
Pair production and breIIIsstrahlung
of charged leptons'

Yung-Su Tsai
Stanford Linear Accelerator Centers, Stanford Unioersity, Stanford California 94305

Photo pair productions of electrons, muons, and heavy leptons and bremsstrahlung of electrons
and muons are reviewed. Atomic and nuclear form factors necessary for these calculations are
discussed. Straggling of electrons in matter and other sects due to 6nite target thickness are
considered. Tables of radiation lengths of all materials and the energy dependence of photon
absorption coefFicients of many materials are presented. Problems associated with production of
particles by photon and electron beams are also discussed.
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I ~ INTRODUCTION

* Work supported by the U.S. Atomic Energy Commission.
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The work on this paper started about ten years ago when
the Stanford Linear Accelerator Center was still under con-
struction. At that time, as in any new high energy physics
laboratory, people were concerned with problems such as
what would be the yields of muons, pions, E mesons, anti-
protons, etc. and also whether any new particles such as
S' bosons and heavy leptons could be discovered by the
new machine. In the electron machine these particles are
produced by the bremsstrahlung beam which in turn is

The heavy lepton has never been discovered. Recently
interest in the possible existence of heavy leptons has gained
a new impetus because in some versions of the gauge theory
heavy leptons are required to make the united theory of
weak and electromagnetic interactions finite (Georgi and
Glashow, 1972; Bjorken and Llewellyn Smith, 1972) . These
gauge theories do not aBect the calculation of heavy lepton
production by pair production. The decay modes of heavy
leptons have been considered by many authors. The most
complete pre-gauge theory version was given by Tsai
(1971), and the post gauge theory version was given by
Bjorken and Llewellyn Smith (1972).The two versions are
essentia, lly identical except that in the latter there is a
possibility that heavy neutrinos also exist in nature, and
if the mass of the heavy neutrino is lighter than that of
charged heavy leptons, additional decay modes into these
heavy neutrinos must be included. The reader is referred
to these two papers and also to a review paper by M. Perl
(1972) for details on the present status, both experimental
and theoretical, of heavy lepton research.

The objectives of this paper are two: (1) to put together
in one place all the formulas pertaining to bremsstrahlung
and pair production of electrons and muons and the asso-
ciated phenomena of electromagnetic shower theory useful
in high energy physics experiments, and (2) to obtain the
production cross section of heavy leptons to assist in the
discovery of these new particles. The underlying physical
principles involved in this paper are not controversial and
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produced by the electron. Hence one has to know accurately
the properties of the bremsstrahlung beam in a fairly thick
target. The pair production is related to the bremsstrahlung
problem by a substitution rule. Thus calculation of the
electron pair production cross section is trivial once we
know how to calculate the bremsstrahlung by electrons.
Muon and heavy-lepton pair productions were also esti-
mated at that time. For production near the forward angle,
the electron pair production involves only the atomic form
factors, whereas in the muon and heavy-lepton productions,
nuclear form factors must be taken into consideration. As
the laboratory began to operate and experiments became
more precise, many of these calculations also became more
re6ned and eKcient. For example, in order to make precise
measurements in the photoproduction experiments it is
desirable to know the photon spectrum to within one per-
cent. Also, in order to do inelastic electron scattering accu-
rately, one likes to know the straggling function of the
electron in the target to within one percent. These subjects
will be discussed in Sec. IU.
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are to a large extent well known. However, this paper is not
strictly speaking a review paper because, rather than review-
ing the existing literature, we have concentrated on making
this paper self-contained, and whenever possible we have
tried to present new results which are either more accurate
or simpler to handle than what exist in the literature.

The table of contents shows the materials to be discussed.
They are arranged so as to give a logical development of
the theory. From a practical point of view, however, the
subject matter. can be divided into three obvious parts: (1)
electron, (2) muon, and (3) heavy lepton. Let us describe
briefly the major topics discussed in each part

(1) Electron. The part dealing with bremsstrahlung and
pair production of electrons is of the greatest practical
importance because an. electron loses its energy so easily by
bremssrrahlung in passing through a medium, and also
because a photon gets absorbed in a medium mainly by
pair production of electrons at high energies. This part is
useful to those experimentalists who have to deal with
high-energy electrons or photons in any part of their experi-
ment. For this purpose we give: (a) Table of radiation
lengths of all materials (Table III.4); (b) Energy depend-
ence of total pair production cross sections for many com-
monly used materials (Table III.3); (c) Energy angle dis-
tribution, do/dQ dp, energy distribution do/dp for pair
production from hydrogen and helium atoms (Sec. IIIA2),
from Li and Be atoms LEqs. (3.44) through (3.49) j, and
for all atoms heavier than Be LEqs. (3.38) through (3.41)j,
Eqs. (3.79), (3.80) and (3.82); (d) The bremsstrahlung
spectrum from. a target of finite thickness is given by Eqs.
(4.11) and (4.12). These expressions are useful for photo-
production experiments when an ordinary bremsstrahlung
beam is used; (e) Formulas for production of particles using
an electron beam directly on the target are considered in
Secs. IVE and IVF; (f) The photons from the annihilation
of the positron by an atomic electron, e+e —+ 2y, 3y, are
discussed in Sec. IIIF; (g) Bremsstrahlung in the colliding
beam experiment e + e ~ e + e + y is treated in Sec.
IIIE; (h) Straggling of an electron in a medium due to
bremsstrahlung is given in Sec. IVA, which is very impor-
tant in the external photon correction to electron scattering
experiments or any other experiment in which an electron
is involved; (i) Production of particles using a photon beam
is discussed in Sec. IVD.

(2) Muon. This part is useful for those people who want
to estimate the muon Aux from an electron machine eegr
the target. In the proton machine the muon Aux comes
mainly from the decay of pions which are produced by the
proton impinging on a target. In the electron machine, the
usable muon source comes mostly from photo-pair produc-
tion. Even in the electron machine there are more pions
produced than muons Lsee SLAC Users Handbook (1971)
Section Cj, hence at a distance of one decay length from
the target there will be more muons from pion decay than
photo-pair produced muons. Numerical examples of angular
distributions do/dQ dp, momentum distributions do/dp,
and the total cross sections 0- are given in Sec. V. To obtain
the yield of muon Aux per incident electron on a target of
T radiation lengths, one may use Eq. (4.13) and the
appropriate expression for do/dQ dp. For small angles, the
process is dominated by the coherent production, hence
do/dOdp given by Eq. (3.5) with X given by Eq. (3.76)

may be used. For large angles, incoherent production from
nucleons in the nucleus, as well as the production accom-
panied by meson production, must be included. Energy loss
due to muon bremsstrahlung is discussed in Sec. IIIG.

(3) Horny Eoptoe In. Sec. V we give numerical examples
of the energy angle distribution da/dQ dp, the energy dis-
tribution der/dp, and the total cross section o. for the pro-
duction of heavy leptons. We hope these numerical exam-
ples will help experimentalists in designing experiments to
discover the existence of heavy leptons.

Since we are dealing with one-photon exchange processes,
the cross section is dominated by thc kinematical icglon
where the momentum transfer is small. Expressions for the
minimum momentum transfer for various processes are
derived in Appendix A. Appendix 8 deals with atomic form
factors, nuclear form factors, and Ineson production form
factors used in our calculation.

Even though we know now that pair production and
bremsstrahlung processes are theoretically closely related,
the bremsstrahlung process was recognized and studied
much earlier than the pair production process. This .is
because the bremsstrahlung process can be qualitatively
understood using only the classical Maxwell equations
Lsee, . for example, Panofsky and Phillips (1955)j, whereas
for the pair production process it is necessary to use the
Dirac equation. The bremsstrahlung process was studied as
early as 1923 (Kramers) . The Dirac equation was invented
in 1928 (Dirac). The positron was discovered in 1932
(Anderson). The first calculations on pair production were
by Nishina and Tomonaga (1933), Oppenheimer and
Plesset (1933), and Heitler and Sauter (1933).Bethe and
Heitler (1934) treated both bremsstrahlung and pair pro-
duction relativistically using the Born approximation, in
which the screening of the nuclear Coulomb field was
properly taken into account. Wheeler and Lamb (1939,
1956) treated the same phenomena in the field of atomic
electrons. Experimentally, the productions in the nuclear
Coulomb field and the electron 6eld always occur together,
hence two effects must be combined in order to make com-
parison with experiments. When the atomic number Z is
large, the correction to the one-photon exchange mechanism
must be included, and this was done by Bethe and Maximon
(1954), Davies, Bethe, and Maximon (1954), and Olsen
(1955). It should be noted that in Bethe and Maximon it
was erroneously stated that the Coulomb correction affects
only the pair production but not the bremsstrahlung. This
error was corrected by Olsen (1955). The radiative correc-
tions to bremsstrahlung and pair production were treated
by Mork and Olsen (1965), and an experiment was carried
out by Schulz and Lutz (1968) to confirm their calculations.
The polarizations of electrons and photons in the pair pro-
duction and bremsstrahlung of electrons were calculated
by Olsen and Maximon. (1959). There are many review
papers on the subject of pair production and bremsstrahlung
of electrons. The most useful ones are Rossi (1952), Bethe
and Ashkin (1952), and Motz, Olsen, and Koch (1959,
1969).

Despite the abundance of literature available on pair
production and bremsstrahlung of electrons, we have in-
cluded these subjects in this paper for the following reasons:
1. The original papers of Bethe and Heitler (1934) and
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Wheeler and Lamb (1939) were written when there was no
electronic computer, hence the atomic form factors and
integrations with respect to them were treated crudely and
the results were presenred only in graphic forms which are
dificult to read accurately. Also in Bethe and Heitler only
the Thomas —Fermi atom was treated, which is not applic-
able to low Z elements. 2. In practice, pair production and
bremsstrahlung take place in a medium of finite thickness
(except in the coihding beam experiments), the effect Gf

which must be taken into account in actual applicaiions
of the theory.

The muon was discovered not as the result of a single
observation, but rather as the conclusion of a long series of
experimental and theoretical investigations in the cosmic
rays. A high-energy muon is characterized by its deep
penetrating power. Unlike electrons and photons, it does
not produce electromagnetic shower because of its heavy
mass. Also unlike all hadrons it does not have strong inter-
actions, hence its energy loss is practically all due to ioniza-
tions only. As early as 1932 this deep penetrating charac-
teristic was seen in a cosmic ray experiment (Rossi, 1932).
The definitive identification of a muon came in 1937 from the
observations of Neddermeyer and Anderson (1937) and
those of Street and Stevenson (1937).The p —+ e decay was
discovered by Williams and Roberts (1940), and the ~ —+ tl,

decay was discovered by Lattes, Occhialini, and Powell
(1947). The photoproduction of muon pairs was observed
much later. In 1956, Masek and Panofsky' succeeded in
separating one member of the pair from a large background
of pions and electrons in the photoproduction. In 1962
Aberigi —Quaranta et gl. observed muon pairs in coincidence
and confirmed the Bethe —Heitler formula to within five
percent accuracy.

The most accurate test of quantum electrodynamics using
electron pair production was carried out by Asbury et al.
(1967), and using muon pair production by Hayes et al.
(1970). The results of these experimerits show that the
Bethe —Heitler formula is correct even when the lepton
propagators are far off the mass shell in the space-like
region. The test of QED using the wide angle bremsstrahlung
of an electron was carried out by Siemann et at. (1969), and
using that of a muon by Liberman et al. (1969). %either of
these two experiments saw any deviation from the Bethe-
Heitler formula. The results of these experiments can be
regarded as indicating the absence of the kind of heavy
lepton which decays into an electron and a photon or a
muon and a photon. If such heavy leptons exist, they must
show up in the lepton propagator, thus altering the predic-
tion of the Bethe —Heitler theory (Low, 1965). For this
reason we shall assume that heavy leptons, if they exist,
will not decay into y + e or y + p, but decay weakly into
e+ v+ v, p, + v+ v, m-+ v, E+v, p+ v, etc. (Tasi',
1972).

The existence of an electron is essential for all chemical
bindings and chemical interactions. The existence of pions
is essential for nuclear binding (Vukawa, 1935) . The
existence of the muon was not predicted before its discovery
and nobody knows why it should exist; in particular nobody
has an explanation for why its mass is ns„207m„which is
slightly less than the lightest hadron, pion. Since nobody
understands why the muon should exist, there have been
speculations that there might be other similar particles in

nature yet to be discovered (Zel'dovich, 1962) . Every time
a new high-energy accelerator is built, the discovery of the
heavy lepton is usually one of its hoped for objectives. As
mentioned previously, the search for the existence of heavy
leptons recently received a new impetus because their
existence may be required to unify the-weak and electro-
magnetic interactions and also make the higher-order weak
interaction hnite.

Heavy leptons, if they exist, can be produced in many
ways besides pair production. Which way is the most
advantageous depends upon the quantum number and the
mass of the heavy lepton, as well as the energy and the
intensity of various beams available from accelerators.
These problems are reviewed by Perl (1972), and therefore
we shall not go into detail here. Since pe coincidence will
probably be the most direct proof of heavy lepton pair (or
W+ pair) production, there is some practical reason for
our treating pair productions of electrons, muons, and
heavy leptons in a single paper.

11. PAIR PRODUCTION CROSS SECTION BY
BORN APPROXIMATION

In this section we give the cross section for p + Z —+
t+t + anything via the Bethe —Heitler mechanism shown
in Fig. 1. The cross sections for the bremsstrahlung emission

Pg

FIG. 1. Feynman diagrams for the photoproduction of a lepton pair.

can be obtained from those for the pair production and this
is done in Sec. IIID. We use the symbol k to represent the
four-momentum of the incident photon and also the energy
of the photon in the laboratory system. Whenever it
appears in the dot product it represents a four-momentum,
otherwise it is the energy in the laboratory system. The
symbol p represents the four-momentum of / and also the
absolute value of its three-dimensional momentum in the
laboratory system. E is the energy of / in the laboratory
system p+ is the four-momentum of t+ and E+ is its energy
in the laboratory system. m is the mass of t+ or t . p, and
m; are the four-momentum and the mass, respectively, of
the initial target system, and pt and mt are corresponding
quantities for the final state of the target. The four-mo-
mentum transfer to the target system is denoted by q —=

0 —p —p+ ——pq
—p, . Bethe and Heitler (1934) treated

a special case in which the target particle is an infinitely
heavy pointlike and spinless nucleus, whose Coulomb field
is screened by atomic electrons. They did not include the
atomic excitation of the target which was later considered
by Wheeler and Lamb (1939, 1956). While these treatments
by Bethe and Heitler, combined with the work of Wheeler
and Lamb, adequately describe pair production of electrons
at high energies and small angles, they are not adequate to
describe pair production of particles with the mass of
muons or heavier, because the effects of nuclear form factors
and the recoil of the target system must be included when

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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H j8= W2(q2, m12), + + C+ D(p~ k)
p~ k ' (p+ k

II' p/
+ WI(q', mf2) +

p+ k ' p+ k

+ C'+ D'(p+ k) (2.3)
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PlS

heavy particles are produced. Even in electron pair produc-
tion the nuclear form factors and the recoil must be taken
into account if the production angle is large. In fact, when
the transverse momentum of the particle produced is much
larger than the mass, the cross section is nearly independent
of the mass of the particle produced. Drell and %alecka
(1964) generalized the result of Bethe and Heitler to deal
with a target of arbitrary mass, spin, and form factors and
arbitrary Anal states. This generalization was made possible
by an earlier observation due to 8jorken (unpublished) and
others (Von Gehlen, 1960) that in any spacelike one-photon
exchange process, as long as the target particle is unpolarized
and the final state of the target system is left unmeasured,
the only things one has to know about the target system are
the structure functions W1(q', v) and W2(q', v) of the elec-
tron scattering defined by

where

H = —m2( 2q'(1 —2E/m, ) + 2E' + 2EA},

8 = —(2/k. p) ( (m' —q'/2) I 2E(E —k)

+ —',q'((k —2E)/m, + 1) + (2E —k) b)
—2q'k'} + (q'/m, ) (m, + E —k —12q2/m;)

—2b, (h —k+ E —q'/m, ) + k ~ p

C = —Lm2/(k p)')I2(k —E —6+ q'/2m, ) (k —E)
+ q'/2} + (k p) 'Iq2(1 —E/m;) + 2EA},

D = 1/(k p),
H' = m'(2m'+ q')

8' = —L(q' —4m4)/k p + 2q' + 2k p + 4m'],
C' = m2(2m2+ q')/(k p)' —2(2m'+ q'-)/(k. p),
D' = —2/(k-p),

(p'. —q. (p' q)/q') (p'. —q. (p' q)/q') W2 b, = (m12 —m, 2)/(2m, ) and q' = (k —P —P+)'

—(q„„—q„q./q') W1

—=Z (p'IJ. (o) If&&f li. (0) I P'&( ~)'~'(q+P' —Pf)
f

where the spin average over the initial state p, is as-
sumed. The state

I p, ) is normalized such that the factor
(m/E)'12(22r) 212 has been taken out from the matrix ele-
ments. VJith this normalization, the matrix element, the
phase space, and the incident Aux are all separately co-
variant. The cross section for y+ Z —+l+$ + anything
from the mechanism shown in Fig. 1 can then be written as

m, dpdp~ 1 1
do- = e' , —,(1.»W„,),4(k.p, ) E E+ (22r)'q'

k and E are the laboratory energies of the incident photon
and L, respectively.

In order to obtain do/dp dQ we have to integrate with
respect to d p+. It is convenient to do this in the coordinate
system wllclc U = p+ + pf Is a't I'est and It —p Is 'tllc 8
axis and both k and p are in the xs plane as shown in Fig.
2. In this frame only (p+.k) in Eq. (2.3) is a function of
22, and the magnitude of p+ is independe'nt of 8+. It is con-
venient to define a pure timelike vector

U=p++Pi = k+P —P.

We have

where U' = m'+ m,2+ 2m;(k —E) —2k. p. (2.4)

Tr ( 1
( —p+~m) I

e
pIo20D 4 &

—P~+ A —m
polarization

1+y» e
p —A —m

Hereafter we use the symbol U as U = (U')1~2 when it does
not appear in the dot product. All the quantities in the
special frame, denoted by a subscript s, can be written in
terms of U. The energy of the photon in the special frame is

I

X (P+ m) (e V"

+ yV el.—p++ A.' —m )
(2.2)

k, =
I km, —(k.p))/U.

The energy and momentuIn of P+ are, respectively

E = (U + m' —m, ')/(2U)

and

(2.5)

After taking the trace and contracting the tensors, we
obtain p (E2 m2) 1/2

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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The momentum of the target particle is

p = m (k'+ p' —2pk cos8)'i'/U.

The energy of p is

E, = L(p. k) —m + Em, j/U.

The angle 0A, in Fig. 2 is

cos 8i, ——(k, —E,) /p, , + (k.p) /(k, p,,) .

q2 can be written as

q' = 2m' —2 (k p) —2E+, (k, —E,) + 2p+.p, , cos 8~.

(2.6)

The integration with respect to p can be carried out readily.
We obtain

2

d~(p+. k) ' = W/(I"k. '),
2' p

be replaced by the integration with respect to I,
—= —q'.

t
&max

dcosO+ =
—1 t~i~ p' p+

(2.8)

where f;„and t,„can be obtained from Eq. (2.6) by
setting cos 0+ ——j. and cos 8+ = —I, respectively:

= —2m'+ 2(k.p) + 2E+, (k, —E,) & 2p+,p,,
min

(2.9)

The target form factors W, (q', mP) and W, (q', mf')
needed in our calculations, as well as an approximate
expression for f;„,are given in Appendix B.

Equation (2.1) can be used to calculate any cross section
in which /+ and I are detected in coincidence, whereas
Eq. (2.7) gives the cross section where only l or l+ is
detected. The numerical results of (2.7) for the production
of muons and heavy leptons are given in Sec. V. In the
next section we derive various approximate expressions
based on Eq. (2.7). The Coulomb correction will also be
included in the next section.

1 2

dq (p+.k) ' = 1/(I'k, ),2'

j. 2

dp(p+. k) = Wk„
2x p

where

W = E+, —p+. cos 8+ cos 8i, ,

and

I' =
I
m' sin' 8i + (p+, cos 8+ —E+, cos 8i, ) 'j'i'.

III. APPROXIMATE EXPRESSIONS

Equations (2.1) and (2.7) are exact expressions to order
n3 for pair production. However, they are too complicated
for many of the practical applications. Since electrons and
muons are very common particles in the laboratory, it is
desirable to have simple and yet reliable expressions to
represent their energy angle distributions. Bremsstrahlung
by electrons and muons will also be discussed because they
are related to the pair production of these particles by the
substitution rule. Relatively simple expressions for the
energy angle distribution for pair production do./dQ dp and
bremsstrahlung dob/dQi, dk can be obtained when the angle
is small and leptons are all extremely relativistic. More
explicitly, we shall assume the kinematical conditions speci-
fied by (8.4) in the derivation of approximate expressions.

For the electron pair production near the forward angle,
we need to take into account the atomic screening. Of
course at large angles the nuclear form factor must also be
considered, even for electron production. When t;„r„„,~,„,2
is comparable to unity, we have to include the effect due to
nuclear form factors. In this subsection we limit our dis-
cussion to small-angle production, so that the nuclear form
factors can be ignored. The atomic form factors, elastic
and inelastic, for various atoms are discussed in Appendix
B.When $;„is very small compared with the electron mass
squared, the recoil of the target system can be ignored even
when the target is an atomic electron. Thus we expect that
our Eq. (2.7) should yield the same approximate formula
as the Bethe-Heitler formula, which is much simpler to
handle than ours. This can be shown explicitly by inserting
the simple atomic form factors given by (838) and (839)
into Eq. (2.7) and carrying out the integration with respect
to t The results . can then be expanded in powers of m'/E',
k p/E' m'/(k —E)' and (k.p)/(k —E)2, etc. After
ex/remedy tedious algebra, one Ands that a fantastic number

A 1 (U—m)
= ——(0.19732)' && 10 " d cos 8+ dms2' —1 m'2

p p+'
4

JllV 8
X W(tt', IP) + +C+DkW)

JI'lV B'
+ Wi(q', mP), , + + C' + D'k, W

(2.7)

Using Eq. (2.6), the integration with respect to cos 8+ can

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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of cancellations occur among the leading terms, leaving a
relatively simple formula in the end, which is identical to
the formula obtained by Schiff (1952), who started from
the Bethe-Heitler formula. This exercise shows that Kq.
(2.7) is indeed identical to the Bethe —Heitler formula when
recoil is ignored. The recoil effect is not completely neg-
ligible for incoherent production and this will be discussed
at the end of Sec. IIIAS.

l. Arbitrary atomic form factors

Both elastic and inelastic atomic form factors, GZ"(t)
and G&'""(t) defined by Eqs. (B5) and (B9), respectively,
are characterized by the fact that they are zero when t = 0,
and become constants, Z' and Z, respectively, when t & m, '.
The t dependence of the atomic form factors is thus opposite
to that of nuclear form factors. It can be shown that for
form factors with this general behavior, we have

z = (Z/137)'.

Except for the Coulomb correction term, Eqs. (3.1) and
(3.2) can be derived from our Eq. (2.7). They summarize
the work of many people. The expression for da./dQ dp (no
screening), except for the Coulomb correction and the terms
proportional to Z, was first derived by Sommerfeld (1939).
The terms proportional to Z' in (3.1) and (3.2) are equiva-
lent to the formulas given by Davies, Bethe, and Maximon
(1953) and Olsen and Maximon (1959). The terms pro-
portional to Z come from G2'""(t) and they are usually
ignored (they should not be!).

It will be convenient for our later discussions to write
Eq. (3.1) in a slightly different form. We notice first that
the logarithmic terms in Eq. (3.2) can be written as

da do
(no screening)

dQ dp dQ dp

m2(1 + l) 2 2n (1+i) (t t . ~)

/
min ~mi n

(3.4)

2cz' E' 2x' —2x + 1

2rk m4 (1+ l)'
4x(1 —x) l

(1 + l)'

OO t —t ''
X LG2(~) —G2(t) j dt,

f $2
~rnid n

(3.1)
do. 2n' E'') 2x (1 —x)

dQ dp 2rk m4j (1+ l)'
12lx{1 —x)

G2 no(1+ l)4

Using the simple form factors given by Eqs. (B3g) and
(B39) we can convince ourselves that the upper limit, of the
integration in Eq. (3.1) can be replaced by m'{1+ i)2.
Thus Eq. (3.1) and (3.2) can be combined to give

x= Z/u, l = Z'e/m',
2kx(1 —x)

2x' —2x + 1

(1+ l)'
4lx(1 —x)
(1+ l)'

G (t) G el (t) + G inel(t)

where

X PZ —2Z'f(( Z) )'
)

(3.5)

(no screening)
dQ dp

( ~ ) —G el( QQ ) + G inel ( no ) —Z2 + Z

(
2x' —2x+ 1

(1+ l)'
4x(1 —x) l

(1+ l)4

12lx(1 —x)
(1+ l)' Xel + +inc)

m (1+l} (t —t ;„')
LG el(t) + G inel(t) j

g

(3.6)

Z' ln
~min

—1 —2f((~z) ')
/

Integrating Eq. (3.5) with respect to the solid angle, we
see that the coeKcients of GZ( e( ) cancel each other, hence

(3.2)
dg

dp

2x' —2x+ 1
dl (1+ l)'

The function f(((zz)2) in (3.2) is the Coulomb correction
to the one-photon exchange approximation worked out by
Bethe and Maximon (1954) and is given by

+ 4lx (1 —x)
(1 + l)' (X —2Z'f) . (3.7)

f(s) = s g n(n2+ z) 1.202s —1.0369s'
n=l

1.008sz/(1+ s),
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Let us make several comments about Eqs. (3.5), (3.6),
and (3.7):

(i) K. J. Kim (unpubhshed) derived a simple expression
for d(r/dQ dp using Eq. (2.7) with a simple nuclear form

(3.3) factor of the form given by Eq. (B49). He found that the
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X" = Z't 21' + 3 + 2f((Z ) ')j. (3 8)

Equation (3.7) can also be written in terms of the functions
qi and 442 introduced by Bethe and Heitler (1934) for the
elastic scattering part, and functions QI and iit2 introduced
by Wheeler and Lamb (1939, 1956) for the inelastic scatter-
ing part:

d0 CLP'0

l (4~' —k~ + 1)
d k

X LZ'(pi —Ir ln Z 4f) + Z(PI s ln Z)

*(1 ) LZ'( — ) + Z(Iit' —A) jJ (3.9)

terms with G2(~) are missing in this case if m'(1 + l)' is
much larger than the inverse square of the nuclear radius,
i.e., m'(1 + l)'/d )) 1 in the notation of Eq. (849) . There-
fore this term, can appear only when the form factor does
not become negligible for t greater than m'(1 + 1)'. From
this derivation it is not obvious whether the terms with
Gs(~) should be kept for muon pair production, because
the expression m„'/d (0.01/0. 164)A2I' is not much larger
than unity when A is small. However, comparisons with
the exact calculation using Eq. (2.7) for a Be nucleus
(A = 9) shows that it is a better approximation to drop
this term than to keep it when calculating the muon pair
production.

(11) The coeFlc1ent of X 111 Eq. (3.5) ls plopol tlollal to
the differential cross section of two real photon annihilations,
der(y+ y~ 1++ f )/d(p k) Lsee Eq. (Cl) of Kim and
Tsai (1973)g. In the Weizsacker-Williams approximation
(Kim and Tsai, 1973), one obtains exactly the term pro-
portional to X. Therefore the terms proportional to G2(~)
can be regarded as the correction to the Weizsacker-
Williams approximations, due to the fact that in pair pro-
duction one of the photons in the reaction y + y —+ l+ + l
is off the mass shell. This also explains why terms with
G2(~) in Eq. (2.7) will not show up if large t events are
suppressed by the target form factors. As a consequence of
this, the Weizsacker-. Williams approximation actually
works better for muon pair production than for electron
pair production in the calculation of do/dQ dp. For the
calculation of do/dp, the Weizsacker —Williams approxima-
tion yields a result identical to Eq. (3.7), regardless of the
behavior of form factors, except for the Coulomb correction
term f. This observation is of great practical importance,
because it takes less than one hour of work to obtain Eq.
(3.7) from the Weizsacker-Williams method, whereas it
takes about one month of hard work to obtain the same
result from Eq. (2.7).

(lii) The fact that Eq. (3.1) is equivalent to Eq. (3.5),
when conditions specified by Eq. (84) are satisfied, is
probably the best justification for the upper cutoff $ p
m'(1 + l)' of the integration in the definition of X used in
the Weizsacker —Williams method proposed by Kim and
Tsai (1973).In the classical Weizsacker —Williams method,
the uncertainty principle must be invoked to obtain a
cutoff of this magnitude but one does not know exactly
what expression should be used. The quantity X is propor-
tional to the pseudo photon Aux in the Weizsacker —Williams
method. Our I"is related to the quantity I" of Olsen and
Maximon (1959) by

oo Xel
Z'(qI —~4ln Z) —= 2 ' g,(1+1)' (3.10)

Z'(p2 —~41n Z) —= 12
lX"

(1 + l)4
dl, (3.11)

oo Xinel
Z(QI —f ln Z) = 2 (1+~)' (3.12)

Z(fs —s ln Z) = 12
lxinei

(1 + l)4
dl. (3.13)

m

441 —&4ln Z = 4 1+Z 2 (Q —8)2GPIQ 4 dQ

(3.14)

m

&, —~ l Z = 4 5/6+ Z-' (Q' —6PQ» (Q/&)

+ 3&2Q —4P) G "Q-4 dQ (3.15)

s lnZ 4 1 + Z 1 (Q g)2G in61Q —8dQ

(3.16)

m

ln Z = 4 5/6+ Z '' (Qs —66'Q In (Q/6)

+ 362Q 46s) GseIQ —4 dQ (3.17)

where 6 = m2k/(2EE') and E' = k —E. Bethe's formulas
are only approximately true. Since the integration with
respect to / in Eqs. (3.9) through (3.13) can be carried out
analytically for the form factors of hydrogen without using
the Bethe approximation, we shall be able to check the
accuracy of the latter in Sec. IIIA3 after we derive the
analytical expressions for 44», y2, QI, and p2 for hydrogen and
helium atoms in the next subsection.

Z. Hydrogen and helium atoms

The atomic form factors for hydrogen are known exactly
and they are given by Eqs. (813) and (814). It happens
that the analytical expressions for X,l, XI~,I, pl, gs, QI, and
Ps can be obtained from Eqs. (3.6), (3.9), (3.10), (3.11),
(3.12), and (3.13) when the atomic form factors have these

In order to obtain ql, 442, QI, and i''2, we have to perform
integrations with respect to I and l. Both of these integra-
tions can be done analytically for hydrogen and helium
form factors, Eqs. (812)—(814) and (816)—(818), and
the simple form factors, Eqs. (836) and (837), given in
Appendix B. The form factors for other elements, Li, Be,
B, etc. and Thomas —Fermi atoms can be integrated only
numerically. Bethe (1934) has derived approximate formu-
las in which the variable f in Eqs. (3.10) through (3.13) is
already integrated out, his results are (Q' =—t)

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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particular forms. As discussed in Appendix 8, the elastic
and inelastic helium atomic form factors can also be written
in the above form if the correlation between the two atomic
electrons is ignored. The uncorrelated wave function of the
ground state of He atoms was investigated by Hylleraas
(1929) using the variational method. The correlated wave
function was investigated by Schull and Lowdin (1956).
Knasel (1968) calculated the cross section for the pair pro-
duction using both the correlated and uncorrelated wave
functions. He found that the two versions differ at most by
0.2%%uo, hence we shall use the uncorrelated wave function
for simplicity. The expression for X for H and He atoms
can be written as

q2 —~4ln Z

= 4 ln [1/(2qa) j + 11/3

—2 ln (1 + C') + 25C'(1 —C arctan C ')

—14C'ln (1+ C ')

slnZ
= 41n [1/(2itcx) j + 23/3

—2 ln (1 + C') —17.5C arctan C '

+ 8C' ln (1 + C ') —(1/6)/(1 + C ')

(3.26)

(3.27),.

X = X,i+ X;„,i,
X,i/Z' = 2 ln (m/5) —ln (1 + 8') + 1/6

—(4/3)/(1+ 8') + (1/6) (1+8')' (3 18)

X;,i/Z = 2 ln (m/5) —ln (1 + 8') + 11/6
—48'ln (1+8')

+ (4/3) (1 + 82) —(1/6) (1 + 8 )2 (3.19)

P, —-g'in Z

= 4 ln [1/(2gn)j + 21/3
—2 ln (1 + C') —105C'(1 —C arctan C ')

+ 50C'ln (1+ C—')
—24C'i —ln C' ln (1 + C ')

-+ 4'(1+ C ') —@'(1)l, (3.28)

where
where C = 6/(2nm, it) and 4 (x) is the Spence function (or
Euler's dilogarithm) defined by

6 = (t;„')'t'/(1 + l) = m'/[2kx(1 —x)],

8 = 2nm. it/(t;„')",

(3.20)

(3.21)
4(x) =— *ln/1 —y[

dY) (3.29)

Z = 1, p = 1 for hydrogen and Z = 2, p = 1.6875 for He.
We note that X is not very sensitive to the change in pro-
duction angle and atomic radius. Thus the angular distri-
butions in pair production and brernsstrahlung are mostly
determined by the coeKcient of X in Eqs. (3.5) and (3.80) .
When the energy is high and the production angle is small
we have B)) 1 except v hen x is very close to 1 or 0. When
B))1, the screening is complete, in which case we have

whose numerical values can be obtained by a computer
using the following formulas:

If
I
x

I

& 1, C(x) = x+-'x'+ —'x'+ + (x"/n') +
C(1) = ~'/6 and C(—1) = —~'/».
If x ) 1, C (x) = —

2 ln'
~

x
~
+ 7r'/3 —4 (1/x) .

If x ( —1, 4 (x) = ——', ln'
~

x
~

—m'/6 —4 (1/x) .

Complete screening case (8 )& 1),

X i/Z' = 2 ln (m/86) + 1/6,

X;„,i/Z = 2 ln (m/86) + 11/6.

(3.22)
& = 100m'/ZZ'Z t = 2OOS/(m, Z't') (3.30)

3.23
and fi and P~ as functions of e defined by

Following Wheeler and Lamb (1939, 1956), we give qi
and p2 as functions of a variable p defined by

On the other hand, when the screening is nonexistent, we
have

e = 100mk/EB'Z"' = 2005/(m. z2t')

where

(3.31)

lit'o screening case (8« 1),

X„/Z' = X;„„/Z = 2 ln (m/8) —1. (3.24)

The integrations with respect to 3 can be carried out
analytically. We obtain from Eqs. (3.10) through (3.13),
using the expression of X given by Eqs. (3.18) and (3.19): c = &zit3/(400~&) =,z~t3/(400„&) (3.32)

The quantity C in Eqs. (3.25) through (3.28) can be
written in terms of y or e as

yg —~4 ln Z

= 41n [1/(2gn)) + 13/3

—2 ln (1 + C') —(13/2) C arctan (1/C)

+ (1/6) (1+C-), (3.25)

The reason for using the variables y and e is that for the
Thomas —Fermi model ~(y), q2(y), Pi(c) and $2(e) are
universal functions independent of Z. Since we are going
to use the Thomas —Fermi model for all elements with
Z & 5, it is convenient to use these variables also for light
elements for the purpose of making comparisons later.

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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TABLE III.1. Functions @&(y),p&(y), P&(e), and&&(e) for a hydrogen
atom using the analytical expressions given by Eris. (3.25) —(3.28) .

Q. 00
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
4.0
6.0
8.0

10.0

21.2417
21.17
20.90
20. 56
19.93
19.34
18.79
18.27
17.80
17 ~ 36
16.94
16.56
16.20
13.62
12.02
10.87
9.98

20.58
20. 57
20.49
20.32
19.87
19.36
18.84
18.34
17.86
17.41
16.99
16.60
16.24
13.63
12.02
10.87
9.98

24. 5750
24.39
23.71
22. 96
21.69
20. 65
19.71
19.01
18.36
17.78
17.27
16.82
16.41
13.65
12.03
10.88
9.98

23.91
23.87
23.50
22. 91
21.74
20. 71
19.82
19.05
18.38
17.80
17.29
16.83
16.41
13.65
12.03
10.88
9.98

qr(0) = 4 ln LZ'~'/(2ricr) ) + 13/3 =
21.2417 for H

20.0729 for He,

When the screening is complete, we have y = e = C = 0,
hence

The numerical values of pr(y), ~(y), Pt(e), and Ps(e)
for a hydrogen atom are shown in Table III.1 and those for a
helium atom are shown in Table III.2. The values of p, (0)
and P, (0) given by Kqs. (3.33) and (3.35) are related to
the radiation logarithms L„q and I-„d', respectively, and
they come into the definition of radiation lengths of mate-
rials, as will be shown in Sec. IIIB. In the no screening
limit, the expressions for X,&/Z' and X;,&/Z given by Eq.
(3.24) and the expressions for yr, q», Pr, and fs given by
Eq. (3.37) are universal functions independent of materials.
The numerical values of Kq. (3.37) are tabulated in the
last column of Table III.4. %'e note that when p & 2,
p, (y) and ps(p) are given approximately by the no screen-
ing expression, whereas fr(e) and fs(e) approach the no
screening limit much earlier, roughly at ~ 1.

Z. Checking the accuracy of the Bethe approximations

In the previous subsection we have derived the analytical
expressions for qr, ps, fr, and Ps without using the Bethe

TABLE III.3. Functions @&(y},@2(y},p&(e), and tft2(~} for a hydrogen
atom using the Bethe approximation given by Eqs. (3.14}—(3.17) .

y 01 e

vs(0) = vr(0) —2/3,

(3.33)

(3.34)

4~(0) = 4» 6Z'"/(28~)) + 23/3 =
24.5750 for H

24.3304 for He,

(3.35)

4s(0) = 4r(0) —2/3. (3.36)

pr(y) = ps(p) = 41n (200/y) —2,

Pr(y) = Ps(y) = 41n (200/e) —2. (3.37)

When the screening is nonexistent, we have C )) 1, hence

0.00
0.02
0. 1
0.2
0.4
0.6

. 0.8
1.0
1.2
1.4
1.6
1.8
2.0
4.0
6.0
8.0

10.0

21.24
21.17
20.90
20.57
19.94
19.36
18.82
18.31
17.85
17.41
17.01
16.63
16.28
13.78
12.26
11.19
10.38

20.58
20.57
20.49
20.32
19.86
19.36
18.84
18.34
17.86
17.42
17.00
16.61
16.25
13.65
12.06
10.94
10.07

24. 58
24.39
23. 72
22. 97
21.71
20.67
19.80
19.05
18.41
17.84
17.34
16.89
16.49
13.81
12.26
11.19
10.38

23.91
23.87
23.50
22. 91
21.74
20. 71
19.82
19~ 05
18.39
17.80
17.29
16.83
16.42
13.67
12.06
10.94
10.07

0.00
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
4.0
6.0
8.0

10.0

20.0729
20.02
19.81
19.56
19.08
18.62
18.18
17.76
17.37
16.99
16.64
16.31
15.99
13.58
12.01
10.87
9.98

19.41
19.40
19.35
19.24
18.94
18.58
18.19
17.81
17.43
17.06
16.70
16.37
16.05
13.59
12.01
10.87
9.98

24.3304
24. 16
23.52
22.80
21.59
20.58
19.72
18.98
18.34
17.77
17.26
16.81
16.40
13.65
12.03
10.88
9.98

23.66
23.63
23.29
22. 74
21.63
20.64
19.77
19.02
18.37
17.79
17.28
16.82
16.41
13.65
12.03
10.88
9.98

TABLE III.2. Function p1(y), @2(y), $1(e), and &2(e) for a helium
atom using the analytical expressions given by Eqs. (3.25) —(3.28).

approximation t Eqs. '(3.14)-(3.17)). In Table III.3 the
values of &p&, p&, f, , and P& for a hydrogen atom using the
Bethe approximation are tabulated, which are to be com-
pared with the results given in Table III.1. We note that
the Bethe approximation is in general very good, especially
when the screening is effective. This comparison indicates
that the Bethe approximation will probably yield results
with the same degree of accuracy when applied to other
atoms for which the analytical expressions for qr, qs, P, ,
and Ps are not obtainable.

4. Thomas-Fermi atoms

When Z is large, the Thomas —Fermi model of atoms can
be used. We shall use the Moliere representation of the
Thomas —Fermi atom discussed in Appendix B. Using these
form factors and the Bethe approximation, Eqs. (3.14)
through (3.17), we obtain the numerical values for pr(y),
ys(y), P& (e), and fs(e); the results are shown in the columns
labeled "TFM"'in Table III.4. Since numerical tables are

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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TABLE III.4. Screening functions for Thomas —Fermi —Moliere
model.

= 20.863 —2 in P1 + (0.55846') ~j
yore

A v (v)

TFM
Analytic

simulation
Monopole Dipole Unscreened
simulation simulation target —4/1 —0.6 exp (—0.9y) —0.4 exp ( —1.5y) g,

(3.38}

0.0
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

20.863
20. 771
20.418
20.006
19.274
18.642
18.088
17.596
17.153
16.752
16.386
16.049
15.737

20.863
20. 77
20.41
20.00
19.27
18.63
18.08
17.59
17.13
16.71
16.34
15 99
15.66

20.863
20. 79
20.52
20. 19
19.56
18.98
18.44
17.95
17.49
17.07
16.68
16.32
15.98

20.863
20.80
20.55
20.25
19.68
19.14
1g. 64
18.16
17.72
17.31
16.92
16.56
16.23

34.84
28.40
25.63
22.86
21.24
20.09
19.19
18.46
17.85
17.31
16.84
16.42

q 2 (r) = pi (p) ——', (1 + 6.5p + 6y') —', (3.39)

+2(e) = @i(e) —23 (1 + 40m + 400m') (3.41)

= 28.340 —2 ln L1 + (3.621')'g

—4L1 —0.7 exp (—8e) —0.3 exp (—29.2e) ),
(3.40)

0.0
0.02
0.1
0.2
0.4
0.6
0 ' 8
1.0
1.2
1.4
1.6
1.8
2.0

20. 196
20..184
20.026
19.746
19.137
18.558
18.027
17.545
17.105
16.702
16.332
15.990
15.673

20. 196
20. 18
20.02
19.73
19.12
18.54
18.01
17.53
17.09
16.68
16.31
15.96
15.64

20. 196
20. 19
20. 11
19.93
19.47
18.96
18.46
17.98
17.53
17.11
16.72
16.35
16.01

20. 196
20. 19
20. 12
19.98
19.58
19.12
18.65
18.18
17.74
17.32
16.92
16.55
16.20

In Table III.4, the columns labeled "Analytical simulation"
refer to the results obtained by using the above equations.
These equations are not entirely obtained by curve fitting.
They possess the following general properties which all
these functions must have:

( 1) 0 1(7) 0 2(v), Pi(~), and P2 (~} are ail monotonicaHy
decreasing functions, and in the no screening limit all of
them must reduce to the common analytical expression
given by (3.37) .

(2) The relations (3.34) and (3.36) must be satisfied
in the complete screening limit, i.e.,

C. 0() vi(0) —~2(0) = 4i(0) —A(0) = 2/3 (3.42)
0.0
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

28.34
27.41
25.48
24.01
22. 11
20.81
19.82
19.03
18.36
17.79
17.29
16.85
16.-45

28.34
27.39
25.42
24. 07
22;19
20.88

.19.87
19.05
18.36
17.77
17.25
16.80
16.38

28.34
27.90
26; 32
24. 76
22. 58
21.10
20.01
19.14
18.43
17.82
17.29
16.83
16.41

28.34
27.88
26.35
24. 85
22. 71
21.22
20. 10
19.23
18.51
17.90
17.38
16 ' 91
16 ' 50

34, 84
28.40
25.63
22.86
21.24
20.09
19.19
18.46
17.g5
17.31
16.g4
16.42

Also, in general, we have

~i(v) & ~2(v) 4i(~) & A(~),

where the equality signs hoM only when y and ~ are large.

(3) p, (0) and P, (0) determine the radia. tion length of
materials Lsee Eq. (3.65) j, therefore these two numbers
must be fitted first, namely,

D. P2(~)

pi(0) = 20.863 Pi(0) = 28.352. (3.43)

0.0
0.02
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

27.673
27.063
25.381
23.979
22. 100
20.801
19.808
19.004
18.329
17.748
17.239
16.785
16.377

27. 673
27.05
25.34
24.04
22. 18
20.87
19.86
19.05
18.36
17.77
17.25
16.80
16.38

27.67
27.54
26.32
24. 80
22. 60
21.12
20.02
19.15
18.43
17.82
17.30
16.83
16.41

27.67
27. 51

. 26.34
24. 91
22. 72
21.21
20.08
19.19
18.47
17.85
17.32
16.85
16.43
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hard to use in a practical application, we have constructed
approximate analytical expressions which reproduce the
numerical values obtained above to within 2%. These
expressions are:

Thr particular analytical forms chosen in the above will
become obvious after the next discussion.

In order to calculate energy angle distribution, d0/dQ dp
and do/dpi dk, we have to know X,i and X;,i. However,
the angular distribution of bremsstrahlung and pair pro-
duction are mostly determined by the multiple scatterings
in the target, rather than the production mechanism.
Therefore X,i and X;„,i obtained from using the simple
form factors discussed in Appendix B, see Eq. (B38) and
Eq. (B39), should be adequate. The numerical values are
only slightly greater, at most 4%, than those of the Thomas—
Fermi model in the intermediate screening region. In both
the complete screening and no screening limits, the results
must agree with that of the Thomas —Fermi model because
of the way in which the simple form factors are constructed.
In the following we give the expressions for X,i, X;„,i, y, ~

q2, Pi, and f2 corresponding to the simple atomic form fac-
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tors given by (B38) and (B39): and the desired Pi and P, can be obtained from Eqs. (3.27)
and (3.28) by setting

a'm'(1 + l)'
X,j

——Z' ln a2l; '+ 1
(3.44)

g = Z'~3 exp (23/12)/2n1194. (3.56)

a"m'(1 + l)'
X;„,g ——Z ln a"l;„' -+ 1

(pi
——2(1 + ln O'Z' 'mg') —2 ln (1 + b')

—4b arctan (b '),

(3.45)

(3.46)

The results of this simulation are given in the column labeled
"Dipole simulation" in Ta,ble III.4. The name "dipole"
comes from the fact that the atomic form factor F for a
hydrogen atom has a dipole structure.

I.et us discuss the numerical results shown in Table III.4:

p2 ——2 (2/3 + ln a'Z'~'m, ') —2 In (1 + b')

+ Sb'{1 —b arctan (b ') —0.75 ln (1 + b ') I,

(3.47)

fi ——2 (1 + ln a' Z+3m ') —2 ln (1 + b")
—4b' arctan (b '), (3.48)

f~ = 2(2/3 + ln a"Z4"mP) —2 ln (1 + b")

+ Sb"I1 —b arctan (b' ') —0.75 ln (1 + b' ') I,

(3.49)

b = l ""/(1+ l) = m'k/2E(k —Ii). (3.50)

For Thomas —Fermi —Moliere atoms, we have

pi(0) = 2(1 + ln a'Z2"mP) = 20.863,

Pi(0) = 2(1+ ln a"Z ~'m ') = 28.340,

b = 0.55846',

(3 51)

(3.52)

(3.53)

where a and a' are the atomic parameters which appear in
the simple form factors (B38) and (B39), respectively.
They are tabulated in Table 3.4. b and b' are 6 = a6 and
b' = a'8, where

(1) As mentioned previously, in the limit of large y and
e, all the functions yi(y), q2(p), Pi(e), and $2(e) reduce to
the common expression given by Eq. (3.37), whose numeri-
cal values are also tabulated in the column labeled "Un-
screened Target" in Table III.4. YVe notice that the inelastic
screening functions P, (e) and $2(e) approach the asymptotic
form much sooner than the elastic screening functions
p, (p) and p~(y) do. Also the approach to the asymptotic
form is the earliest for the "Dipole simulation, " the next
is the "Monopole simulation, " and the last is the "TFM."
Since "Dipole simulation" uses the hydrogen form factor
and "TFM" is supposed to be good when Z is large, we
expect that for small Z elements the true values of the
screening functions must lie somewhere between "Dipole

- simulation" and "TFM." "Monopole simulation" has such
a property.

(2) In Sec. 1c of Appendix B, we show that the Thomas—
Fermi —Moliere model of atom is applicable for elements
with Z & 5 as far as the calculation of pi(0) is concerned.
Our investigation here shows that functions yi (y), p~ (p),
P&(e), and P2(e) are relatively insensitive to the detail of
the atomic form factors as long as they are normalized
correctly at p = 0 and e = 0. "Monopole simulation" difIers
from "TFM" by 2% at most, and "Dipole simulation"
differs from "TFM" by 4% at most.

(3) At high energies where the screening is almost com-
plete in a large part of the spectrum, the places these dif-
ferences show up occupy but a small fraction of the total
spectrum. The difference is appreciable only when

b' = 3.6201m. (3.54)
0.2 &~&3.0 (3.57)

Substituting these relations into Eqs. (3.46) through (3.49)
and comparing the results with Eqs. (3.38) through (3.41),
the reader will see how we have obtained the latter. We
have obtained them by slightly changing the former to fit
the numerical results given by "TFM" in Table III.4.
The column labeled "Monopole simulation" refers to the
numerical results of using Eqs. (3.46) through (3.49) with
parameters given by (3.51) through (3.54) . The name
monopole comes from the fact that the atomic form factor
F defined in (B7) has a monopole structure for the simple
form factor defined in (B38).

Another way to simulate the Thomas —Fermi-Moliere
model is to use the hydrogen-like form factors, regarding
p in Eqs. (3.25) and (3.27) as two different parameters
determined by the values of q i and Pj in the complete
screening limit given by Eq. (3.43) . The desired p& and p2
can be obtained from Eqs. (3.25) and (3.26) by setting

0.02 & e & 0.6. (3.58)

'100m, /3. 0kZ'" & (1 —x or x) ( 100m,/0. 2kZ'", (3.59)

where x =, E/k. For k = 10 GeV, the right-hand side is
1/ (40Z'I')

Using the definition of y and e given in Eqs. (3.30) and
(3.31), we'see that there are two small regions in the pair
production spectrum, at high-energy and low-energy tips,
which are relatively sensitive to the detail of the form fac-
tors. Since the elastic contribution is more important than
the inelastic unless Z is very small, let us consider the elastic
case as an example. From Eqs. (3.57) and (3.30) we obtain

Z'~' exp (13/12)/2n184. 15,
On the other hand, for the bremsstrahlung spectrum only

(3.55) the high-energy tip is sensitive to the detail of the form

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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TABLE III.S. Total electron pair production cross section.

Name Z o(~) mb' 100 10 0.4

Lo ( ~) —o (k) j/o ( ~) corrected for recoil already

k (GeV)
6 2 1 0.2 0.1

H
He
Ll
Be
C
N
Ne
Al
Fe
Cu
Sn
W
Pb
U

2
3
4
6
7

10
13
26
29
50
74
82
92

20. 73
- 55.06
108.8
179.4
361.5
473.8
896.1

1443
5182
6343

17 276
34 869
41 720
50 870

0.011
0.012
0.004
0.003
0.002
0.002
O. OG2

0.002
0.001
0.001
0.001
0.001
0.001
0.001

0.028
0.023
0.024
0.020
0.016
0.015
0.012
0.011
0.009
0.009
O. GG8

0.007
0.007
0.007

0.039
0.030
0.034
0.029
0.023
0.022
0.019
O. 017
0.014
0.013
0.012
0.011
0.011
0.011

0.079
0.058
0.073
0.064
0.053
0.050
0.044
0.040
0.033
0.032
0.029
0.028
0.028
0.028

0.126
0.091
0.113
0.101
0.087
0.082
0.073
0.068
0.057
0.056
0.051
0.049
0.049
0.048

0.174
0.128
0.154
0.139
0.122
0.116
0.105
0.098
0.084
0.082
0.075
0.073
0.072
0.072

0.222
0.166
0.195
0.178
0.158
0.151
0.137
0.129
0.112
0.110
0.102
0.099
0.098
0.098

0.323
0.253
0.283
0.263
0.238
0.230
0.213
0.202
0.180
0.177
0.166
0.162
0.162
0.162

0.441
0.367
0.391
0.370
0.343
0.334
0.315
0.302
0.275
0.272
0.259
0.256
0.257
0.258

Recoil correction o6 a free electron target

Ono recoil Orecoil

~no recoil
0.0004 0.0027 0.0040 0.0098 0.0169 G. 0251 0.0343 0.0576 0.0954

' The effect of radiative corrections is not included. This can be accounted for by multiplying these numbers by a factor 1.0093 according to
Mork and Olsen (1965).

factors, the corresponding inequality being

100m,/3.0EZ"' ( 1 —y ( 100m,/0. 2EZ'", (3.60)

S. Total pair producfion cross sections

Equation (3.9) can be integrated with respect to p to
obtain the total cross section. The total pair production
cross section is an important quantity because it deter-
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where y = k/E.

I.et us summarize the result of this subsection by the
following prescription:

(1) For hydrogen and He atoms, do/dQ dp can be ob-
tained from Eq. (3.5) with X given by (3.18) and (3.19).
d~/dp can be obtained from Eq. (3.9) with pr, q», fr, and P,
given by Eqs. (3.25), (3.26), (3.27), and (3.28).

(2) For Z & 3, do/dQ dp can be obtained from Eq. (3.5)
with X given by (3.44) and (3.45) and the parameters a
and a' given in Table 8.4.

(3) For do/dp, we use Eq. (3.9) with pr, y2, f,, and f~
given by Eqs. (3.46) through (3.49) for Z = 3 and Z = 4,
and Eqs. (3.38) through (3.41) for Z ) 5.

The angular distribution of an electron for the pair pro-
duction at small angles is mostly determined by the multiple
scattering in the target rather than by the angular distribu-
tion of the production. Hence, in general, one needs to
know only very qualitative features of do/dQ dp. This is
the reason why we did not try to give a better prescription
than (2) above, which is accurate only to within 4% as
discussed before.

d /doQ~ dk and dab/dk of .the brernsstrahlung can be
obtained from Eqs. (3.80) and (3.82) with X, &pr, &p2, Pr,
and f2 given for various atoms prescribed above.

mines the attenuation constants for the photon in materials.
In general, the integration can be carried out only numeri-
cally. However, when the energy is high (k ) 10 GeV), the
functions pr(p), &p2(p), Pr(e), and P~(e) can be approximated
by their values at & = 0 and t. = 0, and the result can be
integrated easily to yield

o.(ao) = —;ar(PPZ'{pr(0) —~4 ln Z —4fi

+ Zig, (0) —' ln Z} ——;,iZ'+ ZIg, (3.61)

Pl(0) —%2(0) = 4r(0) —A(0) = 2/3. (3.62)

This is the cross section at an infinite energy. The numerical
values of o.(~) for v'arious elements together. with the
quantity

( = L~( ) —~(&)l/o( ) (3.63)

as a function of photon energy are given in Table III.5.
The values of o ( ~ ) are obtained from the values of radia-
tion logarithms given in Table 8.2 and Eq. (2.61) ..

In the calculation of the energy dependence of the cross
section, f, we have included the correction due to the recoil
of the target electron which was ignored in Eq. (3.9). The
exact calculation of the lowest order cross section for pair
production off an electron target was erst performed by
Votruba (1948). This calculation involves eight Feynman
diagrams. Earlier, Borsellino (1947) and Ghizzetti (1947)
considered an approximation in which only two diagrams
shown in Fig. 1 are retained. Mork (1967) made detailed
numerical comparisons between Votruba's and Borsellino's
formulas. He found that when the incident photon is above
8 MeV, the difference between the two is less than 0.1%.
The cross section considered by Borsellino is a special case
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0~ = nr02I ~BSG —8.074

—P+4G3 —3G2 + 6.84G —21.51jm,/k i, (3.64)

of the formula given in Sec. II. Letting m = m; = mz
——m,

and using the form factors corresponding to a pure Dirac
particle, we obtained numerical results which are in complete
agreement with the Borsellino cross section which was
evaluated by Mork (1967). When k ) 50 MeV, the Bor-
sellino cross section can be written analytically as

or equivalently,

Xo = 716.4053/pZ'(I. „g —f) + Zl.„g'j (3.66)

In Table -III.6 we give the numerical values of Xo from
Z = |. to Z = 92. In this table we have used the values of
L, d and L„d' from Table 8.2 for elements Z & 4, and for
Z ) 5 we have used the Thomas —Fermi —Moliere expres-
sions derived in Appendix 8:

I

where G = ln (2k/m, ). The first two terms can also be
obtained by integrating Eq. (3.9) using Eq. (3.37), there-
fore the square bracket term represents the correction due
to the recoil. The fractional decrease in cross section due to
recoil is thus given by

I.„g ——In (184.15Z '")

I., q' ——ln (1194Z 't').

(3.67)

(3.68)

= (m /k) (~~G' —3G2+ 6.84G —21.51)/(~98G —8.074).

This correction factor is derived without taking the screen-
ing into account. However the screening is important only
when the momentum transfer is much less than m„whereas
the recoil is important only when the momentum transfer
is not negligible compared with m, . Therefore we are allowed
to consider two effects separately. Let us denote the total
cross section without the recoil correction by 0(k) and the
inelastic part of this cross section by o.;„(k), then the
expression for $ with recoil correction can be written as

B. Radiation lengths of materials

Q'hen one is dealing with electrons and photons a,t high
energies, it is convenient to measure the thickness of the
material in units of radiation length. Let us define the unit
radiation length, denoted by X&, of a material by

Xo ' ——nrp'iVA 'I Z'/pi (0) —~4 ln Z —4fj
+ ZLfi(0) —-f ln Zg f,
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(3.65)

The numerical values of 6 are given at the bottom of
Table III.5. Because of 6' term, 6 is not negligible even a,t
k = 1 GeV. a;„(k)/o. (~) is proportional to 1/(Z+ 1),
hence the recoil correction is more important for light ele-
ments. In the calculation for (, we have used Eqs. (3.25)
through (3.28) for H and He, whereas for all other atoms
we used the Thomas —Fermi —Moliere model, Eqs. (3.38)
through (3.41) and Eq (3.9)..We note that g is not neg-
ligible even at photon energy of a few Gev especially for
light elements. The importance, of the recoil correction to
the incoherent part of the cross section was first emphasized
by Knasel (1970) who did a very detailed study of 0.(k)
from H and He. It is comforting to know that our numerical
results agree with his even though the intermediate steps
involved in the two calculations are somewhat different.
The effect of radiative corrections is not included in Table
III.5. This effect can be accounted for by multiplying
0.(~) given in column 3 by a factor 1.0093 a,ccording to
Mork and Olsen (1965).

There are many tables of radiation lengths available in
the literature which involve different degrees of sophistica-
tion in the calculation. Let us comment on some of the well
known ones. Table I in Bethe and Ashkin (1953) can be
obtained from Eq. (3.66) without the Coulomb correction
f and with the radiation logarithms given by

I.„d = ln (183Z—'t') (3.69)

t.„q' = ln (1440Z "') (3.70)

L1 + 0.12(Z/82)'j, (3.71)

and setting f in Eq. (3.66) equal to zero. Since the inelastic
contribution is relatively unimportant for high Z materials,
Rossi's method gives fairly correct values for high Z mate-
rials, but for light Z elements it is as bad as Bethe and
Ashkin's.

Table I of Dovzhenko and Pomanski (1963), which is
'also reproduced in 1972 version of the Rosenfeld Tables
(Soding et a/. , 1972), is closest to our Table III.6. The slight
difference in numerical values is due to the following reasons:

(1) For H and He, we have used the analytical expres-
sions for I.„d and I.„z' given by Eqs. (3.33) and (3.35),
whereas Dovzhenko and Pomanski obtained. L„d and L, d'

from numerical integrations, which is probably not accurate
enough. Their radiation lengths for H and He are 62.8 and
93.1 g/cm', respectively.

(2) For light elements, we used the same procedure to
obtain L„d, but a different procedure was used for L„d'.

for all elements including hydrogen. As a consequence
Bethe and Ashkin obtained, for example, Xo for H 58 g/cm2
instead of our value of 63.05 g/cm', and for I'b (Z = 82)
5.8 g/cm' instead of our value of 6.37 g/cm'. It is clear that
Eqs. (3.69) and (3.70) cannot be used for hydrogen, and
the Coulomb correction f is not negligible for lead. There-
fore, the table given by Bethe and Ashkin cannot be trusted
to within 10%%u~.

Table 5.24.1 of Rossi (1952) can be obtained by assuming
that both 1.„&and I., d' are given by ln (183Z 't') and the
Coulomb correction is taken care of by multiplying (3.66)
by a factor
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TABLE III.6. Unit radiation lengths of atoms. (Z = atomic number, A = atomic weight, f = Coulomb corrections Kq. (3.3), Xp = unit
radiation length. g

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

1.0080
4.0026
6.9390
9.0122

10.8110
12.0111
14.0067
15.9994
18.9984
20. 1830
22. 9898
24.3120
26.9815
28;0860
30.9738
32.0640
35.4530
39.9480
39.1020
40.0800
44. 9560 '

47.9000
50.9420
51.9960
54. 9380
55.8470
58.9332
58.7100
63.5400
65.3700
69.7200
72. 5900
74.9216
78.9600
79.9090
83.8000
85.4700
87.6200
88.9050
91.2200
92 ' 9060
95.9400
99.0000

101.0700
102.9050
106.4000

6.4005 E-5
2.5599 E-4
5.7583 E-4
1.0234 E-3
1.5984 E-3
2.3005 E-3
3.1294 K-3
4.0845 E-3
5.1654 E-3
6.3715 E-3
7.7022 K-3
9.1566 K-3
1.0734 K-2
1.2434 E-2
I ~ 4255 E-2
1.6196 E-2
1.8256 E-2
2.0435 E-2
2.2731 E-2
2.5142 K-2
2 ' 7668 E-2
3.0308 E-2
3.3059 E-2
3.5921 E-2
3.8892 K-2
4. 1971 E-2
4.5156 E-2
4.8445 E-2
5.1837 E-2
5.5331 E-2
5 ' 8924 E-2
6.2615 E-2
6.6402 E-2
7.0284 E-2
7.4258 E-2
7.8323 E-2
8.2478 E-2
8.6719 E-2
9.1046 E-2
9.5456 E-2
9.9948 E-2
1.0452 E-I
1.0917 E-I
1.1389 E-I
1.1869 E-1
1.2356 E-1

Xp(g/cm')

63.0470
94.3221
82. 7559
65. 1899
52.6868
42. 6983
37.9879
34.2381
32.9303
28.9367
27. 7362
25.0387
24.0111
21.8234
21.2053
19.4953
19 ' 2783
19.5489
17.3167
16.1442
16.5455
16.1745
15.8425
14 9' AA

14.6398
13.8389
13.6174
12.6820
12.8616
12.4269
12.4734
12.2459
11.9401
11.9082
11.4230
11 3722
11.0272
10.7623
10.4101
10.1949
9.9225
9.8029
9.6881
9.4825
9.2654
9.2025

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92

107.8700
122.4000
114.8200
118.6900
121.7500
127.6000
126.9040
131.3000
132.9050
137.3400
138.9100
140.1200
140.9070
144.2400
145.0000
150.3500
151.9600
157.2500
158.9240
162.5000
164.9300
167.2600
168.9340
173.0400
174.9700
178.4900
180.9480
183.8500
186.2000
190.2000
192.2000
195.0900
196.9670
200. 5900
204.3700
207. 1900
208.9800
210.0000
210.0000
222. 0000
223.0000
226. 0000
227.0000
232.0380
231.0000
238.0300

1.2850 E-I
1.3351 E-I
1.3859 K-i
1.4373 K-I
1.4893 E-I
1.5419 E-1
1.5951 E-I
1.6489 K-I
1.7032 E-I
1.7581 E-I
1.8134 E-I
1.8693 E-I
1.9256 E-I
1.9824 E-I
2.0396 E-I
2.0972 E-I
2. 1553 E-I
2.2137 E-I
2.2725 E-I
2.3317 E-I
2.3911 E-I
2.4509 E-I
2.5110 E-I
2.5714 E-I
2. 6321 E-I
2.6930 E-I

.2. 7541 E-I
2.8155 E-I
2.8771 E-I
2.9389 E-I
3.0008 E-I
3.0629 E-I
3.1252 E-I
3.1876 E-I
3.2502 E-I
3.3128 E-I
3.3756 E-I
3.4384 E-I
3.5013 E-I
3.5643 E-I
3.6273 E-I
3.6904 E-I
3.7535 E-I
3.8166 E-I
3.8797 E-I
3.9429 E-I

Xp (g/cm')

8.9701
8.9945
8.8491
8.8170.
8.7244
8.8267
8.4803
8.4819
8.3052
8.3073
8.1381
7.9557
7.7579
7.7051
7.5193
7.5727
7.4377
7.4830
7.3563
7.3199
7.2332
7.1448
7.0318
7.0214
6.9237
6.8907
6.8177
6 ' 7630
6.6897
6.6763
6 ' 5936
6.5433
6.4608
6.4368
6.4176
6 ' 3688
6.2899
6.1907
6.0651
6.2833
6.1868
6.1477
6.0560
6.0726
5.9319
5.9990

Dovzhenko and Pomanski interpolated I.„d' between H Let us discuss some facts concerning the
and N, assuming that for N the ratio L„d'/L„, d is given by III.6:

use of Table

L„s'/L«s ——ln (1400Z "')/ln (191Z '~') (a) If we ignore the term (2/21) (Z'+ Z) in Eq. (3.62),
the total pair production cross section at infinite energy
can be written as

Our interpolation is between He and 8, assuming that for
8 the ratio of radiation logarithm is given by

L»d'/L„s ——ln (1194Z " )/ln (1g4.15Z '~')

o. ( po ) = s7 (A /XpX) .

At a finite photon energy, we have

(3.73)

%e do not know why they used the expression I.„d ——

in (191Z '~'), because their Fig. (1) clearly shows that this
is an overestimate and our expression ln (184.15Z '~') will
fit the dots in their Fig. (1) much better. Their use of the
expression L„d' = ln (1440Z ' ') comes from the mislabel-
ing of the graph in the original paper of ~heeler and Lamb
(1939), which was later corrected in Errata (Wheeler and
Lamb, 1959). According to our calculation in Appendix
8, this number should be ln (1194Z '~ ).

~(&) = ~(~)(1 —(). (3.74)

exp I ~t(1 —&) j, (3.75)

if the thickness of the target t is measured in units of Xo. At

The values of parameter $ for various elements are tabulated
in Table IV.5. Thus the attenuation of a photon beam in a
target can be written as
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high energy, $ is much less than one, but even at several
GeV, $ can be a few percent as can be seen from Table III.5.

(b) The term ignored, (2/21) (Z' + Z), comes from
@i(0) —Q(0) = Pi(0) —$2(0) = 2/3. The relative im-
portance of this term increases with Z as can be seen from
(3.62), but even for Pb (Z = 82) the error involved is less
than 0.7%. If one is unwilhng to tolerate this kind of error,
one should use the total cross sections in calculating the
attenuation factor instead of Eq. (3.75). The reason why
this term is ignored in the definition of the radiation length
is that one would like to use the radiation length in dealing
with both bremsstrahlung and the pair production, and the
terms @,(0) —@2(0) and f, (0) —$2(0) appear with dif-
ferent sign and relative magnitude in two problems Lcom-
pare Eq. (3.62) with (3.83)$.

(c) Our definition of radiation length refers strictly to a
free atom. We-have ignored the effects due to molecular
bindings, crystal structures, polarization of medium, etc.
We have also ignored the radiative corrections. Using the
Heitler —London model of a H2 molecule, Bernstein and
Panofsky (1956) showed that in the complete screening
limit the e8ect of molecular binding is to increase the pair
production cross section by 2.8%; hence the radiation length
for Hp is 61.283 g/cm2 instead of 63.047 g/cm' shown in
Table III.6 for H. There seem to be no follow up calcula-
tions on this subject despite the fact t'hat Bernstein and
Panofsky's calculation indicates that the eKect could be
significant also for other molecules. The e6ects due to the
crystal structure are investigated theoretically by Uberall
(1956, 1957). The energy spectrum of bremsstrahlung-pro-
duced by a thin crystal has many spikes and it is linearly
polarized. Hence it is a source of linearly polarized semi-
monochromatic photon beams at high energy photon
laboratories. This subject was extensively reviewed by
Diambrini (1968). The attenuation constant of a photon
beam in a thick crystal is dependent on the polarization of
the'photon. Cabibbo et al. (1962) proposed that this fact
can be used to obtain a polarized photon beam and also
that it can be used as an analyzer for the photon polariza-
tion. The most up to date discussion on this subject can be
found in a paper by Eisele et aL (1973). The effects of
polarization of medium become important only when the
energy is above 1000 GeU. The references on this subject
can be traced back from the paper of Uarfolomeev and
Svetlolobov (1959).

(d) Assuming that the molecular binding can be ignored,
we can calculate from Table III.6 the radiation lengths of
isotopes such as D~, chemical compounds such as H20 and
CH2, and mixtures of molecules such as air. Let us calculate
the radiation lengths of D2, H20, CH~, and air as examples:

j

which yieMs

Xp (H20) 36.0823 g/cm'.

CH2 Similarly, from the A and Xp of carbon (Z = 6)
and H(Z = 1) in Table III.6, we obtain

Xp(CHp) = 44.775 g/cm'.

Air Assuming that air consists of 76.9% nitrogen
(Z = 7), 21.8% oxygen (Z = 8), and 1.3% argon (Z = 18)
by weight, we have

.769 .218 .013
Xp(N) Xp(0) Xp(Ar)

'

which yields

Xp(Air) = 36.664 g/cm'.

C. Muon pair production

The existence of atomic electrons can be ignored in muon
pair production, because the t;„ involved is much larger
than the inverse square of the atolnic radius and also be-
cause the threshold energy required is too high for produc-
tion in the electron 6eld. Instead of atomic form factors,
we need to consider the nuclear form factors. Most of the
cross section occurs within a few units qf the characteristic
angle 8, m„/E, and in this small angular range only the
elastic form factor is important. Equation (3.5) can be
used for calculating the energy angle distribution, except
now G2(t) is a nuclear form factor. Since G2(pp) = 0 for
the nuclear form factor, the result of (3.5) is identical to
that obtained by using the Weizsacker —Williams approxi-
rnation (Kim and Tsai,

'

1973) except for the Coulomb cor-
rection f. Detailed derivation of the Weizsacker-Williams
approximation and numerical comparison with the result
obtained from the Born approximation, Eq. (2.7), can be
found in Kim and Tsai (1973). For simple form factors
given by (B49), the integration with respect to t in Eq.
(3.6) can be carried out analytically. We obtain

m (1+i) (~ ~, I)X=Z'
(1+ t/d)'P

1+ b ' I' b, 1+—2c= Z' (1+ 2b) ln —
~

1+—1+c—'
& c 1+c

(3.76)

Deuterium Xp(Dp) = Xp(D) = Xp(H, )3f(D)/3I(H)
63.047 X 2 = 126.1 g/cm'.

2A (H) + A (0) 2A (H)
Xp(HpO) Xp (H)

A (0)
Xp(0) '

H20 Using the atomic weights and the radiation lengths
of H(Z = 1) and 0(Z = 8) given in Table III.6, we may
calculate the radiation length of wa, ter denoted by Xp(H20)
from the equation

where d = 0.164 A "' GeV' b = t~;„'/d, and c =
m'(1 + l)'/d. At high energies and small angles, b is much
less than unity, whereas c is of order unity for light nuclei.
Hence X is relatively insensitive to small variations in
angle, energy, and nuclear radius. The energy angle dis-
tributions are determined mostly by the coeKcient of X
in Eq. (3.5). We have also used the experimental nuclear
form factors of the Be nucleus shown in (B50) and (B51).
We found that, for small angles, the numerical values of X
are quite insensitive to the detailed behavior of the form
factor at large t.
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When the production angle gets large, (t; ')'" becomes
comparable to or greater than the internucleon distance,
in which case the inelastic nuclear form factors Lsee Eqs.
(B52) and (B53)j, as well as the meson production form
factors Lsee Eqs. (B56) and (B57)j, must be taken into
account. The contributions due to these form factors can
be handled by inserting the appropriate form factors into
Eq. (2.7). However if one wants to obtain a less accurate
but simpler expression, one may use Eq. (3.5) with X cal-
culated according to the Weizsacker —Williams method given
by Kim and Tsai (1973):

—1. Hence the pair production cross section can be written
as

d8p d3p d3p
($crp,i, ——m;k '

2E 2E+ 2'
X &'(p+ p++ p —k —p')

X (—1)A (—k, p+, pt, —p, p, ) . (3.78)

Comparing Eqs. (3.77) and (3.78), it is obvious that-the
two energy angle distributions are related by

g u~ g] (U—m)

x =
2m' t ~ ~ m

dms'$(t —t;„)W2+ 2t; 'Wij, dog do.p„.,& k'E
df4 dk dQ dpjI, g p'

(3.79)

where t ~ = m'(1+ l)'. X's for various form factors are
considered in Kim and Tsai (1973). The reader is referred
to that paper for details.

D. Energy angle distribution of brernsstrahlung

The matrix elements of the bremsstrahlung are related to
those of pair production by the substitutions k &—+ —k and

p ~ —p, where p is the four-momentum of either the inci-
dent particle in the bremsstrahlung emission or the four-
momentum of one of the pair of particles in the pair produc-
tion. In the energy angle distribution of the bremsstrahlung,
all the final particles except the photon are integrated out.
In-our calculation of the energy-angle distribution of the
lepton, all the final particles except one lepton are integrated
out. We show first that these two partially integrated, cross
sections are also related by the substitution rules. To the
lowest order in n, the energy angle distribution of the
bremsstrahlung for an. electron is the same as that for a
positron. Similarly to the lowest order in o., the electron and
the positron have the same energy angle distribution in the
pair production. For convenience, let us call the incident
particle in the bremsstrahlung a positron, and the detected
particle in the pair production an electron. With this con-
vention, the final state integrations in both cases are with
respect to a positron and the hadronic final states. I.et k,
p;, pt, p+. be the four-momenta of the photon, the initial
hadron, the final hadron, and the final positron, respec-
tively, and p the momentum of either the initial positron in
the bremsstrahluhg or the final detected electron in the pair
production process. In the laboratory system the energy
angle distribution of the bremsstrahlung can be written as

dk dpi dpi'
2k 2' 2'

X &'(k + p+ + p&
—p —p;) A (k, p+, p~, p, p, ),

(3.77)

where A is the matrix element squared averaged over the
initial polarizations and summed over the final polarizations
of all the particles. The substitution rule says that, for pair
production, the matrix element squared averaged over the
initial polarizations and summed over the final polariza-
tions of all the particles is given by —A ( —k, p+, pt, —p, p, ),
where the minus sign in front of 2 comes from the fact that
in pair production there is only one antiparticle and 8v =

It was shown by Olsen (1955) that Eq. (3.79) is still correct
even when the Coulomb correction is included. In the earlier
paper of Bethe and Maximon (1954), it was erroneously
stated that the Coulomb correction does not affect the
bremsstrahlung cross section, whereas it does affect the
pair production cross section. Using the substitution rule
LEq. (3.79) j, we obtain the energy angle distribution of
electron or positron bremsstrahlung from Eq. (3.5):

dob2n3 E' 2y —2 12l(1 —y)
ding dk irk 4444 (1+ l)' (1+ l)4

2 —2y+ y' «(1 —y)
(1 + l) ' (1 + l) 4

(3.80)

where G2(~) = G~"(m) + G "(~) = Z'+ Z, y = k/E
and l = 8/E'/m'. The Coulomb correction f is given by
Eq. (3.3) and the function X is given by (3.6). The mini-
murn momentum transfer t;„' used for calculating I is

; ' = /km'(1+ l)'/2E(E —k) j', (3.81)

do&/dk = (u'/m')k 'P(~4 —fy + y')

X pZ'(p, —~4 ln Z —4f) + Z(p, —8 ln Z) j
+ 3(1 —y) LZ'(~i —~2) + Z(4i —A) jj.

(3.82)

The functions pi, p~, P,, and P2 are identical to those for the
pair production problem. When the energy is high, and if
one is not particularly concerned with the detailed shape
at the high-energy tip of the bremsstrahlung spectrum, the

which is identical analytically to that for pair production
However, numerically t;„' can be quite different in the
two problems because in the pair production we have
E/k( (1, whereas in the bremsstrahlung we have k/E ( 1.
As a consequence, the complete screening formula has a
wider range of applicability in the bremsstrahlung problem
than in the pair production.

After integrating with respect to the photon angle 0I„ the
term proportional to G2(~) in Eq. (3.80) vanishes and we
obtain
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functions Qi, @~, fi, and P2 can be approximated by their
values at y = 0 and e = 0. Under this approximation,
usually refered to as the complete screening case, we may
write Eq. (3.82) as

do.g/dk

= 4~&0'k 'L(fr —Cy + y') CZ'(L. 4 —f) + Zl--4'j

where y = k/E, / = 9$E'/m' and 6 = 2m'y/E(1 —y). This
expression is identical to the one obtained by Sommerfeld
(1939).This formula can be written in such a way that it
becomes usable both in the center-of-mass system and in
the laboratory system. The easiest way to do this is to
realize that at high energies and small angles, both y = k/E
and l = 8 4'E'/ m' are relativistically invariant and Eq.
(3.85) can be written covariantly as

+ 9 (1 —y) (Z'+ Z) j,
(Complete Screening Formula)

(3.83)
dcrb/dl dy = (4n'/ym') { (3.86)

where L„d and L, ~' are tabulated in Table 8.2. If we ignore
the term (1 —y) (Z' + Z)/9, then Eq. (3.83) becomes pro-
portional to 1/Xo defined in Eq. (3.66). In the infrared
limit (y —+0) the ignored term is roughly 2.5% of the
terms retained. Hence for any accurate work these terms
should be retained. However, if we are willing to ignore
2.5% error, then Eq. (3.83) without (1 —y) (Z'+ Z) can
be written as

p(k) dk dT = (dk/k) (~4 —~4y+ y') dT, (y = k/E)

(3.84)

where { I is the expression in the curly bracket of Eq.
(3.85). In the colliding beam experiment, the bremsstrah-
lung angular distribution is symmetric with respect to 90'.
The backward peak disappears into the infrared after the
Lorentz transformation from the center-of-mass system to
the laboratory system. Equation (3.85) can be integrated
with respect to angle easily; we obtain

da.z/dy = (4n'/ym') {ir —~y + y'i L2 ln (m/6) —1j.
(3.87)

where p(k) dk is the number of photons in the energy range
dk after an electron has passed through a target of thick-
ness dT radiation length. The advantage of Eq. (2.84) is
that it is independent of target material. In Sec. IV we shall
consider the effect of finite target thickness.

E. Bremsstrahlung in colliding beam experiment
Let us consider the emission of a single photon in the

electron —electron or electron —positron colliding beam experi-
ment. In each case there are eight Feynman diagrams. The
exact calculation was first done by Votruba (1948), whose
results are extremely complicated. Fortunately, with the
recent advance in computers, the derivation of Votruba's
formula can easily be done using various algebraic routines,
e.g. , "Reduce" by A. C. Hearn (1971) or "Shoonship" by
T. Veltman (1965). The important thing is that the result
of the computer derivation is usually already in a form
usable for the computer to do further numerical calcula-
tions. Hence when one is dealing with a formula as com-
plicated as that of Votruba, it is easier to start from scratch
than to start from the expression given by Votruba. S,
Swenson (1967) investigated the process e+ + e
e++ e + y using his own version of algebraic computer
routine. He concluded that near the forward direction only
two Feynman diagrams similar to those shown in Fig. 1
need be considered. Hence the result is given by Eq. (3.80)
with f = 0, G2 ——1, and X given by the right-hand side of
(3.24):

k = m' + Em/m + (E —p cos Hq) - E/(1 + —',yHP),
p)) j. ; ~a&&&

(3.88)

which is equal to the value of k,„in the reaction e+ + e —+

e++ e + y. For Hq near (2/y)'I', the photon spectrum
do./dQi dk from e+ + H~ has a sharp spike. The spike, instead
of being a 6 function, has a finite width because of radiative
corrections (Tasi, 1965). This spike is a very useful source
of semimonochromatic photon beams. The detailed theo-
retical discussions of the properties of this spike and the
background were given by Dufner, Swanson, and Tasi
(1966).The cross section for e+ + e —& 2y can be written as

Jo o; 2y

d'ye„))i;~))i 2m'(1 + s)' 1 + f

1 + f 4/(1 + s)'
2y (1+ l)'

(3.89)

When a positron is incident on an atomic target, it can
annihilate with an atomic electron and produce photons.
The cross section for e+e —+ 2y is of order cP compared to
the cross section for e++ e —~ e++ e + y, which is of
order n . However, at high energies the former is negligible
compared with the latter, except when the angle 0~ is near
(2m/E)'~2, which corresponds to 90' in the center-of-mass
system of initial e+ and e . Since e+ + e —& 2y has a two-
body 6rial state, the energy of the photon is 6xed at a
fixed angle:

2(x E 2g 2

mk m4 (1+ 1)2

121(1 —y)
(1+ l)4

2 —2y + y' 4/(1 —y)
(1 + i)g (1 + ~)4

L ( / )

(3.85)

where y = E/ ofmthe incident positron, s = p8i.,2/2, and
l = y'OA, '. If one is interested in obtaining a semimono-
chromatic photon beam, then the angle 0~ must be chosen
so that 2' is of order unity, in which case the spike is very
pronounced compared with the ordinary bremsstrahlung
background given by Eq. (3.80) . On the other hand, if one
is not interested in obtaining a semimonochromatic beam
but wants to know how the angle-integrated photon spec-
trum is affected by the annihilation photons, it is more
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do ~ cP%

dk E'm (y/2y) + (1 —y)

(y/2v) + (1 —y)

(3.90)

convenient to write Eq. (3.89) in terms of do. /dk using the
relation (3.88). We obtain

higher than one hundred GeV, the nuclear form factor is
negligible except at the bremsstrahlung tip, whereas the
atomic form factor affects the low-energy photon emission.
This means that Eq. (3.82) can also be used for the muon
bremsstrahlung except near the high-energy tip of the
bremsstrahlung. The parameters y and e defined in Kqs.
(3.30) and (3.31) should now read, respectively,

where y = k/E. We have ignored the last term in Eq. (3.89) .
This equation must be multiplied by Z before we can make
the comparison with Eq. (3.82). The effect is largest for
hydrogen; therefore let us consider this as an example.
When k is small we have

y = 100m 'k}E(E —k)Z'"m,

100m 'k/E (E —k )Z"'m, .

(3.95)

(3.96)

(do /dk)/(darb/dk) —
. + n/ay50 7/y

k—&0

(3.91)

which shows that the effect in the soft photon region is not
noticeable unless the incident positron energy is below
300 MeV. Near the high-energy end of the spectrum
(y —+ 1), we have

(der /dk)/(dab/dk) —&(10/y) [1/(2y) + (1 —y)] ', (3.92)

which is clearly peaked at Y = 1, with a small width
(Ay ~ (1/2y). If the effect of the radiative correction is
included, the spike widens. Hence when E & I GeV, it is
probably unnoticeable.

G. Muon bremsstrahlung

As noted previously, even though t„„„'for the bremsstrah-
lung has an identical analytical expression to that for the
pair production, numerically the former can be much smaller
than the latter. In muon pair production, the atomic screen-
ing as well as the production in the electron field can be
ignored, but for muon bremsstrahlung neither of these
effects can be ignored when the photon emitted is very soft.
The atomic radius is roughly given by a ~Z 'I'137/m- ,
Hence the atomic screening becomes important when

1 & t~;„""a= Pm„'k(1 + l)/2E(E —k) j(Z '"137/m, ).
(3.93)

In the forward angle, this gives

y/(1 —y) & Z'~'E/1370 GeV, (3.94)

The energy .loss of a muon due to bremsstrahlung is
negligible compared with that due to ionization when the
energy is so low that its range is considerably less than
(m~/m, )'Xo, where Xo is the unit radiation length defined
previously. However, when the muon energy is one hundred
GeV or higher, its range becomes comparable to, or greater
than, 40000 X0. After a muon passes through a material
of thickness comparable to 40 000 X0, its energy is greatly
affected by the bremsstrahlung. When the muon energy is

which shows that when E is above one hundred GeV, the
aromic screening is not negligible. On the other hand, when
E is much below one hundred GeV, the atomic screening
becomes nonnegligible only when very soft photons are
emitted.

As noted previously, the functions p& and y2 become
approximately equal to the value given by the unscreened
target at around p = 2. Substituting p = 2 in Eq. (3.95),
we obtain a relation similar to Eq. . (3.94) .

It should be emphasized that -the problem we are dis-
cussing here is usually called the "outer bremsstrahlung"
or "external bremsstrahlung, " in contrast to the "inner
bremsstrahlung" or "internal bremsstrahlung" which one
deals with when discussing the bremsstrahlung emission
during the large angle (angle much larger than one charac-
teristic angle) scattering. There are two major distinctions
between the two kinds of phenomena (Mo and Tsai, 1969).
For inner bremsstrahlung, the scattered electron or muon
is detected at an angle much greater than one characteristic
angle. In this case the bremsstrahlung emission is roughly
proportional to ln ( —q'/m'). —1, hence the radiative cor-
rections to muon scattering are about 0.25 to 0.5 of the
radiative corrections to electron scattering in the q' range
of 1 to 10 GeV. This is to be contrasted with the correspond-
ing ratio (m, /m~) ' 40 000 ' for the outer bremsstrahlung.
For the inner bremsstrahlung, the angular distribution of
photons is concentrated in two directions, namely, along
the incident electron (or muon) and along the outgoing
electron (or muon). The root mean square angle between
the photon and the electron (or muon) is (Hb')'I' ~ (m/E)'~
where E is the energy of the incident or outgoing lepton.
For the outer bremsstrahlung the characteristic angle is
m/E with respect to the incident lepton.

In electron scattering experiments, both the external and
the internal bremsstrahlung have to be considered Lsee
Mo and Tsai (1969) and Tsai' (1971)j, whereas in muon
scattering experiments we need to consider only the correc-
tions due to the internal bremsstrahlung, The external
bremsstrahlung of muons is important when one is dealing
with shielding of muons which have energies of more than
one hundred GeV.

IV. EFFECTS DUE TO FINITE TARGET
THICKNESS

When one is dealing with photons or electrons in any
experiment at high energies, it is important to take into
account the attenuation of the photon beam and the strag-
gling of the electron in the medium. At high energies the
attenuation in the intensity of a photon beam is mainly
due to electron pair production, given by Eq. (3.75) . Effects
such as ionization, Compton scattering, nuclear excitation,
meson production, etc. are negligible, even though these
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effects have one or two less powers of n in their expressions
for the cross section than the pair production. The straggling
of the electron at high energies is mainly due to bremsstrah-
lung. Landau straggling (Landau, 1944), i.e., the energy
straggling of the electron due to the e—e scattering, can be
ignored compared with that due to bremsstrahlung emission
if the energy loss AE satisfies the inequality (Tsai, 1971)

then the straggling function for an electron would be given
by

(1 + g)bt E bt

I,(Eo, E, t) = I(1+ bt) Eln — p(Eo, k)t, (4.5)

where k = Ep —E and I' is the gamma function which, for
small bt, is given by

(2n/or) (ZL„g + L,.a') AE/m» 1, (4.1)

where L„d and L„d' are radiation logarithms tabulated in
Table 8.2. For hydrogen, this condition is equivalent to
AE )) 10 MeV. The combined effects of Landau and
bremsstrahlung stragglings can be found in the works of
Bergstrom (1967) and Tsai (1971). This consideration is
important when one is interested in obtaining the shape of
a resonance using electrons with energy less than several
hundred MeV.

In this section we shall follow the notation of Tsai and
Whitis (1966). Let the number of photons produced by an
incident electron with energy Ep from a target of inhnitesi-
mal thickness dt radiation length in the energy interval dk be

dab X
p(Ep, k) dt dk —= —Xp dt dk,

d'k A
(4.2)

where X is the Avogadro's number, A is atomic weight Xp
is the unit radiation length given in Table III.6, and dab/dk
is calculated according to Eq. (3.82) . The attenuation factor
for a photon after passing through a medium of t radiation
length is e &', where p = —

p7 (1 —g), with g given in Table
III.5. The energy distribution of the first generation electron
is denoted by I.~'&(Ep, E, t) .An electron initially with energy
Ep, after passing through a target of thickness t, will have
a probability I,&'& (Ep, E, t) dE of being in the energy interval
between E and E+ dE. The number of photons in the
energy between k and k + dk after an electron, initially with
an energy Ep, has passed through a target of thickness t is
denoted by I~&'&(Eo, k, t) dk. It was shown in Tsai and
Whitis (1966) that the second generation electrons as well
as the second generation photons are negligible compared
with the first generation ones, as long as the target thickness
is less than two radiation lengths. Hence we shall omit the
superscript "(1)" from I,&'&(Ep, E, t) and I~&'~(Ep, E, t).
Another important quantity denoted by b is de6ned as

I'(1+ bt) - 1 —0.5772bt.
5 f,((a

limI. (Eo, E, t) = p(Eo, Eo —E)t. (4.6)

This shows that the factor fin (Ep/E))o'/I'(1 + bt) in
Eq. (4.5) represents the correction due to inultiple colli-
sions. If we assume that this correction factor is independent
of the expression p(k), from which it was derived, then we
can simply use a correct expression for p(k) in Eq. (4.5)
instead of using Eq. (4.4). This procedure was first pro-
posed by Mo and Tsai (1969). Subsequently R. A. Early
(1972) made a detailed study of the numerical solution of
the electron diffusion equation using the complete screening
formula for p(k) as given by Eq (3.84).. He found that. the
maximum disagreement between his numerical result for
I,(Ep, E, t) and that given by Eq. (4.5) with p(k) given
by Eq. (3.84) instead of (4.4) is less than one percent if t is
less than 0.01 r.l. However, when t = 0.1 r.l. Eq. (4.5) in
general overestimates I,(Ep, E, t) a,t the low-energy end of
the electron spectrum; for example, the overestimate is
about 9%% at E/Ep = 0.1. Based on Early's numerical work,
a better straggling function (Tsai, 1971) was proposed:

The original treatment of Bethe and Heitler is a special
case where a = 0. Now the trouble is that the actual
bremsstrahlung spectrum PEq. (4.2)) has a very different
shape from Eq. (4.4) . At high energies, the complete screen-
ing formula given by Eq. (3.84) is adequate except near the
bremsstrahlung tip. If we normalize the parameter b in
Eq. (4.4) at the infrared limit, namely Eq. (4.3), we see
that (4.4) is far too low at the high-energy side of the
bremsstrahlung spectrum. The factor (1 —y) ~ tends to
suppress the high-energy end of the spectrum, hence a = 0
is the most reasonable choice for this parameter. If t is so
small that an electron su8ers only a single collision, then by
definition we must have

4 1 Z'+Z
b =—limkp(E, k) = — 1+—. . . (4.3)

o 3 12ZPL a+ ZL Ep —E ' p Eo, Ep —E t

Eo I'(1 + bt)
(4.7)

where the radiation logarithms L„,d and L, q' are tabulated
in Table 8.2.

A. Straggling of an electron due to bremsstrahlung

The straggling functioil of an electroil I (Ep, E, t) was
first considered by Bethe and Heitler (1934), and later re-
derived and extended by Eyges (1949) . Eyges showed that
if the bremsstrahlung distribution function p(E, k) mere
given by

This function is within 1oro of Early s numerical work when
t ( 0.05 r.l. and E/Ep ) 0.2. The best fit to Early's numeri-
cal work was obtained by G. Miller (1971),whose result is

I,(Ep, E, t)

= I'(1+ bt) '(ln Ep/E)o'p(k)t

X L1 + btyi0. 53875 + y( —2.1938 + 0.9634y) i),
(4.8)

t(E, k) = (1/E)b(1 —y) Dn(1 —y)) ', (4.4) where

where y = k/E, a and b are arbitrary positive numbers,
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This formula agrees with Early's numerical results to within
0.6% for E/Ep ) 0.1 and t ( 0.1 r.l. The precise form of
I (Ep, E t) is very important in the radiative corrections
to electron scattering experiments (Mo and Tsai, 1969;
Tsai, 1971;Miller, 1971).

I~(Eo, k, t)

~
—p(t —tI) dt's

Ep

I,(E oE, t') p(E, k) dE, (4.9)
0

where p, =
o (1 —$) and $ is tabulated in Table III.5. The

integration with respect to t' can be carried out analytically
if the target is so thin (t & 0.1) that the inverse of the
gamma function in Eq. (4.7) can be approximated by
I' '(1+ bt') ~ 1+ 0 5772bt' .We not.ice that when t && 1
r.l. , I.(E oE, t) is very large near E = Ep,' hence we need
to know very accurately its value only near E = Eo, in
which case Eq. (4.9) can be approximated by

I, (Eo, k, t) —+ dt'e &" "~(1+0.5772bt')

B. Thin target bremsstrahlung

The photon spectrum fronz a target with thickness t can
be calculated from the following formula (Tsai and Whitis,
1966):

after t = 0.75, the intensity of p's is just attenuated by the
absorption factor e—&'—' ")'" At t = 0.75, the electron
spectrum is essentially flat. It was shown by Tsai and
Whitis (1966) that because of the nuclear absorption of
the photoproduced hadrons, the optimum thickness for
production of high-energy hadrons is roughly 2 r.l ~ for Be
and slightly larger for heavier elements. For production of
muons (or heavy leptons), the nuclear absorption is neg-
ligible, but even in this case one reaches more than 90% of
the possible maximum yield when t = 4 r.l. In order to
obtain a simple formula for I~(Ep, k, t) which is approxi-
mately true when Eo ) k & —.,'Eo, we note that the integrand
in Eq. (4.9) is dominated by the region Ep ~ E arid k && 1.
Hence we need to know very accurately about the integrand
only in this region. The gamma function has values I'(1) =
I'(2) = 1 and I'(x) ( 1 'for x between 1 and 2; the mini-
mum occurs at I'(1.46) =- 0.8856. Hence we shall approxi-
mate I'(1 + bt') by one, which will result in underestimating
I~ by less. than 10%. We shall also ignore the energy
dependence of p and approximate it by p = 7/9. Since we
are interested in the high-energy component of the photons,
we may approximate p(E, k) by 1/k, which gives at most
10% overestima. te in the high-energy half of the spectrum.
The result is

1 (1 —k/Eo)o' —exp L
—(7/9) lj

kL7/9 + ~4 ln (1 —k/Ep) j
(4.12)

Eo —E "—' dE
X p(E, k)—

lr, -Eo

&0 gBT
+ ———(1 —e ')

g2 Q3

T2 2T+ yeirr ——— p(E, k) dE/Ep,8 B2
(4.11)

where

T = bt, B = —7/(9b) + ln (1 —E/Ep),

y = 0.5772, and p(E, , k) and b are given by Eqs. (4.2) and
(4.3), respectively. It should be emphasized that even for
t as small as 0.01 r.l. the result of Eq. (4.11) differs by
several percent from that of using Eq. (4.2) near the
bremsstrahlung tip (0.98 ( k/Ep ( 1). Therefore for any
accurate work using the bremsstrahlung tip, one should
use Eq. (4.11) instead of (4.2).

The numerical values of this expression from t = 0.01 to
f = 2.0 and 0.1 ( k/Ep ( 0.999 are tabulated by Tsai and
Whitis (1966) together with the results of using Eq. (4.9).
The difference between the two values is about 0 to 15%.

D. Production of particles using a photon beam

The photon source may be a bremsstrahlung beam ob-
tained by placing a radiator upstream in the case of an
electron accelerator, or it may be a photon beam produced
by m. decay, as is usually the case for the proton accelerator.
In the former case the photon flux is given by I,(Eo, k, t) dk
per incident electron or positron. In the latter case m flux
is usually estimated by assuming that it is the average of
m+ and ~ fluxes. In either case the photon spectrum can be
determined by a pair spectrometer. Let us assume that the
photon Aux impinges upon a target of thickness T r.l. and
the photoproduction cross section is given by do/dQ dp.
The number of events induced by a single photon. in this
target is then

C. Approximate expression for thick target
biemsstrahlung

It is sometimes desirable to have a simple formula for
I~(Ep, E; f) valid also for a target of thickness up to 2
radiation lengths, for example, in the estimation of the
secondary particle yields from an electron rnachine. Let us
first consider some qualitative features. From Eq. (4.5)
or (4.7), we see that the electron spectrum I,(Eo, E, t)
changes its shape abruptly at t = b ' ~ 0.75 r.l. For
t ( 0.75 we have I,(Ep, Ep, t) = oo, whereas for 3 ) 0.75
we have I (Eo, Eo, 3) = 0. This tells us that practically all
high-energy y's are produced from t = 0 to t = 0.75, and

r do- EX()
exp ( —pt) dt

dQ dp

1 —exp ( pT) ÃXo do. —
g dp dQ '.

(4.13)

where p, is the absorption coefficient for photon p, =
(7/9) (1 —$) as given previously. This simple formula
tells us two things: (1) There is no use making the target
thickness more than two radiation lengths. When T = 2,
we have exp ( —7T/9) = 0.22, hence only 22% of the
photon beam is wasted. As the target gets thicker, the
effects due to straggling, multiple scatterings, and the ab-
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sorption of the produced particles become complicated. (2)
The factor XXO/A is roughly proportional to (Z'+ Z)
For production of particles other than electrons or muons,
the cross sections are usually proportional to A or A'I'.
Hence as far as maximizing the yield is concerned, small Z
material is preferable. This is the reason why we have chosen
H and Be in our calculation of the production of heavy
leptons. If the produced particle is a muon it will come out
of the target essentially unaffected, except for some loss of
energy due to ionization. If the produced particle (or the
decay product of the produced particle) is an electron, its
energy will straggle due to the emission of bremsstrahlung.
This bremsstrahlung has two parts: inner and outer brems-
strahlung. The effect due to outer bremsstrahlung can be
calculated by using I,(Eo, E, T —t). The effect due to

-inner bremsstrahlung is part of the usual radiative correc-
tions, which are independent of target thickness. If the
produced particles are hadrons, then the effect due to
nuclear absorption must be taken into account.

E. Production of particles using an electron beam

For particle production in an electron machine the maxi-
mum yield is obtained if the electron beam is used directly
on the target. We shall show in the next subsection that
production by the virtual photon is negligible compared
with production by the real photon, if the target thickness
is much more than 1/25 of a radiation length. Consider "o"
monochromatic electron with an energy Eo incident on a
target of T radiation lengths. I et o.(k) represent some
photoproduction cross section. o (k) can be do/dQ dp,
do./dp or o., etc. The total number of events per incident
electron induced by the real photon in the target material
is given by

ÃXoI' = dt I,(t, k)o(k) dk.

is small, and becomes independent of T as T becomes
infinity. How fast this maximum is reached depends upon
whether the process requires soft or hard components of
the bremsstrahlung. The high-energy component of the
photon diminishes more rapidly than the low-energy com-
ponent as the target thickness is increased. When k/Eo ——

0.442 (which corresponds to f = 7/9), the ratio of the
integrand of Eq. (4.15) to that of Eq. (4.17) is equal to
P1 —(1 —7T/9) exp (—7T/9)g. Hence when T = 3 one
already gets 68'Po of the maximum value. If the target
thickness is increased beyond T = 3, we gain somewhat
in the yield but the increased absorption and straggling of
the outgoing particles in the target may render this small
gain in yield not worthwhile. For hadron production,
T 2 is the optimal thickness if one takes into account the
nuclear absorption of the hadrons (Tsai and Whitis, 1966) .

F. Production by virtual photons

When an electron is used for production of particles, the
contribution due to the direct el'ectroproduction is approxi-
mately equal to the contribution from a real bremsstrahlung
beam produced by letting the electron pass through a
radiator of thickness 1/50 radiation lengths (called the
equivalent radiator whose -thickness is denoted by t,~) . This
implies that the production due to the virtual photon is
negligible compared with that due to the real photons if the
target is much thicker than 2t,~. This fact is well known
among experts but sounds strange to many people because
the electroproduction cross section has two powers of o. less
than the combined o, dependence of the bremsstrahlung
emission cross section and the production cross section by
a real photon. In the following we derive the expression for
t,~ using the Weizsacker —Williams method. I.et E, and E'
be the energies of the incident and outgoing electrons,
respectively, and 8 be the scattering angle of the electrons.
The cross section can be written as

Using the approximate expression of I~ given in Eq. (4.12),
Eq. (4.14) can be integrated with respect to dt We obtain.

= (2n-n'/t2) (E' —m, ')—'Ll2E(E —v) ——,'t}W,

+ (t —2m. ') Wij, (4.18)

where

)& (1 —exp L
—(7/9) Tj)

/7 l dk

&9 Jk' (4.15)
where p = E —E' and t = —(p —p')'. We have retained
the mass of the electron because t;„is proportional to m, 2

as given by Eq. (A11). From the definition of the tensor
W„, given in Sec. II, we obtain

f = —~4 ln (1 —k/Eo).

In the limits T —+ 0 and T —+ ~ we have, respectively, f2 p2)
W..+ —iW.. . (4.19)

2VXO T' E0 dkI' —& — o.(k)—
~p A 2 I, 1

k
(4.16)

where the direction of the momentum transfer in the
laboratory system is chosen as the z axis. The transverse
tensor 8" is related to the photoproduction cross section

XXO Eo 9 dkI' —+ o(k) ——.7fk' (4.17) o ~(v) = (4m'n/v) W (t = 0, i ). (4.20)

From Eqs. (4.15)—(4.17), we see that the yield of second-
ary particles by an electron is proportional to T' when T

Since 8'„and W are not singular at t = 0, we can ignore
W„ in (4.19) when v')) t. Ignoring the t dependence of
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W and assuming v2)) t, we have

(&) tmarr l

(2 —2y+ y')t '—
dv 2x v ~min

2tÃe y
cA

$2

radiation lengths. The yield by virtual photons of an electron
in a target of thickness T can be written as

iVXp
dt X.(EO, E, t) dE

0 &min

(4.21) ~min

dkt, ~
a (k)

(4.25)

Now the bremsstrahlung spectrum of an electron after
passing through a target of t radiation lengths (t (( 1) is
roughly t dk/k. Hence Eq. (4.21) says that the desired
expression for t„ is given byn, mp'(1 —y)

t, = — (1 —y + -', y') ln
7r sz~ y

—(1 —y)

(4.22)

where y = v/E and t; = may'/(1 —y). The true t,„ is
4E(E —v) which can be very large. Rather than using this
value of t, , it is better to regard it as a cut-off parameter
which approximately takes care of the t dependence of
lV . Now this f dependence is different for different proc-
esses and different targets. Fortunately (4.21) is not very
sensitive to t, . A convenient choice is t, m, 2 0.5
GeV2 which is roughly the cut off required for production of
hadrons.

where I, is the straggling function of the electron given by
Eq. (4.5). Since we are interested in the high energy com-
ponent of the photon, we may approximate the factor
(2 —2k/E + k'/E') by 1 and the p(E, k) in Eq. (4.5) by
b/k. F(1 + bt) can also be approximated by unity because
most of the contribution comes from the region bt ( 1.
Q ith these approximations and the identity

dE dk = dk dE
Itmin &min &min

the integration with respect to dt and dB can be carried out
when T = ~; We obtain

.VXp dkV;„„.g —+ 0-(k) t„/ln LEq/(Eq —k) ) —.
Ab g, ,

From Eqs. (4.17) and (4.26), we obtain

(a/m) ln (m, /m, ) = 0.017. (4.23)
virtual/ I rea1) ~ 7 teq/9 (4.27)

The last expression is given there for the purpose of indi-
cating the order of magnitude of t,~.

The equivalent radiator introduced here represents the
pseudophoton Aux of the incident electron. The equivalent
radiator representing the pseudophoton Aux of the target
nucleus has been considered in great detail by Kim and.
Tsai (1973). The concept of a pseudophoton flux of a
charged particle has a meaning only in the frame where the
particle is moving with extreme relativistic speed. (See, e.g. ,
Appendix C of Kim and Tsai, 1973) . Since the incident
electron is already relativistic in the laboratory system, the
concept of pseudophoton Aux is directly usable in the
laboratory system without making a Lorentz transforma-
tion which is required when one is dealing with the psuedo-
photon Aux of a target particle. The interesting character-
istics of t,q given by (4.22) is that it is a function of scaling
variable y only.

Let us consider the number of events induced by a single
incident electron in a target of T radiation lengths. We
denote the part due to the virtual photon by Y;,t,„,~ and
the part due to the real photon by Y„„&.When the target
is thin we may ignore the straggling of the electron in the
target, hence the yield due to the virtual photon is

XX ' o. (k)
Yvireual ~ T ~eg

rp ~ a,. (4.24)

Comparing Eq. (4.24) with Eq. (4.16) we see that when
T = 2t,~, the virtual photon contribution is approximately
equal to the real photon contribution. When the target is
thick, Y;,t,„,& will not increase linearly with T because of
straggling. We expect it to level out at around three or four

A. Kinematics

The minimum energy of the photon required to produce a
pair of leptons, each of mass m, and one of the leptons having
a, momentum p and an angle 8, can be obtained by setting
the expression for U' = (p~ + p+)' given by Eq. (2.4)
equal to (mf + m)':

k; = (mf' —mP + 2mmf + 2m, E)/(2m; —2E

+ 2p cos 8). (5.1)

V. PRODUCTION OF HEAVY LEPTONS IVIUONS
AND (NUMERICAL EXAMPLES)

In this section we present numerical examples of calcu-
lations using (2.7), which is an exact result in the lowest
order Born approximation. The target particles are assumed
to be either hydrogen or berylium. The.elastic and inelastic
nuclear form factors necessary for the calculations are dis-
cussed in Appendix B. The numerical examples given in
this section are intended to help experimentalists in design-
ing experiments to discover heavy leptons. The calculations
for muons are also included because they can be used in
estimating the yield of muons from an electron machine
and also in estimating the background for the heavy lepton
experiment. The various numerical tables given can also
be used for checking the accuracy of various approximation
schemes, such as the Weizsacher —Williams method. Since
different experiments involve different kinematical condi-
tions, the experimenters have to recompute many quantities.
Our numerical tables can serve as convenient reference for
such calculations. Let us begin by discussing some kine-

' matics which defines the physical region of the problem.
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TABLE V.i. do/dodp for photoproduction of muon (cm'/GeV/sr).

Pejm
Be

coherent
Proton
elastic

Neutron
elastic

Be Quasi-
elastic

Proton
inelastic

(A) k = 20, m = 0.1056

I' = 4.0
0
0.5
1.0
2.0
4.0
7.0

10.0
15.0
20.0

0
0 ' 5
1.0
2.0
4.0
7.0

10.0
15.0
20.0

0
0.5
1.0
2.0
4 0
7.0

10.0
15.0
20.0

0
0.5
1.0
2.0
4.0
7.0

10.0
15.0
20.0

4.467 D-29
3.062 D-29
1.173 D-29
1.373 D-30
5.234 D-32
1.520 D-33
7.927 D-35
1.368 D-36
6.326 D-38

I" = 8.0
1.584 D-28
1.189 D-28
4.809 D-29
5.619 D-30
2.266 D-31
8.609 D-33
6.242 D-34
1.484 D-35
7.145 D-37

I' = 12.0
3.564 D-28
2.675 D-28
1.082 D-28
1.264 D-29
5.104 D-31
1.949 D-32
1.434 D-33
3.561 D-35
1.805 D-36

I' = 16.0
7.145 D-28
4.897 D-28
i.876 D-28
2. 198 D-29
8.428 D-31
2.538 D-32
1.438 D-33
2.977 D-35
1,610 D-36

3.136 D-30
2.168 D-30
8.719 D-31
i.255 D-31
7.965 D-33
4.855 D-34
5.454 D-35
2. 182 D-36
2.301 D-38

1.116 D-29
8.332 D-30
3.486 D-30
4.897 D-31
3.060 D-32
2.004 D-33
2.592 D-34
1.652 D-35
1.087 D-36

2.510 D-29
1.874 D-29
7.842 D-30
1.102 D-30
6.901 D-32
4.562 D-33
5.997 D-34
3, 954 D-35
2. 720 D-36

5.014 D-29
3.465 D-29
1.394 D-29
2.009 D-30
1.287 D-31
8.195 D-33
9.955 D-34
4.697 D-35
9.891 D-37

1.565 D-32
1.165 D-32
6.589 D-33
2.301 D-33
4.506 D-34
6.173 D-35
1.170 D-35
8.356 D-37
1.045 D-38

5.865 D-32
4. 199 D-32
2.259 D-32
7.751 D-33
1.525 D-33
2, 073 D-34
4.073 D-35
4. 746 D-36
4.365 D-37

1.317 D-31
9.433 D-32
5.075 D-32
1.743 D-32
3.441 D-33
4. 729 D-34
9.403 D-35
1.102 D-35
2.044 D-36

2, 486 D-31
1.852 D-31
1.048 D-31
3.668 D-32
7.248 D-33
1.029 D-33
2.026 D-34
1.570 D-35
4.032 D-37

1.556 D-30
1.143 D-30
5 926D31
1.550 D-31
1.946 D-32
1.768 D-33
2.507 D-34
1.290 D-35
1.443 D-37

5.529 D-30
4.043 D-30
2.083 D-30
5.413 D-31
6.830 D-32
6.495 D-33
1.029 D-33
8.708 D-35
6.532 D-36

1.243 D-29
9.090 D-30
4.682 D-30
1.218 D-30
1.541 D-31
1.482 D-32
2.383 D-33
2.067 D-34
I.610 D-35

2.480 D-29
I .822 D-29
9.447 D-30
2.474 D-30
3.141 D-31
2.982 D-32
4.523 D-33
2.664 D-34
5.972 D-36

6, 436 D-32
4. 722 D-32
2.580 D-32
8.537 D-33
1.654 D-33
2.401 D-34
4. 187 D-35
1.927 D-36
1.881 D-38

2. 758 D-31
1.952 D-31
1.024 D-31
3.474 D-32
7.405 D-33
1.180 D-33
2.384 D-34
2.023 D-35
1.303 D-36

6.630 D-31
4. 707 D-31
2.502 D-31
8.731 D-32
i.877 D-32
2.960 D-33
6.049 D-34
5.360 D-35
3.515 D-36

1.210 D-30
8.979 D-31
5.084 D-31
1.800 D-31
3.541 D-32
4.993 D-33
8.870 D-34
4.466 D-35
4. 747 D-37

(B) k = 200, m = 0.1056

I' = 40.0
0
0.5
1.0
2.0
4.0
7.0

10.0
15.0
20.0

5.797 D-28
4.249 D-28
1.843 D-28
2. 718 D-29
1.606 D-30
1.177 D-31
I.934 D-32
1.973 D-33
3.006 D-34

P = 80.0

4.751 D-29
3.441 D-29
I ~ 454 D-29
2. 156 D-30
1.522 D-31
i.295 D-32
2.377 D-33
3.110 D-34
6.675 D-35

1.570 D-31
i.169 D-31
6.608 D-32
2.308 D-32
4.550 D-33
6.499 D-34
1.374 D-34
2.179 D-35
6.249 D-36

1.590 D-29
1.174 D-29
6.139 D-30
1.632 D-30
2. 181 D-31
2.460 D-32
5.068 D-33
7.939 D-34
2.045 D-34

4.746 D-31
3.487 D-31
i.908 D-31
6.363 D-32
1.303 D-32
2.415 D-33
7.080 D-34
1.637 D-34
5.266 D-35

0
0.5
1.0
2 ' 0
4.0
7.0

10.0
15.0
20.0

1.889 D-27
1.515 D-27
6.902 D-28
1.003 D-28
5.802 D-30
4.348 D-31
7.551 D-32
8.783 D-33
1.587 D-33

1.560 D-28
1.237 D-28
5.513 D-29
7.988 D-30
5.369 D-31
4.529 D-32
8.460 D-33
1.168 D-33
2.682 D-34

5.889 D-31
4.216 D-31
2.267 D-31
7.779 D-32
I.538 D-32
2, 142 D-33
4.406 D-34
6.810 D-35
1.941 D-35

5.604
4. 118
2. 135
5.605
7.342
8.025
1.636
2.622
7.094

D-29
D-29
D-29
D-30
D-3I
D-32
D-32
D-33
D-34

2.031 D-30
1.440 D-30
7.558 D-31
2.574 D-31
5.891 D-32
1.197 D-32
3.616 D-33
8.321 D-34
2.657 D-34
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TABLE V.I. (Continued)

Se
coherent

Proton
elastic

Neutron
elastic

Be Quasi-
elastic

Proton
inelastic

0
0.5
1.0
2.0
4.0
7.0

10.0
15.0
20.0

0
0.5
1.0
2.0
4.0
7.0

10.0
15.0
20.0

P = 120.0

4.439 D-27
3.563 D-27
1.615 D-27
2.301 D-28
1.306 D-29
9 ~ 783 D-31
i.699 D-31
1.977 D-32
3.573 D-33

P = 160.0

1.069 D-26
7.728 D-27
3.276 D-27
4.462 D-28
2.570 D-29
1.883 D-30
3.095 D-31
3.160 D-32
4.825 D-33

3.599 D-28
2.845 D-28
1.255 D-28
l.798 D-29
1.208 D-30
1.019 D-31
1.905 D-32
2.630 D-33
6.043 D-34

8.033 D-28
5.728 D-28
2.355 D-28
3.451 D-29
2.436 D-30
2.076 D-31
3.814 D-32
4.999 D-33
1.075 D-33

1.325 D-30
9.485 D-31
5.100 D-31
I.750 D-31
3.462 D-32
4.827 D-33
9.942 D-34
l.538 D-34

. 4.383 D-35

2.509 D-30
1.868 D-30
I.056 D-30
3.691 D-31
7.284 D-32
1.045 D-32
2.221 D-33
3.532 D-34
1.011 D-34

1.261 D-28
9.267 D-29
4.804 D-29
1.261 D-29
1.652 D-30
i.808 D-31
3.687 D-32
5.911 D-33
1.600 D-33

2 545 D 28
I .879 D-28
9.820 D-29
2.610 D-29
3.492 D-30
3.951 D-31
8.160 D-32
1.280 D-32
3.299 D-33

4.983 D-30
3.548 D-30
1.885 D-30
6.631 D-31
i.609 D-31
3.469 D-32
1.073 D-32
2.407 D-33
7.270 D-34

I .038 D-29
7.732 D-30
4.399 D-30
I.630 D-30
4.043 D-31
8.922 D-32
2.713 D-32
5.462 D-33
1.455 D-33

(C) k = 20, ))s = 0.1056

0 = 0.0
2
4
6
8

10
12
14
16
18

2

6
8

10
12
14
16
18

2
4
6
8

10
12
14
16
18

1.086 D-29
4.467 D-29
9.452 D-29
1.584 D-28
2.418 D-28
3.564 D-28
5.146 D-28
7. 145 D-28
8.787 D-28

0 = 0, 1

3.569 D-31
7.050 D-32
1.732 D-32
5.064 D-33
1.593 D-33
4.892 D-34
1.311 D-34
2. 706 D-35
4.013 D-36

0 = 0.2

1.223 D-32
8 ~ 391 D-34
9.414 D-35
1.348 D-35
2.318 D-36
4.651 D-37
1.050 D-37
2.606 D-38
6.805 D-39

7.710 D-31
3.136 D-30
6.640 D-30
1. .116 D-29
1.705 D-29
2.510 D-29
3.614 D-29
5.014 D-29
6.225 D-29

3.461 D-32
1.017 D-32
3.392 D-33
1.308 D-33
5.706 D-34
2. 708 D-34
1.275 D-34
4.290 D-35
0.0

2.258 D-33
3.100 D-34
6.169 D-35
1.535 D-35
3.659 D-36
4. 168 D-37
0.0
0.0
0.0

4. 126 D-33
1.565 D-32
3.382 D-32
5.865 D-32
9.082 D-32
1.316 D-31
1.835 D-31
2.486 D-31
3.301 D-31

7.272 D-34
5.277 D-34
2.870 D-34
1.479 D-34
8.150 D-35
5.032 D-35
3.230 D-35
1.446 D-35
0.0

1.506 D-34
4.398 D-35
1.290 D-35
4.474 D-36
1.348 D-36
1.726 D-37
0.0
0.0
0.0

4.204 D-31
i.556 D-30
3.260 D-30
5.529 D-30
8.496 D-30
1.243 D-29
1.772 D-29
2.480 D-29
3.373 D-29

4 ~ 770 D-32
2.367 D-32
1.005 D-32
4.428 D-33
2.164 D-33
1.166 D-33
6.390 D-34
2.439 D-34
0.0

6. 156 D-33
1.186 D-33
2.797 D-34
8.148 D-35
2. 138 D-35
2.530 D-36
0.0
0.0
0.0

1.496 D-32
6.436 D-32
1.503 D-31
2. 758 D-31
4.452 D-31
6.630 D-31
9.286 D-31
1.210 D-30
1.303 D-30

2.233 D-33
1.932 D-33
1.345 D-33
8.589 D-34
5.263 D-34
3.098 D-34
1.560 D-34
4.054 D-35
0.0

4.031 D-34
1.712 D-34
5.849 D-35
1.884 D-35
4.879 D-36
4.861 D-37
0.0
0.0
0.0

(D} k = 200, gs = 0.1056

e = 0.0
20
40
60
80

100
120
140
160
180

1.679 D-28
5.797 D-28
1.150 D-27
1.889 D-27.
2.909 D-27
4.439 D-27
6.854 D-27
1.069 D-26
1.605 D-26

1 .326 D-29
4.751 D-29
9.502 D-29
I.560 D-28
2.389 D-28
3.599 D-28
5.421 D-28
8.033 D-28
1.099 D-27

4. 137 D-32
1.570 D-31
3.395 D-31
5.889 D-31
9.125 D-31
1.325 D-30
1.847 D-30
2.509 D-30
3,344 D-30

4 ~ 383 D-30
1.590 D-29
3.312 D-29
5.604 D-29
8.609 D-29
i.261 D-30
1.804 D-28
2.545 D-28
3.549 D-28

1.109 D-31
4.746 D-31
1.106 D-30
2.031 D-30
3.295 D-30
4 ~ 983 D-30
7.241 D-30
1.038 D-29
1.526 D-29
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TABLE V.1. (Continued)

Be
coherent

Proton
elastic

Neutron
elastic

Be Quasi-
elastic

Proton
inelastic

20
40
60
80

100
120
140
160

0 = 0.1

4.868 D-35
1.127 D-36
6.332 D-38
5.688 D-39
6.688 D-40
8.885 D-41
1.152 D-41
1.325 D-42

1.697 D-35
1.192 D-36
1.161 D-37
3.093 D-39
0.0
0.0
0.0
0.0

2.306 D-36
3.394 D-37
4. 753 D-38
1.417 D-39
0.0
0.0
0.0
0.0

6.262 D-35
6.204 D-36
7.021 D-37
1.946 D-38
0.0
0.0
0.0
0.0

1.177 D-35
1.397 D-36
1.521 D-37
4.466 D-39
0.0
0.0
0.0
0.0

20
40
60
80

100
120

4.528 D-38
3.510 D-40
1.257 D-41
8.243 D-43
7.386 D-44
8.687 D-45

8.198 D-38
0.0
0.0
0.0
0.0
0.0

3.412 D-38
0.0
0.0
0.0
0.0
0.0

4.985 D-37
0.0
0.0
0.0
0.0
0.0

7.213 D-38
0.0
0.0
0.0
0.0
0.0

For the coherent scattering from a nucleus we set m~ ——

m; = Am„, for the elastic scattering from a proton we set
mf = m; = ns„, and for the meson production from a proton
we set m, = m„and m~ = m„+ m . The computer has to
be instructed to skip the calculation unless the conditions

X = m, k —mfm —(mf' —m, ')/2

S = m,2+ 2km, .

k& k„„„and k„„„)0
are satished.

For the calculation of

(~ 2) D p;„calculated according to the above formula is less
than zero, then p;„= 0.

The total cross section 0- is calculated from

do—= 2'
dp

dr
dcos0,

, e . dQdp
(5 3)

Pmax da
0 dp&

&min

(5.8)

we need to know cos H„„„and the allowed range of p. In
order to obtain cos 8, , we notice from Eq. (2.4) that for
given k,and p, U' increases with cos 8. Hence cos 8, can
be obtained by setting U to its minimum value, (mf + m)'.
Of course cos 0 can not be smaller than —1.Therefore we
first define k & ((2m + mt)' —m')/2m, , (5.9)

where p, and p;„are calculated according to the pre-
scription given above. In the calculation of both do./dp and
o-, the computer has to be instructed to skip the calculation
unless the threshold condition,

cos 0, ' = P(mt' —m ) /2 + mme

—m, (k —E) + kE)/(kp),

cos0, = cos0, ', if cos0, ' ) —1; (5.5)

cos 8 „=—1, if cos 8,„' & —1. (5.6)

The allowed range of momentum p in Eq. (5.3) can be
obtained by setting U' = (mq+ m)' and cos8 = 1. We
obtain:

p, = PkX W (k + m;) (X' —m'S)'t')/S,
min

(5.7)

where

which is obtained by setting U' = (mt + m)'. Then the
desired expression for cos 8, is

is satisfied.

B. Energy angle distributions

The values of do/dQ dp for photoproduction of muons
are given in Table V.1. Because of the limitation of space,
only two incident energies, k = 20 GeV and k = 200 GeV,
are shown. The cross sections at large angles are also given
because they are important background for the heavy
lepton experiment. Tables V.1A, 8, C, and D are sufficient
to illustrate most of the interesting features of the energy
angle distributions of muons. We make the following com-
ments on Table V.1:

(i) From Eq. (3.5) with X given by Eq. (3.76) we see
that the width at half-height is roughly at 8 = m/p, when
the form factor is equal to unity. As t;„ increases, the
nuclear form factors make this width smaller and the cross
section falls off much faster than 0 4 at large angles. From
the approximate expression of t;„give innEqs. (82) and
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TABLE V.2. d0./dOdp for photoproduction of heavy leptona (cm'/GeV/sr).

PB/ns
Be

coherent
Proton
elastic

Neutron
elastic

Be Quasi-
elastic

Proton
inelastic

& =200, m =4.0

0
0.2
0.4
0.6
0.8
1.0

0
0.2
0.4
0.6
0.8
1.0

P —40

1.093 D-36
9.178 D-37
5.471 D-37
2.418 D-37
8.650 D-38
2.754 D-38

P=SO
1.136 D-35
1.006 D-35
6.743 D-35
3.373 D-36
1.337 D-36
4.592 D-37

1.153 D-36
1.028 D-36
7.200 D-37
3.897 D-37
1.598 D-37
4.635 D-38

6.485 D-36
6, 070 D-36
4.786 D-36
3.—62 D-36
1.615 D-36
7.219 D-37

3.286 D-37
3.033 D-37
2.326 D-37
1.412 D-37
6.430 D-38
2.011 D-38

1.251 D-36
1.217 D-36
1.069 D-36
7.972 D-37
4.969 D-37
2.577 D-37

5.997 D 36
5.437 D-36
3.976 D-36
2.261 D-36
9.608 D-37
2.860 D-37

2.809 D-35
2.676 D-35
2 ~ 217 D-35
1.525 D-35
S.721 D-36
4. 166 D-36

3.993 D-37
3 ~ 564 D-37
2.528 D-37
1.405 D-37
5.915 D-38
1.745 D-38

2.509 D-36
2.315 D-36
i.814 D-36
1.202 D-36
6.693 D-37
3.109 D-37

0
0.2
0 4
0.6
0.8
1.0

P = 120

2.553 D-35
2.259 D-35
1.514 D-35
7.576 D-36
3.006 D-36
1.035 D-36

1.459 D-35
1.365 D-35
1.076 D-35
6.880 D-36
3, 633 D-36
1.625 D-36

2.818 D-36
2.740 D-36
2.405 D-36
1.793 D-36
1.118 D-36
5.798 D-37

6.322 D-35
6.019 D-35
4.985 D-35
3.429 D-35
1.961 D-35
9.375 D-36

6.322 D-36
5.834 D-36
4.564 D-36
3.000 D-36
1,649 D-36
7.544 D-37

0
0.2
0.4
0.6
0.8
1.0

P = 160

1.720 D-35
1.444 D-35
8.615 D-36
3.825 D-36
1.380 D-36
4.452 D-37

1.825 D-35
1.626 D-35
i.138 D-35
6.158 D-36
2.526 D-36
7.299 D-37

5.247 D-36
4.837 D-36
3.700 D-36
2.239 D-36
1.016 D-36
3.155 D-37

9.525 D-35
8.627 D-35
6.298 D-35
3.578 D-35
1.518 D-35
4.497 D-36

8.233 D-36
7.297 D-36
5.044 D-36
2.665 D-36
1.034 D-36
2.661 D-37

I'8) k = 200, nz = 6.0

0
0.2
0.4
0.6

1.081 D-38
8.824 D-39
4.885 D-39
1.966 D-39

1.432 D-38
1.021 D-38
3.207 D-39
2.370 D-40

6.412 D-39
4.608 D-39
1.472 D-39
1.103 D-40

8.932 D-38
6.387 D-38
2.019 D-38
1.500 D-39

5.069 D-39
3.606 D-39
1.131 D-39
8.184 D-41

0
0.2
0.4
0.6
0.8
1.0

P=SO

1.590 D-37
1.354 D-37
8.199 D-38
3.595 D-38
1.249 D-38
3.825 D-39

2, 805 D-37
2.451 D-37
1.526 D-37
5.868 D-38
1.121 D-38
5.809 D-40

1.081 D-37
9.648 D-38
6.315 D-38
2.564 D-38
5.095 D-39
2.698 D-40

1.662 D-36
1.463 D-36
9.260 D-37
3.629 D-37
7.030 D-38
3.673 D-39

1.141 D-37
9.798 D-38
5.920 D-38
2.224 D-38
4.097 D-39.
i.823 D-40

0
0.2
0, 4
0.6
0.8
1.0

0
0 ' 2
0.4
0.6

P = 120

3.560 D-37
3,029 D-37
1.834 D-37
8.052 D-38
2.808 D-38
8.643 D-39

P =160

1.650 D-37
1.346 D-37
7 ~ 480 D-38
3.049 D-38

6.282 D-37
5.484 D-37
3.405 D-37
1.305 D-37
2.469 D-38
1.219 D-39

1.990 D-37
1.387 D-37
3.937 D-38
1.476 D-39

2.426 D-37
2. 162 D-37
1.411 D-37
5.706 D-38
1.122 D-38
5.655 D-40

8.970 D-38
6.297 D-38
1.814 D-38
6.882 D-40

3.726 D-36
3.275 D-36
2.068 D-36
8.074 D-37
1 ~ 549 D-37
7 ~ 702 D-39

1.244 D-36
8.697 D-37
2.482 D-37
9.345 D-39

2. 702 D-37
2.309 D-37
1.369 D-37
4.923 D-38
8.167 D-39
2.671 D-40

4.445 D-38
2.806 D-38
5.333 D-39
6.353 D-42
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(83), we see that the forward peak as a function of / gets TABLE V.4. Total heavz lepton production cross section (cm'l.
narrower as nz'/Pkx(1 —x) ) is increased.

(ii) The total do/dQ dp from a Be target can be obtained
approximately from "Be Coherent" + "BeQuasielastic" +
9 & "Proton Inelastic. "The "Proton Inelastic" is the con-
tribution from the meson production parts of t/t/"~ and t/t/"~

given by Eqs. (858) and (859) . There are four protons and
five neutrons in Be. The meson production parts of neutron
form factors are slightly smaller (Kendall, 1972) than
those of protons. Therefore 9 & "Proton Inelastic" would
give a slight overestimate of the cross section. For "Be
Coherent" we have used the simple form factor given by
Eq. (849) instead of the more accurate ones given by Eqs.
(845), (846), (850), and (851). For small angles the
two kinds of form factors give almost identical results, but
at large angles the cross section given by the latter is much
smaller because of the exponential factors in the form fac-
tors. However, at large angles the coherent cross section is
negligible compared with quasielastic and meson production
parts of the form factors.

(iii) At large angles "Proton Elastic" is comparable to
"Proton Inelastic, "even though at smaller angles the latter
is negligible compared with the former.

GeV
k

n~ = 0.205
20
40

100
200

nz = 0.5
20
40

100
200

m =1.0
20
40

100
200

m = 2.0
40

100
200

w = 4.0
100
200

10 "
1.611
2.047
2.579
2. 787

10 "
0.902
1.913
3.784
5.487

1{j—33

0.170
0.797
3.014
5.857

10 "
P.053
Q. 764
2.963

10 3'

0.243
2.856

1{j—31

1.267
1.551
1.926
2. 177

1{j-33

1.607
2.604
4. 122
5.352

10 "
0.923
2.293
5.063
7.698

10 "
0.634
3.404
7.396

10 "
0.371
2. 758

10 "'
1.546
1.557
1.563
1.565

10 '4

1.342
I .536
1.672
1.717

10 "
1.958
3.070
4.014
4 ' 442

10 "
2 ' 085
6.293
8.781

10 37

1.498
7.990

20—31

1.081
1.134
1.171
1.184

2 P—33

4, 443
5.895
7.324
8.034

10 "
P.410
0.814
1.358
1.703

10-34

0.350
1.420
2.472

10—35

0.223
1.432

2 {j—33

6.114
6.336
6.044
5.683

10 '4

3.559
5 ' 355
6.846
7.161

20—34

0.288
0.728
1.343
1.664

10 "
0.234
1.290
2.353

1{j—36

0.140
1.131

10 '0

1.774
2.238
2. 750
2.956

1{j—32

1.666
2.984
5.133
6.934

10 "
0.839
2.266
5.578
9.057

10 '4

0.614
3.345
7.553

10 "
0.374
2.735

Be-
Be Proton Neutron Quasi- Proton Be

coherent e]astic elastic elastic inelastic total

TABLE V-3. do/dp (cm'/GeV).

Be Proton Neutron Be quasi- Proton
I' (GeV) coherent elastic elastic ela, stic inelastic

m = 6.0
100
200

IP—38

0.376
6.932

1{j—38

0.006
9.975

10 "
0.003
4. 178

10 "
0.004
6.079

1P—38

0
3.826

1{j—36

0
1.021

m = 0.1056 GeV
k = 20GeV

1.99
5.97
9.95

13.93
17.90

2 {j—32

7. 78
8.92
8.77
8.92
7.90

2.00
6.00

10.00
14.00
18.00

2 {j—32

1.49
1.34
1.29
1.43
1.61

m = 4.0 GeV
k = 200 GeV

19.5
58.5
97.5

136.5
175.5

10 '8

0.10
1.85
3.03
2.09
0.21

m = 0.1056 GeV
k = 200 GeV

10 "
6.35
6.85
6.66
6.84
6 ' 42

IP—33

1.16
1.09
1.04
1.11
1.17

10 "
0.14
1.91
2.50
2.05
0.33

10 "
8.90
7.20
6.63
7.17
8.79

2 {j—36

8.92
7.23
6.66
7.22
8.90

'10—39

0.60
5.63
6.48
5.87
1.36

2 Q
—33

6.16
5, 32
4 ' 94
5.29
6.12

1Q
—34

6.72
5.51
5.10
5 ' 51
6.72

10 "
0.08
1.00
1.23
1.06
0.20

1P—34

2.77
3.06
3.24
3.68
3, 41

10—35

2. 10
2.29
2.46
3.04
4.54

10 '8

0.04
0.72
1.04
0.93
0.10

(iv) The effect of the Pauli exclusion principle can be
obtained by

Pauli Suppression

"Be Quasielastic"
4 && "Proton Elastic" + 5 & "Neutron Elastic"

This ratio is a,lmost zero at small angles and unity at large
angles.

(v) At large angles the magnetic form factor of the
proton dominates the cross section because the ratio of the
cross sections from "Proton Elastic" to "Neutron Elastic"
is roughly given by the ratio (p„/p, „)' = (2.79/1.91)' = 2.13.

(vi) Tables V.1.C and V.1.D give the momentum dis-
tributions of muons at angles 0 = 0, 0.1, and 0.2 rad. We
see that at 0 = 0 there are more high-energy particles than
low-energy ones, whereas at 0 = 0.1 and 0.2, the opposite
is true. The entries "0.0" in the cross sections mean that
they are not kinematically allowed. Since we have ignored
the Fermi motion in evaluating "Be Quasielastic, " the
nonphysical regions of "Be Quasielastic" are identical to
those of proton elastic. If Fermi motion is properly taken
into account, these zeroes will be replaced by some finite
numbers.

m = 6.0 GeV
k = 200 GeV

19.2
57.5
95.8

134.2
172.5

10 40

0.14
4. 11
8.06
5.30
0.47

10—39

0.00
0.56
1.30
0.78
0.00

2 P—40

0.00
2.43
5.31
3.34
0.00

10 "
0.00
3.45
7.84
4.80
0.00

2 P—40

0.00
2.06
5.18
2.94
0.00

In Table V.2, the energy angle distributions of heavy
leptons are given. We note that the width at half-height is
roughly at p8/m 0.4 for m = 4 and 6, compared with
pe/m 0.8 0.9 for the muon production at k = 200.
For production of very heavy particles, the coherent pro-
duction is small compared with the incoherent production,
and the Pauli suppression is negligible.
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Photon energy
GeV Proton elastic Proton inelastic Proton total

nz = 5
500

1000
1500
2000

)m =10
500

1000
1500
2000

4.043 X 10 "
9.592 X 10 "
1.404 X 10 "
1.767 X 10 "

2. 111 X 10—'s

2. 702 X 10-»
6.325 X 10 »
1.014 X 10 "

1.488 X 10 "
2.896 X 10 "
3.693 X 10-3~
4. 189 X i0 "

7.821 X 10 '9

1.018 X 10-»
2.289 X 10 "
3.480 X 10 "

5.531 X 10-36

1 249 X 10 "
1.773 X 10 "
2.186 X 10-»

2.893 X 10 '8

3.720 X 10-»
8.612 X 10 "
1.362 X 10 "

m=15
1000
1500
2000

I = 20
1000
1500
2000

4.563 X 10 '9

3.528 X 10 '8

8.860 X 10 '8

4.860 X 10 4'

6.616 X 10-4o

5.328 X 10-»

1.603 X 10 " 6. )66 X 10 "
1.267 X 10 '8 4. 795 X 10 '8

3.227 X 10 " 1.209 X 10 "

1.619 X 10 4' 6.050 X 10 4'

2.249 X 10 ' 8.865 X 10 '
1 811 X 10 " 7. 139 X 10 "

TABLE V.5. Total heavy lepton production cross section (cm')
from proton at PEP energies.

Hills Lee helped greatly in debugging many of our com-
puter programs. Dr. D. Tompkins read the earlier version
of the manuscript and suggested numerous improvements.
The earlier manuscript of this paper dealt mostly with pair
production of Inuons and heavy leptons, and only very
crude treatments were given for electron pair production
and bremsstrahlung. The fairly comprehensive treatment
of the latter two subjects given in this paper was prompted
by an anonymous referree who insisted that they should be
treated more thoroughly. I am pleased in the end because
these seemingly well known subjects have indeed many
uncertainties in practical application. I hope this paper
clarified many of them. The author wishes to thank Dr.
~ illiam T. Toner of Rutherf ord Laboratory and Dr.
Hartwig Spitzer of. DESY for pointing out errors in the
manuscript.

APPENDIX A. MINIMUM MOMENTUM
TRANSFER

Let us consider a general interaction shown in Fig. 3 and
define a momentum transfer squared t as:

C. Energy distribution
t = —(p, —p, )' = —(p, —p, )'. (A1)

In Table V.3, the numerical values of da/dp a, re given.
The values of p chosen are

I.et us further define

p'= M', p"= M.', p"= (h, +h, +" )-= M,

p = pmin + ~V(pmnx . pmin) 0 ~ 1~ (gi+ g~+. )' = M42 and s = (p + p)'
(pa+ p4)'.

p4

where cV = 0.1, 0.3, 0.5, 0.7 and 0.9, and p„„„,„„.„are ob-
tained from Eq. (5.7) using m, = nzf = Anger. The impor-
ant thing to notice is that, for muons, these distributions t ' m' ' um when P3 is Parallel to P~. Hence in the labora-

are almost fiat with a slight dip in the middle and both
ends. For heavy leptons, the distributions are still- quite
monotonous, except for a slight bulge near the middle. = 2EiE3 —2pip3 —Mi2 —Mp

D. Total cross sections
235/2+4 ~22 ~42

= 2M'(Ei —E3) —(M42 —Mp). (A2)
The total cross sections are given in Table V.4 and Table

V.5. "Be Total" in Table V.4 is calculated by the approxi-
, mation formula:

»l»ng Eq. (A2) for E3 and substituting its value back
into Eq. (A2), we obtain

"Be Total" = "Be Coherent" + "Be Quasielastic"

+ 9 && "Proton Inelastic. "

It was a surprise to us to find out that the "Proton Inelastic"
is so unimportant compared with "Proton Elastic, " even
for production of very heavy leptons (m = 20 GeV) a,t very
high energy (k = 2000 GeV). The ratio of the two con-
tributions is roughly 1/3 according to Table V.5. Table
V.4 covers the energy range of the "Positron-Electron-
Proton" colliding beam machine (PEP) being proposed by
SLAC and LBL.
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Expanding by Taylor series the square root terms in Kq. Assuming E&)) m, and E3))m„we have
(A3) up to (M,2/s)', we obtain

843

s '[(M42 —M22) (M32 —Mi2) + s '(M32+ M4'
t;„m,'(Ei —E3) '/(E, E3) . (A11)

—Mi2 —M~') (M32M4' —Mi2Mg') ).
This equation shows that:

(a) t;„=0 if Mi2 = M3' and M2' ——M4'.

(b) t; s 'M22(Mp —Mi2)'if M22 = M4'

and M3' Q M~2.

(c) t;„s—'(M4' —M~') (Ma' —Mi')

f M22 ~ M42 and M32 ~ M12 ~

(A5)

(A6)

%e have obtained t;„in the above assuming M3 is fixed
and p3 comes out in the forward di ection. In the pa, ir pro-
duction experiment where only one of the pair of particles
is detected at a finite angle, t;„is given by Eq. (2.9) . The
approximate expression for this t;„ is derived in Appendix
A of Kim and Tsai (1973) and the result is given in Eqs.
(82) and (83) of Appendix 8.

APPENDIX B. ATOMIC AND NUCLEAR FORM
FACTORS

(A7)

Comparing Eq. (A6) with Eq. (A7), we can understand
why the deep inelastic nucleon form factors contribute so
little to the total production cross section of the heavy
lepton pair. In other words, from the kinematical considera-
tion alone we can understand why nature does not like to
have the target fragmentation and the projectile fragmen-
tation simul taneoiisly.

Case 2. Photopair production from a heavy nuclei:

der(e + Z —+ e'+ anything
dO' dE'

a' cos'%2 0
W2+ 2 tan' —Wi4E' sin g/2 2

(81)

W~ and W2 are normalized such that the cross section for
electron scattering from the target is given by (mass of
electron ignored):

M2= 0 M2&4m2

E, = k»M3, k»M, —M„and M, »M,, —M, .

M34 M'3'(M4 —M2)-.-4k + (As)

This relation can be derived in the following wa, ~: In the
center-of-mass system, we have

t;.= —(k —p,);.' = —Mp+ 2k(E3 —pa). {A9)

%hen the target is a proton and the laboratory incident
energy is more than a few GeV, Eq. (A4) can easily be
satisfied. However when the target is a heavy nucleus, s is
often comparable to M2' and M42 in magnitude and the
result of case 1 may not be used. However, under the con-
dition specified above, we can show that

Since the integration with respect to t in Eqs. (2.7) and
(2.S) is dominated by t very close to t;„, the value of t
tells us what form factors need to be considered. Roughly
speaking, if t;„ is comparable to the atomic radius
squared, then we have to consider the atomic form factor;
if t;„' is comparable to the nuclear radius squared then
we have to consider the elastic nuclear form factors; if

is comparable to the internucleon distance within a
nucleus, then we have to deal with the quasielastic form
factors; if t;„'~' is larger than twice the Fermi momentum
of the nucleons within the nucleus, then we can ignore the
Pauli suppression; if t;„is so large that the elastic nucleon
form factors are much less than unity, then the meson
production form factors should be considered. There are
tremendous cancellations among di fferent terms in Eq.
(2.9) for the expression of t;„.An approximate expression
for t;„is [see Appendix A of Kim and Tsai (1973)):

Expanding p3 by Taylor series we have

//13
~ Eg (1 —Mp/2E32 + M34/SE34) .

Hence

tmin ~ "min + 2&(tmin ) (82)

where

tm;n' = (k p)'/(k —E)' ~~ m'(1+ l)'/4k'x'(1 —x)' (83)
t;„=M,2('k —E,) /E, + M, 'k/(4E, '). (A10)

(E and k —E)» [(k.p) '/' k.p/m, , m and 6). (84)Case 3. Electroproduction In this c. ase pi and p3 denote
the initial and final electrons respectively, hence M& =
M3= m, and From Eqs. (82) and (83), we observe the following:

with y = E/m l = y'0' x = E/k alld b, = (m ' —mi')/
j i/2 / j/, —, (2m, ) . This approximate expression for t;„can be derived

p (p + p ) / i / 2 M $/ i / 2 + $ (M 2 M 2 + M 2) / i / 2 u n d er th e con d ition s

into Eq. (A10), we obtain Eq. (AS).

t--= (I p I

—
I p I)' —(E —E)'

= 2(EiE3 —
I pi I I p~ I

—m')
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(i) Pair production cross section accompanied by the
target excitation is greatly suppressed due to the second
term in Eq. (82).
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(ii) t;„ is smallest when 6 = 0, 0 = 0, and x = 1/2.
Hence the true minimum value of 3 is

t;„(5= 0, 8 = 0, g = 1/2) = 4m'/h2.

W inel(t m 2)

8

lp(„l*(rl ~ ~ r, ) Q exp (iq r )
ny"-0 j=1

(iii) t;„is independent of m, if the transverse momentum
of the detected lepton is much larger than its mass (i.e.,
l » 1).

(iv) For electron pair production, the exact expression
for t;„given by Eq. (2.9) cannot be used in the energy
and angular range in which we are interested, because of
the round off errors of the computer. In all of our numerical
calculations, except when dealing with electrons, we use
exact expressions for t; . The, approximate expression for
t;„given by Eqs. (82) and (83) is very accurate when we
are dealing with electrons.

We give in the following expressions for W~ and S'2 used
in our calculation.

2

X f, (r," r, ) d'r, d'r, b(Z„—Z. —Z.),

where t = q' and mt2 ——m,'+ 2qom, —t.

Equations (85)-(88) can be obtained by comparing the
expressions for the cross section given by (81) with the
expression for the cross sections of fast electron-atomic
scattering given for example in Mott and Massay's book
(1965). Two things should be mentioned about Eq. (88):
(1) If we include the ground state )Po, then P„'s form a com-
plete set of states. Hence from the closure theorem we have

fW2'"el(t, mt2) dqo

A. Atomic form factors

The existence of atomic electrons outside a nucleus has
two effects: (1) The nuclear Coulomb field is screened by
these electrons so that its effective strength is reduced; (2)
Atomic electrons also serve as the targets from which the
scattering takes place. For pair production of muons or
heavier particles, the existence of atomic electrons can be
ignored completely because (1) t;„' is much smaller than
the square of the atomic radius hence the screening effect is
negligible and (2) the threshold energy required to produce
a pair of heavy particles from an atomic electron is too high.
For example from Eq. (5.9) we see that the minimum
photon energy required to produce a muon pair from an
atomic electron is 40 GeV. The existence of atomic electrons
can also be ignored in the electron pair production at large
angles where t;„ is such that the screening becomes neg-
ligible and kinematics )see Eq. (5.4) j are such that the
production in electron field is impossible. Thus only for
electron pair production near the forward angle need we
consider the atomic form factors.

Vy'hen momentum transfer is small compared with
electron mass, we can ignore S"j compared with 82. S'2
for an atom consists of two parts: elastic and inelastic.
I.et $0(r, ~ ~ r, ) be the ground state wave function of the
atom and i)t„(ri ~ ~ r, ) be the wave function for the )2th
excited state. I.et us decompose S'2 into elastic and inelastic
parts:

z

X g exp 2q (r, .—r, ) d'ri ~ d'r, .
jwi

(89)

(2) Since we are treating the atomic system nonrelativis-
tically, we can identify qo with 6 defined previously. If
electrons were free, then f and qo would be related by go

——

t/(2m, ). For bound electrons, we expect W2'""(t, m(') to
have a quasielastic peak at qo

——t/(2m, ). Now we are
interested in t;„'((m,2, so the second term in Eq. (82)
can be ignored compared with the first term, even though
we are dealing with the inelastic processes. If we approxi-
mate W2'""(t, mt') by a b function at the quasielastic peak,
we may write

W2(nel(t m~2) 2m (t) (m~2 m 2) G2inel(t) (810)

F( tx) ) —0 G el( tx) ) Z2 G inc)( er) )
—Z

F(0) = Z G "(0) = 0 G '""(0) = 0 (811)

where G2'""(t) is given by (89).
G2" (t) can be regarded as the form factor associated with

the scattering from a screened Coulomb field of a nucleus,
whereas G2'""(t) can be regarded as the form factor asso-
ciated with the scattering from electron field screened by
the nucleus. From Eqs. (86), (87), and (89), we see
immediately the following properties:

W2(t, m ') = 2m, b(md2 —m(2)G2" (t) + W2'""(t mt')

(85)
The elastic part is

(86)

where

z

)r(t) = f ~
e, (r, r, ) ~'Z exp (ttt r;)d'r, ~ ~ d'r. . (87)

i=1

The inelastic part is
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G2"(t) and G2'""(t) can be calculated from the ground state
wave function Po of an atom. For the hydrogen atom Po is
well known, hence these form factors can be calculated
readily. For heavy atoms )Po obtained by the Thomas —Fermi
method is used. When Z is small, the atomic form factors
are calculated by the Hartree —Fock method. A good refer-
ence to these calculations can be found in IeIereatioeal
Tables for I Ray Crystallography-, Vol. III (1962). In these
Tables the values of F(q) for various elements are given
numerically up to q = 1.3 X 42r L ' = 1.3 X 24.797 keV,
whereas we need to know the values of F(q) up to q =
m, = 511 keV in most of our calculations, Fortunately,
F(q) is small compared with Z above the maximum value
of q given in the Tables and we are interested in

~

Z —F (q) l2
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in our calculations. Hence our calculation is not very sensi-
tive to the values of F (q) not tabulated in the tables. When
q is large, we expect F(q) to be determined by the K shell
electrons, which can be represented by hydrogenlike wave
functions in the 1s state. We have used hydrogenlike F (q)
in the region where it is not tabulated. In the following we
give details of various atomic form factors used in our
calculation.

3. Light Z elements (Z = 3 to Z = 7)

The elastic atomic form factors for''all elements are given
in the International Tables (1962) up to the value q =
1.3 )& (24.8 keV). In Table 8.1 the values of F(q) for
elements Z = 3 to 7 are shown. The values of F(q) beyond
q = 1.3 X (24.8 keV) can be obtained by using an analytic
form:

1. Hydrogen atom (Z = 1) F(q) = F(1.3) (1+ 1.3'c)'/(1+ tc)' (819)

@0
——(n.aoa) ' ecp ( —r/ao),

where ao ——137/re is the Bohr radius, we obtain from Eqs.
(87), (86), and (89)

F(t) = (a(Pt/4+ 1) ',

G2"(t) = (1 —F(t))', (E13)

Since there is only one electron in the hydrogen atom, the
last term in Eq. (89) is absent. Using the ground state
wave function of a hydrogen atom

where

c = ao'/(4Z') = 11.95518/Z' in units of (24.8 keV) '.

This form factor corresponds to the atomic form factor of
1s state.

There is no convenient table for the inelastic form fac-
tors. Also. it is rather inconvenient to use numerical tables
for the elastic form factors to compute various quantities
of interest. Therefore we determine 6rst what is the element
with the smallest Z for which the Thomas —Fermi method
still yields a reasonably accurate result. To this end, we
compute the radiation logarithm de6ned by

2. He atom (Z = 2)

(814)
L,.g =—Lp, (0) —

~4 ln Z]

L1 —F (q) /Z]-"q 'dq, —

(820)

(820')

P, = X' exp l
—q(r, + r, )/ao), (815)

where E' is the normalization factor, g = 1.6875, and ao is
the Bohr radius, ao = (nrr4)

Knasel (1968) investigated the total pair production
cross section from He atoms in detail. He used two kinds
of He wave functions, the radially correlated and the
uncorrelated models of Shull and LOwdin (1956). The
numerical difference in the total cross sections between the
two models is at most 0.2%%u~. Thus we shall use the simpler
version, the uncorrelated model, to calculate various quan-
tities. The wave function for the uncorrelated model is

/

where the function pi(0) is defined in Eq. (3.14). The
Thomas —Fermi —Moliere (TFM) model, which will be
treated in the next section, gives

L„d(TFM) = ln (184.15Z 't3). (821)

TABLE B.1. Elastic form factors of atoms J"(q). q in unit of
4m ~ = 24.797 keV.

In Table 8.2, the numerical values of L„q(TFM) and
L„d calculated using Table 81. and Eq. (819) are given
for elements with Z = 3 to Z = 7. The entries labeled
L„d(c~ 2c) are calcula, ted similarly to L„,a except that
the parameter c in Eq. (819) is replaced by 2c. This is

Substituting Eq. (815) into Eq. (87) and (89) we
obtain the elastic and inelastic atomic factors, respectively: Z=3

LI
Z= 4

Be
Z=6

C
G"' = EZ —F(t)]' (816)

and '

G inel Z PF(t) ]2/Z

where

F(t) = Z/L1+ ta,2/(4~'))' (818)

Letting Z = 1 and p = 1, we obtain the hydrogen form
factors. Hence the formulas obtained for pair production
and brehsstrahlung for He can be used to calculate the
corresponding quantities for hydrogen by changing these
parameters.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.50
0.60
0.70
0.80
0.90
1.0
1.1
1.2
1.3

3.000
2. 710
2.215
1.904
1.741
0.627
1.512
1.394
1.269
1.032
0.823
0.650
0.513
0.404
0.320
0.255
0.205
0.164

4.000
3.706
3.067
2.469
2.067
1.838
1.705
1.613
1.531
1.367
1.201
1.031
0.878
0.738
0.620
0.519
0.432
0.365

5.000
4. 726
4.066
3.325
2. 711
2.276
1.993
1.813
1.692
1.534
1.406
1.276
1.147
1.016
0.895
0.783
0.682
0.596

6.000
5.760
5.126
4 ' 358
3.581
2.976
2.502
2.165
1.950
1.685
1.536
1.426
1.322
1.218
1.114
1.012
0.916
0.821

7.000
6.781
6.203
5.420
4.600
3.856
3.241
2.760
2.397
1.944
1.698
1.550

Ar1A

1.350
1.263
1.175
1.083
1.005
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TABLE 8.2. Radiation logarithm.

2

2

me
2

L.ad' ~—
2

dt 1 4
Z 'G2"(t) —+ 1 =—— g1(0) ——ln Z

t 4 3

dt 1 8Z- G, (t) —+ 1 =—— P, (0'I ——ln Z
3

2
He

3
l.i Be

6
C

Lr~a
L„d' (Thomas —Fermi —Moliere)
L, d (c ~ 2c)
L, q (best estimate)

I d' ' (Thomas —Fermi —Moliere)
L, d' (best estimate)

5.310'
5.216

5.31

7.085
6.144'

4. 787'
4.985

4. 79

6.623
5.621'

4. 738b
4.850
4. 742"
4. 74

6.353
5.805g

4. 705b
4. 754
4. 715d
4. 71

6.161
5.924g

4.663b
4 ' 679
4.680d
4.68

6.012
6.012

4.606b
4.618
4.631d
4.62

5.891
5.891

4.544b
4.567
4.576d
4.57

5.788
5.788

' From Eq. (3.33).
Using Table B.i and Eq. {B19),' Using L„d ——In(184.15Z 1~').
Using Table B.1 and Eq. (B19) with c replaced by 2c.

' Using L«d' = ln(1194Z ~').
' From Eq. (3.35).
g Interpolated between the values of He and B.

L, d' =—4iLpi(0) —Win Z] (822)

1
= 1+—

2

me

Z—IQ inel([) ~
—i d~ (822')

where the function P, (0) is defined in Eq. (3.17) . The TFM
model, which will be treated in the next section, gives

done to check how sensitively L„d is dependent upon the
values of F (q) for large values of q. By comparing the values
of L„d(TFM), L„d, and L„d(c—+ 2c) in Table 8.2, we
conclude that I, q is quite insensitive to the values of
F(q) for q ) 1.3 && (24.8 keV) and also that the Thomas—
Fermi —Moliere method can be safely used even for
B(Z = 5). Since L„q is used for the definition of radiation
length, Eq. (3.66), we also give L„q(best estimate), which
represents the best estimate of this quantity to be used in
all the rest of the calculations.

Next let us consider the inelastic atomic form factors.
Since we have concluded above that the TFM model is
applicable for elements with Z & 5 for elastic form factors,
we shall assume that we can also use it to calculate the
inelastic form factors when Z & 5. The radiation logarithm
for the inelastic form factor is dehned by

between those for He and B. This problem is discussed in
Sec. IIIA4.

4. Thomas-Eermi-Moliere model

X
l
&0(ri r.) l'd&i ~ d&.

—= —(nZ/r) 4) (x), (824)

where x = r/a with a = 121Z ' '/m, . @(x) is the screening
function, which plays a central role in the Thomas —Fermi
method (Mott and Massey, 1965). @(x) is tabulated by
Fermi (Mott and Massey, 1965). An approximate analytical
expression representing @(x) is given by Moliere (1947):

y(x) = g a, exp ( b,x), — (825)

where

Let V(r) be the electrostatic potential at a point r from
an atomic nucleus. Then

L„d'(TFM) = ln (1194Z—"') (823) ng ——0.1, o,2 = 0.55, n3 = 0.35

L„z' for H and He can be calculated using Eqs. (3.35) and
(822). L»q' for Li (Z = 3) and Be (Z = 4) can be ob-
tained from the interpolation between its values for He
(Z = 2) and 8 (Z = 5); the results are given in Table
B.2.

bg = 6.0) b2 ——1.20) b3 = 0.30

Multiplying exp (iq. r) on both sides of Eq. (824) and
integrating it with respect to d'r, and squaring the whole
thing, we obtain

The elastic and inelastic radiation logarithms, I.„d and
I.„d', determine completely the behavior of radiation prob-
lems in the complete screening limit. Since all atomic models
give identical results for the no screening limit, we do not
have any problem in this limit. In the intermediate screen-
ing limit, the behavior of the functions X,i, X;„,i, pi(y),
Ip2 (7), Pi(e), and i' ~ (e) for Li and Be must lie somewhere

G "(~) = Z't @(x) sin qr dr

3 b. 2 —1 2

G (t) = Z'P gn, t+
i=1 8

Using Moliere's representation, Eq. (825), we have

(826)

(827)

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974



Yung-Su Tsai: Pair production and brernsstrahlung of charged leptons 847

where

a = 121Z '"/m. .

and 0 if Pp Q q/2. The volume of the sphere is of course
4irPp'/3. Now the maximum momentum Pp is a function of
r as given by Eq. (829). Hence the ratio of the available
phase space to the total phase space is

Heisenberg (1931) showed that the inelastic form factor
can also be expressed in terms of the screening function
@(x) as follows: 5= 1— rp 00

r'(Pp ——'q)'(P + q/4) dr r'P ' dr
0

G.,'."(p = Z(1— ",, (4{~))'" (832)

where rp is the solution of Pp(rp) = q/2. G2'"" is obtained
by simply multiplying Eq. (832) by Z. Writing Pp in
terms of @(r), andq in terms of v, we obtain

where v = q455m 'Z "' and xo is the solution of
(@(xp)/xp)'" = v. Let us give a simple derivation which
makes the physical meaning of Eq. (828) transparent.
If the electrons are completely free and there is no Pauli
exclusion principle, then we expect Gp'""(/) = Z. We now
show that the factor multiplying Z in Eq. (828) repre-
sents the suppression due to the Pauli exclusion principle.
Let us use the symbol I' to represent the momentum of an
electron in the atom. For a neutral atom a bound electron
must satisfy P'/2 rr4+ V(r) ( 0, hence the maximum
momentum denoted by I'0 is

G inel(() Z 1 D—i

L@(x)j»'x»' dx

(833)

(834}

Pp ——P—2m, V(r) j'i' (829)

Let the electrons be uniformly distributed in the phase
space. The number of electrons between r and r + dr is
then d2@/dx2 —@3/2x—1/2 (835)

Equation (833) is identical to Eq. (828), except for. the
factor D '. D is equal to unity in the true Thomas —Fermi
model, where the screening function @(x) satisfies

d p4xr' dr && 2,
y(pp 27K

and the boundary conditions @(~) = d@( pp }/dx = 0 and
@(0) = 0. Thus

(4w/3) (Pp —q/2)'(Pp + q/4) if Pp & q/2, (831)

TABLE B.3. Atomic Pauli suppression factor S.

S (Thomas —Fermi) S(Moliere)

where the factor 2 comes from the spin. The Pauli exclusion
principle says that not all these electrons can be excited
by a photon of momentum q because some of the final
states are already occupied. The portion of the phase space
excluded can be calculated by drawing two spheres, each
with a radius Po and the distance between the two centers
being q. The intersection of these two spheres is the excluded
region of the phase space, whose volume can be computed
easily to be

00 d2@ dp, CO

xdx= x ——Q = j..
dx dx

The Moliere representation of qb(x), Eq. (825), does not
satisfy the differential equation (835), hence it does not
yield D = 1, but gives D = 0.9360. In our calculation, we
shall use the Moliere representation and Eq. (833) instead
of Eq. (828). The function 5, defined in Eqs. (832) and
(833), represents the suppression factor due to the Pauli
exclusion principle. In Table 8.3 we give the numerical
values of 5 calculated from the true Thomas —Fermi model
by Bewilogua (1931) and Wheeler and Lamb (1939, 1956),
and our calculation using the Moliere representation. In the
calculation of 5 by a computer, the upper limit of the inte-
gration xp in Eq. (833) can be handled in the following way:

0.00
0.01
0.02
0.03
0.04
0, 05
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.O

13.8s
0.097
0.169
0.227
0.277
0.319
0.486
0.674
0.776
0.839
0.880
0.909
0.929
0.944
0.954
0.963

0.000
0.066
0.127
0.182
0 ' 232
0.277
0.452
0.652
0.761
0.828
0.872
0.903
0.924
0.940
0.952
0.961

(1) The integrand is set equal to zero whenever
[@(x)/xj'i' & v.

(2) xp is replaced by a function of v:

UP = (5v —4.5 ln v —2)/(1 —v + 3v'), (836)

which is slightly greater than xo.

From Table 8.3, we see that the suppression factor 5
(Moliere) is always less than 5 (Thomas —Fermi) . The
difference is quite significant when v is small. However the
quantities we are interested in are quite insensitive to this
difference. For example, the radiation logarithm for the

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974



Yung-Su Tsai: Pair production and bremsstrahlung of charged leptons

production in the electron field, TABLE 8.4.

me

5i7 '(/il+ 1,
aH = 122.8/nz,

azr' = 282. 4/zzz,

From {812)
From (814)

is equal to ln (1194Z '~s) if we use 5 (Moliere) whereas it
is equal to ln (1274Z 'zs) if we use 5 (Thomas —Fermi)
according to Wheeler and Lamb (1956). In the origina, l

paper of Wheeler and Lamb (1939) and all the subsequent
papers in which their results were quoted, the value
ln (1440Z 'ts) was used. Now ln (1194Z 't') differs from
ln (1274Z 't') by less than one percent when Z = 1. The
percentage difference increases with Z, but the contribution
of the production in the electron field becomes less important
compared with the production in the nuclear field as Z is
increased. Hence we shaH use 5 (Moliere) for elements
with Z & 5 because it is easier to handle by a computer
than 5 (Thomas —Fermi).

uH, ——90.8 Z 'i'jm,
aH, ' = 265.8 Z ziz/zzz,

aL„= 100.0 Z 'i'/nz,
= 418, 6 Z 'j'//m

azz, ——106 Z 'Zz/nz,

azz. ' = 571.4 Z ' 'Z/nz,

azz = 111.7 Z 'z%zz,

azz' = 724. 2 Z ziz/nz, -

F«m (81')
From (817)

From Tables (8.1) and (8.2)
From linear interpolation between gH' and

Qg

From Tables (8.1) and (8.2)
From linear interpolation between aH' and

Qg

Thomas —Fermi —Moliere or (Tables B.1 and
8.2)

Thomas —Fermi —Moliere

$. Sample atomic form factors I,.d' ——ln L2.718"'a'm. $. (841)

Since the elastic and inelastic atomic form factors are.
often very complicated and their values are often known
only numerically, they are not convenient to use in both
theoretical and practical calculations. L. I. Schiff (1952)
demonstrated that the simple elastic form factor of the type

Using the expressions for I.„d and L„~' for various atoms
in Table 8.2, we obtain the values for a and a'. For example
for a Thomas —Fermi atom, using Moliere representation,
we obtain

Gs" (,t) = Z'lpga'tz/(1 + a' t)') (838)
a = 184.15(2.718) 't'Z "'/m,

a' = 1194(2.718) '"Z "'/m

(842)

(843)
can yield numerical results for dzr/diaz, dk which are very
close to the values obtained from the Thomas —Fermi elastic
form factor, provided the parameter "a" is chosen so that
in the complete screening limit the expression for the energy
angle distribution of the bremsstrahlung do/dQz, dk agrees
with that obtained from a more respectable calculation. By
its construction, this form factor will yield results which
agree completely with the correct result in both the com-
plete screening and no screening limits. In the intermediate
screening region, Schiff found that there is at most 4%
difference in dzr/dOz, dk from the result using the Thomas—
Fermi form factor. We found that such a simple form can
also be used for the inelastic atomic factor, namely,

G inel(t) ZLa~zt2/(] + a&2t)2)

where the parameter u' is again determined such that in the
limit of complere screening one obtains the desired expres-
sion for da/diaz, dk. Compared with the results obtained
from using Z5 (Moliere) given by Eq. (833), the resultant
da/dk diaz, agrees completely in both the complete screening
and no screening cases (by its construction), and differs
at most by 4% in the intermediate screening region. We
also found that these simple form factors yield numerical
results for dzr/dk dQz, for H and He with similar accuracy
provided the parameters a and a' are chosen according to
the prescription given before.

An equivalent and yet more straightforward way of
evaluating the parameters a and a' in Eqs. (838) and
(839) is to compare the expressions for the radiation
logarithms, L„a and L„d'. Substituting Eq. (838) into
(820') and Eq. (839) into (822') we obtain

L„a = In L2.718't'am, g

The values of a and a' for light Z elements are shown in
Table V.4.

Because of their simple structure and also because they
give almost correct answers, these simple form factors have
many practical uses. This is very similar to the situation in
the elementary quantum mechanics course &here the square
well potential is sometimes used to illustrate the properties
of some complicated practical problems.

B. Elastic form factors of nucleons

We use the dipole approximation for the elastic form
factors of a proton and a neutron:

(1+ 2.79'r) j(1+r)

2m„5(m ' —m &)

(1+ t/0. 71)' '

1 91, /(1+ )

(844)

where r = t/(4m„') . The discussion of the accuracy of these
form factors can be found in the paper by R. Wilson (1972) .

C. Elastic form factors of nuclei

The elastic form factors of a nucleus can be written as

IVs(t, mP) = 2m;LiG.s(t)+rG '(t) }/(1+r)$5(m imsP)

(845)
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Wi(t, m ') = 2nz, rG '(t)5(mf2 —mp),

where r = t/4mP and the electric and the magnetic form
factors, 6, and G, are normalized such that

G,s(0) = Z',

and (Pratt, 1965)

(847)

G-'(o) = r(i + 1)/(3i)) (~'/~n)"I -', (848)

where j is the spin of the target and p,„is the nuclear dipole
magnetic moment in units of eh(2m„) ' —= nuclear magne-
'tOIl.

W&(coherent) = 2' 5(mf' —mP) Z'/(1 + t/d)' (849)

The nuclear magnetic dipole moment p for an arbitrary
nucleus is roughly given by Schmidt value, namely between
2.79 and —1.91. Now ~ is a very small number near t;„,
especially for heavy nuclei. In our calculation we ignore
lV& and v- when dealing with nuclear targets other than the
proton. The expression for tV~ used in our numerical calcu-
lation is

quasielastic peak. As far as we know, nobody has ever
tried to construct some smooth functions to represent the
local average of actual Wi(q', mf') and W2(q', mf') for
nuclei. Fortunately, in nuclear physics, the inelastic excita-
tion function is dominated by the quasielastic peak which
can be reproduced very well by the Fermi gas model as
shown by Moniz et al. (1971).Actually in the experiment
of Moniz et al. (1971), they measured the inelastic electron
scattering from various nuclei (Li to Pb) for an electron
incident energy of 500 MeV and a scattering angle of 60'.
In this kinematical region, hardly any discrete level or giant
resonance is visible in the spectra. It would be interesting
to see whether the Fermi gas model roughly reproduces the
local average of the inelastic spectra at smaller scattering
angles where discrete levels and the giant resonance peak,
as well as the quasielastic peak, show up. If we assume that
this is what happens in nature, we can use the expressions
of Wi(q', mi2) and W~(q', IP) given by Moniz (1969)
with the parameters given by Moniz et aL (1971) in the
calculation of the pair production. If one is interested only
in a very crude estimate of the cross section, one can make
one further approximation, namely, replacing the quasi-
elastic peak obtained by the Fermi gas model by a 6 func-
tion. This is done in order to avoid doing the numerical
integration with respect to mf in Eq. (2.7). Under this
approximation we have m~ ——m; = m„and

where d = 6/(1. 2 fermi A'i')' 0.164A 'i' GeV' The
advantage of this expression is that the integration with
respect to t can be done analytically.

For the particular case of Be nucleus (Z = 4, A = 9,j = 3/2, and it = —1.18), both the electric and magnetic
form factors are known experimentally (Rand, 1965) .

W quasi-elastic C(() LZW el + (A Z) W el)

W quasi-eiastic —C(t') LZW el + (A Z) W ei)

(852)

(853)

Ge ' = 16(1 —i at)' exp ( 32k)— where C(t) is the Pauli suppression factor given by C (t) = 1
(850) if Q& 2P = 0.5 Gev, and

C(t) = ',Q/Pp/1 —(1-/12) (Q/Pz)') (854)

Gmit, ' = 1 18' X 45 X (1 —25 @+ 314i") exp ( —32~). if Q ( 2PF, with Q defined by

(851)

We have computed the lepton production cross sections
from Be target using the simple expression Eq. (849) and
the more precise expression Eqs. (850) and (851). Be-
cause of the exponential factor in the latter, the form factors
decrease much more rapidly at large t for the latter than for
the former. However when t is so large that two form factors
are appreciably different, usually the incoherent processes
become more important than the coherent ones. Hence the
simple expression is adequate for estimating the total yield
if we add together all the contributions. The same comment
can be applied to the form factors of other nuclei.

Q = P/(2m„)'+ t.

The approximation of the quasielastic bump by a 6 function
is equivalent to ignoring the Fermi motion of the nucleons
within the nucleus. Since nucleons can move parallel as mell
as antiparallel to the direction of the incident photon, the
Fermi motion does not affect the gross features of the cross
section except near the threshold of the production.

E. Meson production form factors

In this case we assume the target to be completely in-
coherent, namely m, = m„,

D. Inelastic nuclear form factors
W2 (meson production)

= ZW2„(t, mi') + (A —Z) W2 (t, mis)

W, (meson production)

= ZWi„(f, mi') + (A —Z) Wi„(t, ntfs),

A nucleus when excited by an electron has many excited
levels and a broad bump called the quasielastic peak. In a
calculation such as what we are doing, it is impractical to and
consider the contribution from each excited level because
there are too many of them. The most logical thing to do is
to draw a smooth curve representing the local average of
the low lying excited levels, the giant resonance, and the

(856)
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where S'~„and t/t/'~„are the meson production form factors
from the proton target, and 8 ~„and R ~„are those from the
neutron target. The shadowing effect due to the vector
dominance mechanism and Pauli suppression due to the
exclusion principle are ignored because from the data(Ken-
dall, 1972) on e-nucleus scatterings, these effects are not
important in the meson production region. From the
deuteron data (Kendall, 1971), the neutron cross section is
slightly less than the proton cross section. The contribu-
tions to our production cross section from these form factors
are in general not very significant due to the expression for
t;„.Therefore only a very rough estimate of this contribu-
tion will be given. The neutron and the proton are assumed
to have the same cross section. For t/I/~„and t/t/~„, we use the
parameterization given by Suri and Yennie (1972):

mo4(mg —m„') 250 6m„'.(1 —x) 4

Wr, ——C ',"—97.5 +
(m ' + t)' (1 —1.26x + 0.96x')

(B58)

56.3 (mts —m ') tm '
Ws„——(1 + v'/t) ' Wt„+ C

(m, '+ t)'

(2m„v)

where

C = 10 4/P(0. 197)'cr~'Sm„),

v = (mts —m„'+ t)/(2m„),

x = t/(2m„v + m„'),

mp' ——0.585.

K. J. Kim compared this parameterization with all the
available data from SLAC-MIT ep inelastic scattering
with the help of an IBM 2250 scope. The fits are excellent
in the smooth region, whereas in the resonance region the
curves go through roughly the local average of the resonance
peaks. Since in our calculation these curves are integrated,
we expect no gross error to occur by using this fit.

!Uote added irt proof: The most up-to-date compilation of
the elastic and inelastic atomic form factors can be found
in. "Tables of the atomic form factor and incoherent scatter-
ing function, " by J. H. Hubbell, W. J. Veigele, E. Briggs,
R. T. Brown, and D. T. Cromer, 1974, National Bureau of
Standards preprint. A very complete compilation of attenua-
tion coe%cients of photons in different materials can be
found in "Photon Cross Sections, Attenuation Coefficients,
and Energy Absorption Coefficients from 10 KeV to 100
GeV, " by J. H. Hubbell, 1969, NSRDS —NBS 29, U. S.
Government Printing Once, Washington, D. C. The meas-
urements of photon attenuation coefficients are surveyed
in J. H. Hubbell, 1971, Atomic Data 3, 241. The author
wishes to thank Dr. J. H. Hubbell for sending him copies of
these papers.

Additional note added in proof: For muon bremsstrahlung,
we must also add a number 41 ( n/ m)=m21.3 everywhere

to the numerical values of @r, @s, ft, and fs given in Table
III.

REFERENCES
Alberigi-Quaranta, A. , M. DePretis, G. Marini, A. Odian, G. Stoppini,

and L. Tau, 1962, Phys. Rev. Lett. 9, 226.
Anderson, C. D., 1932, Phys. Rev. 41, 405.
Anderson, C. D., 1933, Phys. Rev. 43, 491; 44, 406.
Asbury, J. G., W. K. Bertram, U. Becker, P. Joos, M. Rohde, A. J. S.

Smith, S. Friedlander, C. L. Jordan, and C. C. Ting, 1967, Phys.
Rev. Lett. 18, 65.

Bergstrom, J., 1967, in MIT 1967 Summer Study (Laboratory for
Nuclear Science, MIT), p. 251.

Bernstein, D., and W. K. H. Panofsky, 1956, Phys. Rev. 102, 522.
Bethe, H. A. , 1934, Proc. Camb. Phil. Soc. 30, 524.
Bethe, H. , and J. Ashkin, 1953, in Experimental nuclear Physics,

edited by E. Segre (Wiley, New York), Vol. I.
Bethe, H. A. , and W. Heitler, 1934, Proc. R. Soc. A 146, 83.
Bethe, H. A. , and L. C. Maximon, 1954, Phys. Rev. 93, 768.
Bewilogua, I. , 1931, Physik. Z. 32, 740.
Bjorken, J. D., 1960 (unpublished).
Bjorken, J. D., and C. H. Llewellyn Smith, 1973, Phys. Rev. D 7, 887.
Borsellino, A. , 1947, Nuovo Cimento 4, 112;Rev. Univ. Nucl. Tucuman

A6, 7.
Cabibbo, N. , G. DaPrato, G. DeFranceschi, and U. Mosco, 1962,

Phys. Rev. I.ett. 9, 270; and Phys. Rev. Lett. 9, 435,
Davies, H. , H. A. Bethe, and L. C. Maximon, 1953, Phys. Rev. 93, 788.
dePagter, J.K., J. I. Friedman, G. Glass, M. Gettner, E. VonGoeler, R.

Weinstein, and A. M. Boyarski, 1967, Phys. Rev. Lett. 17, 767.
Diambrini Palazzi, G., 1968, Rev. Mod. Phys. 40, 611.
Dirac, P. A. M. , 1928, Proc. Roy. Soc. Lond. 117, 610.
Dovzhenko, O. I., and A. A. Pomanskii, 1963, J. Exptl. Theoret. Phys.

lUSSR) 45, 268—278 )Translation 1964, Sov. Phys. —JETP 18, 187.j
Drell, S. D., and J. D. Walecka, 1964, Ann. Phys. (NY) 28, 18.
Dufner, A. , S. Swanson, and Y. S. Tsai, 1966, Stanford Linear Accelera-

tor Report No. SLAC-67.
Early, R. A. , 1973, Nucl. Instr. Methods 109, 93.
Eisele, R. L., D. J. Sherden, R. H. Siemann, C. K. Sinclair, D. J. Quinn,

J. P. Rutherford, and M. A. Shupp, 1973, Nucl. Instr. Methods 113,
489.

Eyges, L., 1949, Phys. Rev. 76, 264.
Georgi, H. , and S. L. Glashow, 1972, Phys. Rev. Lett. 28, 1494.
Ghizzetti, A. G., 1947, Rev. Univ. Nacl. Tucuman A 6, 37 (1947).
Hayes, S., R. Imlay, P. M. Joseph, A. S. Keiser, J. Knowles, and P. C.

Stein, 1970, Phys. Rev. Lett. 24, 1369.
Hearn, A. C., 1971, Reduce 2 User's Manual', Stanford Arti6cial Intel-

ligence Project, Memo AIM-133 (unpublished) .
Heisenberg, W. , 1931, Physik. Z. 32, 737.
Neitler, W. , and F. Sauter, 1933, Nature 132, 892.
Hyllerass, E. A. , 1929, Z. Phys. 54, 347.
International TaMes for X-Ray Crystallography, 1962, Vol. III,

Amsterdam.
Kendall, H. W. , 1972, in Proc. of I971 Irzterrzatzorzat SynzPosizzzrz orz

Electron and Photon Interactions at High Energies (I.aboratory of
Nuclear Studies, Cornell University) .

Kim, K. J., and Y. S. Tsai, 1973, Phys. Rev. D 8, 3109.
Knasel, T. M. , 1968, Phys. Rev. 171, 1643.
Knasel, T. M. , 1970, DESY 70/2 and DESY 70/3 (unpublished).
Kramers, H. A. , 1923, Phil. Mag. 46, 836.
Landau, L., 1944, J. Phys. (USSR) 8, 201.
Lattes, C. M. G. , G. P. S. Occhialini, and C. F. Powell, 1947, Nature

160, 453.
Lieberman, A. D., C. M. Hoffman, E. Engles, Jr., D. C. Imrie, P. G.

Innocenti, R. Wilson, C. Zajde, W. A. Blanpied, D. G. Stairs, D. J.
Drickey, 1969, Phys. Rev. Lett. 22, 663.

Low, F. E., 1965, Phys. Rev. Lett. 14, 238.
Masek, G., and W. K. H. Panofsky, 1956, Phys. Rev. 101, 1094.
Miller, G., 1971, Stanford Linear Accelerator Report No. , SLAC-129.
Mo, L. W. , and Y. S. Tsai, 1969, Rev. Mod. Phys. 41, 205.
Moliere, G., 1947, Z. Naturforsch. A 2, 133.
Moniz, E. J., 1969, Phys. Rev. 184, 1154.
Moniz, E. J., I. Sik, R. R. Whitney, J. R. Ficenec, R. D. Kephart, and

W. P. Trower, 1971, Phys. Rev. Lett. 26, 445.
Mork, K. J., 1967, Phys. Rev. 160, 1065.
Mork, K. J., and H. Olsen, 1965, Phys. Rev. 8 140, 1661.
Mott, N. F., and H. S. W. Massey, 1965, The Theory of Atomic Colli-

sions (Oxford U.P., Oxford, England).

Rev. Mod. Phys. , VoI. 46, No. 4, October 1974



Yung-Su Tsai: Pair production and bremsstrahlung of charged leptons 851

Motz, J. W. , H. A. Olsen, and H. W. Koch, 1959; Rev. Mod. Phys.
36, 881.

Motz, J. W. , H. A. Olsen, and H. W. Koch, 1969, Rev. Mod. Phys. 41,
581.

Neddermeyer, S. H. , and C. D. Anderson, 1937, Phys. Rev. 51, 884.
Nishina, Y., and S. Tomonaga, 1933, Proc. Phys. -Math. Soc. Jap. 15,

298
Olsen, H. , 1955, Phys. Rev. 99, 1335.
Olsen, H. , and L. C. Maximon, 1959, Phys, Rev. 114, 887.
Oppenheimer, J. R., and M. S. Plesset, 1933, Phys. Rev. 44, 53.
Panofsky, W. K. H. , and M. Phillips, 1955, Classica/ I. Lectriczty and

Magnetisziz (Addison-Wesley, Cambridge, Ma).
Perl, M. L., 1972, Stanford Linear Accelerator Report No. SLAC-

PUB-1062 (unpublished) .
Pratt, R. H. , J.D. Walecka, and T. A. Griffy, 1965, Nucl. Phys. 64, 677.
Rand, R. E., R. Frosch, and M. R. Yearian, 1965, Phys. Rev. I.ett.

14, 234.
Rossi, B., 1932, Naturwiss. 20, 65.
Rossi, B., 1952, High Energy Physics (Prentice-Ha11, Englewood

Cliffs, NJ).
Schiff, L. L, 1957, Phys. Rev. 83, 252.
Schulz, H. D., and G. Lutz, 1968, Phys. Rev. 167, 1280.
Shull, H. , and P. Lowdin, 1956, J. Chem. Phys. 25, 1035.
Siemann, R. H. , W. W. Ash, K. Berkelman, D. L. Hartill, C. A. Lich-

tenstpin, and R. M. Littauer, 1969, Phys. Rev. Lett. 22, 421.
SI.AC Users Handbook, 1971, Section C (Stanford Linear Accelerator

Center, Stanford, CA).
Soding, P., J. Bartels, A. Barbaro-Galtieri, J. E. Enstrom, T. A.

Lasinski, A. Rittenberg, A. H. Rosenfeld, T. G. Trippe, N. Barash-
Schmidt, C. Bricman, V. Chaloupka, and M, Roos, 1972, Lawrence
Berkeley Laboratory Report LBL-100.

Sommerfeld, A. , 1939, 8"ellennzechanik (Ungar, New York), p. 551.
Street, J. C., and E. C. Stevenson, 1937, Phys. Rev. 52, 1033.
Suri, A. , and D. R. Yennie, 1972, Ann. Phys. 72, 243.
Swanson, S. M. , 1967, Phys. Rev. 154, 1601.
Tsai, Y. S., 1965, Phys. Rev. 137, B730.
Tsai, Y. S., and Van Whitis, 1966, Phys. Rev. 149, 1248.
Tsai, Y. S., 1971, Phys. Rev. D 4, 2821.
Tsai, Y. S., 1971, "Radiative Corrections to Electron Scattering, "

Stanford Linear Accelerator Report No. SLAC-PUB-848, to be
published in I"Lectron Scattering and &Vzeclear Structure, edited by
B. Bosco (Gordon and Breach, New York) .

Uberall, H. , 1956, Phys. Rev. 103, 1055.
U*berall, H. , 1957, Phys. Rev. 107, 223.
Varfolomeev, A. A., and I. A. Svetlolobov, 1959, Zh. Eksper. Teor. Fiz.

36, 1771 i Translation 1959, Sov. Phys. —JETP 9, 1263.j
Veltman, M. , 1965, An IBM Progra»z»ze for Synzbolic Manipulation

of ALgebraic Expressions, 1;speci ally Feyn»zan Di agrazns ( CERN,
unpublished) .

Von Gehlen, R., 1960, Phys. Rev. 118, 1455.
Votruba, V., 1948, Phys. Rev. 73, 1468; Acad. Tcheque Sci. Bull.

Intern. 49, 19.
Wheeler, J. A. , and W. E. Lamb, Jr. , 1939, Phys. Rev. SS, 858.
Wheeler, J. A. , and W. E. Lamb, Jr. , 1956, Phys. Rev. 101K, 1834.
Williams, E; J., and G. E. Roberts, 1940, Nature 145, 102.
Wilson, R, , 1972, in Proceedings of the 1971 International Symposium

on Plectron and Photon Interactions at Bigls I&.'nergies (Laboratory
of Nuclear Studies, Cornell University).

Vukawa, H. , 1935, Phys. Math. Soc. Jap. 17, 48.
Zel'dovich, Ya. B., 1962, Usp. Fi~. Nauk 78, 549 i Translation 1963,

Sov. Phvs. —Usp. 5, 931.g

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974


