divergence is
only quadratic Do(dq/q') g. Further, we know that the
planar loop is just a particular case of the nonplanar one
when no momentum enters the inside boundary, "and since
the nonplanar loop is well defined, we should be able to
make some sense out of the planar loop. Following the treat-
ment of the nonplanar loop one can show that the planar
one can. be written as (Cremmer, Scherk (1972))

However in the D = 26 case, w'e still ha, ve a logarithmic
divergence present. This reflects the fact that at p' = 0 we
have a scalar dilaton in the Pomeron sector, and this leads
to a divergent propagator: (1/p') ~~' 0. So we could stop
there and make the following statement: The divergence of
the planar loop is entirely due to the existence of massless
particles in the model. Hence if we started with a realistic
model having n~(0) ( 1, n„(0) ( 2, no such particles would
appear and the theory would be finite. "

This impression is reinforced by the fact that in the
Neveu —Schwarz —Ramond model cancellations occur be-
tween mesonic and fermionic loops such that only the
logarithmic divergence remains LGreen (1973)$. However
there is also the tantalizing prospect that the argument could
be followed the other way around and that a correct treat-
ment of the divergence would lead to a model without mass-
less particles (and maybe without tachyons) . It is encourag-
ing to see that such a mechanism exists in the Pomeron
sector. The investigation into that direction is still pre-
liminary, and is plagued by the nonexistence of a regular-
ization scheme which makes the loop finite and keeps the
gauge identities working as they should.

V. THE SPINNING STRING

1. Classical theory of a spinning string

We shall write directly th e equations satisfied by a
spinning string, rather than proceed from a Lagrangian
formalism. In order to have the equations written in an
elegant form, we work with the variables (I', I') rather than
(r, 0). Also we identify the position of a point along the
string, x&, with a function of f:x& = @&($) which is meant
to be a scalar with respect to coordinate transformations on
the surface. We introduce the two-dimensional metric tensor

(IV.20)

and the two-dira. ensional p matrices satisfying

I

Cv', v'3+ = 2v",

I'IG. 13. Identity between the planar loop and reggeon —pomeron-
vacuum transitions.

( 0 1) (0 1)
v' =

I

E—1 0) E1 0)

"The first attempt to treat the divergence of the planar loop by
relating it to the nonplanar was due to Goddard (1971).

"Cremmer and Scherk, unpublished; this part also benefits from
many stimulating discussions with D. Amati.

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



152 J. Scherk: An introduction to the theory of dual models and strings

In addition to the field @ we introduce a spinor distribution They are defined as follows:
on the surface

6@ = iaf,
6$ = 8,@p'n + Fa,
6F = in''B, P, (V.9)

We shall take P to be Hermitian. Here P also has a I.orentz
index, which shall not be exhibited in the following equa-
tions. P is an element of a Grassmann algebra such that it
totally anticommutes with itself: Lf(g), f(f'))+ ——0, and
commutes with @. The equations of the free spinning string
are: PCasher and Susskind (1971), Zumino (1973), Wess
and Zumino (unpublished) $

(V.1)

Here n(f) is a two-dimensional spinor, Hermitian, totally
anticommuting with itself and with P, commuting with @
and F. In the strict sense we cannot consider the above
equations as classical, because they contain anticommuting
quantities, but we shall nevertheless talk about a classical
description, because commutators and anticommutators are
zero. F is an auxiliary scalar field introduced to preserve a
group structure; its equation of motion is simply I' = 0.
The parameter a of an infinitesimal supergauge transforma-
tion must satisfy the equation:

y'B,P = 0, (V 2) (y,B, + p,8, —g,,y'8() n = 0. (V.10)

~A. ~A + (i/4)F. (v'~ + v ~')4 = ~(f)n', , (V.3)

(V.4)

for l, =0, ~, (V.5)

(V 6)

(V.7)

B,u; + B,m, —q;, 8'ui ——0. (V.8)

The last equation is equivalent to Eqs. (I.68, I.69) which
state that this transformation preserves the orthonormality
condition, i.e., is a conformal change of coordinates. Under
the conformal transformation if @ and P transform respec-
tively as scalar/spinor, one can show that the set of the
equations (V.1)—(V.4) are invariant. However there is a,

more general invariance of this set of equations than just
the conformal transformations. The so-called supergauge
transformations" also leave this set of equations invariant.

If we set P = 0 in these equations, we see that (V.1) is
identical to (I.43) (equation of motion of the scalar string
in an orthonorrnal gauge), (V.3) is (I.39) (orthonormality
condition), (V.5) is the usual edge condition (I.42), so that
we recover all the equations of the previous model.

The new equations are the Dirac equation (V.2), the
supergauge condition (V.5), the boundary conditions for
the P field (V.6), and (V.7). In these boundary conditions
if we set e = +1 we shall obtain the Ramond model
PRamond, (1971)j describing ferrnions of half-integer spin
(in space —time), and if e = —1, we obtain. the Neveu-
Schwarz model describing integer spin mesons. LNeveu and
Schwarz (1971a)$.

Let us perform an infinitesimal conformal transformation
6l' = u' where the infinitesimal parameter u, satisfies

One can verify that the commutator of two supergauge
transformations is a conformal transformation of parameter
u' = 2iaIy'a2. The commutator of a supergauge transforma-
tion with a conformal transformation is a supergauge trans-
formation. Hence supergauge transformations and con-
formal transformations form a Lie algebra whose parameters
are anticommuting variables.

It is now clear why it is rather complicated to obtain a
Lagrangian from which one can derive all the equations
(V.1)—(V.7) . It has to be invariant under gen. eralized
coordinate transformations and generalized supergauge
transformations. This Lagrangian formalism does however
exist PWess and Zumino, in preparation, Iwasaki and
Kikkawa (1973)$. As far as dual models are concerned one
is more interested in the equations themselves although it
is likely that it is the existence of an underlying Lagrangian
structure which gives dual models their internal consistency.

Let us now solve the equations of motion and express
the constraints in a manageable form. As before, equations
(V.1) and (V.5) are solved by

@„=q„+ n„'P + i g n. ,„exp( ivy) L(c—os'')/ej

(U.11)

and for the P field equations (V.2) and (V.7) are solved by
setting

Pi ——P c exp[ —Az(P + P) j,
p2 ——P c„expt —iw (ro —|')g,

C = C~

(V.12)

(V.13)

(V.14)

if e = +1 n is summed over all integers, positive and
negative, and if e = —1, e is summed over half-integers,
positive and negative. In order to express the constraints
in a manageable form we extend the definition of g' from
LO, 7rg to P—n-, +~j by defining the one-component field
4' by:

I' Super gauges were originally introduced by Ramond (1971) in
the fermionic model, and by Neveu, Schwarz and Thorn (1971) in
the mesonic model. Supergauge transformations were introduced by
Gervais and Sakita (1971).

if P'L0, m.j;
if pc —~, oj.

(V.16)

(V.17)
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As one sees easily because of the Eqs. (V.12—13), +(P, f') ators. According to Eq. (V.25) the zero mode cp must
is analytic at i' = 0, and N is defined on L

—~, +~) by satisfy Lcp", cp")+ ———i~g"" and hence is proportional to the
matrix y& which satisfy the algebra

+ = Z c- exp' ~~(0'+ &')). (V.18)
L~", v")+ = 2g"". (V.26)

((Bp + Bi)C).+ = 0 (V.19)

extended to the range P—m. , +or). This is nothing other
than the equation

In terms of the field 4' which. does not any longer contain a
spinor index, the supergauge constraint (V.4) takes the
form of a single equation

The matrices y~ have of course nothing to do with the y'
matrices of the previous section.

A realization of this algebra exists for any space —time of
even dimension D, and the rank of the p matrices is 2D~'.

So we set cp& = (i/2) y&. Since cp& is a matrix and the oper-
ators c„& must anticommute with it, we define

0

where I' is defined as before

(V.20)
c-" = bp/(2)"')d-" c=" = Lvp/(2)" )d."+,

where

e&0,
(V.27)

expI ie(i' + i') ). (V.21) Ld„, d„"+)+ ———g "b (V.28)

Since both P„and N" depend only on i P + f', this is a
constraint on the time independent variables a,„and c„„.

The condition (V.3) turns out to be also expressible in
terms of only P„and P, and one obtains

Here yp is a matrix such that yp2 = +1 and Ly, , y&)+ ——0.
If D/2 is even,

'
as in four dimensions

r=o

P'+ i+(Bp+ Bi)%' = 0. (V 22) and if D/2 is odd

This again gives us a set of time-independent constraints.
So the basic equations of this model are the definition of @
(V.11), of 4 (V.18), and of the gauge conditions (V.20),
(V.22) .

In order to quantize this model one may either build a
Hamiltonian formalism in the covariant formulation, or
using the freedom given by the existence of the supergauge
and conformal transformations solve explicitly the con-
straints (V.20) and (V.22) and setup a canonical formalism
based on independent variables. We shall only describe the
covariant way of proceeding but one can also use a non-
covariant transverse gauge. LIwasaki and Kikkawa (1973)).

r=0

e = (i/2)1' (z), (V.29)

where

I'~(s) = y~+ ~(2)'~'y, g (d.~+z" + d„~s ")—
n=l

(V.30)

Strictly speaking we should talk about p~+&, but the above
notation is more familiar. Setting s = expi(iP + f') we
obtain the following expression for the field 4'

2. Govariant quantization of the spinning string
From the work done in Sec. I.2 it is almost obvious how

to proceed in order to set up an Hamiltonian formalism in
the presence of the constraints (V.20) and (V.22). Rather
than go through all the steps we present directly the quant-
ized formalism. The quantized field @ and 0' obey the equal
f P commutation relation 2—g/2b p+ e=0, (V.31)

is the field originally introduced by Ramond as a generaliza-
tion of the y matrices. This equation defines I'(s) for all
complex numbers s.

If e = —1, e is half integer. We define the creation and
annihilation operators b I", b +" by

(V 23) where

(V.24) Lb-" b-+")+ = —g""b-, (V.32)

The quantization of the @ proceeds as before. The N field is
expressed by Eq. (V.18) where the c„are operators obeying
the anticommutation relation +~(z) = 2

—'~'H~(s), (V.33)

j~n", cm")+ = —,g""bm+n, p. —
where

If e = +1, m is integer. The c„with tt ) 0 are regarded as
annihilation operators, the c„with e ( 0 as creation oper-

H~(z) = Q Lb„~+a" + b ~s-")
n=l/2

(V.34)
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H& is the field introduced originally by Xeveu and Schwarz.
Because n is half-integrally moded, N has a branch point
at s = 0 of the square-root-type. Hence the two models
have the same basic algebra, but the Ramond model will
describe half integer spins while the Neveu —Schwarz model
will describe integer spins.

To define the model one needs to take the constraints
(V.20) and (V.22) into account. So we define first the
supergauge operators:

c = —1 (Neveu —Schwarz model:

CG, G„j+ = 2L +„+ (D/2) (m' ——,')8,

CL, G ] = (m/2 —n)G„+„,

CL, L„] = (m —n)L +„+ (D/8)ni(m' —1)8

(V.43)

(V.44)

(dk/2im'k) f(k) (2)'"+(k) .P(k).
The difference between the two algebras can be removed if

(V.35) one redefines Lp in the Ramond model by:

Whether 0' is given by Eq. (V.29) or Eq. (V.33), Zf is said
to be an Ff gauge or a Gi gauge. The contour (I") depends
upon the test function f. If f = k", we obtain the F„and
G„gauges. For the F gauges, n is integer, and for the G
gauges n is half integer, otherwise Eq. (V.35) is senseless.
In. these cases (I') simply encircles the origin.

Equation (V.22) can be rewritten as

P' —2%'(k)k(d/Ck)%'(k) = 0. (V.36)

So one defines the Lf gauges as:

Ly = —
~~de 2nrs s .I'~ s

—2:+(k)k(d/Ck) +(k):$, (V.37)

:y"y" = p(v"v" —v"v") = v"v" —g"".

where again N is given by Eq. (V.29) or Eq. (V.33), de-
pending on the model. If f(k) = k" one obtains the L„
gauges.

In order to find the algebra of the gauges and supergauges,
one can use Kick's theorem for normal products of anti-
commuting fields. For bilinear quantities in the F field one
is led because of the zero mode to de6ne the normal ordered
product of two gamma matrices as:

L "e~ = L = L + D/16. (V.46)

L I4& = o for all n ) 0.

(V.47)

(V.48)

There is a certain amount of ambiguity for the mass shell
condition. One can either say that since there is no ambigu-
ity due to normal ordering in the definition of the quantized
Fp, one can impose Fp

I
|p& = 0 which leads to a massless

ground state. Or one can argue that since there is an am-
biguity in the quantum value of Lo, and Iio is related to Lo
by Fo' = Lo, we should rather require the condition

CFp —68/(2)"'j
I lp) = 0 (V.49)

where m is the arbitrary mass of the ground state. Both
procedures are in fact equivalent since the model turns out
to be consistent only for- m = 0, D = 10. I et us examine
the spectrum one obtains in the second case (keeping in
mind that we shall later put m = 0) . The ground state is

Then the two algebras are identical.

I.et us now define the spectrum of these models.

%e shall impose as weak conditions on the state
vectors of the model the F and L gauges by requiring:

This definition can be extended to a product of more than
two matrices and satisfies the definitions which enables us
to use Wick's theorem. The basic relation between normal
and un-normal ordered products is

H ~(x) H" (y) =:H~(x) H" (y):
—g.,C(~y)"'/(~ —y) j if I*I &

I y I, (v38)

I 4& =
I 0, p&n(p),

where n(p) is a spinor satisfying the Dirac equation
(pp —m)n(p) = 0. As one can. easily see, the leading
trajectory except for the ground state is doubly degenerate,
since we can act on the vacuum either with (ai~)+ n times
or n —1 times and act again with (d,&)+: One obtains
states of same spin and same (mass)' since

--:I"(*)I (y) = ——::I (*)I (y):
—-'g. .C(~+ y)i(~ —y)7 if I*I &

I y I (v39)
Lp + ni /2)

I p& = ( —p'/2 + yn2/2 —g na„+a„
—g nd„+d.) I p& = O. (V.50)

Because of the difference between the contractions away
from x = y the algebras of the gauges differ by c numbers
in the two models. One obtains the following algebra of
gauges and supergauges:

e = 1 (Ramond model):

This is maybe a bad aspect of the model since experimentally
the 6 and X trajectories are nondegenerate. It is possible
however that unitarity corrections may split the leading
trajectory into two nondegenerate trajectories.

CF, F.) = 2I, + (D/2)~'S, „,

CL„, F„g = (nz/2 —n)F +„,

CL, L„g = (m —n)L „/ (D/8)m'6
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(V.40)

(V.41)

(V.42)

L„I P&=|0 for n&0,

G„lp& = o 1 3 ~ ~ ~2) 2P

(V.51)

(V.52)

e = +1 We can impose the G gauges to work without
ambiguity, as well as the L„gauges for n ) 0. So we require
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Since there is an ambiguity for Lo in going from the classical From a state
i t) belonging to R~ one forms a set of states

to the quantum expression, the mass shell condition is belonging to R~ defined as
defined by

(V.53)

where c). (0) is an arbitrary constant. As it turns out c). (0)
will be equal to 1/2. The mass shell condition is now

L
—p'/2 —c), (0) —Q ma„+ a„—Q mb +.l) ] i P)

n=l . m=1/t2

F 1'~«»«F ~H ~»«»H~ L I ~»««I

)& E,». . JC ~-
i t) (e = +1),

~-l/2 ' Gl/2-a +-l/2 ' ' +l/2-5 I-l

(e = —1),

(V.58)

(V.59)

(V 54) where e,, t), = 0 or 1.

In this model there is a 6 parity which one can define as

G —( 1) &4+bm i— (V.55)

and this 6-parity will be preserved by the interaction.

The ground state is a scalar (or pseudo scalar since we
have not yet defined the parity of our states), of (mass) '—
Ln (0)/n'g. It will turn then to be a tachyon. There is a
linear trajectory associated with this "pion. " Above it
there is another trajectory since using b&/2+ we raise the
spin by one unit and the (mass)' by a half unit. The first
state on that trajectory has mass zero Lif c(. (0) = 1/2g,
spin 1, G parity + 1 and hence is called the "p." It is re-
markable that although n, (0) = 1, there is no tachyon on
the p trajectory. The splitting o.„(0) —cx (0) = ~ is also
the correct one.

3. No-ghost theorem for the covariant
quantization

We shall give only the main outlines of the proofs of the
no-ghost theorems for the fermion and meson models since
they follow a similar line of argument as the one used in
the conventional model. Because of the symmetry between
H)'(s) and Li/(2)'"11'&(s) we shall present the notations
side by side for the Neveu —Schwarz (e = —1) and Ramond
(e = +1) model.

The number operator R takes half-integral values if
e = —1 and integral values for e = +1.At the Mth level,
the space of states R~ contains both positive and negative
norm states. The physical states are defined as the states
which satisfy the gauge conditions (V.47) and (V.48) if
c = +1, or (V.51) and (V.52) if e = —1, and are said to
be on shell if in addition the mass shell condition (V.49)
(~ = +1) or (V.53) (» = —1) is satisfied. One wishes to
show that the on-shell physical states have a positive norm.
One defines first a smaller subspace of states, the transverse
states, which in addition to the previous gauge conditions
have to satisfy the supplementary conditions (h is the same
light like vector which we had picked before)

One can show that these states form a linearly independ-
ent basis of some subspace of R~ which does not contain
any transverse states. Then by an iterative construction,
one can show that together with the transverse states, the
states defined by Eqs. (V.58—59) form a basis for the whole
space. Further, the transverse states have positive definite
norm. LGoddard and Thorn (1972), Corrigan and Goddard
(1974)g. One then looks for a projection operator unto the
space of transverse states. To do this one picks up the same
lightlike vector h, and defines P+, P, P+, P . Then using
the gauge conditions, wri, tten classically as

I'4 =0 and I'2 —2s~' = 0,

I'+ T —I'+ — 1 I' 1 —2s —-', E' s+ 4'
I'

2s d I'.4
(p )3/2 «(p )i/2

Defining now the operators

D~ 1 JP» 1 2S e integer, (V.61)

n integer (~ = +1), half-integer (e = —1). (V.62)

After taking care of the normal ordering ambiguities, one
obtains the following expressions for E = I'+ ~ —I'+

we solve them for P~,r(s) as a function of P, P, 4', 4', and
de6ne P+ T ——{P+,r{z) )o where P+,~(z) is expressed in
terms of only transverse and minus components. One
then forms the difference between P+,T and P+ ——{P+(s))0
and one obtains

i Ramond (1973)j:

n&0,

(V.56)

(V.57)

E = (L() —X) {Do —1) + FOBO

+ g P „a.—a „P.+ I „D„+D „I.„,
n l

(V.63)

or

+ Q (8 „G„+G „8„)+ Q L „D„+D „L,
r=+l/2 n=l

/

H„=k $„ (6 = —1). where Lo has been defined in Eq. (V.46).
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The algebra of the new operators 8„,D, is the following
(e= 1)

[F„,D ) = 28„+, [F., a )+ ——-', (3~+ ~)D.+,
[L„,D ) = —(2m+ m)D.+-,

[L„,8 ) = —(23m+ nz)B„+,

[D„,D„) = [B„,B„),= [D„,B ) = O. (V.65)

The same algebra obtains for e = —1 replacing I'„by |„.
By using this algebra one can show that for the fermions
(e = +1)

gauge, such a symmetric treatment exists, and so this may
be a disadvantage of the covariant gauge with respect to the
transverse gauge. However the complicated apparatus of
the covariant operator formalism finally gives the same set
of amplitudes as the one obtained in the noncovariant
approach, which also has its own degree of sophistication
and therefore it is useful to have two independent deriva-
tions of the same result: it shows that the dual interacting
string can really be treated in two different gauges, a non-
trivial test of the consistency of the dual theory. We shall
refer the reader for the transverse gauge treatment of the
spinning string to: Mandelstam (1973a), (1973b), and
(1974) .

A mesonic string propagator in the covariant approach
is simply represented by the dotted line to which corre-
sponds the mathematical expression 1/(Lo —1/2). How-
ever, remembering that it is supposed to represent a spinning
string propagator, it can also be represented as Fig. j.4 where

and hence one requires D = 10, X = D/16. The last condi-
tion implies Jo —X = I.o and so the ground state fermion
will be massless.

" "+ "~"( / / ) + "( / ) l 4. Meson-meson scattering
(V.66)

A similar computation in the meson model reveals
D = 10, cx (0) = ~, so that the "m" meson is a tachyon,
the "p" meson is massless. In this case one can show that
for both models drawn in the string picture.

[X„,F) = eX— for X„=L„,E„,D„, F„/G„, B„,H„.

(4/» x)x if a=+1, (V.67)

2'tx'p if c= =1. (V.68)

Using then the structure of the E operator, the commutation
relations and the gauge conditions satisfied by on shell
physical states one shows easily that if (@i I, I q&2) are two
on-shell physical states, then

Using the basis of states previously derived and these
commutation relations, one shows that E has negative or
zero eigenvalues (integer if e = +1), (half integer and
integer if e = —1) and that the eigenvalue zero is reached
only in the transverse subspace. The projectors unto the
transverse subspace are then [Brink and Olive (1973),
Corrigan and Goddard (1974a))

V(p) = p H(1) Vo (V.70)

the arrows going in opposite directions at the top and the
bottom reAect the opposite sign in the boundary conditions
at g ——0, m. . These arrows have nothing to do with those
carrying 5U(A) quantum numbers and should not be
confused with them. Similarly a three "point" vertex can
be drawn either Fig. 15(a) or Fig. 15(b).

We shall work with the first kind of representation and
show that because of the good choice of the vertex in the
operator formalism, the amplitudes have all the good
properties of duality that one may expect from the string
diagrams. So one looks for a vertex V(p) describing the
absorption of a ground state "pion" by a mesonic propa-
gator. In order to ensure the absence of ghosts V(p) must
have "good" anticommutation relations with the G gauges.
Neveu and Schwarz introduced the vertex V(p) =
p H(1) Vo [Neveu and Schwarz (1971a))

(V.69)

and this proves the no-ghost theorem, originally proved by
different methods by Goddard, Rebbi and Thorn (1972);
Schwarz (1972): Brower and Friedman (1973). The same
conditions on D, cx (0), m, are also obtained if one quantizes
the theory in a transverse gauge and then requires I.orentz
covariance. [Iwasaki and Kikkawa (1973)).

As we have just seen, in the free case mesons and fermions
are treated in a very symmetric way. As we are going to
see, in the operator formalism based on the covariant
orthonormal gauge, this is no longer true for the interacting
theory, and it has not yet been possible (maybe for purely
technical reasons) to give a unified covariant treatment of
scattering amplitudes involving mesons and fermions. In
the functional integration formalism based on the transverse

Vo = .exp —ip. Q(1):

[G, Vo) = p.H(1) Vo (V.71)

for all m, and hence

LG- V)+ = LG-LG-, V )-)+ = [G-,' V )- = LL -, V.)
= (Lp —mp' —-', ) Vp —Vp(LO —-', ) . (V.72)

I et us consider an on-shell spurious state of the form:
Q I

G = (f' I. Since it is on shell, one has

(V.73)

is the vertex of the conventional model. To show that V has
the desired properties, one notes that

Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



J. Scherk: An introduction to the theory of dual models and strings 157

where

&»2(L 0—if~)

FIG. 15. A three-meson vertex drawn; (a) as a three-"point"
coupling, (b) in the string picture.

is the projector unto the 2Vth level. This proves that trans-
verse states saturate the residues of a mesonic tree, and, as
a consequence, that no shost appears. The last part of the
statement is siill valid if D & 10.

I et us now. evaluate the mw —+ mx amplitude. Up to nor-
malization factors which include the coupling constant, it
is giv'en by

If we want to prove that such a state is decoupled from any
tree containing pions, we must show that:

1

'44 (0~ ki I k2 I2 (1)Vo(k2) (&/&) x~' &12

0

X VQ(k3) k3 H( 1) I 0) k4&. (V.79)
1

Q I
G V(p2) V(p2) ~ ~ .V(pN-i) I o& = o.

(V.74)

)

The algebra of the a and 6 modes separate completely. The"a"part of the algebra is worked as before using coherent
states, while the "b" part can be worked out using the
relation

Hence the equality (V.72) will be useful only if p2' = —1
which means that the absorbed scalar meson has the same
mass as the "pion. "In that case the first term on the right-
hand side of (V.72) does not contribute. The second term
cancels the propagator 1/(Lo —1/2). If one evaluates an
expression containiog a cancelled propagator, one obtains
an expression of the type

„'~0'~(s)x—~0' —~ (s~) (V.80)

A4 — k2 k3 (V.81)

and also the contraction between two H's given by Kq.
(V.38). One obtains

lim(1 —x)—»».
(V.82)

I @& = V(p2)[1/(LO 1/2)]V(p2)'''V(pN —i) I0&.

(V.75)

Satisfy the %ard identities

(V.76)

(V.77)

where
I &0& difFers from

I @& be replacing the first vertex
V(P2) by Vo For two such tree states

I @& and
I iP& one can

show that for D = 10

(P I sKNsi @& = Q I
ortN I @) (V.78)

Since the operator formalism is de6ned only in the region
below the poles of the amplitude in any channel (otherwise
it leads to divergent expressions), p2. p2 is negative, and the
above limit is zero. So expressions containing cancelled
propagators give zero in, the region where the integral
representations are convergent, and there is no problem in
continuing analytically this zero result outside of the region
of convergence. (Neveu, Schwarz and Thorn (1971)).

Continuing the process of anticommuting G with vertices
until it reaches the vacuum where it annihilates, one proves
the desired identity (V.74) (provided that all the emitted
pions are on shell). A similar result holds also for L„. So
the "tree states"

where

n, (s) = n„(s) + -; = 1+ -;s.

This expression is not obviously crossing symmetry, how-
ever using the fact. that k2. k2 = n, (t), one obtains

(V.83)

This is the formula originally proposed by I.ovelace (1968)
and generalized by Shapiro (1969). It is crossing symmetric,
does not have a p tachyon pole at exp 0 and would have
the Adler zeroes if the intercept of the pion was zero rather
than 1/2. It is obvious in this formalism that only ampli-
tudes with an even number of pions can be constructed
since all II's have to be paired to give a nonzero result.
Hence the definition of the "Gparity" operator given above.

In this formulation of the dual diagram rules, gauge
invariance as we have seen is simple to check, but not cyclic
symmetry, because the pions at the end of the chain do not
have any factor of the type k.II associated with them, while
for each pion emission inside the chain such a factor occurs.
In order to prove the cyclic symmetry of the X point
function one can go to an equivalent set of rules (the so
called &i formalism) where cyclic symmetry is easy to prove,
but where gauge invariance is less transparent. The formal-
ism described previously is called the 52 formalism, and
historically the 5& formalism was devised earlier. Let us
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consider a physical state, on the mass shell, in the previous
S2 formalism. Since

Gus
I g& = 0 and (Lo —2) I @s& = 0 one has

I ~& = (2Lo —G-»sGus)
I @s& = Gu. G u2 I @-s& (V 84)

An amplitude with two physical states at the end of the
chain,

I @,&, I
+'& is described by

Av = (q4'
I V(ks) (Lo —1/2) —' ~ ~ ~ (I.o —1/2) —'

X V(km ) I @ ) = (@
'

I
V(k, )

X (Lo —1/2) '''(Lo 1/2) V(kiv —1)GusG g/Q I
(F52).

(V.85)

Using the commutation relations (V.72) and (V.44) and
cancelled propagator arguments, G1~2 can be commuted to
the left so that one obtains

Ag ——(Ps'
I Gus V(k2) (Lo —1) ' ~ ~ ~ (Lo —1) '

(V.86)

In this new formalism, the propagator is now (Lo —1) ' so
that it seems that a tachyon on the p trajectory appears:
this is not the case as we have seen already. The vertices
are unchanged, but the states at the end of the chain are
described by the state vectors:

I @~& = G t~s I @s& and con-
versely

I @s& = G t~2 I @t&. These equations give the connec-
tion between 52 and F1 formalism. In the 51 formalism, a
pion at the end of a chain is now represented by k ~ b, ~s I

0, k)
while in. the 5, it is represented by

I
0, k). Because of this,

to each pion whether at the end of the chain or not corre-
spond a k factor and the proof of the cyclic symmetry is
made much easier. The 5~ formalism appears less funda-
mental than the F2, however as an intermediate technical
instrument it can be very useful. The connection between
these two formalisms was originally elucidated by Xeveu,
Schwarz and Thorn (1971). A very nice compact formula
for the E-point function has been found by Fairlie and
Martin (1973) involving integration over anticommuting
numbers.

FIG. 17. Fermion —antifermion —meson vertex: (a) represented as a
three-"point" coupling, (b) in the string picture.

& dn+dn
I'o = Vo( —1)"=' (V.87)

which anticommutes with the generalized I'„(s) matrix. I.et
us define Vs ——I'oVo where Vo is given by Eq. (III.13).
Since

mesonic string introduced before, and indeed this will be
the case.

I.et us introduce a vertex for the emission of a ground
state meson from a fermion line. Until now we have not
assigned a given parity to the ground state of the Xeveu-
Schwarz model, and one can either define the ground state
to be a scalar or a pseudoscalar. The states which have odd
G parity have opposite parity in the two models defined by
the choice of the parity of the ground state, while the even
G-parity states keep same parityin both cases. It is custom-
ary to speak of the fermions as "quarks, " and the version
of the mesonic model where the ground state is a pseudo-
scalar is said to be a "gluonic" model while the mesons of
the models where the ground state is a scalar are said to be
qq mesons, a terminology which will be justified later. One
can of course choose the opposite convention. (Schwarz
(1971)).

In order to describe the emission of the ground state
gluonic "pion, " one introduces the generalized p5 matrix
LNeveu and Schwarz (1971b)j

Vt ——(F„, Vsj+ ——ip I'I'sVo (V.88)
5. Fermion-meson scattering

A fermion propagator in the covariant quantization is
represented by a solid, oriented line as in Fig. 16(a) or as a
string propagator, as in Fig. 16(b) where arrows going in
the same direction at the top and the bottom reAect the
identical boundary conditions at 0- = 0, m. An antifermion
is represented in both pictures by changing the direction of
the arrows. Similarly a fermion-fermion-meson vertex can
be drawn. either as Figs. 17(a) or (b). If we take the second
picture literally, the emitted mesonic string should be the

is independent on e, the commutator of V1 with Ii„ is easily
computed

PF V~3—= LF ' Vsj—= LL Vs)- = (Lo —np') V2

(V.89)

For this gauge identity to be useful one needs p' = —1 as
before, so that the ground state pseudoscalar gluon is on its
mass shell. Then one defines a tree in. the Ramond model as

I
&I& = (1/Lo) V (1/L) "V~

I 0&&(p) (V.90)

where u(p) is a spinor satisfying the massless Dirac equa-
tiori.

FIG. 16. Fermion propagator drawn; (a) as an ordinary Fermion
propagator, (b) in the string picture.

Using the gauge property of V1 just derived and using
cancelled propagator arguments, one shows that

for R = 0) 1) 2
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FIG. 18. Fermion-meson scat-
tering displaying fermions in the
s channel, and mesons in the t
channel.

for any (f I
satisfying (P I (Lp + R) = 0. This formalism is

the RI formalism, where the gauge identities are simple to
prove, but where the fermion has an unconventional
Klein- Gordon propagator. This can be remedied easily by
using Eq. (V.89) for n = 0, F02 = Lo, and cancelled propa-
gator arguments to prove that

where

I
&2& = (1/Fo) V2(1/Fo) V2 V2

I 0&~(p).

In the case of the qg model of mesons where the ground
state is scalar, the vertex V~ ——Vo and V, = PF„, V2$ .Then

LF, Vi)+ = (Lo —np') V2 —VgLO (V.93)

F = ~(po)«I V2(p)(1/Fo)V(p)" (1/F)
X V2(p~-i) I 0&~(p~).

I

(V.94)

The no-ghost theorem for fermions can then be proved by
inserting a factor 3 —1 on an internal line and by showing
that this insertion gives zero on the mass shell. To do this,
one converts first to the R1 formalism, which is possible

and the same expressions and gauge conditions for
I R1),

I
R2& are obtained. In. order for the gauge condition to work

for e = 0 in this model it is crucial that the mass m of the
ground-state fermion be set at zero: If not, the anticom-
rnutator (V.93) for e = 0 means that (Fo —im/2't') be-
cornes converted into $ Fo —im/(2—)'t'], up to cancelled
propagators and the latter expression does not annihilate
the ground-state fermion.

I
0&u(p) .

We shall now talk only about the "gluonic" model and
in the end obtain the "qg" model as bound states in the
fermion-antifermion channel. A fermionic line emitting
pseudoscalar "pions" is then described by:

(P ) (0 I
V (p ) (1/L ) V (p )

&& (1/Lo) "Vi(p~-i)
I 0&~(p~) (V.95)

and in this form the algebra of the a and d modes separate.
Up to the spin factors, the fermion —meson scattering ampli-
tude is proportional to 8 (—', —n~(s); —n„(t) ) where
n~(s) = ~ + s/2. So we see that the ferrnions in the s
channel are dual to gluons in the t-channel. This is indeed
expected since if we draw the corresponding string graph,
one obtains that result, as one sees easily on Fig. 18. How-
ever, to prove this duality between gluons and fermions in
a factorized way one must find a vertex operator satisfying
the graphical identity of Fig. 19.

We shall assume for simplicity that the emitted fermion
state is the ground state. In order for the above equality
to be possible one needs to find a vertex operator for the
emission of a ground state fermion such that a meason
emission vertex from the fermion line on the left can be slid
to the right of the vertex and become a meson emission
vertex for a mesonic line as shown on Fig. 20.

Since the space of the a modes is common to both fermions
and mesons, one needs an operator which acts on the ferm-
ionic space on the left (d„osciHators) and on the mesonic
space on the right (b„socill taros). If we express the ferm-
ionic tree on the left in the Ri formalism, we can write
each propagator in terms of its integral representation, then
use the equality x~'I'(s) x ~' = I'(sx) to replace all propa-
gators in. terms of I"(s) matrices: similarly on the right of
the vertex, all mesonic propagators can be absorbed into
H(s) fields, so that in. order to prove the meson-fermion
duality the vertex should convert F 6elds into H fields, and
vice versa.

It would be too lengthy to give the details of the con-
struction of this vertex wh'. ch we shall denote by Vz(p, s).
Vz(p, s) is defined by the following equations (Schwarz
(1971),Thorn (1971), Corrigan and Olive (1972) .

!

even in the presence of 3, since Fo commutes with 3. There
remains a last Vg vertex (for instance the last on the left)
which is converted to a Vi by defining u'(po) such that
u'(po) (0 I

Fo = u(p~) (0 I. Then. the gauge identities are
used to show that 3 —1 reduces to zero; the Iio gauge is
used working to the right since it does not annihilate on
u'(po) (0 I. So for D = 10, the residues at each fermion pole
are saturated by transverse states. LCorrigan and Goddard
(1974)g.

It now remains to find out the duality properties of a tree
described by (V.94) . In the Ri formalism, one has

Pll
I

I

PN-2 PN-I
I

I I
I

~ ~ ~

IPK+l IPN-2
0 ~ ~

I l

N-I

FIG. 19. Duality equation revealing that the emission of rV "pions" from a fermion line contains the Neveu —Schwarz interaction in the cross
channel.
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V» (p, s) = W» (s) Vo(p, s) s""',

W» (s) = expsl. i'+W»(s),

(V.96)

(V.97)

FIG. 20. Basic requirement for the fermion emission vertex.

The gauge properties of the vertex VF(1) are very irnpor-
tant, since they should guarantee that transverse states
saturate the residues of fermionic and mesonic poles in
meson —fermion scattering. One cannot however simply
expect that an F„gauge will be converted into an G„gauge
since e is an integer in the first case and a half integer in the
second case. So the simplest possibility is for V» (1) to convert
linear combinations of F gauges into linear-combinations
of G gauges. One can show indeed that it does so and the
most general gauge identity satisfied by V»(1) is

I Corrigan
and Goddard (1973); Brink, Olive, Rebbi and Scherk
(1973)g

F4V~(1) + V~(1) L75G4 —
I (~p.&)/2'"jf(1) j = o

(V.107)

W~(s) I 0~& =
I 0~& (V.98)

a(y) z r(y —s}
W» (s)Y5: ig i~2

W» ( )yl/2 21/2 (y Z) 1/2
(V.99)

W» (s) = (0»
I
expB(s) I Og& expA (s), (V.100)

where

Equation (V.98) is an obvious boundary condition; Eq.
(V.99) is the statement that the vertex converts H's into
I"s. Equations (V.96) and (V.97) are there to insure the
correct duality properties of the vertex. The solution to
equations (V.98) and (V.99) is given by

where @(x) = f(x) (1 —1/x) '~' and f(x) is a function ana-
lytic in a domain including 0 and 1 with the exception of
possible poles at 0. In the Eq. (V.35) which defines F~ and
G~, the contour is different: for Gq, (I') is any circle for which
I

s
I
( 1, while for Fq it is any circle for which

I
s

I
) 1.

It is easy to see that with this contour prescription both
G@ and F~ exist for the same function p(x) . The term pro-
portional to p y is not harmful to the gauge condition since
the emission vertex has to be multiplied on the right by
y.-u(p) which is annihilated by p p. If one chooses f(x) =
x " e = 0 1 2, - ~ ~ one obtains an infinite sum of F
gauges which work to the left, a finite number of incident
6 gauges working to the left and an infinite number of
6, gauges working to the right. This reminds one of the
behavior of an incident plane wave at the interface of two
media having different optical indices.

A(z) = —', Q b„A„,b„ (V.101)

(V.102)

Defining

(FF
I

= (Ri I V, (1)p,u(p) (V.108)

21/2~ d +

and
I @&& as given by Eq. (V.75) to be a meson tree in the

F& formalism, the gauge identities satisfied by I P&&, I
FF &

can be written as (Olive and Scherk 1973b)

A,.(s) = s(s)- 'L(~ —~)/(~+ ~) j
( —1/2) Jt' —1/2)

xi I (—1)"+'-'
( —1/2) E —1/2)

(V.104)

Hence we see that the vertex W»(s) is a rather complicated
object since it contains the exponential of bilinear form in
the Fermi b„operators. The infinite matrices A and B are
given by

I.„mzI@,&= o,

G„mzI@,&
= o,

(FF
I
I--- = (FF

I (Lo+ 8(~ —1)),

(FF
I

G „= (FF I g
8=1/2

(V.109)

(V.110)

(V.111)

(V.112)

(V.105)

In the $2 formalism the amplitude for the process is given
by

gZ = dX 2ivrX X2(~0—'/')

is the on shell projection operator, and

F = (&1
I V»(1) v u(P) (Lo —1/2) '

I 4 ), (V.106)
Note that n„, and A„, are connected by

where
I && is a tree of the P2 formalism (E1 I, a ferrnionic

tree in the Rl formalism. A-(1) = k(~- —~-).
Rev. Mod. Phys. , Vol. 47, No. 1, January 1975



j.Scherk: An introduction to the theory of dual models and strings 161

The saturation of the meson pole residues by transverse where we write 5K as
states follows from the equality LOlive and Scherk (1973b)g

(PF [ san
i @,) = (PF

i
an

i @,). (V.114)

dg
~LO—112

(c) 4' 'bS
(c) being a contour encircling

To prove this equality one needs not only the gauge identi-
ties (V.109—V.112) and the structure of the operator 3, but
also to prove a mathematical identity

(V.115)

Without this identity the left hand side of (U.114) would
not even be covariant, and the Eq. (V.115) is one of the
typical "miracles" exhibited by the operator formalism.
The identity of the mesonic sector obtained by factorization
of the poles dual to a fermion line with the transverse state
of the Neveu —Schwarz model shows a non trivial interplay
of the properties of duality and of gauge invariance, even
if it could be expected on the basis of the string diagrams.
Strictly speaking, it would have been possible to define only
the fermion —fermion —meson vertex V2 and to deduce the
existence of the three-meson interaction and its form from
duality, while the converse would not have been possible.

n,„(u+ rV/2)n. , = (X/2 —t)n, ~~,,

—n, ,+~ (s + 3X/2) + (s + 1)n, , (V.117)

This is indeed true and is the second example of mathemati-
cal "miracle" happening in this computation. One now
obtains the transverse state saturated, and hence ghost-
free, covariant expression for the residue R

the origin twice.

The mathematical challenge in this definition of R is that
since is defined in a given I orentz frame R is not necessarily
Lorentz invariant. We can of course use the gauge condi-
tions (V.111) and (V.112) and the structure of 3 to get
rid of 3. Now the G gauges bounce to and fro along the
internal and this gives rise to a covariant correction factor
1/A(x) provided that a necessary and sufficient condition
for Lorentz covariance be satisfied by the matrix n„,

6. Fermion-fermion scattering
dx xio—

R = (PFr l . ii PFs),
l,l 4vnx 6 x

(V.118)

By fermion —fermion scattering we shall mean a Process where
such as the one described in Fig. 2]..

II.. . I

I I

II. ~ . I

i
l

5$) 5 I
p 2j )

h(x) = det(1 —M'(x)) (V.119)

~+ 1/2 &
( y) m+n+r -+ "+'& - r E - )'

(V.120)

The amplitude for fermion —fermion scattering is now
FIG. 21. Fermion —fermion scattering rePresenred in the conventional defrned as $0live and Scherk (1973b)jway.

We shall assume by an economy principle, that we know
all the vertices appearing in that figure already. However,
it is by no means obvious that the propagator indicated by
an arrow is simply (Ls —s) '. The reason for this is that
the (PFr I

and.
I

PF&) on its left and right satisfy different
Ward identities from those used to define the F~ space, so
that we may expect the propagator also to differ. Equation
(V.112) looks as if we were still working in an orthonormal
gauge, since in the average each G„ is zero between (PFr

~

and
~
PFs) states, but this vanishing in average is insured

in a different way as in Eq (V.52). .

What one really needs however, is the residues at any
pole of this propagator to be saturated by the transverse
states of the Neveu —Schwarz model and this will define,
together with the Regge behavior condition, which propa-
gator one should use. So we require the residues at a given
pole of the above amplitude in the intermediate meson
channel to be

F = FF1
dx x

i
PFs

~ s(x)
(V.121)

exps(b
~

X
I b) exps(b+

~
Y

~

b+)
~
0) = det(1+ XY)

&& expels(b+
~

Y(1 + XY) "
(

b+)
~ 0), (V.122)

since the residues of this expression at any given pole in the
intermediate meson chanriels are given by (V.118) and the
amplitude will turn out to be Regge-behaved.

It now remains to evaluate expression (V.121) explicitly:
this looks very complicated since one has to evaluate
vacuum expectation values of exponentials of quadratic
forms in the Fermi b operators. However, the theory of the
normal form of a product of exponentials of linear and
quadratic forms of Bose or Fermi operators is well known,
so that no new mathematics is needed at that stage. An
example of such mathematics is shown in. the following
formula: LBerezin (1966); Schwarz and Wu (1973)g

R = (PF,
~

san
I
PF, ), (V.116) where X, Y are arbitrary matrices.
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For the simple fermion-fermion scattering, without dimensions of space-time D. For D = 10 n(t) is precisely
meson emission one obtains the expression for F4 LSchwarz equal to the pion trajectory: 42(t) = —, + t/2. So the poles
and Wu (1973a), Corrigan (1974)j in the s and t channels occur at the same masses.

B(x)D/'
dxx —!'/—' (1 —x)—""2

b, (x)

X g (1/k!) S» 8»gvr(1 —A') 'vg: (V.123)

In order to find the duality properties of F4, one needs
to express (V.130) in, terms of the quantities occurring in
the t channel. Let us define the quantities T&, k = 0, 1, ~ D
by

where

T» = Q 241K»242242K»244,
Ap

(V.131)

~(x) = det(1 —A2(x))

Amn 2 (~mn /lf nm) ~

where the sum runs over all products I'~' of distinct y
(V 124) matrices. The analogous T»' occurring in the t channel are

defined as

(V.125)

(-1/2)
vn = L1/(2)'/'j( —)nXn+'/'(

The S», 8» are antisymmetric tensors constructed from
products of k, y Inatrices sandwiched between the spinors
n&, u2 and u3, N4, respectively. We see that the t channel con-
tains singularities: it is however impossible to study these
singularities without explicitly evaluating the infinite de-
terminants occurring in the integrand and the quantity
vr(1/1 —A') v. One can show that /Corrigan (1974)j

T» = Q 61F "244'g21 +»242,
&r

(V.132)

and the T»' are related to the T» by the general Fierz trans-
formation in arbitrary space-time dimension D /Case
(1956)g

T»' = Q TlFl»,
l

6/8 = 1 —v (1 —A') —'v (V 127) Defining c/» ——(—1) ' Fl» a very nice mathematical identity
is

so that one needs only to evaluate the infinite determinants
b,, /!. I Schwarz and Wu (1973)j guessed that in spite of
their formidable expressions, B(x) and D(x) are simple
functions given by

xi/2l(1. + (1. x)1/2) 1/2D l = Q c $1/2»

(1 + (1 y)1/2)1/2D —l (V.134)

A(x) = (1 —x)'/' (V.128)

and

B(x) = 2'(1 —x) '/'(1+ (1 —x)'/') (V.129)

and verified this by computer. Later, an analytic proof of
these equations was found by setting up a system of dif-
ferential equations for

where y = 1 —x. Hence not only does the Fierz transfor-
mation allow us to go from the TI, to the TI,' but it also does
the change of variable x —+ 1 —x for us)

The scalar products U» = (1/k!) S» 8» are not however
completely identical with the TI, because of the presence of
a y~ matrix in the SI, which have an even in.dex. This ys
comes from the definitions of the fermion vertex and is seen
in Eq. (V.102). The relation between T» and U'» is

f'„= Q (1 —3f)„„'v„— UI, ——Ty) k odd) UI!; = Tg) p k even.

and solving this system LCorrigan, Goddard, Olive, Smith
(1973)g.

Finally, the fermion —fermion amplitude takes the simple
form

1

F4 = 2 " dxx &'& '(1 —x)

Q U»f» (x) = Q V1'fi(1 —x), (V.135)

where

Ul' ——(—1) 'Tl', E odd or even.

Using this relation and the Fierz transformation one obtains
the duality relations for the integrand

X Q (1/k!) S/, 8»x»/'(1+ (1 —x)'/'). (V.130)

This is precisely the form obtained by S. Mandelstam using
functional techniques. Here F4 is a sum of beta functions
and hence is obviously Regge-behaved. It has poles in the
s and t channels; the location of the poles depends on the

Hence the quantities with even label have changed parity
under crossing: the ground state is a pseudoscalar in, the s
channel, but a scalar in the t channel. In general, states
which have odd G parity have their parity changed under
the crossing transformation. Hence the "gq mesons" can. be
defined and factorized as indicated at the beginning of the
previous section. Note that apart from the change of parity
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FIG. 22. Fermion-f ermion
scattering in the string picture
revealing the similarity be-
tween s- and t-channel mesons.

this result could have been guessed from a glance at Fig. 22
by inspection of the s and t channel content.

More complicated diagrams such as those involving two
fermion lines emitting mesons have also been computed and
the results obtained indicate that the corresponding ampli-
tudes are well-behaved /Schwarz and Wu (1974)). Am-
plitudes involving more than two fermion lines have not
been investigated yet, but it seems reasonable to think that,
according to the string picture, they will reserve no sur-
prises.

It is also possible to compute one- and sV-loop diagrams
LGoddard and Waltz (1971), Montonen (1973)$ in the
mesonic model, and one obtains similar results as in the
conventional model. Although the theory of fermionic loops
is still incomplete, the introduction of the planar fermion
loop has been shown /Green (1973)j to make the theory
more convergent. So it seems very likely that the quantized
interacting spinning string theory has the same degree of
internal consistency as the conventional spinless model.

CONCLUSION

We hope to have achieved our aim to convince the reader
that the covariant treatment of dual models in the operator
formalism, and the transverse string picture are two com-
plementary faces of a single mathematical structure, having
a high and maybe perfect degree of self-consistency.
Whether or not these mathematical structures have any-
thing to do with the real world is still unclear, and one has
to wait to see whether more realistic models can be built or
not. At the worst, it seems that the existing mathematical
structures can be to hadron physics what the two dimen-
sional Ising model is to the theory of ferromagnetism.
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