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This paper reviews the experimental studies of displacive phase transitions in solids. Primary
emphasis is upon inelastic light scattering and neutron scattering; related infrared reflectivity
measurements, as well as x-ray and EPR analyses are also summarized. Several prototype structures
are considered in detail: (1) the rocksalt IV—VI semiconductors PbTe, SnTe, and GeTe; (2) the
ferroelectric perovskites exemplified by PbTiOs and BaTiOs; (3) perovskites which exhibit cell-
doubling transitions, such as LaAIO„SrTiOs, and KMnF, ; (4) crystals having the a-quartz
structure, including GeO„Si02, and A1P04, (5) the "improper ferroelectrics" Gd2(Mo04)s and
Tbi(Mo04)„(6) the V—VI—VII semiconductors typified by SbSI; (7) the hydrogen-bonded
ferroelectrics of the KH2 P04 family; (8) Jahn —Teller systems such as DyV04 and RbCoF„ in which
structural distortions occur as secondary eff'ects; (9) order —disorder systems such as NaNOi and the
ammonium halides (NH4C1, NH4Br), in which no "soft mode" occurs in the spectral region
(~ ) 10"Hz) probed by ir, Raman, and neutron spectroscopy; (10) P-tungsten (A —15) structures
such as Vs Si and Nbs Sn, which exhibit high-temperature superconductivity. These crystal categories
are used to illustrate several phenomena of current physical interest: Specifically, we discuss
harmonic and anharmonic mode coupling; "critical exponents" 13 diff'ering from one-half in the
temperature dependences of the order parameter q&(T) = ys(T —To)s and of the soft-mode.
frequency co(T) = iso(T —To)s; and the recently discovered "central" modes centered at zero
frequency, which grow in intensity as the transition temperature To is approached from above or
below. The review covers the period 1940-1972. A few 1973 works are mentioned for which the
author had preprints in 1972 or very early 1973.This review is in no sense a comprehensive survey
of ferroelectricity. Readers are referred to the following earber reviews on that subject: Silverman
(1966, 1969), Cochran and Cowley (1967), Blinc (1968), Murzin et al. (1968), Nettleton (1970), and
Blinc and Zaks (1972).
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I. INTRODUCTION

Over the last decade the experimental studies of struc-
tural phase transitions have been numerous. Various
spectroscopic techniques have been employed, including
infrared refiectivity, inelastic light and neutron scattering,
EPR, NQR, x-ray, and ultrasonic analyses. At this stage
ave may say quite generally that for most transitions in
which the crystal is ordered in both phases (i.e. possesses
periodic transitional symmetry) the structural distortions
are characterized by an unstable or "soft" optical phon-
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84 J. F. Scott: Soft-mode spectroscopy

on, whose frequency decreases substantially as the tran-
sition temperature is approached from above or below. '

This description comprises the now famous theory of
Cochran (1960, 1961), which directly stimulated much of
the experimental work of the last decade.

Several reviews have summarized progress in this field
in recent years. The surveys by Cochran (1969, 1971) are
especially good in discussing theoretical aspects. Barker
(1967, 1970) has provided two useful papers which are
more tutorial. Other summaries have had more special-
ized emphases: for example, the study of acousto-optic
mode interactions by Fleury (1971).

By far the most useful review of work in this field is the
proceedings of the 1971 NATO Advanced Study Institute
in Geilo, Norway (Samuelsen et al. , 1971). In the present
paper we hope to complement the Geilo book in several
ways: First, we have summarized work crystal by crystal,
rather than categorizing studies according to experimen-
tal technique; this may make it easier for nonspecialists
to assess quickly the present level of understanding for
each substance; second, at the time of the Geilo meeting
several important experimental results specifically, the
occurrence of "central modes" centered at ~ = 0, and
the failure of molecular field theories for structural
transitions were so new that it was very dificult to
relate them to earlier measurements and theories. In the
present review an attempt has been made to place such
discoveries within the context of related work. For exam-
ple, central modes whose intensities grew at transition
temperatures were first predicted and analyzed from an
anharmonic point of view by Cowley (1970). This paper
was apparently unknown to the authors of the more
recent inelastic neutron studies (Riste et al. , 1972) as was
the study of central modes (diverging Rayleigh intensi-
ties) in NH4C1 by Lazay et al. (1969). Even a very recent
analysis of central modes in SrTi03 (Shapiro et al. , 1972),
using a formalism which distinguishes between collision-
free and collision-dominated phonon regimes, does not
mention that an equivalent theory was experimentally
confirmed by Cowley et al. (1971) for KH&As04 more
than a year earlier. Each experiment showed that the
soft-mode frequency remained finite at the transition
temperature T&, despite the second-order character of the
transition; each paper employed the same theoretical
explanation; yet the more recent SrTi03 paper made no
mention of the KH2As04 work. Such anomalies provide
a major motivation for reviews.

A second motive for the present paper has been to
assess critically experimental work in the field. In some
cases terminology has been misleading: Sakurai et al.
(1970) have termed ~ = 0 scattering in NaNO& "critical, "
whereas it has no demonstrated connection with critical
exponents (Stanley, 1971) analyzed in magnetic transi-
tions (Heller and Benedek, 1962, 1965) or with critical
opalescence (Andrews, 1869). We shall term phenomena
discussed in this paper critical if they occur very near
transition temperatures. By "very near" we mean, for T
less than the transition temperature To, that range of T
su%ciently close to To that the rms value of the order
parameter is several times its expectation value. Above To

the critical regime may be defined as temperatures for
which the coherence length for the soft-mode Auctuations

Exceptions are "reconstructive" transitions, such as zincblende-
wurtzite, in which large ionic displacements are required.

exceeds the length characterizing the interparticle poten-
tial (and where mean field theory is therefore invalid).
The critical regime for structural transitions may exceed
20 K, whereas for magnetic systems a value of 0.01 K
may be more typical; see the Ginzburg criterion, Eq.
IV-5. Cowley (1972) and Barker (1970) have termed the
106 K transition in SrTi03 as "antiferroelectric" —yet
SrTi03 is not antiferroelectric in terms of dielectric
behavior and is only antiferroelectric if every crystal with
two formula groups per primitive cell is also. Such
semantic distinctions are not important to experts in the
field who understand the detailed mechanisms in each
crystal class, but they can severely confuse nonspecialists.

Of even greater consequence is work which is simply
wrong. As an example of this, we may single out the
Raman studies of soft modes in SbSI, where three
independent experimental groups have evaluated three
completely different temperature dependences; it would
seem to follow that two of these are in error. A second
example is afforded by the neutron studies on KMnF3 by
Minkiewicz et al. (1969) who concluded that a soft zone-
boundary phonon quadrupled the primitive cell from a
Pm3m to Pbnm structure. Other errors abound, especial-
ly in x-ray studies (e.g. , Geller and Bala, 1956), which are
relatively insensitive to small rotationlike distortions in-
volving light ions (fluorine or oxygen, typically). In all of
the cases considered, the errors have been made by very
competent scientists, and by setting the record straight
we imply no criticism; however, out of politeness, some
workers fail to refute clearly earlier publications, and the
resulting contradictions in the literature are not helpful.

A. Early experiments
One experimental study of structural phase transitions

stands out as far ahead of its time. The only prewar
spectroscopic investigation of a solid state structural
phase transition was that of Raman and Nedungadi
(1940) on quartz. In this pioneer effort the basic concept
of a soft mode was put forth: An optical phonon whose
eigenvector approximated the ionic displacements occur-
ring at a crystallographic phase transition was observed
to decrease in energy remarkably as the transition tem-
perature was approached from below.

No related spectroscopic experiments were reported
for crystallographic phase transitions for many years
after Raman and Nedungadi's paper. And in fact their
work appears to have been largely overlooked in Western
Europe and 'the United States; it apparently was un-
known to Cochran at the time he developed his lattice
dynamical theory of structural phase transitions (1960,
1961). The early quartz measurements were perhaps of
greater infIuence in the Soviet Union, where Ginzburg
and Levanyuk produced a series of papers (1949a,b;
1955, 1958, 1960, 1962) clearly influenced both by Lan-
dau's theory of phase changes (1937) and by the experi-
mental work of Raman and Nedungadi. Much of the
emphasis in Russia at this period of time was focused
upon the solid state analogue of critical opalescence —the
divergence in light scattering cross sections observed in
simple fluids a century earlier by Andrews (1869).Exper-
imental efforts by Iakolev et al. yielded some indication
of critical, quasielastic scattering with cross section diver-
gent as T ~ T0 in quartz, and this was interpreted as solid
state critical opalescence (Iakolev et a/. , 1956a,b; 1957).
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However, as subsequent experiments by Shapiro and
Cummins (1968) were to show, the scattering in quartz
was due to microdomain formation in the hysteresis
region between —845 and 847'K characterizing the first-
order phase transition in SiO&.

As we shall discuss in the sections of this -paper
devoted to experimental studies of individual crystal
classes, the first quantitative spectroscopic investigations
of solid state displacive phase transitions were the inelas-
tic neutron studies of Cowley (1962, 1964) and the
infrared reAectivity analyses of Barker and Tinkham
(1962) and Spitzer et al. (1962, 1963). All of these papers
were subsequent to Cochran's stimulating theoretical
work and represented a departure from earlier nonspec-
troscopic analyses. Prior to 1960, the interest in structural
phase transitions (aside from the above-mentioned work
on quartz) was very much centered upon ferroelectrics.
Independent discovery of ferroelectric BaTi03 in several
laboratories during World %"ar II prompted renewed
theoretical interest in the mechanisms of crystallographic
distortions, as well as experimental eAorts to produce
practical technological devices from the new ferroelectric
materials. Experimental work during this period was
primarily on BaTi03 and on more complex hydrogen-
bonded ferroelectrics known earlier, especially triglycine
sulfate (TG S) and potassium di-hydrogen phosphate
(KDP). As we shall discuss below, the experimental
measurements were macroscopic; they consisted of bulk
measurements of the low-frequency dielectric constants
and of the spontaneous polarizations as functions of
temperature. These macroscopic measurements were the
only information available on the phase transition dy-
namics, and were correlated with x-ray structure data,
which of course provided information about static prop-
erties of the crystals above and below the transition
temperatures. For some systems, such as the hydrogen-
bonded ferroelectrics, theoretical work (Slater, 1941) of-
fered a microscopic description of the phase transitions,
but the dynamics of transitions was treated theoretically
only by macroscopic, thermodynamical concepts —spe-
cifically, by writing out expressions for the free energies,
specifying a macroscopic order parameter (the sponta-
neous polarization in the case of ferroelectrics), and
imposing certain stability conditions; namely, that the
free energy be minimum with respect to the order param-
eter. We review this approach below. First, however, we
will specify two definitions used in this paper. By ferro-
electric we designate a crystal which exhibits hysteresis in
its D/E relationship, where E is. the macroscopic electric
field across the crystal, and D is the electric displacement
vector. For some highly conducting crystals, it is not
possible to obtain a measurable field across the speci-
mens, and this definition of ferroelectric must be general-
ized (see the discussions on GeTe and Na. WO3 in this
paper). To include such cases we will specify that a
ferroelectric is a crystal having a polar optical phonon
whose eigenvector is the same as the ionic displacements
required to transform the lattice to a centric structure
with the same number of ions per primitive unit cell. '
Such a definition is still "operative" and allows us to
include G-eTe and certain metallic compounds as ferro-

'We thus include all pyroelectrics as ferroelectric. For device purposes,
a ferroelectric is usually defined as a pyroelectric whose direction of
spontaneous polarization can be reversed with an applied electric field.
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FIG. 1. Two-dimensional diagram of GeTe-structure ferroelectrics.
Here z is the number of formula groups per primitive cell.

'This number need not be half; it could be 1/4, 1/6, . . . , 1/n for any
even integer n.

electric. The second definition we wish to consider is
antiferroelectric. Some years ago crystals were classified
as antiferroelectric at a certain temperature if at a higher
temperature the dielectric constant behaved in a specified,
peculiar way. In particular, a crystal was termed antifer-
roelectric in Phase I if the transition to a higher temper-
ature paraelectric Phase II evidenced a small peak in the
dielectric constant at the transition temperature. The
difficulty with this description is that a crystal without a
phase transition cannot be antiferroelectric. Moreover,
the highest temperature phase of any crystal cannot be
antiferroelectric. And in general one cannot characterize
a crystal at one temperature as antiferroelectric by any
set of experimental measurements at that temperature.
The opinion of this reviewer is that antiferroelectricity is
an ill defined, almost useless concept. However, it con-
tinues to be used in the literature; if one wishes to define
it in order to make comparisons with ferroelectrics, the
definition most analogous to that given above for ferroe-
lectric would be: An antiferroelectric is a crystal having
a polar optical phonon whose eigenvector is the same as
the ionic displacements required to transform the lattice
to a centric structure. having half' as many ions per
primitive cell. With this definition an antiferroelectric
may or may not be centric. Moreover, a crystal may be
simultaneously ferroelectric and antiferroelectric at a
given temperature. However, the phases of SrTi03,
KMnF3, and LaA103 having two formula groups per
primitive cell do not fall under the definition given above
because the eigenvectors characterizing their transforma-
tions to simpler, single-formula-group primitive cells are
those of nonpolar phonons. The above definitions are
illustrated in Fig. 1 for a hypothetical two-dimensional
structure. Another concept or definition which should be
made explicit in this introduction is that of the "order" of
a phase transition. We shall term a transition "first order"
if the displacement parameter (or order parameter)
changes discontinuously at the transition temperature To

For such systems, the soft-mode frequency ~(T) will also
exhibit a discontinuity at TD, and need not decrease to
zero at To. By "second order" we designate those transi-
tions in which the displacement parameter y(T) decreas-
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es continuously to zero at Tp is approached from above
and below. The description of transitions as "third order"
or higher is no longer popular; however, what would be
meant by third order if the term were applied to displa-
cive phase transitions is a transition in which the dis-
placement parameter rp(T) decreased to zero as T ~ Ts

from above and below, and in addition has

If we ignore the subleties of "central modes" for the
moment, we may generally say that for second-order (or
any higher order) displacive phase transitions, the soft-
mode frequency will decrease to zero as Ts is approached
from above or below. This point has been understood by
all workers in the field except Mooradian and Racah
(1971), who erroneously concluded that the failure of
their observed soft mode in Ti203 to decrease to zero
indicated that the phase transition was third order or
higher. The actual explanation for their data is that the
phonon they observe is not a soft mode, i.e., has no direct
relationship to the order parameter; and the order pa-
rameter for the Ti203 phase transition is electronic, not
displacive.

Let us note also in discussing order parameters that the
spontaneous polarization is not always the macroscopic
order parameter for a ferroelectric. We shall term those
for which it is not "improper ferroelectrics" and discuss
such situations in the section devoted to gadolinium
molybdate and its isomorphs.

~p(r) = Z c'@'(r) (I 2)

where p„(r) are the j-dimensional basis states for the ith
irreducible representation. The second assumption of
Landau's theory is that changes corresponding to two
diferent representations will set in at the same tempera-
ture only by accident. Thus Eq. (I.2) is simplified to

Ap(r) = g cA(r). (I.3)
The difference between Landau'. s theory and Cochran's
(1959, 1960, 1961) is that Cochran assumes not only that
Ap(r) can be expanded in terms of the irreducible repre-
sentations (only one of which characterizes the structural
change), but in addition, that bp(r) can be expanded in
terms of eigenvectors or normal coordinates of the lattice,
and only one of these will characterize the symmetry
change at Tp. Cochran s theory is more restrictive, since in
general there will be more than one orthogonal normal
mode of each symmetry class. For example, in quartz
there are four modes of I1 symmetry. Landau's theory
says that the n P transitio—n, if second order, cannot
involve distortions of two different symmetries; Coch-
ran's theory adds that it cannot involve two modes of the
same symmetry.

Cochran, Landau and Devonshire (1949) all assume
that the free energy F near the transition temperature Tp,

where the c; in Eq. (I.3) are small, can be expanded in a
power series, e.g. ,

Landau expands the function Ap(r) in terms of the
irreducible representations for the structure considered:

8. Free energies: theories of Landau, Devonshire,
and Ginzburg F = F. + ,—'Aq'+ I/38''+ ,—'Cq'+ (I 4)

Landau described in 1937 a theory of second-order
phase transitions based upon symmetry criteria. In Fig. 2
we show a plot of charge density for a simple one-
dimensional lattice. The solid line refers to T ) Tp, and
the dotted line to T ( T,. It can be seen that below Tp the
periodicity of the lattice has changed, and that the unit
cell has doubled in length. If this kind of change is to
occur continuously with temperature, Landau's first re-
quirement is that the charge density can be written as

p(r) = p, (r) + b,p(r), (I.l)
where ps(r) is a function invariant under the operations
of the high-symmetry space group; p(r) is invariant under
the operations of the low-symmetry space group; and the
latter symmetry group is a subgroup of the former.

where g is a normalized linear combination of the c;.
The conditions for stability

0 = OF/Oil = Ari + Cil'

or g = 0 for positive 3 and C; otherwise

q' = -W/C.

ForT) Ts,

(I 6)

OF/Oil = 0 and O' F/Oq' ) 0

eliminate any linear term in i1 in Eq. (I.4) and require that
the coefficient A in Eq. (I.4) be positive. The condition
that F be a true minimum at tl = 0, eliminated the tl'
term in Eq. (I.4). If this latter condition is not satisfied,
the phase transition cannot be second order, for a finite

at T = Tp implies finite c;—which physically must be
infinitesimal (Landau s third condition).

The above requirements yield (for all ri),

O'F = A
O71' (i1 = 0)'

Thus, A is positive. Usually it has been assumed that

20
W = W. (T —T.), (I.7)

Fto. 2. Charge density p(x) vs x above and below a phase transition
temperature.

and that C is independent of temperature. This leads to
the prediction that the order parameter g varies as

q = go~To —T~"'.
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The assumption given in Eq. (I.7) is not just heuristic.
This particular temperature dependence follows from the
assumption of infinitely long-range forces, i.e., each par-
ticle can be treated as moving in an average potential or
"mean field" of all the other particles. This has been done
classically for fiuids in the Van der Waals theory, and for
spins in magnetic systems as well. In fluids and in
magnetic systems, the mean field theory fails spectacular-
ly, as shown by Heller and Benedek (1962, 1965) for
ferromagnetic EuS and antiferromagnetic MnF2. A theo-
retical derivation of the exponent P = in Eq. (I.8) is
given by Stanley (1971). Other critical exponents are
derived from mean field theory in this reference, as well.
Because the interactions in Auids and magnetic solids are
short range, we expect the assumptions leading to Eq.
(I.7) to fail. By comparison, the forces in ferroelectrics
are largely Coulombic, and therefore of very long range.
Thus we expect Eq. (I.8) to hold for soft-mode phase
transitions in ferroelectrics. (Note that the n —P transition
in quartz and the 106 K transition in SrTi03 are not of
the ferroelectric type. ) But in other systems we may find
P = 1/3 typical of three-dimensional Ising and Heisen-
berg models.

The connection between the temperature dependence
of the order parameter and a phonon frequency follows
from the simple one-dimensional harmonic oscillator
equation (ti is a displacement; F, a potential) in linear
response (Thomas, 1971).

mt'' = O' F/O71' = A

[from Eq. (I.6)] or

(I 9)

(I.10)

Thus we conclude that in ferroelectrics or other crys-
tals in which the assumption of infinite range forces is
reasonable, a mode having undamped frequency depend-
ence given in Eq; (I.10) may be expected.

and that for complex crystals these conditions are gener-
alized to the requirement that

tc;)0 (I.i ie)

for all i, where ~; is the ith normal mode frequency. We
see, therefore, that ~; —+ 0 is equivalent to some general-
ized elastic coefficient becoming small. In the latter case,
the crystal's restoring force against some shear deforma-
tion is weak —the crystal literally softens. This equiva-
lence of co; with some generalized elastic coefFicient Ck is
thus responsible for the term soft mode applied to the
normal mode for which u(T) —+ 0.

Cochran illustrates his lattice dynamical theory with a
cubic diatomic crystal (see the discussion of GeTe and
SnTe in Sec. II of this review) U.sing the shell model
(Dick and Overhauser, 1958), he writes the equations of
motion for the crystal as

m] u) = Rp(v2 u~ ) + (4m'/3)PZe,

m2 Q2 = k (U2 —u2) + (4m/3 )PXe,

{I.i2a)

(I.12b)

m& to' U~ = Rs(U~ —U&) —(4m/3)pZ'e, (I.13a)

m2 tc' U2 = Ro(Uz —Ui ) + (4m/3)pZ'e, (I.13b)

p(l —[4m(Ye)'/3v(k + Rs)]) = (Z'e/V)(u~ —u, ), (I.13c)

0 = k(uz —v2) + Rs(u~ —v2) + (4m/3)PYe, (I.12c)

where tA, u&, and v2 are the displacements from equilibri-
um of the positive ions and the cores and shells, respec-
tively, of the negative ions; Ze, Xe, and Ye are the'
corresponding charges in each case, so that X + E'+ Z
= 0 is required for the crystal to be macroscopically
uncharged. Here P is the polarization, and R& is a short-
range force; k is the intraion (shell-core) force constant
for the negative ion. Sinusoidal substitutions for u&, uz, v2,
and P in Eqs. (I.12abc) yield

C~)0,
Gi) 0,

G'i —G2 ) 0,

C&) + 2C)z ) 0,

(1.»a)

(I.1 lb)

(I.1 lc)

(I.1 1cl)

'Strictly speaking, the mean-field approximation assumes the interpar-
ticle force is independent of distance r; whereas, although Coulombic
I/r forces change very slowly with r, they do decrease, and no one has
explicitly shown that a 1/r potential gives mean field results. See the
Ginzburg criterion, Eq. (IV.S), however, which shows that long-range
potentials such as I/r have very small temperature ranges over which
critical phenomena are manifest.

C. Cochran's theory

In addition to the macroscopic, thermodynamic ap-
. proach to soft modes outlined above, two other models
have been of great value. They are Cochran's (1960,
1961) lattice dynamical theory, discussed below, and a
microscopic, anharmonic theory due primarily to Cowley
(1963).

Cochran (1960) points out that for a simple cubic
monatomic lattice the stability requirements are that the
elastic coe%cients satisfy the following conditions:

where u~ = U~ exp( —itot); u~ = U2exp( —icct); V is the
unit cell volume; P = p exp(i&et); Ro = kRo/(k + Ro);
Z' = Z + YRO/(k + Rs); and the definition of polariza-
tion

p = (e/V)(ZtA + Xu2 + YV2) (I.13d)

has been employed.
Now when an efI'ective field E = Ese( i~t) is applied-

to the crystal at a su%ciently high frequency ~I that the
cores do not move appreciably, the equilibrium of the
shell is determined by

EOYe = (k + Rp)V2

and the polarization is

p = YeV~/V.

(I.14)

Thus the electronic polarizability of the negative ion is

n = p V/E. = (Ye)'/(k + R.). (I.i6)

4mn /3V = (e —I)/(e + 2) (I.17)

This polarizability is related to the high-frequency dielec-
tric constant via the Clausius —Mossotti formula

Rev. Mod. Phys. , Vol. 46, No. 1, January 1974



J. F. Scott: Soft-mode spectroscopy

so that Eq. (I.13c) becomes

p = Z'e(e + 2)(u( —u, )/3V

phonons with energies boo& + ho~2 ——h~ and momenta
+ g2 = g, we find

so that Eqs. I.13ab become, eliminating Ul and U&,
6 =A(n~+n~+ 1), (1.24)

LM6)T = Ao
4or(e„+ 2) (Z'e)'

3V
where p, is the reduced mass, and the subscript T denotes
transverse. The longitudinal mode frequency is derived in
the same way, with the addition of the Lorentz field
4m I'/3, yielding

R.' = 4~(. + 2)(Z'e)'/9V. (I.20)

That is, the temperature dependences of short-range (Ro)
and long-range (Z') parameters may lead to a subtle
cancellation of the effective force constant. Thus, a soft
transverse optical phonon, ~T —+ 0, may lead to ferroelec-
tricity without any bizarre anomalies in the temperature
dependences of short-range forces.

D. Microscopic theory Cowley

Anharmonic theory of lattice dynamics has been tho-
roughly reviewed by Cowley (1963). Here we shall sum-
marize only a few of his results and proceed by a more
sophomoric approach. If we consider the response of a
damped harmonic oscillator to a sinusoidal driving force:

mx + nx + kx = e'Eo exp(i~i), (1.21)

where the damping term n is complex (n/m = I + ib,),
we find that the energy transferred to the oscillator at any
frequency is given by

(I.22)

where ooo ——k/m. This is just a special example of the
fiuctuation —dissipation theorem, which proves that at
equilibrium, n(oo) is proportional to the imaginary part of
the susceptibility: X(oo) = x/E. Students will find an
explicit derivation of Eq. (I.22) from (I.21) in several
mechanics textbooks, including Becker (1954, p. 151).

The cross section specified by Eq. (I.12) has its maxi-
mum at a frequency co such that

~'+~ 6 = ~0 ores' =(uo —~pA (I.23)

Both 6 and I' are anharmonic corrections {i.e., damping)
to an otherwise harmonic oscillator equation. Conse-
quently, we may write each as proportional to the density
of final states into which the harmonic phonon is decay™
ing. For the lowest order process in which one phonon of
wave vector q and energy A~ decays into two other

pooL, = Ro + 8m'(t + 2)(Z'e) /9' . (I.19b)

From Eqs. (I.19ab) we see that ooL can never be zero,
since two positive quantities are added

[Ro ——kRo/(k + Ro) with k) Ro ) 0].

However, AT can be zero. In fact, for this to occur, it is
not even necessary that Ro —& 0. All that is required is for

where A is a constant, and nl and n2 are the Bose—Einstein
populations of the phonons produced in the decay:
iii = [exp(&quoi/kT) —1] '. Similarly, if one phonon is
created and another phonon annihilated, 5 will be pro-
portional to (n~ —n2). In either case, at high temperatures
where kT » boo, we may approximate Eq. (I.24) as

= A[(ko T/Aoo~) + (ko T/Aoo2)] ol 5 = oop CT, (I.25)

where C is a constant.
Now let us consider the special situation of a double-

well potential V(x) = —.kx' + jx' with k and j positive.
Such a potential will have real frequencies, but in the
harmonic approximation ~o ——(k/m)' ' is imaginary. We
may consider such a potential as characterizing an unsta-
ble harmonic oscillator which is stabilized by anharmonic
decay. Since in the harmonic approximation ~o' = k/m is
negative, let us set

600 = —CTp, (I.26)

where C and To are positive quantities. Equations (I.25)
and (I.26) may then be substituted in Eq. (I.23), yielding

~'(T) = C{T—T) or oo(T) = C'(T —T)"'. {I.27)

The coefficient P = occurring in the temperature de-
pendence of the measured phonon frequency oo(T) is a
characteristic exponent appearing in all "molecular field"
or "mean field" theories in which forces of infinite range
are assumed (Stanley, 1971). The value of P = in Eq.
(I.27) shows that our theory assumes each phonon may
be considered as in equilibrium with the average or mean
field produced by all the other phonons in the lattice.

Obviously, Eq. (I.27) describes a soft mode whose
frequency o~(T) decreases to zero as a transition temper-
ature To is approached. We have thus obtained Cochran's
soft-mode equation from a more microscopic approach.

E. The LST relation

Lyddane, Sachs, and Teller (1941) derived a simple
expression relating phonon frequencies to the dielectric
properties of crystals.

We may write an expression for the dielectric constant
of a lattice in terms of a phonon harmonic oscillator as

E(id) = E~ + (Eo c~)(do/(ooo oo ), (I.28)

where ~„ is the co —+ ao value of the dielectric constant,
and ~0 is the value of the transverse phonon frequency.
The longitudinal phonon frequency ~L& occurs where
~(~) = 0 (This follows from Maxwell's equations; a
tutorial derivation is given by Scott, 197lc). From this it
follows that

~(0)/e = [ooLO/coo]'. (I.29)
This equation is the result of harmonic oscillator theory.
In practice it accurately describes systems in which
anharmonicity is included, since the quantities ~o«& and ~oo

are the observed values —not the harmonic values. This
point is discussed in greater detail by Barker (1964).
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Frohlich observed in 1949 that the occurrence of ferroe-
lectricity [~(0) ~ oo as T ~ Ts] should produce an equiv-
alent anomaly in ~p(T), as indicated in Eq. (I.29). This is
of course the content of Cochran's soft-mode theory.

The generalization of the LST relation in Eq. (I.29) was
given by Cochran and Cowley (1963), who found for a
crystal with n modes having polarization along direction
j, that

(I.30)

Cowley (1970) provided a microscopic description of
the spectrum expected for a crystal approaching a struc-
tural transition temperature. In addition to the sof t
modes at frequencies +to(T) and ~(T), Co—wley predic-
ted a third peak in the response (or scattering intensity)
centered gt ~ = 0.

Physically, Cowley's description distinguishes between
responses measured on a time scale over which the soft
mode reaches equilibrium with acoustic phonon density
fluctuations (r ) 10 " sec.), and shorter time scales over
which equilibrium is not established. ' This corresponds to
the distinction between "collision-dominated" and "colli-
sion-free" regimes of first and zeroeth sound propagation.

Algebraically, the treatment given by Cowley involves
a frequency-dependent relaxation time. The response
function of the system must be calculated in terms of the
proper self-energy Z. This kind of phenomenon was first
analyzed by Mountain (1966), who described quasielastic
scattering from fluctuations in liquids from this point of
view. The effect of frequency-dependent damping on the
quasielastic spectra of solids was first pointed out by
Cowley (1970). The relation between Cowley's work on
soft modes and Mountain's analysis of density fluctua-
tions in liquids has been made explicit in a very readable
review by Fleury (1972).

The algebraic descriptions of this complex phenome-
non are given in the sections of this paper dealing with
KH~PO4, SrTi03, and Nb3Sn. In this introduction we
wish to emphasize two physical points. First, part of the
anharmonic response near the phase transition tempera-
ture To is contained in the central mode; for this reason
the soft mode need not soften all the way to tc = 0 at
T = Ts, even for second-order phase transitions. This was
first shown experimentally by Cowley et a/. (1971). Sec-
ond, the central mode may occur even for systems or
temperature regimes which are not "critical, " i.e., where
mean field theory applies. In order to show that the
central modes are "critical" it is necessary to show that
the integrated intensity of the central mode behaves as

(I.3i)
with P not equal to —,'. Thus far, such behavior has been
shown for SrTi03 by inelastic neutron scattering (Riste et
a/. , '1971; Shapiro et al. , 1972), and for NH4C1 by
inelastic light scattering (Lazay et al. , 1969). However in
the latter case, Bartis (1973) has shown that the exponen-
tial anomaly occurs due to eAects of impurities and

'Also designated "adiabatic" and "isothermal" regimes by Feder (1971).

dislocations. NH4C1, then, is not viewed as exhibiting
intrinsic self-energy amonalies of the kind described by
Cowley.

The discussion appropriate to central modes is much
more extensive than we shall have room for in this
experimental review. Readers are referred to a very
readable paper by Wehner and Klein (1972) for further
details, and to the analogous effects predicted in magnet-
ic systems by L'vov (1968) and Moriya (1968).We should
emphasize even in this introduction that while Cowley's
1970 theory was explicitly illustrated by a three-phonon
interaction appropriate only for noncentric crystals, Sil-
berglitt (1972) has made a direct 'extension of Cowley's
theory to the four-phonon interaction applicable to cen-
tric lattices such as SrTi03. The basic physical idea of
difI'ering high-frequency and low-frequency responses to
a dynamical system is the same in each case. Interested
readers are referred to Schwabl (1972, 1973), Feder
(1971), and Coombs and Cowley (1973) for a fuller
discussion of this topic.

Note that NH4 Cl, unlike SrTi03, is an order —disorder
system. Discussions of NH4C1 diverging Rayleigh inten-
sities (Bartis, 1973) are therefore not closely related to
SrTiO3 central modes.

c(0)/6( oo) = [(~Lo/pro )]' .

Here e(0) was determined to be 310 +. 19 at room
temperature. In addition, the temperature coeKcient of
pro(T) was found to be 5 X 10 '('K) '; thus the O'K to
frequency could be estimated from the 32 cm ' room
temperature value as —27 cm '. %'hile this measurement
indicates that PbTe does not have a ferroelectric phase, it
does reveal an anomalous temperature dependence, i.e.,
the TO phonon energy decreases with decreasing temper-
ature. This behavior is in contrast with that of "normal'
crystals in which

~'(T) = co'(0) —AT (II.2)

is observed over a wide temperature range (here A is a
positive constant). Cochran's work also served to focus
attention on the prospect of simple diatomic ferroelec-
trics. The difficulty in determining the existence of ferroe-
lectricity in this class of materials via usual techniques
(application of external electric fields to measure hyster-
esis) is that the crystals are too highly conducting to
sustain even a small electric field. Consequently, verifica-
tion of ferroelectricity is best provided by indirect means,
i.e., measurement of the temperature dependence of
transverse q = 0 phonon frequencies to show that such
frequencies soften or decrease to zero at some tempera-
ture To. Such endeavors were pursued by Cochran, Paw-
ley et al. at Chalk River, using SnTe (Pawley et a/. , 1966).

II. ROCKSALT-STRUCTURE IV-VI
SEMICONDUCTORS

A. Neutron scattering in PbTe and SnTe

Attention from a lattice dynamical point of view was
first paid to IV—VI semiconductors by Cochran (1964),
who determined the static dielectric constant of PbTe by
measuring the q = 0 transverse and longitudinal phonon .

frequencies and invoking the Lyddane —Sachs —Teller rela-
tion
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Their results are shown in Fig. 3. It can be seen from this
graph that SnTe remains paraelectric at all temperatures,
but undergoes a decrease in toTo(T) of more than tenfold
as T is lowered from room temperature to 4'K. Hence
e(0) increases by —10 but does not diverge as T ~ 0.

B. Self-consistent phonon fielcl theory (Gillie snd
Nettleton)

The inelastic neutron scattering data on co»(T) were
fitted by Gillis (1969) to a microscopic force constant
model in which the forces were treated self-consistently.
The use of self-consistent phonon theory had been made
earlier by Hooton (1958), Koehler (1966), and others, and
concurrently by Nettleton (1969) who applied it to the
q = 0 soft mode in SrTi03. As can be seen in Fig. 4, a
good fit to ~TQ(T) is obtained in Gillis calculation. There
are, however, several minor criticisms of his analysis. The
key equation in G-illis' work is given below:

toT'o(T) = toT2o(0) + A exp[—htoTo(0)/KT] (II.3)
Below we compare this expression with that derived from
the general theory discussed in Sec. I [see especially Eq.
(I.13)]:

rAo(r) = ra' (0) + f a(~)n(ra, r)p(ra)dry

= ra,'o(0) + N(~. , r) fs(~)p(~) d~,

toTo (0) + A n(6Dp, T)
to'o(0) + A/[exp(hte, /II. T) —1]. (II.4)

Here p(ni) is the T = 0 density of states; n, the Bose
population factor; 8(te), the anharmonic matrix element;
and ~0, the frequency of the mean final state. We see that
G-illis has made the low-temrperature approximation
[exp(htos/ET) —1] = exp( —h~e&/ET). This is a good ap-

proximation only for T (( toe (in this case, T ( 40'K).
However, there is a more serious error in Eq. (II.3). Note
in particular that Gillis assumes to& = ioTo in Eq. (II.4).
This means, physically, that the only anharmonic decay
processes considered are those in which q = 0 TO phon-
ons decay into other q = 0 on the same TO branch.

Normally, anharmonic processes would include many
channels involving higher energy phonons. It is not
expected that to& have any relation to to&o. It is especially
curious to equate ~0 with ~T& in the case of SnTe, which
is centric in the paraelectric phase; in centric crystals the
anharmonic decay of q = 0 TO phonons into other
q = 0 phonons on the same branch is forbidden in
lowest order. Thus, we conclude that Gillis' calculation
yields good numerical agreement with experiment only
because of a coincidence: that coTO = ~0 in SnTe. To
show how unlikely this equivalence is, in general, we
point out here that coro(0) = 9 cm ' in SrTiO&, whereas
coQ = 70 cm ' (Worlock 197 1). Thus ni& and toTo (0) may
disagree by an order of magnitude.

C. GeTe

At about the same time Cochran's work on PbTe
revealed a soft mode, GeTe was under extensive study.
Bierly et al. (1963) had shown earlier that GeTe distorted
from the SnTe rocksalt (cubic) structure above 670'K to
a rhombohedral structure below, and that Snl .G-e„Te
solutions had transition temperatures which increased
approximately linearly with x. This observation, together
with the work of Pawley et al. (1966) is suIIicient to
conclude that Snl „Ge.Te and pure G-eTe are ferroelec-
tric in the low-temperature phase. However, the situation
was muddied-up considerably by confIicting x-ray studies
of Goldak et al. (1966), Zhukova and Zaslavskii (1967),
and Kabalkina et al. (1966); the latter study concluded
that GeTe is centric below To = 670 K, but this view can
now be disregarded.
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scattering volume —might be more profitable than neu-
tron spectroscopy.

Several other IV—VI's have been studied by x-ray
techniques. Malevskii (1966) showed that solutions of
form Pb2„(T1, Bi)& „Sare cubic for x & 0.2, and rhombo-
hedral for x ( 0.2. No soft-mode studies have yet been
made on this series, however. Nor is it known what the
low-symmetry space group is.

Finally, among the IV—VI semiconductors, SnSe, SnS,
and SnTe have been singled out by Pawley (1969) as
diatomic antiferroelectrics. Kafalas and Mariano (1964)
have shown that at about 18 kbar SnTe undergoes a cell-
doubling transition to the SnS structure. At ambient
pressures SnTe exhibits an abrupt decrease in frequency
for one optical phonon branch at the [(sr/a)00] boundary
(Pawley, 1969) which is presumably an indication of the
instability manifest at 18 kbar. Thus far no measurements
of zone-boundary phonon frequency as a function of
pressure have been reported. Raman measurements
would, of course, be possible only above 18 kbar, where
the cell-doubling creates reciprocal lattice points at
[m/a, 0, 0] and renders the q = m/a' = 2m/a soft mode
Raman-allowed.

III. MODE COUPLING THEORY
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Finally, in the last three years Harbeke and Steigmeier
(1970) measured the A& and E transverse phonons in
GeTe by light scattering and showed that these polar
modes do soften considerably at T —+ T, from below. The
nondegenerate mode lies at the higher frequency, as
shown in Fig. 5. This measurement therefore directly
confirms that O,-GeTe is ferroelectric. The cubic and
rhombohedral modifications of GeTe are diagrammed in
Fig. 6, following Pawley (1969). It should be noted that
the extrapolation of phonon frequencies to zero in Fig. 5
is not justified, since the transition is now thought to be
first order.

Neither inelastic neutron scattering nor light scattering
has yet been successful at analyzing soft phonons in
Sn. Ge& Te solutions. Cowley (private communication)
reports that for x ~ 1 the solutions exhibit very broad
phonon features. It is not clear whether such phonon
broadening is due to sample inhomogeneity; but if that is
the case, light scattering —which requires —10' smaller

The interaction between two excitations has been
subject to many diff'erent algebraic descriptions over the
years in the technical literature associated with different
branches of physics. The two extreme limits of approxi-
mation assume that either: (1) the linewidth associated
with each excitation is much smaller than the energy
separation of the two "modes;" in this case the modes
may be treated as coupled, nearly harmonic oscillators;
or (2) the linewidth of at least one of the excitations is
much larger than the energy separation of the two
modes; in this case, the broad mode may be approxima-
ted as a featureless continuum.

The case of a well-defined excitation interacting with a
continuum has been treated in a now classic paper by
Breit and Wigner (1936), and the asymmetric line shapes
resulting from such an interaction are usually described
as satisfying the Breit—Wigner single-level formula.

In addition to Breit and Wigner's work, Fano (1935)
attempted an early description of interactions between
discrete levels and continua. Unfortunately, Fano's paper
completely missed the point: He failed to consider the
interference term due to addition and subtraction of
scattering amplitudes. Many years later Fano (1961)
corrected this oversight and obtained formulas for asym-
metric line shapes very similar to those of Breit and
Wigner; however, the labeling of such shapes as "Fano
lineshapes, " as Rousseau and Porto (1968) termed them,
in a gross injustice.

The physical interpretation of Breit and Wigner's
theory is shown in Fig. 7. There are two scattering
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Fro. 7. Energy level diagram for Breit—Weigner interference. Here W
is the matrix element for a nonradiative decay.

A. Barker-Hopfield ref lectivity analysis

A theoretical description which is sufFiciently general
to encompass both extremes discussed above has been
given by Barker and Hopfield (1964). Barker and Hop-
field consider two damped harmonic oscillators with
frequencies ~I and co& and reciprocal lifetimes Il and I2.
The kinetic energy for each oscillator may be written as

m;~,'q, where m; is the effective mass for the ith normal
mode q;, plus an imaginary term characterizing the
anharmonic decay; the potential energy is given by 2ik; q,
where k; is a force constant equal to m;~,'.

We may write the spectral distribution function for
scattering from either uncoupled mode as

(r(~) = [n(~, T) + 1]Ax",(~), (III.6)
channels into the same heavily damped final state: one where the susceptibility X, is the jth mode is given by
direct

(2ln lo)
x, (~) = (u,'/(cu, ' —~' + iI; ~) (III.7)

and one indirect, via the discrete state
which follows from the driven, damped harmonic equa-
tion

(2III l»(II Io), (III.2) m, x + m, ljx + k~x = Eoexp(iur), (III.8)
where 8' is a matrix element describing a nonradiative
transition from the discrete state to the continuum.

The line shape resulting from this kind of interaction is
given by

a(e) = (q + e)'/(I + e'),

where q is a dimensionless constant given by

(III.3)

q = (1ln, lo)/~(I I wl2) (21~, lo), (III.4a)

and e is a normalized energy:

~ = ~-'(E —E, ) [(1l
II l2)]-'. (III.4b)

Carruthers (1962) was the first to suggest that this kind
of interference shape should exist for phonons in solids.
And such line shapes were first reported experimentally
by Rousseau and Porto (1968), who described their data
in terms of the formula given in Equation (III.3). Rous-
seau and Porto misidentified the broad feature in their
BaTi03 data as a two-phonon excitation; it actually is a
heavily damped one-phonon state. Scott (1970a) has
explained how the one-. phonon interactions in BaTi03
and other crystals may correctly be described within the
context of Breit—Wigner or Fano formalism.

In the opposite limit of approximation in which damp-
ing is very small, no line shape distortions are manifest.
In this case, we may describe the mode interactions by
diagonalizing the Hamiltonian below:

h~~ (T) 8'
hu2

(III.5)

where h~l and h~& are the energies of the first and second
uncoupled modes, and 8'is the matrix element for decay
from the unperturbed first state

l 1) into the second state
(2l. In cases of interest in the present review, ~~ (T) is the
temperature-dependent frequency of the soft mode, and
passes through ~2 at some temperature near the phase
transition temperature To.

The above formalism was applied to coupled soft
modes in SrTi03 by Warlock et al. (1969).

cr(~) = ~t;~,'/[(~,' —co')' + I ] (III.10)

which differs from- Eq. (III.6) only by the factor n + 1,
due to phonon populations at different frequencies. Note
that o(~) times a population factor kT/h~ is given by a
Lorentzian line shape.

The generalization of the above to two coupled modes
is obtained by summing the individual susceptibilities x,,
and by allowing mode coupling. Specifically, a response
function G„-(~) is defined such that

G-(~) = x.(~) (III.1 1)

with X, (~) defined above. However, G„(~) also has
nonzero off-diagonal elements

thus

G12(u) = k(2+ i/2~, (III.12)

Cd] GO + ill GD

k12 + lIl2&
III.13

k12 + lI»GO

u2 —~'+ &12~

where k» is the force constant of a "spring" which
connects the oscillators having unperturbed frequencies
~I and ~&, and I» is the damping constant of a "dashpot"
connecting the two modes. The perturbed normal mode

where ~,' = k,/m, , and from the definition of susceptibil-
ity

(III.9)
Equation (III.6) is simply a statement of the Nyquist
theorem, or the fluctuation dissipation theorem, which
states that the energy transferred at frequency ~ into any
system at equilibrium is proportional to the imaginary
part of the susceptibility. For the special case of a
damped harmonic oscillator this theorem is especially
easy to prove: the energy transferred, a(co), is equal to the
average value of m, (x,)'. This may be obtained directly
by solving Eq. (III.8) with x(r) assumed sinusoidal. The
result is
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frequencies for the system are obtained by diagonalizing
the matrix in Eq. (III.13). Physically, the efi'ect of either
k» or I» is to produce asymmetries in the otherwise
Lorentzian line shapes characterizing the energy transfer
to damped harmonic oscillators. In fact, as emphasized
by Barker and Hopfield, any given spectrum may be
reproduced with either a nonzero kl2 or a nonzero II2,
since the real and imaginary parts of the matrix in Eq
(III.13) may be independently diagonalized, it is not
algebraically necessary to include both k» and I». The
choice one makes in fitting observed data is largely a
heuristic one. Barker and Hopfield made one choice in
the case of BaTi03 and SrTi03 which put all the damping
in one oscillator, namely, the soft mode, i.e., in Eq.
(III.13), I2 ——0; I', large. This choice amounts to a choice
of phase for the interacting modes; Barker and Hopfield's
choice for the ABO& perovskite ir spectra is physically
appealing. However, Barker and Hopfield did not test
their choice by fitting spectra at more than one tempera-
ture.

Most recent experimental work on coupled modes has
employed a formalism analogous to that of Barker and
Hopfield. The theoretical analyses of Zawadowski and
Ruvalds (1970) for AIP04, of Katiyar et al. (1971) for
KH2As04, and of Fleury and Lazay (1971) for BaTi03
are all quite similar. In KH&As04 Katiyar et al. were able
to determine that k&2 was large (—100cm '), and 112

nearly zero; this was inferred by fitting lineshapes at
many different temperatures and requiring that all pa-
rameters appearing in Eq. (III.13) have very simple
temperature dependences or be completely independent
of temperature. The same physically motivated choice of
phase for the mode couplings was employed subsequent-
ly by Fleury and Lazay (1971).

As Zawadowski and Ruvalds have emphasized, the
theory of Barker and Hopfield is essentially equivalent to
that obtainable from a more elegant Green's function
approach. This way of attacking the problem has been
employed in earlier work by Maradudin and Fein (1962),
whose theory was directed toward inelastic neutron stud-
ies.

To relate the coupled, damped harmonic oscillator
theory described above to the earlier theory of Breit and
Wigner, it is necessary only to allow II or I2 to increase
toward infinity; in this case, the Breit—Wigner line shape
formula is recovered asymptotically.

Fleury (1972) has summarized mode coupling mecha-
nisms in a particularly succinct and readable review. He
points out that the spectral distribution function o(q, ~)
given in Eq. (III.6) may be given directly either in terms
of x,'(q, ~), the complex susceptibility for the uncoupled,
noninteracting mode j, or in terms of X,'(q, ~), the suscep-
tibility for the interacting system. These two susceptibili-
ties are related by Eq. (III.14)

x'(q ~) = x'(q ~)/(I —x'(q ~)&.(q ~)) (111 14)

where Z, is called the proper self-energy (see Wehner,
1966) of mode j.

In the specific cases of linear and anharmonic mode
coupling we discuss in this review, we shall be concerned
with the various forms which Z, (q, u) may take. For the
preceding discussion (Barker and Hopfield, 1964) of
linear mode coupling summarized in Eqs. (III.6—III.13),
we have

Z, (q, ~) = const. X X,'(q, u), (III.IS)
where x,'(q, u) is the susceptibility for a second mode j'.
This leads to the response function given in matrix form
in Eq. (III.13).

The second general case of mode coupling is that of
anharmonic interactions, exemplified by Akhieser damp-
ing (Akhieser, 1939). In Akhieser damping, the local
temperature of a given "mode" j is modulated by the
presence of mode j'. Thermal equilibrium is therefore
established over a time T where

(III.16)

where ot and T are, respectively, q-dependent strengths
and relaxation times due to j'.

The coupled susceptibility for such an interacting
system is given from Eq. (III.14) as

x,'(q, ~) = (~,' —~' —[in~/(I —i~T)]] '. (III.17)

When both Akhiezer-type damping and frequency-inde-
pendent terms are considered, one obtains

x,'(q, u) = (u,' —u' + iy, co —inn/(I —iuT)) ' (III.18)

which is the general form employed by Cowley (1970)
and by Cowley et al. (1971) in the analysis of soft modes
in KDP structures (see Sec IX of this review).

It is notable that the susceptibility given in Eq. (III.17)
was first employed by Mountain (1966) to describe
quasielastic central mode scattering from density fluctua-
tions in liquids. Cowley (1970) was the first to point out
that this should lead to observable central modes in
solids near phase transition temperatures, where ~, ~ 0.
Such modes have been observed directly or indirectly in
SrTi03, Nb3Sn, SbSI and KDP-isomorphs, and are dis-
cussed in sections of this review devoted to those crystal
classes.

B. Fermi resonance in solids

Fermi resonance is of course the coupling between two
excitations in a molecule, one of which is a one-quantum
level, and the other of which is a two-quantum state.
Such a coupling is due to cubic anharmonic terms of
form c~ q; q, in the vibrational Hamiltonian. These terms
are especially large in molecules such as CO& and H&O,
where the two-quantum level of one vibrational state is
nearly coincident in energy with a one-quantum level for
a different normal mode. This strong "resonance" be-
tween the two states yields a large energy repulsion
between the unperturbed states; the interaction constant
c„,—may be shown by perturbation theory to have the form

c,„- —= (~; —2~, + iI;) '. (III.19)

The idea that Fermi resonance would exist between
phonons in ionic crystals was first put forth by Scott
(1968), who analyzed the soft mode in quartz on this

T (( (I/~;). If T )) I/~, ,

the effects of mode j' are averaged out. These are the
isothermal and adiabatic time regimes discussed by Fed-
er (1971). This mechanism of mode coupling may be
described by a self-energy function
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basis. This work is discussed in a subsequent section of
the present review. Scott described the coupling between
one- and two-phonon states in a quasiharmonic way.
Damping was ignored, and the coupled-mode energies
were obtained by diagonalizing

hanoi (T) 8'
hu2

(III.20)

where l't~& is the energy of a two-phonon density-of-states
peak, and Ato&(T) is the soft-mode energy. This yields

to, (T) = ([co,(T) + to, ]/2) ~ 2[to, (T) —co,' + 4W']'

(III.21)

for the coupled mode frequencies. This expression divers
slightly from the more rigorous (but still phenomenolog-
ical) anharmonic theory employed by Ruvalds and Za-
wadowski (1970). Typically the difference is the squaring
of all frequencies involved; compare Eq. (III.13) and
(III.20). Since

(to,
' —co,') = (to) —to~)(to, + to, ) = 2tot(to& —to2) (III.22)

for ~I = ~2, it is not a bad approximation to use the
formalism with unsquared frequencies for the to~ = tot

region of maximum interest. This point has been empha-
sized by Scott (1971b).

In the self-energy language discussed above, Fermi
resonances such as those in Si02 or AlPO4 may be
described as if the two-phonon state were a second
"mode" j', characterized by a frequency ~,' and an
inverse lifetime or width IJ'. Equations (III.14) and
(III.15) would still apply, with

Over the next two decades very little interest in the
dynamics of the quartz phase transition was manifest in
the literature. In fact, the only experimental work report-
ed was from the Soviet Union, where Iakovlev et al.
(1956, 1957) observed very strong scattering of light from
quartz near To = 573 C. This was unfortunately misin-
terpreted as critical opalescence (Ginzburg and Leva-
nyuk, 1958, 1960, 1962), analogous to tha. t first observed
in fiuids by Andrews a century earlier (1869).Subsequent
work by Gammon (1968), Shapiro, and Cummins (1968)
showed that the intense elastic light scattering near To in
quartz is static and hence not due to critical fluctuations.
It apparently arises from microdomain formation in the—3'K hysteresis region found (Shapiro and Cummins,
1968) to characterize this first-order phase transition.
Hochli and Scott (1971) and Hochli (1970) have inter-
preted these microdomains as due to the coexistence of
n- and p-quartz structures in the hysteresis region. The
idea that such a coexistence region should exist in quartz
was suggested earlier by Semenchenko and Baskakova
(1969).

The possible existence of "critical opalescence" in
displacive solid state phase transitions is an idea which
has raised its head many times over the years. As is

const .g, = const. X X,' = (III.23)

and where the mode frequency ~,' = 2to& (to& is the
frequency of the phonon whose overtone is the two-
phonon energy to,').

IV. cx-QUARTZ STRUCTURES

A. SIO*

I. n-phIBs8

I'n January of 1940, Raman and Nedugadi reported the
study by inelastic light scattering of the trigonal-hexago-
nal phase transition in quartz at —573'C. They ob-
served that, "the 220 cm ' line behaves in an exceptional
way, spreading out greatly towards the exciting line
as the transition temperature is approached. It therefore
appears reasonable to infer that the increasing excitation
of this particular mode of vibration with increasing
temperature and the deformation of the atomic arrange-
ment resulting therefrom are in a special measure respon-
sible for . . . inducing the transformation from the o. to
the P form. " This is a remarkably good description of a
soft mode, a full twenty years before Cochran's famous
papers. In the same year, Saksena (1940) presented a
lattice dynamical model of quartz which demonstrated
the instability of one particular normal mode as the n—p
transition from D,'(P3, 2) to D,'(P6, 2) structure deve-
loped.
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PEG. 8. Spectra of 0!-quartz for I& symmetry modes: a, 800K; b, 700K;
c, 600K; d, 400K; e, 300K (Unpubhshed data of the author).
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discussed in several sections of this review, there is no
evidence to support this notion for most crystals yet
studied. Whereas a quasielastic response at ~ —0 does
grow in intensity near displacive phase transitions in
some crystals (SrTi03 Nb3 Sn, lead gerrnanate, and SbSI)
this phenomenon can apparently be described in terms of
anharmonic effects within the mean field approximation
Nothing "critical" has yet been demonstrated about such
behavior, except in SrTi03, where exponents describing
the central mode intensity have been evaluated.

In addition to the "red herring" of critical opalescence
in quartz, there was a second facet of the phonon data
which delayed the eventual straightforward analysis of
the transition dynamics: The polarized n„Ram an spec-
trum revealed five sharp, symmetric features rather than
the four group-theoretically predicted. The "extra" fea-
ture had been reported as early as 1945 by Krishman, but
at that time the phonon characteristics of piezoeleetrics
were not sufficiently well understood to allow identifica-
tion of transverse and longitudinal modes, etc. It was not
until 1967 that unambiguous assignment of all one-
phonon lines in the quartz spectra was made (Scott and
Porto, 1967) This work allowed the assignment of the
"extra" mode at 147 cm ' as second order (a two-phonon
process) to be made. Such an interpretation was compat-
ible with the lattice dynamical models of Elcombe (1967)
and of Kleinman and Spitzer (1962), who agreed on the
assignments of the four Ij or A, fundamental (one-
phonon) q = 0 frequencies.

This simple interpretation wa, s brought into question
by the work of Shapiro et al. (1967), whose Raman
measurements at elevated temperatures showed. that the
"soft mode" decreased from —220 cm ' to only—165 cm ' at T = To, while the "extra" feature grew in
intensity and decreased from —147 cm ' to —40 cm '

over the same temperature range, as shown in Fig. 8.

cd = A(Ts T)

via a mode decoupling of the form given below

(IV.1)

This apparent complexity was reconciled by Scott
(1968), who invoked the idea of Fermi resonance from
molecular spectroscopy to explain the newly observed
solid state phenomenon. Fermi resonance is well known
in such simple molecules as CO2 and H2 0: a one-
quantum vibrational level for one normal mode lies very
near the energy of a two-quantum vibrational level for a
second normal mode. There is an anharmonic interaction
between the levels (assuming the symmetries are the
same), resulting in a level repulsion and a "no-crossing"
rule.

In this interpretation, the soft mode is the feature at—220 cm ' at low temperatures, and the feature at—40 cm ' at high temperatures. At intermediate temper-
atures, the soft mode is thoroughly mixed with the Ij-
symmetry two-phonon state. This behavior is indicated in
Fig. 9, where the inferred uncoupled mode temperature
dependences are shown as solid lines.

Most of the intensity of both features in the 160 cm '

region of the quartz spectrum is first order, i e., due to a
one-phonon response. That this one-phonon response
should exhibit a peak at the two-phonon density of states
maximum was first explained by Ruvalds and Zawadow-
ski (1970), via a many-body calculation.

Once the Fermi resonance has been adequately taken
into account, one can proceed to extract the temperature
dependence of the uncoupled soft mode.

This was originally done by Scott (1968), who obtained
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where 8' is the third-order anharmonic matrix element
connecting the one- and two-phonon states; and hu2 is
the temperature-independent two-phonon energy.

A more exact treatment discussed in a previous section
replaces ~I and ~2 by ~I'+ ill~ and ~~ + iI2co in Eq.
(IV.2), and permits both real and imaginary matrix
elements connecting the states. As discussed by Ruvalds
and Zawadowski (1970) and Hochli and Scott (1971), the
two formalisms give very nearly the same results in the
case of quartz: ~ = A(T, —T)'" was obtained from the
1atter analysis, with T To + 5 C.

The exponent 0.3G appearing in Eq. (IV.1) may be
significant inasmuch as values of — are expected for
systems in the critical regime in which mean field theories
fail due to the large fluctuations not incorporated in
linear response theories; i.e., regions where (&p')'t'
)) (q), where &p is the order parameter. Hochli and Scott
(1971) have shown that the behavior of an elastic con-
stant in ot-quartz is also describable by the formula

8(T, —T)
n(t) = const. (t + l t +

0 C
(IV.31 )

This expression is functionally very diAerent from a
simple 1/3 exponential in (To —T), but when graphed it
yields remarkably similar values. Indeed, we are forced to
agree with the conclusions of Banda et al. , that "the
observation of a critical-like exponent for the behavior of
the long-range order parameter does not, in itself, imply
critical behavior. "

We do note, however, that the thermal expansion data
of Banda et al. do agree better with a simple 1/3 exponent
than with the mean-field formula. Thus, phenomena in
quartz may still be "critical" (or fluctuation-dominated)
near To. If this is the case, it would be explained by the
fact that To and Tc diAer by only a few degrees, whereas
the single-exponent regime is about 80 K. Such systems
have been described as "slightly first-order. " The exist-

(IV.3a)

with T, = To+ 5 C.
Shapiro and Cummins (1968) had earlier pointed out

the anomalous temperature dependence of the soft-mode
frequency, but their inferred exponent was inaccurate
due to their neglect of mode coupling.

The evaluation of critical exponents for first-order
phase transitions, such as those in quartz or SbSI, is a
matter of current theoretical investigation. Although
quartz exhibits temperature dependences for many pa-
rameters —soft-mode frequency, elastic coefficients, ther-
mal expansion —which may be fitted over a range of
To —T = 8G'K by a single p = 0.33 exponent, Banda et
al. (1973) have very recently shown that this may be
explained within mean-field theory for any system exhi-
biting a first-order transition. By including a cubic te'rm

in the free energy (absent for second-order transitions),
they obtain an expression for the order parameter as a
function of To, the actual transition temperature (strictly,
where the high- and low-temperature-phase free energies
are equal; roughly, the average of the transition temper-
atures encounter'ed upon heating and cooling), and T&,

the temperature at which the order parameter extrapo-
lates to zero.

Banda et al. find

X; = Au'y, (IV.4)

where u is the elastic strain (acoustic phonon amplitude),
and y is an order parameter associated with the q = 0
soft optic phonon displacements. A survey of other linear
and nonlinear opto-acoustic mode couplings has been
given in a review by Fleury (1971).

While the P = 1/3 exponent obtained in fitting soft-
mode frequencies and elastic coefficients is not in itself
compelling evidence that critical phenomena are mani-
fest over a large temperature range, such a conclusion is
more plausible than in the case of ferroelectrics (such as
SbSI). The reason is that the fiuctuations near To involve
nonpolar phonons; hence, the interactions may be of
very short range, in contrast to the long-range Coulomb
fields in a ferroelectric. The range or coherence length for
fluctuations near Ttt has been related to the temperature
regime over which "critical" P = 1/3 exponents might be
expected. The formula below is due to Crinzburg (1960).

/T0 —Tbt t' k )'1
To l c t & pAC~) l'' (IV.5)

where k is the Boltzman constant; p, the density; and
AC„ the specific heat jump at To in the classical descrip-
tion. In quartz, Czaja has pointed out (1970) that if l, the
coherence length at T = 0 K, is taken as one unit cell
length (in the basal plane), lt. T,„, is estimated as 150'K!!
This value agrees very well with the temperature region
below To over which the specific heat exhibits a logarith-
mic singularity. Thus, a critical temperature range several
orders of magnitude larger than those commonly found
in magnetic systems may be crudely justified in structural
phase transitions involving short-range forces.

It is of special interest in this context to point out that
in SrTi03, where the EPR data of Muller and Berlinger
(1971) convincingly show a critical regime of 6T
= 20'K, the transition also involves nonpolar phonons,
and the O'K coherence length deduced via Eq. (IV.5) was
also one or two unit cell diameters.

2. P-phase

It remained for inelastic neutron scattering experi-
ments to elucidate the dynamical behavior in the P-phase
of quartz: the soft mode is of B, symmetry in p-quartz

ence of critical phenomena in such systems is a moot
question. In contrast, first order systems such as PbTi03,
where To is not at all close to T&, present no possibility of
critical phenomena whatsoever, in the opinion of this
reviewer. [Dorner et al. , Ferroelectrics (in press) have also
very recently given a mean field analysis of first-order
transitions like that in quartz, which yields approximately
exponential dependences, like the treatment of Banda et
al. ]

We should point out that the elastic coefficient anom-
aly in quartz cannot be due to piezoelectric coupling
between the soft optic mode and an acoustic phonon:
Since the soft mode is nonpolar, this interaction vanishes
in lowest order (Miller and Axe, 1967). This implies that
a higher-order interaction is operative, and Axe and
Shirane have shown that the interaction in quartz is of
form
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and is neither ir nor Raman-active. In a publication
typical of the fine work emerging from Brookhaven on
the subject of phase transitions, Axe and Shirane (1970)
measured the temperature dependence and eigenvector
of the soft mode in the p-phase. Their results for topz(T)
are shown in Fig. 10. The undamped frequency ~p(T)
was determined indirectly from the integrated intensities,
according to the equation

, l~(a)l'dodE (happ)

Note that T, is —10 C less than To, as expected for a first-
order transition. This AT is of the same size as extrapo-
lated from the O.-phase Raman and elastic coefTicient
data. The actual mode was observed to be overdamped.
It could not be underdamped even by going to tempera-
tures much above To, for at higher temperatures other
transitions (e.g., to tridymite) occur. The soft-mode fre-
quency in P-quartz was also found to be extremely
anisotropic, forming a low-frequency "trough" to large q
in certain directions in momentum space.

The ionic displacements in the soft mode and for the
n—P structural distortion are shown in Fig. 11.The silicon
motion is described as symmetric "breathing" perpendic-
ular to the D3 c axis. This is in accord with Saksena's
early (1940) model. In addition, the Si02 triangles under-
go a rotation about the C2 axes normal to e. It is this
Si —02 rotation which is largely responsible for the
instability in the shear wave (acoustic phonon) measured
by Hochli (1970).The soft-mode eigenvector determined

by Axe and Shirane diA'ers by only a few percent from
the actual ionic displacements occurring to To, the diAer-
ence is that the soft mode includes a small amount of
displacements transforming as A~ in the P phase, whereas
the static displacements at To have exactly 81 symmetry.
It is likely that this A& part of the soft-mode eigenvector
reduces to zero as T ~ Tp, although that is not rigorously
necessary, since the transition is first order.

Finally, some information concerning the zone-bound-
ary phonons which comprise the —147 cm ' two-phonon
peak in n-quartz exists in the neutron study and lattice
dynamical calculation of Elcombe (1967). Her dispersion
curves show that the most likely origin of the 147 cm '

peak is due to two transverse acoustic phonons at critical
point K = (2m/a) (2/3, 0, 0). The fact that the two-
phonon peak is an overtone (i.e., two of the same
phonon), and not a combination, is apparent from Lead-
better's (1969) time-of-flight neutron measurements on
polycrystalline quartz, which revealed a sharp peak in the
one-phonon density of states at 70 ~ 5 cm '.

B. AIPO~

Aluminum phosphate is one of several ternary com-
pounds of formula III —V —04 which is isomorphic to 0.-
quartz at normal temperatures. Because the Al and P ions
are nonequivalent, the primitive unit cell is twice as large
along the [001] c axis as is quartz ar CxeOz. Hence,
phonons which would be described as lying at critical
point A = (0, 0, m/a) in quartz lie at (0, 0, m/a) = (0, 0,
m/ a') = (0, 0, 2m/a') = I' in A1PO4, and are Raman-
allowed. One such mode lies at 158 cm ' in AlPO4 and is
af the same Ij symmetry as the soft made (Scott, 1971).

When the soft mode decreases from its —220 cm '

low-temperature value as T -+ Tp(Tp = 853'K) in
nAlPO4, it interacts very strongly with the phonon at
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158 cm . This interaction is in addition to the soft-mode
"Fermi resonance" coupling with the 2TA state at—147 cm (both SiO, and A1PO4 exhibit this interac-
tion). Figure 12 shows a plot of soft-mode frequency
versus temperature in AlPO4. Note that, as in Si02, the
transition is first order, and td(T) does not reach zero at
T = T~ (Scott, 1970a).

The one-phonon couplings between the soft-mode and
the 158 cm ' state leads to dramatic lineshape anomalies,
as shown in Fig. 13.Figure 14 shows the Fermi resonance
hybridization of one- and two-phonon levels, as well.

The line asymmetries illustrated in Fig. 13 have been
explained by Scott (1970a), who employed a modification
of the old Breit—Wigner theory from nuclear physics, and
by Zawadowski and Ruvalds (1970), who employed
many-body techniques.

In treating the A1PO4 data, Zawadowski and Ruvalds
have employed the anharmonic. formalism discussed in
Sec. I of this paper:
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X(tc) = g P, P, G„(to),

with G„'(to) given as

)
Coi to + /Ij tc

6'+ I (IV.9)
~2 ~ + &I2~g

Zawadowski and Ruvalds further assumed that 6 && II2,
since it was known that the imaginary term iI»co, in Eq.
(IV.9) was dominant in the "Fermi resonance" coupling
in the same crystal. Their resulting theoretical spectra are

where S(to) is the Raman intensity at tc; n is the Bose
population; and X"(to) is the imaginary part of the
susceptibility: shown in Fig. 14 and are in excellent agreement with the

experimental data of Fig. 13.
In Figs. 15 and 16 the calculation of these same

authors (Ruvalds and Zawadowski, 1970) for the line
shapes in SiO& or AlPO4 in the vicinity of the Fermi
resonance are compared with experimental data. As in
the case of the one-phonon couplings, their description of
one- and two-phonon interactions are in good accord
with experiment.

C. Ge02
G-ermanium dioxide has received considerably less

attention than have isomorphic Si02 and AlPO4. The
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frequency optical phonon, i.e., a mode which could be
characterized by a damped harmonic oscillator rather
than a Debye relaxation. These two experiments on
BaTi03 and SrTi03 may be viewed as confirming the soft-
mode description of ferroelectricity in the ABO3 perov-
skites. This interpretation was further strengthened by
the concurrent inelastic neutron scattering studies of
Cowley (1962, 1964).

A. KTa03 and SrTi03

Several years later, Fleury and Worlock (1967a,b,
1968) performed a series of light scattering experiments
on SrTi03 and KTa03 which improved the quantitative
information available on temperature dependences of
soft-mode energies and linewidths. The ir linewidths were
in error due to an extrapolation made to long wave-
lengths.

SrTi03 and KTa03 are known to remain paraelectric at
all temperatures; however, the q = 0 optic mode which
consists of Ti or Ta motion along a [100] axis against the
oxygen octahedra becomes very nearly unstable as abso-
lute zero is approached. The energies decrease by more
than an order of magnitude as the lattice temperature is
lowered from —300'K. The ~(T) dependence for KTa03
is shown in Fig. 19. The soft mode in KTaO~ (a.nd
SrTi03) remains underdamped at all tempera, tures, facili-
tating accurate measurement of ~(T). These same soft
modes (F&„q = 0 in the cubic phase) cause transitions in
PbTi03 and BaTi03. If a small percentage of Ba is
substituted for Sr in SrTi03, or a small percentage of Nb
is introduced into KTa03 (replacing Ta), these crystals
are observed to exhibit ferroelectricity, with transition
temperature approximately proportional to Ba (or Nb)
concentration.

B. PbTi03, BaTiO~ and ferroelectric ceramics
The soft ferroelectric modes have been studied via

Raman spectroscopy in a large number of perovskites by
this time. Work on PbTiO~ (Burns and Scott, 1970a),
K„Na& .Ta03 (Davis, 1970), PbTi& „Zr„03 (Burns and
Scott, 1970b), Pb, „Ba,Ti03 (Burns and Scott, 1971), and
Pb„La&, Zr, Ti, ,O, ceramics (Brya, 1971) have all con-

80—

70—

60—

firmed the soft-mode picture of ferroelectricity in this
class of compounds.

The inelastic neutron studies of PbTi03 (Shirane er al. ,
1970), KNb03 (Nunes et a/. , 1971), and BaTi03 (Harada
er al. , 1971)have been even more important. In analyzing
the soft mode in the high-temperature cubic phase of
each crystal, the Brookhaven group has shown that there
is a soft mode associated with the first-order phase
transition in each crystal; that it exhibits ~ = A(T
—T)'~' Curie —Weiss dependence; that it is overdarnped
at temperatures well above T, in BaTi03 and KNb03, but
underdamped in PbTi03,' that in both BaTi03 and
KNb03 the damping of the soft mode is extremely
anisotropic; and that strong coupling between acoustic
phonons and the soft optic mode is observed in each
case. Since this acousto-optic mode coupling vanishes in
lowest order for centrosymmetric crystals such as the
cubic perovskites, the analysis in each case involves a
nonlinear coupling of form c„,q; q,', where q; is the acous-
tic phonon displacement, and q, is the optic mode
displacement. Such couplings in centric lattices were first
analyzed by Axe et al. (1970).

The soft-mode measurements at Brookhaven sufTice to
explain the anomalous x-ray results on perovskites. Har-
ada and Honjo (1967) and Comes et al. (1968, 1969, 1971)
have reported distinct sheets of diffuse x-ray scattering in
planes perpendicular to [h00] reciprocal lattice vectors in
BaTi03 and KNb03. Comes et al. have interpreted these
sheets as evidence of static disorder and have proposed a
specific model for chainlike disorder in these crystals.
However, the neutron studies discussed above show that
the diffuse x-ray patterns of Harada and Honjo or Comes
et al. are due not to static displacements, but to the rms
soft-mode amplitudes; the fact that these amplitudes are
extremely anisotropic (very large in the [100] directions)
explains the specific x-ray patterns observed. Cochran
(1968) first made this point explicitly, and discussed the
rms soft-mode amplitudes (u')1 quantitatively for Ba-
Ti03 and KNb0. 4 Tap.6 03. In the same paper, Cochran
pointed out that the Curie constant C defined as

..(T) = 4~C/(T —T) (V. l)
is related (Cochran, 1960) to the rms soft-mode displace-
ments by the equation

c = vs"/w g w„(~,'), (v2)
where V is the unit cell volume; k designates the kth
atom in each primitive cell; P is the polarization induced
by the ionic displacements uk, and 2 is the temperature
coeKcient for the q = 0 soft optic mode

50—
~'(T) = A(T —T) (v.3)

o 40E

50—

20—

10—

1 I

20 40 60

0 15,000 V/c m

1 I 1 I I I 1

80 100 120 140 160 180 200
T( K)

C = Vp'/k, = 2.8 x 10' K (v 4)

in the cubic phase.
For BaTiO&, Eqs. (V. l) and (V.2) are in good agree-

ment, yielding c = 1.0 X 10' 'K from Eq. (V.2) (Barker,
1967), and C = 1.2 X 10' 'K from Eq. (V.l) (Jona and
Shirane, 1962).

By comparison, a tunneling model having small tun-
neling integral yields a theoretical Curie constant

Fro. 19. ~ vs T in KTs03 (P.A. Flenry and J. M. Warlock, Phys. Rev.
174, 613 (1968).

which is much smaller than observed. Thus, the experi-
mental data are not in accord with, a static disorder
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model of ABOs ferroelectrics, nor with the idea of
tunneling, as opposed to large amplitude motion in
shallow double-well potentials.

C. Other ABOs ferroelectrics: LiNbOs and LiTaOs

Although lithium niobate and lithium tantalate do not
have the perovskite structure, they are ABO3 lattices with
oxygen octahedra, and they exhibit many macroscopic
similarities with the perovskite ferroelectrics. The space
group of both crystals is R3c (or C&'&) at ambient temper-
atures, with two formula groups per primitive cell. Above
Ts (—900 K for LiTaOs and —1480 K for LiNbOs), the
structures have R3c (or D&d) symmetry Johnston. and
Kaminow (1967)have shown that each crystal exhibits an
underdamped soft mode having approximate Curie-
Weiss dependence over the region 0.1 & T/Ts ( 0.75.
Plots of their data for LiNb03 and LiTa03 are shown in
Fig. 20a and b.

Also of interest in regard to Johnston and Kaminow's
measurements on LiTa03 is their report of a maximum in
the Rayleigh scattering intensity at T = To. An increase
of about twofold was observed in the unresolved Ray-
leigh-plus-Brillouin spectral intensity as temperature in-
creased from —775'K to To =—905 K. Although the
authors interpreted these data as "critical" Rayleigh
scattering, there is certainly nothing demonstrably "criti-
cal" in their observations (As discussed in other sections
of this paper, "central modes" or growing scattering
intensities at ~ = 0 may be critical or noncritical, that is,
describable within the context of mean field theories).
Moreover, there is no evidence that they are measuring
Rayleigh scattering, since the Brillouin intensities are
expected to increase sharply near To, due to piezoelectric
coupling between optic and acoustic phonons; the reso-
lution in Johnston and Kaminow's experiment was more
than twenty times too poor to resolve Rayleigh and
Brillouin components.
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The tungsten bronzes have disordered cubic perovskite
structures at high temperatures. The best studied of these
compounds is Na. WO&, which Brown and Banks (1954)
observed to undergo a cubic-tetraganal phase transition
at —400 K, with the exact value of Te depending upon
the sodium concentration. Brown and Banks proposed
that this cubic-to-tetragonal distortion was identical to
that in BaTi03. Following their cue, Matthias has often
referred to the tungsten bronzes as "ferroelectric metals, "
and as we havd seen in the case of highly conducting
GeTe, ferroelectricity can be defined in a lattice dynam-
ical way when high conductivities prevent the usual D-E
hysteresis measurements.

The most quantitative measurements on the cubic-
tetragonal transitions in Na. WO& are the NQR measure-
ments of Borsa (1971).His results are shown in Fig. 21.

The principle involved in assessing the nuclear quadru-
pole coupling constant is that the constant e'qg/h—= eqV/h is dominated by the electric field gradient V
produced by the rms soft-made amplitude, and that
e'qQ/h is proportional to ~(T), where u is the soft-mode
frequency. This point is discussed in greater detail in
section IX of this paper, in the KH2As04 analysis.

Less work has been reported on the hexagonal tung-
sten bronzes, such as Rb„WO&,' Scott er al. (1970) were
successful in obtaining a Raman spectrum of metallic
RbQ.3 W 03 but no low-f requency modes were observed.

Vl. PEROVSKITES WITH GELL-DOUSLING
TRANSITIONS

A. SrTiQs

The idea that crystals could double their primitive unit
cells in a continuous way by means of a soft optical
phanan a.t the Brillouin zone boundary was contained in
one af Cochran's early discussions of ADP [NH4H~ PO4]
(Cochran, 1961).It was not until 1968, however, that the
Raman study af Fleury er al, directly revealed such
behavior for the second-order displacive transition in

SrTi03 at —l06 K. The existence of such a phase
transition was shown by Muller (1958), by Bell and
Rupprecht (1963), and by Rimai and deMars (1962), but
incorrect space group determination in the low-tempera-
ture phase (Lytle, 1964) delayed the understanding of the
transition dynamics for several years. As shown subse-
quently by the Raman studies of Fleury er al. (1968), x-
ray diffraction experiments, as done by Lytle, are not a
good probe of the static configuration of SrTiOs below To,

for the transition involves only a small rotation of the
oxygeii octahedra; and the oxygen x-ray scattering is very
weak compared with that of the heavy metal ions More-
over, the rotation angle for the oxygen octahedra varies
from —2' of arc at —O'K down to zero (the transition is
second order) at Tp 106'K; at liquid nitrogen temper-
ature, q is about 1.4' and the linear displacement of the
0 ions about their high-temperature equilibrium posi-
tions is less than 0.03 A, which would make x-ray
detection difficult.

The space group of SrTi03 in the low-temperature,
tetragonal phase was first correctly determined by the
EPR studies of Unoki and Sakudo (1967), who deter-
mined it as D4s (or I 4/mew) with two formula groups per
primitive cell. The distortion at To

——106 K consists of
an out-of-phase "rotation" of adjacent oxygen octahedra
in the (100) planes as shown in Fig. 22. This oxygen
octahedron motion can be described as a rotation only as
a first approximation: The 0 ions actually remain on the
faces of each cube and therefore increase in separation
from the titanium. Because the [100] planes are equiva-
lent in the cubic phase, the distortion produces domains
below Ts in which the [100], [010], or [001] axis becomes
the unique tetragonal e axis.

The unraveling of the static structure of SrTiOs came
about from dynamical measurements on the crystal. In
most crystals the complete space group determination
has been macle Unambiguously, and the dfnaDHcal be-
havior can be predicted by comparing positions in the
highand low-temperature phases. In SrTiO3, the reverse
was possible: Since the positions and symmetries of the
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Raman lines observed below To were compatible only
with a B2. (one component of F&„) symmetry distortion (a
82„distortion is an odd-parity inhomogeneous shear
strain) from the ideal cubic perovskite structure, and
since there is only one optical phonon with that symrne-
try in the cubic phase, the structure could unambiguously
be determined from the Raman spectrum below To. This
is explicitly shown in Table Vl. l, where the symmetries
listed in Column I are those at the Brillouin zone corner;
the frequencies in Column II are estimated from Cow-
ley's 1964 neutron scattering data.

Figure 23 shows the dependence of soft-mode frequen-
cies upon T in the tetragonal phase (Fleury et al. , 1968).
These data indicate that the transition is second order,
i.e., rd(T) extrapolates smoothly to zero at T = Te.

Most of the theoretical formalism for the discussion of
the SrTi03 phase transition applies equally well to the
rare-earth aluminates which are also 0& structure cubic
perovskites at high temperatures. We therefore review the
experimental data on these materials before summarizing
the theoretical descriptions in the literature.

B. LaAIQs

LaA103, lanthanum aluminate, was first characterized
structurally by Geller and Bala (1956), who determined
that its space group at ambient temperatures is D3d (or
R3m), and that it undergoes a transformation from
rhombohedral to cubic at 435 ~ 25 C. Unfortunately,
both of these conclusions are wrong. The correct space
group is Dsd (R3c), as determined by Derighetti et al.
(1965). And the transition temperature is 527 -+ 10'C as
determined independently by x-ray (Plakhty and Coch-
ran, 1968) and EPR (Muller et al. , 1968) techniques.

The physical connection between this rhombohedral
distortion from the Prn3m high-temperature structure and
that occurring in tetragonal SrTi03 is shown in Fig. 24. It
can be seen that the oxygen octahedra in LaA10& distort
in a way which can also be approximated by a rigid
rotation; only in LaA10& the rotation is about the [111]
body-diagonal of the cube. (And, as in SrTiOs, it is not
truly a rigid rotation, since the 0 ions remain on the cube
faces. ) This picture of the LaAIOs transition is due
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originally to deRango et al. (1964) and to Cochran and
Zia (1968).

The microscopic order parameter in each case is the
angle of octahedron rotation; mean field theory predicts
a soft-mode frequency proportional, therefore, to y(T), as
will be shown.

The rotations in LaA103 and SrTiO3 involve the same
soft 125 (Fp„) optic phonon at the same place, R = [1, 1, 1]
corner, in the Brillouin zone. Since this mode is threefold
degenerate in the cubic phase, three independent linear
combinations of displacements are possible: These corre-
spond to rotationlike distortions of oxygen octahedra
about [100], [111],and [110]axes, resulting in tetragonal,
rhombohedral, and orthorhombic lattices, respectively,
below T0—each with a doubled primitive cell. The tetra-
gonal distortion occurs in SrTiOs, the rhombohedral
distortion in LaAIOs, the orthorhombic distortion does
not occur in nature, for while it is group-theoretically
permitted, it does not minimize the free energy, and is
therefore thermodynamically unstable (Thomas and
Miiller, 1968). The latter comment reminds us that in
general we must consider thermodynamics and not just
group theory in determining what stable structures are
permitted when degenerate soft modes are involved.

The simplicity of the soft-mode eigenvectors in both
SrTi03 and LaA103—i.e. the fact that only the oxygen
ions move —has allowed Pytte and Feder (1970, 1971) to
analyze a11 of the dynamical variables in these two crystal
classes via a simple microscopic Harniltonian having on.y
five independent parameters. Their very successful theory
is discussed below, following the more phenomenological
descriptions of Thomas et al. , which preceded Pytte and
Feder's work.

unsta

FIG. 25. SrTi03 phase diagram (Thomas and Muller, 1968).

exist two stable phases below Ts atetra. gonal phase if
c ) b ) 0; and a rhombohedral phase if b ) c ) 0 and
b ) —2c (c may be negative). Their phase diagram is
shown in Fig. 25.

For the tetragonal distortion, the ratio of frequency for
the nondegenerate component of the soft mode (rotation
of oxygens about the tetragonal axis) to that of the
doubly degenerate component (rotation perpendicular to
the unique axis) is given by

us(T)/~~ (T) = (c —b)/2b (VI.2)
and is approximately independent of T. This is confirmed
experimentally (Fleury et al. , 1968), where the ratio in Eq.
(VI.2) is approximately 0.1; thus c = 1.2b. Note in Fig 24
that this value c = b is the instability region for the
tetragonal —rhombohedral transition. Thus, under normal
conditions SrTi03 is nearly unstable against the rhombo-
hedral (or trigonal) distortion.

The transition into the trigonal phase of SrTi03 from
both cubic and tetragonal structures has been accom-

C. Theory of Thomas and MOller

Thomas and Mu1ler have written down a phenomenol-
ogical potential describing the oxygen octahedron motion
in ABO3 perovskites:

V(T) = 2a(T)(C.' + C,' + C,') + 4b(T)(C„" + C,' + C,')

+ —c(T)(C„'C,'+ C,'C,'+ C,'C.'). (VI.l)

Only terms through quartic are included, and the coeS.-
cients a, b, c are assumed to be slowly varying functions
of T. The variables 4„, 4„4, are the amplitudes of
rotationlike displacement of oxygen octahedra about the
x, y, or z axes, respectively, where x = [100],y = [010],
and z = [001].

By minimizing this potential with respect to the dis-
placements 4;, Thomas and MuHer have shown that there
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TABLE VI.2. IVlodel parameters giving best fit to experimental
resu(ts. (Appropriate factors of h have been supplied to convert
all dimensions to energy. )

20

e SrTiO&

A 0

Model parameter

(meV')

(meV*)

(me V')

(me V')

(me V')

SrTi03

202

255

50

LaAl03

447

99

l39

~ ti

~ Muller et a l.

plished independently by three groups. The cubic —trigon-
al transition is second order, while the tetragonal —trigon-
al is necessarily first-order (group theoretically). These
transitions can be induced by applying a few kg/mm'
uniaxial stress along the [111]cube axes. The distortions
have been measured by Burke and Pressley (1969), Burke
et al. (1970), Wall et al. (1970), and Miiller et al. (1970).

The complete I'T phase diagram is shown in Fig. 26.
An extension of the phenomenological theory of Tho-

mas and Muller has been given by Slonczewski and
Thomas (1970). The latter work includes the effect of
soft-mode interaction with elastic strain. The results are
in good accord with the ultrasonic and Brillouin data
(Bell and Rupprecht, 1963; Rupprecht and Winter, 1967;
Kaiser and Zurek, 1966) and with the c/a data (Lytle,
1964; Alefeld, 1969).

D. Theory of Pytte and Feder
The elastic strain interactions have also been included

in the microscopic theory of Feder and Pytte (1970). In
the first part of their work (Pytte and Feder, 1969), a
model Hamiltonian of form

Xa =
2 g P(l) ~ 8 '(ll')P(l')1

+
2 g @(l) ~ k(/l') ~ C(l')
l

+ —,X Z J-(ff )lc,(f) —c,(t )]'(~, (f) —~, (f )]'

(VI.3)

I

0.5 I.O

Fto. 27. q& vs T, SrTiO, (Miiller et al. 1968).

was employed, where 4&(l) is the amplitude of oxygen
rotation about axis A, = x, y, or z, and l designates the 1th
unit cell; 8 is an effective mass tensor; k is a generalized
spring constant; and J is an anharmonic (quartic) poten-
tial coefficient. This Hamiltonian was treated self-consis-
tently and in the mean-field approximation by Pytte and
Feder, and yielded good results in comparison with
experiment. It was further expanded to include elastic
strain interactions, resulting in a total of five independent
parameters: ~o, the soft-mode frequency in the harmonic
approximation (this will be negative, corresponding to
toe = k/m, where V(X) = —kx' + jx4); Qe, the harmonic
frequency for the oxygen rotation if ions in all adjacent
cells were held rigid; I, and J„ the anharmonic constants
appearing in Eq. (VI.3); and C„a strain interaction term.

These five parameters are greatly overdetermined by
the available data on SrTiOs, and to a lesser degree, on
LaAIOs. Pytte and Feder's derived values are shown in
Table (VI.2). The theoretically generated curves for the
rotation angle tp(T), the soft-mode frequencies co(T), and
the lattice elongation dc(T)/a, are shown in Figs. 27—30.
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The theory successfully accounts for all aspects of the
transition dynamics except the central mode and critical
exponents near Ts, to be discussed below.

In addition to the EPR determination of y(T) in
LaAIO3 discussed above, NQR techniques have yielded
y(T) independently.

Borsa (1971) and Borsa et al. (1971) have shown both
theoretically and experimentally that the quadrupole
coupling constant e'qg/h in LaA103 is quadratic in the
order paramet4:r y belo~ the transition temperature To,

where y is a static oxygen octahedron rotation. This
follows frcrm a point charge calculation where the quad-
rupole at AI2' or La'" site due to oxygen displacements is
calculated directly. The experimental results are shown in
Fig. 30b. Equatin~ the quadrupole coupling constant
e'qQ/h with (qP)'' above Ts, where (q) = 0 involves
some subtleties and is discussed in the section of this
review under KH2PO4.

E. Critics) exponents —EPR studies of Muller

Fta. 29. hc vs T, SrTi03 (Alefeld, 1969).
The first direct evidence that something was amiss with

the mean-field descriptions of the SrTi03 phase transition
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LaA10, (Borsa, 1971).
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F. Central modes
1. Experiments of Riste et ai.

The first observation of central modes via inelastic
neutron scattering was that of Riste et al. (1971), who
reported a sharp peak at the R point in cubic SrTi03 (i.e.
above To = 106'K) which grew in intensity as To was
approached from above. As discussed elsewhere in this
review, specifically under the Nb3Sn and KH2P04 sec-
tions, the mere occurrence of a central mode centered at
zero frequency which arises as T ~ To is not indicative of
anything critical (Cowley, 1970; Cowley and Coombs,
1972). Quantitative measurements of the intensity and/or
width of the central mode are required to establish
deviation from the classical or molecular field theory.

0.8
-0

dynamics was provided by Muller and Berlinger (1971),
whose EPR data showed a continuous change from the
classically predicted T dependence of the order parame-
ter

Fra. 31. ro = A(T, —T)'~' dependence in SrTiO, (Miiller and Berlin-
ger, 1971).

2. Cowley's theory
The basic content of both Cowley's formalism (Cowley

et al., 1971) and that of Dorner et al. (1971) is that the
soft-mode frequency cu (T) should decrease to a fi'nite
nonzero value as T —+ Tp, while the central mode ~ = 0
response should grow. The different algebraic treatments
of Cowley and of Dorner, Axe and Shirane are discussed
in the KDP and Nb3 Sn sections of this paper.

Shapiro et al. introduce a frequency ~o(T) which is
related to the integrated intensity by the relation

to a dependence

rp(T) = A(To —T)"' (VI.4)

(q')"' » (v) (VI.6)

becomes satisfied. Muller (1971) has directly observed
this broadening. A second change is in the exponent
characterizing the intensity of a central mode in the
Raman and neutron scattering response, to be discussed
below.

(VI.5)

within a temperature range AT = 0.1Tp in both SrTi03
and LaA103. This dependence is illustrated in Fig. 31. In
relating their observations to similar 1/3 exponents en-
countered in magnetism (Heller and Benedek, 1962,
1965) and in fiuid phase transitions (Stanley, 1971),
Miiller and Berlinger have placed solid state phase tran-
sitions under the same "universality" framework (Kada-
noA' er al. , 1967) categorizing other phase changes. The
basic physical idea embraced in this universality concept
is that near To, when fiuctuation amplitudes become very
large and fluctuation coherence lengths become very
long, the statistical mechanics should become independ-
ent of the exact nature of the interaction between the
particles —i.e., as long as the average interaction length is
much less than the coherence length, the form of the
interaction is unimportant.

The divergence of fluctuations in the critical region
should produce effects other than the change in exponent
P discussed above. One such change is a divergence in
linewidth for the EPR signal over the critical region as
the inequahty

where co'(T) is the soft-mode frequency, and 6 is the
matrix element for a certain anharmonic decay channel.
Here up is essentially the frequency of the soft mode as
measured by a low-frequency probe (cc (( 6); whereas ~
is the soft-mode frequency as measured by a high-
frequency probe. The phase transition occurs when ciao= 0, which may happen for ~ and 6 both finite. That
this is the case in SrTi03 is shown in Fig. 32. Shapiro et
al. have also determined that KMnF3 exhibits the same
behavior. In SrTi03 the value of 6' deduced experimen-
tally at T = To is 0.3 +. 0.1 (meV)', in remarkably good
agreement with Silberglitt's (1972) theoretical estimate of
8' = 0.1 (meV)'.

Most important, Shapiro et al. have shown that ceo(T)
does not vary according to the P = prediction

~o(T) = &(T —To)' (VI.8)
of mean-field theory, but exhibits P = 2.0 +. 0.5 above
To. This confirms directly the critical interpretation of
Muller and Berlinger. Note that the value of the latter
authors' P is 0.33. Thus, P = 2.0 ~ 0.5 above To, and
0.33 ~ 0.01 below Tp. These values should be compared
with those of Lazay et al. (1969) on NH4C1, whose
Rayleigh intensities should be given by

i(T) = @AT —T~ ". (VI.9)
Since NH4C1 is an order —disorder system, the theoret-

ical interpretation is basically different from that in
SrTi03. An explanation of Lazay's exponents has been
very recently given by Bartis (1973).

G. PrAIOe, NdAIDOe and other perovskltes
In addition to SrTi03 and LaA103 discussed above,

several other perovskites are now known to exhibit the
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same structural phase transitions. Scott (1969) has shown
that PrA103 and NdA103 exhibit the same soft-mode
behavior as does LaA10s, with extrapolated transition
temperatures high, but below the melting point. Typical
data are illustrated in Fig. 33, and in Fig. 34 the To values
are estimated from the u'(T) linear extrapolation (mean
field or Curie-Weiss theory). The plots in Fig 34 contain
a small systematic error: whereas the peak frequencies ~
are plotted vs T, the correct representation is to plot the
harmonic frequency

(I' is the linewidth) vs T. This yields extrapolated Tp

values about 300 K higher than shown in Fig. 34, and in
good accord with the value directly measured in PrA103
via thermal techniques (Geller and Racah, 1970).

SmA103 also manifests some soft-mode instabilities,
but unlike PrA103 and NdA103 discussed above, the
extrapolated transition temperature is above the known
melting point (Scott and Remeika, 1969). This work on
SmA103 discussed one important idea explicitly: that the
transition temperature in LaA103, PrA103, NdA103, and
SmA103 varies inversely and monotonically with the
radius of the rare-earth ion (which decreases as the inner
shell is filled). Physically, the large radius La ion most
effectively stabilizes the lattice, so that the cubic structure
is obtained at a lower temperature. For Pr, Nd, or Sm, a
higher temperature is required for them to have the same
effective radius —consisting of rp plus the thermal rms
displacement due to phonons. This picture of transition
temperatures relating directly to ionic size was consid-
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FIG. 34. tp' vs T in PrA10&, NdA10„LaA103 (Scott, 1969a). The
plotted points are peak frequencies ~~. Correction for damping ~0= ap,

' + (I'/2) gives higher frequencies happ and leads to extrapolation
transition temperatures about 200 K higher in PrA103 and NdA103.
See Geller and Racah, 1970.

ered a long time ago for the SrTi03, BaTi03, PbTiO3
series, but it is perhaps best applied to the rare-earth
aluminates; in Pr, Nd, and Sm only the ionic radius
changes appreciably, whereas in Sr, Ba, and Pb the
masses and force constants also change appreciably.

As discussed above, the decrease in size of the A ion of
an AB03 perovskite increases the instability of the cubic
structure. This instability reaches the ultimate in WO3,
~here the A ion is completely missing. The W03 struc-
ture is extremely unstable, as predicted from these con-
siderations, and exhibits five different phases. The highest
temperature phase is tetragonal, with two formula groups
per unit cell. The lowest temperature phase is ferroelec-
tric; and the transition to this phase is first order. A
broad, temperature-dependent feature was reported in
the WO& Raman spectra by Scott (1969), but no quanti-
tative or detailed work has been published.

KMnF3 is now known from inelastic neutron studies to
be isomorphic to tetragonal SrTiOs (I 4/mcm) at temper-
atures below Tp = 186'K (Minkiewicz et at'. , 1970). The
soft mode is overdamped. Earlier work by the same
authors (Minkiewicz and Shirane, 1969) erroneously can-
cluded that the zone-boundary phonon instability was
compatible with I'bnm orthoferrite structure,
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In addition to the inelastic neutron studies of Minkie-
wicz et al. , Raman studies of KMnF3 soft modes below
T&&

——186'K have been published by Eremenko et al.
(1971).

Vll. IMPROPER FERROELECTRICS

By the term "improper ferroelectric" we shall refer to
any crystal which exhibits hysteresis in its E Dre—lation-
ship below a structural transition temperature To, and for
which the spontaneous polarization is not the order
parameter characterizing the phase transition at To.

A. Gd*(Mo04)s experiments
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Gadolinium molybdate Gd&(Mo04)& is an excellent
example of such a system. Ferroelectricity in this material
was discovered by Borchardt and Bierstedt (1967). At
low (( 159'C) temperatures the spontaneous polariza-
tion is 2 X 10 ' C/m' (this is a very small value). In this
ferroelectric P phase the crystal structure is orthorhom-
bic, with space group I'ba2 (Jeitschko, 1970), or C2s, The
orientations of the Mo04-tetrahedra are shown in Fig. 35.
There are three nonequivalent Mo04 orientations: one
with apex along the crystallographic +c axis; one along
—c; and one with tetrahedron 4 axis along c.

As To = 159'C is approached from below, the Mo04
tetrahedra rotate to a configuration midway between the
two domain structures shown as solid and dotted lines in
Figure 35. Above To the structure is tetragonal, with space
group I'42m (or D~). As Keve, Abrahams et a/. have
shown (1970, 1971, 1972) via a point charge calculation,
the spontaneous polarization is entirely due to the Mo04
ion rearrangement; the Gd'+ ions play no essential role.

The anomalous nature of the ferroelectric transition in
this crystal was first pointed out by Cross et al. (1968),
who measured the clamped and unclamped dielectric
constants as functions of temperature near To. Their
results are shown in Figure 36. It can be seen that the
clamped dielectric constant ~33 is small and independent
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TEMPERATURE ( C)

200
200

FtG. 36. C66(T) in Gd~(MoO, )3, (Cross et a/. , 1968).

2~~q= = —=— 0a' aj2 a (VII.1)

This "new" q = 0 low-frequency optic mode depresses
the acoustic phonon frequency (and thus lowers C«) at T&.

Below T0, the optic mode frequency increases again, and
the acoustic phonon renormalities to approximately its
T ) Ts value.

of temperature, whereas the unclamped constant e33 ex-
hibits a small, discontinuous anomaly at T = T0. In
contrast, ferroelectrics usually show large increases in
both e and ~ at To. Of special interest is the T-
dependence of the elastic constant C«(T), shown in the
bottom curve of Figure 36. It decreases slowly and
continuously as T —.+ To from above. This behavior is
identical to that exhibited by SrTiOs near Ts = 106'K
and can be understood in the latter case as follows:
Above To there is a q @ 0 soft optice mode at the
Brillouin zone boundary, and no coupling with q = 0
acoustic phonons is operative; at T = Tp the soft optic
mode becomes q = 0 by virtue of the additional recipro-
cal lattice points created by cell-doubling phase transi-
t1ons, 1.e.,

(c U

Fta. 35. Structure of (Mo04) ions in Od2(MoO, )3, after Abrahatns
(1972).

B. Pytte's theory

This picture is completely compatible with all the
information we have presently about Gd2(Mo04)& and
isomorphic Tb~(Mo04)s. The unit cell does double at T&

(Dorner et al. , 1972). However, earlier x-ray studies were
very unclear on this point; Kvapil and John (1970)
inferred a doubling along c, whereas Drobyshev et al.
(1969) deduced a doubling of both a and b lattice
parameters at T0. Part of the confusion arises from the
failure of x-ray crystallographers to specify primitive cell
parameters. Fortunately, Pytte (1970) was able to inter-
pret correctly the Gd2(Mo04)& situation and to explain,
at least qualitatively, its dynamics even before the Brook-
haven neutron studies of the soft optic mode at the
Brillouin zone boundary were mlde. Independently, Le-
vanyuk and Sannikov (1970) and Aizu (1970) arrived at
the same conclusions as Pytte.
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C. Experiments on Tbs(Mo04)s experiments
The work at Brookhaven (Axe er al. 1971; Dorner er

al. , 1972) confirmed Pytte's hypothesis of a soft zone-
boundary phonon. It further showed that this mode at
critical point i) = (pr/a)(1, 1, 0) had temperature depend-
ence which obeyed Curie —Weiss law

lose = A(T —
T~)» (VII.2)

(VII.3)Xs, = g G;;e;;R'+ g gpje;;e~R',
i&j

where e„are the strains; R is the optic mode order
parameter [proportional to cpM (T)]; and G&;, g~„are-
temperature-independent constants. The coupling of po-
larization to strain and soft optic modes may be written
as

X„=2aP&' + d~3(e~~ —e~~)s + bi[3 P3 R'

+ d,33(e» + ep2) P3 + d333 e33 P3,
where I'3 is the polarization.

(VII.4)

with T, = 149 C, about 10'K less than the transition
temperature Tp. This behavior is shown in Fig. 37.

This q —= m/a soft-mode description provided for
Gd2 (Mo04)3 by Pytte (1970) explicitly pointed out why
the spontaneous polarization, lattice distortion and bire-
fringence (Smith and Burns, 1969; Cummins, 1970) be-
haved almost continuously through Tp (not quite contin-
uously; the transition is first-order), whereas the variation
of Cs&(T) was very discontinuous, Pytte's theory of strain
coupling has been extended by Dorner et al. (1972), to
which interested readers are referred.

Pytte writes for the interaction Hamiltonian describing
q = (pr/a)(1, 1, 0) soft optic mode and q = 0 acoustic
mode (i.e. elastic strain),

When we minimize the energy specified in Eq. (VII.4)
with respect to I'3, we obtain

P3 = b113R'+ COnSt. (VII.5)
which shows that the spontaneous polarization will vary
as the square of the order parameter R. Thus, if R varies
as (Tp —T)'~', P3 will vary as (Tp —T).

Similarly, by minimizing the energies specified in Eq
(VII.3,4) with respect to the e;;, Pytte shows that the
change in elastic coefficient lt C«(T) is given (for T ( Tp)

by

AC«(T) = 2 + BR', (VII.6)
where 2 and 8 are constants independent of tempera-
ture. This temperature dependence is in good accord with
that given in Fig. 36 if R(T) is assumed to vary approxi-
mately as (Tp —T)'~' near Tp and R(T) —constant at
very low temperatures.

D. Description by Cochran and Dvorak

A similar free-energy description has been given by
Cochran (1971) [and independently by Dvorak
(1971)]who writes

F = 2+1 ril + 4C17Jl + 2A$7)2 + Hr)] 7/2» (VII.7)
where q& is the order parameter related to the soft zone-
boundary optic mode, and g2 is the polarization. As in
simpler phase transitions, the mean-field approximation
A~ = a(T —Tp) is assumed; other coefficients are inde-
pendent of temperature. Minimizing

upwith

respect to g2
yields

0 = c)F//c)rid = Azri2 + Hrii' = 0 (VII.8)
or ri, = —(H/A, )i),' (VII.9)

Whence, substituting back in (VII.7),
IO

»»y

Then, minimizing I' with respect to ql, we find

(VII.10)
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0 = c)F/c)ri& = A(rl) + [C) —(2H'/A2)]i))' (VII.11)

or 2& ——[(2H'/A2) —C, ]t),' (VII.12)

which leads to a second-order phase transition at To if
2H' ) C&A2. For this case, r)& varies as (T —Tp)i, and qz,
the polarization, varies as (T Tp), just as obtained by
Pytte.

Cochran (1971) applies this kind of free-energy analy-
sis to a very simple prototype system He considers a
hypothetical zincblende structure with the c axis elongat-
ed, as diagrammed in Fig. 38, and supposes that there is
an instability in a transverse mode at the zone boundary
along c (as diagrammed). For the mode considered at
q = 2m/c only one type of atom moves. We may there-
fore specify the order parameter as q for displacement of
the sublattice along x. Let us further denote the sponta-
neous polarization along the c axis as P3, Then we may
rewrite the free energy of Eq. (VII.7) as

F = A(tl.' + i),') + „-'C(ri." + q,') + Eq'„q,' + A, P,'

TEMPERATURE( C)

Fie. 37. cp vs T for soft mode in Tb, (Mo04), (Dorner er al. , (1972).

+ JJ'3q. qy, (VII.13)
where terms of form JI'3g'. and JJ'3g,' have been dropped
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FIG. 38. Two-dimensional model illustrating CJd2(Mo04)&-type phase
transition (Cochran, 1971). The structure of ZnS projected on a [1101
plane. W'hen atoms of one type have displacements appropriate to a
transverse mode with wave vector at the Brillouin zone boundary in the
c direction, as shown by the arrows, anharmonic forces result in a
secondary displacement of those atoms along —c, as indicated by the
curvature of the arrows. If, however, the primary displacements were
out of the plane of the diagram, and thus appropriate to a transverse
mode degenerate in frequency with that already mentioned, the 'sec-
ondary' or induced displacements would be along +c. That is, change
of direction of antipolarization by w/2 reverses the direction of induced
polarization.

in going from Eq. (VII.7) to (VII.13). The stability
requirement 8E/t) P3 yields

J
P3 = ——g„qy,

0

and substituting back in (VII.13), we obtain

(VII.14)

E =,-'~(~'. + ~,') +,-'C(~'. + ~,') +,'[E —(J'/~. )]q-'. q,'

(VII.15)
This free energy can produce two kinds of second-order
phase transitions: one in which it„= 0, il, & 0 (or vice
versa); the second in which t). = ~i), & 0. Which case
actually occurs depends upon whether [E —(J'/As)J is
greater than C or less than C. If J is small, then
i)„= + il, % 0 is obtained, and from Eq. (VII 14), this
produces a ferroelectric state with P3 & 0. This is the
case in Gd2(Mo04)& or Tb2(Mo04)&. These crystals are
actually more complicated (Cochran, 1971) than dis-
cussed here, because the coupling of g 'gy and P3. is not
direct via 'g 'gy P3 terms in the free energy, but indirect via
q. g, g, and P3g, terms, where q, is a shear strain —see
Pytte (1971) and Dorner et al. (1972). This is shown in
Eq. (VIIA) of this review.

NH4H&P04 (ADP) is an equally interesting case in
which the theory of Eq. (VII.13)—(VII.15) applies. In
ADP, however, E —(J'/As) ( C and the stable state
below Ts is rl. = 0, rl, + 0, which (from Eq. VII.14)
yields P3 ——0. Thus, the antiferroelectric phase of ADP
is not also ferroelectric.

Several aspects of the Gdz(Mo04)s phase transition are
not yet understood. The soft mode has not been identi-
fied by neutron, infrared, or Raman spectroscopy in the
ferroelectric phase. And the anomalous broadening of a
40 cm ' optical phonon in the paraelectric phase ana-
lyzed by Raman spectroscopy (Fleury, 1970) is a com-
plete mystery, since this mode can play no possible direct
role in the transition dynamics. (Fleury's inferences to
the contrary were based on a mistaken notion that the x-
ray data showed no cell doubling at Ts.) Dorner et al.
have shown that the soft mode is overdamped within—200 K above To, if this condition also exists below To,

it may have hindered Raman or ir (Petzelt, 1971; Petzelt

and Dvorak, 1971) attempts to characterize the soft
mode.

In closing this section, we stress again that the "antif-
erroelectric" phase transitions in NH4H2P04 (ADP) and
SrTiOs are extremely similar to that of the Gd2(Mo04)3
family. Note that antiferroelectricity and ferroelectricity
are not mutually exclusive by our definitions: we would
characterize Gd2(Mo04)s at ambient temperatures as
exhibiting both properties. The family of ferroelectrics
BaMF4, where M is a divalent transition metal, is also
similar to Gd~(Mo04)& in some respects. Ferroelectricity
is produced by a displacement of Ba ions, according to a
point-charge model of Keve et al. (1970); but the primary
order parameter is probably the angle of rotation of ME&
octahedra, as shown by the x-ray studies of the same
authors. The dielectric constants and spontaneous polar-
izations of this class of crystals have been published by
DiDomenico et al. (1969), but no phonon measurements
of any kind have yet been reported. Raman studies in our
laboratory are in progress. We have observed in work not
yet published that BaMnF4 has a cell-doubling (antiferro-
distortive) phase transition at 255'K. We have measured
the soft zone-boundary phonons in the low-temperature
phase, where they become q = 0, and find that the soft
mode is underdamped below 207'K, and overdamped
between 207 and 225 K. This proof of cell doubling in
BaMF4 structures demonstrates the analogy with
Gd2 (Mo04)s.

Vill. CHAIN-STRUCTURE V-Vl-Vll
SEMICONDUCTORS

Chain-structure V-VI-VII semiconductors have been
of considerable technological interest for the last several
years. They are photoconductors with abnormally large
temperature coefficients for their bandgaps; they are
strongly piezoelectric; at least some are ferroelectric; and
they have anomalous electrooptic and optomechanical
properties —elongating or contracting under illumination.
Thus far, SbSBr, SbSI, SbSeBr, SbSeI, SbTeI, BiSI, and
BiSCl have all been studied as photoconductors, but only
SbSI has received much attention from the standpoint of
phase transitions. SbSI is the first known ferroelectric
photoconductor.

A. SbSI

SbSI grows in needlelike crystals having space group
DQ/g (or Pnam) in the paraelectric phase, and C2'„or
(Pna2&) in the ferroelectric phase. The transition occurs at
about 22'C and is first order (Amdt and Niggli, 1964;
Kikuchi et a/. , 1967; Takama and Mitsui, 1967). Fig. 39
illustrates the chainlike structure in SbSI and its iso-
morphs, and Fig. 40 shows the tilting distortion which
occurs at Ts = 295'K; the S- and Sb- ions are displaced
slightly from the paraelectric position equidistant from
the iodine ions. Figures 41 and 42 are plots of the
spontaneous polarization and static dielectric constant
versus temperature in SbSI (Fatuzzo et al. , 1962). It is
expected from the Lyddane —Sachs —Teller relation that
some polar TO phonon has frequency with temperature
dependence (tTcT)oft '(Ts). However, the initial two ir
measurements on SbSI by Blinc et al. (1968) did not
reveal such a mode. The primary contribution of the
work by Blinc and co-workers was the group theoretical
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described by Steigmeier ef al. (1970) and by Balkanski er
al. (1971). These mode couplings, while interesting in
themselves, do not significantly affect the transition dy-
namics and will not be discussed further here.

PARA —ELECTRIC FERRO- ELECTRIC

Fto. 40. SbSI structure and distortion below T, (C. F. Drake and I. F.
Scanlon, 1970).

f. Raman and ir measurements

The breakthrough in understanding the dynamics of
the ferroelectric phase transition of SbSI was afrorded by
the infrared studies of Petzelt (1969) in the paraelectric
phase, and the Raman studies of Perry and Agrawal
(1970) in the ferroelectric phase. Their results for toro(T)
are shown in Fig. 43. Note that tc(T) does not extrapolate
to zero at Tp = 22 C, since the transition is first order.

The interaction of the soft mode with other optical
phonon branches at temperatures far below Tp has been

description of SbSI phonon modes using a simplified unit
cell. Taking advantage of the chainlike covalent structure
in this lattice, they assumed interchain force constants to
be very small and treated a simplified unit cell having
half the atoms of the real primitive cell. The group theory
was further simplified by assuming force constants to be
approximately isotropic in the plane perpendicular to the
chain. This lattice dynamical description is in good
accord with experimental measurements of mode sym-
metries. It explicitly explains accidental degeneracies of
even and odd parity modes in the paraelectric phase.
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Fta. 43. Soft mode cv vs T in SbSI (Perry and Agrawal, 1970).

I

I 40

2. Mode coupling and anamolous experiments
It is of interest that Steigmeier et al. report a tempera-

ture dependence of tc(T) = A(Ts —T)'~' for this crystal.
This result is of some import. However, the determina-
tion of such an exponent for SbSI is slightly uncertain for
several reasons. First, the transition is first order, with T,
obtained by extrapolating P(T) to zero about 5'C above
Ts (Fatuzzo et a/. , 1962); and it is T„not Ts, which should
appear in frequency expressions ~(T) = A(T, —T)e for
first-order transitions. Second, the transition temperature
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To is itself sample dependent, varying from 20—25'C
third, there are several mode couplings between the soft
mode and other optical phonons (Balkanski er a/. , 1971).
The net result is that it is almost impossible to measure
the temperature dependence of the uncouth/ed soft mode
over the several decades of (T, —T)/T, required to deter-
mine an exponent P in the expression ~(T) = uo(Tc
—T) . If we assume, however, that the value of P = 1/3
quoted by Harbeke et al. (1970) is correct, we can give
the mean field theory of Banda et al. (1973), discussed in
Sec. IV, as a very probable explanation. Thus, critical
phenomena in SbSI have not been demonstrated, either
by the occurrence of 1/3 exponents, or by the report of a
central mode in this crystal by Steigmeier et al. Such a
central mode is compatible with Cowley's mean field
theory (1967) of weakly anharmonic crystals, as summa-
rized in Sec. I.

B. SbSBr
SbSBr is also a ferroelectric. (Ferroelectric properties

of other V-VI-VII's are discussed by Nitsche er al. , 1964.)
Very recently Furman er al. (1973) reported soft modes in
SbSBr and in SbSBr. l& „alloys. They find the same 1/3
exponent for the soft-mode temperature dependence as
in SbSI, and determine a value of 39 ~ 2 K for To.

C. Bi81

BiSI is ferroelectric with T, = 113 K. An under-
damped soft mode has been characterized by the ir
studies Siapkas (1973).

IX. HYDROGEN-BONDED FERROELECTRICS

Hydrogen-bonded ferroelectrics have attracted an
enormous amount of interest, both theoretical and exper-
imental, over the last twenty years. From an experimental
standpoint the reasons are practical: Such crystals are
easy to grow from aquaeoUs solution; they come as large
single crystals of high optical quality; and they yield
useful technological devices, such as high-speed electro-
optic modulators. The theoretical interest is twofold:
First, hydrogen-bonded ferroelectrics such as Rochelle
Salt and KH~PO4 (KDP) have been known for a long
time, so that theoretical work in the early days of
ferroelectricity was effectively limited to such crystals;
second, it is clear from the large effect deuteration has on
the Curie temperature of KDP-structure crystals, that the
occurrence of ferroelectricity is associated in large degree
with proton tunneling and hydrogen bonding in these
lattices. Since the proton displacements at To in KDP are
nearly perpendicular to the spontaneous polarization
which develops at To, it is clear that some complicated
coupling between the protons and the heavy ions must
exist. The proton behavior in KDP-structure ferroelec-
tries has been treated via a pseudospin theory over the
past several decades. This approach began with Slater
(1941), Blinc (1960), DeCrennes (1963), and Brout et al.
(1966), and rests upon the physical idea, that there are two
equivalent positions on each 0—H—0 hydrogen bond; the
left and right sides of the bond may be described by
fictitious spin + and —,—' states. This pseudospin formal-
ism has been a prime source of theoretical interest in
itself; it permits rather more elegant mathematics than
do, say, free-energy treatments of ferroelectricity. Read-

ers are referred to the work of Tokunaga (1966) and
Tokunaga and Matusubara (1966) for a survey of the
pseudospin approach to ferroelectricity. Kobayashi
(1968) was the first theoretician to really come to grips
with the problem of coupling the protons and heavy
metal ions; his paper thus involves coupling the pseudo-
spin formalism to the vibrational Hamiltonian.

One problem associated with the pseudospin formal-
ism is that it has afforded almost no contact with
experimental measurements or dynamical measurements
of hydrogen-bonded ferroelectrics near the Curie temper-
atures, most of which are more easily explained by means
of simpler "soft-mode" descriptions. Part of the problem,
as emphasized recently by Reese, Cummins et al. (1973),
is that explicit assumptions of well defined pseudospin
waves are contained in the theories of Kobayashi et al.
Such approximations are valid only at very low tempera-
tures, whereas most experimental data are obtained near
To, where the spin behavior is best characterized as
diffusion, not as undamped spin waves.

It is not our intent here to review the theories relating
to ferroelectricity in hydrogen-bonded systems. This has
already been done in an excellent review by Cochran
(1969). We attempt below only to summarize the experi-
mental results, with appropriate emphasis upon recent
analyses. Since the bulk of experimental studies on
hydrogen-bonded ferroelectrics concerns KH2 PO4 and its
isomorphs, our discussion primarily involves KDP. Some
less extensive work of high quality has also been pub-
lished on triglycine sulfate (TGS) and is also included.
Other work on systems such as thiourea, an organic
ferroelectric, are mentioned briefly.

A. KH PO Blld lSQAlorphS

Above To = 122'K, KH~PO~ crystallizes in the tetra-
gonal point group 42m. The protons are disordered,
randomly occupying sites on either side of the 0—H—0
hydrogen bonds linking P04 tetrahedra. This structure
and especially the proton positions are known from the
neutron and x-ray studies of Bacon and Pease (1953,
1955) and Fraser and Pepinsky (1953).

Their work showed that the protons were randomly
distributed on either side of the 0—H—0 bond and were
not centered exactly between the oxygens (except in a
statistical sense). This was the first direct information
that the ferroelectric phase transition in KDP was of the
order —disorder type. Such conclusions have been inde-
pendently verified by NQR measurements in this class of
crystal; Blinc (1971)has given a review of NMR work on
the subject.

Whereas the protons (or deuterons) in ferroelectrics of
the KDP class undergo an order —disorder transition at To,

the metal ions undergo a displacive transition from one
ordered arrangement to another. The ionic displacements
at To (i.e., the eigenvector of the soft mode) in KH2PO4
are shown in Fig. 44, based on a proposal of Cochran
(1960, 1961). Detailed neutron studies by Paul et al.
(1970) and Skalyo et al. (1970) have confirmed the
essential details of Fig. 44.

1. Raman studies

A major breakthrough in understanding the dynamical
behavior of KDP near To came with the Raman study of
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FtG. 44. Eigenvector, KDP (Cochran, 1961).

Kaminow and Damen (1968), who found an intense,
overdamped, temperature-dependent response in the low-
frequency B2 symmetry spectra. Their spectra are shown
in Fig. 45. Kaminow and Damen were able to fit their
observed spectral line shapes to a damped harmonic
oscillator model, i.e.,

S(tc) = A
~

X"(to),
ET

(IX.1)
S(to) = AI

E Italo f (toe —to')' + (I'to)'

where X(to) = toe((os —to'+ it'to) '

The undamped frequency ~0 was found by Kaminow
and Damen to vary as

Cop = A[(T —T)p/Tjr~', (IX.2)
whereas I' was essentially independent of T. Subsequent-
ly, Katiyar et al. (1971)and She er al. (1972) were able to
show that the temperature dependence given in Eq.
(IX.2) was not correct. The error arose in neglecting very
strong mode couphng between the soft mode and the
optic phonon of the same symmetry lying at 180 cm ' in
KH2P04 (145 cm ' in KH2As04, 96 cm ' in CsH2As04).
As in the case of A1PO4, discussed in an earlier section, a
coupled mode formalism was employed with Green func-
tion

GD + le(d 5 + EZ]2'
6'. + iII2~ ~2 —~' + iI2~

As Barker and Hopfield pointed out several years earlier,
any ir or Raman spectrum of two coupled modes may be
fitted exactly by such a mode coupling scheme with either
a real oA-diagonal matrix element 5' or an imaginary
(dashpot) coupling constant iI&2to, In general, therefore,

82
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Fta. 45. Spectra, KDP (Kaminow and Damen, 1968). Such over-
damped spectra were first analyzed in BaTi03 by DiDomenico, et al.
(1967, 1968). Here J(~) is the observed spectral intensity divided by the
Bose factor.

there are an infinite number of mathematically correct
descriptions of a coupled mode spectrum. However, the
physically correct description can be chosen on the basis
of heuristic criteria. For example, by fitting observed line
shape data at many temperatures (or pressures, or electric
fields, etc.) and requiring that all parameters ~o„ to2, r„r„
5, and 112 have simple dependences upon these parame-
ters—or be independent of them —we can choose the
basis states which are most meaningful. When this was
done for KH&As04 (Katiyar et al. , 1971a,b) the results
shown in Table (IX.1) were obtained. It can be observed
that the choice II2 = 0 gave little temperature depend-
ence in any of the other parameters except col, the
undamped soft-mode frequency. Hence this solution with
real coupling is very nearly correct. It is not exactly right,
as the slight variation of ~2 and I2 with temperature
shows. A small but nonzero I12 would correct this defect.

In addition to the damped harmonic oscillator param-
eters to and I', Table (IX.1) lists r(T) for KH2As04. This
relaxation time is defined as

~.(T) = I;(T)/to.'(T) (IX.4)

and is a very convenient parameter to consider for KDP-
structure systems. Overdamped harmonic oscillators
yield a spectral distribution (proportional to the imagi-
nary part of the susceptibility) very similar to that of a
Debye relaxation spectrum. In the limit of very large
damping, the two spectra become identical and the
Debye relaxation time r(T) is related to the damped
harmonic oscillator parameters I' and to as in Eq. (IXA).
Katiyar et al. have characterized their spectra in terms of
~.(T) because I'. and tc. are correlated in the least-squares
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TABLE IX.I. KDA parameters (cm ' ).a

295' K

2440

372

245' K

2393

189'K

2385

292

137'K

2060

247

CsDA
(T, = 69 + 7'K)

Pb

r&b

161

1 1.8
140

0

112

158

403

14.5
145

431

14.7
147

112

112
391

1 2.9

107

~p(sec) 4.8
x 10-"

5.0

x 10-"
5.4

X 10 '
6.6

x 10-"

Note that there is some evidence for a maximum in the phonon
width I b near the temperature at which cop crosses cob ( 217'K).

400—
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I

I

I
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I

fitting of observed line shapes, so that only the ratio r.(T)
may be extracted from some of the spectra. Some authors
have also felt that the parameter r(T) may be the more
fundamental quantity. As evidence for the latter point,
both Ryan et al. (1972) and Reese et al. (1973) have
observed that slightly better fits to the observed line
shapes in KDP structures can be obtained when the soft-
mode response is assumed to be of the Debye form,
rather than that of a simply damped harmonic oscillator.
This is also confirmed, so some degree, by the dielectric
measurements of Hill and Ichiki (1962), who required a
distribution of Debye relaxation times to explain their
data. Very recently, however, Peercy (1973) obtained an
underdamped soft mode in KDP by applying hydrostatic
pressure. His work shows that the soft mode can be
described only by a damped harmonic oscillator and not
by a Debye relaxation spectrum.

The specific model for KH2 As04 and CsH2 As04 dis-
cussed above does reveal one interesting anomaly: the
soft-mode frequency cop(T) does not extrapolate to zero
at T = To, This is shown dramatically in Fig. 46 for
KH& As04 and CsH& As04 (Cowley et al. , 1971; Katiyar et
al. , 1971b). Such a temperature dependence would not be
unusual for a first-order phase transition, but the ferroe-
lectric transitions in this class of materials are very nearly
second order, as determined by the dielectric measure-
ments of Kaminow (1965).Put in other words, this means
that the Lyddane —Sachs —Teller relationship (1941) below
is not satisfied

ep (T ) /e~ = cd LQ/el)To (T ). (IX.5)
The physical reason for the failure of this relationship has
been pointed out by Cowley et al. (1971). Whereas the
soft mode is able to equilibrate with fluctuations in
acoustic phonon density (i.e., the "bath") on the time
scale probed by the dielectric measurements (—10 "sec),
equilibrium is not obtained on the time scale probed by
Raman measurements (( 10 "sec). This distinction is
essentially that encountered in acoustic phonon theory,
where differences occur between the collision-free regime
(zeroeth sound) and the collision-dominated regime.
These ideas are discussed further in Sec. XII, using
Nb3 Sn as an example.

Coombs and Cowley (1972) have shown that the effect
of including certain anharmonic decays of soft optic

400—
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Tt =92
I

I
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I

I

I
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I
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Fto. 46. to' vs T in KDA and CsDA (Cowley et al. , 1971).

modes via acoustic phonon channels is to modify the
response function G„normally given for a single mode by

G (cp) = (cop co + l 1 cc) ~ X (cc) (IX.6)

cop = K(T Tp)

will be satisfied, but for low frequencies

coo + nT = K(T Tp)

or

(IX.8)

(IX.9)

coo' = &(T —T, ) (IX.10)

will result, where T, =—Tp —(n/K)Tp. Although not dis-
cussed in the paper by Cowley et al. (1971), the anoma-
lous self-energy term n in Eq. (IX.7) cannot be evaluated
experimentally if a representation of the response func-
tion in Eq. (IX.3) is chosen with 6 K 0. If 5 is set = 0 in

to the form

G '(cc) = (coo' —co' + it'cc + [nT/(I + icpT, )]). ('IX.7)
In this expression To is expected to approximate an
acoustic phonon lifetime, —10 "sec. Thus, measure-
ments at frequencies less than —10" Hz will probe a
different response than measurements above —10" Hz.
In fact, the latter will manifest a Curie temperature T,

(deduced by extrapolating ~(T) to zero frequency) which
differs from the actual phase transition Tp by AT = n/K,
even for a second-order transition. That is, for high
frequencies
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Eq. (IX.3) and the values of co~ (T) determined for the soft
mode in CsDA or KDA, the self-energy term o. is found
to be nonzero (J. F. Ryan, Ph. D. thesis, Univ. Edin-
burgh, 1972) as suggested earlier by Cowley et. al. (1971).

Another significant feature of the modified response
function given in Eq. (IX.7) is that it predicts a peak at
~ = 0, a central mode which grows in intensity as
T ~ Tp. This central mode has nothing to do with critical
phenomena, since it arises within the context of mean-
field theory. It is based on earlier theories of Cowley
(1967, 1970) and Mountain (1966) and may be compared
with a similar theory of Shirane and Axe, discussed in
Sec. XII. The physical content of the two theories is the
same, although the algebra diA'ers somewhat in the
expressions for frequency-dependent damping.

While the work of Cowley et al. described above has
been valuable in elucidating the dynamics of KDP
structures above T&, even greater breakthroughs have
been made in deciphering the spectra below T~. In
addition to the quasielastic scattering manifest above Tc

(the overdamped soft mode), KDP structures exhibit an
underdamped temperature-dependent feature below Tg.

This mode, of Al symmetry, lies at about 150 cm ' at low
temperatures. Its unusual temperature dependency was
reported independently by Wilson (1971) and by Shige-
nari and Takagi (1971).The latter authors suggest, cor-
rectly, that this mode and the quasielastic scattering
below T& were both soft modes. This view was streng-
thened by the analysis of Lavrencic et al. (1972), who
pointed out that this underdamped spectral feature has
frequency proportional to the spontaneous polarization
and is absent in deuterated KDP. They assigned this
mode, and the quasielastic scattering, as part of the same
soft-mode response. The origin of the quasielastic com-
ponent below T& is not exactly the same as that of the
central mode discussed above. In the theory of Blinc and
Zeks (1973) it arises from the following considerations:
In the pseudospin theory, as developed by Brout et al.
(1966), there is no damping of the pseudospin tunneling
mode, Lavrencic et al. (1971)have incorporated damping
in a phenomenological way by writing Blochlike equa-
tions for the spins. This was also done by Silverman
(1970), but only for the paraelectric phase. With this
formalization, two characteristic relaxation times appear
analogous to the Tl and T2 times for real spin systems. The
width of the underdamped peak and that of the quasie-
lastic scattering are determined by the two times, Tl and
T2. The diAerence between this theory, with its two
characteristic times, and that of Cowley et al. (which has
as two characteristic times in Eq. (IX.7) the values 1/I
and To), is not completely transparent. However, in
Cowley's theory, one time Tp is that required for a mode
to come into thermal equilibrium, i.e., is temperature
independent and not a relaxation time; whereas in Blinc's
theory, both TI and T2 are real relaxation times and
explicitly temperature dependent near Tc. The ferroelec-
tric spectrum of KDP, as calculated by Lavrencic et al.
(1972), is in excellent agreement with the experimental
data of Shigenari and Takagi (1971) and Wilson (1971).

2. NNR of KH, PO4 structures
Nuclei such as deuterons, Cs'", or As", which have

nonzero spin, can be used to probe the static and
dynamic behavior of ferroelectrics of the KDP class.

NMR, NQR, and double resonance techniques have
been employed to this end, and a comprehensive review
has been given by Blinc (1971).

NQR frequencies are proportional to the rms quadru-
pole moment for a particular ion; in general this will
consist of a static part due to site symmetry, plus a
fluctuating part due to phonon-induced ionic displace-
ments. For certain ions, such as tetrahedrally coordinated
as in arsenate isomorphs of KDP, the static part is zero,
and we can treat the entire NQR frequency as due to
phonon amplitudes.

As an example of the utility of such investigations, we
consider in some detail below the analysis of NQR data
on As" in CsH&As04 given by Blinc et al. (1970). We
shall not interpret the data exactly as Blinc et al. have,
and in fact a reconciliation of their data with dielectric
and Raman measurements is given at the end of this
section, following Scott and- Worlock (1973). However,
the value of such NQR data is independent and comple-
mentary to other analytical techniques is nevertheless
demonstrated.

Blinc et al. relate the electric field gradient tensor V, at
the "As site in CsH2As04 to the soft-mode rms ampli-
tude. They show that the NQR frequency

e'qQ/h —= eV, Q/h (IX.11)

is determined by an electric field gradient V, at the
arsenic site induced by soft-mode fluctuations. An efIec-
tive Hamiltonian

Xo XM + (XQ )g (IX.12)

is employed, where the brackets denote a time average
over the As ion position; X~ is the external field Zeeman
term; and

V, (() = A + B(+ C('+
The time average of Eq. (IX.14) yields

(IX.14)

(XI.15)

since 2 is zero for the tetrahedrally coordinated As in the
paraelectric phase, and since 8(() averages to exactly
zero as ( oscillates sinusoidally.

The expectation value of ((') may be evaluated from
the equipartition theorem as

Ik(~') = 'KT, -

where k is the force constant:

(IX.I6)

k = fP1Gop
2 (IX.17)

for the sof t mode. If we assume the validity of the
Lyddane —Sachs —Teller relation for the soft mode as

Xg ——e' V, Q/4I(2I —1)

x [3I,' —I(I + 1) + q(I' + I')] (IX.13)

is the coupling of the "As quadrupole with the electric
field gradient. It is assumed that the major contribution
to V, in Eqs. (IX.13) and (IX.12) is due to the rms value
of the phonon-induced fluctuation in V,. Therefore V, is
expanded in terms of the phonon coordinates. Since only
one mode, the soft mode, has a large dipole moment, the
expansion is restricted to that normal mode:
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measured with a low-frequency probe, i.e., toe(T)= A[as(T)] ', we can then rewrite Eq. (IX.16) as

($') = (const. )Tea(T), (IX.18)

eV, Q , 1= aT( 1 —x tan ' —
)h xp

(IX.22)

with a = constant and x = A[(T/T) —I]'~'. Figure 47
compares the calculation of Eq. (IX.22) with the ob-
served values. A fairly good agreement is present, consi-
dering the gross simplicity of the assumed dispersion.
Most important is the fact that no divergence of NQR
frequency is predicted by Eq. (IX.22); the integration
over q removes that.

In order to explain the experimental lack of diver-
gence, Blinc et a/. had proposed that somehow the proton
motion and heavy ion motion become uncoupled near To,

and that one of these two modes —the soft mode —obeys
a Curie —%'eiss dependence

tc' = A(T —T, ), (IX.23)

with T, much less than the actual transition temperature

6This point was made independently by F. Borsa and A. Rigamonti,
Phys. Lett. 40a, 399 (1972).

where eo is the static dielectric constant for fields along
the ferroelectric z axis.

From this line of analysis, Blinc et al. concluded that
the NQR frequency eV, Q/Il, given from Eqs. (IX.13),
(IX.1S), and (IX.18), should vary as

eV, Q/h = DT/(T —Ts), (IX.19)

where D is a constant; i.e. that it should diverge at To.

Their actual data, plotted in Fig. 47,do not indicate a
divergence at To, but upon extrapolation indicate a diver-
gence at a much lower temperature. As pointed out by
Scott and Worlock, this conclusion is unwarranted and
arises from the failure of Blinc et al. to perform certain
integrations over the Brillouin zone.

The proper average of ((') entering Eq. (IX.1S) in-
cludes phonons of all wave vectors. It is not necessary
that the phase of the electric field gradient fiuctuations be
the same at each As site. ' Thus Eqs. (IX.18) and (IX.19)
do not follow, since they apply only to q = 0 phonons.
Using a simple model for the CsH2 As04 sof t-mode
dispersion, we calculate the NQR frequency including
the eff'ects of q Q 0 phonons. ' This point was made
independently by F. Borsa and A. Rigamonti, Phys. Lett.
40a, 399 (1972).

We know that for q = 0, the undamped soft-mode
frequency is given approximately by

~.'(T) = A'[(T/T) —1]. (IX.20)
From the neutron scattering intensities of Skalyo et al.
(1970) on KDP structures, we know that sos(T, q) is given
to a rough approximation by

uo(T, q) = A'[(T/T) —1] + B'q', (IX.21)

where 4 and B are constants independent of T and q.
With this model we obtain

6.0—

g.0 I I I [

I40 160 [80 200 220 240 260 280 300
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Fto. 47. NQR quadrupole coupling constant vs T in CsDA- (theory
and experiment) (Scott and Worlock, 1973).

To. In our analysis, there are many modes which would
reach zero frequency at some temperature below To,

. they
are simply the q / 0 optical phonons on the soft-mode
branch.

Thus, our analysis requires no proton —phonon de-
coupling. This is compatible with the most recent results
of Blinc er al. (1972), who find that the NQR frequency
dependences of D and heavy ions in deuterated KDP
structures are the same near To.

3. Acoustic phonons

Elastic coefTicients and acoustic phonons in KDP
structures have been studied extensively. KH& PO4 is
piezoelastic in the paraelectric phase, and thus a direct
(piezoelectric) coupling between the soft optic mode and
certain acoustic modes is permitted. This has been dis-
cussed in some detail by Brody and Cummins (1969).
Their experimental results for C&s(T) are shown in Fig.
48. It can be seen that this elastic constant decreases
continuously to very nearly zero as To is approached from
above or below, and that the temperature dependence of
C66 is quite different on the high- low-temperature sides
of Ts. Elliott et al. (1972) have fitted these temperature
dependences very accurately using a mean field theory;
the diA'erent behavior above and below To therefore has
nothing to do with critical eAects, although such asym-
metric curves as in Fig. 48 are reminiscent of the behav-
ior of density, etc. , versus T for fluids in the critical
fluctuation regime.

In addition to the characteristics of the soft mode,
including its interaction with acoustic phonons and its
effect upon NQR response, the behavior of phonons not
directly relating to the spontaneous polarization in KDP
has also been investigated. We shall not review here the
sundry studies of the various high-frequency optical
modes, although their energies and intensities yield infor-
mation on hydrogen bonding and other ion displace-
ments at various temperatures. It does seem worth men-
tioning, however, that a broad, featureless background
exists from zero to —100 cm ' in the E-symmetry (n„,n„)
spectra of all KDP isomorphs in their paraelectric 42m
phases. This feature was first reported by Lavrencic et al.
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Fia. 48. A comparison between experiment and theory (Elliott, Smith
and Young, 1972) for C66 in KDP. The adiabatic theory (solid curve)
and isothermal theory (dashed curve) are compared with experimental
data (circles) from CJarland and Novotny (1969) and (triangles) from
Brody and Cummins (1968). T, is the transition temperature for a
clamped crystal; TD, the domain-formation temperature.

(1970), and independently by Hammer (1971), and by
Wilson (1971). One curious aspect of this otherwise
featureless background is that it interacts strongly with
the lowest frequency E-symmetry transverse optical
phonon at about 95 cm ', yielding an interference shape
characteristic of Breit—Wigner interactions between dis-
crete states and continua. A similar eAect was reported
for the Ai symmetry spectra in the ferroelectric phase by
Shigenari and Takagi (1971).These line shape anomalies
in KDP have been analyzed by Scott and Wilson (1972),
who suggested that the origin of the E-symmetry feature
is simply that of scattering from the one-phonon density
of states, where disorder above Tp allows q / 0 modes to
become Raman-active. The rapid decrease to zero of the
intensity .of this background within 5 K below Tp, as
long-range order of protons develops, lends support to
this interpretation, as does the fact that the E-symmetry
background cannot be fitted as a single "mode", either of
damped harmonic oscillator or Debye form. Thus, the E
spectra yield information concerning order evolution
through the temperature dependence of their intensities
(compare with the discussion of NH~Br in Sec. XI), but
are not "soft modes" with temperature-dependent fre-
quencies.

The same descriptions apply to the broad features of
B, and E symmetry in NH4H, PO4 (ADP). ADP has been
studied via Raman spectroscopy by many diA'erent
groups. No soft mode is observed. As discussed by
Cochran (1961), the soft mode in paraelectric ADP
would be at the Brillouin zone boundary. It becomes
q = 0 and Raman active in the low-temperature antifer-

roelectric phase, but unfortunately ADP invariably shat-
ters as it is lowered through the transition temperature,
thus precluding eAorts to study its dynamics below Tp.

(IX.24)

A(~) was deduced as 2.25 X 10 "deg sec in the ultasonic
regime and (2.9 + 0.3) X 10 " deg sec in the hypersonic
regime. (Recall that in relating relaxation times of the
Debye-type to damped harmonic oscillators, r = I'/~0. )
The physical origin of the dispersion r(~) thereby meas-
ured was not discussed, but we have seen in the preceding
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Fro. 49. Spontaneous polarization P(T) in triglycine sulfate (Hoshino
er al. , 1957).

B. Triglycine sulfate and thlourea

Several other hydrogen-bonded ferroelectrics are of
significant interest. Triglycine sulfate TGS is very useful
as a pyroelectric detector and is probably the ferroelec-
tric of greatest technological importance. Its spontaneous
polarization was measured as a function of temperature
by Hoshino et al. (1957) and is shown in Fig. 49. The
static dielectric constant confirms the implication of Fig.
49 that the transition is second order; Fig. 50 shows the
results of Triebwasser (1958) for eo(T) above and below
Tp. Note that Curie —Weiss behavior is exhibited in each
phase. An infrared study by Barker and Tinkham (1963)
revealed no undamped soft mode in TGS. and suggested
that it, like KDP, might instead be characterized by a
nonresonant response, e.g. of the Debye form. Further ir
and Raman studies have yielded little qualitatively new
information concerning the transition dynamics in TG-S
or the isomorphic selenate.

The information concerning triglycine sulfate is not
limited to dielectric measurements. Probes of acoustic
phonon behavior have been made by O' Brien and Lito-
vitz (1964) using conventional ultrasonic techniques, and
by Gammon and Cummins (1966) using Brillouin spec-
troscopy. Each group was able to confirm indirectly the
Curie —Weiss behavior of the inverse relaxation time. In
the expression
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Fto. 51 DyVO4 structure (Cooke et al. , 1971).
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Fro. 50 Dielectric constant vs T in TGS (Triebwasser, 1958).

21

section how Cowley's theory includes explicitly a fre-
quency-dependent relaxation time.

Thiourea is an unusual ferroelectric in that it is an
organic compound. Its ferroelectric properties have been
known for more than a decade (Solomon, 1956; Gold-
smith and White, 1959), but little spectroscopy has been
performed on it. Recently, Raman spectroscopy on
thiourea by Schrader's group in Dortmund (Schrader er

: al. , 1971) revealed a wing on the Rayleigh line for the
trace (n») scattering polarizability somewhat suggestive
of KDP spectra, but this feature was not emphasized in
their studies, and we cannot conjecture about its temper-
ature dependence in the absence of detailed data. 0

295
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X. JAHN-TELLER SYSTEMS

A. DyVO. , TbVO,

Although Jahn —Teller systems have an old and highly
developed literature of their own, we must make contact
with such materials if we wish to summarize the complete
range of structural distortions in crystals. In the conven-
tional Jahn —Teller description, a lattice containing an ion
with a degenerate electronic state spontaneously distorts
in a way such that the total internal energy is lowered.
This lattice distortion removes the degeneracy (at least
partially) of the electronic levels. In most systems stud-
ied, the transition is from cubic to uniaxial (tetragonal or
rhombohedral). However, in the systems DyVO4, and
TbVO4, the Jahn —Teller distortions (at 14'K, 12'K, and
34'K respectively) involve a simpler distortion from
tetragonal (D4$ zircon structure) to orthorhombic (D2'I, for
DyVO4 or DyAs04, D&t for TbVO4). In these transitions
the twofold degeneracies of the tetragonal structures are
removed; only nondegenerate levels occur below Tp. 'A
complete survey of these systems has been given by
Elliott et al. (1971), and by Sandercock et al. (1972). It is

Ftr. 52. Soft electronic mode spectra, TbVO4 (R. T. Harley, W.
Hayes, and S. R. P. Smith, 1971).

important to emphasize that the transition temperatures
given here are not the Neel temperatures, which are
lower. There are additional structural distortions occur-
ring at T&', for example, at T~ ——3.05 K, DyV04 under-
goes a lattice strain of 0.17%%uo (Cooke et al. , 1971; Sayetat
et al. , 1971); these distortions at T~ will not be discussed
further here.

The structure of these RMO4 compounds is shown in
Fig. 51. Figure 52 shows the temperature dependence of
the lowest energy electronic level in DyVO4 and DyAs04
as measured by Raman spectroscopy. This electronic
state is the soft mode for the transitions in question.

The lattice distortions may be interpreted in terms of
q = 0 optical phonons, as discussed by Englman and
Halperin (1970, 1971); or they may be described in terms
of direct interaction between magnetic ions and Inacros-
copic elastic strain, i.e., acoustic phonon —electron inter-
action (Kanamori, 1960). The distinction has been point-
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ed out by Pytte (1971b). We shall not elaborate further
on these two mechanisms here, but a related free-energy
description is given in Sec. XII, following Shirane and
Axe (1971), in the discussion of Nbs Sn and V& Si.

KCoF. and RbCoF,

KCoF3, RbCoF&, and T1CoF3 order antiferromagneti-
cally at T& ——114'K, 101 K, and 94'K, respectively. At
the Neel temperature there is a contraction of the lattice
along the direction c of spin alignment (Allain et al.
1971). The resulting tetragonal distortion is manifest in
the x-ray measurement of c/a, and the behavior of certain
of the elastic constants near T&. The Raman spectrum
below T~ (Nouet et al. 1973) is compatible with a simple
c-axis contraction; all ions apparently remain at inver-
sion sites, and all phonons retain odd parity and Raman
inactivity. Despite the fact that the I» mode at the [111]
zone boundary is somewhat unstable (Buyers et al. ,
1968), and that it couples strongly with the magnon near
T~ (Holden et al. , 1971; Buyers et al. , 1971), this optical
phonon does not collapse at T~. Thus, the ionic displace-
ments in KCoF3 below T& are not those of fluorine
octahedron rotation about [100] axes (as in KMnFs and
other perovskites exhibiting cell-doubling transitions).

No detailed analyses of structural distortions at T& in
perovskit'es have been published. However, in his 1960
paper, Kanamori explicitly suggested that the distortions
in CoO and KCoF3 were analogous and could both be
described by a Jahn —Teller formalism. The application of
Jahn —Teller theories to systems having Co" ions (which
have orbital angular momenta unquenched by the crystal
field) is fairly complicated and has not been done for
KCoF3 However, Kanamori's conjecture concerning
CoO and KCoFs seems well founded: the (a —c)/a
distortion is of the same sign (positive) in each and of
about the same magnitude (roughly 1% at T = O'K.)

Thus, in the case of KCoF3 and RbCoF3, Kanamori's
theory of magnetic ions interacting directly with elastic
strains (acoustic phonons) seems most applicable. In the
case of rare-earth vanadates, it is not so clear, and Elliott
et a/. have concluded that acoustic phonon interactions
are of very different magnitude for DyVO4 and TbVO4.

In the case of both KCoF3 and RbCoF3 the soft mode
is simply the magnon. The sublattice magnetization is the
macroscopic order parameter for both magnetic and
structural transition. It is of interest that the magnon
frequency is not proportional to the sublattice magnetiza-
tion (Nouet et al. , 1973). This shows that the linear
response theory (which assumes infinite-range magnetic
forces) is not satisfied.

Thus, in both rare-earth vanadates and in Co" fluoro-
perovskites the soft modes and order parameters for the
structural distortions are electronic. For a cogent descrip-
tion of such effects in UO2, readers are referred to the
earlier work of Allen (1968).

XI. ORDER-DISORDER TRANSITIONS

A. NaNO,

Thus far we have considered only crystals in which
ionic positions change from one ordered array below To

to a second, different. ordered array above To. Even in the
KDP class of ferroelectrics, the heavy metal ions (K and

0

Fte. 53. Atomic positions in NaNO2 in (a) the paraelectric disordered
phase, and (b) 'the ferroelectric ordered phase. The oxygen ions are
cross shaded.

P, or Rb and As, etc.) undergo such an order —order
transition at the same temperature To at which the
protons become disordered. In the present section we will
consider NaNO&, the most thoroughly understood ferroe-
lectric which is disordered in the paraelectric phase, and
the ammonium halides, which exhibit nonferroelectric
order —disorder transitions in which the protons play a
key role, as in KH&PO4.

The static structure and dynamic response of NaNO&
above and below the Curie temperature have been ana-
lyzed in an important study at Chalk River (Sakurai et
al. , 1970). The occurrence of ferroelectricity in this crys-
tal was reported many years earlier (Sawada et al. , 1958).

The ionic positions of NaNO2 in the ferroelectric phase
are shown in Fig. 53a. Figure 53b shows the positions of
NaNO2 ions in the disordered paraelectric phase. Since
the difference between the positions of the oxygen atoms
in the two phases is not infinitesimal, this transition is
necessarily first order.

Let us now consider the response associated with this
ionic displacement. The potential in which the NO2 ions
move may be described as a double well, as diagrammed
in Fig. 54. The left side of the well corresponds to
oxygens to the left of N ions. At low temperatures most
of the NO2 ions lie on the same side of the double weH.
The atoms vibrate with small amplitude and high fre-
quency in this essentially quadratic well; only very
infrequently do they tunnel to the other side of the
double well. The system may be considered to have not
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I

I

x=0
FiG. 54. Simple double-well potential schematically descriptive of the
two stable NO2 orientations in ferroelectric NaNO2.

one, but t~o, characteristic frequencies: one given by the
quasiharmonic frequency ~0 within either side of the
double well; and a second given by the reciprocal of the
average tunneling time from well to well. Thus, two peaks
may be expected in the imaginary part of the susceptibil-
ity for this system —one at ~0, and one at much lower
frequencies. These peaks have the same symmetry and
indeed the same eigenvector. The reason only one peak
in the response function for each normal mode is predict-
ed by group-theoretical calculations, is that infinitesimal
amplitudes are assumed for each normal coordinate; in
order —disorder systems such as NaNO&, very large, finite
displacements must be considered. When we include the
eAects of phonon damping in this description, we arrive
at a hypothetical response function (x", or scattering
cross section) shown schematically in Fig. 55: a Lorent-
zian centered at coo and an overdamped mode centered at
zero frequency. Both the high-frequency response and
the very low-frequency response contribute to the dielec-
tric function. The vee-shaped NO~ ions possess an elec-
tric dipole which creates a spontaneous polarization in
the low-temperature pha, se of NaNO&, and the inelastic
neutron scattering results of Sakurai er al. (1970) for the
NO2 flopping mode are in good accord with the schemat-
ic diagram shown in Fig. 55. Eigenvector determination
showed that the ionic displacements at ~0 and at co = 0

O

C3
4J
M

I

0
ENERGY

Fre. 55. Three-component spectrum predicted for a single normal
coordinate response in an anharmonic double-well potential.

were equivalent. Equally important, a complete measure-
ment of dispersion curves for all the group-theoretically
predicted modes (except the high-energy NO, internal
modes) showed clearly that the very low-frequency mode
was "extra" in the group theoretical sense, i.e. arises from
finite amplitude displacements of the NO2 ions. (We note
that the soft mode in KH2 PO4 has not yet been shown to
be "extra."There is some difhculty in counting the modes
of 8& symmetry in paraelectric KDP to see whether six or
seven are present; this is due to the complexity of the
spectrum, mode interactions, and possible second-order
peaks. )

It was not possible to the Chalk River experiments to
determine a characteristic frequency for the overdamped
low-frequency mode. That is, the low-frequency response
was not fitted to either a damped harmonic oscillator
expression or to a Debye relaxation function. All that
could be said was that the characteristic response fre-
quency was very low (less than 1.7 X 10' Hz. ) This value
is in rough agreement with that obtained in the dielectric
study of Hatta et al. (1966), who found the low-frequency
response to be characterized by a Debye relaxation time
of

~(T) = (1.6 X 10 ')/(T —160 C) sec. (XI.1)

Thus, at 22'C, ~(T) = 10 " sec., and lj2mv = 1.6
X 10' Hz, which agrees with the neutron scattering esti-
mate very well. (By comparison, the Debye relaxation
time extracted for CsH, As04 and KH&As04 by Katiyar
et al. (1971) was —5 X 10 " sec.—two orders of magni-
tude shorter. ) The use of conventional ir or Raman
spectoscopy to study systems with v ) 10 " sec. is not
promising; for such systems most of the response occurs
at frequencies less than 1 or 2 cm '.

The work of Hatta et al. (1966) does show one impor-
tant thing: that the response is characterized by a single
"mode, " i.e., one relaxation time. Thus we may refer to a
"soft" mode in NaNO&, although it is not one of the
group-theoretically predicted optical phonons. Even this
semantic privilege is not allowed in the ammonium
halides, as we shall see below, since the very low-
frequency response is not characterized by a single
relaxation time.

Before leaving NaNO2, we should comment that two
additional phase transitions have been analyzed by x-ray
diffraction studies (Hoshino and Motegi, 1967). Only the
paraelectric —ferroelectric transition from orthorhombic
space groups D» to C&", (or II2m) have been analyzed
dynamically. The antiferroelectric and "ferrielectric"
phases reported by Hoshino and Motegi should provide
interesting dynamics for future study.

B. NH4CI

The ammonium halides have order —disorder transi-
tions which are analogous to that in NaNO&. , the amrnon-
ium ions undergo a rotational disorder in which the
proton positions become randomized. The transitions
have been carefully studied via ultrasonic techniques
(Garland and Renard, 1966), Rayleigh and Brillouin
scattering (Lazay et al., 1969), and Raman spectroscopy
(Wang and Fleury, 1969).

From the linewidth of acoustic phonons in NH4C1 at
24 C, Lazay et al. determined a relaxation time of
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Fte. 56. NH4Br structure (Wagner and Hornig, 1950).
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'(XI.2)

~ = 8.6 X 10 "sec.As in the case of NaNO2, this time is
too long to produce measurable quasielastic Raman
spectra. The value of p. was independently determined by
proton NMR (Purcell, 1951); good numerical agreement
is obtained for the two methods, and the time is interpret-
ed as in NH4 tetrahedra reorientation time.

The structure of both NH4Br and NH4C1 just above
their order —disorder temperatures (234.5 and 242.8'K,
respectively) is CsC1-like: Td' (or P43m) space group, with
the NH4 ions in Cs positions having random rotational
alignment of their protons; this is generally called Phase
II. Phase I is a disordered NaC1 structure with space
group Oh (Pm3m). Below the ordering temperature,
NH4C1 becomes tetragonal, with the NH4 tetrahedra
aligned parallel; the structure is D4Nt, (P4/mern) and is also
observed at low temperatures ((110'K) or high pres-
sures ()2 kbar) in NH4Br. In NH4Br, however, a fourth
phase occurs, in which the NH4 tetrahedra order antipar-
allel, thus doubling the unit cell. This D4t, (Pjnmm) ar-
rangement is shown in Fig. 56, after Wagner 4 Hornig
(1950).

All of the phase transitions discussed above involve
NH4 tetrahedra reorientations with times long compared
to those measured by Raman, ir, or inelastic neutron
spectroscopy. Thus direct information concerning the
transition dynamics is diScult to obtain. We have al-
ready seen that a response centered at pp = 0 was detect-
ed in the inelastic neutron scattering on NaNO&, and that
this response was further characterized by dielectric
measurements as having Debye relaxation properties
with a single decay time. Since the disorder in NH4C1 or
NH4 Br does not involve a dipole moment, analogous
dielectric measurements are not possible; however the
Rayleigh scattering measurements of Lazay et al. (1969)
give similar information to that supplied by neutron
scattering on NaNO2.

In Fig. 57 we show the Rayleigh (tc = 0) intensity of
NH4Cl at temperatures near Tp, the ordering temperature.
The sharp increase in intensity is due to fluctuations in
NH4 order. The polarized (i.e., trace polarizability) spec-
tral intensity was found to obey the temperature depend-
ences

0
—50 —40 —30 —20 —

I 0 0
TEMPERATURE ( C)

10 20

and

I = Ip T —Tpl'", T ) Tp.

In concluding the discussion of NH4 Cl, we must stress
that the interpretation of the Rayleigh intensity data of
Lazay et al. is still open to question. It is not obvious that
they represent a "critica1" phenomenon in which very
1arge fluctuations render mean field theories incorrect. It
is equally possible that, by analogy with NaNO&, the
response centered at ~ = 0 is due to slow, large-ampli-
tude, tunneling-like displacements of protons —which can
still be described within the context of mean field theo-
ries. However, in the latter case, an exponent 2P = 1

should be observed both above and below Tp, in contrast
with experiment. Bartis (1973) has interpreted the anom-
alous exponents in NH4C1 in terms of point defects and
edge dislocations. As Benedek (1969) has discussed in
detail, measurement of the temperature dependence of
the Rayleigh width in NH4C1 would clarify the picture,
since true critical phenomena would require a decrease in
width concurrent with the increase in intensity.

C. NH. Br

While the dependence of optical phonon frequencies
upon temperature is not of great interest in NH4Cl or
NH4Br, the intensities and widths of various optical
modes may relate directly to the evolution of order near
the order —disorder transition, Tp. This was first suggested
by Garland and Schumaker (1967), who found that an
optical phonon broadened and decreased in intensity in
their ir spectra as T was increased toward Tp ln the
ordered phase. Detailed Raman measurements of the
analogous mode (at —1420 cm ') in NH~Br have been
given by Wang and Fleury (1969), who also interpret the
mode broadening as gradual evolution of disorder in the

Fto. 57. Cross section vs T for Rayleigh scattering in NH4C1 (Lazay
et al. , 1969).
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ordered phase. Presumably, short-range ordering of NH4
orientations persists well above To, but the very long-
range order (—5000 A or larger), upon which Raman
spectroscopy selection rules are dependent, decays mon-
otonically to zero as To is approached from below. The
widths of the 1444 and 1420 cm ' lines in NH4C1 and
NH48r are measures of the region of momentum space
contributing to the Raman spectra at each temperature.
(If the optical phonon branch in question were disper-
sionless, no broadening would occur. )

Just as the intensities and widths of the high-energy
lines discussed above relate to the occurrence of disorder
in the ordered phases of NH4Cl and NH4 Br, information
can also be extracted from the low-energy, lattice-mode
region of the spectrum. In NH4Br Wang and Fleury
report a mode (at 56 cm ') whose intensity dependence is
opposite that discussed in the preceding paragraph: As
the disordering temperature is approached from below,
this mode increases rapidly in intensity. It is interpreted
as a large-q (zone boundary) phonon made Raman-active
by residual disorder in the ordered phase. Its intensity
dependence below To therefore substantiates the interpre-
tation of disorder below To implied by the 1420 cm '

mode.
Wang and Fleury also discuss the surprisingly symmet-

ric, Loretzian shape of this mode in the disordered phase.
They suggest that the 56 cm ' line in the disordered phase
arises from phonons at critical point X = (m/a, 0, 0).
Such phonons ~ould, however, be Raman allowed in the
ordered, antiparallel phase below Tp. The predicted inten-
sity dependence is therefore decreasing below Tp and
rapidly decreasing above To. Hence, we do not agree with
the assignment of the 56 cm ' mode as occurring at
X = (m/a, 0, 0) in the disordered phase. The mode which
satisfies the predictions of an X-point phonons is that at
67 cm ' in NH48r, not that at 56 cm '. This reviewer
believes that the acoustic phonon frequency increases
monotonically along (q, 0, 0) to 67 cm ' at the boundary
in NH4Br. This 67 cm ' zone-boundary phonon is Ra-
man-allowed in the ordered phase having two formula
groups per unit cell; the (q = m/a, 0, 0) point becomes a
reciprocal lattice point in this phase. Above To, all phon-
ons near (m/a, 0, 0) = x contribute to the Raman intensi-
ty; but these all have energies slightly less than 67 cm '.
The density of states for this branch is maximum for q
slightly less than m/a, and yields a peak at —56 cm ' for
the fully disordered system.

To summarize: We predict that the [100] zone bound-
ary transverse acoustic phonon frequency in disordered
NH48r lies at 67 cm ', not the 56 cm ' level assigned by
Wang and Fleury, whose intensity data seem inconsistent
with their assignment.

An attempt to make qualitative the relationship be-
tween the intensity data of Fleury and Wang for the
56 cm ' line and the specific heat data of Sorai et al.
(1965) has been reported by Wang (1971), who showed
that

(XI.4)

where I(T) is the intensity of the 56 cm ' line, and C(T)
is the temperature-dependent part of the specific heat,
i.e., a large, approximately constant value has been
subtracted from the total specific heat, such that C(T)

asymptotically approaches zero for temperatures far be-
low To.

This work by Wang shows that the 56 cm ' line inten-
sity is a good measure of the NH4 disorder. It does nor,
however, substantiate in any way the assignment of the
56 cm ' line as an x = (m/a, 0, 0) phonon; to the con-
trary, it- supports the assignment given here that TA
= 67cm'.

We will await the results of inelastic neutron scattering
on ND4C1 and ND4Br with keen interest. (Deuterated
crystals must be employed for coherent neutron spectros-
copy )

Independent of this specific interpretation, the work of
Wang and Fleury, and of Rimai et al. (1969) on Raman
intensities of disordered systems shows that microscopic,
dynamical information can be obtained even for crystals
in which the soft mode lies at very low frequencies—
frequencies far below the range of grating spectrometers.

XII. A-15 STRUCTURE HlGH-TEMPERATURE
SUPERCONDUCTORS

A. Theory of Blount and Anderson

The A-15 or P-tungsten structure crystals exemplified
by Nb3 Sn and V3 Si are of enormous importance as high-
temperature superconductors. They also exhibit structur-
al phase transitions at temperatures slightly above their
superconducting temperatures. Because ir and Raman
studies on metals are quite diFicult, and because single
crystals of these compounds of size sufficient for inelastic
neutron scattering were not available, the only experi-
mental data for many years relating to the displacive
pha. se transitions in Nb3Sn or V3Si were the acoustic
phonon studies of Testardi er al. (1965, 1966, 1967). The
existence of a structural transition in these materials was
demonstrated earlier by Batterman and Barrett (1964,
1966), and Anderson and Blount (1965) had proposed a
soft-mode interpretation of the phase transition. Unfor-
tunately, no information existed concerning optical
phonon frequencies or temperature dependences; and the
space group could not be determined unambiguously by
x-ray methods. Consequently, the soft-mode descriptions
which evolved following Anderson and Blount were
somewhat speculative: Birman (1966, 1967) and Klein
and Birman (1970) simply had little experimental data
around which to structure their lattice dynamical theo-
I ies.

B. Theory of Labbe and Friedel

In 1966, Labbe and Friedel (1966,a,,b) proposed a
qualitatively diAerent explanation of the transition dy-
namics. Their theory involved no soft optical phonon,
but instead a strong interaction between acoustic phon-
ons and electrons. This point of view has recently extend-
ed by Pytte (1970), who exploited the analogy with Jahn-
Teller systems; and a modification of Labbe and Frie-
del's basic ideas has been given recently by Sham (1971).
Fortunately, in the intervening eight years since Ander-
son and Blount's theory appeared, the amount of experi-
mental data has vastly improved. Shirane and Axe
(1971a) were able to determine the low-temperature
space group of Nb3 Sn via elastic neutron scattering. And
the same authors (197lb) extended Testardi's soft acous-
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tic phonon studies to large wave vector, by means of
inelastic neutron scattering on Nb3Sn. In addition, a
central mode centered at ~ = 0 in the inelastic neutron
spectrum was reported and interpreted by a theory
analogous to Cowley's 1967 work.

Historically, Batterman and Barrett. showed that V&Si
and Nb3 Sn underwent a transition from cubic O~ space
group (Pm3m) to an unidentified tetragonal structure,
and the ultrasonic measurements of Testardi et al.
showed that this distortion was accompanied by a soften-
ing of the transverse acoustic phonon (shear wave) along
[110]directions. Anderson and Blount (1965) pointed out
that according to Landau's theory the acoustic phonon
frequency could not be the order parameter for the phase
transition; the acoustic phonon must be driven soft by
something else—and the "something else" must be the
order parameter. They suggested two possibilities: one,
an electron —acoustic phonon interaction "perhaps having
to do with pairing, " i.e. Cooper-pair formation; and two,
optical phonon instability (soft-mode) and phonon-
phonon coupling. They greatly prefered the latter hy-
pothesis and described this possibility as a "ferroelectric
metal, " a term suggested by Matthias as perhaps charac-
terizing the M. 8'03 tungsten bronzes.

Subsequently, Perel et al. (1968) described the four
possible tetragonal distortions in Nb3 Sn or V3 Si compat-
ible with second-order transitions from the cubic OI,

space group. They are diagrammed in Fig. 58 and
correspond to static displacements of the Nb sublattice
having eigenvector of the I25, II5, I'+15 and II2 optical
modes at q = 0.

The theoretical work of Birman (1965) and Klein and
Birman (1970) was more restrictive in its conclusions:
Only the I&5 and I&5 distortions were possible. These
predictions were based on a screening argument. As the
temperature lowers and the Fermi level falls into a region
of very large electron density-of-states, the Coulombic
forces are screened out and two q=0 optic modes
become unstable. The I25 and I» distortions Klein and

Birman predict as possible may be compared with the
two space groups D2d(P4m2) and C4'. (P4mc), earlier
predicted as possible by Birman (1965). Unfortunately,
the actual Nb3Sn space group, as determined by Shirane
and Axe (1971a), is D4I, (P42/mme). Thus, it is the
I» (q = 0) mode displacements which actually occur, as
diagrammed in Figure 58 from Perel et al. Although the
predictions of Klein and Birman are completely wrong,
their method of calculation affords some insight into the
character of electron —phonon interactions in these mate-
rials.

Fp = (-'p~pgp + -'Vggp + . )
+ ICu + qdu Qp (XII.1)

This equation contains a coupling term between elastic
strain u and optical phonon displacement Qp. The [110]
shear strain has symmetry I». If the optical phonon had
symmetry I», I'», or I&5 then the term u'Qp is the lowest
order coupling permitted by symmetry (i.e., the free
energy must be a scalar). From this equation it would
follow by minimizing free energy with respect to u, that

0 = nF/nu = Cu + dgpu (XII.2)

or

lul = (d/c)gp. (XII.3)
And in the case in which the soft-mode amplitude varied
as

(XII.4)

C. Neutron studies in Nb, Sn

Shirane and Axe explain clearly the equivalence of
ionic displacements in Nb& Sn with the I» phonon which
softens. They describe .the acoustic phonon instability
and the ionic displacements via a free-energy expression
of form'
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we would find an induced elastic anomaly

(XII.5)

Just as we observed in CJd&(Mo04)3 and Tb2(Mo04)3.
This is in fact the content of Anderson and Blount's
hypothesis.

However, in the actual case of Nb3 Sn, as explained by
Shirane and Axe, the ionic displacements Qp have the
same I» symmetry as does the acoustic [110]shear wave
u. Thus, a lower-order coupling is possible, viz.

g
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F = IMigi + 2cu + ggu + (XII.6)
since (It2) X (Ij~ ) is a scalar. Minimizing this free energy
I" with respect to u yields

~25
u = (g/c)Q . (XII.7)

X = V

0 =Si

FIe. 58. Possible eigenvectors for phase transitions in V3 Si or Nb3 Sn
(Perel et al. , 1968).

Equation (XII.7), like Equation (XII.3), predicts that if
an optic phonon softens in frequency and increases in
amplitude, then an acoustic anomaly (elastic strain) will
also occur. But Equation (XII.7) predicts that a sublattice
displacement will occur which is proportional to the strain
u even if no softening of pp&(T) occurs.

Rev. Mod. Phys. , Vol. 46, No. 1, January 1974



J. F. Scott: Soft-mode spectroscopy

If we substitute u = (g/c)Q& from Equation (XII.7)
back into Equation (XII.6), we obtain

Nb~ Sn ($,$,0)
F' = to' Q' + (g'Q'/c).

Minimizing F' with respect to Q, yields

C = —g /GD)

(XII.8)

(XII.9)
30— o Obs. g = 0.02

Thus the total effective stiffness constant c' is normalized
as

c' = c(T) —g'/to, '(T) (XII.10)

which yields. c' = c(T) for tc& ~ oo.
This implies that the shear instability (c (Ts) = 0) may

occur either by to& (T) ~ 0, or by c(T) ~ 0. These are the
theories of Anderson and Blount (1965), and Labbe and
Friedel (1966), respectively. Thus the experimental data
are still compatible with either theory.

Labbe and Friedel's work suggests that the partially
filled, narrow d bands in these intermetallic compounds
plays a key role in softening c(T) in these materials via
direct acoustic phonon —electron coupling. Indeed, to
support this, no low-frequency soft optic mode has yet
been observed in neutron scattering. However, it is still
possible that both softening of tc&(T) and c(T) in Equa-
tion (XII.10) contribute to the actual phase transition in
Nb3Sn and V3S1.
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D. Central modes In Nb. Sn

Finally, we should mention that in the inelastic neu-
tron scattering experiments on Nb3 Sn, Shirane and Axe
(1971) found an anomalous central component which
was very narrow and increased in intensity as the transi-
tion temperature was approached. Their treatment of this
mode is analogous to that in SrTi03, and relies on
Cowley's theory, suitably extended to four-phonon inter-
actions to include centric crystals. The basic idea is that
at frequencies much larger than the average inverse
lifetime of the acoustic phonon "bath, " the propagation
of phonons is in the collision-free (zero sound) regime. In
the opposite, collision-dominated (first-sound) regime,
the phonon damping must be renormalized [see Cowley
(1967); Woodrufi and Ehenreich (1961); Kwok er al.
(1965); and Miller (1965)]. In contrast to SrTiO&, where
optic mode decay into acoustic phonons yields the cen-
tral peak, in Nb3 Sn only acoustic phonons are involved.

Shirane and Axe have approximated the damping I'(to)

I'(to) = I' + g'(n —ice) ', (XII.11)

which, when inserted into the usual expression for scat-
tering cross section

S(to) = (kT/hto)lm((os —to'+ itoI') ' (XII.12)

yields

( kT& 6'n t', 6'n'

Frc. 59. Cross section vs T for central mode in Nb3Sn (Shirane and
Axe, 197la).

Application of Eq. (XII.13) to the central part (to = 0)
of the spectrum yields

I(T) = AT6'/td' (to' —6'), (XII.14)

XIII. SUMMARY

where ~„ is the frequency of the acoustic phonons for
T )) 50'K. The experimental results are in good agree-
ment with Eq. (XII.14); Figure 59 shows the linear T
dependence. Here 6 is deduced to be 1.1 ~ 0.3 cm '.

We must emphasize three points in closing this discus-
sion: First, the central modes discussed by the authors
cited above are distinctly analogous to those described by
Mountain (1966) in fluids, where a central peak in the
response arises due to density fluctuations; second, in
order to demonstrate critical behavior in solids associated
with diverging central mode intensities, it is still neces-
sary to show the narrowing of the central mode line-
width, as first pointed out by Benedek (1969); third, in
general, it is dificult to distinguish experimentally be-
tween central modes due to disorder, as in NaNO&, and
those due to self-energy anomalies, as in SrTi03—one
must show that a large body of data (Curie constants, x-
Jay data, and measured exponents for central intensity
and soft mode frequency) are all self-consistent.

g2 ) 2 —1

+ tc'I I; + u' + 0.')
where ~' = coo + 6'.

(XII.13)

In closing, it appears to this reviewer that the experi-
mental studies of soft modes have taken us from a
macroscopic description of structural phase transitions in
which thermodynamic characterizations were important,
and order parameters, if specified at all, were bulk
properties such as spontaneous polarization —to a micro-
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scopic picture in which the order parameter is a specific
ionic displacement, often a rotation. This new microscop-
ic framework has finally permitted contact with subtle
aspects of statistical mechanics, particularly in the devia-
tion from mean-field theory and in the occurrence of
central modes in the response functions of the crystals
studied.

Future work on soft modes will probably emphasize
complex systems in which macroscopic phenomena are
coupled. For example, BaMnF4 is simultaneously ferroe-
lectric, antiferroelectric, arid antiferromagnetic. Nickel—
iodine —boracite is simultaneously ferroelectric and ferro-
magnetic. Microscopic dynamical analyses of these sys-
tems warrant detailed theoretical and experimental study.
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