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A unified description of systems with a condensed phase in terms of hydrodynamic equations of
motion is given. These equations are of two kinds: First those equations obeyed by the thermal
excitations (the "first Quid" ) typically are local conservation equations of mass, energy and
momentum. Second the equation obeyed by the condensed phase (the "second fluid") is an equation
of motion related to the order parameter of the broken symmetry. These equations are established
on phenomenological grounds making use of irreversible thermodynamics. The eigenmodes of the
linearized form of these equations, typically first and second sound, are discussed in particular
with respect to their manifestation in inelastic light and neutron scattering. The systexns considered
are homogenous superfluids, superconductors, dielectric crystals and magnetic systems. Except
for superfluid 4He the critical behavior at the phase transition to the ordered state is not systemat-
ically discussed.
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INTRODUCTION

In many-body theory physical understanding has often
been overshadowed by the difhculties with Green's function
techniques. We think this to be one of the reasons for the
relatively recent realization that the underlying phenomen-
ological structure of a number of systems of condensed
matter is of astonishing similarity. Here we consider systems
which are characterized by a phase transition into an
ordered state in which some kind of condensed phase can
be defined.

It is the purpose of this review to show that the phe-
nomenological structure of such ordered systems can be
described by two-Quid hydrodynamic 0'quations, the first
Quid consisting of the thermal excitatiorIs and the second
being the coedeesed phase. In this derivation of two-fluid
hydrodynamics we exclude voluntarily any microscopic
Green's function techniques and transport theory. The
hydrodynamics of the first Quid is obtained within the frame-
work of irreversible thermodynamics (see, for example,
de Groot and Mazur (1962)j. Here our point of view is
similar to that of the review by Kadano6 and Martin
(1963).

In the description of the condensed phase, on the other
hand, we rely on the microscopic dynamics to the extent
that we derive from it the equation of motion of the second
fluid. (The dielectric crystals are an exception insofar as
the phase transition is of first order and the equation of
motion is given by elasticity theory (see Sec. III).) The
existence of a condensed phase is intimately related to the
breakdown of symmetry occurring at the phase transition
(Wagner, 1966; Schneider and Meier, 1973.) (See also
Bogoliubov (1960, 1962)j. Symmetry breaking, of course,
does not affect the microscopic Hamiltonian but appears
only on the level of the state (statistical ensemble). This
means that below the phase transition the system is de-
scribed by a symmetry-breaking density matrix.

In other words, below the transition the density matrix is
invariant under a smaller ("broken") group of symmetry
operations (the gauge group for superfluids, the translation
group for dielectric crystals, the spin-rotation group for
magnetic crystals) than above (Wagner, 1966; Schneider
and Meier, 1973). Hence the system (ensemble) exhibits
a higher degree of order below the transition than above,
and develops a condensed phase of long-range order at the
transition.

As a consequence there exist quantities which, when
averaged with the density matrix of the ordered state, yield
a nonzero value, even though their average with the density
matrix of the state above the transition vanishes. If such a
quantity is, in addition, specific to the system (the field
operator of superAuid helium, the Cooper pair operator of
superconductors, the displacement operator of dielectric
crystals, the spin-raising operator of magnetic crystals), its
average is called the order parameter of the system /see, for
example, Stanley (1971);Fisher (1967);Heller (1967)$.

The order parameter describes the dynamics of the con-
densate and, consequently, brings in a new degree of
freedom, the cortdeesate velocity. This new degree of freedom
has two distinct aspects, a dynamical and a hydrodynamical.
Evidently, the dynamical aspect must persist down to zero
temperature T. On the other hand, the hydrodynamical
aspect is characterized by local thermal equilibrium. Since
the density of thermal excitations (the first Ruid) vanishes
in the limit T —+ 0, the establishment of local thermal equi-

Reviews of Modern Physics, Vol. 46, No. 4, October 1974 Copyright 1974 American Physical Society 705



706 Charles P; Enz: Two-fluid hydrodynamic description of ordered systems

librium becomes increasingly slower as T —+ 0. In terms of a
relaxation time v-,~ this means that ~,~ —+ ~ for T~0.

Therefore a dynamical mode of excitation of frequency cu

persists into the collisionless domain Lsee, for example,
KadanoA' and Baym (1962)j defined by ~r,~ )) 1. On the
other hand, the long-range order of the condensate causes
the response of the order parameter to external perturba-
tions to be dominated by the long-wavelength contributions
Li.e., the associated response function has a pole at zero
wave number q (Wagner, 1966; Schneider and Meier,
1973)$. These long-wavelength dynamical modes are: (1)
collisionless isothermal first sound, Lalso caHed zero sound
e.g. , Kadanoff and Baym (1962)) in superQuid helium, (2)
the plasmon (i.e., the oscillation due to the long-range
Coulomb force) in superconductors, (3) collisionless iso-
thermal first sound Li.e., elastic waves of the lattice, also
caHed zero sound (Cowley, 1967)j in dielectric crystals,
and (4) collisionless isothermal spin waves (i.e. , magnetiza-
tion waves which could also be called zero magnons) in
magnetic crystals.

These dynamical modes are often referred to as Goldstone
hosons which expresses the belief tha, t they are the modes
required by the Goldstone theorem (Wagner, 1966; Schnei-
der and Meier, 1973; Klein and Lee, 1964). This theorem,
which states that a broken symmetry gives rise to a gapless
mode in the limit q

—+ 0, can be traced back to Heisenberg' s
program of generating all elementary particles from a
I.agrangian of higher symmetry than that of most particle
interactions (Heisenberg, 1957) . Since the presence of long-
range forces (the Coulomb interaction in superconductors
and the dipolar interaction in magnetic crystals) invalidates
a crucial step in the proof of the Goldstone theorem (Lange,
1965), the dynamical modes with a, gap (the plasmon and
the magnons in the presence of dipolar interactions) may,
in a generalized sense, also be called Goldstone bosons.

At this point the question arises of the relevance of Gold-
stone bosons to the hydrodynamical description of this
paper, since the hydrodynamic domain is defined by ~7;~ &( 1.
The point is that the dynamical modes enumerated above
are aO exptrapolations into the collisionless domain of
bydrodynamic modes. The converse, however, is not true
since in each of the systems described in this payer there is
one morc hydrodynamic mode which disappears for T —+ 0,
namely second sound. On the other hand, second sound
resembles a Goldstone boson in that it is a gapless long-
wavelength mode which appears as a consequence of sym-
metry breaking, it is missing above the phase transition.
The reason for this is tha, t the additional degree of freedom
brought in by the order parameter (the condensate velocity)
also gives rise to a new hydrodynamic equation of motion,
thus leading to two Quid hydrodynamics-

It is interesting to note that the two-Quid idea may be
traced back to a paper by Gorter and Casimir (1934a,b) in
which two phases were introduced to describe the thermo-
dynamics of superconductors. But it was only Tisza (1938)
and Landau (1941) who gener.".lized this concept to hydro-
dynamics by introducing the velocities of the two phases.

In analogy to zero sound one may also ask whether there
is a collisionless second sound. More precisely the question
is, where the second sound pole moves in the transition from

the hydrodynamic to the collisionless doma, in. This question
is legitimate although somewhat academic since, while the
residue of the relevant response function vanishes for T —+ 0,
its pole cannot just disappear. There have been some specu-
lations on this question Lsee Enz and MuHer (1970)j, but
the answer is not known.

The hydrodynamic modes discussed in this paper have
yet another aspect related to broken symmetry, also shared
by the Goldstone bosons. In fact, their long-wavelength
limit can be viewed as having a "symmetry restoring" egect
This is most easily seen in the case of first sound in dielectric
crystals which for q

—+ 0 describes a uniform and arbitrary
displacement of the whole lattice. One can say, therefore,
that it "restores" the continuous translation group of the
melted system. Similarly spin waves in the limit q

—+0
describe a uniform and arbitrary rotation of magnetization
and hence "restore" the continuous spin-rotation group of
the paramagnet. Likewise isothermal first sound in super-
Auid helium and the plasmon in superconductors describe,
in the limit q

—+0, a uniform and arbitrary phase of the
order parameter, so that one can say that these modes
"restore" the continuous gauge group of the normal sys-
terns (see Sections I.C and II.B). In the gapless case the
fluctuation of the order parameter is of the same magnitude
as the order parameter itself, while in the case of excitations
with gap (plasmon, magnon in the presence of dipolar
interactions) this fluctuation oscillates with the gap
frequency.

Second sound in the superAuids ha, s the same "symmetry
restoring" effect as first sound, while in dielectric and mag-
netic crystals this is only true to the extent that there is a
coupling between thermal and nonthermal variables. This
difference is due to the fact that in superAuids the sum of
the densities of the first and second Auids obeys the con-
tinuity equation, while in the other systems such an equa-
tion is obeyed only by the density of the second fluid (the
mass density of the lattice in dielectric crystals and the
magnetization in magnetic crystals).

An outline of these ideas has already been presented in an
earlier publication (Enz, 1972b) where, in addition to the
systems described in this review, nematic liquid crystals
were also considered. Although the latter are of interest
with respect to the second Quid /the director field, see Enz,
(1972b) j, the fact that the first fluid is the liquid crysta, l

itself classifies nematics too far apart from the systems to
be discussed here (see below). A review of the hydrody-
namics of liquid crystals very similar in its point of view to
the present work has been written by Martin, Parodi, and
Pershan (1972). LSee also Jahnig and Schmidt (1972).$

The close analogy of superconductors, dielectric, and
magnetic crystals with superAuid helium established-in this
review leaves no doubt that the heat waves found in dielec-
tric crystals are indeed second sound. It also strongly sup-
ports the prediction of the same effect in magnetic crystals,
while for superconductors our conclusion with respect to the
realizability of second sound is quantitatively negative.

/

Quite generally, second sound is a wave propagation of
temperature and entropy excitations, and hence, is quite
different from the ordinary diffusive propagation by heat
conduction. Since entropy is carried by the thermal excita-
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tions (the first fiuid) alone, one can also say that second
sound is sound in the excitatioe Quid t Khalatnikov (1965),
p. 69j. Thus a necessary condition for second sound propa-
gation is that the thermal excitations have the character-
istics of a Quid. This implies that these excitations can
support a flow or drift

If the dominant excitations can be approximated by non-
interacting, nonconserved bosoms with spectrum co~ a neces-
sary condition for the existence of a drift v is that x =—

-(coi, —v„.k)/kiiT ) 0 (kii is Boltzmann's constant) for all
wave vectors k in the range of this approximation. The
reason is that otherwise the Bose distribution function
(e* —1) ' of these excitations does not exist. Since this
approximation is good for the hydrodynamic (longwave)
excitations (phonons and inagnons, see Sec. I.C, III.C, and
IV.C) the condition x ) 0 means thai, at k = 0, u&i, must,
either have a finite slope or a gap. But this is just Landau's
criterion for superfluidity Le.g. , Landau and Lifshitz
(1958)$, restricted to long wavelengths.

This criterion is fulfilled in superQuid 4He, in dielectric
crystals and in many magnetic crystals but also in normal
liquids. However, normal liquids do not permit second sound
because the first Quid is the liquid itself since it obviously
carries the entropy. Therefore, there is no second Quid
(condensed phase), and the superfluid mass density p, is
zero. Hence, both the number of hydrodynamic degrees of
freedom and the number of hydrodynamic equations are
reduced (see Sec. I.E). This leaves ordinary or first sound
as the only hydrodynamic mode of excitation of normal
liquids (apart from the viscosity mode and the Mountain
mode mentioned in Sec. I.E) . The same argument excludes
second sound in nematic liquid crystals, as was already
pointed out by Enz (1972b), the second fluid being here of
a different iiature (see above) .

The above criterion does not apply for excitations which
involve fermioes (Particle —hole pairs in Fermi liquids,
normal metals, 'He —4He mixtures and gapless superconduc-
tors, Bogoliubov quasiparticles in superconductors with
gap). Indeed, the Fermi distribution function (e*+ 1)
obviously exists for positive as well as negative x, and a
drift v„just shifts the Fermi sphere away from the origin.
Thus, the criterion for second sound (and for superfluidity)
is more subtle. In the case of the superconductor with gap
6 the criterion is that the superfluid (Cooper pair) density
p, is nonzero. But p, Q 0 if and only if 6 A 0 (see Sec.
II.A) and hence there cannot be second sound in normal
metals (or other normal Fermi liquids) .

For crystalline systems, the presence of a )alice gives rise
to intrinsic dissipation of Qow due to Umklapp processes
(and also to imperfections). If this dissipation is too strong
the excitations cannot support a Qow and. second sound is
not possible. This supplementary condition gives rise to a
frequency window (see Sec. II, III, and IV) and is the gen-
eral reason for the diNculties with the experimental realiza-
tion, or for the overdamped character, of second sound in
crystals.

Although the full nonlinear form of the hydrodynamic
equations is derived in the subsequent sections, the typical
nonlinear features of periodic inhomogeneities in space
(Benard —Rayleigh effect) and time (vorticity, turbulence)

will not be discussed here. The first type of inhomogeneity
has so far been studied only for ordinary fluids Le.g. ,
Velarde (1972)j while the second type has also given rise to
an extended literature in the case of superfluid helium )see,
for example, Putterman (1972)). For the other systems
discussed in this review nonlinear hydrodynamics has, 'to
our knowledge, never been seriously considered, but might
lead to some interesting new effects in the future.

In recent years, the hydrodynamic modes of the linearized
equations have attracted much attention in connection with
the critical behavior near the phase transition Lsee, for
example, Stanley (1971);Fisher (1967); Belier (1967)g; in
particular, they are the ingredients of mode —mode coupling
theory Pe.g. , Stanley (1971);Kawasaki (1970)).Although the
critical behavior of 6rst and second sound is discussed in
detail for the case of superfluid helium (Sec. I), this problem
actually lies outside of the hydrodynamic domain and there-
fore is not systematically pursued in later sections.

%e use units such that 6 = 1 throughout; k~ designates
Boltzmann's constant.

I. NEUTRAL SUPERFLUIDS: HELIUM II

In spite of the large number of texts on superQuid helium
already in existence (London, 1954; Bogoliubov, 1963;
Khalatnikov, 1965; Hohenberg and Martin, j.965; Milks,
1967; Galasiewicz, 1970, 1971) some selected properties
of this substance are treated in considerable detail here.
The reason is that this section serves as a guideline for the
two-Quid description of the systems treated in the subse-
quent sections. Emphasis is put, therefore, on the symmetry
breaking at the X transition and on the phenomeno}ogical
derivation of the hydrodynamic equations. In the latter
derivation we follow essentially the line of Khalatnikov's
(1965) weil known treatise. But in view of some more
recent developments the hydrodynamic modes, namely,
first and second sound, are also discussed with respect to
their critical behavior at the X transition as well as their
possible excitation in neutron and Brillouin scattering.

The two-Quid model was a natural way of describing
superQuid helium once the existence of a condensate had
been recognized. This recognition came rather hesitantly;
in fact, it was only in 1938 that Fritz London (1938a,b)
pointed out the analogy of the A. transition wi th Bose—
Einstein condensation (eg. , London, 1954; Galasiewicz,
1971). The two-fluid theory de~eloped by Tisza (1938) and
independently by l.andau (1941) was directly influenced by
London's (1938a,b) idea. This theory at last brought some
order into the long list of "super" properties discovered in
the course of the years. Hut the most important success
was the prediction both by Tisza and by Landau of the
existence of temperature waves. These waves, which Landau
called "second sound, " were observed for the first time in
1944 by Peshkov (1944) in the form of standing waves.

A. Two-fluid hydrodynamics

The crucial feature of superQuidity is the existence, below
the X transition temperature T =— Tq(p), of a coederuate
described by a nonvanishing average of the boson field
operator N(r). Below T&, the average is defined with a
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Lp, K —mp.V) = 0, Lp, .Vj & 0, LK, 1Vj = 0 (1.1)

together with the Heisenberg representation

0+(r, t) = exp(j3Ct)%+(r) exp( —iBCt)

imply the existence of a nonvanishing complex order param-
eter &4'+) = Tr(pal+) with the time evolution

density matrix p which commutes with the effective Hamil-
tonian K —mp.V Lsee Eq. (3.38) of Hohenberg and Martin
(1965)j but not with the number operator K. Here m is
the atomic mass of 4He, and p, the chemical potential per
unit mass. Since N is the generator of the gauge group
(i.e.,

e'"~ is the general element of this group) this non-
commutativity describes the gauge symmetry breaking of
the X transition. Since 0+ raises the particle number by one,
VN+ = 4'+(cV+ 1), the relations

balance equation of momentum,

(1.6)

(1.7)

In the local frame of reference moving with v, the total
current is carried by the normal phase of excitations alone,

jo = p (v —v.). (1.8)

Here p, j, II, e, and J, are, respectively, the mass density,
the momentum density or mass Aux, the momentum Aux,
the energy per unit mass, and the energy Aux. Here also
j', lI', and J,' are the associated dissipative parts, —pV'P is
the external force density, and the second Eq. (1.6) is just
Newton's law per unit volume.

n, being the number density of the condensate. It follows
from Eq. (1.2) that the phase evolves as

J = Jo + pv~ = pnv~ + purva (1 9)

This defines the normal or excitation mass density p„. In
the laboratory frame the Aux of p„defines the normal cur-
rent j„=p„v„, while the total current is increased by the
Aux of p due to the Galilei transformation,

p(t) =.p(0) + mpt (1 3)

p = expL(F —K —X.„,—BC' + nzti, 'V

+ mp.„,lV, „)/kiiT]

indeed commutes with K and BC, t, but not with E and
jV, „, and Eq. (1.2) is just the Kubo formula for the linear
response of the system to BC'.

In local equilibrium the phase p defined by Eq. (1.2)
determines the superAuid velocity

v, = —(1/m) V(p. (1 4)

Physically a density matrix p with the properties (1.1)
may be constructed by coupling the system to an external
particle source described by 3C, &, E, t, and p, t via a
tunneling Hamiltonian BC' analogous to the case of the
Josephson effect in superconductors (see Sec. II.A), for
which PC', 'Vj & 0 but LBC', K —mpA'j = 0. )Anderson
and Dayem (1964); Anderson (1966a,b). For the latest
experimental situation, however, see Musinski and Douglass
(1972), where the earlier experiments are also quoted. g
The last relation means that the transfer of particles to the
system requires no energy (defined as eigenvalue of BC—
mpV). Then

(1.10)

is the superAuid mass density and the Aux of p, defines the
supercurrent j, = p,v, .

It follows from the above definitions that p v„describes
the current response of a sample with v, = 0 contained in
an infinitely long tube whose walls move with velocity v„
along the tube axis. From this results the general micro-
scopic expression (Baym, 1969)

d~ C, (q, ~)
p = llIIl

@~0 Vl 63

where C, (q, co) is the transverse part of the Fourier trans-
form of the current dissipation function,

(1.11a)

If, on the other hand, the tube has closed ends, its motion
with v carries the whole Quid along so that v, = v„and
the response is pv„. This leads to an expression (1.11) with
p„replaced by p, and C, by the longitudinal part C& (Bayrn,
1969; Hohenberg and Martin, 1965) .

dv, /dt = v, + (v, ~ V')v. = —V'(p+ p'), (1 5)

where p,
' is the dissipative part of p.

The remaining hydrodynamic equations are the usual
local conservation laws of mass and energy and the local

From Eqs. (1.3) and (1.4) then follows the equation of
motion

The reason for the occurrence of the transverse part of
C,, in Eq. (1.11) is that this expression also describes the
more physical situation where a cylindrical sample is rotated
around its axis. In this case v„= 00 x r where co is the
angular velocity. Since this velocity field is closely analogous
to the vector potential of a superconductor in a magnetic
field H, A = —,'(H x r), it is not surprising that Eq. (1.11)
also holds in the latter case L'Pines (1965);Nozieres (1966).
See Sec. II.A.)
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The superAuid mass density p, divers from the condensate
mass density p, = me, defined in Eq. (1.2) because of inter-
actions between the helium atoms. Since according to Eq.
(1.4) the supercurrent j, = p,v, depends on the phase of
the order parameter (N+), j, responds to variations of an
external particle source. Comparison of this response with
that of (4'+) leads to the following general microscopic
relation (Baym, 1969), between p, and p„ first. derived by
Hohenberg and Martin (1965). [See their Eqs. (4.24),
(4.29)] and independently by Josephson (1966) [see also
Galasiewicz (1968).A more explicit but only approximate
expression for p, /p, has also bein given by Haug and Weiss
(1972)],

The energy fiux J, is obtained by transforming the energy
conservation equation (1.7) into the entropy balance
equation

(ps) ' + ~. (J.+ J.') = ~, (1.14)

where J, is the entropy flux, J, its dissipative part, and 0.

the entropy production density. For this transformation
we make use of the thermodynamic relation expressing
d(po) linearly in terms of the differentials of the quantities
satisfying the hydrodynamic equations of motion (1.5),
(1.6), and (1.14) for v„p, j, and ps (Hohenberg and Martin,
1965),

p, . q 2mA gm
)

Ps q~0 2m 7l CO

(1.11b) d(po) = v dp+ X dv, + r» dj + Td(ps) . (1.15)

where A (q, oo) is the Fourier transform of the field dissipa-
tion function ~~([%'(r, t), N+(r', t')]). It is easy to see that
for free particles A (q, oo) = n.h(&o —q'/2m), and hence
pc = ps.

This free-particle approximation is expected to be valid
for helium in the limit of large q where the interaction energy
is small compared to the kinetic energy. As a consequence
neutron scattering at large momentum and energy transfers
should exhibit a peak proportional to (p,/p)8(o~ —q'/2ng)
due to the condensate (Hohenberg and Platzmann, 1966).
Although this peak has not been seen, its presence may be
infered from the sharpening of the neutron scattering
spectrum when the temperature is lowered through T7,
(Cowley and Woods, 1968). From this, as well as from other
determinations (Penrose and Onsager, 1956; McMillan,
1965; Harling, 1970; Kerr et al. , 1970), p, /p is found to be of
the order of 10%. The most recent value, (2.4 & 1)%
(Mook et al. , 1972), only shows the considerable uncertainty
of this determination which is due to final-state interactions
(Hohenberg and Platzmann, 1966) .

In order to determine the coefFicients v, X., co we note that
the superAuid phase does not carry entropy. Hence entropy
must have a simple form in the frame in which the super-
fluid is locally at rest, namely (Hohenberg and Martin,
1965),

Td (ps) = d (poo) —p, dp (v —v.) ' djo

Here e0 and j0 are the energy and momentum densities in
this frame. Since in the laboratory frame

Po p&o + 30'V8 + 2pvs q

~ = P+ o(v- —V.)' —2V-'

k = p, (v, —v„) = j —pv„

(0=V, (1.16)

comparison with Eq. (1.15) and use of Eq. (1.8) yields
(Hohenberg and Martin, 1965)

T(ps) ' = (po)
' —vp —k-v, —m. j.

The hydrodynamic equations (1.5), (1.6), (1.7) have to
be supplemented by expressions for P, 11, ancl J,. The Equation (1.15) implies that
extensive character of the thermodynamic potentials serves
to define the pressure p such that (Hohenberg and Martin,
1965)

dp = —s dT+ (1/p) dp+ dp —2(p„/p)d(v —v, )',
(1.12)

Inserting here the equations of motion (1.5), (1.6), (1.7),
and the expressions (1.13) and (1.16) we find, to second
order in the velocities

where f is an external potential per unit mass. In the local
frame moving with v, the total momentum Aux is

T(ps) = —7 (J.+ J.') + p~ (j+ j')

+ X V(„+&') + v„.(V p + Pry) + v„r 11'.

IIo ——p1-+ p„(v —v, ) (v„—v,).

(ps) = —~.[(1/T) (J, + J.' —pj —pj' —p'& —11'v-) ]
+ (J, + J,' —pj —pj' —Tpsv„—p'k —II'v ) . 7 (1/T)II = IIo + jo gl v + v S jo + pV, v,

Eliminating V'p with the aid of Eq. (1.12), we find, after
some rearrangements,In the, laboratory frame this leads to (Hohenberg and

Martin, 1965)

= p1 + p„v„ v„+ p,v, v,

II@, + Psvs S vs (1.13)
—(1/T) [j' V'p + p'V'. X + (II'V') .v„]. (1.17)

where use has been made of Eq. (1.8).
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and II = 0 must be a divergence. This determines the non- Since experimentally D& is negligible, we infer from Eqs.
dissipative energy flux to second order in the velocities, (1.23) and (1.25) that Di ——D& ——D& ——0, or that

J, = p3 + Tpsv„. (1.18) j'= 0, J,' = —(/r/T) V'T. (1.26)

Equation (1.17) now takes the form (1.14) with

(1.19)

(1.20)

In the approximation by free quasiparticles the normal
phase consists of the Quid of phonon —roton excitations with
the Landau spectrum cv/, )see, for, example, Wilks (1967),
Fig. 12 of Chap. 5). In drifting local equilibrium the dis-
tribution function of these excitations is

1zk =
l exp[(~& —v k) /kziT) —1 l (1.27)

+ p'V' X + (II'7) .v„). (1.21)

Here the quasiparticle chemical potential is zero because of
nonconservation of the excitations. p„ is given as the coe%-
cient of the linear term in the expansion of

For P = const, the hydrodynamic equations of motion
(1.5), (1.6), and (1.12) express p, v„j, and (ps) ', respec-
tively, as divergences of the fluxes j, p. , II, and J. and their
dissipative parts. The associated forces are defined as gradi-
ents of the coefficient in Eq. (1.15), that is, respectively,
as V'v, V' X,, 'I7 e0, and V'T. Now to lowest order in the
fluctuations and in the spacial derivatives the dissipative
fluxes j', p, ', II', and J,' are linear functions of these forces.
In order to lead to irreversibility these dissipative fIuxes
must transform under time reversal with opposite sign as
compared to the corresponding nondissipative (reactive)
cruxes. This, together with rotational symmetry, restricts the
linear functions of the forces to the following expressions,
vahd io the second-lowest order in the velocities (L.halatni-
kov, 1965):

j = V 'Qkzzk
k

(1.28)

in powers nf v„. Inserting Eq. (1.27) into (1.28), one finds

p = (3k/rTU)='Qk'zz/, 0(zz/, o+ 1), (1.29)

3 (q) V Z Irrzk —g/z~rzk+g/'2
k

where zz/o = Lexp(~//kaT) —1$ ' is the global equilibrium
distribution function.

The result (1.29) is also obtained from the general expres-
sion (1.11) if the current operator in (1.11a) is expressed
in terms of free quasiparticle operators,

= —D1V'P —DgV'l

p' =— fzV X ——f47'-v

II,,' = —8;,Liras' X+ P&V'. v ]
—r/LV', r/;+ 7'p„, —-';l,,V' v j

J,' = —DzVp —( /T)ki/T. (1.22)

Indeed, with zz/,
0 =- (ak+ak) one finds for the Fourier trans-

form of (1.11a)

C;, (q, cu) = V 'Q zrb(~+ cv/
—(u~k+, ))

~ (k, + q„/2) (k, + q;/2) (zz/' —zz~k+, (')

Here z/ is the first viscosity, fr to f4 are the second viscosities,
~ is the heat conductivity, and D~, D2, D3 are diffusion con-
stants. The symmetry of the coefficient matrix in (1.22)
implies the Onsager relations

which, inserted into (1.11),leads immediately to Eq. (1.29) .
On the other hand, it follows from the energy per unit

ITlass

tr =14, (1.23)
c = (pV) 'Pcs/, zzk (1.30)

Insertion of Eqs. (1.22) and (1.23) into (1.21) leads to
the expression (Khalatnikov, 1965)

Ta=(k/T) (V'T)'+ 2D~V'T. V-'p+ Dr(V'p)'

that the specific heat per unit mass is given by

86
cr = ——(pkaT'V) ' Q cd/2zz/, '(zzko + 1).T p

(1.31)

+ la(V' X)' + 2irV'. XV'.v + iz(~7 v )'
+ zv Z (~,~-, + ~,~-; ——:-~;,|7 v.) (1 24)

I or suKciently low temperatures, only the linear phonon
branch

(1.32)
which is positive definite under the conditions that all
coefficients are positive and that (Khalatnikov, 1965) is excited. Insertion into Eqs. (1.29) and (1.31) then yields

ii' & f'~fz, Dzz & (~/T)D, . (1.25) p = (2zr'/45cis) (kzrT)4 (1.33)
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Charles P. Enz: Two-fluid hydrodynamic description of ordered systems 711

ci. ——(2~'kii/15pci3) (kiiT)'. (1.34)

From the second. Eq. (1.16), together with Eq. (1.35), we
have in linear approximation

V'-X = —pV'. v„. (1.39)
Equation (1.34) gives the dominant contribution to ci at
T & 0.6 K, while at higher temperatures the roton contri-
bution becomes dominant Lsee Wilks (1967), Fig. 18 of
Chap. 5). Equation (1.33} for p„ is valid only well below
0.6'K; at T —0.6 K the roton part is already of the same
order of magnitude as the phonon part Lsee Wilks (1967),
p. 137). Near the lambda point Eqs. (1.29) and (1.31)
cease to be good approximations because of interactions
between the excitations which, in particular, give rise to a
temperature dependence of the spectrum &v~ /see Wilks
(1967), Sec. 5.5).

V' j = p„V.v„+ p, V.v, = 0. (1.35)

S. Incompressible fluid: second sound

Incompressibility means that p = const. Retaining only
linear terms in the fiuctuations around the global equilib-
rium values we then have from the first Eq. (1.6), making
use of Eq. (1.9),

Replacing V.v„and V.k with the help of Eqs. (1.38) and
(1.39), we obtain in linear approximation

v, = 'sV'T —(1/ps)(2p|i —l2 —p'|3

(1.40)

Taking the time derivative of Eq. (1.38) and replacing
17.v„with the help of (1.35) we find

s —(p./p„)sV' v, = (~/pT) VT'.

Substituting here v, from Eq. (1.40) and making use of the
definition of the specific heat at constant volume, c~ 5T =
Tcis, we finally find Lsee Eq. (12-8) of Khalatnikov (1965)j

T c2 V'T =- (—./pcs) &'i'+ (p./p-) (1/p) L pi +—0
+ p'|3+ 4n jL~'~ —(~/pcv) ~'Tj, (1 41)

On the other hand, the second Eq. (1.6), together with
(1.13), the third Eq. (1.22), and the first Eq. (1.26), imply
the linearized Xavier —Stokes equation (1.42)

+ qLV'v —V'V' v„g

is the i'eloci fy of second sound. Note that third-order
spatial derivatives in Eq. (1.22) wouM lead to a term V'T
in Eq; (1.41), so that it is justified to keep the term 7 T.

where the last term has divergence zero. Since V' j = 0 For a plane-wave excita, tion exp[i(q. r —cot)] we find
means that j derives from a vector potential j = V x A, the dispersion law [see Eq. (12-8) of Khalatnikov (1965))
it follows that

P = Po+ l i~ )i+ (f2+ kn) ~ v (1.37)
(u2/q2 = cP(1 —iurv+XPq'). (1.43)

with Lc& r2is identical with D&, Eq. (4;22) of Hohenberg and
with constant po. If we start from an initial situation wliere
v =- v, = 0, it follows from Eq. (1.9} that initially j = 0
and from Eqs. (1.36) and (1.37) that j = 0 at all times. , iD + ( / ) (1/ }~ 2 + +, + 4

~ience

pnVn + psVs =
XP = D~(r2 —c. 'Dr). (1.44)

for all times. This means that in thermal excitation of the
Quid which is initially at rest the normal phase and the
superAuid phase move in opposite directions.

(1.45)(vvq (& i,

is the thermal diffusion constant. For low frequencies andIn linear approximation in the fluctuations the entropy long wavelengthsq
production (1.21) is zero so that Eq. (1.14), together with
(1.19) and the second Eq. (1.26), implies

3+ sV.v„= ( n/p)T. V' .T (1.38)

On the other hand, we obta, in from Eq. (1.5), with the help
of (1.12), the second Eq. (1.22), the first Eq. (1.23), and
(1.37), for P = const,

the excitation propagates as a second-sound wave with
veloci ty cs ( 1 + g Xo g ) and damping g i gc2 g .

Hydrodynamics, quite generally, is a low-frequency long
wavelength approximation valid under the conditions of
local thermal equilibrium,
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712 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

Here r,~ and X,~ are, respectively, the relaxation time and
the mean free path assuring thermal equilibrium at every
macroscopic space-time point and are determined in prin-
ciple by the Boltzmann collision operator for the phonon-
roton excitations.

Since the conditions (1.45) and (1.46) are always com-
patible for sufficiently small co and q, detection of second
sound in superAuid helium imposes no further conditions
on the system. This is markedly diGerent from the situation
reigning in the solid systems to be discussed in the subse-
quent sections. There momentum dissipation due to the
presence of a rigid lattice imposes severe restrictions on the
propagation of second sound and is the reason for the diS.—

culties in detecting this mode experimentally (see the
Introduction) .

Next let us examine the motion of the order parameter,
Eq. (1.2), in a second-sound wave

hT =
~

BT
~

expf i(q. r —c,qt —h ) j.

Neglecting dissipation, we have from Eqs. (1.40) and (1.43)

v, = —(s/c2) qhT,

where q = q/q. From Eq. (1.4) we flnd at r = 0

Because of p„—+ 0 the phonon gas becomes infinitely dilute,
so that collisions between phonons become negligible as
compared to collisions with the walls. Hence, thermal
equilibrium no longer holds, and the conditions (1.46) are
violated. Therefore the Landau limit (1.50) cannot be
reached. Instead energy is carried by individual phonons and
thus propagates with c1. In fact one observes experimentally
that heat pulses propagate with velocity ci (de Klerk et aL. ,
1954; Peshkov, 1960; Dynes et aL. , 1973). (See also Wilks
(1967), Section 8.9J. This is the collisionless situation dis-
cussed in the Introduction.

C. Isothermal fluid: first sound

We now assume T = const and P = (Bp/BT), =
—p'(Bs/Bp) ~ = 0 Lhere the second equality follows from
Eq. (1.12)), that is, vanishing of the tension coefficient
pp. Then we also have s = const. p is related to the thermal
expansion coefficient cx = —(1/p) (Pp/PT)& and the iso
thermal compressibility & = (1/p) (pp/&9p) r by the
identity P = —n/y. Since for low temperatures n =
—1.09 && 10 'T'K ' Lsee Table A1, p. 666 of Wilks (1967)j,
the assumption P = 0 is fulfilled in the limit T —+ 0.

With T = const and s = const Eq. (1.14) combined with
Eqs. (1.19), (1.21), and (1.26) becomes in linear approxi-
mation in the fiuctuations

hp(t) = —ReLi(eels/c, q) BTj p+pV v = 0. (1.51)

= —(ms/c2q)
~

BT
~

sin(c~qt + h ). (1 47) Subtracting from this equation the first Eq. (1.6) combined
with Eqs. (1.9) and (1.26) we find

The fluctuation of the order parameter due to the second-
sound wave then is, according to Eq. (1.2), &.(v„—v, ) = 0. (1.52)

In the same approximation, combination of (1.5) and the

(1 48) second Eq. (1.6), together with Eqs. (1.9), (1.10), (1.12),
and (1.13), leads to

where (N+)q„ is the average in the presence of the second-
sound wave, i.e., with phase p(t) + Bp(t). For sufficiently
small q the amplitude nzs

~

BT ~/c2q of Bp(t) can be made
larger than 7r. Then the fluctuation B(%'+) is of the same
magnitude as the order parameter (4'+) itself. In the limit

q
—+0 the phase (1.47) becomes a constant of arbitrary

value, so that one may say that the second-sound excitation
"restores" the continuous gauge group (see the Introduc-
tion). For this reason second sound has sometimes been
identified as the Goldstone boson associated with gauge
symmetry breaking in the superfluid (Ferrell, 1969). How-
ever, since a GoMstone boson is a collisionless excitation
persisting to T = 0 (see the Introduction), this identifica-
tion is not justifiable, as is evident from the following con-
sideration of the zero-temperature limit.

In the limit T —+ 0, we have from Eq. (1.33) p —+ 0, and
hence p, —+ p. In addition s —+ ~c~ so that it follows from
Eqs. (1.33) and (1.34) that

p (v„—v, ) = —V'lI'+ peti'. (1.53)

(1.54)

Here we have made use of V'-X = 0 which follows from the
second Eq. (1.16) and (1.52). Substituting in Eq. (1.54)
V' v„ from Eq. (1.51) and making use of the definition of
the isothermal compressibility Bp = p&hp, we find

p —ci'V'p = (1/p) (I, + gq)V"p, (1.55)

Neglecting dissipation, the last equation together with
Eq. (1.52) implies that v„—v, = const, or that the two
Auids move in phase, v„= v„ if the excitation starts from
equilibrium, v„= v, = 0.

Combination of the two equations (1.6) yields, with Eq.
(1.13), the third Eq. (1.22), and (1.26),

p~/~Tp = ~i T~0. (1.49) where

From Eqs. (1.49) and (1.42) we also find ~i = (pv) "' (1.56)

c, = ci/v3, T —+0. (1.50) is the velocity of isothermaL first sound.
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Charles P. Enz: Two-fluid hydrodynamic description of ordered systems 713

In plane-wave representation, p ~ exp(i(q. r —ppt)), we and v„which have zero divergence. Now Eq. (1.4) implies
obtain the dispersion law Lsee Eq. (12-7) of Khalatnikov that v, i ——0 so that the transverse projection of Eq. (1.61)
(1965)] becomes the diffusion equation

(d /q = CI (1 ZM7ip) ~ (1 57) Pnvn~ = g&n~. (1.61a)

rM = (1/P~I') (i2+ ~n) (1.58)

From Eqs. (1.5), (1.12), (1.56), (1.57), and Bp =
pyBp we find in plane-wave approximation, neglecting dis-
sipation,

with L&I rip is identical with Di, Eq. (4.21) of Hohenberg
and Martin (1965)]

This equation is completely decoupled from the longitudinal
projection (divergence) of Eq. (1.61), which now has to be
combined with Eqs. (1.59), (1.60), and (1.62) .

Choosing as independent variables bp and BT, we eliminate
Bp and Bs with the help of the relations (which because of
time reversal invariance do not contain the velocities to
first order)

V. = q(~I/p)BP
Bp = (1/P'Y)BP + PBT

B = -(~/")Bp+ ("/T)BT. (1.63)

so that according to Eq. (1.4)

ap(t) = ReLi(mci/pq)BP] = (m~i/pq)
l

Bp
I

sin(ciqt. + Bi)

in a 6rst-sound excitation at r = 0 with complex amplitude
~

Bp
~
exp( —iBI). Equation (1.48) then shows that for suffi-

ciently small q the fluctuation of the order parameter due to
a first-sound wave is of the same magnitude as the order
parameter itself. As was the case with the expression (1.47),
By(t) becomes a constant of arbitrary value for q

—+ 0, so
that one may say that the erst-sound excitation "restores"
the continuous gauge group. This suggests the identification
of isothermal first sound as the Goldstone boson associated
with gauge symmetry breaking which is legitimate in the
sense of the collisionless hmit of ci (see the Introduction) .

If, on the other hand, the isothermal compressibility p
is singular at Ti Lsee Fig. 17 of Ahlers (1973)], it follows
from Eq. (1.56) that ci ~ 0, i.e., isotlierma/ first sound is a
soft mode (Schneider et al , 1972). T.his is not the case,
however, for the adiabat'ic first sound which is directly
measurable (see below) .

P —ci'V'p —PV'T = pVV

+ ci'rIV'p + t3(ri'V'T —XI"V'T), (1.64)

and combining the time derivative of Eq. (1.60) with the
divergence of (1.61) we obtain, inserting Eqs. (1.59),
(1.60), and (1.63),

T —cppVpT —(ci2I"t/ p) p

~ P(~ V2T g 2V4T) (~ 2~ 2g/P) ~ ~V2p (1.65)

Equation (1.65) shows that the temperature does not couple
directly to an external potential. The. quantities c1, c., v-2,

X2 in Eqs. (1.64) and (1.65) are defined, respectively, by
Eqs. (1.56), (1.42), and (1.44). In addition we have intro-
duced the definitions

Here, as before, P = (Bp/BT), = p'—(Bs/Bp) z defines the
tension coefficient PP.

Insertion of Eqs. (1.59), (1.60), and (1.63) into Eq.
(1.62) leads to the equation

D. Thermal expansion coupling of first and
second sound

&1 &10 7 1 (1.66)

where Vip is given by Eq. (1.58),

~I' = (&v/PST) ( —pi, + i. + ~it)
—2 I

V2 7 2 c2 Dy Ty

P g" ——Dzrj'ps + ps + psV. v = (K/T) VpT,

ps+ p, sV ~ (v —v, ) = (~/T) V2T,

(1.59)

60) and

We now relax all the restrictions on p, P, and T, and
allow P Q 0, that is, nonvanishing thermal expansion n.
Then Eqs. (1.51) to,(1.54) generalize to the following form,
again valid in linear approximation

(1.67)

p (v —v ) + psVT = p (—ii+ pip)VV (v —v, )

+ ( pfi + f & +—-'It) VV v + It V'v (1.61)

p —V2p = PV'p+ pg'IVpV. (v —v, )

12+ P2T /P2pv (1.68)

In plane-wave representation Eqs. (1.64) and (1.65)
become

—(ip+ ~4It) V'V. v„. (1.62) p ((v'/q') —ci'(1 —up~i) ]Bp

—P[1 —icu7I'+ XI'Pq']BT = PBQ (1.69)
Here the first two equations can be used to eliminate

V'. v„and V'.v, from the second two equations. This elimina-
tion does not, however, determine the transverse parts v„&

$(cv'/q') —cp2(1 —nv7..+ Xp2q') ]BT

(ci 8'/P) L(N /q ) 1' cPzppTp ]Bp = 0~ (1 7o)
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714 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

where Bp, BT, and g are the variations of p, T, and P around
the global equilibrium values, respectively. Because of Eq.
(1.68) this system of equations is decoupled for P = 0 and

iP = const, and the previous results (1.43) and (1.57) are
recovered. Note that the diffusion equation (1.61a) leads
to the viscosity mode

, second sound. VVhile these two modes remain the physical
excitations of the system, their velocities and relaxation
times are renormalized by the thermal expansion coupling.
Calling these renormalized values cz, czz, and 7I TII respec-
tively, Eq. (1.72) znay be rewritten in the factorized form

Z(n—/p-) q'.
czz (1. zan% zz) q g + 0(~ q )- (1.72a)

Retaining only the lowest powers of q and co, but sepa-
rately for real and imaginary parts, insertion of Eq. (1.70) valid to order ~ q'. By comparison with Eq. (1.72) the re-
into (1.69) yields the dezzsity derzszt-y correlatiorz furzctiozz normalized quantities are found to be given by

= —G(q, cv) fee' —czz(1 —zcorz) q'jpq' (1.71)

cz =c +u
cz rz Cl ri+ Z'

Czz = C2 —I2 — 2

CII 7II C2 &2 &)
2 — 2 (1.72b)

where

G—'(q, ~) = f(g' —czz(1 —i(arz) q'$

where, expressed by the renormalized quantities fexcept for
the Small quantity (ri' —rz') z)j,

X fM cz (1 zGor2)q g cl c2 z)(1 z~rl )

X f1 —zu)(r. —rg') jq4.

Here we have

Fzz = c z(1 + i))

and

ri = rio(1 + &)

(1.72)

(1.73)

(1.74)

u = —', (cz' —czz') sf1 + (1 —z) "'g '

v = iczz'rzz(u + cz'i)) —cz'rzu(1 + z))

+ (czz —u) (czz2+ u) (ri' —rz') z) }

X fcz' —czzz(1+ z)) —u(2+ z)) j '.

Here

s = 4cz czz z)(cz —czz ),

(1.72c)

(1.77)

For z) = 0,. Eqs. (1.71) to (1.74), with Eqs. (1.42), (1.66),
(1.58), and (1.44), are identical with Eqs. (4.32) and (4.19)
to (4.22) of Hohenberg and Martin (1965).

cz, as defined by Eq. (1.73), is the adiabatic first-sound
velocity. Indeed, according to Eq. (1.63), the adaibatic
compressibility y = (1/p) (Bp/Bp), satisfies the relation

z) being given by Eq. (1.76) . Likewise we can decompose the
numerator in Eq. (1.71),

cuz —czz(1 —is)rg) qz = r(1 + icur, )

X fee' —
czz (1 —i~rz) q'j + f1 —r (1 + ivor, ) )

X f~' —czz'(1 —z~rzz) q' j + 0 ((u'q'),

v ' —v ' = t3'Tlpcv where

Inserted together with Eqs. (1.56) and (1.68) into Eq.
(1.73) this gives

and

(1.78)

From the thermodynamic identity
(cz rz —czz rzz —v/r) (cz —czz ) (1.78a)

Tp. 'r/p = cy —cz,
With this decomposition Eq. (1.71) can be written in the
form

we further obtain

1+ z) = c~/cz. (1.76)

1 fl —r(1 + iMr„) gqz——x„(q, M) =
p

'
cu —. cz (1 —zcurz)q

At low temperatures P = p'(Bs/Bp—)r ~ cz ~ T', so that
according to Eq. (1.68) z) ~ T'. Hence the second terzn in
Eq. (1.72) vanishes in the limit T~O, so that first and
second sound become decoupled and erst sound becomes
isothermal.

In the general case where 6 & 0 the second term in Eq.
(1.72) describes the thermal exPazzsiorz couPlirzg of first and

r (1 + i(v7, )q'

07 czz ( 1 zcvrzz) q

valid to order oPq .
(1.79)

Up to this order the above result is identical with a recent
calculation by Hohenberg (1973). More explicitly, our Eqs.
(1.71) and (1.72a) are the same as Eq. (2) of Hohenberg
(1973), and our Eqs. (1.72b) and (1.72c) correspond
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S(q, ~) = (1/~~) (1/~) Imx„(q, ~)

= Sz(q, u) + Szz(q, o)) + O((u'q'). (1.79a)

(1 —r) cz'rzq4 + r (co' —cz'q') 7„q'
mSI(q, co) =

((u —cz q ) + (4)q cz rz)

czz rzzq —(QP —czz q ) r~qS
(~2 . c 2q2)2+. ( q2c 2 )2

(1.79b)

Equations (1.79a) and (1.79b) describe directly the
response measured in inelastic neutron scattering with small
momentum transfer q and in Brillouin scattering. It shows
that this response consists in a two-peak structure describ-
ing coupled first and second sound with amplitudes 1 —r
and r, respectively. The two peaks contribute fractions Ii
and I», respectively, to the integrated intensity,

+ dGO

S(q& M) II + III—1 —y r
c»

(1.80)

[note that all three relaxation times rz, rzz, and r„occurring
in Eq. (1.79) drop out in this integration). As noted before,
8 goes to zero as T4 in the limit T —& 0. Consequently the
intensity ratio for T « Tz is found from Eqs. (1.77),
(1.78), and (1.80) to be given by

(Izz/Iz)r-0 = cz'&(cz' —cn') ' ~ T'

This shows that far below T7, the second-sound peak is too
weak to be seen in neutron or Brillouin scattering.

On the other hand, in the limit czz/cz ~0 Eqs. (1.77),
(1.78), (1.80), and (1.76) yield

exactly to Eqs. (9) through (12) of this reference. In these
equations our quantities Pi', c2, P~'v=~, c~'~2, cz, c», cl'~i,
cn'rzz, ci'rz'8, and c~ (ri'+ ru') coincide respectively with
Hohenberg's cio, QC20', Dz', D, + DII(y —1), cz', c, Di,
D2, a(DID —gz), and D20 —Dzc. Note that Hohenberg's
parameter a is our P/ps and that he does not make use of
the Onsager relation Pz ——l4. Also Hohenberg does not
make the physically natural decomposition (1.79) which
separates the first- and second-sound poles.

From Eq. (1.79) it is easy to calculate the spectral intens-
ity or dynamic structure factor which, up to a constant, is
given by

and (1.78a)

ci ~Pj ~

&I ~ 71)

2~c, 2(1 + g) —I

rzi ~-', (1+6) (ri+ r2 —ri'+ r, ')

r -~ (c.'/cz') ~/(1 + +)

r, ~»+ 4(1+ +) (» —r —ri'+ r~'). (1.80a)

Inserting these expressions into Eqs. (1.79b), we find

Sz (q, 0) -+ rz/PI2

Szz (q, 0) ~ {(2 + +)ri —(1 + 0) (»' —rz') ]8/Fz

(1.80b)

((T) = 4r "' (1.81)

is the correlation length, r = (T&, —T)/Tz, and the critical
exponent p' = 2/3 (Kadanoff et a/. , 1967). In this region
the temperature dependence of the thermodynamic and
hydrodynamic quantities is dominated by critical fluctua-
tions which modify the singularities of these quantities.
The specific heat which is best known experimentally is that
measured at saturated vapor pressure, c„„.Defining its
critical exponent n' by

c,„„=A'[(r—"' —1)/n') + B' (1.82)

Since 6 diverges in the limit T —+ Tz, (see below), this shows
that Szz(q, 0) indeed gives rise to a Rayleigh peak. Hohen-
berg (1973) has made a detailed analysis of S(q, 0) in this
limit. His expression (24) coincides exactly with the sum
of the two terms in (1.80b) . This must of course be so, since
for ~ = 0 Eq. (1.79a) is exact.

Recently Winterling, Holmes, and Greytak (1973) [See
also Vaughan et al. (1972)) have succeeded, for the first
time, in seeing the second-sound peak in Brillouin scattering
on pure superfluid 4He. This success is due precisely to the
choice of temperatures very near to Tz so that the intensity
ratio Izz/Iz is given by the Landau —Placzek value which
diverges at Tq. Further enhancement of this ratio is obtained
by choosing high pressures. The experimental results for
Izz/Iz at 25.1 atm and q —1.4 X 10' cm ' which are
plotted in Fig. 2 of Winterling et al. (1973) show good agree-
ment with (c„/cz) —1 up to Tz —T —0.4 m deg. For
smaller values of Tq —T a marked deviation from the
Landau —Placzek value is observed which indicates that
two-fluid hydrodynamics is no longer valid in the critical
region (Winterling et a/. , 1973).

The critical region is defined by qg(T) ) 1, where

(Izz/Iz). l. -o = (c /«) —1

which is the well known Landau —Placzek ratio (Landau and
Placzek, 1934). [See also Landau and Lifshitz (1960);
Mountain (1966b).)This expression is valid for normal fluids
where the second-sound doublet merges into the Rayleigh
peak at ~ = 0. But it is also valid for superfluid helium
near Tq provided that two-fluid hydrodynamics is still. valid
(see below) .

the crucial experiments by Buckingham and Fairbank
(1961) were compatible with cz' = 0. This result is con-
firmed by very recent measurements of the second-sound
velocity in the vicinity of Tz by Greywall and Ahlers (1973),
[see below) who find zz' = —0.01 ~ 0.03.

With cx' = 0 the identity

lim[(r ' —1)/Iz') = log(1/r)

implies that Eq. (1.82) becomes
In fact, czz/cz —+ 0 in the limit T-+ Ti (see below), so

that we obtain frozn Eqs. (1.72b), (1.72c), (1.77), (1.78), c„„=A' log(1/7. ) + B', (1.82a)
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716 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

which is the form given by Ahlers (1969, 1973) and by
Kadanoff et a/. (1967). Because the saturated vapor pressure
varies little with temperature, Eq. (1.82a) then also holds
for c„(Ahlers, 1969, 1973; Greywall and Ahlers, 1973).
Since, on the other hand, a and p have the same singularity
as c„/see Eqs. (4) and (6) of Ahlers (1969)$ P = —n/y is
nonsingular and therefore also ci Lsee Eq. (37) of Ahlers
(1969)). Note, however, that in the temperature region

i
T —T&,

~

& 10 'K explored up to date the asymptotic
region is not yet reached. This is the reason why the form
(1.82a) could also be used to fit the nonsingular quantities
P and cv (Ahlers, 1969, 1973). It is also the reason why
Hohenberg (1973) obtains almost constant slopes in his
plot of P/ps (his Fig. 2).

The present experimental situation is actually even more
complicated. As shown by the detailed analysis of Ahlers
(1973), agreement with the theoretical predictions of
scaling can be obtained only if higher-order terms in r are
included in the expression (1.82) for c~ and if —0.04 & n' &
0. This would mean that c„and hence also c1 stay finite at
the X line so that the isothermal first-sound mode would not
become completely soft.

From the above discussion it follows that 8 = (c„/cv) —1
diverges as c„Lsee Fig. 2 of Winterling et a/. , 1973$.
And we conclude from Eqs. (1.56) and (1.73) that the
adiabatic sound velocity Fi reaches a finite value c&, at the
X point. Precision measurements of P1 in the temperature
range 10 'K &

i
T —Ti,

~

& 0.35K at saturated vapor
pressure and at small q(Piq/2~ = 22 kc/sec) have been
performed by Barmatz and Rudnick (1968), who obtain a
value cz = 217.3 m/sec. A thermodynamic analysis of these
results has been made by Ahlers (1969), who also showed
the importance of the gravitational pressure gradient for
these experiments.

The superfluid density vanishes as (Greywall and Ahlers,
1973; Kadanoff et a/. ; 1967; Ferrell et a/. , 1968)

Since according to Eqs. (1.69) and (1.70) second sound is
coupled to first sound, the measurable second-sound velocity
is err. From Kqs. (1.72c) and (1.77) we find to first order in
cri ci

~ = 51+ (1++)~ii'/c, 'gc„'a.

Inserted into Eqs. (1.72b) this leads to

(1.87a)

M C 7 op

(u "/P~'q' = 1 —(462'r~' —4') q'.- (1.88)

Ferrell et a/. (1968) argue that Dr ——5~'r~ has a singularity
(P/c, ,„„)'t'. However, since the hydrodynamic equations,

strictly speaking, are valid only in the hydrodynamic region
qg(T) & 1, the solution (1.88) still represents a soft mode
in the sense that the complex frequency cv = co' —ice"
goes to zero at the phase transition (Schneider et a/. , 1972) .
From Eqs. (1.81), (1.82a), (1.83), (1.87), and (1.88) we
6.nd

Precision measurements of cII have recently been made by
Greywall and Ahlers (1973) in the temperature range
2 )& 10 'K & Tq —T & 10 'E and at various pressures
by a resonator technique. They find that the difference
c» —P. given by Eq. (1.87a) Lwhich is their Eq. (6)$ is
less than the experimental resolution over the complete
range of data. Using their values of 0'~ to deduce p,/p accord-
ing to Eq. (1.87), they find the parameters in Kq. (1.83) in
the limit p —& 0, r —& 0 to be r = 2.40 and i = 0.67 & 0.01.
However, in their temperature range they find a non-
negligible correction factor 1 + ar& with a = 0.65, Y

=
0.5 ~ 0.1, and r and a are both pressure dependent.

The solution ~ = cu' —i~" of Eq. (1.84) is

(p./p) = «" (1.83) cu"/cu' ~ r'"' r'" —const (1.89)

M /q = 8 (1 zop72), (1.84)

where

with |——,'. Since cv is nonsingular at Ti Eqs. (1.42) and
(1.83) imply that the second-sound velocity vanishes Lsee
Fig. 22 on p. 71 of Wilks (1967)j and that c2 o- r'r+ 't'
Now for co/q = cg « 8i we can neglect the term cu' in the
first bracket of Eq. (1.72) . Retaining only lowest powers of
q and ~ the second-sound pole of G ' thus is located at

so that cu —+ 0 along a line with finite slope.

E. Normal liquid

Above the P transition, p, = 0, p, = 0, v, = 0, and X = 0.
Hence Eq. (1.5) does not hold, and both the number of
variables and the number of equations is reduced by three.
Writing v„= v Eqs. (1.6) and (1.14) become in linear
approximation with P =— const

P2~ ——c22(1 + 6)

and

(1.85)
p+p~7 v= 0

pv+ 7'p = (f'. + —,'q) 7'V'-v+ gV'v

ps = (x/T)V"T. (1.90)

r~ = r2+ ~r2'+ (+/(1+ ~) j(ri —ri')

With Eqs. (1.42), (1.78), (1.82a), and (1.83), Kq. (1.85)
becomes (Ferrell et a/. , 1968)

pv&,
——qV'v, . (1.90a)

The transverse projection of the second Eq. (1.90) leads to
the diffusion equation

CV ps S
C2 = Cg

Cg) prt, Cp

rats), 'Tg
A' log(1/r) + 8' (1.87) In the longitudinal projection (divergence) of this equation

7'v can be eliminated with the help of the first Kq. (1.90) .
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—iL (1/r) —rX'q'7. if coqr(& 1

Makr'ng use of Eqs. (1.58), (1.63), (1.68) and the third respectively, and a new diffusive mode
equation (1.44), we find the two equations describing
hydrodynamic excitations in a eormal liquid,

P cr2V'p PV T = cr27'roV2p

f' —(cP/P) p = DrV'T. (1.91)

,

—zP'/~c ') + (c4&'/~'c 8q') j if coq7. )) 1

(1.94a)

In plane-wave representation this leads to the dispersion
relation

zD+q
—,= cr' (1 —i(o~r) —cr'

Q) + ZD+lp
(1.92)

where cr and r, are given by Eqs. (1.73) and (1.74), re-
spectively.

For small q this equation has the three solutions

. (h+ v4ir c~ —cv~„=a cry —', i
~i + ' —q'

P cv Pc„
(1.93)

and, using (1.76),

~3—:—~(~/pc&) V' (1.94)

which describe damped adiabatic sound and heat conduction
in a compressible normal liquid. The diffusion equation
(1.90a) leads to the viscosity mode

~4 ———i (g/p) q'.

j + (1/7)$ = —X'V j = X'p

In molecular liquids an energy exchange between the
internal vibrational modes and the translational modes
takes place. This exchange gives rise to a new relaxation
mechanism and adds a new term, P, to the dissipative part
II' of the second Eq. (1.6). In the simplest case $ just
satisfies an equation of the form /compare Landau and
Lifshitz (1959);Mountain (1968)j

whose existence has been emphasized by Mountain (1966a,
1968) . This cVouetaie mode which was also detected experi-
mentally in 3rillouin scattering ( Gornall et a/. , 1966;
Mountain, 1966a) has recently been invoked in relation
with the problem of a central peak in structural phase transi-
tions /see Sec. III.D and Pytte (1973)j.

(ps)' = (~/T) V'T (1.96)

In linear approximation Eq. (1.5), with (1.12), the first
Eq. (1.22), and the second Eq. (1.16), takes the form

v, = sVT —(1/p) Vp+ p, t3VV v„ (1.97)

and the first Eq. (1.6) with (1.9) simplifies to

p + p, V'. v. = 0. (1.98)

Replacing in Eq. (1.97) V.v, from (1.98) and inserting
Eq. (1.97) back into the time derivative of (1.98), we
obtain

F'. Heliutn Ii in fine pores: fourth sound

The effect of the porous substrate is to exchange any
amount of momentum with the normal phase of the fluid.
Consequently, momentum conservation as expressed by the
second equation (1.6) with P = const is invalid, and
v„= 0. Thus both the number of variables and the number
of equations is reduced by three. Energy conservation (1.7)
still hoMs, and the entropy balance (1.14), with (1.18) and
(1.26), becomes

which is manifestly not time reversal invariant so that $ is
indeed dissipative. When combined with Equations (1.91),
where on the right of the fi.rst equation appears now the
additional term V $, Eq. (1.91a) gives rise to the dispersion
relation

QP ZDT'q X GO

—,= ci'(1 —~7.i) —cr'8, + (1.92a)
cv + zDz'g cv + 1/T

P —(P./p) V'p+ p.sV'T = p.i3V'P

Eliminating from this equation Bp and from Eq. (1.96) bs
with the help of Eqs. (1.63) one finds, with (1.56) and the
third equation (1.44),

P
p ——cr2V2P —p,s ——1 V2T = p l3V2p

p ps
which differs from Eq. (1.92) in the last term. This term
becomes dominant if the window condition Ts P

p = Dgt'T.
pc~ ps

(1.99)

D~q &&~&& V1
'

is satisfied. In this case the dispersion relation (1.92a)
recluces to Eq. (78.8) of Landau and Lifshitz (1959) where
co = cr and c 2 = cP + X2. The three solutions of this equa-
tion are first and zero sound (see the Introduction),

These equations have the same form as Eqs. (1.91) for the
normal Quid.

Insertion of plane waves, making use of Eq. (1.42), leads
to the dispersion relation (Khalatnikov, 1965)

& coq —21TPPq

&c„q ——',i (X'/7 c„');

if coque-« 1

if coque)) 1 (1.93a)

4) p, P ' iDrq—= c42(1 —icu7.4) ——"
c22 ——1

q p ps a) + iDpq' '

(1.100)
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718 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

where (Rudnick and Shapiro, 1962)

p p p 2 1/'2

« —— —cP + — ——1 cz'
p p ps

(1.101)

and

&4 ps' 3/« ~ ( i.102)

Here c4 is the velocity of fourth sound, a terminology which
is due to Atkins (1959). In analogy to Eq. (1.92), the
three solutions of Eq. (1.100) for small q are

w+ —& c4q —~zpafzq (1.103)

and, using Eq. (1.102)

~z = z(p./—p) (~p/«') Dzq' (1.104)

The fourth-sound mode (1.103), with P = 0, as well as the
diffusive mode (1.104), were first proposed by Pellam (1948).
The first experimental detection of fourth sound, as well as
the exact formula (1.101),are due to Rudnick and Shapiro
(1962), who later also made a precision measurement of «
in the temperature range from 1.1 K to T), (Shapiro and
Rudnick, 1965). More recently Kriss and Rudnick (1970)
have measured c4 for various pore size distributions in order
to deduce p,/p as well as size effects.

In the limit T —+ 0 the quantity P/ps ——8.94 is best
calculated with the aid of the relation

p/ps = —ncp/s

which is obtained from Eq. (1.56) and the thermodynanuc
identity P = —n/p. Hence fourth sound approaches first
sound in this limit and therefore (see Sec. I.C) may be
identified as a Goldstone boson (Schneider and Meier,
1973). We notice that n changes sign at 1.14K, so that
according to the above relation the same is true for p/ps.
At a temperature of about 1.7K, —ncP/s reaches a maxi-
mum of approximately 0.79, so that (P/ps) —1 & —0.21.
In the vicinity of this temperature the. equations of motion
(1.99) for Bp and BT are approximately decoupled and Eqs.
(1.103) and (1.104) are fairly realistic.

II. CHARGED SUPERFLUIDS:
SUPERCONDUCTORS

x = p„/p = (T/T ) &la—~)

As mentioned in the Introduction, superconductors were
the first systems for which a two-Quid idea was advanced
by Gorter and Casimir (1934a,b) . They adopted an idea
due to Kronig according to which a superconductor is con-
sidered as a two-phase system. In the view of Gorter and
Casimir the electron gas starts condensing into a "crystal
phase" (the superfluid) below the critical temperature T,.
They determine the fraction of electrons in the "gas phase"
(the norinal fluid)

from the condition (Bf/Bx) z
——0, where f = s, + e„—sT

is the free energy, 6, = —P(1 —x) and e = ~pT'x~ are
the energies of the two phases, s = (Be„/BT), is the entropy
(which is carried by the "gas phase" alone), all per unit
mass, and T, = (2P/ny)')'. Gorter and Casimir (1934a)
conclude that o. = ~ if the critical field has the form II, =
Hd)$1 —(T/T, )') which follows from p(s„—s) =
—(1/8zr) BH,2/BT where s = yT is the entropy per unit
mass of the normal state. They used this two-Quid idea to
explain the thermodynamic properties only and did not
extend it to hydrodynamic phenomena. This means that
they did not introduce currents for -the two phases.

Persistent currents, on the other hand, are the most
striking hydrodynamic feature of superconductors. Accord-
ing to Landau s criterion for superfluidity (see the Intro-
tion) this phenomenon requires a gap in the excitation
spectrum (except for dirty superconductors or thin films
in a parallel magnetic field). Daunt and Mendelssohn (1946)
)see also Welker (1939); Landau (1941)) proposed such
an energy gap of the order of 10 ' eV to explain their experi-
mental result that the Thomson heat of a persistent current
is zero. This means that reversible energy exchanges be-
tween superconducting electrons and the lattice are for-
bidden which is true if there is a gap in the excitation
spectrum.

Daunt and Mendelssohn (1946) also discussed the
analogy between superconductors and superQuid helium
with respect to their thermodynamic and hydrodynamic
properties. Theoretically this analogy is not so obvious,
however, because London's (1938a,b) explanation of the
condensed phase of superQuid helium as Bose condensation
does not immediately apply to superconductors. It was
Schafroth (1954) who pointed out that superconductivity
could eventually be understood as Bose condensation of
metastable resonance states of electron pairs.

This pair idea was taken up by Cooper (1956), who
showed that with an attractive interaction between the
electrons the Fermi sea is unstable against formation of
quasibound pairs of electrons of opposite momentum and
spin Final.ly Bardeen, Cooper, and Schrieffer (1957)
derived an energy gap by constructing a superconducting
ground state containing a distribution of Cooper pairs at
the Fermi energy which is self-consistently determined by
the gap. This redistribution of the electrons into a state of
lower energy which was independently derived by Bogoliu-
bov (1958) and Valatin (1958) describes the condensed
phase in close analogy to the case of superQuid helium.

Now the two-Quid description with condensed Cooper
pairs and excited normal electrons also becomes analogous
to the one for superQuid helium, and one can define currents
for the two Quids. While the description of the motion of
these currents in external electromagnetic fields was de-
veloped by F. London and H. London (1935) Lsee also
London (1950); Ginzburg (1944)) the first application of
the two-Quid model fo the question of second sound in super-
conductors wa's made by Bardeen (1958). He gave the
expression for the normal density p„and pointed out that
second sound would be dificult to observe in supercon-
ductors.

There are, however, two important differences between
superconductors and superAuid helium. The 6rst is the
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charge of the electron which, through the long-range charac- PC', BC —mtiN] = 0 this transfer requires no energy, then
ter of the Coulomb force, transforms the first-sound mode
into the plasmon. p = expL(F —BC —BC. -~ —BC' + AN

The second difference is the presence of the crystal lattice
which breaks the continuous translation group. As a conse-
quence, momentum conservation is valid only up to Um-
klapp processes. As in the case of dielectric or magnetic
crystals (Sections III and IV), this gives rise to an intrinsic
momentum dissipation from which results a window condi-
tion for the frequency domain in which second sound can
propagate. It turns out that for superconductors the large
value of the (Fermi) velocity of the electrons as compared
to the- second-sound velocity excludes a frequency window.
except deep in the critical region, that is, extremely close to
the transition temperature where two-Quid hydrodynamics
is not valid anymore (see Sec. II.D) .

A. Two-fluid hydrodynamics

In superconductors the condensate which develops below
the critical temperature T, is formed by Cooper pairs near
the Fermi surface. The creation operator of a Cooper pair
is (Josephson, 1962, 1965, 1969)

+ mp. ,,tV, ,,)/kliT j
indeed commutes with 3C and 3C, t but not with E and X, t,

and Eq. (2.3) is just the Kubo formula for the linear
response of the system to 3C'.

In an external potential V this leads immediately to the
ac Josephson current (Josephson, 1962, 1965, 1969) . Indeed,
to lowest order in 3C'

t

N(t) = N+ i dt'LBC'(t'), N),

where BC'(t) is the time evolution with BC + BC, ~
—mpN—

mt', &N,„„(interaction representation with respect to BC').
The Josephson current is

(J(t) ) = e(N(t) ) = 2Zegexp( —i2eVt) Z j,
where

S = g cxis cx
Ic

(2.1)
K = ieM(5+LS, Nj),

and

where cx+&+ creates a Bogoliubov quasiparticle of momentum
&k,

~
k

~
k~, and spin &~. The condensate average is

defined by a density operator p which commutes with the
effective Bogoliubov Harniltonian (compare Section IA)

V = (m/e) (t ..s
—

t )

is the applied voltage, e being the true electron charge.

BC —AN = Q Ei,ui, +ni, .
7i:

In a local description the phase p defined in Eq. (2.3)
(2.2) determines the superRuid velocity

5+(t) = exp (iBCt) 5+ exp( —iBCt)

and the fact that S+ creates a Cooper pair, then leads to a
nonvanishing order parameter (5+) and to the following
time evolution of the Gorkov pair function at zero separa-
tion (Gor'kov, 1958; Anderson et gt. , 1965):

F)i(r = 0, t) = (5+(t) ) = (5+) exp(+2mtit)
= (e,)'t' expL+ip(t) j. (2 3)

Here m, is the density of Cooper pairs and

where Ei, = (ei + LV(T) )'", ei ——(lr'/2m) —mp, b, (T) is
the energy gap, and p the chemical potential per unit elec-
tronic mass. But p does not commute with the number
operator N = gi,ni, +ai, Since, .on the other hand, PC, N$ =
0, Eqs. (1.1) again hold, which, together with the Heisen-
berg representation

v, = —(1/2m) V'q (2.5)

so that from Eq. (2.4) the equation of motion analogous to
(1.5) (London, 1950; Ginzburg, 1944),

dv, /dt = v, + (v, V)vs = —V(ti+ p, ),

is obtained where p is the dissipative part of p.

(2.6)

Apart from the factor 2 in Eq. (2.5) the analogy with
superAuid helium is complete: The electron Quid consists
of the superAuid phase of Cooper pairs moving with velocity
v, and of the normal phase of single quasiparticle excitations
moving with drift velocity v„. The excitation mechanism
consists in breaking a Cooper pair by supplying a minimum
energy 2h.

In the local frame moving with v, the total current is
carried by the normal phase alone, j~ ——p„(v„—v, ), defin-
ing the excitation mass density p„(Bardeen, 1958). In the
frame of the crystal lattice we have as in superfluid helium

q (t) = p(0) + 2mpt. (2.4) )s = /so + psVs = pssVss + psVs, (2.7)

Physically a density matrix p leading to Eq; (2.3) may be
constructed by coupling the system to an external Cooper
pair source via a tunneling Hamiltonian BC' = LES,„, 5+
H.c. which transfers Cooper pairs through a Josephson
junction. Since from Eqs. (2.1) and (2.2) it follows that

p8 = pe pn,

is the superQuid mass density.

(2.8)
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In the presence of electromagnetic fields the normal cur-
rent obeys Ohm's law

now contains a potential (e/m)@ due to the Ructuating
electric field E which is determined by the Poisson equation

j„=p„v = (m/e)0. + (2.10)

while the supercurrent j, = p,v, satisfies the London equation
(F. London and H. London, 1935) . The latter follows most
easily from the analogy mentioned in Sec. I.A between a
superconductor in a magnetic field H and a neutral super-
Quid rotating with angular velocity co. Assuming E = 0
so that, according to Eq. (2.7a), j„=0, the analogue of the
normal velocity v„= co x r in the neutral superQuid is now

Here s is the entropy per unit electronic mass, p, the pres-
sure of the electron Ruid, and 8p, = p, —(p,),~ the elec-
tronic density Quctuation.

Equation (2.6) determines the motion of the superRuid
phase. The remaining hydrodynamic equations are analo-
gous to Eqs. (1.6) and (1.7)

v„= (e/mc)A = (e/2mc) (H x r).

The response to this v„ is the paramagnetic current

p. + ~ (j.+ j.') = o,

j, + V(II, +11,') = (e/m) pQ —(1/~, )p„v„,

(p") '+ ~ (J.+ J.') = o, (2.11)

3para pnvn

which defines the normal density p„ in the general micros-
copic form PEq. (1.11)j of Pines (1965) and Nozieres
(1966). The supercurrent response is

js = jpara M julia

where

j„.= —p, (e/mc)A

is the diamagnetic current (F. London and H. London,
1935; Nozieres, 1966). We find by insertion, making use of
Eq. (2.8),

j, = p,v, = —p, (e/mc)A, (2.7b)

the curl of which is the London equation.

Since E = 0 we have in addition j, = 3, so that from
M;axwell's equations for the stationary case

where j,', Il,', and J,' are, respectively, the dissipative parts
of the momentum density j„ the momentum Qux II„and
the energy flux J„and e is the energy per unit electronic
Dlass.

The first of these equations (2.11) expresses charge con-
servation and the second momentum balance. Due to the
terms on the right-hand side the latter is not a conservation
law: Electron momentum changes reversibly due to the
Lorentz force (e/m)E and dissipates due to Umklapp proc-
esses or (elastic) impurity scattering. This dissipation is
here described by the relaxation time v-, in the supercon-
ducting state Lsee Eq. (2.83) below). In superRuid helium
v-, = ~ since momentum is strictly conserved, and the
Lorentz force is replaced by —V'P Lsee the second Eq.
(1.6) j. If, in particular, E is a constant external field, a
stationary and homogeneous situation develops so that
j.= 0 and V'(lI, +II,') = 0, and the second Eq. (2.11)
describes Ohm's law (2.7a) with 0, = 7, (e~/m2) p, . In what
follows we omit external fields and consider E to be the
Ructuating field determined by Eq. (2.10).

V' x H = (4~/c) (e/m)j, ; V' j, =0,
In an isotropic approximation the momentum Qux is

given by the analogue of Eq. (1.13),

we deduce 11, = p,1+ p„v„ v„+ p,v, v, . (2.12)

V'j, = (4~e'p, /m'c') j..

This equation describes the Meissner effect (Meissner and
Ochsenfeld, 1933): The current is contained in a layer of
width

Xz, = (m'c'/4~e'p )i~

below the surface of the superconductor, Xl, is the London
penetration depth (F. London and H. London, 1935;
London, 1950), which varies as p, '~', and hence becomes
infinite at T, while at T = 0 it is of the order of 10 ' cm.

Due to the electric charge, the thermodynamic relation
analogous to Eq. (1.12),

Note that in writing Eqs. (2.7), (2.8), and (2.12) we have
made use of the same Galilean invariance argument as in the
case of superQuid helium. Mobile in a crystal this is of course
not a rigorous argument, it is still justified for wave numbers
q which are close to the center of the Brillouin zone. For
such q's the excitations do not notice the periodicity of the
lattice and a hydrodynamic description is justified. In par-
ticular, the velocities are defined by Eq. (2.5) and, for free
quasiparticles, by Eq. (2.19) below. With this last equation
the normal parts of the hydrodynamic quantities could
actually be derived explicitly, in complete analogy with
the derivation given in Sec. III.A for the phonons in dielec-
tric crystals. An example is given by Eq. (2.20) below or,
in the general case, by Eq. (1.11) which was discussed earlier
in this section.

dp = —s dT + (1/p, ) dp, + (e/m) dQ

——', (p„/p, ) d(v„—v, )' (2.9)

The third equation (2.11), finally, expresses energy con-
servation, energy transfer to the phonons being neglected.
It is useful again to convert energy conservation into an
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where, in analogy to Eq. (1.16)

entropy balance equation. This can be done with the aid of Here p. and p, i, t,3, f,3 are viscosities of the electron fluid
the thermodynamic relation analogous to (1.15) and g„ is the electronic heat conductivity in the supercon-

ductive state. Inserting Eq. (2.17) into (2.16) we find an
d(p, e) = v dp, + X..dv, + co dj, + Td(p.s) expression analogous to Eq. (1.24) but with the additional

term (p„/~, )v . Its positive definiteness implies relations
analogous to Eq. (1.25). As in (1.26) we will put Di ——

D2= 0.
v = jc + 3(V~ V~) 3V~ ~

pa (vs vn) = pe pevn

In the approximation by free quasiparticles as defined by
Eq. (2.2) the normal current density is

CO= V„.

It follows that

(2.13}
j = (2/I') Z Irfk (2.18}

T(p,s) = (p,e) —vp —'k v —co je.

Substituting here the time derivatives from Eqs. (2.6) and
(2.11),making use of Eqs. (2.12) and (2.13), and eliminat-
ing V'p, with the aid of Eq. (2.9), we find, to second order
in the velocities,

(ps) = —V'. [(1/T) (J.+ J,' —pj. —j j.' —j '&

—11.'v.)]+ (J.+ J.' —pj. —j j' —Tp.sv
—„'}~—11'v) V(1/Z) —(1/T)Lj.' Vj + j'V }
+ (II,'7) v„]+ (p„/T7.,)v„'.

where the factor 2 accounts for the spin states and

fk ——iexpL(EI, —v„.k)/kiiT] + 1i—' (2.19)

p- = (I/3kjjT) (2/I') 2 Ir'f" (1 f~")— (2.20)

where'' ——Lexp(Ei/kjiT) + 1] '. Formjc)) k~T, onefinds

is the drifting local equilibrium distribution function. The
excitation mass density p„ is the coefficient of v„ in the
expansion of Eq. (2.18) and is found to be (Bardeen, 1958)

This equation, which is analogous to Eq. (1.17), can again
be written in the form (1.14),

p~—= 2
Pe

00 gg ($g

(ev+ 1)' (2.21)

(p.s) '+ |7.(J.+ J.') = ~. (2.14)

Identification of the nondissipative and dissipative terms
leads to the entropy Auxes

where v =— E~,/kBT = {x'+
t &(T)/kjiT]'I"' It follows

from Eq. (2.21) that p, = p, —p & 0, and the equality
sign holds if and only if 0 = 0, i.e. , above T,. The entropy s
and specific heat in the superconductive state c~, are given
by fe.g. , Rickayzen (1965)]

J; = (1/T) (J. —j j.) = p.sv.

J ' = (1/T) (J.' —pj.' —j '}i —11.'v. ) (2.15)
s = —(ke/p, ) (2/ V) g l (1 —fi') ln(1 —fp)

and to the entropy production density

~ = z'J, ' v'(I/T) —(1/T) t j.' v'j + j'v'. }~

+ (II,'V') .v„]+ (p„/Tr. )v„'

in analogy to Eqs. (1.19), (1.20), and (1.21).

and

+ f,' lnf (2.22)

Xfi'(1 —fF) . (2.23)

(2 16) «. = T(»/~T) v = (I/'kBT') (2/ V) g (Ek' —The ')
k

Turning now to the dissipative Quxes jc', j,', II,', and J,',
we note that these are, to lowest order in the fluctuations
and in the spatial derivatives, linear functions of the gradi-
ents of the coeQicients (2.13) of the expression for d(p, e),
that is, of V' X,, V'v, V' co, and V'T. Under time reversal
these dissipative cruxes must transform with opposite sign as
compared to the corresponding nondissipative cruxes, in
order to lead to irreversibility. In an isotropic approxima-
tion we then have, in analogy to Eq. (1.22) and taking into
account the Onsager relations (1.23),

For In@)& kggT this becomes

6k~2 T " y + ln(1+ e v) dx
kv3 0 e+ 1

e~
2

(ev+ 1)'

(2.24)

(2.25)

g,'= -D,V&- D2VZ

jc' = —I'.3v ~ —I',iv' v

II,@ = —8,j(I;iV'.X+ t,3V'. v }
ve(+i~nj + +j~nj 3jiij+ vn),

J,' = D3V'p —(lc„/T) V'T. — (2.17)

Here the second term in the last bracket produces the dis-
continuity of «at T = T, since (b,A'/king'T) & j, ———4.59.

The two-fluid equations (2.6) and (2.17) have been dis-
cussed by Ginzburg (1961). A derivation from microscopic
theory using the Gorkov formulation was given by Stephen
(1965). /See also Bardeen and Schrieffer (1961); Stephen
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722 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

and Suhl (1965); Meservey (1965); Jakeman and Pike
(1966).j The existence of a finite coherence length $ for
the Cooper pairs which is of the order of 10 4 cm sets a
lower limit for the mean free path X,~ responsible for local
thermal equilibrium (Bardeen, 1958),

qX,~&& 1, X,6) $. (2.26)

It has been shown by Ginzburg (1961) that the Coulom-
bic electron —electron interaction. is far too slow to bring the
electrons to thermal equilibrium. The corresponding mean
free path l, , ~ T ' at T = 10 K is l, , = 0.3 cm (Ginz-
burg, 1961; Ginzburg and Silin, 1955). Hence the electrons
thermalize either via their interaction with the phonons
(for pure samples and at moderately low temperatures) or
via their interaction with nonmagnetic impurities (in the
domain of the residual resistance). In the former case,
electrons and phonons have the same temperature and drift
velocity so that they form a two-component Quid. This
system might have interesting hydrodynamic properties
which, however, will riot be analyzed further here. Anyhow,
according to Ginzburg and Silin (1955) the electron-
phonon mean free path I, „~ T ~ at T = 10 K is 1, „0.1
cm, so that this case is not very realistic Lsee also Fig. 7.3
of Rickayzen (1965)j.

In the case of thermalization by impurities the decoupling
of electrons and phonons is a reasonable approximation.
The electron-impurity mean free path is, for a pure speci-
men, l, , & 10 ' cm (Ginzburg and Silin, 1955). For not
too pure specimens the drift velocity v may relax to zero
so quickly that a situation analogous to superfl. uid helium
in fine pores develops (see Sec. I.F). In the following
sections this decoupled electronic two-Quid system is in-
vestigated further.

Substituting the variables p, and s with the help of the
equations

bp, = (1/p, y, )8p, + P,BT,

Ss = —(P,/p, ')op, + (cv,/T)8T,

we obtain the coupled w'ave equations

(2.32)

Pe cel V Pe + ~pl ~Pe PeV Tq

T —c,2 V'T = (TPe/Pe cv, ) P„ (2.33)

where the velocities of propagation

Cel = (Pe| e)

c.2 = L(p./p ) (Ts'/cv. ) l'" (2.34)

(oP —c,Pq' —(vpP) (46' —c,.'q') — cg'q' = 0.
Pe @Vs

Introducing the analogue of the acliabatic first-sound veloc-
ity (1.73) by

c,l' ——c,l'(1 + 8.), (2.35)

are the analogues of the first- and second-sound velocities
LEqs. (1.56) and (1.42) j in superfluid helium. Note that c,l
is the isothermal sound velocity in the electron Quid and
not in the host crystal and that, therefore, it is not a directly
measurable quantity.

Insertion of plane waves ~ exp/i(q r —cot) j into Eqs.
(2.33) leads to the secular determinant

B. Undamped hydrodynamic modes

We first discuss the hydrodynamic equations (2.6),
(2.11), and (2.14) in the absence of dissipation. From the
first two Eqs. (2.11) combined with Eqs. (2.10) and (2.12)
we obtain

where

+e Pe T/pe CVseel q

the above dispersion law can be written as

(2.36)

p. —V'P. + olpPbp. = 0, (2.27) (~2 —~&P —PePq2) (462 —C .,2q2) —Cs 2Ce22+ q4 = 0 (2 37)

where Equation (2.37) has the solutions

L42r (e2/m2) p ]ll2 (2.28)

p„(v„—v, ) + p,sVT = 0. (2.29)

From the first Eq. (2.11) combined with (2.14) and using
Eqs. (2.15), (2.7), and (2.8) we obtain

p,s+ p,sV' (v„—v, ) = 0. (2.30)

Elimination of v„—v, from the last two equations yields

s —(p,/p„) s V T = 0. (2.31)

is the plasma freq24ency. Combination of the second Eq.
(2.11) with (2.6) and making use of Eqs. (2.9), (2.7), (2.8),
and (2.12) leads to

P P+ P 2q2+ (c 2c 2g/~ 2)q4+ O(q6)

Ce2 q (Cel Ce2 6e/6tlpl ) q + O(q ) (2.38)

corresponding to the plasmon and second sound excitations-
which for any q are well separated in energy.

1

As has been shown by Anderson (1958) and, more gen-
erally, by Ambegaokar and Kadanoff (1961), the collective
plasmon mode is essential in order to have a gauge invariant
and charge conserving microscopic formalism. It is well
known that the original BCS theory (Bardeen et al. , 1957)
gives a non-gauge invariant Meissner effect. Gauge invari-
ance is restored by including in the electromagnetic fields
acting on the quasiparticles the effect of the motion of the
Cooper pairs on these fields, which then become self-con-
sistent.
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This restoration of gauge invariance in the Meissner
effect by the plasmon mode can also be seen in our hydro-
dynamic approach. We start from the stationary situation
described in the previous section, where

K=0,

reduces to the unperturbed form of the last section,

V' x H = (4m. /c) (e/m)j, .

This means that the Meissner effect is unperturbed by
the plasmon. On the other hand, we see from Eq. (2.10a)
that

H=gxA, A=0

and where the currents (2.7a) and (2.7b) imply that v„= 0
but'v, & 0.

A plane-wave plasmon excitation then introduces a
density variation bp, which according to Eq. (2.10) gives
rise to the field disturbances

ZC

y = —bp= i —bA- ' =
Q3

ic e
4x —bp,

coal tn

is the gauge field transforming from unprimed to primed
potentials. Since cu = co~i and q is arbitrarily small, p can
be made of arbitrary size by varying amplitude and wave
number of the plasmon. We can say, therefore, that the
plasmon "restores" gauge invariance in the Meissner effect.

bE = —Vb@ = —(1/c) bA' = —i (j/q) 4m (e/m) bp„

where j = q/q, and

bH= v xaA'=0.

The plasmon also restores the broken gauge symmetry.
(2.10a) Indeed, it follows from Eq. (2.5) and Eq. (2.10b) above

that the phase disturbance at r = 0 due to a plasmon wave

bp, =
~

bp,
~
exp/i(q r —.~p(t —bp() j

Here we have introduced two gauges; in the unprimed gauge
bA = 0, while in the primed gauge b@' = 0. From Eqs.
(2.6) and (2.9) we deduce for the supercurrent disturbance
in linear approximation, leaving out dissipative terms,

1s

bp(t) = Re/i(2m(up)/p, q')bp, 5

2mGop i
~
bp.

~
sin(cup)t + bpi) .

p,g
= p bv = (p /p ) ~bP p (e/~) ~b4'

e cel2

Bj, = —p, —1 — V2 8A'.
saic Q)p i

2

For small q such that c,iq (( u&~i we obtain with Eqs. (2.10a)
and (2.28) and with cu = co~i

ps g6j, = p,6V, = —p, —BA = —co» —6p,
mc pe

(2.10b)

which has the same form as Eq. (2.7b).

On the other hand, with 6T = 0, 5s = 0 it follows from
Eqs. (2.29) and (2.30) that

bv„= bv,

and hence, making use of Eqs. (2.7), (2.8), (2.10a),
(2.10b), (2.28), and (u = (u ),

Introducing the simplifying assumption P. = 0 so that the
plasmon does not couple to the thermal mode and 6T = 0,
the last equation can be written, with Eq. (2.28), the first
Eq. (2.32), the first Eq. (2.34), and Eq. (2.10a) above,

This gives rise to a fluctuation of the order parameter (2.3)
analogous to Eq. (1.48),

(b(5+)) ' =
~
(5+)b„—(5+) ~' = 2e.(1 —cosbp(t) j,

where (5+)q~ is the average in the presence of the plasmon
wave. As in Sec. I.S and I.C, a suAiciently small q gives
rise to a bq (t) with amphtude larger than ~, so that the
amplitude of the fluctuation b(5+) becomes of the same
magnitude as the order parameter itself. Here, however,
the fluctuation oscillates with the plasma frequency. This
means that the order parameter is essentially zero and gauge
symmetry breaking in the sense Lp, .V) W 0 of Eq. (1.1) is
essentially healed. The large value of cv» guarantees a col-
lissionless situation, coheir, ~ && 1. Therefore the plasmon at
q ~ 0 is also the Goldstone boson associated with gauge
symmetry breaking in the isothermal superconductor (see
the Introduction). The fact that the plasma frequency is
nonzero at q = 0 has been shown by I.ange (1965) to be
irrelevant for the nonrelativistic- Goldstone theorem.

With respect to second sound, the conditions reigning in
superconductors are very unfavorable. In order to under-
stand the reasons we have to reinstate the dissipative terms
in the hydrodynamic equations.

bj, = u )(j/q)bp, = —(nz/4~e)bE.

The last equation and (2.10a) imply that the Maxwell
equation

C. Inclusion of dissipation

The dissipative terms introduce the following modi6ca-
tion of Eqs. (2.27), (2.29), and (2.30):

4x e
'P x (H + bH) = —bE + ——(j, + bj,)c c m

pe 7 pe + ~pl bpe psfe1~ 7' (vn vs)

—(I"+ kn. ) ~'& v-+ (p-/~. ) ~ v- (2.39)
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pn(Vn Vs) + pe& 7T = ps( t el + pefe3)

&«~. (v- —v.) + ( P—Al+ f"+ 3v.) «v-
+ 'qe& Vn —(pn/rs) Vn, (2.40)

In plane-wave representation ~expLi(q. r —~f) j Eqs.
(2.43) and (2.47) lead to a complicated secular equation.
Here, however, we are interested only in second-sound-type
excitations,

and CV = Fe2q « a)pj. (2.51)

p,s+ p,sV (v„—v, ) = (/4„/T)V'T, (2 41) If in addition

&.v. = —{8/~) —(p./p. ) + (~-/p. ») ~'T. (2.42)

where we have made use of Eqs. (2.17) with D, = D2 = 0,
and have neglected the second-order term a in Eq. (2.14).
In order to eliminate the velocities, these three equations
have to be supplemented by Eq. (2.14) which, with the aid
of the first Eq. (2.15) and the last Eq. (2.17) with D2 = 0,
can be written in the form

cop)7s +) 1 (2.52)

terms proportional to cv r, ', cog v., ', cv'~, ', etc. , are neg-
ligible as compared to terms proportional to a2Mp] g cvp]

etc. , respectively, in the secular equation. This
amounts to putting bp, —0, i.e., the density is not coupled
to a second-sound-type excitation characterized by Eq.
(2.51) . Then Eq. (2.47) leads to the dispersion relation

Insertion of Eqs. (2.41), (2.42), (2.32), and (2.34) into
(2.39) leads to the analogue of Eq. (1.64), (2.53)

/

pe + Ts pe cel 7 pe + 4dpl ~pe + (Pnc«/»Ts) 7 Neglecting the last term in the bracket, we see then that
q2T 2 g2 + p ( /l72T y /2q4T) (2 43) Eq. (2.53) describes second sound if the window condition

Qe ~el ~el Pe ~ +e(7e1 e1

Here 1/Tg (( co (( 1/Teq (2.54)

T. ' = (p-/p. ) (1 —P./p. ~)T. ' {244) as well as the condition

Pe Pe + PnKes/Pe&TTs/ (2.45) Cur, 2 « 1 (2.55)

and, in analogy to Eqs. (1.66) to (1.69),

Tel (1/PeCel ) (fe2 + ~pe) IeTel /

Tel = (CZ' /sPe& T)( Pei el + ge2 + irge) /

~el = (&es/PeCVs) Tel = DsTTei ~ (2.46)

D,z is the electronic thermal diffusion constant in the super-
conducting phase. Combining the time derivative of Eq.
(2.41) with the divergence of Eq. (2.40)' we obtain, in-
serting Eqs. (2.41), (2.42), (2.32), (2.34), and (2.36), the
analogue of Eq. (1.65),

are fulfilled. In analogy to Eq. (1.46) T„in Eq (2.54.) is the
relaxation time responsible for thermal equilibrium of the
electron Quid. These conditions are exactly the same as
those in the case of dielectric crystals PEqs. (3.70) and
(3.75) below).

In order to have heat diRusion we multiply Eq. (2.53)
by rzq2 and obtain, neglecting again the last term in the
bracket,

—ZCu (1 —Z~rg + q'Cel'rgre2) + Pe2 Tgq' = 0.

In the low-frequency, small-wave-number domain
2 2Q

~e2 . ~el ~eT+ rg 'T —8,227'T+ p. — p.
pe». P.

= c.22(T.2r 2T —l .22~4T)

—(c,l2c,2V./p. ) T V'p.

Here

(2.47)

q'Ce&'~Z~e2 && &)

we then obtain heat diffusion

—ice+ D,z'q' = 0,

(2.56)

(2.57)

~e2 Ce2 + (Ps/Pe) (DsT/Ts) /

rg ——(p,/p, ) r„
where D,T' is defined in analogy to the case of dielectlic
crystals PEq. (3.101) below), by

X.22 = D.T (T.2 —D,T/c.22),

Te2 Te2 (DsT/Ce22) Tel (2.50)

and, in analogy to Eqs. (1.44) and (1.67),

Te2 = {1/Ce2 ) l DsT + (Ps/PnPe) P 2Pegel + fe2 + Pe i e3

+4~ jl

DsT Cel TJ DsT + (Pe/Ps) Ce2 Ts/ (2.58)

where D,T is defined by the third equation (2.46).

In the case of strong impurity scattering v„= 0 and
momentum balance is invalid, while energy conservation
still holds. This is the analogous situation to helium in 6ne
pores where the porous substrate can absorb any quantity
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In the last section we found that second sound occurs
under the conditions (2.54) and (2.55). There is, however,
a much more stringent condition imposed by Eq. (2.26).
Indeed, since the electrons move with the Fermi velocity
~p this inequality becomes

(2.59)Pes + PeS = (&«/T) ~ T.

Eq. (2.6), with (2.9) and the first Eq. (2.17) with the second
Eq. (2.13), becomes

of momentum but not energy (Sec. I.E). Hence the second D. .The question of second sound in
Eq. (2.11) is invalid, while the third is again replaced by SLLpercondLLCtolS
Eq. (2.14) . In the form (2.42) the latter now reads

v, = sV'T —(1/p. ) V'p, + (e/qit) E + p,i,3V'V' v„(2.60)

while the first Eq. (2.11) combined with Eq. (2.7) leads to

pe + pe 7'vn = 0. (2.61)

Pe (P /P )Cei 7Pe+ (Pe/Pe)apl tlpe+ P S(1 —P./P. S) ~'T

Combination of the divergence of Eq. (2.60) and the time
derivative of (2.61), making use of (2.32), leads to

q
' = Cee/a) )) Xeq = ppq. eq (2.70)

which is much stronger than ~7-,, (& 1 since, as we will
show, P,~ is much smaller than v~. This fact was emphasized
in a paper by Enz (1966b) which we follow in the discussion
below.

We first calculate c,.q from Eq. (2.34) in the two limits
T & T, and T(& T, . From BCS theory /see for example
Rickayzen (1965)) one finds

= p.i~~'p.

while with Eq. (2.32) Eq. (2.59) takes the form

r ~ (sT/p. c~,) (1 —P./p&) p. = D.,V'T.

(2.62) g (T) 3.07c
Q =

k~T 1.76t ')) 1. (2.71)

where t = 1 —c = T/T, . Applied to Eq. (2.21) this gives

These two equations are analogous to Eqs. (1.99) . In plane-
wave representation they lead to the secular equation

1 —zP

Pe

"ee(ee —1)
dx —1 —1.98',x(e*+ 1)'

(Pe/Pe) ~pl + Ce4 ( 1 ~~q e4) q (Pn!Pe) Ceq ( (2qru)'l' exp( —u) —3 '33t 'l2 exp( —1.76/t); t«1.

(
P. ' iD, rq4

X
pes N + qDerq

where, in analogy to Eqs. {1.101) and (1.102)

(2.64)
The entropy (2.24) becomes

'
(1 —3u'/2qr') t = 1 —2.43~;

(2.72)

Ce4 = —Cel + 1 ——
Ce&

pe pe p~S

re4 pel e3/Ce4 ~
/

sc

(2.65)
where

(6/qr&) (qr/2) il&tN3I2 exp (—I)—1.79t 'lq exp( —1.76/t); t (( 1, (2.73)

For small q such that .

c,4q (& (p,/p, ) '"4q, l,

Eq. (2.64) has the approximate solutions

(2.66)
s, = qrmk' ilT/kp' ——yT, (2.74)

is the entropy at T, and c~„——yT is the speci6c heat in the
normal phase. From Eq. (2.73) we obtain for the specific
heat

4Pl: (Pe!Pe) 4epl + Ce4 q ( 1 q'~q e4) (2.67) 2.43 (1 —c); e« 1

and

Mg ——zDspg (2.68)

3.16t '" exp( —1.76/t); t (( 1.

(2.75)

In the particular case

P,/p, s1 (2.69)

With Eqs. (2.72), (2.73), and (2.75) the second-sound vel-
ocity (2.34) becomes

Eqs. (2.62) and (2.63) are decoupled and Eqs. (2.67) and
{2.68) become exact. LThe realizability of Eq. (2.69) is
hard to estimate since P, is not directly accessible t,o experi-
ment.

c„' p. t (s/s. ) '——1
Tese pn cve/se

0.816m,'

0.304t' t (& 1 . (2.76)

By interpolation one sees that (c,q2/T, s,),„&0.2. Now
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from Eq. (2.74) we find This leads to the expression, valid for mp &) k~T„

~c~c ~ kaTc
1.2X 10 ',

vp 2 p
(2.77) Itches

= 27„pekoe T ~ xye"
m'

o (e&+ 1)' (2.85)

where we have used most favorable values, vg ——0.5 X 10'
cm/sec, p = 0.70 eV, T, = 18 K, keT, = 1.55 X 10 ' eV.
This shows that c,s/vF ( 1.6 X 10 '. From (2.54) and
(2.70) we obtain the decisive condition

which was first obtained by Bardeen, Rickayzen, and
Tewordt (1959). LSee also Rickayzen (1965).j This equa-
tion shows that the diffusion constant D,z' defined in Eq.
(2.58) is indeed related to heat diffusion since according
to Eqs. (2.83) and (2.85) r, is proportional to a„.

r.,/r~ (( c.s/e~ (2.78)
III. DIELECTRIC CRYSTALS

Now the mechanism which brings the electrons to equi-
librium is described by the relaxation time r„so that

and, according to Eqs. (2.49), (2.72), (2.76),
(2.77), and (2.78),

(p.vF/p, c,~)' —4.0 X 10'e(( 1. (2.79)

This shows that second sound is possible only at tempera-
tures which are less than 10 5 away from T,. This, however,
is already in the critical region where p, and c,2 must go to
zero in analogy to Eqs. (1.82) and (1.87), respectively. We
conclude, therefore, that it is highly unlikely to find second
sound in superconductors.

Finally we show the connection of the relaxation time 7-,

with the heat conductivity ~„.We have for the dissipative
energy current density in a superconductor (the factor 2
accounts for the spin states)

J,' = (2/V) Q Es(BEI,/Bk)hfdf (2.80)

where Bf~ ——fk —f,e is obtained from the Boltzniann equa-
tion namely, for ~ = 0,

&fs = r,a(&f2/SEa) K(~Es/~&) (~T/T) (2 81)

~.a = (E~/es)~ . (2.82)

Note that the relaxation time ~, introduced in the second
Eq. (2.11) is the following average over k of r,k, valid for
8$p )) k&Tc)

3%.2

"1 87,'
k4 dk

&sk +k

Pe X e" pe—2— dx =
p„o y (e&+ 1)' p„1+ e

(2.83)

Inserting Eqs. (2.81) and (2.82) into (2.80) and performing
the angular integration we find

Es' &EI ' ~fi.e'= ——Z VT = —~esVT.3TV i, eg, 0k BENT,
(2.84)

The relaxation time v-, 7, in the superconducting state is
related to the relaxation time 7„ in the normal state Pe.g.
Rickayzen (1965)g by

In 1946 two vears after his first detection of second sound
in superfluid helium, Peshkov (1947) made the remark that
"a gas of thermal quanta capable of performing vibrations
similar to those of sound should exist in a perfect crystal. "
Since a dielectric crystal is primarily an elastic medium,
this remark of Peshkov can be considered as the first appli-
cation of the two-Quid idea to and the prediction of second
sound in such systems. Indeed, in an anharmonic crystal
the two Auids have to be identified as the classical displace-
ment field u(r, t) of the lattice and the fluid of the thermal
phonons.

This is so because u describes the dynamics of the con-
densed phase, the elastic medium, and hence plays the role
of the order parameter. This analogy is not perfect, how-
ever, since the phase transition is of first order. In addition,
as Peshkov's remark already indicates, second sound in di-
electric crystals exists independently of the elastic medium.
This difference with the superfluids is due to the fact that
the mass density of the two fiuids do not mix in a crystal.
Indeed, since phonon number is not conserved, only the
atomic density of the lattice satisfies a continuity equation.

Peshkov's idea was taken up by Ward and Wjiks (1951)
Lsee also London (1954), Sec. 16j who mention in a foot-
note that Nernst (1918) had already remarked that "good
thermal conductors at low temperature might have suffi-
cient inertia to give rise to an oscillatory discharge". '
Subsequently Dingle (1952) applied the two-fluid equa-
tions for second sound to nonideal gases, insulators, con-
ductors, superconductors and ferromagnets. But the clear
realization that phonon drift is vital for second sound only
came when Siissmann and Thellung (1963) and Gurzhi
(1964) independently showed that, under conditions such
that the momentum conserving (normal) phonon scatter-
ings dominate the momentum dissipating (Umklapp)
processes, heat transport is mainly convective and due to
a Poiseuille type How of the phonons. This new type of heat
transport, first suggested by Peierls Lsee the acknowledg-
ment by Sussmann and Thellung (1963)j which was al-
ready known in superfluid helium (Whitworth, 1958), has
subsequently been found experimentally in solid 'He by
Mezhov —Deglin (1964, 1965, 1967) .

Both Poiseuille Row and second sound depend on the
condition that momentum dissipating processes be neg-

i The original wording of Nernst (1918, footnote 1, p. 21) is: "Da
hochstwahrscheinlich die W@rrne Tra,gheit besitzt, kjjnnte sogar bei
sehr tiefen Temperaturen und dadurch bedingter sehr guter Leitfa, hig-
keit unter Umstanden cine ossillatorische Entladung thermischer Po-
tentiuldQ"erozen moglich werden. "
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-ligible or, expressed in terms of a relaxation time vJ, that
~7~&& 1. Together with the restriction eve-, ~&& 1 of the
hydrodynamic domain this leads to the window condition
for the frequency co already encountered in Sec. II, which
was first discussed in the papers by Krumhansl and his
collaborators (Guyer and Krumhansl, 1964; Prohowski and
Krumhansl, 1964) .

Based on the analysis of the window' condition by Guyer
and Krumhansl (1966b), in which the data of Mezhov-
Deglin (1964, 1965) were taken into account and on other
evaluations /see the historical account in the review by
Ackerman and. Guyer (1968)j Ackerman, Bertman, Fair-
bank, and Guyer concluded that second sound was feasible
in solid 4He. And in 1966 they published the 6rst successful
observation of second sound in a dielectric crystal (Acker-
man et a/. , 1966) which was achieved by the heat pulse
method Lsee Ackerman and Guyer (1968);H. Beck and R.
Beck (1973)g already in use with superfluid helium. Subse-
quently second sound has also been found in 3He (Ackerman
and Overton, 1969), in NaF (Jackson and Walker, 1970,
1971; McNelly et a/. , 1970; Rogers, 1971) and in the semi-
metal Bi (Narayanamurti and Dynes, 1972) in which
electron (hole) —phonon scattering is weak. In all these
cases high chemical and isotopic purity and high crystal
perfection were essential to have a suKciently large relaxa-
tion time rJ. LFor more details on second sound and Poi-
seuille flow experiments see the review by Beck et al.
(1974).g

The first formal connection between the hydrodynamic
excitations in dielectric crystals and in super6uid helium was
made by Kwok and Martin (1966) )see also Griffin (1968)g,
who treated the phonons in the crystal as a continuous
scalar held with constant sound velocity. Gotze and Michel
(1967a) then introduced a two-fluid description of dielectric
crystals in which the phonons were described as a Bose
liquid in analogy to Landau's theory of Fermi liquids.
While Gotze and Michel (1967b), Niklasson (1970), Meier
(1969),and others Lsee Beck et al. (1974)j used sophisticated
t reen's function techniques, we will in this section follow
the. works by Gotze and Michel (1967a) and by Niklasson
(1970) in their phenomenological content Lsee also Gurzhi
(1965)g and derive all the physically significant results
including the response measured in neutron and light
scattering experiments.

The time evolution of u(R) is determined by the Heisen-
berg representation

&(R, t) = exp(iKt)x(R) exp( —iBCt)

%e hrst consider a homogeeeols displacement u as obtained
with an R-independent operator x. In this case the momen-
tum operator P is canonically conjugate to x so that

exp(ivL, Pt)x exp( —ivy, Pt) = x + vt„t

With this relation together with Pp, K —vi, Pj = 0 the
time evolution of u = Tr(px) takes a form analogous to
Eq. (1.3),

u(t) = u(0) + vent.

This determines the "lattice velocity" in analogy to Eq.
(1.4) as

VL, = U. (3 1)

vr, ——(1/p) V(Z+ Z') —VP (3 2)

Thus. the classical displacement u plays a role analogous to
the phase p of the superftuid order parameter, except that
the lattice velocity is defined by the time derivative of u
while the superfiuid velocity is defined by the space deriva-
tive of y.

In Eq. (3.2) p is the mass density of the crystal, P an
external potential per unit mass, and Z;, = Z, ; the stress
tensor which satishes the thermodynamic relation

It is worth noting that u can also be described by coherent
states Lsee Appendix A of Beck et al. (1974)) and that
such a description is valid for any order parameter.

Locally the displacement field u(r, t) satisfies the equation
of motion of classical elasticity theory. With Eq. (3.1) this
equation can be written in a form analogous to the equation
of motion of the superfiuid velocity LEq. (1.5) g, but without
a flow term (vt. V')vr„

A. Two-fluid hydrodynamics

We start again with a description of the "condensed
phase. " The displacement held g. at the lattice positions R
is determined as an average of the displacement operator
x(R), u(R) = (x(R) ). This average is defined, as in super-
Quids, by a density matrix p which commutes with the
effective Hamiltonian (compare Sec. I.A) but not with the
generator of the broken symmetry group. In the liquid —solid
transition it is the continuous translation (and rotation)
group which is broken and the group generator is the
momentum operator P (i.e. , e'&' is the general element of
the translation group) . Thus we have in analogy to Eq. (1.1)

dZg = Q C,;,g. )de, i —P;,dT
k, L

Here

8,; = —', (V';u, + V';u, )

is the strain tensor,

C,;,~i = (8&,~/8@i)r

are the isothermal elastic constants,

P;, = —(8Z,;/8T) e

(3.3)

(3.4)

(3 5)

(3.6)
Ip, K —vr. Pj= 0, Lp, P) W 0, [X,P]= 0,

where v& is a fixed velocity.
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With Eq. (3.3), Eq. (3.2) may be written

vz; = (1/p) P (g C,;,)iV, e)i —P);V,T+ V;Z;, ') —V,P. Pv = 2 C'z. ziii~i
k,l

(3.17)

satisfies, combined with Eqs. (3.5) and (3.6), the identity

Mass conservation in the lattice is expressed by

p+V jr=0,

(3.7)

(3 8)

Hence neglecting thermal expansion, n,, = 0, it follows that
P,; = 0 and Eq. (3.7) becoines a closed, purely dynamical
(i.e. nonthermal) equation )provided dissipation to the
phonon fluid is neglected in Z;, see Eq. (3.42) below).
Therefore the "lattice Quid" has a vanishing specihc heat
per unit mass,

jL = pvL (3.9) ci z = T (asz/BT) g = 0. (3.18)

From Eqs. (3.2), (3.8), and (3.9) one finds

jz, + V(IIz, +IIz,') = pVQ ——vz, (V jz) (3.10)

is the mass Qux or momentum density of the lattice. Note
that a dissipative-term in jL, which would describe mass dif-
fusion in the lattice is absent in an ideal crystal. Equation
(3.8) is different from the case of the superfluid where the
sum of superQuid plus normal mass is conserved.

Note that we assume here, as in Eq. (3.8), an ideal lattice.
Lattice imperfections of course give rise to a nonvanishing
lattice specific heat.

On the other hand, p depends on T only through thermal
expansion LEq. (3.16)). In fact, according to Eq. (3.4) the
change of volume per unit mass due todeformationis V'. 0 =
g~g, ;, so that

dp = —pgdg, ;. (3.19)

Hence
(3.11)

The absence of a Row term (vz, .V)vz, in Eq. (3.2) has the
effect that even without external forces, VP = 0, momentum
is conserved in the lattice only in linear approximation in
vt. . This is consistent with the lack of full translational
invariance. But the fact that Eq. (3.10) was derived from
Eqs. (3.2), (3.8), and (3.9) shows that jz is not an inde-
pendent variable anyway.

The lattice energy per unit mass is

(8 (psz, ) /BT) g
= 0, (3.20)

d(psz) = g P,, d8;, . (3.21)

From Eqs. (3.12), (3.13), (3.8), (3.9), (3.2), (3.4), (3.1),
and (3.21) one deduces the energy balance equation

so that Eq. (3.15) yields Lsee Eq. (4.7) of Gurevich and
Efros (1966)g

6L gvL + fz + Tsz) (3.12)
(p«)'+ V (J.z+ J.z') = (p/2)«Vvz'

where s& is the lattice entropy per unit mass and the lattice
free energy per unit mass fz satisfies the thermodynamic
relation

+ L(TP —Z') V].v, ,

where

(3.22)

d(pfz) = g Z,; d8;, + P dp —psz, dT. (3.13)

Because of the symmetry 8,, = 0,, it follows from Eq.
(3.13) that

J.~ = 5—~+ (p/2)«'+ p0 jvz

Jez, = —& vz (3.23)

&" = k(1+ ~' ) (~(pfz) /~tt") r (3.14)

1+ 8,, 8(psz) 1+ B.;, cP(pfz)
2 88;, z 2 BT B8;,

= —(BZ,;/BT) g ——P,, (3.15)

The tensor of thermal expansion

c).;; = (cia;,/BT) z (3.16)

so that from Eqs. (3.13), (3.11), and (3.6) we obtain the
Maxwell relation

are the lattice energy Qux and its dissipative part. Hence
even to second order in small quantities energy is not con-
served in the "lattice Quid" because of the last term on the
right-hand side of Eq. (3.22) . The nondissipative part of it,
(TPV) .vz = T(psz), acts as an energetic coupling of the
"lattice Quid" to the phonon Quid through thermal expan-
sion.

For the phonon Quid particle number is not conserved so
that there is no analogue to Eq. (3.8). The energy per unit
mass, g~, and the energy flux J,„of the phonon fluid are
defined, respectively, by pg„= {h(r, t) ) and J,„= {s(r, t) )
where h and s are the corresponding operator densities and
the average is that of drifting local thermal equilibrium
(Enz, 1968) .
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The analogous definitions for the momentum density J„
and the momentum Aux II„are less certain because of an
inherent difhculty in the definition of the phonon number
density operator (Enz, 1968). Physically, however, these
quantities must be well defined. In the approximation of
the phonons by noninteracting quasiparticles these defini-
tions are straightforward, as will be seen below.

Hydrodynarnically the phonon Quid is characterized by a
local drift velocity v„analogous to the normal velocity v„
of the superfluid. The phonon mass density p„(Enz, 1968)
is then defined by

(3.24)

(Enz, 1968; Hardy, 1970)

(3.28)
I

where H„' is the dissipative part of II„.The tensor ~g will be
treated as a scalar in order to simplify the problem. Note
that in distinction to the second Eq. (1.7) the external
force density —pVQ is here contained in Eqs. (3.2) and
(3.10) .

The approximation of the phonons by noninteracting
quasiparticles is identical to the case of superQuids. In
drifting local equilibrium the phonon distribution function
is, with x —= cu&/kBT, y —= vn. k/k&T, and nre = (e* —1)

Note that there is no dissipative part j„because the phonon
mass density p„ is not conserved. For simplicity we will
treat p„as a scalar.

n& ——Lexp(x —y) —1$ ' = nP + n&'(nj, e + 1)y

+ e1,'(na'+ 1) (ea'+ —', )y'+ ~ (3.29)

Since because of phonon number nonconservation the
chemical potential of the phonons vanishes, thermodynamics
tells us that the pressure of the phonon fluid is pf„, wh—ere
fn is the phonon free energy per unit mass. Hence the
momentum flux is, in analogy to II„ in Eq. (1.13),

Here ~7, is the acoustic phonon spectrum, taken to be iso-
tropic, and k = (Ir, /4) where p is the polarization index.
The momentum and energy densities are, respectively,

(3.30)

Iin = pf. + p.—v, v. +'o(v'), and

where p„ is the phonon mass density defined by Eq. (3.24).

Thermodynamically the energy density pe„ is given by

pe„= vn 3n + p( f„+Tsn),

en = (pV) 'Z~~~' (3.21)

With Eq. (3.29) one finds from Eq. (3.30) that the phonon
mass density defined by Eq. (3.24) is given by

where s„ is the phonon entropy per unit mass. The relation
analogous to Eq. (3.13) is

pn
——(3k TeV) ' g Ir'Bl, '(nr, ' y 1) + 0(vn'}. (3.32)

d(pf. ) = in. «n ——psn dT.
The specific heat of the crystal )remember that the "lattice

(3 27) fluid" has a vanishing specific heat, Eq. (3.18)$ is given by

It is obvious from Eq. (3.22) that energy cannot be con-
served in the phonon Quid. On the other hand, momentum is
also not conserved, and this in spite of the fact that to
linear approximation in vt, without external forces mo-
mentum is conserved in the "lattice Quid. " The reason is
that due to the presence of the lattice the continuous trans-
lation group is broken so that the phonons satisfy mo-
mentum conservation only modulo Umklapp processes. In
imperfect crystals other momentum dissipating processes
also contribute. As is discussed by Enz (1968), Umklapp
processes give rise to a force density f„exerted by the lattice
on the phonon Quid, and f„occurs as an inhomogeneous
term in the momentum balance equation of the phonons.
But the reaction —f„of this force on the lattice Quid does
not occur in the momentum balance equation (3.10) for
the lattice. This is because the periodic boundary conditions
introduced in order to have a representation by propagating
normal coordinates (phonons) prevent the description of
recoil of the lattice (recoil can only be described in a repre-
sentation by standing-wave normal coordinates).

cr ——cr n ——(Be,/BT) r ——(ke T'p V) ' Q egg

Xei'(e1,'+ 1) + 0(v„'). (3.33)

~1, ,„=c„ fir i; p = 1~2)3. (3.34)

This leads to the expressions

Cr = (2v'ke4/15p) g C„'T' (3.35)

and (Enz, 1968)

p = (pTc /3)(Zc /Zc )

= (2v-'ke4/45) Q c„'T'. (3.36)

The free energy per unit mass is

At low temperatures dispersion is negligible in ~k so that

From a Boltzmann equation point of view (Gotze and
Michel, 1967a; Hardy, 19/0) the lattice force is due to
relaxation of phonon momentum, f„= —(1/rg)i„, so that
the phonon momentum balance equation takes the form

f„= kaT(pV) r P ln(1+ Nr, )—
= f' —l (p./p) v.'+ o(v.'), (3.37)
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where the second equality is obtained with the help of Eqs.
(3.29) and (3.32) and where f„o = f„)„=o.With Eqs. (3.27)
and (3.37) the relation (3.26) is readily verified by making
use of (3.30) and (3.31). On the other hand, defining the
nondissipative momentum Aux by ~ = 6L+ ~, = &VL'+ (p,/p)V, '+f+ Ts. (3.44)

(3.8), (3.28), (3.40), and in the equation of motion for the
total energy density per unit mass which is a sum of Kqs.
(3.12) and (3.26),

II„ l ——V—' Q (Ocul, /Bk;) k,nL,

the relation (3.25) is verified, making use, for the zeroth-
order term, of a partial integration of Eq. (3.37). With Eq.
(3.29) one first finds

p„= T'—,(kllT) —'V—' P (
k ~'

~
Devi, /Bk [ ni,'

X (n" + 1) (n" + —',).

f =fL+fu, S= SL+S» (3.45)

are the total free energy and entropy per unit mass, respec-
tively. While according to Eq. (3.21) the lattice part of the
entropy density only depends on 8, the phonon part only
depends on T; in linear approximation in v„one finds from
Eqs. (3.26) and (3.27)

That this is identical with Eq. (3.32) follows by partial
integration, making use of the identity

(kllT) '(8(ul, /Bk) ni, '(nl, '+ 1) (ngp + —,')
= ——;8/Bk[ng(nL' + 1)j.

d(ps. ) = (p«/T) dT. (3.46)

From Eqs. (3.13), (3.27), (3.44), (3.45), and (3.9) we find
the thermodynamic relation analogous to Eqs. (1.15) and
(1.16),

Finally the nondissipative energy Aux is given in this
approximation by

d(P~) = (2vL'+ 0) dP+ Z &,;d&,;+ jL.«L

+ v, .(fj, + T d(ps). (3.47)

J,„= V—'Q cuL(8(ui, /Bk) nL ——ps„Tv„+ O(v„'). 3.39 Over-all energy conservation implies

Here the second equality follows with the help of Eq. (3.29)
and of the identity (B~&/Bk)nio(n&'+ 1)= —kIlTBnlo/Bk
by partial integration, making use of Eqs. (3.25), (3.26),
(3.31), and (3.38) for v„= 0.

The dissipative parts of IIL, andII„are due to the viscosi-
ties of the lattice and of the phonon Quid. This means that
they are linear functions of the deformatiohs

(p~) '+ 7 (J.+ J.') = 0. (3.48)

T(ps) = (p~)' —(2»'+4) p

As in the case of superQuids, we convert the energy con-
servation into an entropy balance equation which will
simultaneously give us an expression for the nondissipative
energy Aux J,. From Eq. (3.47) we get

DL*i —= 2(~,&L'+ &*&Ll) = ~', (3.40) —g Z,;8;, —IL.vL —v„.j„. (3 49)

(3.41)

In general, there will be cross terms, so that [see Eq. (4.14)
of Gurevich and Efros (1966)7

(3.42)

and [see Eq. (4.13) of Gurevich and Efros (1966)j

Inserting from the equations of motion (3.48), (3.8), (3.40),
(3.2), and (3.28), and making use of Eqs. (3.9), (3.11),
(3.24), (3.25), (3.27), we find, to second order in the
velocities, in analogy to Eq. (1.17),

(") = —~ [(1/T) (J, + J,' —J"—J..' —11.".) j
+ (J, + J,' —J,L —J, ' —Tps„v~ —II„'v„) ~ V(1/T)
—(1/T) [(IIL'V') .vL + (II„'V) vt, j + (p„/Try) v„',

(3.50)

11liij Q (pil', klDLkl + rij, klDpkl) p (3.43)

where the equality of the cross viscosities, pzj, I,) pI, ),zj~ in
the two equations, as well as the symmetry of p, p, p in the
two pairs of indices, express Onsager s reciprocity principle
(Gurevich and Efros, 1966; Gotze and Michel, 1967a).
These cross terms constitute a dissipative coupling between
the two fluids.

J, —J, = J,„= Tps„v . (3.51)

where we have made use of the definitions (3.23). Without
dissipation entropy must be conserved. This determines
the nondissipative energy Aux from the condition that the
nondissipative contributions to the second term on the
right-hand side of Eq. (3.50) must add up to zero,

Two-Quid hydrodynamics of an anharmonic dielectric This is the energy flux of the phonon fluid [Eq. (3.39)j.
crystal is thus contained in the equations of motion (3.2), Equation (3.50) now takes the form, valid to second order
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in the velocities,

(p~)'+ ~. (J.+ J.') = ~.

Here

J, = (1/T)J,„=ps„v„

is the entropy Aux,

(3.52)

(3.53)

external force is matched by internal forces of thermal
origin,

Z p'i &&~. i~»u& Z Pv~&T = p~'+
j7c 8

In this section we put p, , i, i = 0, p, , = 0 and q = const, so
that the last equation is trivially satisfied. Since, according
to Eq. (3.21), (ps)' = 0 it follows from Eqs. (3.45) and
(3.46) that

(3.54) (ps)
' = (pci /T) T. (3.58)

Treating all fluctuations in linear approximation the equa-

(3 23) and (3 5 1) and tion of motion for the entropy (3.52) with Eqs. (3.53) and
(3.56) then becomes

g = TJ,'.V'(I/T) —(1/T) L(III,'7).«+ (II„'V) v,j
+ (p~/Tr~) vn' (3.55)

(ps) '+ ps(, V.v~ —f(ii/T) V'j. t'T = 0, (3.59)

while Eq. (3.28) with Eqs. (3.24), (3.25), (3.27), (3.41)
the entropy production density which has the same form
as Eq. (2.16).

p„vi, + ps„W,T —Q p„, , iiV, V»~i+ (1/rJ) p„e„,= 0.
jk$

With Eqs. (3.40) to (3.43) and

J.' = (1/T) J.~' = —(~/T) ~T (3.56)
(3.60)

where ii is the heat conductivity tensor, Eq. (3.55) takes
the form analogous to Eq. (1.24),

To = V'T. P(ii/T) VT)+ g lrl', ,i, iDz, ,,Dri, i

These equations are the same as Eq. (3.6) of Gurevich and
Efros (1966), Eqs. (57) and (58) of Gotze and Michel
(1967a) and Eqs. (6.41), (5.11), and (6.44) of Niklasson
(1970). The equations of Gotze and Michel (1967a) and
of Niklasson (1970) also contain the terms coupling the
phonon Quid to the "lattice Quid. "

+ 2p, , klDLijDyki + vij, kiDyijDpkl } + (pp jrJ)vi, ~ We now introduce plane waves exp/i(q r —~t) 1 and

(3.57)
define the longitudinal heat conductivity by

Here the coe%cients have to be such as to make a- a positive
definite form.

«(q, ~) = Z ~v(q, ~) q'qi,
2J1

where q = q j~ q ~. We also introduce the matrix

(3.61)

Note that the form of the dissipative cruxes III.', ll„', and
J,' can also be obtained by the general method discussed in
Sec. I.A. For P = const the fluxes associated with the equa-
tions of motion (3.8), (3.40), (3.2), (3.28), and (3.52) are,
respectively, j~, vr„Z = —IIr„11~, and J,. Their dissipa-
tive parts ji,' ——0, vt. ' ——0, Z' = —III.', II„', and J.,' are
linear functions of the forces which are defined as the
gradients of the coefficients in Eq. (3.47), that is, respec-
tively, as V4' = 0, V' Z, V' ji,, V' v„and V'T (to
first order in the velocities) . Under time reversal jr., v„, and
J, transform with negative sign, Z, II„, and T with positive
sign. The condition that Z', II„', and J,' have opposite sign
under time reversal compared to Z, II~, and J„respectively
(irreversibility), then determines the linear relations (3.42),
(3.43), and (3.56), where in Eq. (3.56) a term proportional
to V' (Q Z is neglected. The last three equations together
with (3.23) and (3.54) finally determine J,'.

(~N (qr id) ) ij (rJ/pp) g rim, nj (qq M) qmqn (3.62)

ice(pep/T)bT+ iq v ps +—q~(ii)/T)bT = 0 (3.63)

and

which, because of Onsager s principle, is symmetric, and
because of the definite sign of dissipation has positive eigen-
values X~ (i = 1, 2, 3). It is obvious from their definition
that the P~, are related to normal, i.e., momentum con-
serving, phonon processes. In Eqs. (3.61) and (3.62)' we
have made the usual assumption that the linear relations
(3.56) and (3.43) are local in q, co- space.

With Eqs. (3.58) and (3.62), Eqs. (3.59) and (3.60) go
over, respectively, into

B. Rigid lattice: Second sound and Poiseuille
flow

i(u+ (I/—rg) + (I/rJ) X~'q')v„+ iq(p/p„) ~„&T = 0,

(3.64)
Rigidity of the lattice means that u = const or that

8,, = 0 and vz, = 0. The elastic equation of motion (3.7) where Bs and BT are the variations of s and T around the
then reduces to a static equilibrium condition in which the global equilibrium values, respectively.
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Mu}tiplying Eq. (3.64) with the reciprocal of the matrix to Eq. (3.61) Li.e., in the coordinate system in which Xrv is
in the bracket we obtain diagonal, (XpP) r = Q,A~c chic g.

v„= —(z/Tps„) (qq) BT,

where the tensor p is defined by

(3.65)
Inserting this into Eq. (3.67) we obtain

. 1+ ()cN ) rg2

CONJ'
(3.72)

c (q, ~) = (Tp's'/p. )L '~+ (1/~~) + (1/~~))~V) '.

(3.66)

where the velocity of second sound

c, = (PTs„'/p, ev)'" (3.73)

Inserting Eq. (3.65) into (3.63) we obtain the dispersion
is defined in exactly the same way as in the superAuid case
t'Eq. (1.42) j, and

—za& + (1/pev) I pc(q, cv) + Icc(q, cg) i q' = 0, (3.67) egz.2(q, cu) =— (1/pev) xc(q, co) =—Dr (q, (v) (3.74)

where pE is the longitudinal projection of p defined in
analogy to Eq. (3.61).

With Eqs. (3.53) and (3.65), written in x space, the
energy Aux due to phonon drift, i.e., the corrective heat
Aux, may be put into the form:

is the thermal diffusion coeKcient, and ~~ the corresponding
relaxation time. Equation (3.72) shows that in addition to
(3.69) and (3.70), propagation of second sound requires
that

(3.75)
J,„=Tps„v„= —pV T. (3.68)

Comparing with Eqs. (3.54) and (3.56) we conclude that
cp may be interpreted as heat cozz~ecti~ity tezzsor (Enz, 1966a,
1968).

Equation (3.67) is the same as Eq. (61) of Gotze and
Michel (1967a) if there we replace To by our T, C„/1V by cv,
5/A by s„, p by p„, s by u, cv" by 1/~z, d,, by (p/p„) '"Ts„B,;,

by z(py/Tp sy ) epic& )Eji by (pcv) '

Kjk& vpjk by p pj's&

'rrrj, mc by pr 'YIj ~c and zrn, nm by (ppr) prI, ~m and if we
neglect the last two terms of Eq. (61) of Gotze and Michel
(1967a) which are due to the coupling with the "lattice
Auld.

The dispersion relation (3.67) has three main domains of
physical interest which are determined by the assumption
that one of the three terms in the bracket of (3.66) is
dominant.

From Eqs. (3.65) and (3.66) it is seen that a finite drift
velocity v„ is essential for propagation of second sound.

As in the case of the superAuid, the limit q
—+ 0 of the

second-sound mode is a zero-energy translational motion of
the excitation fluid (the phonons) relative to the condensate
(the lattice) . However, the first condition (3.69), or
q )) 1/c~r J, prevents this limit from being taken. The
existence of a finite 7-~ is due to breaking of translational
symmetry at the liquid —solid phase transition (Umklapp
processes) and hence is an intrinsic property of a crystal.
On the other hand, the Goldstone bosons of the dielectric
crystal are the collisionless first-sound modes u(R, t) =
(x(R, t) ), also called zero sound (Cowley, 1967). In fact,
in the limit q

—+0 they describe zero-energy translational
motions of the lattice and hence "restore" the translational
symmetry and momentum conservation (see the Introduc-
tion) .

In this way the second-sound domain is defined by The second main domain is defined by the conditions

Q)'TJ )) 1) u7.g )) q9~,2. (3.69) eve.J (( q~A, ~,2, q9~;~)) 1. (3.76)

The first condition (which has no analogue in superfluid
helium because of full translational invariance), combined
with the local equilibrium condition cu7„(( 1, gives rise to
the well known criterion of a frequency window analogous
to Eq. (2.54), which was first emphasized by Guyer and
Krumhansl (1964) and Prohowski and Krumhansl (

Here combination with the local equilibrium condition
qX„(( 1 gives rise to a wave-number window condition

1/X~, && q && 1/X„. (3.77)

1/7~ (& cv &( 1/7„.

1964),
We now have from Eqs. (3.66) and (3.73), keeping only

(3.70
the leading term,

z Tp's„' 1+ (Xrv') c q'
ccc(q, cu) = — "

1 —i
GtP pJ) CdV g

(3.71)

In this domain we obtain from Eq. (3.66), treating p~ as a
scalar,

(1/pev)c c(q) ~) q' = ePr~(4 ')c =—~x ', (3.78)

/where, in the coordinate system in which iXz. is diagonal,
(l~ ')i = ZA"/)~"3

Inserting this into Eq. (3.67) we get, with Eq. (3.74),

where ()tv') c means the longitudinal projection analogous
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We now assume that the X~; are so large that the q values
permitted by Eq. (3.77) are negligibly small with respect to
the variation of 72(q, oj). Then writing the stationary dif-
fusion constant as

Gurzhi, 1964; Guyer and Krumhansl, 1964, 1966a,b;
Ackerman and Guyer, 1968) r~ is usually identified with
r,~. In order to see this equality, let us consider the isotropi c
case. Then the viscosity tensor may be written as

'I

rz(0, 0) = r,c, '/c 22 7,j,k l = 'Y [tjiktj jl + tji, lejk + (v —1) tl, jtlk l5 (3.86)

a relaxation time approximation of the phonon Boltzmann
equation to be discussed below yields

rz(0, cu) = [r,/(1 —ildr. ) g(cz"/czz). (3.81)

(~jl ') l = (~~') l
' = p /(1 + v) 7»

'r = p„cz'rjj/(1+ v).

Note that in the literature there is very often no dis-
tinction made between the relaxation times rs and rJ from which it follows that
[Guyer and Krumhansl (1966a,b) and Ack.er man and
Guyer (1968) write re = rj = rjj,' = r,j.This is due to the
common assumption of a proportionality between the
momentum operator J and the energy flux operator S. or w;th Fq
Microscopically r& and r8 are determined by the momentum
and the energy flux autocorrelation functions,

k r, ). ,

(3.87)

(3.88)

(3.89)

The viscosity term in Eq. (3.60) may now be written as

(S(0) S(t)) (S S S) p( —t/ ),
p&c2 r~

Q P,j klV';Vkv„l = (V o„;+ vV', V' v„) .
jkl 1+ v

(3.90)

cv'/ll' = (1 + z/cur~) '(1 + z/ldrs) 'c.'2. (3.82)

Thus if

Mr~ && 1, cars» 1 (3.83)

we have again a damped soundlike mode with velocity c ',

(v'/q' = cz'2[1 —(i/oj) (r~ '+ rs ') j. (3.84)

The first condition (3.83) means, according to Eqs.
(3.78) and (3.79), that the convectivity, that is, the phonon
drift, is negligible. Therefore, this hypothetic mode has
been called driftless secozzd sozjrzd by Enz (1968). Physically
phonon drift is small if the phonon Quid is strongly viscous,
i.e., if the p, , 7, ~ are large. This is in agreement, according
to Eq. (3.62), with the above assumption of large Xjj,.

The physical difhculty with driftless second sound stems
from the fact that when the first condition (3.83) is com-
bined with the local equilibrium condition car„&( 1, it gives
rise to a window condition

respectively. However, as was pointed out by Enz (1968),
there is in general no reason to expect a simpleproportionality
between J and S for a dielectric crystal. Therefore rz and rs
may very well be different. They have indeed been treated
as different by Niklasson (1970). [There r„ is our rz andr" our (c2"/c22) re].

Inserting Eq. (3.81) into Eq. (3.79) we find

pcyc2 rgA.~ (3.91)

When this is inserted into Eq. (3.65) we obtain in x space

On the other hand, a Boltzmann equation treatment of
r„ introduces a term p„cj2r„(1+v—) '(V'vv;. + vV'~V. v„)
into Eq. (3.60). This is the procedure of Siissmann and
Thellung (1963), Gurzhi (1964, 1965), Guyer and Krum-
hansl (1964, 1966a,b), H. Beck and R. Beck (1973), GOtze
and Michel (1967a), Meier (1969), Niklasson (1970),
Hardy (1970) [in this paper rg = r„——r j, and Beck et al
(1974), while Gurevich and Efros (1966) start from the
assumption (3.43). This shows the formal origin of the
viscosity term in Eq. (3.60) and leads to the equality
r~ = r„. However, in the more detailed treatment by
Niklasson (1970) a distinction is made between rjj and
r,~ (there r" is our rjj and r our 7„) but the two differ only
by a numerical factor of order unity [see Eqs. (6.14) and
(9.30) of Niklasson (1970)$.

Thus in view of Eq. (3.85) driftless second sound is very
unlikely to be a physically realizable mode of excitation
[see, however, the work of Hardy (1970)$.

A more realistic physical situation occuring in the main
domain (3.76) is Poisezlille flozo (Siissmann and Thellung,
1963; Gurzhi, 1964; Guyer and Krumhansl, 1966a; Acker-
man and Guyer, 1968; Meier, 1969; Beck et al. , 1974),
which is a well known phenomenon in superfluid helium
(Whitworth, 1958). Keeping only the leading term, the
convectivity tensor (3.66) becomes, making use of Eq.
(3.73),

1/ «~«1/r, . (3.85) V'v„, = (cvcj2rg/Ts„) g (X~ '),jV;T, (3.92)

Now in the literature (Sussmann and Thellung, 1963; that is, we have a stationary situation.
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—iv) + Dv'q' = 0,

Let us go to the coordinate systein (x, y, s) in which X& so that Eq. (3.67) describes heat diffusion
is diagonal. The eigenvalues of the matrix (3.87) are easily
found to be 1, 1, 1 + v so that (3.100)

V'v„= (c,/Tsar~) E(1+.) V'.T, (1+ v) V'vT, V', Tl.
(3.93)

Assuming that the sample has the shape of a spherical
cylinder of radius E with axis along the s direction, that
T = To+ as, and that v„~,=ii = 0, we find v„, = v„„= 0.

On the other hand, it follows from Eq. (3.59) for the
stationary case, since V'T = const, that V'.v„= '17,v„, = 0.
By symmetry v„, does not depend on the azimuthal angle,
hence v„, = v(r) and Eq. (3.93) goes over into

(rv'(r) )'/r = (cr/Ts„r~) a

where, making use of Eqs. (3.74), (3.80), and (3.99),

D&' ——lim lim(1/pci) {pi(q, ~) + ~i(q, ~) I
co~0 @~0

c2 rz + ce Ts.2 r2 (3.101)

We close this section by deriving the expressions for c2
and c2 in the free quasiparticle approximation.

From Eqs. (3.73) and (3.36) we obtain immediately
Dingle's expression (Dingle, 1952; Sussmann and Thellung,
1963; Enz, 1966a, 1968),

cg ——pTci'/9pu =
3 Q c„'/g c„'. (3.102)

cr (R' —r')
V'T.

4Ts~r~
(3.94)

which together with the boundary condition v (E) = 0
leads to

J,„' = V 'g a)i, (&~i,/cjk)Bei„ (3.103)

In order to derive c2' we notice that in analogy to Kq.
(3.39) the dissipative energy flux may be written as

According to Eqs. (3.51) and (3.56) the corresponding
heat Aux is where Be& is determined by a Boltzmann equation with

relaxation time v.„
6p eel

pc@ R —r + ~(0, 0) VT (3.95)
1

(e„+8e„)'+ V(ni + Brii, ) ~ (clcoi/elk) = —(1/r, )hei,

or, integrated over the cross section and making u.se of Eq.
(3.74),

2ir (J,„+J,„')r dr

(3.104)

Calculating i7(rii + In', ) from Eq (3.2.9) with v„= 0
and with a time-independent local temperature we get to
lowest order and after Fourier transformation in time

= —ir&'pcvg(&'/8rx) + Dr(0,1 o) j ~T. (3.96) 1"g/kiiT 843g ~7T
ep ii~'+ 1 ~~

1 iMrg leak T (3.105)

In order to have Poiseuille flow, the first (convective)
term has to dominate over the second (conductive) term,
which leads to the Poiseuille Qow condition

Dv(0, 0) = c~"r, ((E'/8r~. (3.97)

PoiseuiHe Row has been predicted independently by -SQss-
mann and Thellung (1963) and by Gurzhi (1964) . Its
first observ'ation is due to Mezhov-Deglin (1964, 1965,
1967) in experiinents on solid 'He. As is clear from Eqs.
(3.96) and (3.97), such an experiment gives information
about 7~. In fact the Poiseuille Row determinations of 7-~

were used to estimate the window condition in the first
second-sound experiment Lsee Ackerman and Guyer
(1968)j. For other experiments see Beck et al. (1974).

Finally, the third main domain is the diglsiori domain
defined as the low-frequency, low-wave number limit,

Inserting into Eq. (3.103) and making use of Eqs. (3.35),
(3.56), and (3.74) one readily finds Eq. (3.81) with Lsee
GriKn (1965); Enz (1966a, 1968)j

~~k Ic." = (3koT'ci.pV) 'Q (uP
l

ego(rik'+ 1)
Bk&

C Cp
P

(3.106)

C. Isothermal crystal: first sound

We now assume T = const, P = const, and P,; = 0 and
again treat all fluctuations in linear approximation. Then
Eqs. (3.21) and (3.46) iinply d(ps&) = 0 and d(ps~) = 0,
respectively, so that, according to Eq. (3.45),

cur@ « 1, q2A, g, 2 « I. (3.98)
(ps)' = 0,

and Eq. (3.59) becomes

(3.107)

In this domain we have from Eqs. (3.66) and (3.73),
keeping only the leading term, ps„V.v~ = 0. (3.108)

(1/pcr)pi(q, co) = cq rg
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I
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except for transient effects. Hence Eq. {3.108) is satisfied.
On the other hand, the condition p,, = 0 is satisfied only at
T=O.

Now the problem is reduced to the elastic equation of
motion (3.7) which, together with Eqs. (3.4), (3.1), (3.43),
(3.40), and (3.41), takes the form

%e discuss the last two equations in the three main
domains of p~(q, &v) defined. in Sec. III.B.

Starting with the domain (3.76), insertion of Eqs. (3.74)
and (3.78) into (3.115) leads to

( i—co + r& '+ D—&q') (i/p) (pq) bT = ice—cimi/q'u,

u' = (1/p) Z (&'t,&i&;~oui+ n*;,I i~;~au~). (3.109) (3.117)
gkl

where we have defined the matrix 6 in analogy to Eq.
Going over to plane waves exp{ i(q. r —cut) ) and de-

6ning the symmetric positive matrices

(c'(q))' = (1/p) Z C', (3.110)
ci'~ = (Tlp'«) (Pq) (Pq). (3.118)

(ci'(q)ri(q))' = (1/p) Z ~'-.- q-q-

Eq. (3.109) leads to the wave equation of first sound

Equation (3.117) shows that /iT has the pole (3.79). Sub-
stituting this equation into Eq. (3.116) and retaining only
lowest powers of q and cv, but separately for real and imagin-
ary parts, we find the disp/acemerit disp/ace-merit corre/ation
furictioe matrix

((o'/q')u = ci'(1 —z~ri)u. (3.112)
x,, (q, o)) —= bu~/bf, = —

{
co' —ci2(1 —i(uri') q'g, ; '

(3.119)
At zero temperature the eigenvalues ci„(q) of the matrix

ci are the velocities c„of the acoustic phonons (3.34)
Lzero sound, see Cowley (1967)j. ri = ri + rN+. (3.120)

(ps)' = (p«/T)&+ {P~) u, (3.113)

while Eqs. (3.59) and (3.60) are unchanged. Equation
(3.7) with (3.4), (3.41), and (3.42) becomes

D. Thermal expansion coupling of first and
second sound

We now relax all restrictions on u, T, and P and allow
P;; A 0, that is, according to Eq. (3.17), nonvanishing
thermal expansion. In order to keep complications within
limits we still neglect the cross-coupling terms in Eqs.
(3.42) and (3.43), ti;;,ii = 0. Then Eqs. (3.21) and (3.46)
with (3.4) and (3.45) lead to

Equation (3.119) shows that in this domain u propagates
with the isotherm a/ velocities ci„(q) . Retention of the lowest
powers of q and cu under the conditions (3.76) means that
the limit "first ~ —+ 0, then q

—+ 0" has been taken. This is
indeed the usual definition of the isothermal limit Le.g. ,
Wehner and Klein (1971)j. From Eqs. (3.117) and (3.119)
we see that in this limit re = 0 and, according to (3.46),
also B(ps„) = 0. But from Eq. (3.21) we find with (3.4)
and (3.119) that in this limit V(psr, ) = —q(q, Pu) =
q(q, pci 'f) & 0. This confirms the isothermal nature of
this limit.

In the domain (3.98) consideration of Eqs. (3.99), (3.74),
and (3.80) shows that we have to insert (3.101) into
(3.115), so that with Eq. (3.118)

u; = (1/p) g (C,;,i(V,Vpu(+ g,, g(V, V'ku))
jkl

(—ia) + Dr'q') (i/p) (Pq) BT = i(uci2i'tq'u— (3.121)

In plane-wave representation the solution of Eq. (3.60)
is given by Eq. (3.65), which we insert into (3.59) together
with (3.113).This leads to the following generalization of
Eq. (3.67):

—i~+ (1/pcr) (p~+ ~~)q'jaT+ ~(T/p )(cPrq) u = 0.

(3.115)

Equation (3.114) gives rise to the generalized form of Eq.
(3.112),

LaP —ci2(1 —icuri)q'j u —(i/p) (pq)BT = iqbp —= —f,

(3.116)

where f is the external force per unit mass.
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This has a pole at the heat diffusion mode (3.100).Sub-
stituting Eq. (3.121) into (3.116) we find for the correla-
tion function matrix defined in Eq (3.119).

x(q, co) = —{~'—ci2(1 —i~{r,
+ ( iM+ D—r'q') 'gj)q (3.122)

This equation is equivalent to Eqs. (3.56) and (3.57) of the
review by Gotze and Michel (1974), which contains the
most compact Rnd systematic derivRtion of transport
coefficients in dielectric crystals from microscopic theory,
but which neglects phonon drift. The occurrence of the dif-
fusion pole in the damping term of Eq. (3.122) has the
important consequence that the two limits "6rst ~ —+0,
then q

—+ 0" and first q
—+ 0, then co —+ 0,"which are both

compatible with the conditions (3.98), lead to different
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x(q, ~) = —{~ —ci (1 —icosi) q } (3.122a)

cP = cP(1+ 8) (3.123)

defines the adiabatic solrid velocity matrix ci(q) in analogy
to Eq. (1.73) and

r = (1+6) '{ri+ itD'rq'/uP$ (3.123a)

Equation (3.122a) shows that in the domain (3.98) u
propagates with the adiabatic velocities ci„(q). According
to the assumption D~'q'&(co this is the case "erst q

—+0
then u —+ 0," which is the usual definition of the adiabatic
limit (e.g. , Wehner and Klein (1971)$. From Eqs. (3.121)
and (3.122a) we see that again BT = 0 and B(ps„) = 0. But
now Eq. (3.21) with (3.4) and (3.122a) also leads to
(psl, )' = co(q, Pu) = 0 which is indeed the adiabatic con-
dition.

With the opposite assumption, ar &( D~'q'(( c~q, we hand

from Eq. (3.122)

y(q, ~) = {1—ice(ri+ @/Dr'q')

+ cu'P(i' t/Dr"q') —(c q) 'j+ O((u')} '(ciq) '. (3.122b)

In order to obtain simple expressions for the dynamic
structure factor we assume g to be a symmetry direction
such that ci(q) and ri(q) are simultaneously diagonal and
have eigenvalues cit, rii with eigenvector ui ~~ q and ci&, ri,
with eigenvectors U~ J j.Assuming cubic symmetry so that
the tension tensor P is diagonal it follows from Eq. (3.118)
and the identity (1.75) that 6 is also diagonal and has
eigenvalues Bi ——(c„/ci) —1 and 8, = 0. In this represen-
tation x„„=x„b„„and we find from Eq. (3.122b)

AS (q, cd) = —Imxp(q, &8) = cip rip +

results (Cowley, 1967; Gotze, 1967; Gotze and Michel,
1967a, 1969; Wehner and Klein, 1971; Paszkiewicz, 19'74).
This difference is best seen in the dynamic structure factor
as defined in Eq. (1.79a).

Let us 6rst assume D~'q' (( cg and neglect terms
(Dr'q'/~)' Th.en Eq. (3.122) becomes

The exciting new fact in the situation just described is
that in neutron scattering a peak (and not a dip!) has
recently been discovered in 5& near the structural phase
transition of Nb3Sn at T = 45 K (Shirane and Axe, 1971).
LSee also Axe and Shirane (1973a,b) 7. This phase transition
is due to a soft transverse acoustic mode for which c~& ~ 0
as T —+ T, [see Fig. 1 of Shirane and Axe (1971)j. Similar
"central peaks" of 5& have recently been discovered
near phase transitions of SrTi03 and other- perovskites
(Riste et al. , 1971; Shapiro et al. , 1972; Kjems et al. , 1973;
Muller et al. , 1974) . In these cases, however, the soft mode
responsible for the transition is an opt;ic transverse mode
at the E-corner of the Brillouin zone.

After this digression into central peaks let us, 6nally,
discuss the domain (3.69) . Insertion of Eqs. (3.71), (3.73),
and (3.118) into (3.115) yields

1+ (~~')i q'
(d —Cg 1 —Z ZCOTg g

GP7 g

X (i/p) (Pq) bT = cv'ci28q'u. (3.125)

Thus oT has a pole at the second-sound mode (3.72). Sub-
stituting Eq. (3.'125) into (3.116) we find for the correlation
function matrix of Eq. (3.119),neglecting the term (P~') i q',

All these central peaks can be parametrized by an equa-
tion which has exactly the form of Eq. (3.122). In the
notation of Eq. (1) of Pytte (1973) the parameter values
of Eq. (3.122) are ceo ——ciq, cv = ciq, I' = rici'q', y = Dr'q'
and 6' = 8c~'q'. lt is clear therefore that these central peaks
are also due to a pole in the damping term of Eq. (3.122).
But the residue of this pole cannot be due to thermal
expansion coupling of the solft mode to the heat diffusion
mode. Pytte (1973) Lsee also Axe and Shirane (1973b)j
has emphasized the analogy of this pole with the Mountain
mode a& — i/r, of Sec—. I.E. However, the fact that in
general 7. ' » Dy'q' is dificult to reconcile with the extreme
narrowness of the central peaks. So far none of the formal
analyses of the problem (Feder, 1971, 1973; Schwabl,
1972a,b, 1973; Enz, I972c; Silberglit t, 1972; Schneider,
1973; Meier, 1973; Beck and Meier, 1973) has been success-
ful in explaining the physical origin of this pole. From a
recent quantitative analysis of the problem in terms of the
hydrodynamic description developed in this section it
appears, however, that the relevant mechanism is a coupling
of the solft mode to the heat diffusion mode due to the
strong temperature dependence of the soft-mode frequency
(Enz, 1974).

(3.124)

This equation shows that Si(q, &v) has a peak at cu = 0
which in the limit q

—+0 grows as q
' and narrows as q

4

while S,(q, co) has a constant dip narrowing as q '. This
heat dignsiori peak of Si is well known from Rayleigh and
neutron scattering. Equation (3.122a), on the other hand,
gives rise to an S„as given by Sz in Eqs. (1.79b) for r = 0,
and has peaks at ~ = ~8~„q for both p = 3 and g. These are
the first sound peaks well known fr-om Billouin and neutron
scattering.

g(q, M) = —G(q~ co) {co —c~ l
1 —(1/MrJ') icvr2)g }

(3.126)

where

G '(q, ~) =
{

&u' —cP(1 —icvri)q'j

X {~~—cPL1 —(i/~r~) —icuri5qi} —'ci28qico2. (3.127)

These equations are essentially the same as Eqs. (2.24) and
(2.26) of Wehner and Klein (1972). These authors point
out that in light scattering there is a direct coupling of light
to thermal fluctuations, via the temperature derivative of
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the dielectric constant, in addition to the indirect coupling and
via thermal expansion.

Equations (3.126) and (3.127) are closely analogous to
Eqs. (1.71) and (1.72), except for the important difference
that here the second-sound damping contains the term
i/corJ which gives rise to the window condition (3.70).
Because of this term the factorization of G ' takes the form

c2'TJ ' ——czz'T Jzz ' (1 —r) + czprr J, ' + rci'T Jz '

r&Jr CI ~

To first order in 8 one finds

(Cl —
C2 ) Cl C» 19'(CP C2 ) (3.131)

G (q) M) = [GP Cz (1 ZCOTI 2/COTJI) g ]
which is analogous to Eqs. (1.78) and (1.77), taken for—czz ( T —icovzz —t/'eve Jzzjq g =—AIAII) 3.128
small g,

valid to first order in the small quantities curl, &ariz, (curJi)
(cur Jzz) ', etc. Comparison with Eq. (3.127) yields, in
analogy to the superfluid case,

r„—(cPrl —c 'r2 —r Iv) (cP —c22)

and

cz2 = 812+ n,

cPrz = cl rl + 'V,

CZZ = C2 —I)2 — 2

CI I &II C2 &

TJr —'(c2 TJ + r cpTJI ) (cl C2 )

CIZ TJII C2 7J —CI 7JI )
Now Eqs. (3.126)., (3.128), and (3.129) can be written

in the form of Eq. (1.79),

where the matrices, I, v and ~JI ' are determined, respec-
tively, by the equations

Cl C2 CI CII )

Cl C2 (Tz + r2) —CI TICII + CI CII TII,

Cpc2 TJ = CI TJI CII + CI CII TJII

Since at low temperatures P ~ cr ~ T' and s~ ~ T' it
follows from Eq. (3.118) that I) ~ T' as in the superfluid
case. Since, on the other hand, the window condition (3.70)
is only satisfied at low temperatures, we can assume 8 to be
small. One then 6nds to 6rst order in 8

(Cl —C2 ) Cl C2 I),

'V = (CP C2 ) $C2 T2(CPI) + 2Z) —CPTIR),

TJI = (Cl C2 ) Cl (CP6' + Q) C2 TJ

—X(q, ~) = AII gAI —' = (1 —R)AI '+ Azz 'E

(3.132)

in. which the first- and second-sound denominators Az and
Azz are separated, and where E is given by Eq. (3.130).
This form implies that in inelastic neutron scattering with
small momentum transfer qI and in Brillouin scattering
there exist peaks due to both erst and second sound. How-
ever, due to the smallness of the amplitude ratio r, Eq.
(3.131), mechanical second-sound excitation is too weak
to be seen in such spectra. This is different from superfluid
helium where the absence of a window condition allows the
choice of temperatures very close to the ) transition where
I) becomes large (see Sec. I.D).

The calculation of the integrated intensity analogous to
Eqs. (1.79a) and (1.80) is complicated both by the matrix
cha, racter of Eq. (3.132) and by the occurrence of the
damping terms i/cur», i/cur Jzz, and i/corJ„ in this equation.
We therefore refrain from deriving an expression for it.

We can now also define adiabatic elastic constants in
analogy to Eq. (3.110) by

The analogous decomposition of the numerator of Eq.
(3.126) is

(&P(j))', = (1/z) Z C'-, - i-i-. (3.133)

zz =—(aP C2 (1 Z&d 2T2/COTJ) g = AII (1 8) + +AI

(3.129)

with

Making use of Eqs. (3.123) and (3.118) we find Lcompare
Eq. (3.22) of Leibfried and Ludwig (1961); Eq. (4.11) of
Gurevich and Efros (1966); and Eq. (27) of Gotze and
Michel (1967a). See also Paszkiewicz (1974)j

R = r(1+iv)r„+ i/curJ, ), (3.130) &'Jk~ = C,;,a;.i +, (T/Pcl )P,,Pa&. (3.134)

eraction in the transition to
an ordered state of the spins in a magnetic crystal was 6rst
discussed by Heisenberg (1928), Frenkel (1928), and
Dorfman (Dorfman and Jaanus, 1929) in 1928. Two years
later Bloch (1930) showed that this coupling gives rise to

c2' ——czz'(1 —r) + rcP,

c2 T2 = cII TII (1 —r) + czz'rr + rcprz —rr, cz
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wave excitations of the spin orientation. These spin waves
or magnons were subsequently derived by Landau and
I.ifshitz (1935) in the framework of a purely phenomeno-
logical description of magnetism. But it was only the hydro-
dynamic description by Halperin and Hohenberg (1969)
which established, for the planar and isotropic ferro-
and antiferromagnets, the close analogy with the phenomen-
ological description of superfluid helium. LFor a, microscopic
analogy see Matsubara and Matsuda (1956) . See also
Kawasaki (1970)$.

Halperin and Hohenberg (1969) obtained for the iso-
tropic (Heisenberg) ferromagnet the well known quadratic
magnon spectrum co = Dq', originally derived, in the col-
lisionless case and for small q, by Bloch (1930). But for the
planar ferromagnet in which the preferred direction of
magnetization is restricted to an "easy plane" they found
a sound-like spectrum, ~ = c&q for. small q. In the collision-
less case such a linear dispersion relation had been dis-
covered for antiferromagnets by Hulthen (1936), while for
planar ferromagnets it was derived by Matsubara and
Matsuda (1956). Halperin and Hohenberg also rederived
this Hulthen mode for the planar antiferromagnet in which
the sublattice magnetization is in an "easy plane" and for
the isotropic (Heisenberg) antiferromagnet. They also
obtained new predictions for the magnon dampings. A
derivation of these results from the point of view of irre-
versible thermodynamics was subsequently given by Enz
(1971).'

In analogy to dielectric crystals the two fluids in a mag-
netic crystal have to be identified as the classical magnetiza-
tion field M(r, t) and the fluid of the thermal magnons. In-
deed, M describes the dynamics of the condensed phase of
the ordered spins. It is also the order parameter of the ferro-
magnet, while in the antiferromagnet the sublattice (stag-
gered) magnetization N plays this role. The magnetization
satisfies a local conservation law analogous to the continuity
equation, whereas this is not the case for the mass density
of the magnon Quid since magnon number is not conserved.
This difference with superRuids already encountered with
dielectric crystals in the last section justifies the omission
of the "first Quid" of thermal magnons in the treatment of
Halperin and Hohenberg (1969) .

The hydrodynamics of the magnon Quid was first con-
sidered in a note by Gulayev (1965) Lsee also Dingle
(1952) and Gurzhi (1965)j in which the name "second
spin waves" was introduced for the excitations of this
fluid. Subsequently Reiter (1968) derived a Boltzmann
equation for the magnon Quid of a Heisenberg ferromagnet.
A generalized form of this Boltzmann equation was used
by Michel and Schwabl (1969, 1970a) to derive coupled
hydrodynamic equations for the two fluids in close analogy
to the treatment of dielectric crystals by Gotze and Michel
(1967a).

This analogy extends, in particular, to the introduction

' This paper contains a confusion between magnon drift and "super-
Ruid" velocity which is corrected as follows: Put 7- = ~, discard the
comparison of Kqs. (31) to {33)and (46) with Eqs. (4.14a) to (4.14c)
and (4.20 a,b), respectively, of Michel and' Schwabl (1970a). In
addition the condition for the planar case should read J;," & J,,~.
See also Michel and Schwabl (1971b).

of a magnon drift (quasimomentum) which is essential for
the Quid properties of the magnons and hence for the
existence of second sound or second spin waves (see the
Introduction), called second rnagnons by Michel and
Schwabl (1969, 1970a). In subsequent papers Michel and
Schwabl (1970b,c; Schwabl and Michel, 1970) have derived
this hydrodynamics from microscopic equations of motion.
As was shown by Enz (1972a), the addition of the local
balance equation for the magnon momentum to the hydro-
dynamic equations of Halperin and Hohenberg (1969; Enz,
1971) then also leads to second sound.

As discussed in the Introduction, for Bosonic excitations
the existence of second sound depends on Landau's criterion
for superAuidity. This means that a Bloch mode, cu = Dq',
does not give rise to second sound, while a Hulthen mode,
u = c&q, does. In insulating magnetic crystals, however, the
long-range dipolar interaction between the spins gives rise
to a gap of the Bloch mode analogous to the plasmon and
also transforms a Hulthen mode into a Bloch mode with gap.
In fact, to date neutron scattering which measures directly
the magnon spectrum has, to our knowledge, not revealed
any case of a purely sound-like dispersion relation. The
search for second sound in insulating magnetic crystals is
therefore a quite realistic problem. The quantitative condi-
tions for the realizability of a second magnon have been
analyzed by Michel and Schwabl (1971a), Forney (1972),
and Forney and Jackie (1973), the conclusions being quite
encouraging.

In this section we follow essentially the approach of Enz
(1972a) except for two generalizations. The first is a
description of the response measured by neutron scattering
which is done in analogy to previous sections. The second
generalization concerns the cases of the axial and isotropic
ferro- and antiferromagnets, which are treated in much
greater detail, including, in particular, the effects of the
dipole —dipole interaction and a comparison with the phe-
nomenological approach of Kittel (1963; Herring and
Kittel, 1951). This generalization allows a direct comparison
with earlier results for the magnon spectra (Clogston et al. ,
1956; Loudon and Pincus, 1963; Brooks Harris, 1966; Anda,
1973) but, in addition, also yields expressions for the damp-
ing of all the magnon modes.

Thus we arrive at a general and unified hydrodynamic
description of magnetic crystals within the classification
into planar, isotropic, and axial systems. This classification,
of course, is not exhaustive, as can be seen from more
specialized reviews (Keffer, 1966; Nagamiya et a/ , 1955). .
It is also evident that lattice displacements introduce
variations in the coupling functions of the exchange inter-
action, giving rise to magnon —phonon interactions and
hence to a coupling of the two fluids of this section with the
two fluids of the preceding section.

A. Hydrodynamics of the planar ferromagnet

A planar ferromagnet is described by a Hamiltonian

K = —Q IJ '5'5'+ J ~{s*s*+5~5~)}

with coupling constants J;,~ & J;,' ) 0, for the dominant
pairs of neighbors i, j.
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The crucial feature of a planar ferromagnetic state is the
existence of a nonvanishing average of the spin raising
operator 5~+ = 5, + i5,((. The ferromagnetic average has
the property that it is taken with a density matrix which,
in analogy to Eq. (1.1), commutes with the effective
Hamiltonian 3C —ziti g, 5,' (see Sec. I.A) but not with
g;5 . Here mp, is the microscopic magnetic field seen
by the spins (we use units such that the Bohr magneton

1) . Since 5,+ increases the value of 5,' by one and
since PP, 5, BC) = 0 the Heisenberg representation

5,+(t) = exp(iBCt) 5;+ exp( —iieet),

On the other hand, for an external held H, so small that
M = 0 ls maintained, we scc floII1 Eq .(4.1) tliRt wc llllist
have mtl = H, (this is a metastable state l), hence

II = (1/m) (H, —h, ). (4.10)

Here p plays the role of a chemical potential per unit mass
where m is the mass of the magnetic ions.

Going over to local variables e.(r, t), etc. defined as
averages of density operators Lsce Halperin and Hohenberg
(1960)), we may again define a velocity field

together with Eq. (4.1), implies the existence of a non-
vanishing order parameter (1/I() (5~+) with the time evolu-
tion

v, = —(1/m) V'p (4 11)

(1/I() (5,+(t) ) = (1/I() exp (+inst(t) (5,+)

= M~ cxpI+i(p(t)) = M + iMy (4.2)

which is exactly analogous to the superfiuid velocity (1.4).
According to Eq. (4.9) v, satisfies the equation of motion
analogous to Eq. (1.5),

Here v is the volume of the unit cell, M& the perpendicular
magnetization, and (p(t) the precession angle. From Fq.
(4.2) we have

v.. = —~(( + p),

where p' is the dissipative part of p.

(4.12)

Ip(t) = p(0) + mpt

The magnetization energy per unit mass is

, = ( v) —'(~&. (4 4)

The index s refers to the identification of the magnetization
with the "superQuid" phase. p is the mass density of the
crystal, which here is a constant, and P the volume of the
crystal. Since e, and the parallel magnetization

M, = (1/I() (5,')

are conserved quantities, M~ must be a function of ~, and
M, As poi.nted out by Halperin and Hohenberg (1969),
this supposes the existence of a relaxation mechanism which
bl'lilgs M~ to its VRllic Mg (6 M ) lll R Illlcl oscoplc tlllic

I:n view of Eq. (4.7) and because v, is an independent
thermodynamic variable we have the thermodynamic
relation

(t(pe, ) = h, dM, + p,v, .dv, + Td(ps, ). (4.13)

The coef6cient p„which for simplicity we treat as a scalar,
must be positive. It has the meaning of a stiffness constant
PHRIpcrin and Hohenberg (1969). See below. ) and the di-
mension of a mass density and is the analogue of the super-
Auid mass density of Sec. I.

Local conservation of parallel magnetization is expressed
in analogy to the first. Eq. (1.6) and to Eq. (3.8) by

Equations (4.12) and (4.10) are the same, respectively,
as Eqs. (2.15) and (2.10) of Halperin and Hohenberg
(1969) with the identification of v/m with our v, and of
lt(t Pt wltll 0111 t(.

In thermal equilibrium at a temperature T below the
Curie point T„e,= 6, (M„T) so that mM, + 9 (j, + j,') = 0, (4.14)

M~ = Mi (M„T)

and the thermodynamic 6eld is, for M, &( 3f&,

h, (M„T) = (II(ps, )/BM, )„=x '(T)M. ,

(4.6)

(4.7)

where the dissipative part j, describes spin diffusion Lnote
that the corresponding terms in the first Eq. (1.6) and in
Eq. (3.8) were missing). Apart from a factor nz, Eq. (4.14)
is the same as Eq. (2.16) of Halperin and Hohenberg (1969) .

where s, = s, (M„T) is the magnetization entropy per unit
mass and g is the isothermal longitudinal susceptibility.
Therma[ equilibrium also means that the precession is zero
and that the external held H, equals the thermodynamic
field (4.7), that is, jm =- pm'. (4.15)

In analogy to the case of phonons in dielectric crystals
LEq. (3.24)), the thermal magnons are described by a
momentum density j~ and a local drift v.gl which dehne the
magnon mass density p&z through

For ti W 0 Eq. (4.3) tells us that

(4 8) Again we treat p~ as a scalar for the sake of simplicity.
The local magnon momentum balance equation is, in
analogy to Eq. (3.28),

(4 9) j.~+ 17(&M+ &~') = —(1/rz) j~ (4.16)
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Here, in analogy to Eq. (3.25),

II~ = pf—~r1 + p~vm viw (4.17)

is the momentum flux and f~ the magnon free energy per
unit mass which satisfies the thermodynamic relation
analogous to Eq. (3.27)

M = Mi + O(H„2),

M„= X~H„+ O(H ,'), . (4.25)

where

Eq. (4.8). Inserting Eq. (4.24) into (4.21) we also obtain

d(pfm) = —jw'dv~ —PAs dT. (4.18)
x~ = +PM, '/q'p, (4.26)

Here s~ is the magnon entropy per unit mass, and II&&' the
dissipative part of II~.

In analogy to Eq. (3.26) the magnon energy density is
given by

is the isothermal transverse susceptibility /see Eq. (2.30)
of Halperin and Hohenberg (1969)g.

From Eqs. (4.21), (4.24), and (4.11) it also follows that
for IIy ——0

p~~ ——v~ j~ + p ( f~ + Ts~) . (4.19)
V'M„= —mM~V,

so that

(4.27)

The total energy is the sum of the magnetization energy,
the magnon energy, and the Zeeman energy of an arbitrary
external field H,

p.v. dv, = (p,/nz'M~') V'M dV'M (4.28)

d(pe) = d(pe, ) + d(pepr) —H dM.

Since according to Eq. (4.2)

is recognized as an exchange energy contribution (Kittel,
(4.20) 1973; Keffer, 1966) to Eq. (4.13). It is of the same form as

the elastic energy contribution

M = (M~ cosy, M~ sin~, M, )
1

(4,21)
g C,;,A, (V,u, dVpug
ijkl

d(pe) = (h, —II,) dM, —H„dM„

+ p,v, dv, + vM. dj~+ T d(ps) (4.22)

we can choose H = (0, H„, H, ). Making use of Eqs. (4.13),
(4.19), and (4.18), Eq. (4.20) can then be writ ten in
analogy to Eq. (3.47) as

(p~)'+ ~ (J.+ J.') = o (4.29)

to Eq. (3.13), expressed with the aid of Eqs. (3.3) and
(3.4). Thus we see that p,/nz'M~' plays the same role as
the "elastic stiffness constants" C;, , A, ~ (Kittel, 1963).

As in the former sections, we convert the energy conserva-
tion

where s = s8 + s~.

The equilibrium condition for the total free energy at
constant T and j~ is

into the entropy balance

(ps) '+ ~. (J.+ J.') = ~, (4.30)

dJ(pt Tps) d'r = 0~ ST=0, thus obtaining expressions for the magnetization Aux j„the
energy flux J„and the entropy flux J,. The dissipative parts
p, ', II~', j,', J,', and J,' will be constructed afterwards.

f {Lh. —H, —H„(BM„/BM,) T sing )RV,

+ L H~M~ cosy —(p, /m~) —'Ppjbp} d~r = 0.

Since WE, and Bg are independent variations, we hnd for
the Fourier components, for small H„,

rp = (nz'M~/q'p, ) H„+ o(H„') (4 24)

Remembering Eqs. (4.21) and (4.6) and making use of
(4.11) and of a partial integration to eliminate v,„ the con-
ditions (4.23) with (4.22) yield

From Eq. (4.22) we obtain with Eq. (4.10)

T(ps) = (ps) + nzp3II, + H„M„—p,v, v, —v~ j~,
(4.31)

which apart from the magnon drift term is the same, for
H = 0, as Eq. (2.31) of Halperin and Hohenberg (1969).
In order to compensate for the term H„3/I„ in Eq. (4.31)
the equation of motion (4.14) has to be modified in the
presence of a transverse field H„. This is done by writing

and

q'p, a&, z

3f, + (1/m) V (j, + j,') = M.H„, —
3SI —yM, M, = My (H, —h, ),—
M„—pM„M. = M, (H. —h, ), (4.32)

In equilibrium, H„= 0, so that p„= 0 and we recover where the last two equations follow from Eqs. (4.21) and
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negative sign, we find, with Eq. (4.33),

p = (1/Mi) (BMi/BM, )r.

Since according to Eq. (4.26) x„))y for small q, the
right-hand side of Eq. (4.32) is just the precession term
M x (h —H) with h = {0,0, h,), which brings Eq. (4.32}
into the form of the Bloch equation (Kittel, 1963) or
La,ndau —Lifshitz equation (Keffer, 1966) .

Substituting for the right-hand side of Eq. (4.31) suc-
cessively from the equations of motion (4.29), the first
Eq. (4.32), (4.12), and (4.16), making use, in the last
equation, of Eqs. (4.15), (4.17), and (4.18), we find

(ps) = —V'. [(1/T) (J, + J,'+ j (j.+ j,') —j 'p,v.

—IIM'VM))+ U. + J.'+ j (j.+ j.') —j'p.v.

—IIM'VM —Tps»v»). v(1/T) + (1/T) (j, + j,'

+ P.v.).vj —(1/T) [j'V (P.v.) + (IIM'V) v»)

+ (pM/T7 J}VM .

j,' = +jr'(vp,
j' = +(&V).j.,
IIM'~ = Z 'Y'&, k&vki'Mt,

kL

J.' = —(~/T) VT. (4.38)

Tcr = VT [(~/T) VT) -+ m2VP, .((Vji) + [V (p,v, ))(l V)

. (P.v.) + Z V'i», Y', ,klvk&M/+ (PM/rj)VM ~ (4.39)
ij Ir, L

Here we have neglected cross-terms coupling magnetic and
thermal variables, that is, respectively, terms proportional
to V Ca vM, VT, Vp, and V (p,v, ) in j,', p, ', IIM', and J,'.
[Note that the last Eq. (4.38) differs from Eq. (30) of
Enz (1972a) which through Eq. (27) led to additional
damping terms). g is the spin diffusion tensor, i a second
viscosity tensor analogous to i, in suPerfluid helium, Y,j»
is the magnon viscosity tensor, and ~ the magnon heat con-
ductivity tensory. With Eq. (4.38), Eq. (4.37) becomes

Since the nondissipative terms on the right-hand side must ~. Hydrodynamic modes of the planar
add to a divergence we find ferro magnet

j, = —p,V,

and

(4.33)
The hydrodynamic equations of motion (4.12), {4.14),

(4.16), and (4.30) are, in linear approximation with H~ = 0,
inserting from Eqs. (4.10), (4.15), (4.17), (4.18), (4.33),
(4.35), and (4.38),

J, = pp, vs + TpSMVM (4.34) v, —(1/m) Vh, —p, V[(i V) .v,) = —(1/m) VH, (4.40)

[Compare Eqs. (2.22), (2.35), and (2.21), (2.36) of
Halperin and Hohenberg (1969)). Comparison with Eq.
(4.30) then yields the entropy flux

M, (p. ,/m)v v—, —(g).vh, = —(pv) VH,

4 j + (p/PM)SMV;T —(1/pM) p Y, , klV Vkl'Ml

(4.41)

Ja = PSMVM&

its dissipative part

(4.35)
+ (I/~J)vM, ——0

s+ sMV vM —(1/pT) (~v) ~ VT = 0.

(4.42)

J,' = (1/T) (J,'+ pj, ' —p'p, v, —IIM'vM),
Choosing as independent variables BT, BM„v„and v~

(4.36) we have, in analogy to Eq. (1.63),

and the entropy production density

= TJ.' V(»T)+ (I/T}[j.' v + 'V. 3.

+ (IIM'V) VM) + (PM/Trs)VM'.

[Note that the partition of dissipative terms into J. and cr

is dictated by the positiveness of o-. In the paper by Enz
(1972a) this condition was overlooked, without serious
consequences, however. )

For small perturbations and for H„= 0, the dissipative
parts j.', p', IIM', and J,' must be linear functions of the
gradients of the coeAicients in Eq. (4.22), that is, of —mVp,
V (p,v, ), V vM, and VT. Irreversibility requires that
under time reversal they transform with opposite sign as
their respective nondissipative parts. Since j, and II:.~ trans-
form with positive sign, p, , vM, and J, (and also M~.) with

Bs = (cM/T) BT —(P/p) bM„

BIE. = /AT + .(I/X)6M„

where cM is the specific heat at constant magnetization per
unit mass, y is defined by Eq. (4./), and

P = (Bh,/BT)M, = —p(cps/aM, ) r (4.45)

PN (qy ~) )jj = (&7/PM) Z Y jm, n j(qq ~) Qmgmq (4.46)

where q = q/g Eqs. (4.40) to (4.43) become, after inser-

is the magnetic tension coefficient. Here the second equality
follows from Eq. (4.22).

Going over to plane waves and introducing the analogue
of Eq. (3.62)
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742 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

tion of (4.44), under the assumption

~v, + iqp. q v, + q(1/mx) BM, + q(P/m) BT /=0. (4.54)

= q(1/m)BH,

~ ~ ~p.
(u + i'' —BM, + —q v, + iq'ppi5T = iq')iBH,

X m

(4.47)

(4.48)

There now exists a purely magnetic mode (vt)r = 0, BT = 0)
and a purely thermal mode (v, = 0, BM, = 0). Indeed,
with Eq. (4.54) and vt)r ——0, BT = 0, Eqs. (4.49) and
(4.52) are identically satisfied and Eqs. (4.48) and (4.51)
yield, for 6H, = 0, force-free damped isothermal spin waves,

(
pi~ +——+ —X~2q2 v~+ iq —sifts)T = 0

TJ TJ pM
(4.49) ~'/V' = ci'61+ '(V'/~) p.hj ' —i~(6i/x) (4.55)

with the longitudinal isothermal magnon velocity

M. Zg BT
Tsi)r TPq.vM —~ BM. = 0. (4.50)

ci ——(p, /rex) '". (4.56)

As in Eq. (3.61), $i = (q $q) and ~i = (j.~q) . For
bH, = 0 Eq's. (4.48), (4.49), and (4.50) are the same,
respectively, as Eqs. (4.14b), (4.14c), and (4.14a) of
Michel and Schwabl (1970a) Lsee also Footnote (2) $ if we
put v, = 0 in Eq. (4.48), if the last term in Eq. (4.50) is
substituted from (4.48), and if in the paper by Michel and
Schwabl (1970a,) the external temperature and field varia-
tions and the coupling coefficient of the magnon drift to
the magnetization are put equal to zero Lg = 0, h = 0, and
c, = 0. The latter could have been included by adding a
term —pMc'xdh. to Eq. (4.18) and a term +p))rc'xh, to
Eq. (4.19) which, however, would lead to an additional
coupling between magnetic and thermal variables and to
an a,dditional term in Eq. (4.33), namely, j. = —p,v. +
c'xp~v~. j Note that in the paper by Michel and Schwabl
(1970a) the equivalent of Eq. (4.47) is absent. The result-
ing hydrodynamic modes therefore are modified in the

This shows that p, has the character of a stiffness constant.
Assuming all the imaginary parts to be small so that they
need be retained only linearly, Eq. (4.55) simplifies to

~ = cia —2i(p. l i+ Ei/x) q' (4.57)

—i~ + (1/pc~) L~i(q, ~) + «(q, ~) jr' = o. (4.58)

which is the same as Eqs. (2.48) and (2.60) of Halperin
and Hohenberg (1969), who were the first. to predict such a
weakly damped sound'Like magnon mode in the hydro-
dynarnic domain.

The thermal mode is obtained with Eq. (4.54) and
v, = 0, 5M, = 0, in which case Eqs. (4.48) and (4.51) are
identically satisfied. Equations (4.50) and (4.52) take the
form analogous to Eq. (3.67),

general case (see below).
There exists a domain of second spin waves given by the

To solve the system (4.47) to (4.50) we first express the conditions analogous to Eqs. (3.69) and (3.70),
velocities from (4.47) and (4.49)

q . g—8M, + PAT —bH. 1 + i —pgi
MRS M

(4 51)

1/rg &( &v (& 1/r, ~, MTJ )) g A~i ~ (4.59)

The first is the "window condition" familiar from Sec. II
and III, T„being the relaxation time responsible for thermal
equilibrium of the magnon fluid. In the domain (4.59) we
have from Eq. (4.53)

vier = —(p/Tpsi)r) iqBT,

where, in analogy to Eq. (3.66),

(4.52)
~ Tp's ' 1+ (lw')go')

q ((q, cu) = — 1 —i
co p~ COTJ

and inserting this into Eq. (4.58),

(4.60)

Tp S~
v(q, ~) = ]—ice P + X~'q'

TJ TJ
(4.53) (4.61)

is the heat convectivity tensor and fi is the longitudinal which is identical with Eq. (3.72). Here
projection of f

As in Sec. I and III, we first examine the special case of
complete decoupling of the magnetic variables v„BM„and
the thermal variables v~, 6T. This decoupling is obtained
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is the second-magnon velocity, which has exactly the same
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form as the second-soun. d velocity in the phonon case, Eq. of the possibility mentioned above of detecting a second-
(3.73), and, as in Eq. (3.'l4), magnon peak, in addition to the first-magnon peak, in a

neutron scattering experiment.

r.(q, ~) = (1/pc~c") ~i(q, ~) {4.63) Insertion of Eq. (4.51) into (4.48) yields, with {4.56),

is the thermal conduction relaxation time which, for a
propagating second magnon, must satisfy the additional
condition

(
~2 q2

—1

—,—cP 1+ i —Di —iu&r, BM,
M

4072 (( 1. (4.64)
q2

—1—cPPX
' 1 + i —Di —i(vri oT

Since with the decoupling assumption (4.54) Eq. (4.47)
does not inhuence the thermal mode, our second magnon
is the same as that derived by Michel and Schwabl (1970a)
for c' = D. As shown by these authors, c' & 0 modi6es t.-. to
become the adiabatic second-magnon velocity.

g2 —1

cpX 1 + 1 Dl ZC01 i BHg,
M

where we have introduced the definitions

(4.68)

The window condition of Kq. (4.59) has been analyzed
by Michel and Schwabl (1971a) for the cases of the axial
antiferromagnet MnF2 and the planar antiferromagnet
K2NiF4. Their conclusions are favorable to the existence of
a second magnon at temperatures of the order of 30'K for
MnF~, and of 90'K for K.NiF4 (see Sec. IV.D below).
Detailed calculations of the window condition for the insu-
lating, ferromagnet EuS have been carried out by Forney
(1972) and Forney and Jackie (1973), who find an open
window below approximately 2'K. This calculation is based
on a Heisenberg plus a dipole —dipole coupling, the first
giving rise to 4-magnon processes, the second to 3-magnon
processes.

It is interesting to note that the conditions analogous to
Kq. (3.76), corz (( q'X~, 2, q9.ir' && 1, which define the
domain of Poiseuille Row in the phonon case, are also real-
izable for magnetic crystals of high magnon viscosity. To
our knowledge this eAect has never been looked for yet.

Heat diffusion by magnons is obtained in the domain
analogous to (3.98),

DI. p tie &i/)r = cpr, .

Insertion of Eq. (4.52) into (4.50) yields

ci tax) —uv + (1/pc/i) (pi + ~i) q'joT = —z~cPi')BM,

(4.70)

where, in analogy to Eqs. (1.68), (2.36), and (3.118),

cPi) = psTl3 /rB pc~ (4.71)

op7g (( g X~, ) q9~,2)) 1, (4.72)

we can write, in analogy to Eq. (3.78),

Equations (4.68) and (4.70) are closely analogous to
Kqs. (3.116) and (3.115), respectively, so that the discus-
sion of the three main domains of &p LEq. 4.53)j can be
taken over.

In the domain (3.76),

AT J (( 1) q2X~;2 (( 1 (1/pcM) q iq' =—r~ (4.73)

where Kq. (4.50) reduces to the analogue of Eqs. {3.100)
and (3.101),

Inserting this into Kq. (4.68) and eliminating oT from
(4.68) and (4.70), retaining only lowest powers in q and co,

but separately in real and imaginary parts, we obtain the
correlatjorl, furtctiori

i(u+ D—r'ct' = 0

with

(4.66)
y(q, co) —= Rlf, /BH, = —xf(v2 —cP(1 —icvri') q') 'cPq',

(4.74)

1Dr' ——lim lim Lp&(q, cv) + ~i(q, ~) ].
co~0 g~0 P&M

where, in analogy to Eq. (3.120),

ri ri + ~rK + Di/ci ~ (4.75)

Neglecting here the convective contribution yE we recover
Eq. (2.49) of Halperin and Hohenberg (1969).

%e now discuss the solution- of the complete equations
(4.48), (4.50), and (4.51), (4.52), that is, including an
external field variation 8II, and dropping the decoupling
assumption (4.54). This discussion. is of interest in view cv7g (( 1, q X~ ((1 (4.76)

Equation (4.74) shows that in the domain (4.72) BM,
propagates with the isotherma/ magnon velocity c~.

In the domain (3.98),
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744 Charles P. Enz: Two-fluid hydrodynamic description of ordered systems

x = lim limX(q, cy)
q-+0 so~0

insertion of Eq. (4.67) into (4.70) and elimination of oT Note that the isothermal limit yields correctly
from (4.68) and (4.70) gives for the correlation function
defined in Eq. (4.74)

x(q, o~) = X[1 —zcu6( —i(u+ Dr'q') —'

—z(u(cry)
—'Lrr + (—i(q+ Dry') (4.77)

in agreement with Eq. (3.9a) of Halperin and Hohenberg
(1969).

The properties of this equation are analogous to those of
Eq. (3.122). In the case Dr'q' « cu, Dry' « co, carr « 1 we
6nd

Apart from the damping in the second term of (4.82),
this is the same as Eq. (3.127). Therefore G ' can be fac-
torized in the form (3.128),

x(g, ~) = —xL~ cr (1 —z~rr) V ) rV (4.77a)
G (tl& co) = fM cz (1 —zMrr. —z/cOrgz) g )

XLio —czr (1 —zzdrzr —z/oirzir) q )—:AzAzz, (4.83)

where, in analogy to Eqs. (1.73), (2.35), and (3.123),

Fzz = czz(1+ 6)

and

valid to hrst order in the damping terms. Since the numer-
ator of Eq. (4.81) is also the same as that of Eq. (3.126),

(4.78) apart from a factor (1 —ioirz), Eqs. (3.129), (3.130) and
(3.131) can be taken over. Hence

(4.79)

cr is the lozzgitudizzal aChabatzc first rzzagrzozz neloci-ty which is
connected with the adiabatic longitudinal susceptibility y
by the analogue of Eq. (4.56),

I —R R
X(g~) = X + Czg

Ar Arr

with

& = r(1+i~r„+ i/~rg„)

and, to first order in 8,

(4.84)

(4.85)

X = p.!zzz'cz'= X(1+ ~) '. (4.80)
C 2C Z(C Z C Z)

—lg (4.86)
In the opposite case co&( DT'q', co(& D~q' one finds from
Eq. (4.77)

Dg
x(q, ) = xI& —~ D, , +

GP , , + o(~')
Dr rl ci g (1 + rrDrrl )

(4.77b)

In the second-magnon domain (4.59) insertion of Eqs.
(4.60), (4.62), and (4.63) into (4.68) and (4.70) yields for
the correlation function of Eq. (4.74), after elimination of
BT and neglecting damping terms proportional to q'/a&,

X(g, 0)) = XG(l/ M) (1 zMrr) iGP —cz I 1 —(z/Mrg)

—Za&rz)q'J Cr'q' (4.81)

where

G-'(q, ~) = (~' —c,'(1 —i~rz) q')

This expression shows that in the limit q
—+ 0 the heat dif-

fusion pole in Eq. (4.77) dominates the response and gives
rise to the Rayleigh peak discussed in Sec. III.D.

As in the case of dielectric crystals, p ~ c~ ~ T' and
s~ ~ T' at low temperatures so that, according to Eq.
(4.71), 8 ~ T . Since the window condition restricts the
occurrence of the second magnon to low temperatures, the
second-magnon peak will be much smaller than the first-
magnon peak in a magnetic excitation by inelastic neutron
scattering.

The integrated intensity can be obtained from Eq. (4.84)
in analogy to Eqs. (1.79a) and (1.80). However, the damp-
ing terms i/&or~i, i/cur~rr, and i/curg„make the integra-
tion more complicated; we refrain from giving the details.

C. The axial and isotropic ferrornagnets

The gxial ferromagnet is characterized by J,,-' & J;,~ ) 0,
for the dominant pairs of neighbors i, j; This has the e6ect
that without external field the magnetization aligns in the
easy s direction and M~ = 0. Thus the precession angle is
not a dynamic variable and the analogy with superRuid
helium is lost. But a two-fluid description in terms of mag-
netic and thermal variables still exists.

The relation (4.7) is invalid in this case since M', W 0
but lz, = 0. On the other hand, for

~
M,

~
&& 3E, (i = x, y) Xi

is not given by Eq. (4.26) but is finite and

X [c0 —cz $1 —(z/cur g) —z(vrz)g l

cz rig co (1 zMrr).

(4.87)

(4.82) Choosing the external field as H = (H„H„, O) we have
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equations of motion analogous to Eq. (4.32),

M, + (1/m) V'. j„=—(M x mij.),
M—H„+MH =0,

where

p.' = +(1/m'M, ) V j,„',

p„' = —(1/m'M, ) V.j„'. (4.96)

M + (1/m) V. (j„+j„') = —(M xmij, )„
M„+ (1/m) V'. (j,„+j,„') = —(M x m p, )„,

where

Equations (4.95) are of the form (4.12). The analogue of
Eq. (4.33) can also be established by working out the tran-
sition from (4.29) to (4.30).

From Eq. (4.94) we have

p, = (1/m) (H, —h, ), (4.89) T(ps) = (p~) + mV™ p Z v' v' vM 3M.
2=%

& g/

The energy can be written in a form analogous to Eqs.
(4.13), (4.20), (4.28),

d(pe) = h. dM —H.dM+ Q (p, '/m'M ') VM'dVM
2=X& Q

(4.97)

Inserting from Eqs. (4.29), (4.88), (4.95), and (4.16) we
obtain, with (4.15), (4.17), and (4.18),

+ VM dJM + Td(Ps) (4.90) (ps) ' = —V i (1/T) L.J.+ J.'+ Z p'(j- + j-.')

—j„~VM, =O (4.91)

Lnote that with this assignment the first Eq. (4.88) gives
rise to a di6usive mode) we obtain, with Eq. (4.90), for the
Fourier components, after a partial integration,

where p, = p, & = p, ( p, '. The second and third terms are,
respectively, the Zeeman and exchange energy contribu-
tions (Kittel, 1963; Keffer, 1966) .

From the equilibrium condition (4.23), supplemented by
the further requirement that

+p. (p 'v-+ p'v. ,) —(p./m'M*) (v-V j- —v"V.j")
—IIM'VM)l + PJ. + J'+ Z p'(j-+ j-') + p. (p'V.*

+ pz vs&&) (ps/m Mz) (vszV Jsz vsjtV Js&&) IIM vM

—TpsMVM) V(1/T) + (1/T) (j.*+ j.*' —p.v").Vp-

+ (1/T) (j"+ j.,' —p.v-) Vp. —(1/Tm'M. ) LV

. (P.v-) V.j.* —V (p.v.,) V.j")+ (1/T) E~'V

. (P.v-) + P'V (P.v") —
. (IIM'V) .vM)

+ (PM/Trs) VM

H, = h, + (p,q'/m'M, ')M, , i = x, y. (4.92)
The form (4.30) then implies that

Thus, according to Eq. (4.87), H; = h; in the limit q & 0.

Writing in analogy to Eq. (4.27)

j„=+p,v„, = —(p,/mM, ) VM„,

j,„=+p,v„= —(p, /mM, ) VM, (4.98)

v„= (1/mM, ) VM

v,„= —(1/mM, ) VM„ (4.93)

where we have used Eq. (4.93), and

J, = —g p, ,3„—(1/m'M, )V x (3, x j,„)
and using Eqs. (4.89) and (4.91), the energy expression
(4.90) takes the form

2=% &
'JJ

+ TPZSMVM (4.99)

d(pe) = —mli, dM+ p, g v„'dv .

+ vM dJM + Td(ps) . (4 94.)

This leads again to Eq. (4.35) for J, and to

J.' = (1/T)LJ.'+ Z (p'j-'+ p''j-) —IIM'vM)
2=%

&
'JJ

Here v, and v,„are introduced mainly to exhibit the
analogy to the planar case, which is even more evident from
their equations of motion. In fact, from Eqs. (4.88) and
(4.93) we obtain ~ = TJ.'.V(1/T) + (1/T) Z (j--'.Vp'

2=%&g

(4.100)

v„= +V (py + py') —(1/m'M. ) VV j„,
v,„=+V(p + p, ') + (1/m'M. ) VV. j,y, (4.95)

+ p, ,'V j.;) —(1/T) (IIM'V) .vM+ (PM/T&g)VM'

(4.101)
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Note that addition of an independent dissipative part of the
form of the second Eq. (4.38) to p, on the right-hand side of
Eqs. {4.88) would, according to Eqs. (4.30) and (4.97),
violate the positive definite character of a.. Equations (4.98)
are the same as Eqs. (7.3a,b) and (7.8) of Halperin and
Hohenberg (1969).

The form of the dissipative terms II~' and J,' is again
given by Eq. (4.38). For j„' rotational symhietry in the
(x, y) plane implies the form

P, =O, 6H, =O, (4.106)

In plane-wave representation Eqs. (4.105) then lead to

to an external field variation BH, as obtained in an inelastic
neutron scattering experiment. Rather than treating this
general case, which gives rise to complicated expressions,
we treat here only decoupled free spin waves. That is, we
assume

j-' = —re'(0') V' Z V&p& Z X) ge (4.102) [s) + i(gi/x~) q'q, ')BM = —iPH, + Dq'

Q/ith Eqs. (4.102) and (4.96) the second term of TO, Eq. .

(4.101), becomes, making use of (4.87), (4.89), and (4.98)
and assuming V'II, = 0,

Z (j..'.Vp'+ p.'V. j..) = — Z V.i(Vh. ) ~ (rV) V;h;

+ (Ei/xi) q'q*q. ]~M.

+ i(ti/x )q'q„')bM„= iLH, + Dq'

—(Pi/xi) q'q. q, ]8M.,

where we have introduced the definitions

(4.107)

+ (p,x~/m'M. ') (V'h, ) ($V) ~ VV, h, l

l (VV,h, ) ~ (PV) V;h;
H, = M, /xi, D = p./m'M, . (4.108)

+ (p.x, /~ M. ) (V'V.h.) («) ~ VV, h;l
Equations (4.107) describe spin waves in the (x, y) plane
with the dispersion relation

Here the first term is a divergence and can be absorbed into
V.J,', and the second term is a positive quadratic form. ~ = H. + Dq' —2i(&i/x„) q' sin'0, + O(q'), (4.109)

q dispersion relation is typical for axial
and for isotropic ferromagnets (Kittel (1963); Keffer
(1966) . See below). The gap H, is important for the exist-
ence of a magnon drift and hence for the existence of a
second magnon. Indeed, without a gap, the magnon dis-
tribution function

(4.103)Sh, = P;6T + (1/x, ) 8M, , i = x, y,

where

n, = (exp/(co, —v~ q)/hiiT] —1I

The hydrodynamic modes are obtained from the equations
of motion (4.88) combined with (4.42) and (4.43). Equa-
tions (4.44) are modified as follows Such a uadratic

P, = (Bh~/aT) M ———p (Bs/BM, ) r, i = x, y. (4.104)

M, + (M,/x~) BM„—(p, /m'M. ) V2M» + (1/xi) (&V)

~ VV, Q V,M;+ P„ST + (PV) .VV g P,V,T

= +M,aH„+ (gV) VV. Q V;H.

My —(M,/xi ) BM + (p,/m'M, ) V'M, + (1/x~) ($V)

VV„Q V,M, —P.~T ~ (~V).VV„Q P,V,T

= —M,BH + ($V) ~ VV„Q V,H, . (4.105)

Excluding precessional motions the perpendicular fields and
the magnetization vary around zero averages, II; = 8H;,
h, = ah, , M, = BM,. Then Eqs. (4.88), combined with
(4.98), (4.102), (4.89), and the second Eq. (4.103), become

is negative for sufficiently small q with v~. q & 0. With a
dispersion or~ given by Eq. (4.109), however, the magnon
drift exists for ! v~ f ( 2(H,D)'I'. (Forney, 1972; Forney
and Jackie, 1973). The gap H, arose here from the preces-
sional (Hloch) terms in the equations of motion {4.88) . As
we shall see, in an ideal isotropic ferromagnet this is no
longer the case.

Before discussing the isotropic case we wish to generalize
the above equations by taking into account the eBect of
the dipole —dipole interaction between the spins.

Phenomenologically Lsee Section 30 of Keffer (1966))
this effect is described by a di poLar field Hz produced by the
smeared-out spin distribution M. The discreteness of the
spins can be tak.en into account by the field produced in a
small sphere centered at r by the magnetic moment in this
sphere,

Eliminating here 61 with the aid of Eqs. (4.42), (4.43),
and the first Eq. (4.103) gives us the response of the system

Hd, '{r) =
sphere

d'r'M(r') V V! r —r'! ' = —+~M(r).
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The sum must satisfy (Herring and Kittel, 1951)

~7 (Hg+ Hg'+ 4mM) = 0, i7x(Hg+Hg') = 0

which is equivalent to

v2(H, + H, ') = —4~V(V M).

Hence

Hd = (4m-/3) M —4'�(V') 'V(V'. M) —nMO, (4.110a)

merit of our hydrodynamic derivation is that, in addition
to the q dependence of &v(q), it also determines the damping
of the spin wave.

In the isotropic, or Heisenberg, ferromagnet J,, & = J,,*

and p, * = p, ." = p, ' = p, in Eq. (4.90). Assuming that in
equilibrium without external field the magnetization points
in the z direction we have the same situation as with the
axial ferromagnet, except that h = 0. This follows from
the fact that in the planar case h = (0, 0, h, ), in the axial
case h = (h„h„, 0), and that the isotropic case is the limit
between the two. h = 0 has the effect that Eq. (4.92) now
becomes, in analogy to Eqs. (4.25) and (4.26),

where the last term is an integration constant which depends
on the shape of the sample Lsee Section 16 of Keffer (1966)).
Physically Mo ——(0, 0, M, ) and n is the demageelizAzg
actor.

with

(4.113)

Then Eqs. (4.88) are generalized by substituting for
Eqs. (4.89) /see Eq. (30.5) of Keffer (1966)j

(4.110)

where H~ = (0, 0, H~) is the amsotropy field which is due
to higher-order perturbation effects of the dipole —dipole
(and higher pole) interactions )see Sections 22 to 25 of
KeGer (1966)g. Note that insertion of this modified form
(4.110) of mp. into Eqs. (4.88) does not give rise to modifi-
cations of Eq. (4.97). Hence the connection (4.98) is still
valid. We therefore find, in plane-wave representation with
H; = 0, M, = BM, (i = x, y), the following generaliza, tion
of Eqs. (4.107):

xi = m'M, '/p, q'. (4.114)

Since h = 0 the second Eq. (4.103) implies that P, = 0
and 1/x„= 0. With this modification the equations of
motion (4.105) also hold in the isotropic case. However,
1/xi = 0 eliminates the damping of RV and BM„. Now
since M; and p, transform with the same sign under time
reversal we can add a term to Eq. (4.102) in which p, is
replaced by M, . While in the axial case this did not affect
the form of j„ it now gives rise to the leading term,

j.,' = +2m(gV)V', g V',M, ,

With this expression the dispersion relation (4.109) is
modified as follows:

L + l(g,/x, ) q'q. '+ 4 zM.q,q„gm. = —'La. + a
(u = Dq' —iqiq4 sinVq+ O(q'), (4.116)

+ Dq'+ (6/~. ) q'q. q„—~M, + 4~M,q„2jm„

Lcu + i($i/x„) q2qy2 47riM q q~)BMy = iTII + II~

+ Dq' —($&/x„) q'q, q„—nM, + AM, q, '$BM

(4.107a)

~'E1+ (l/~) (kilx~) q'»n'~~QP = ~'(q),

where

cv'(q) = (II.+ II& —nM, + Dq') (II, + II& —aM,

+ 4mM, sin'6~+ Dq') (4.111)

which has the solution

where q = q/q. Apart from the damping terms, Eqs.
(4.107a) are the same as Eqs. (30.7) of Keffer (1966).
They lead to the secular equation

where D is given by the second Eq. (4.108). Here the real
part is the same as Eq. (7.9) of Halperin and Hohenberg
(1969). Equation (4.116) is the well known dispersion
relation of the isotropic ferromagnet (Kittel, 1963; Keffer,
1966) first derived, for spin- —',, by Bloch (1930). The phe-
nomenological form (4.108) of D was first given by Landau
and Lifshitz (1935) in their pioneering work on the macro-
scopic description of magnetic crystals. The dispersion rela-
tion (4.116) has been observed by neutron scattering in
Fe, Co, Ni, and their alloys (Shirane et al , 1968). .

Even in an ideally isotropic ferromagnet a gap arises
through dipole —dipole interaction Lsee, for example, Forney
(1972); Forney and Jackie (1973)j. In our phenomen-
ological approach this effect is taken care of by substituting
Eqs. (4.110) and (4.110a) for Eq. (4.89). This means that
the dispersion relation (4.116) is replaced by Eqs. (4.111)
and (4.112) with II, = 0 which, to lowest order, is again
of the form (4.109). Hence the second magnon should also
occur in an ideally isotropic ferromagnet due to dipole—
dipole interaction (Forney, 1972; Forney and Jackie, 1973).

co .= r~(q) —2i(gi/x~)q sin26~+ O(qs). (4.112)
D. Hydrodynamics of the antiferromagnets

The dispersion relation (4.111)was first derived by Clogston The antiferromagnet Lsee the review by Nagamiya el al.
el al. (1956). LSee also Herring and Kittel (1951)$. The (1955)j is characterized by the existence of two sublattices
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A and B such that the coupling constants J; and J,;~ are
positive or negative if the positions i and j are on the same
or on diRerent sublattices, respectively. Defining numbers
(Halperin and Hohenberg, 1969)

supposed to relax to a value

)VS = .Vi(M„T)

in a microscopic time.

(4.124)

g, = +1; if i on A

= —1;ifi one,
Defining a velocity v, by Eq. (4.11), the energy expres-

sion (4.22) is again valid and the equilibrium condition
(4.23) yields,

the operators g;5;, g,5,~, 5,' satisfy the same commutation
relations as 5;, 5,", 5,', and g;g;J;, ~ is ferr'omagnetic.
Hence the Hamiltonian (4.1) written in these variables
describes ferromagnetism in the (x, y) plane. Defining the
sublattice magnetizations by

f l (& —II.) RV. + L H„M —sing

—(p/~')~'v l&vi d'» = o.

Hence, for H~ ~ 0,

M~ = (1/iI) (S,);
MB = (1/ii) (S,);

ionA
ionB, (4.118)

(4.125)

the total magnetization is
(4.126)

M = (1/i) (g S;) = M~ + Mii, where the transverse susceptibility y„ is now finite for
q~0.

N = (1/v) (g g,S, ) = Mz —Ma (4.120)

From Eqs. (4.11) and (4.125) we find, in analogy to
(4.27),

v, = —(1/nzXi) ~7'„ (4.127)

MA2 MB2 0 (4.121)

since the two sublattices are equivalent except for rejec-
tions along symmetry or Geld directions. This is still true
for hydrodynamic variations for which q is small compared
to the border vectors of the Brillouin zone.

In the p/altar antiferromagnet N is in the easy (x, y)
plane and

iV +i' ——JV i exp(iq) (4.122)

is equivalent to Eq. (4.2), the motion being given by Eqs.
(4.9) and (4.10). M, fEq. (4.5) j is again conserved, to-
gether with s LEq. (4.4) j.Thus Eq. (4.7) again holds.

is the staggered magnetization. This means for the Fourier
components that N(q) = M(q~ —q) where q~ is the vector
to the (1, 1, 1)-corner of the Brillouin zone. Hence, near
q = 0, N and N„obey the same equations of motion
as M, and M„ in the ferromagnetic case. From Eqs. (4.119)
and (4.120) we conclude that in thermal equihbrium

so that the exchange energy contribution is now supplied
by the staggered 6eld,

p,v. dv, = (p.jm'2Vi') V'1V„dV'X„. (4.128)

In the axial antiferromagnet, N is in the easy s direction.
As noted above, the hydrodynamic (small q) motion of X
and N„ is the same as the hydrodynamic motion of M and
M„ in the ferromagnet. But here we need in addition the
hydrodynamic motion of M and 3f„.

Because of the condition (4.121) the motions of M and
N are not independent but satisfy, at least for small q,

N M+M N=O. (4.129)

Thus we see that the dynamics of the planar antiferro-
magnet is exactly the same as that of the planar ferro-
magnet described in Sec. IV.B, if there M~ is replaced by
1Vi. In particular, in the decoupling approximation (4.54)
the spin-wave mode (4.57) with velocity (4.56) and the
thermal mode (4.58) are recovered. The existence of a
soundlike spin-wave dispersion in antiferromagnets was
discovered by Hulthen (1936).

On the other hand, X, is not conserved but is supposed
to relax to zero in a microscopic time. The orthogonality I.caving out for the moment gradient terms, these equations
(4.121), together with (4.122), then implies that

M = (—Mi sing, M~ cosy, M.)
N = (1Vi cos~, 1V~ sing, 0). (4.123)

(4.130)

Here M& and M, are small compared to N~, and N& is
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As in the axial ferromagnet, h, = 0 and Eq. (4.87) is valid. Here
We choose again H = (H, H„, 0) so that mp. is given by
Eqs. (4.89). Then the initial conditions are

p.' = p.'+ (1/m'X, ) V 1,„'

Mo = (M, M„, O),

Np ——(0, 0, X,),

py' ——p„' —(1/m'X, ) V 1„'

(4.132)
in analogy to Eqs. (4.96) .

(4.136a)

since

M, = XH„ (4.133)

Inserting Eqs. (4.134) and (4.136) into (4.97), the
entropy balance equation (4.30) follows again if we put

with finite longitudinal susceptibility x. Equations (4.129)
and (4.132) together ensure that the orthogonality condi-
tion (4.121) is satisfied a,t all times.

j„=+p,v,„= —(p,/mÃ, ) VX„

j..= +c.v.* = + (~./m-V. ) V~'* (4.137)

Completing Eq. (4.130) by divergence terms in analogy and
to Eqs. (4.88), we have, in view of Eqs. (4.132) and (4.89),

M, = —m(M, p,„—M„p.) —= 0,

M. + (1/m) V. (j,.+ j,.') = mM, p. = 0,

M„+ (1/m) V. (j., + j„,') = mM. p„—= 0. (4.134)

V' 1, V' j,„—V' 1„,V. j,.= 0. (4.137a)

Then the energy current (4.99) is obtained but with—(m'M, )
—'V x (j,. x j,„) replaced bv

Similarly we complete Eq. (4.131) by divergence terms

X, = —m(X p„—X„p,) = 0

X + (1/m) V. (1, + 1, ') = mX, (p„+ p„')

Xy+ (1/m) V (1,„+1„,') = —mlV, (p 1 p, ').

(4.134a)

Here 1„.and 1„.' (i = x, y) are new currents and their dis-
sipative parts and p, ', p„' are new dissipative parts of p
and p„. The latter were not allowed on the right-hand side
of Eqs. (4.134) and (4.88) because they would have vio-
lated the positive definite character of the entropy produc-
tion density 0. /see the remark after Eq. (4.101)j. Since
obviously the energy differential Eq. (4.94) does not con-
tain a term —maj. -dN these dissipative parts p

' and p„' in
Eqs. (4.134a) do not contribute to Eq. (4.97) and hence
do not inliuence o-. They are in fact important since they
give the leading contribution to the damping (see below) .

—(m'X, )
—'(j,.V 1,„—j,„V 1,.)

The new currents 1, and l,„are not determined by this
procedure. This is because we have omitted an exchange
term p, 'g,=,„w„'dw„ in the energy differential (4.94)
where, in analogy to Eq. (4.135), w, = (mX, ) 'VM„
w„„= —(mlV, ) 'VM„(there could also be cross-terms be-
tween v„and w„). For the sake of simplicity we leave out
such additional exchange terms and put

1„=0, 1„'= 0, i= x, y. (4.138)

This choice is compatible with the condition (4.129) which,
after insertion of Eqs. (4.134) and (4.134a), becomes

while Eq. (4.35) for J„(4.100) for J,', and (4.101) for O. are
unchanged.

Writing the energy differential again in the form (4.94),
v, and v, .„must now be related to Ã and Ã„, respectively,
since the dominant exchange energy obviously comes from
the staggered field, as in Eq. (4.128). Writing in analogy
to (4.93)

In fact, the initial conditions (4.132) immediately lead to
(4.138) .

In analogy to the second Eq. (4.38) we write

v, = +(1/mK, ) VK

v,„= —(1/miV, ) VX„ (4.135)

~'' = + (&V) j-, i = x, y. (4.139)

v.„=+V(p + p ') + (1/m'X, ) VV. l.„.

This is indeed compatible with rotational symmetry in the
we deduce from Eqs. (4.134a) that, in analogy to Eqs. (x, y) plane. On the other hand, j„' and j,„' are given by
(4.95), Eqs. (4.102). Excluding precessional motions, the perpen-

dicular fields and magnetizations vary again around zero
v, = +V(y,„+p„') —(1/m'cV, ) VV. 1, averages, H; = BH;, h; = Bh;, M, = BM, , X; = KV, , while

M, = 0, K, = const. Then Kqs. (4.134) and (4.134a)
(4.136) become in plane-wave representation, inserting from Eqs.
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(4.89), (4.102), (4.103), (4.137), (4.138), (4.139), ferently. In analogy to Eq. (4.110a) the dipolar field is
given by

( —i'+ 0 )8M + (r~8My+ QRU„

o„(5H. , —P,BT)
Hg = (4&r/3)M —4&r(V') 'V'(r&r M) —nNO (4.148a)

'b=s
& y

&r~8M + (—i~ + o„y) BM» —QBE

„,(SH, —p,&T)
'5=x

& y

2H,SM„+ (—ia& + X) KV = N, (r'&H„—PEST)

2H."c&M—, + (—ia) + X) BNy —— ,V, (&'i—H —P,BT).

(4.140)

Here we have introduced the abbreviations

where n is the demagnetizing factor and No ——(0, O, .V,)
)see (4.132)j. Equations (4.146) and (4.147) satisfy the
condition (4.129).Together with Fqs. (4.148) and (4.148a)
they are equivalent to Eqs. (17) of Anda (1973) if we identify
our quantites N„o.2V, and X,h respectively with Anda's
2m0, 2N, X~ ~80 and 2H,M.

The combination of Eqs. (4.146), (4.147) with (4.134),
(4.134a) leads to the general equations valid, as before, for
the situation without precession (H, = 0, H; = c&H;,

h, = t&h, , M, —0, M, = 8M, , N, —const, U, = BN, )

H, = N, /2yi,

X = p, i iq',

and

Q = (p, /m'. V.) q', (6/Xi) q q'q&'

(4.141)

(4.142)

(4.142a)

3II + (1/nz)V' (j, + j„') = mp, BM—„—H&B1Vy

M„+ (1/m) 7'. (j„,+ j,,') = rrrp, BM, + H~r&N (4.149)

and

lV, + (1/~)V (1,.+ 1..') = ~N. (p„+ p,„')

Posing c&H; = 0 and P; = 0, the solution is given by the
following secular equation:

—m p,KVy —H~RVy

N„+ (1/m)V' (1„, + l.y') = —mN, (p + p,.')
+ mii, RV, + H~8M, . (4.149a)

L~' —c&2q' + iso (X + —,'o i ) )' + 0 (q'co) = 0

where in analogy to Eq. (4.56)

(4.143)
In plane-wave representation and with the choice (4.138)
this leads to the following generalization of Eqs. (4.140)

ci = (p,/m'Xi. )'" (4.144)

is the tramsverse isothermal magnon velocity and o-~ =
&r, + &r„„. The solution of Eq. (4.143) is, to lowest order in

q, inserting (4.142),

(—ice + 0.„)8M —(c&N, —0. ,)BM„+QhN,

&r„(6H, —P;BT)
i=x, y

(c&.N, + &r,y)BM, + ( ice+—0-„„)BMy —QbN,

oy, ("0H, —P,bT).
co =. Ciq 2ip&f (q . (4.145)

4=x &y

2B~BM, + (A + 2B„y)8M„+ ( ice + X) 6N, —
It is again of the form (4.57}, valid also for the planar
antif erromagnet.

c&lV bN~ = N (BHy P„BT)

—(A + 2B ) BM —2B ASM„+ nlV, RV,

+ ( i(v + A—) biU„= N, (BH, —p,8T ) . —As in the case of the axial ferromagnet, we now generalize
the above equations by taking into account the effect of the
dipole —dipole interaction. Leaving out gradient terms for

Here we have introduced the abbreviations

(4.150)

the moment, this is done by replacing Eqs. (4.130) and
(4.131) by

A = 2H, + H~ —(4&r/3) V, ; B,, = 27rX,q,g,

(4.151)
M = —Mxmp. —NxH~ (4.146)

and

0

N = —N x maj. —M x Hg. (4.147)

Q= H~+Dq', ', = (6/x. ) [1+ (8~/3) x.1q'q'q

(4.151a)

Here, in distinction to Eq. (4.110),

(4.148)

which are consequences of Eqs. (4.148), (4.148a) and
(4.141). The definitions (4.151a) are generalizations of
(4.142a) and

since the anisotropy field Hz = (0, 0, Hz) couples dif-
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Eqs. (4.152) and (4.141) are the analogue of Eqs. (4.108)
of the axial ferromagnet. H, is the effective exchaiige field
/see Section 39 of Ke&er (1966)j.

We consider again only the homogeneous equations
(4.150), posing &H; = 0, P, = 0. The associated secular
equation is found, after considerable algebra, to be exactly
given by

(co' —co~') (cu' —co ') + ceo'(2X+ oi) —(u'X(X+ 20.i)
—ico[2Q(A + Bi)X+ QAa~ + (nX,)'{2X+o~)

+ ~'~, I + QA~~, + (~,'V.)'X' = 0, (4.153)

where B~ = B„+By„, 0-~ = ~„+Oy„and

co~' ——Q(A + B~) + (aX,)'
IQ2B 2 + 4Q(~+ ) 2(A + B ) i

1/2 (4.154)

For q = 0, Eq. (4.154) is essentially the same as Eq. (23)
of Anda (1973) Lsee also Loudon and Pincus (1963)j; for
n = 0 it simplifies to

co~' = Q(A + 2B~) = (H~ + Dq') L2H, + Hg

—(4m/3) 1V, + 4m%, sin'8~j,

u ' = QA = (H~+ Dq')L2H. + H& —(4n/3). 'V.j
(4.154a)

However, the merit of our hydrodynamic treatment is
not only to be able to reproduce the quoted results but,
even more, to yield the damping terms. Indeed, the solu-
tions of the secular equation (4.153) are, up to order q4,

(v+.' —(aX.) '
971 = M~+

2co~ (co~ M )

where cos8~ = g„. To order q' this result is the same as
Eqs. (13a), (13b) of Brooks Harris (1966). Apart from the
local field correction —(4~/3) X, formulas (4.154a) were
already given by Loudon and Pincus (1963).

q2, inserting (4.151), (4.151a) and making use of (4.142),
(4.144) and (4.152)

cubi ——ciqL1 —(1 —3 sin'8~) (4ir/3) xi)'" —,'i p,f—iq'

M2 ——cia(1 —(4m/3) xi $'" —',ip l-(q'. (4.155b)

We notice that away from the easy axis the dipolar field
correction splits the mode (4.145).

We also see that a sound-like Hulthen mode is a general
feature both of planar and, for H~ ——0, of axial antiferro-
magnets and hence, in particular, of isotropic antiferrornag-
nets Lsee Halperin .and Hohenberg (1969), p. 910, and
Keffer (1966), p. 107j. On the other hand, neutron scatter-
ing has revealed that the quadratic dispersion relation with
gap as described by Eqs. (4.155) and (4.155a) is valid not
only for the axial antiferromagnets MnF~ {Okazaki et gl. ,

1964, 1965) and FeF2 (G gugenhei met al. , 1968), but also
for the p/anar antiferromagnets K2NiF4 (Skalyo et al. ,
1969) and K~MnF4 (Birgeneau eE a/. , 1973). This shows
that the dipole —dipole interaction acts similarly in the
latter cases.
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