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Allowed beta decay is studied using the elementary particle approach including all second for-
bidden terms. Model independent forms are given for various spectrum and correlation effects
with parent polarization and/or orientation and for delayed particle emission correlations. The
restrictions due to various symmetry assumptions are analyzed, as well as the problem of Coulomb
corrections. We comment on past and future experiments in this realm.
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I. INTRODUCTION

There have, of course, been numerous papers —even
books —written about nuclear beta decay (Blin-Stoyle,
1973; Konopinski, 1966; Morita, 1973; Schopper, 1966;
Wu, 1966), but many either omit recoil effects or include
them in a model-dependent framework, generally based on
the nuclear impulse approximation. The "elementary pa, r-

* Supported in part by the National Science Foundation.
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Recent experiments have begun to probe the effects of
so-called recoil terms in allowed (61 = 0, &1;"no")
nuclear and hyperon beta decays (Garcia, 1971; Lee, Mo,
and Wu, 1963; I indquist et a/. ; 1971, Tribble and Garvey,
1974). Measurement of such terms, e.g. , the induced tensor,
can provide important information conerning nuclear struc-
ture (Preston, 1962), the correctness of the conserved vector
current hypothesis (Bernstein and Lewis, 1958, Bouchiat,
1959, Gell-Mann, 1958), the existence of second class
currents (Beg and Bernstein, 1972; Holstein and Treiman,
1971; Weinberg, 1958; Wilkinson, 1970b), etc. There are
two distinct types of recoil terms which must be dealt with.
The first, of which weak magnetism is an example, is of the
order of momentum transfer q divided by the duct'eon

mass m. Since q is typically several MeV, while the nucleon
mass is about one GeV, changes in decay spectra due to
weak magnetism are generally a percent or so of the
dominant Fermi and Gamow —Teller contributions. Never-
theless, these are measurable and can be appreciable if the
leading contribution is suppressed for some reason. A second
type of recoil term depends upon the nuclear radius R.
For parity reasons it contributes-quadratically in order
q'R' ~ L6(q/m)A'tsar'. Again such corrections can be of the
order of several percent. Both types of effects must be
included in analysis of precise allowed P-spectra mea-
surements.
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ticle" viewpoint (Kim and Primakoff, 1965a; Kim and
Primakoff, 1965b) attempts to reformulate beta decay
theory so as to specify those expressions which are generally
valid and those containing approximations. We attempt to
separate the purely kinematic structure, the electromagnetic
interaction between electron and nucleus, and the model-
dependent analysis of nuclear matrix elements. Nuclei are,
as far as calculations of the decay spectra are concerned,
designated only by their intrinsic spin and parity and by
their external four-momentum. In the next section we define
notation and decompose the matrix element connecting
initial and final nuclei via the weak hadronic current in
terms of known kinematic terms multiplied by correspond-
ing structure functions or form factors. In the absence of
recoil there are, of course, only two such form factors-
the Fermi and Gamow —Teller matrix elements. With inclu-
sion of recoil to first order in q/m, q'R' there are in general
ten such structure function's, Ave associated with the polar
vector and 6ve with the axial vector current. For transitions
involving low spins the number is, however, reduced. All
spectra can be calculated in terms of the form factors
without any assumptions about nuclear wave functions or
the form of the hadronic current. Nuclear model dependence
and effects due to the strong interactions are contained in
the structure functions, which play the role of reduced
matrix elements in the conventional analysis.

Section III analyzes the restrictions placed on these form
factors by various assumptions of symmetries possessed by
the hadronic current. Time reversal invariance requires
that each structure function be real. The conserved vector
current assumption of Feynman and Gell-Mann reduces
the number of independent polar vector form factors from
five to three and relates these three to measurable electro-
magnetic phenomena. The assumption that second class
currents are not present in the weak current reduces the
number of form factors to three polar vector and three axial
vector terms if an analog decay is under discussion. In the
case of nonanalog beta decay there. is no reduction in the
number of form factors, but a relation between the form
factors of corresponding mirror transitions emerges.

Having produced the structural framework in which to
analyze the decay process, the calculational machinery is
activated, and the decay spectra are given in Sec. IV for
(i) decay of polarized (and oriented) nuclei, (ii) P-particle
correlation effects for a situation in which the daughter
nucleus (from the P-decay of an unpolarized parent) itself
undergoes a decay into a granddaughter nucleus and an
additional alpha particle or (possibly polarized) photon.
Section V quotes predictions for the form factors in terms
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of the conventional impulse approximation, while Sec. VI
discusses modifications of the previous formalism produced
by the introduction of final state electromagnetic inter-
actions between outgoing lepton and hadrons. Finally, in
Sec. VII we look at the current experimental situation and
suggest some possibilities for future experimental work.

Similar calculations can, of course, be performed for
forbidden P-processes (Armstrong and Kim, 1972b) . Never-
theless, we shall discuss here only the allowed case as it
forms perhaps the most important class of P-decay phe-
nomena and includes analog transitions, which, as we shall
demonstrate, constitute an important reservoir of informa-
tion about symmetries of the hadronic current.

II. DEFINITIONS

For definiteness we consider the case of electron decay.
Modifications appropriate to positron decay appear in
final formulas. We consider the reaction

a~P+ e + v, .

+ = Pi + P2 q= pi —p2= p+&

M = —,'(Mi+ M2) 6 = Mg —
AIBA.

For low energy P-decay processes the form of the interaction
is thought to be k.nown. It consists of the product of a
leptonic current with a nuclear current. In the case that the
electromagnetic interaction between the nuclei and the
electron can be neglected the transition matrix element
assumes a particularly simple form. For convenience, in this
section we shall neglect such electromagnetic effects. The
weak (AS = 0) decay amplitude is then given by

7 = (G./v2) cos8.(P I V„{0)+ A„(0)I

Let pi, p2, p, k denote the respective four-momenta of
parent nucleus, daughter nucleus, electron, and neutrino.
The parent and daughter masses are M~ and M2. Ke also
define

where 20. is the electron mass. Then, to first order in E/M
the decay spectrum is given by

I
TI' 3E —E, —3p f.d'I' = 1+

(22r) ' M

X (Eo —E) 'pE dE dQ, dQ„. (4)

For the familiar case of hyperon P-decay (j = j' = i2),
one can write for the matrix element of the weak current

(~ I I.+ ~. I -&

= u(p2) [gvy„+ (1/2M) gsq„—2(C~ —Cv)

X (1/2M) 0„.q" + g~y„y2 + (1/2M) gg q„y5
—igir(1/2M) a„,q"y55u(p, ) . (5)

« I
I.

I -)

M&m;M[4~/(2) +. 1) ji/2
j even m=—j

X I';-(q)&; (q') (I q I/2M)',

Here gv(g~) is the conventional vector (axial-vector)
coupling constant, gs(gi) is the induced scalar (pseudo-
scalar), and g~(grr) is the weak magnetism (induced
tensor) term. All aspects of the decay spectra can be
analyzed in terms of these six form factors. Our procedure
is to reduce the expression in Eq. (5) to a form involving
only two-component (Pauli) spinors and then to generalize
this version to an arbitrary allowed nuclear P decay.

Suppose parent (daughter) nucleus has spin J(J') and
spin component M(M') along some axis of quantization.
A general covariant decomposition of the hadron matrix
element has been given by Stech and Schulke (1964). It
is strictly valid in the Breit system but for nuclear beta
decay the Breit and laboratory frames are equivalent for
practical purposes. The nuclear current depends only on
the momentum transfer q. From rotational invariance and
parity considerations we have then

where G„is the usual weak-coupling constant (G„222„2
10 '), 8, = 15 is the Cabibbo angle, and P is the matrix
element of the lepton current'

l odd j=l—1 m=—j
M&m;M[4~/ (2i + 1 ) ]i/2

~" = u(p) v'(1+ v5)~(&). (2)

m.~ ~
&o= ~

2MB)

For strangeness changing decays we, of course, replace
cosP, by sin9, .

In the rest frame of the parent nucleus, let E(y) denote
the energy (three-momentum) of the electron and let A: be
a unit vector iri the direction of the neutrino momentum.
The maximum electron energy allowed by kinematics
is Ep

X T, & (q)P.,v(q )(2I q I/2M) ',

(@I', I~&

l even j=l—I m=—j.

M~m; M[4~/ (2$ + 1) ji/2

X T;i (q)F i"(q') (I q I/2M)',

Cg;,g~' '~[42r/(2l + 1)]"'
J oclcl m=—g

X I';-(q) F'"{q') (I q I/2M)',

(P I
A

I
~&

' ~e utilize here the metric and conventions of J. D. Bjorken and where the spherical harmonics and vector spherical harmon-
S. D. Drell (1964) except for a change in sign for y5. ics are as defined by Rose (Rose, 1957). Arbitrary decay
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spectra can be completely analyzed in terms of form
factors F;v(q'), F;iv(q'), F+(q'), F,&"(q~). We, however,
choose to deal with allowed (LU' = 0, &1;no) decay only
and we restrict consideration to terms of first order in q/m
or q2R2, as discussed in the Introduction. Also, in order to
reveal clearly the inherent symmetries, rather than the
above parameterization, we prefer to utilize the definitions2

P./, q. /—
I Q(q ) + e(q ) 4z 4''

~~a ~z ' (qxi)
2M

MIIg;M C nm~;k)
q

j(q')
n n

d(q') = (1+ 6/2M) ' F "(q') + Fi"(q')

A 2 2„,Fi2" (q') (Mh + 6 (bP —q') )

e(q2) (1 + 6/2M) —iLFov(q2) (3i) ii2Fo,v(q2)

f(q') = —F~i'(q'),

g(q') = F2'(q'),

3
h(q') = —(1+ b,/2M) —' Fi2"(q'),

(10)i/2

j2(q') = F»"(q')

j3(q') = -F»"(q').

+ P ~(4~/~)'"I'2'(q)q' + ".g(q')
(2M)'

I= Cg, g
'" e,,i,e,;i,„'c(q')1"P& —d(q') 1"q&

+ h(q') q"P'q /
(2M)'

(7a)

The expansion given in Eq. (7) can easily be generalized into
a Cartesian and manifestly covariant form utilized by many
practitioners of the elementary particle method (Armstrong
and Kim, 1972b; Kim and Primakog, 1965a; Kim and
Primak. o8, 1965b; Kudobera and Kim, 1973; Primakoff,
1967; Primakoff, 1970), as discussed in Appendix A. It is
in this form that symmetry restrictions on invariant form
factors a(q'), ~ ~ ~, j3(q') are most apparent. For example,
considering only the 3J = 0 terms in the analysis of the
vector currents, our expansion reads

"egg b~M (aP), + eqg) (l"/2M)

2

+ C~';~ "' C: """~-(4~/~)"'&"'(q) j (q')(2M)'

Aflak;MC nn~;k$ (4~/$) i/2

8JJ'8~~' ( 1/2M) D aP + eq') l' —(aP + eq) .lj
q.1= ~JZ'~MM' + + e ~ + (+ e)

2M '235 (9)

X "'(q) 2M, j (q') + '" while corresponding terms in the Stech-Schiilke decomposi-
tion are

This decomposition is completely equivalent to the Stech-
Schiilke expression in Eq. (6) as may be confirmed by
substitution of

12 V 24z'~Mal Fo (q') 1' + (-', ) '"Foi (q') 2' (10)

~(q') = (1+ ~/2M) ' F.'(q') + (-')'"Foi'(q')

b(q') = —(2)"'F»'(q'),

c(q') = —(1+&/2M) ' F o"(q') + Fi"(q')
2M

(10)"' (2M) '

g=g~ 5=43g~
e = gs h = ~ gz

C = V3 g~ d = V3 gyp

Also, we note that we deviate here from the convention used in pre-
vious papers, wherein we changed the sign of the induced tensor for
electron and positron decays.

' In terms of the hyperon decay form factors dehned in Kq. (5) we
have

The relation between the two forms is easily found by
equating

u+ e(A/2M) = Fov

( 1)i/2F v

which yields the results quoted in Eq. (8). However, the
terms in. Eq. (9) are manifestly covariant, and as we shall
demonstrate in the following section, it is a(q') and e(q')—
not Fo (q'), Foiv(q') —which have simple behavior with
respect to symmetry properties of the hadronic current
such as the conserved vector current hypothesis or the
absence of second class currents. On the other hand, the
Stech-Schiilke representation in Eq. (6) is calculationally
easier to handle due to the orthogonality properties of the
spherical tensors employed. Our "hybrid" notation, with
aspects both of the manifestly covariant Ca;tesian form
discussed in Appendix A and the spherical tensor approach
utilized by Stech and Schulke attempts to maintain the
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J= J'=0 b=c=d=f=g=h= j2= j0=0

calculational convenience afforded by spherical tensors aed
the straightforward identification of symmetry restrictions
obvious in the Cartesian version.

Altough Eq. (7) utilizes ten invariant form factors—
five polar vector arid five axial vector —in the general
decomposition of the current matrix elements, for low spin
transitions, the triangle inequality satisfied by Clebsch-
Gordan cofficients requires the vanishing of one or more
terms. Thus we find

which requires that all invariant form factors be real. Thus,
detection of a phase difference between any two form
factors signifies T-violation, apart from apparent phase
differences induced by final state electromagnetic inter-
actions (Brodine, 1970a; Brodine, 1970b; Callen and
Treiman, 1967; Chen, 1969a, Chen, 1969b; Holstein, 1972) .

(ii) Conserved vector current (Feynman and Gell-
Mann, 1958; Gerschtein and Zeldovich, 1955): The con-
served vector current (CVC) hypothesis of Feynman and
Gell-Mann identifies the charge raising (lowering) vector
current with that obtained from the electromagnetic current
by means of isotopic spin rotation

J=1, J'=0
~= ~=f = g=J = J3= o V + ~l I+ V emt] I+ = Ig ~ i'. (16)

J=O, J'= 1

J= J'=1 g3
——0

Suppose that n, P are members of a common isotopic
multiplet

f = g =j2=j3= o
I
a) = [I, I, ) I P) =

I I, I.~ 1).

a= e=y3=0. (12) Then
J=23 J'=2

All information about the structure of the nucleus and
of the hadronic current is contained in the invariant form
factors. No assumptions concerning nuclear models has
gone into the decomposition given in Eq. (7). The connec-
tion with models for the transition current (e.g. , the impulse
approximation) and with nuclear wave functions need not
be made at this stage. Decay spectra should be analyzed
to reveal information about the godet iycdependerst s-tructure
functions.

) = ~I:(I~ I*)(I ~ ~. + 1)]'"
x (&P I v„

I P) —( I v„ I )).
(17)

To second order in recoil the interaction of a nucleus with
the electromagnetic field can be described in terms of three
invariant form factors, whose values at q' = 0 correspond
to its charge, magnetic dipole moment, and electric quadru-
pole moment. The multipole expansion of the electromag-
netic interaction is conventionally written (Preston, 1962)

I II ~ SYMMETRIES

Thus far we have not assumed any particular restrictions
on the hadronic currents V„,A„.There are, however,
various theoretical ideas about their structure which permit
(nuclear-) model independent predictions to be made con-
cerning the values of some of the weak form factors. %e
shall explore several of these ideas in this section.

(i) T-invariance (Henley 1969; Holstein 1972; Kim
and Primakoff 1969): The assumption of time reversal
invariance reads3

H, s)); = Ze01)0 —M B ——,
' g Q,r(BF-,/dx, ) + ~ ~ ~ . (18)

Here

M = (ep/2m„) (J/J)
Q" = I:~Q/J(2J —1)]l:-'(J'J + J J') —~' J'], (19)

where p, is the magnetic dipole moment (measured in
proton magnetons) and Q is the electric quadrupole moment
of the nucleus with charge Ze. If we write for a nucleus
of spin J

T(V„++A„+)T'= V+~+ A+~—. ( 13)

Labelling states by their momentum and spin we have

Tlp J M)= (—p J —Ml j&(~+~)

Then the T-invariance condition is

6))rpg~ (F&/2M) Fy (q )
—iCg, g"'" ~e;,),g„,(q'/2M) F, (q')

M~k;MF /(2M) 3(4~/5) 1/2

x &~"(q)q'F3(q') + ~ (20)

(p'J'M'
I
V„+A„

I
yJM)

= &p'J'M'I T Z(V„+A„)T Zl pJM-)-
= (—y'J' —M'

I
V~ + A~

I

—yJ —M )*(—) '+"

then comparison with Eq. (18) yields

Fg(0) = Ze,

P(0) =( ) yA,

'Here V„(V„+)refers to the charge lowering (raising} current
which are Hermitian conjugates of one another.

F0(0) =— (J + 1) (2J + 3) 't' 2M'

J(2J —1) 3
(21)

Rev. Mod. Phys. , Vot. 46, No. 4, October 1974
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and the CVC condition gives requires4

a(q') = ~M~[Fi'(q') —Fi (q'))

b(q ) = ~M~[F,'(q') —F,.(q')),

g(q') = ~M~[F 's(q') —Fs (q'))
Mp ——[(IW I,) (I W I.+ 1))ijs,

~(q') =f(q') = o, (22)

a(q') = —(2M') 'q'e(q')

(28)

which, since e(q') should not have a pole at q' = 0, re-
produces Eq. (26) . In addition we see that also in the case
of nonanalog decay there exist only three independent form
factors, since e, f are related to a, g via Eq. (28).

which relates weak form factors to ones measurable in
elastic electron scattering experiments from the initial and
final nuclei.

If rr, P are not members of a common isotopic multiplet
the CVC condition relates the weak form factors to form
factors measurable via inelastic electron scattering or by
analysis of radiative decay widths. If

Although we may probe all three structure functions via
inelastic electron scattering, radiative decay width measure-
ments are only sensitive to the presence of the M1 amplitude
(b) and the E2 amplitude (f). Defining

bJJ bsrgr' [Fi(q') P„+F4(q') q„](2M)-'

F,(q')/2M) C ~., ~~i'sre, , q'g„;

we find +C,, Fs(q')
2M

~u;2 " ' gj ngn'

= ~[(I' ~ I.+ 1) (I' ~ I.))"'(I'I.
I

V '~
I
» &

~ [(IW I,) (I W I.+ 1))'"
x (I'I, ~ 1

I
v„~

I
II, ~ 1).

+ P„(4m/5)'"vp(q)q' + ~
Fs (q')
(2M)'

(23)
the rate for the transition n ~ Pp is

(29)

0 = (E- —E~)(PI v(0) l~&

—(P- —P~) .(& I ~(0) I
~&. (24)

But

Also since rlI'V„+ = 0 (in the absence of electromagnetic
effects) we have

I". p, = (~'&'/8~M')Ls
I
Fs(0) I'+ s I

Fs(0) I').

Often the transition is from an isotopic triplet state to an
isotopic singlet. Then only the isovector component of the
electromagnetic current can contribute and provided the
M1/E2 ratio is known a measurement of the radiative
width is sufficient to determine Fs(0) and Fs(0), which
can be related to the weak decay parameters b, f via

jdxs(PI V,+(x, o)
I

~&

= (2~)'b'(P- —Pi)(P I
V+(o)

I ~&

= [from Eq. (24)) 0 unless E = Ep.

Thus in the absence of isospin mixing we must have

a(q' = 0) = 0

unless rr, P are isotopic analogs.

Another way of seeing this is to note that

(P I
8&v„"

I
cr&

= ibg g "osrsr [a(q') 5 + e(q') (q'/2M) )
sr~a; m

2M (2M)'

(25)

(26)

b(q' = 0) = aV2Fs(0) f(q' = 0) = W v2Fs(0).

(31)

On the other hand, if the transition in question involves an
istotopic spin sequence wherein both the iso-vector and
iso-scalar pieces of the electromagnetic current contribute,
then experiments must also be done on a mirror electro-
magnetic transition in order to isolate the isovector M1
and E2 coeficients via Eq. (23) .

(iii) Second class currents (Beg and Bernstein, 1972;
Cabibbo, 1964; Delorme and Rho, 1971a; Delorme and
Rho, 1971b;Delorme and Rho, 1972;Holstein and Treiman,
1971; Rim, 1971; Kim and Fulton, 1971; Kubodera,
Delorrne, and Rho, 1973; Maiani, 1968; Weinberg, 1958;
Wilkinson, 1970;Wilkinson and Alburger, 1970a; Wilkinson
and Alburger, 1970b; Wilkinson and Alburger, 1971)—
Weinberg has noted the utility of classifying currents as
to their symmetry under the combined poerations of

X — q'Vs"(q) + = 0
5

4 The relation between g, f is quoted only at q' = 0 since for nonzero
7) momentum transfer the CVC condition involves an additional higher

order form factor.
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Gg IG—1 g I

while the so-called second class currents satisfy

GV IG—1 V II

charge conjugation and charge symmetry. First class cur- Under the usual assumption that the weak current is an
rents are defined by isotopic vector we find that u, b, c, h, j3 can receive con-

tributions from first class currents only while j2, e, f, d can
GVIG '= VI receive contributions from second class currents only. In

P
any case if a nonzero value for any of the form factors

(32) e, d, f, j2 is confirmed for an analog transition this is evidence
for either (i) the existence of a second class current or (ii)
the existence of a first class current with R even, either of
which would be anomalous according to the conventional
picture of the hadronic current.

Gg IIG—1 g II (33) For transitions which are not within a common isotopic
multiplet the conditions are not as restrictive, and we find

where G = C exp( —i2rI2). Assuming CPT invariance we
have then

exp( —i2rI2) J„*+exp(izrI2) = e J„'+, (34)
( )I P+1e—

with

~1
&II —~ ~

lf TJ„T' = ~J'~+

lf TJ IIT—1 ~Jiip+ (35)

first class

Fz(q';I' —&I* ~ 1) = ( —) 'Fz*(q' I,—+ I, W—1)—
second class

For transitions within a common isotopic multiplet we have

Fzz(q'; I, —+ I, & 1)

= —(—)I "FIX*(q' I, —+ I—.W 1). — (42)

(36)

J z —Q J xR (37)

we may utilize the signer —Eckart theorem. If F =
u, b, g, c, h, js we find

PxB(q2) e ( )RPzBW(q2) (38)

while if F = e, f, d, j2

Decomposing the current as a sum of iso-tensor operators
of rank R & 1.

Thus we relate the form factors of one transition to those
of its mirror transition. There can be first used second class
current contributions to each and every form factor.
However, in relating the mirror decays we see that if the
first class (second class) contributions to the form factors
change sign, then the second class (first class) contributions
will not. Thus the ft values for the two transitions must be
identical if there are no second class currents. s

(iv) PCAC (Nambu, 1960; Gell-Mann and Levy, 1960)—
The partially conserved axial current (PCAC) hypothesis
of |ell-Mann and Levy relates the divergence of the axial
current to the pion field with a factor of proportionality
measured -in pion beta decay

PzB(q2) . e ( )BPxR8(q2) (39) B„A„+= V2F 222 2@ ~,

where F*B(q') is the contribution to form factor F(q')
from the current J„~R.Thus if R = 1, 3, 5, ~ ~ ~ (Holstein
and Treiman, 1971;Kim and Primaizoff, 1969;Rosen, 1972)

where Ii = 94 MeV is the pion decay constant. PCAC is,
in principle, of no value unless the matrix element of the
pion current is known. If we define

0 IIIIB(q2) bIIB (q2) pIIB (q2) gIIB (q2)

QIIB (q2) j IIR(q2)

0 dIB (q2) eIR(q2) fIR (q2) j IB(q2)

(& l Z-(0) l
~& = C~ I;~ '"' e'~~e'~"q"P f-S-(q')

+ c~ 2;8'"' (4~/7) '"~2"(q) l a l'g-z-(q') + .",

while if R = 2, 4, 6, - ~ ~

0 gIB(q2) bIB (q2) ~IR(q2) gIR(q2)

JIB(q2) j IR (q2)
I

0 dXXB (q2) eIIR (q2) fIIB(q2) j IIB(q2)

where f s (q'), g s (q') is the p wave (f wave) emission
amplitude then the PCAC condition for p wave pion

5 Of course, the antisymmetric component of the lepton tensor
changes sign for electron and positron transitions, but V, A inter-

(41) ference is forbidden for the total decay rate.

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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emission is

c(q') + h(q') (q'/4M')

= P&2F zn '/(zzz ' —q')]2Mf u (q') .

which are proportional to the statistical population tensors
of rank one through four, respectively. v

We construct, from the unit vectors n, traceless sym-
metric tensors of rank J.

Evaluation at q' = 0 gives
~1 ~2 zJ ( )

c(0) = 2&2MF f p (0) (46) = n, ,n, , ~ ~ ~ n, g —(2J —1) 'Q b,„,n, , ~ ~ ~ n;g
(P

which is the generalized Goldberger —Treiman equation
(Goldberger and Treiman, 1958; Frazier and Kim, 1968)
relating the off shell p-wave pion coupling constant to the
axial vector form factor at zero momentum transfer. Taking
the first derivative of Eq. (45) we learn

h(0) = c(0) 1+ zzz
'

zzz' f p (0)

c'(0)
c(0)

Similar results obtain if the f wave coupling constant is
known. No restriction is placed upon j&(q'), but j3(q') and
a form factor nz(q') CJ'3;J ' C&4;z ' ~n(4zr/9)"'I'4"'(q) X
Lq'/(2M) 'g are related to g && (q') .

IV. SPECTRA

If we assume that c'(0) and f ~ '(0) are known we can
predict the value of the induced pseudoscalar form factor
h at q' = 0 (Armstrong and Kim, 1972b; Kim and Mintz,
1971).

+ [(2J—3) (2J —1)) 'gb „zb,„.,z'z, , ~ ~ ~ n;~+ ~ ~ ~ .
6'

(49)

The general sp'ectrum then consists of the contraction of
these tensors (J = 0, 1, 2, 3, 4) with p/E and/or fc from
the lepton tensor plus factors of p and/or k from nuclear
recoil multiplied by the corresponding statistical population
tensor. Using for notational convenience'

T&~& (n): La, b, ~ cj —= T,„,. ~ ~;,&~i (n) a, ,b, , ~ c,, (50)

we define the spectral functions f,(E) i = 1, 2, ~ ~ ~, 27 via

d'I' = F+(Z E)LG ' cosg, )/(2zr)'j

X (E&&
—E)'PE dE dQ, dQ„i f, (E) + f2(E) —.h

We have decomposed the nuclear matrix element into
a number of kinematic structures, each accompanied by
a corresponding invariant form factor, and we have seen
the restrictions placed on these form factors by various
assumed symmetries. It is now time to relate these form
factors to quantities which can be measured experimentally.
We compute the decay spectra (with and without detection
of nuclear recoil) for the case of a polarized parent and for
the case of delayed particle emission from the daughter
nucleus of an unpolarized parent.

A. Polarized parent spectra —electron and
neutrino momenta known

%e suppose the parent nuclei to form an incoherent
ensemble with respect to the spin projection M along an
axis of quantization described by unit vector n. The polariza-
tion (orientation) state of the parent is described by'

+ A"'n ~ f4(E) (p/E) + f5(E) ——.k + f6(E)hEE

7 In terms of the conventional statistical population tensors

g ga(~) ( )J—M g M—M;0
M

a(3f ) being the population of the Mth nuclear level

&t"& = R, L(J + 1) (2J + 1)/3 J]'",
A&z& = Rz L(2 J + 3) (2J + 1)—(2 J —1)/5 J(J + 1)]"'

g(3)— R3

3J'+3J —1

A&'& = (M)/J

3L(M')/J(J + 1)j,
A"' = ((M)/J) —5L(M')/J(3J'+ 3J —1)],

6J'+ 6J —5
A.&" = 1 —~c M'

(J —1)J(J + 1) (J + 2)

35 3M4
(J —1)J(J+1)(J+ 1) '

' Here ( ) designates the average value.
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(48)

(2J + 3}(2J + 1) (2J —1) (J+ 2) (J + 1) (J —1)
7J

T&'&(n):Pa] =na,
T&" (n):La, b] = n. an. b-
T&z&(n):La, b, c] = n. a n b.
T&4& (n): La, b, c, d) = n. a n.

3 a. b

1n c ——,tb c n a + a c n. b + b-a n. c)
4A A A A

b n c n. d ——(a b n. c n-d
A A A An. b n. d + a- d n. b n. c + b-c n a n. d

n. .a z ~ c +zc. d n an b) + 1/3. 5(a..b.c.d
+ abc

+ b d

+ a~c b.d + a-fg b c).

2 (2J + 5}(2J + 3) (2J + 1) (2J —1) (2J —3),
3 . 9 (J —1) J (J+1)(J+2)

Thus, for example,



796 B. R. Holstein: Recoil effects

+ fz(E)k —'k + fs(E) —x kE E

p p+ j()(E) —x k —k
E E

~ xx)rx)(x): {/ (+).(p/+, p/s]

+ f»(E) Ep/E, p/E]c(p/E) k]+ f»(E) Ep/E, k]

+f»(E)CP/E, f]C(p/E) k]+ft4(E)[k, k]

+f. (E) Ck, k]C(p/E). k]+f-(E) -', -' ~ k

+f,z(E) k, —x k)

+ &'"r"'(x):{/a(s) Lv/&, y/&, v/&7

+ fzs(E) EP/» P/» k] + fso(E) Lp/E, k, k]

+ fst(E) Ek, k, k] + fss(E) —,—,—x kE'E'E

+f»(E) —,k, —x k + f,4(E) k, k, —x k

+ +'"r"'(x):{/ s(&) Lz/&, ~/&, u/&, /]

+f-(E)Lp/E, p/E, k, k]

The spectral functions F,(E) are easily found in terms of
the f, (E) and the results are listed in Appendix B.

C. Delayed n emission —lectron and neutrino
momentum known

Next, we analyze a situation in which the daughter
nucleus produced in the P-decay process undergoes a sub-
sequent transition to a final nucleus of spin J"with emission
of an accompanying cr particle or (possibly polarized)
photon. The latter is characterized by a unit vector n
along its direction of motion in the laboratory frame (rest
frame of the parent nucleus). The spectrum then contains
certain kinematic-shift terms associated with the trans-
formation to the lab frame from the rest frame of the
P-decay daughter nucleus, wherein the subsequent transi-
tion is most simply characterized. In the following it is the
spectral functions 8; which express these purely kinematic
effects. We find for the delayed n emission

G,' cos'0,
dzr = F,(Z, E) " ' (E.—E) pE dE «0, dO„dn„

2 (2zr) '

&& l gr(E) + gs(E) —.k+ gs(E)
P" p-' ~p'

E 3E'
A P+ ()t(» z)

~ &~,~"(L) ) E

+ ()s(E, t), z J',J» (I ) )n .——.kPP"
E jv

+ ()s(E, t)*, rz z«(Ll) )n k

+ ()4(E, z)*, z gi, z«(L) )n k k

It is now a straightforward although tedious task to
evaluate the spectral functions in terms of the invariant
form factors. The results as well as a sketch of the techniques
utilized are quoted in Appendix B. Note that we have here
assumed that dominant Coulomb eGects are contained in
the energy-dependent Fermi function F+(Z, E).We discuss
the correction to this approximation in Sec. VI.

+:"~i"(r) rx'(x): {g (&) Lv/&, v/&]

+ g»(E) [p/E, p/E] —k + g»(E) [p/F, k]

+ g»(E) [p/E, k] .fc + gts(E) [k—,f~]

B. Polarized parent spectra —neutrino
unobserved

Of course, knowledge of the neutrino momentum involves
the dificult job of detecting nuclear recoil, so that most
experiments involve an average over neutrino xnomenta.
In that case the spectrum becomes

GP cos'0,d'F = 2F~(Z, E) (E() —E)'pE dE dQ,
(2zr) 4

X FOE p

A xx P A p p+ gts(E)ck, k] —.k+ gts(E) —,—x k
E

+ g„(R) /), —x k {-'E
+ ()s(E, z)*, r ~ "(L))T(') (n):Ep/E, p/E, k]
+ ~s(E, ~*, rz z-(L) )T")(&):[PIE, k, k]
+ —:. -(L) T")( ):Ig (E)Cp/E, p/E, P/E, k]
+ g-(E) [PIE, p/E, k, k]

. p. p ~p'+ Fs(E) z"/, . z/,~-
E E 3E'

+ gsz(E) Ep/E, k, k, k] I

P' 3P'- P+ F (E) z ~ — ———zz, ~

5 E2 jv
Identical results obtain for delayed proton or neutron emission

(~ ) if I. is the angular momentum of the proton or neutron with respect
to the daughter nucleus and the nucleon polarization is not detected.

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974



B. R. Holstein: Recoil effects 797

The spectral functions g, (E) and 6;(E, v*, rg g" (L) ) are
given in Appendix B. It is interesting to note that g, (E)
and f;(E) (see Appendix 8) are identical except for certain
sign changes and alteration of the spin sequence dependence.
Thus the same information is available in principle either
by polarizing (orienting) the initial nucleus or by utilizing
delayed particle emission in order to assess the polarization
state of the daughter nucleus. Also we emphasize again
that the 5,(E, i/, rg g (L) ) are purely kinematic in origin
and thus can be used as a check on the experimental
procedure. Here v* is the velocity of the n particle in the
center of the mass frame of the P-decay daughter, while

(L), cuJ ~. (L) are coefFicients which depend on the
nuclear spin sequence and on the angular momentum I.
of the n particle with respect to the daughter nucleus. They
are given in general by

~J',z" (L)
L(L + 1) (2L + 1) '~'

= 10
(2L —1) (2L+ 3)

(2J' —1) (2J'+ 1) (2J'+ 3)
J'(J'+ 1)

X W(2J'LJ"; J'L)

~gr gii (L)

= 10
(L —1)L(L + 1) (I. + 2) (2L+ 1)

(2L —3) (2L —1) (2L + 3) (2L + 5)

(2J' —3) (2J'—1) (2J'+1) (2J'+3) (2J'+5)
(J.' —1)J'(J' + 1) (J' + 2)

X W(4J'LJ"; J'L). (54)

For I' wave (L-= 1) or D wave (L =-2) emission they are
given by

' (2J'+ 3) (J'+ 1) J'= J"+1
rg, g" (L = 1)'=, , ' —(2J'+ 3) (2J' —1)J'(J'+ 1)

(2J' —1)J'

2 (2J' + 3) (J' + 1) J/ J//

—(2J'+ 3) (J' —5)

10
~g. ,g" (L = 2) =, , —(2J' + 5) (2J' —3)7J'(J'+ 1)

—(2J' —1) (J'+ 6)

J' = J"+ 1

2(2J' —1)J' J'= J"—2

(2J'+ 5) (2J'+ 3)/J'(J' —1)

—2(2J'+ 5) (2J'+ 3) (2J' —3)/J'(J'+ 1) (J' —1)

5 ~ 4
(ag. ,g. (L = 2) = 6(2J'+ 5) (2J' —3)/J'(J'+ 1)9.7

—2(2J' —3) (2J' —1) (2J'+ 5)/J'(J'+ 1)(J'+ 2)

(2J' —3) (2J' —1)/(J'+ 1) (J'+ 2)

J'= J"+2
J'= J"+1

J'= J"—2

(55b)

D. Delayed a emission —neutrino unobserved

If the neutriono is unobserved, the spectrum simplifies to
Gp E Ag E, e~, 7g.g ~ I. n-—

G.' cos'8,d'I' = F~(Z, E) — (E —E)'pE dE dD, dQ„.
(2m)'

n. p ' 1 p'+ rg g"(L)Gg(E)—10 E 3E' (56)
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where G, (E), bi(Z, g)*, rj j"(L) ) are easily found in terms
«g, (&), (j,(E, V*, ~j j"(L) ) and are given in Appendix B. + gk7(Z) k, —x k

E. Delayed q emission —electron and neutrino
momenta known

For delayed emission of circularly polarized photons of
multipolarity E(l) or M (l)

+ ~&j j-(l) (j' + 1)T")(3i)

: g~8» P»P»P»

6,2 COS28.
d'1' = F~(Z, E) (Eo —E) ' pE dE dQ, dO„dQ„.

2(27l ) 3

x I gk(&) + g.«) —k+ g3(&) —~ k
p- p"' 1P'

l » 3»2

+ Pl „l-((j(I'+ 1)g) (g, (3)

1( 1 LZ, 1, 1'l l- (1)])[p/3, p/8, k]

g3O &
&l l (1)(&' + 1)

j( g.[3, 1, r, , , (})]) [p/3, ii],

( &l l (1) (&' + 1)
g3

A A A P " P P+ g„(L)Lk, k, k] + g„(&) —'x k, —,—»

P " P P A A A+ g93(A') —x k, —,k + g,4(E) —x k, k, k

PP"x s, l z, 1, rj.j-(t)] ——k»»

1
+(g, (3)+—,g,[3, (, r, , ,(})] i

O'Tjl j«(l) (J +1)

1
+(g,(3)+, g,[k,', (, I' l (1)] k

0Tjl j« l (j + 1

'p p P A P A

X —.k + g3(g) —x k + g, (A') —x k —.k» » »»
+ —,'Pll (1)T"'(4): (g (&)

10o-
g L&, 1, &l l. (1)])Lp/&, p/&]r jl jll (l)

+ —:o&j j"(l) T"'(~): g»(&) I:p/&, p/&, p/&, k]

+ g„(z)I p/z, p/z, k, i ]
+ g,l(P) [p/3, k, k, k]) (57)

where a = +1 for right-hand circular polarization

= —1 for left-hand circular polarization

Ejl jfl (l) = ( 1 —. 10/l(l + 1) )&1)j' j«(l) (58)

and spectral functions g, (E), B,(E, 1, rj j ~ (l) ) are defined
in Appendix B. The correlation coeKcients rj,j ~ (l),
Ig j j"(l) are closely related to rj,j"(L), ~j,j"(L) for
delayed o. emission.

r jlj»(l) = (1 —3/l(l + 1))rj j«(l)

+ g»(&) Lp/&, p/&] ~.k
whereas Tj j ~ (l), Zj j ~ (l) are new coefjicients, defined in
general by

100-
+ I g»(&) + ~3Ã, 1, Tj j"(l)] I p/&, k]rj,j, ~ (l)

+ gj3(E) [P/E, k] —.k»

100- A A+ (g, (3}+ 1 [3;1,Pll (1)] Lk, k]r jljl I (l)

A A P A P P+ gk3(E) Lk, k] —k + gM(E) —,—x k
jV »'»
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Zj. ,j"(l) 3; (2l + 1) (l —1) (l + 2)
3J"+ 3J' —1 (2l —1) (2l + 3) l(l + 1)

(2j' —1)(2j' + 1)(2j'+ 3)(J' —1)(J'+ 2)
J'(J'+ 1)

X W(3j'lj";j'l) . (59)

4/3 2j' 1 L/3

Tj,j ~ (l)=, , W (1j'lj";J'l)
l(l + 1) J'(j'+ 1)
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For dipole (l = 1) or quadrupole (l = 2) emission we find

J + 1 J'= J"+1
Tg,g" (l = 1) = [2J'(J' + 1)7 ' ~ 1 J/ Jll

2(J'+ 1)

(J'+ 3)

J'= J"+2
J/ J// +

Tg,g" (l = 2) = [6J'(J'+ 1)7 ' ~ 3

—(J' —2)

—2J' J'= J"—2 (60a)

'(J + 1)(J + 2) (2J +»
—2(J' —2) (J'+ 2) (2J'+ 3)

J'= J"+2
J J + 1

Zg, g" (l = 2) = [7J'(J'+ 1) (3J"+ 3J' —1)7 ' —12(J' —1) (J'+ 2) J —J
2(J' —1) (J'+ 3) (2J' —1)

—(J' —1)J'(2J' —1) J'= J"—2

(60b)

F. Delayed p emission —neutrino unobserved

Finally, if the neutrino is unobserved the spectrum
simplifies to

d'I' = Ii~(z, E) f (G ' cos'8 /2(22r)'7

X (Eo —E) ' pE dE dQ, dOs

Gp E OTg, g" l J' 1 Gg E

+ Ag(E, 1, I'g, g" (l) )7n.—P

+ f—,'01"g.g" (l)G2(E) + oh2(E, 1, Tg g" (l))7

p 2 1 p2
X I

n. — ———+ ~&z,J (l) (J'+ 1)G2(E)
3 +2

some structure functions (e.g. , a, b) in a model independent
fashion. However, not all form factors can be calculated in
this manner and it is necessary to have a procedure —even
though model dependent —which allows estimates to be
made concerning their magnitude.

The conventional nuclear physics calculation utilizes the
so-called impulse approximation, which is based on the
assumption that the nucleus consists of physical nucleons
interacting with leptons in the same fashion as do free
nucleons. That is, the hadronic current is taken as a simple
sum of single nucleon currents. It is assumed that the
interaction of nucleons within the nuclear volume does not
appreciably affect their decay properties. Meson exchange
and other many-body effects are neglected.

The first step in this procedure involves writing an
interaction responsible for neutron P-decay. We take this
to be

3p'. pX (n—E SE2 E (61)
G~K;„,= —cos8, fd'xtp~(x) lg~(q2)y„l&(x)

2

—i[gs(q')/2m7 ~ I"(x) —(g~(q') —g~(q') )/2m
where G, (E), 6;((E, 1, I'z, z ~ (l) ) are easily found in terms
of g, (E), B,(E, 1, I'g, g" (l) ) and are quoted in Appendix B. X ~..~"I"(~) + g~(q') v.v~l" (*)

i (2m) 'gg (q') y2 B„l/'(x)
V. IMPULSE APPROXIMATION —gn(q2) (2m) 'o„.p5 8"l (/)x} + h.c., (62)

The assumption of basic symmetries possessed by the
weak hadronic current allows us to predict the values of with l/'(x) = u(p)y"(1+ yg)v(k)e"'. Here g~(q2), g~(q2)
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800 B. R. Holstein: Recoil effects

are the usual vector, axial form factors —gg(0)/gi (0) =
1.23 (Christenson et al. , 1967, Christenson et a/. , 1969)
while g~(q'), g~(q') are the weak magnetism, induced
pseudoscalar form factors. According to CVC we must have

g~(0) = p„—p„—4.70 (63)

while nucleon PCA gives (Kim and Mintz, 1971)

g~(q') —= (2m)'g~(q')/(q' —m- ), (64)

&Plv. +A, I-&

= f d'r, ~ ~ ~ d'rgyP(r, ~ ~ r~) Pba(R)

Finally gs(q'), g»(q') are the induced scalar, induced. tensor
form factors. If we assume the absence of second class
currents these form factors must vanish, as discussed in
Sec. III since n, p constitute an isotopic doublet.

One now performs a Foldy —Wouthuysen transformation
in order to find the nonrelativistic form of the interaction
and generalizes the resultant expression to a system of A free
nucleons (Huffaker and Greuling, 1963; Rose and Osborne,
1954) .We find

a(q') = (1 + 6/2M) —'gr(q')

x Lola + -', (q' —a')os„+-'aolz„. j
b(q')—:At g~(q') oltgr + gi (q') oui, g,

c(q') = (1+ b/2M) 'g~(q')LOEgv + -'(q' —bP)OIt'.„'
+ Ll/6(10) '~'jolz, y(26' + q')

+ A (6/2M) oil,l, + -,'65K.,„I,
d(q') —(1 + 6/2M) 'g~(q') I.—ollgr —-', (q' —6') oR

+ (10)-i~2oTz,„(Ma~ —,'(a2 —q2) )

+ AolZ~i + MoR~yyj & Agii(q )oRgr,

e(q') = (1+ 6/2M) 'gr(q')LOltp+ —,'(q' —6')OR, '

—(2M/3)OlZ, .„~Ag, (q ) j
f(q') = gr(q') 2MOltt, ,„),
g(q') —= —gr (q') (4M'/3) olIo,

h(q') = —(1+ 5/2M) —'

x Lg~(q') 2M'(1o)-"'olIi„+g~(q') A'olI„),
i=2 3, (67)

X (V„+(r;)+ A„+(r;))@„(r,. ~ rg),

where R is the center-of-mass coordinate, and

(65 where the script M's represent reduced matrix elements.

Older = &P II Zr'+ ll

V."(r*) = "exp (—iq. r')I:g (q') ~ (q/2m)g (q') j,
V+(r;) = ir,+[gr(—q') (2m) 'I exp( —iq. r, ), W;I

+ exp( —iq. r, ) ((2m)-'g~(q')o. ; ic q

~ gs(q') (2m) —'tr;q) j,
. g~(q2)

A,+(r,) = i r,+Iexp( —iq r,), o';V, l
2m

oTtar = &p II Z r"~' ll ~&,

O11,2 = &p

Ilier,

+r,2lln&

orat.,' = &p II Z r'"r r' ll ~&,

~o = (4~/5)'"&p II g r"r"I'2" (r') ll ~&

,
(

grr (q')
2m

X exp( —ill. r;)o,'q,
A+ (r;) = —r,+o, exp ( iq r,)—

qp

( )
g (q) I

(.,.)
= (i/2m) &p II Z "~;""""

X r'-p'- + p'-r'- ) ll ~&

olI„.„=(i/2m) &p II g r,"(r' y'+ y' r') ll a»

(g&(q ) ~ (qo/2m) gii(q ) )
—r,+o;q exp( iq r, )—Lq/(2m)'jgp(q'). (66)

Here the upper (lower) signs designate electron (positron)
decay.

Finally, we expand the exponential factors, take matrix
elements, and compare with the decomposition given in
Eq. (7) . We find as the impulse approximation predictions"

orat'~ = &p II zr'+(r' ~ y') ll ~&,

X a,„I(r,) II n&, K= 1, 2, 3

9E.„=(i/2M) &p II Z r'+LIo'"r' y'}

o&-~ = i&p II Z."~' ~ (r' ~ y') ll ~&,

olIx„=(16~/5) '&2&p
II g rr,'C»,. -x'&

'0 The impulse approximation does not make a unique prediction for
the second class contribution to.d as has been pointed out by E. Henley
and L. Wolfenstein (1971). Our value d = &gyyASRgz is based on
the assumption of a divergenceless second class axial current, as
discussed by J. Delorme and M. Rho (1971a).

+ f ~'.y', r'I j II ~&.

It is interesting to compare these impulse approximation
predictions with theoretical ideas discussed previously;
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T invariance is automatic if the n —p form factors are
T-invariant. Since e and p constitute an isotopic doublet,
only the isovector component of the weak current can.
contribute. Thus we should expect that for transitions within
a common isotopic multiplet a, b, c, g, h, j3 receive contribu-
tions only from first class currents —i.e., terms involving
gv, g~, g~, gi whereas d, e, fj 2 are purely second class-
i.e., involving gs, gu.

This is perceived to be valid for the first class from factors
u, h, c, g, h, j3. However, d, e, f, j2 obviously contain first
class contributions. In the case of d the dominant terms for
large A are

Thus, even in the absence of electromagnetism, the vector
current is not divergenceless in the impulse approximation
(Armstrong and Kim, 1972b). This must be regarded as
a shortcoming of the impulse approximation at recoil level
and points up a reason that experiments should be analyzed
in a model independent fashion. The validity of CVC or
of the impulse approximation can then be decided by ex-
periment. This suggests, in addition, possible limitations
of the impulse approximation in recoil level for the axial
current, to which we now turn.

A test of PCAC requires knowledge of the pion —nucleus
coupling. If we assume a single particle model. for the pion
coupling we find

d ALgz(q')5IZ. r, ~ gii(q')mgrj (69)
(72)

and 5R I. can be shown to vanish when taken between
states of a common isotopic multiplet. "For f, j2 we may use
similar arguments, or for f we note that if the nuclear force
is assumed to be independent of momentum we can write

Then writing

c = (1+ 6/2M) —'gz(q')BRgr+ Bc

h = —(1+6/2M) 'g~(q') 2MA'ORgr + 6h (73)

we have

which vanishes for analog transitions in the limit of isotopic
spin invariance. For e however, a significant first class
current contribution is apparently predicted by the naive
impulse approximation.

c(q') + h(q') Lq'/(2M)'J

= gg(q')Lm '/(m ' —q')$5IZ~r + 8

= &2F m '(m ' —q') '2Mf p (q') + 6,
The presence of a large e coeS.cient for analog decays

is in contradiction to the CVC hypothesis, of course, since with g pc+ Lq2/(2m)2)gh ~ 0
the electromagnetic current is purely first class. It is clear, ~~~l~~~ pCAC ~~~~lt Eq (g9)
however, that we should expect the impulse approximation
to violate CVC since even if gq(q') = 0 we have

8~V„+= gv(q') Q r,+fiqo exp( —iq r,:)

—(2m) '(exp( —ig.r;), q. W, }]g 0.

"%enote that if

and

(71)

gg = F g„/m.

Even if PCAC is exact for the single nucleon transition, it
is violated in the nuclear case by the terms which we have
designated by 6. That this should be expected can be seen
via the operator relation

8&A„+= &2F m '@ + (qo/2m) g~(q') Q—v,+

[P &
= ~I, I.~1 &

we have

(pl i Z7,+a, xL;ln )

= (P l
U 'U Z r;+a;f X L,U 'U

~

n )

X Iexp( —iq r,), o,'V, },

where we have used the single-particle value for @ +

@.+ = iV2g„(q') (m ' —q') —'g r,+

(76)

= —( I, I, l
~ Z ~,+u; x L~ I, I; & 1 )—'—U=exI( —~ I). (77)

However, by the %igner —Eckart theorem and T invariance

( I, I, w 1
l
i Z ~,+a; x L,

l I, I, )

( I, I, l
i 2 ~,+a; x L, l I, —I. w 1)*—The term

(qo/2m) g~(q') g ~,+Iexp( —iq. r,), a; &,}

Hence the matrix element vanishes.

violates the PCAC condition in the impulse approximation,
and again emphasizes the possible inadequacies of the
impulse approximation in recoil order (Armstrong and Kim,
1972b; Holstein, 1974b; Krmpotic and Tadic, 1969) .
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802 B. R. Holstein: Recoil effects

where

0„=(2r/2) (i(K) + 1 —y) + 2/„—argI'(y+ iv)

( K2 &2Z2) 1/2

, = z.E/Ip (80)

exp(2i2/. ) =
—K+'z. (m/I p I)

+ Zv «0 0 ) 2/„)2r/2

In the case of a point nucleus —V(r) = Zn/r—

(81)

FIG. 1. Diagrams representing the Coulomb interaction between
parent/daughter nuclei and electron. where

At least some of these problems may be resolved by the
presence of exchange terms, which produce an effective one
body potential, as demonstrated by Delorme and Rho
(Delorme and Rho, 1971a; Ohtsubo, Fujita, and Takeda,
1970).

Vl. ELECTROMAGNETIC CORRECTIONS

Thus far except for the "knee-jerk" response of including
the Fermi function in our decay spectra we have effectively
pretended that the Hamiltonian for the world consists only
of the strong and weak interactions. If we now include the
electromagnetic interaction we 6nd sever'al changes in our
previous results. The necessary modifications of our pro-
cedure are indicated by the Feynman diagrams in Fig. 1.
The main contribution to the electromagnetic interaction
is the Coulomb field between nucleus and outgoing lepton.
One can take therefore to a good approximation a = n'
and P = P'. Assuming the nuclear Coulomb potentials
produced by initial and final nuclei are identical, we then
find (Armstrong and Kim, 1972a; Blin-Stoyle and Rosina,
1965; Hu6aker and Laird, 1967; Schulke, 1964; Wilkinson
1970a)

T —(Gv/W2) cos8, f d'r f I d'l/(22r)')(P~(r, P)

Q„(p,r) = 2 exp(~v/2)LI I'(~+ iv) I/I'(2y+ 1)

X (y + iv) (2pr) & ' eXp( —ipr + i1/„)

X F(y + 1 + iv, 2y + 1; 2ipr).

P,=,/21'(P, r)

= A/*I 21/ + xy'+ yy r + sy. rp') ~(p),

where

1 2212 '/2 E + 2/2
2(/ = — g, (r) + exp( —ib)f, (r)

1 2m '/' E+ m
x

2 E+ 2/2
g-1(r)— exp( —ib)f, (r)

Since recoil terms —b, d, f, etc.—are already suppressed
in their contribution to the decay spectra, we disregard
their presence in the subsequent discussion, although this
cannot always be done with impunity (Bottino, Ciocchotti,
and Kim, 1974). In this approximation —keeping only the
leading terms in a and c—the electron must be in a state
with total angular momentum j = 2 and, following Arm-
strong and Kim (1972a) we may project out this component

X exp(il r)v"(1+ v )2'(&)

X (P, 1~ I
Vv + ~v

I
~o& (78)

S = —1

exp( —ib) gi (r)

E+ m
exp( —ib) g, (r)

where p, (r, p) is the solution to thh Dirac equation in the
presence of the nuclear Coulomb potential which reduces
as Z~0 to u(p) exp(ip r). In standard notation (Kono-
pinski, 1966)

(2~) 2 1/2

4.(p, r) = g i'C&»2,~ vv:vY&v v*-(p)-
2/2 [p I

(2w)')'"E =—
42r 2/2p

X expii 22r(1 —p) + g 1
—argI'(y + iv)), (83)

and 5 = (2r/2) + &1
—

1/ 1 Assuming for si.mplicity that

X exp( io„)1P„„(r), — (79) a((((')/(/(0) = c(q')/c(0) —= F(/f') (84)
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B. R. Holstein: Recoil effects 803

we define the "weak charge" density p(r)

p(r) = f Pd4q/(22r)4 exp( —iq r)22rb(qs)F(q2).

The decay amplitude then becomes

u(p) (t + Vocal) 7"(1+ vs) s(&)M~(pi, p.),

where

Mi (pi, p2) = bzz bsrsr a(0) (Pi,/2M)

+ Cg i, g~'~ ~e„ize;,1,„(P&/2M)c(0)

(86)

Vll. EXPERIMENTS IN RECOIL ORDER

In this, the concluding section, we examine briefly the
experimental situation, both as to experiments which have
been done or which can be done in recoil order which may
assist in illumination of nuclear structure and/or of prop-
erties of the weak current. In this regard we note that our
analysis has included second order forbidden terms-
f, g, j2, js—which have no counter part in hyperon decay
and which are generally neglected in analysis of allowed
decay. Detection of, e.g. , the [n, .(y/E) O'P —p circular
polarization correlation coefficient Gs(E)/Gs(E) Lcf. Eq.
(56)] would verify their presence" and allow evaluation
of the size of such form factors, especially if mirror transi-
tions such as

s= (A, —Dk)

and with

t= (8, —Ck) (87) "F("Na) ~ '"Ne*(1.63 MeU) + e (e+) + r, (1,)

"Ne+ y

A = f d'riUp(r)221*(r) exp( —ik r),

8 = f dsriUp(r)x*{r) exp( —ik.r),

C = f d'rlVp(r) y*(r) fc.r exp( —zk r),

D = f dsr.Vp(r)z*(r) fc r exp( —zk. r).

Given a model for p(r) we can calculate the decay spectra.
Up to corrections of 8(ZuqR(q/zrz) ), 8(Zu(qR)') we find
(cf. App. 8)

F~(Z, E)F,(E, u, 21, s)

~ F~(Z, E) ftF, (E, u, 21, s) + AF, (E, u, v, s) j, (89)

where AF, (E, u, 21, s) are given in Appendix C. Necessary
changes for the case of positron emission are also there
discussed.

could be utilized in order to isolate vector-axial interference
terms.

Measurement of these "new" types of form factors would
constitute a new probe of nuclear structure. In general,
however, in order to . simplify analysis of the spectral
structure, it is useful to study transitions J = J' = 2

(e.g. "Ne —+ "F) or J = 1 1' = 0 (e.g. 128(12N) —+

"C) which eliminate consideration of at least some of the
ten independent form factors. Yet there may be reasons
large energy- release, analog transition, etc. which suggest
the use of alternate spin sequences.

A classic recoil order experiment was suggested by Gell-
Mann (1958) and performed by Wu et al. (Lee, Mo, and
Wu 1963; Wu, 1964) as a verification of the conserved
vector current hypothesis. This involves the transitions

12@ ~ 12C

Of course, these calculable modifications arising from
replacement of the lepton plane wave function by a Coulomb
wave function are unfortunately not the only radiative
corrections. First, there are additional purely hadronic
effects, wherein the initial (final) nuclei exchange virtual
photons among themselves. These cannot alter the decay.
spectra, however, and can only affect the invariant form
factors themselves —altering them slightly from the values
which they would have in the absence of electromagnetism.
Since their values in the absence. of electromagnetism are
generally unknown, this is not a serious problem. Secondly,
there are inelastic terms wherein the exchange of a virtual
photon with the outgoing electron or positron causes transi-
tions to other nuclear states. These can become important
in case the transition —though allowed —is hindered for
some reason. However, we shall not discuss these further.

The form of the impulse approximation is also altered by
the presence of the electromagnetic interaction. In order
to maintain gauge invariance we must modify the inter-
action Hamiltonian (Eq. (62) $ by the minimal stibstitution
8" —+ 8" & ieA" cl" & ig"'(Zu/r) which amounts in Eqs.
(66)—(67) to the change qs —& qs & (Zu/R).

"N —+ "C+ e++ v,

fi(E) = x+ yE (90)

we predict for the slope

(y/~)'"- —= ~ (4/3M) (b/c) . (91)

According to CVC, however, b can be predicted from the

"Of course, detection of any of the spectral functions f;(E) or g; (E)
i ) 18 i cf. Eqs. {51),(53), (57) j would signify the presence of these
new form factors, but measurement of such terms involves the measure-
ment of nuclear recoil.

wherein the energy release is substantial ( &10 MeU). As
seen in Fig. 2 "8, "N are members of an isotopic triplet
with the 15.11 MeV J" = 1+ excited state of "C. The
experiment involves a careful measurement of the electron
(positron) energy dependence of the spectral function
fi(E) . Writing
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804 B. R. Holstein: Recoil effects

I+ NI=I X,=I

2 IYlC

release ~15 MeV. We predict'3

b = EGo(E)/Go(E) jL' —Ã2(E)/Go(E) ja
—(E/M) P (b —Ciz) /c j, (93)

where dzz is the component of the induced tensor which is
produced by a second class current. If the decay width
and the M1/E2 ratio of the 2+ analog state of 'Be to the
2.90 MeV 2+ state were known, then there would exist
a model independent prediction for b. As it stands we
utilize the impulse approximation which gives (Holstein
1971a; Tribble and Garvey, 1974)

O+ C
I 2 5.6 & b/Ac & 7.1. (94)

FIG. 2. Energy level diagram for the mass 12 triad used for CVC
verification studies. The experimental result (Tribble a,nd Garvey 1974)

f(b —Czz)/Ac]' & = 6.8 W 0.4 (95)

I2+ Li

7 I
2

I2 88
Iz= I

2fAC
is quite consistent with the absence of second class currents
and the validity of the CVC hypothesis. However, an
experimental measurement of the radiative width in Be
would be very useful in removing the model dependence of
this conclusion. We note from Eq. (91) that the Wu
experiment is completely insensitive to a second class
induced tensor.

In this same (mass 8) system, Wilkinson and Alburger
have measured the electron (positron) endpoint energy
dependence of fi(Eo/2), which is feasible due to the large
width of the 2.90 Mev 2+ level in Be.

l=0
Be

We predict, assuming the absence of second class vector
currents and neglecting quadratic terms in energy,

FIG. 3. Energy level diagram for the mass 8 triad. The 8Li electron
decay and the 'B positron decay are followed by the alpha particle
breakup of the 2.90 MeV 'Be* level.

f&(Eo/2) z i f~(Eo/2) s cii &~xi Eo+ + Eo

fi(Eo/2) ~; + fi(Eo/2) s cz 3ci M

(96)

known width of the analog level while c is known from the
"N('~B) ft value. The predicted value of the slope (Gell-
Mann, 1958) &6.4 & 0.5/m agrees nicely with the exper-
imental number (Lee, Mo and Wu, 1963)

where czz, dzz represent the second class current contributions
to the Gamow —Teller and induced tensor form factors and
cz is the usual erst class Gamow-Teller term. The Wilkinson-
Alburger experiment (Wilkinson and Alburger, 1971) is
relevant to the energy dependent piece and indicates that

(x/~)-' =
5.5 & 1.0/m

—5.2 ~ 0.6/m
(92) A '

i
Cii/cz

i
& 1.2. (97)

thus con6rming the CVC hypothesis in this transition.

An alternate test of CVC involves the P—'a correlation
in the mass 8 system (cf. Fig. 3) (Eichner e$ zz/. , 1966
Nordberg, Morinigo, and 8 ames, 1962; Tribble and
Garvey, 1974)

8Ij~8Beo+ e—+
A+ Ct'

'B —+ 'Be* + e+ + v, .

The interpretation of this result in terms of its implications
with respect to second class currents is open to question.
In terms of the naive impulse approximation (see Henley
and Wolfenstein, 1971, however) we find

~ gzz (0)
~

&
1.5, consistent with gzz = 0 but not a very restrictive limit.
Also Kubodera, Delorme, and Rho (1973) assess the meson
exchange contribution to Czz and find (a) that it can be
just as large as the impulse approximation prediction and
(b) that large second class contributions in other systems
are not inconsistent with a null e6ect in mass eight.

In any case the mass eight experiments indicate a large
energy independent piece which must be explained either

"The terms in f/c and g/c are small compared to the weak magnetism
Here again the measurement is favored by a large energy contIibution.
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B. R. Holstein: Recoil effects 805

through electromagnetic asymmetries or via authentic
second class contributions to c.

Some interesting measurements which are now underway

(Calaprice, 1974; Morita, 1973) concern the energy depen-
dence of the polarization correlation coeKcient A =
Fi(F)/Fs(F) for analog transitions. Writing A = u + eF,
we predict

1 B».EJ/(J + 1)j'I'2a(b + d) T Lv&, J'/(J + 1)hc(5b —d)

3M os.[J/(J + 1)j'is2ac + [yq, J /(J + 1)jc' cs+ c2

is feasible. "The mere presence of a nonzero d coefficient
for analog decay is suKcient to prove the existence of
second class currents —without model dependence, while the
value of b would yield a test of CVC, so this would provide
a doubly interesting measurement.

Experiments are currently underway on ' Ne and on "8,
'~N, but results are as yet preliminary. In the case of '9Ne
the magnetic moments of "Ne ("F) are known while in
the mass 12 case the radiative width is known as mentioned
previously. CVC makes a precise prediction for b in each
case, while a, c are known from CVC and from measure-
ments of the ft value. Thus (v/zr) is known if no second
class currents are present (i.e., d = 0 in the case of analog
display) and the results of these experiments can be used
to check this idea.

We thus see that a variety of experiments in recoil order
have been completed, but an exciting range of additional
possibilities remains, and one can anticipate a significant
increase in the number of experiments involving recoil term

distant future.sensitivity in. the not too
In another area of interest, Calaprice et al. (1969) have

measured fs/f, as a test of T invariance and find for "Ne ~ ACKNoygLEDGMENT
19F + e+ + p

(99) APPENDIX A

We wish to express our gratitude to Professor S. Treiman
for his encouragement and for many very useful con-

—0 002 ~ 0 014 t'o
f (&o/2) I

~ I'+
I

~ I'

However, Kim and Primakoff (1969) note that even this
very precise result does not rule out a large T violating
second class axial current since ' Ne, "Fform an isodoublet,
whereby such a current can only contribute to the form
factor d and is kinematically suppressed. They suggest
examination of hindered allowed decays such as

32p~s2S+ e—+ p

Most practitioners of the so-called elementary particle
approach (Armstrong and Kim, 1972b; Kim and Primakoff,
1965a; Kim and Primakoff, 1965b; Kubodera and Rim,
1973; Primakoff, 1967; Primakoff, 1970) utilize a Cartesian
formalism, wherein, for a particle of integral spin J one
represents the spin state by a traceless symmetric tensor of
rank J—the polarization tensor. For spin 1, this is just the
polarization vector („where p ranges from 0 to 3. For a
particle of spin J and 4-momentum p, which in its rest
frame has spin projection M along the s axis we define

wherein recoil terms may be enhanced. As seen from
Kq. (B-6) a careful measurement of the energy dependence
of the correlation should be considered in order to pinpoint
the nature of any effects found.

JTP 1~ ~ 0 O' J
m1 ~ mJ

gM, Z;m,.

2J—z, Impel (J' + ~) f (J ~) f 1/2

(2J)! (A1)

X g„,(m, )g„,(m, ) ~ ~ ~ g„,(m,,),

4(+1) = (o, —(s)'", —s(s)'", o)

4(—1) = (0, (s)'", —~(-')'", o).

Recoil effects have in general been omitted in the measure-
ment of Coulomb mixing via circular polarization ex-
periments (Bloom, Mann, and Miskel, 1962). Here the where in the rest frame we have

presence of recoil terms can mock. the presence of bona fide
mixing and thus inclusion of their presence in the analysis

db 't l, h p
'

ly ph
'

d (Ho
Shanahan, and Treiman, 1972). Measurement of energy
dependence could be used in order to isolate the recoil
contributions from real mixing terms, however.

(A2)

Finally, an interesting possibility is a combined measure-
ment of energy dependence for the electron neutrino correla-
tion —ls(E)/f, (E)—und for the polarization asymmetry
factor —Fi(E)/Fs(E) —in an analog decay, such as 'sNe ~
' F or e ~ p wherein the corresponding magnetic moments
are known. Then measurement of both b and d separately

We now can write down manifestly covariant expressions
for arbitrary integer spin transitions. We shall for simplicity

'4 Of course, b and d can be evaluated in principle by careful energy
dependence measurements on aly two of the correlation functions
f;(E), g, (E) 1 & i & 17 or F;(E), G;(Z) 0 & i & 2. However, those
cited in Sec. VII are perhaps the easiest accessible experimentally.
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806 B. R. Molstein: Recoil effects

treat only the J—& Jcase, but it is easy to generalize for The form factors a, b ~ ~ ~ j3 de6ned above are identical to
J—+ J ~ 1."Also, it is straightforward to treat arbitrary those used in the spherical formulation in Eq. (l), up to
half-integral spin transitions in a similar fashion. For a spin terms of 8(q'/M').
J~ spin J transition we de6ne

&~ I
~.(0) I

-&

= T' . Ze(p) T Z(O) (—)Z—
&g & &, v&. . . g»g —&, vJ —

&

X —g"J'"J ap), eq), 2M

APPENDIX 8
Before listing the spectral functions we include a brief

sketch which indicates the procedure by which they are
calculated. Keeping for simplicity only AJ = 0, 1 terms we
write

J 1/2

+ (q&&Jg~v J —qv Jg&&&J)
2M J+1

3(2J —1)J 'i' f
2(2J + 3) (J + 1) 2M

l"&& I
l'. + ~.

I )

= ((a/2M) P.l + (e/2M) q l)bing. As',vl

+ (i/4M)Cg, gM'"'~eU&,

X I 2bq, l, —is,,„„(cP&—dq&) i&')

Pqp/—gPJ&pJ qe)
4M2

(2J —1)J ')'
g P—3 PJ VJ

(2J + 3) (J + 1) 4M' 2M

P.qP- qgPJ&vJ q23 4~2

(A3a)

&~ I
~.(o) I

-&

Jk(p) T J(cr) ( ) J—2g»&, vl g»J —2, &J—2

C J 1/2

i gPJ—1,v J—1~ PJvJP'fl
2M,J'+ 1

and note that this matrix element splits into two com-
ponents according to transformation properties under spatial
rotation —a term, P-/, q. l transforming as a scalar and a
second piece, consisting of the term in brackets, trans-
forming as a vector. Then, for example, in calculating P-y
correlations, we successively decompose parent and inter-
mediate nuclear states into products of nuclear states and
spherical harmonics relating to the weak current and the
photon polarization. The work is simplified considerably by
choosing the axis of quantization to be along the direction
of photon momentum and specifying definite photon
helicity. Thus for the vector terms and E1 radiation we
write

I JM& = C.,..;~"™v;(5)
I
J M &

with

J 1/2

i gPJ—1 &&J—lqijlJf'J) qV
2M J+1 i

J'M'& = C " ~'" '1' ( *)
I

J"M"
&, (82b)

i q) gPJ—1 &f'J—16) PJf'Jq~p
(2M)' J + 1

where e represents the photon polarization and

8&. = (i/4M) e,,7,$2bq, l, —is,;„„l"(cP& —dq&) ). (B3)

j, 3(2J —1)J PJ—1,vJ —1

(2M) ' 2 (2J+ 3) (J+ 1)

X Eq""-~n"' + q"".&:~)q'P"

10 js 3(J —1)J(2J —1)

3 (2M)' 5(J + 2) (J + 1) (2J + 3)

1/2

A similar analysis is carried through for the scalar com-
ponent of the current.

On then squares, expresses the products of spherical
harmonics in rotationally invariant form, and multiplies
by phase space as in Eq. (4), yielding

X s"' '"' ""P„lq"'q"'g. &, -+ q-.q"'g&,"'+ q.q"'g&"

—ssLqg —P qPg/(2M)']

[q g&&J, vJ + g &&J qv J + g
v Jq&&J)

——;Iqs —P.qP q/(2M)s]

X I g ~g"'"' + gx"'g "' + g~"'g "']i. (A3b)

dI'n phase space

X I
AS*.5+ B(Q.SQ S*——,'S*.S) + iCQ. 5* x S

+ 2 ReDQ S(1/2M) (a*P.l*+ e*q. ia)

+ ReE(1/(2M)') (aP.l+ eq. l) (a*P.P+ e*q l*)).

(&4)

A nscfnf catafog of cartesian tensor techniques can bs fonnd in Here Q is a unit vector describing the Photon direction in
P. L. Csonira M. J. Moravcsik and M. D. Scadron (1966). the rest frame of the P-decay daughter nucleus, and A,
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B, ~ ~ ~ E are combinations of Clebsch —Gordan coefFicients.
'

Finally we substitute

l„*/„=p„k.+ p,k„g—„„pk &ip „p.p k&

and normalize so that integration of Q over the sphere yields
the standard allowed P-spectrum.

In order to write the spectral functions most conveniently
we introduce the momentum transfer dependence of the
Fermi and Gamow —Teller terms a and c. Defining

a(q') —= a(+ ap(q'/M') +
c(q') —= ci+ c2(q')M') + ~ ~ ~

we note that for analog and nonanalog transitions, the CVC
hypothesis gives a& = Mp and a& = 0, respectively. Then
we can define the spectral functions F,(E, u, v, s). Here
I, ~ denote spin values and can take on integral or half-
integral values, while s is an integer having either the
value 0 or 1.'The upper (lower) sign refers to electron
(positron) decay.

Fi(E, u, v, s)

=
~

ag ~' + 2 Reag*ap(3M') '(m ' + 4EE

+ 2(m '/E) Ep —4E') + ~
c~ ~'+ 2 Rec~*c2(9M')

X (11m ' + 20EEp —2 (m '/E) Ep —20E')

2(Ep/3M) Rec&*(c~ + d ~ b)

+ (2/3M)EL3
~

a~ ~' + Rec~*(Sc~ & 2b) j
1 nz, 2

2
~

cg ~' + Recg (d & 2b) —3 Reag*e
3 ME

Ep —jv—Rec~*h
2M

Fp(E, u, v, s)

al ~' + 2 Rea&*a&(m,'/M') —
p ~

c,

—
2p Recz+cp(1/M2) (m P + 8EEp —8E2)

+ -', (Ep/M) Rec,*(cg + d W b)
/—~(E/M) Rec~*(3c~ & b)

Fp(E, u, v, s)

E Ep

M
+ 4 Rea~ ap

M

—~ ReCi*C2
M

F4(E, u, v, s)

1/2

Regs 2cy — Ep M cy

+ (E/M) (7c& + d W b) + (m, '/2M') kl

+ 2 Re(ax*cp + cx*a2) (1/M ) (m~ + 2EEp —2E ) I

w (—)' "'"
Rec,*I 1

X Lcq + 2c2(1/MP) (mP + 2EEp —2E')

(Ep/2M ) (cq + d & b) + (E/2M) (Sc, —d ~ 3b) g

+ ' Recg* f —+Ep+ 9E
u+1 2M

2E' —SEEp + Ep'+ 2m, 2

~ 3j2
4E' —EEp —Ep' —2m, 2

4M'

Fp(E, u, v, s)
&/2 E—Re cy Scy —d& 6u+1 M

Ep E+ 4(ay cp + cy a2)
M

Ep —E
w ( —)' ' Recg* Scg+ Scp —d &bu+ 12M

X„,„E
Reci~u+ 12M

Ep—(m, '/ME) c, w b ~ e —k
2M

+ 2 Re(a,*c2 + c~*a2) (1/M') (m,' + 2EEp —2E')

& (—)'Py„,„/(u+ 1)j Reci*Lca + 2c2(1/M')

X (m, ' + 2EEp —2E') —(Ep/M) (cq + d & b)

+ (E/2M) (7ci + d W 3b)

—(m '/2ME) (ci + d W b) j
10Ep —9E —(m.'/E)+ ' Rec~* f—I 2M

2E' + EEp —2Ep' —4m ' + 3Ep(m '/E)+ (p)"'g

4E' + 7EEp —2Ep'—+ 2m/ —3Ep(mg/E)& 3j2 4M'

Ep+ 2E Ep —4E
X 3f (P ) 1/2g ~3j

M 2M

F,(E, u, v, s)
lj2

Reai 2ci + (E/M) (Sci —d ~ b)u+ 1
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P7(E, u, v, s)

)1/2

Red~*L(Eo/M) (c, + d W b)u+ 1j

+ (E/M) (—7ci —d W b)g

E(Ep —E)—4 Re(uy cp + ct cz) M2

E(Ep —E)& (—)' ' Rec~* —4cz
u 1 M2

+ (Eo/2M) (ci + d & b) —(E/2M) (7ci + rI & b)

E() —E+ ' Rec~* 3f + (o) 't'gu+1 2M

—Eo' ~ 2EoE —E' . 3Eo' —7EoE+ 4E'
M2

& 3j2 4~2

P, (E, u, z, s)

1/2

~~u, v IIIlCyI

E+ ~ (—)' Recg*
2M

Eo —E . E() —2E+"
2EEp+ 5E'

+ p„.„3Rec~*jz
8&2

Fyy(E, u, 5, s)

u(u+ 1)
(2u —1) (2u + 3)

&& (-'g ~ (-:)'"j)(E'/2M')

+ ~. .( —)' Rec~*(~ (o)'"g + jz) (E'/2M')

—p„,„Recg*jo(5E'/8M')

Fyz(E, u, v, s)

= —g „Rec&*Lcm'+ 2cz(1/M') (m, z + 2EEo 2E')—
(Ep/2M) (cy + d & b) + (E/M) (3c~ & b)

—(m '/2M') (1+ ~/2M) bl

X L2ci —(Eo/M) (cz + d & b) + 2(E/M)(3c& ~ b)) u(u+ 1)
(2u —1) (2u+ 3)

1/2

(z) '"f(Eo/M)

(—)' ' Imc, *l (Ep/2M) (b & d)I
W (E/M)d W (m z/4M') (1+ 5/2M)kj

EEo —E' . .. Eoo —2EEp + m, z

+ 'g M, (-:)'"j
2M2M2

+ "'
Imc, * a5f(Eo/2M) W (—,') 'I'g

u+ 1

E(P —2EEo —m, ' + 2E'
23k'

E(j 2E+ ~„,(—)' Rec~* & 3f
2M

, „,Eo' —2EEo+ mP

E(P —2EEo + m, z

4M"-

Fp(E, u, s, s)
X/2

= &5„„6Ima, *c~(E/M)
R

, „,EE, —E'
Imc, *g (-', ) '~'

u+ 1

. —Eo'+ 8EEo —8E'+ m,z

4~2

. Ep'+ 9EEp —m, z —9E'
+ p„,„Rec~*jp

Fyo(E, u, v, s)

Eo —E&= 9,„(E/M) Recg*
~

3cg + 4cp
M

Pyo(E, u, v, s)

E= —e„,„Rec,*(c~ + d W b)
2M

u(u+ 1) E—Rely
(2u —1) (2u + 3) M

QQ(o)'"f+ 3g(E/4M) ~ (p)"'jz

u(u + 1)
(2u —1) (2u+ 3)

Epo—e„,„9Rec&*js 4'
Fg4(E, u, v, s)

E(}= —8„,„
Rect

2M

3 Rea~*g
2&2
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u(u+ 1)
(2u —1) (2u+ 3)

&/2

Rea~~ (—', ) '"f

X Lc&+ d & b+ (m,'/2ME) (1+ b/2M)hj u(u + 1)
(2u —1) (2u + 3)

. &/2 Ep

Eo2 —2EEp+ E'
4M2

, „,. E' —EEp —m.2+ Ep(m. '/E)~ (p)'"j.

+ «„..(—)'Recg* &3f
2M

E' —EEp —m.' + Ep (m,'/E)~ (2)"'g

2E' —3EEp —m ' + Ep' + Ep(m '/E)—3j2
4M2

+ p, .3 Recg*gp

SE' —12EEo + 2m.' + 7Ep' —2Ep(m. '/E)
8M2

F~p(E, u, v, s)

u(u+ 1)
(2u —1) (2u + 3)

Ep' —2EEo + E'
X Re+i L2g ~ (2) ~jpl

Eo2 —2EEo + E'
+ «„,,(—)' Rec~*L& (2)'/'g + jp] 2M2

E' —2EEo+ E'—e„,„zRec&*js
2&2

Fyp(E, u, v, s)

= —8„,,(E/2M) Imcg*(&d —b)

~ Ep 2E
X Impel+ ~ (2&) 1/mf + (2p) 1/2j&

+"" ' 2M

Ep —2E
X 1m'* f+ (-') "g ~ j,(E,/2M)

7EE —VE '
~ C~, q IIIlcy J3 4M2'

F~p(E, u, v, s)

= —8„,.(3u'+ 3u —1)

X Pu/(u —1) (u+ 1) (u + 2) (2u —1) (2u + 3) J'/'

X (-;) '/' Rea,*j.(SE /4M2)

+ ', Recg*p/3g W v2j,ju 14M'

( —)' Rec jz(SE /2M2)u+1

Fgg(E, u, v, s)

= —b „(3u'+3u —1)

X Lu/(u 1) (u+ 1) (u + 2) (2u —1) (2u + 3) gi/z

. 10EEo —5E2
—,
' '/2Rea~ j3 4M2

+ '
(E/M) Recg* See + &3g

10Ep —SE
I 1 4

10Ep —15E

(2u —1) (2u+ 3)

Ep —2E
X 1m&i* w(-', )"'f + (-', )'"j2

Ep —2E+ «„,„(—)'(E/2M) Imc~* f + (—')'/'g—

r„, 10EEp —15E'
Recx*jsu+ 1 2M'

F2p(E, u, v, s)

—B,„(3u'+3u —1)

W j2(Eo/2M) W p„7Imci*jp ,(EEo/4M')

F7(E, u, v, s)

Ep —E= —tt„,„ Imc&*(b ~ d)
2M

X Lu/(u —1) (u+ 1) (u + 2) (2u —1) (2u + 3) )'/'-'

5E ' —5E'
X (-')"'Rea*'

p„,, Ep —E 5Ep' —5E'+ ' Rec~* S&2f + &3gu+1 M 4''

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974



Eoo —4EEo + 3E'~ 5&2j,
4M2
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Fop(E, u) v, s)

= r, .Rec&*jo(35E'/4M')

0„,„5Ep'—20EEp + 15E'(-)'„+'1 '"*j
2M

Fog(E, u, v, s)

= —b„,,(3u'+ 3u —1)

X Lu/(u —1) (u+ 1) (u+ 2) (2u —1) (2u+ 3)]'t2

. SEpo —10EEo+ SE'
X ( o ) ' ' Rea~*jo

4M2

p,', . SEo' —10EEo + SE'+ "'
Rec,' 3g W 2j,u+1 4M2

FM(E, u, v, s)

= r„,„Reci*jog(35EKp—35E')/2Mo]

Fo7(E, u, v, s)

= r, , Rec&*jog(35E(P —70EEo + 35E') /4Mo) ].

For convenience in discussion of the neutrino-averaged
spectra we quote also

W ( —) ' '
Rec&*jo

'Q 1

Fop(E, u, v, s)

5Eoo —10EEp + 5E'
2M2

Ho(E, u, v, s)

Fy(E, u, v s)

=
I

a~ I'+ 2 Reai*ao(1/3M') I m.'+ 4EEo

= wb„,„(3u'+3u —1)

X Pu/(u —1) (u+ 1) (u+ 2) (2u —1) (2u + 3) ]'"

X ( —') 't' Illla, ~j o (SE'/4M')

+ '
Imc&*(~&3g + v2j&) (SE'/4M')

—( —)' '
- Imcg*jo(SE'/4M')

Q

Frt(E, u, v, s)

= Wb, „(3u'+3u —1)

X Lu/(u —1) (u+ 1) (u + 2) (2u —1) (2u+ 3)Jl'

EEp —E'
X (o)'" Irnai*jo

p „5EEp—SE'
1111cy gu+ 1

Fot(E) u, v, s)

= Wb, .(3u'+ 3u —1)

X pu/(u —1) (u + 1) (u + 2) (2u —1) (2u + 3)]' '

E.& —2EE, + E'
X (-', )'" I~ai*jo-

2M'

p„, SEoo —10EEo+ SE'
+ "'

Irnc&*(&V3g —v2j&)
j.

+ 2(m'/E) Eo —4E'] +
l

c~ l'+ 2 Rec~*co(1/9M')

X L11m ' + 20EEp —2(m, '/E) Ep —20E']

—2(Eo/3M) Recq*(cq + d & b)

+ (2E/3M) L3
~

a~ ~'+ Recg (Sc~ a 2b) ]
—-', (m, '/ME) Re I

—3a, *e

+ cg*L2cg + d w 2b —h(Ep —E) /2M] l

Hi(E, u, v, s)

F4(E, It) v, s) + oF7(E~ u) vp s)

1/2

2 Reaq*Lc, —(Eo/3M) (cq + d & b)u+ 1

+ (E/3M) (7cg & b + d) ]
EEp E—4 Re(a, *co + c~*ao)

3M2

(—) ' Recq*fcq + 4co(EEp —E ) /3Mo

—(2Ep/3M) (cy + d & b)

+ (E/3M) (11cg —d & 5b)]

Rec,* f(5E/M)—
R

Eoo —11EEo + 6m.o + 4E'+ (k)'"g

0'u, e . 5Eo 10EEo + 5E—(—' -
' Imc, *j,u+ 1 4M2

8E2 —QEEp —3m,2

& 3'2
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H, (E, u, v, s)

= F o(E, u, v, s) + F,—(E, u, v, s)

= 8,.(E/2M) Rec~*fc~ + Sc2(EO —E)/3M —d & bg

K~,„=(—)~—"Pu(u+ 1)(2u+ 1)/(2u —1)(2u+ 3)j'i'

X W(ulu2; v2)
'

L(u —1)(u+ 1)Ji'/(2u —1) u = v + 1

u(u + 1)
(2u —1) (2u + 3)

1/2

(E/M) Reap* (~) 'I'f
(~) I~

) L3/(2u —])(2u + 3)y+

—Pu(u + 2)Jl'/(2u+ 3)

E+ 2EO+ g 4M
~ (4) '"j2(Eo —E)/2M

+ (—)'a„,„(E/2M') Reer* ~3f

Eo —E Eo —2E~ (2)"'g
M +j2

+ e„,.Rec~*j3(21E'/SM')

~ (—) &
'

Rec~~g3(5E2/2M2) (87)

H~(E, u, v, s)

= Pys(E, u, v, s)

= —B,„(3u'+3u —1)

)& Lu/(u —1) (u, + 1) (u + 2) (2u —1) (2u + 3)j' '

)& Rea *g L(15)"'E'/4M'j

+ '
Rec~*(v3g & V2j2) (SE'/4M')

Q

c~ q
= (—)~ "$4u(u + 1)(2u +1)/(2u —1)(2u + 3)j ~2

&& W(uiu3; v2)

u(u —1) (2u —3)
(2u —1) 2u+3

(10)'~' 3 (u + 2) (u —1)
35 2(2u —1) (2u + 3)

u(u + 2) {2u + 5)
2u —1

p„,. = —(—)" "(3u' + 3u —1)

7u(u + 1) (2u + 1)
5 (u —1) (u + 2) (2u —1) (2u + 3)

)& W(ulu2; v3)

3u + 3u —1

5L(2u —1) (2u + 3) 7'i'

In the above the spin-dependent functions y„,„P,„„,etc.
are given by

y„,, = (—)
—"I 6u(u+ 1) (2u+ 1)]"'W(ui»; »)

u+ 1

(u + 1) (2u+ 3) '~'

(u —1) (2u —1),

u(2u —1)
(u+ 2) (2u+ 3)

1/2

X„,.= (—)" 'Lu(u+ 1) (2u + 1)/5j'i'W(ulu2; vl)

t 3(u —1) (u + 1)j'I'

P(2u —1) (2u+ 3)y»

$3u(u+ 2) j'"

&,. = (—)" "t3»(u+ 1)(2u+ 1)/(2u —1)(2u+ 3)j'"
&& W(ulu;lv2)

—(u+ 1)/(2u —1)

( )u—v(3u2+ 3u 1)

X
7u(u + 1) (2u + 1)

5 (u —1) (u + 2) (2u —1) (2u + 3)
X W(uiu3; v3)

3u'+ 3u —1

610(u 1) (u + 2) (2u —1) (2u + 3) j'I'

(2u —3) (u + 1) (u + 2) '»'

(2u —1)

—u/(2u + 3)
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9 3(u —1)(u+ 2)u(u+ 1)(2u+ 1)X—
2 35(2u + 5) (2u + 3) (2u —1) (2u —3)

X W(u1u3; v4)

9 (u —1) (u+ 2)
14(10)'I' (2u —1) (2u + 3)

(u+ 1) (u+ 2)
(2u —1) (2u —3)

(o)1/2

u(u —1)
(2u+ 3) (2u+ 5)

(88)

bp(E, v*, X) = —3X(1/Mv*) l es, s LJ (J + 1)J"
X Ep2 Rea*c & yz, z(Ep —2E) I

c lol

"o7(E, v*, X) = —3XL(Ep —E) /Mv*g

j)J J [J(J+1)]'I'2Rea*c& rs, s I
c

I j
e (E, v*, x) = 4x(E/Mv*) e&,, I

c I'

a, (E, v*, x) = 4XL(E, —E)/M. *je, , I
c I'

g (E v* X) = 5 (E v* X) + -'8 (E v X)
= ——;(E./M. *)

I I
a I'

—4 I
c 12(1 ——;,e, ,x)0

—0(EIMv') LI a I'

I cl (1+,;,e, ,x)j
In terms of these functions F; the spectral functions

f;(E) defined in Eq. (51) are given by
Ap(E, v*, X) = o5(E, v*, X)

= —3X(E/Mv*) fes st(J + 1)g I2

f;(E) = F;(E,J, J', 0) (89) X 2Reac*w p, ,, I
c I'l. (813)

while the neutrino-averaged spectral functions F;(E) of APPENDIX CEq. (52) are given by

F,(E) = H, (E,J, J', 0.
The modification of the spectral functions F,(E, u, v, s)

(810) due to Coulomb effects are found to be (8.R. Holstein,
1974a)

For the delayed a or photon emissions —Eqs. (53) and
(57) we find F~(Z, E)AFi(E, u, v, s)

g;(E) = F,(E,J', J, 1) (811)
=

I
a I'Ll A I'+

I
B I'+

I
C I'+

I
D I'

G;(E) = H, (E,, J', J, 1) . (812)

The kinematic shift functions b;, 6; are given by

B,(E, v*, X) = —(2/Mv*) IE(l a I'+
I

c I')

+ L(E. —E)/1O07e, .,X I
c I'I

5 (E v* X) = —(2E/Mv*) LI a I' ——;
I

c I'

+ popes~, zx I
c

I j
e, (E, .*, X) = —(2/M") I (E.—E) (I a I'+

I
c P)

+ (P'/100E) es. ,sx

2(Ep —E)
B4(E, vo, X) = — Dal' ——;Icl'

+ popes'. Zx
I

C
I 1

ep(E, v*, X) = 3X(E/Mv*) I g, , Pg—(J + 1)F12

X2R
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while for the neutrino averaged spectra —Eqs. (56) and (61)

—2 Re(A*D+ B*C) + 2(m, /E)

X Re(A*B + C*D —A C —B*D) —F~(Z, E)g

+ I
c I'LI A I'+

I
B I'+

I
C I'+ ID I'

+ -', Re(A*D + B*C) + 2(m, /E) Re(A*B + C*D

+ —',A*C + —', B*D) —F~(Z, E)j
F~(Z, E)EF2(E, u, v, s)

I
a I' Ll A I' —

I
B I' —

I
C I'+

I
D

+ 2 Re(B*C —A*D) —F~(Z, E)j
—-'I ~ ILIA I

—I BI —IC I + ID I

+ 6 Re(A*D —B*C) —F~(Z, E)g

F~(Z, E)AF4(E, u, v, s)

)1/2

2 R«*cLI A I2 —
I
B I2+

I
C I'u+ 1j

—IDI - F.(Z, E)j
~ (—)'Lv-. ./(u + 1)j I

c I'

X D A I' —
I
B I'+

I
C I' —

I D I' —F~(z, E)j
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F~(Z, E)aF, (E, u, v, s) known. However, if Za «|it makes sense to expand these
functions to first order in Zn. Then if F(q2) is the weak

+
Cl A I, + I

B I, + I
C I&+

I
D I&

form factor as defined previously and G(k') is the charge
u+ 1] form factor for the initial and 6nal nuclei, we dehne

—2 Re(A*D + B*C) + 2(m, /E)

X Re(A*B + C*D —A*C —B*D) —Fp (Z, E)7

~ ( —)'Ev-. ./(u+ 1)71 ~ I'

dkG(k') F'(k') dkF (k') G'(k')

(C3)

x LI A I'+
I
B

I + I
c

I + I
D

I

e

+ 2 Re(A*D + B*C) + 2(m, /E)

X Re(A*B+ C~D + A*C + B*D) —F~(Z, E) 7

F~(Z, E)b.F7(E, u, v, s)

2 Re~*cC—2
I
C I'+ 2

I
D I'u+ 1j

+ 2 Re(B*C —A*D) 7

W (—) 5„,„/(u+ 1)71cPE2 I
C 12 —2

I
D I&

+ 2 Re(B*C —A*D) 7

F~(Z, E)BFi2(E, u, v, s)
= t„,„ I

c
I CI A

I I
B

I + I
C

I I
D I' F+(Z E)7

in terms of which the corrections to the spectral functions
are"

AFi(E, u, v, s)
= ~(8~z/3~) II ~ I'E4E(x+ v) + E,x

+ (m,2/E) (X+ 2V)7+ I
c I'CE(~i()x+ 4P)

—SXEOX + (m, /'E) (X + 2 Y) 7

EF2(E, u, v, s)
= ~((8-Z/3 ) ll I'L4E(x+1) + ~7

—
I

c 12C~E(2X+ v) —E,X7»

B,F4(E, u, v, s)
te u 1/2

= ~ (8(xZ/32r) '4, e I

'

2 Reu~c
&u+ 1

F~(Z, E)AFi4(E, u, v, s)

= —8„,, I
c I'E2 Re (A ~D + B*C

+ 2(m, /E) Re(A*C + B*D)7

F+(Z, E)bF»(E, u, v, s)
= —8-. I

c I'C2
I
C I' —2

I
D I'7. (C1)

~ (—)
" Icl' E(5X+4y)u+ 1

aF, (E, u, v, s)

u= ~ (3 X/3 ) {3,. ~

2 Ree eL4X(X+ Y)u+ 1j

+ EOX+ (m,'/E) (X+ 2Y)7

For positron. decay the lepton matrix element is replaced
by

~ ( )3 "'
I

c I'EE(6X+ 4F) —EpXI

u(k) ~"(1+~5) L~'+ A07v(P),

where

(C2) + (ee '/E) (X+ 2X)))

AF7(Ee u, ve s)
&' = —(B', —C'k), D' = (A', —D'k),

«) 0 2r/2&g„&2r

KCO 0 & g„&2r/2.

The changes in the spectral functions are found by re-
placing A —+ A'*, B~ B'*, etc. in Kq. (C1) and using the
lower sign.

and A', B', C', D' are defined as in Eq. (88) except that
u)*(Z, r) —+m( —Z, r), X(Z) —+Ã*(—Z), etc. , and g„ is
subject to the restriction

( u= w (8az/32r) ()„,„ I I
2 Reu*c

&u+ 1j

~ ( —)' ""
I
cl' (Eo —E)xu+ 1

AF22(E, u, ve s)
= ~(8 z/3 )8„,. 1

~ I'E(sx+ 4v)

AF24(E, u, v, s)
= w(8nz/32')8, ,

1
c

I (Eo —E)x. ((:4)

The results given above are not extremely edifying even
as to the direction of eGects of these corrections, since they
are in terms of functions A, 8, C, D which are not intuitively

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974

'6 Similar results for J = 1, J' = 0 transitions were derived by
L. W. Armstrong and C. W. Kim (1972a), and by A. Bottino and G.
Ciocchetti (1973).
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We note that for uniform charge and weak charge density,
F(k') = G(k') = [3/(kR)s](sinkR —kR coskR), we have

X = F = 97rR/140, (Cs)

while for a surface charge and weak charge distribution,
F(k') = G(k') = (sinkR)/kR

X = Y = srR/12. (C6)

REFERENCES

Armstrong, L. W. and C. W. Kim, 1972a, Phys. Rev. CS, 672.
Armstrong, L. %. and C. W. Kim, 1972b, Phys. Rev. C6, 1924,
86g, M. A. 8. and J. Bernstein, 1972, Phys. Rev. DS, 714.
Bernstein, J. and R. R. Lewis, 1958, Phys. Rev. 112, 232.
Bjorken, J. D. and S. D. Drell, 1964, Eel'atiMstic Quantum Mechanics

(McGraw-Hill, New York) .
Blin-Stoyle, R. J. and M. Rosina, 1965, Nucl. Phys. 70, 321.
Blin-Stoyle, R. J. 1973, Fundamental Interactions and the Nucleus

(North-Holland, Amsterdam, The Netherlands) .
Bloom, S.D., L. G. Mann, and J.A. Miskel, 1962, Phys. Rev. 125, 2021.
Bottino, A. and G. Ciocchetti, 1973, Phys. Lett. 843, 170.
Bottino, A. , G. Ciocchetti, and C. W. Kim, 1974, Phys. Rev. C9, 2052.
Bouchiat, C. C., 1959, Phys. Rev. Lett. 3, 516.
Brodine, J. C., 1970a, Phys. Rev. D1, 100.
Brodine, J. C., 1970b, Phys. Rev. D2, 2090.
Buhring, W. , and L. Schulke, 1965, Nucl. Phys. 65, 369.
Cabibbo, N. 1964, Phys. Rev. Lett. 12, 137.
Calaprice, F. P. 1974, Bull. Am. Phys. Soc. 19, 58.
Calaprice, F. P., E. D. Commins, H. M. Gibbs, G. L. Wick, and D. A.

Dobson, 1969, Phys. Rev. 184, 1117.
Callen, C. G., and S. B. Treiman, 1967, Phys. Rev. 162, 1494.
Chen, H. H. , 1969a, Phys. Rev. 185, 2003.
Chen, H. H. , 1969b, Phys. Rev. 185, 2007.
Christenson, C. J., A. Nielson, A. Bohnson, W. K. Brown, and B. M.

Rustad, 1967, Phys. Lett. 826, 11.
Christenson, C. J., A. Nielson, A. Bohnson, W. K. Brown, and B. M.

Rustad, 1969, Phys. Lett. 928, 411.
Csonka, P. L., M. J. Moravcsik, and M. D. Scadron, 1966, Ann.

Phys. (N.Y.) 40, 100.
Delorme, J., and M. Rho, 1971a, Phys. Lett. 834, 238.
Delorme J., and M. Rho, 19/Ib, Nucl. Phys. 834, 317.
Delorme J., and M. Rho, 1972, Nucl. Phys. 846, 332.
Eichner, E., K. H. Lauterjung, H. Meinhardt, B. Schwimmer, and

W. Schmidtohr, 1966, Z. Naturforsch. A21, 908.
Feynman, R. P., and M. Gell-Mann, 1958, Phys. Rev. 109, 193.
Frazier, J., and C. W; Kim, 1968, Phys. Rev. 177, 2568.
Garcia, A. , 1971, Phys. Rev. D3, 2638.
Gell-Mann, M. , 1958, Phys. Rev. 111,362.
Gell-Mann, M. , and M. Levy, 1960, Nuovo Cimento 17, 705.
Gerschtein, S. S., and J. B. Zeldovich, 1955, Zh. Eksp. Teor. Fiz.

29, 698 LSov. Phys. —JETP 2, 76 (1957)g.
Goldberger, M. 'L. , and S. B.Treiman, 1958, Phys. Rev. 111,354.
Henley, E., 1969, Ann. Rev., Nucl. Sci. 19, 367.

Henley E., and L. Wolfenstein, 1971, Phys. Lett. 836, 28.
Holstein B. R., and S. B.Treiman, 1971, Phys. Rev. C3, 1921.
Holstein, B. R., 1971a, Phys. Rev. C4, 740.
Holstein, B. R., 1971b, Phys. Rev. C4, 764.
Holstein, 8. R., 1972, Phys. Rev. CS,- 1529.
Holstein, B. R., W. Shanahan, and S. 8. Treiman, 1972, Phys. Rev.

C5, 1849.
Holstein, B. R., 1974a, Phys. Rev. C9, 1742.
Holstein, B. R., 1974b, Phys. Rev. C9, 1646.
Huffaker, J. N. , and C. E. Laird, 1967, Nucl. Phys. A92, 584.
Huffaker, J. N. , and E. Greuling, 1963, Phys. Rev. 132, 738.
Kim, C. W. , and S. L. Mintz, 1971, Nucl. Phys. 827, 621.
Kim, C. W. , and H. Primakoff, 1965a, Phys. Rev. 139, 81447.
Kim, C. W. , and H. Primakoff, 1965b, Phys. Rev. 140, 8566.
Kim, C. W., and H. Primakoff, 1969, Phys. Rev. 180, 1502.
Kim, C. W. , 1971, Phys. Lett. 834, 383.
Kim, C. %., and T. Fulton, 1971, Phys. Rev. C4, 390.
Konopinski, E. J., 1966, The Theory of Beta Radioactivity (Clarendon,

Oxford, England) .
Krmpotic, F., and D. Tadic, 1969, Phys. Rev. 178, 1804.
Kubodera, K., and C. W. Kim, 1973, Phys. Lett. 843, 275.
Kubodera, K., J. Delorme, and M. Rho, 1973, Nucl. Phys. 866, 253.
Lee, Y. K., L. W. Mo, and C. S. Wu, 1963, Phys. Rev. Lett. 10, 253.
Lindquist, J., et al. , 1971, Phys. Rev. Lett. 27, 61.2.
Maiani, L. 1968, Phys. Lett. 826, 538.
Morita, M. 1973, Beta Decay and Muon Capture 1973 (Benjamin,

New York).
Nambu, Y., 1960, Phys. Rev. Lett. 4, 380.
Nordberg, M. F., F. B. Morinigo, and C. A. Barnes, 1962, Phys.

Rev. 125, 321.
Ohtsubo, H. , J. Fujita, and G. Takeda, 1970, Prog. Theor. Phys.

44, 1596.
Preston, M. A. , Physics of the tvttctetts 1962, (Addison-Wesley, Reading,

MA) .
Primakoff, H. , 1967, in IIigh Energy Physics and Binuclear Structure,

edited by G. Alexander (North-Holland, Amsterdam, The Nether-
lands) .

Primakoff, H. , 1970 in Lectures on Elementary Particles and Quantum
Field Theory, edited by S. Deser, M. Grisaru, and H. Pendleton
(M.I.T. Press, Cambridge, MA, 1970).

Rose, M. , 1957, Eterlerttary Theory of Amgtttar Momerttttra (Wiley,
New York).

Rose, M. E., and R. K, Osborn, 1954, Phys. Rev. 93, 1326.
Rosen, S. P., 1972, Phys. Rev. DS, 760.
Schopper, H. , 1966, Weak Interactions and Nuclear Beta Decay (North-

Holland, Amsterdam, The Netherlands) .
Schiilke, L., 1964, Z. Phys. 174, 331.
Stech, 8., and L. Schiilke, 1964, Z. Phys. 179, 314.
Tribble, R. E., and G. T. Garvey, 1974, Phys. Rev. Lett. 32, 314.
Weinberg, S., 1958, Phys. Rev. 112, 1375.
Wilkinson, D. H. , 1970a, Nucl. Phys. A158, 476.
Wilkinson, D. H. , 1970b, Phys. Lett. 831, 447.
Wilkinson, D. H. , and D. E. Alburger, 1970a, Phys. Rev. Lett. 24, 1134.
Wilkinson, D. H. , and D. E. Alburger, 1970b, Phys. Lett. 32B, 190..
Wilkinson, D. H. , and D. E. Alburger, 1971,Phys. Rev. Lett. 26, 1127.
Wu, C. S., 1964, Rev. Mod. Phys. 36, 618.
Wn, C. S., 1966, in Proceedewgs of Irtterlatiorsat School of Physics

Enrico Fermi Course XXXII (Academic, New York).

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974


