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A more or less self-contained introductory review is presented of the so-called Higgs phenomenon.
This is the mechanism by which, in a certain class of gauge theories, the "photon" and would-be
Goldstone scalar mesons conspire together to produce massive vector mesons via a "sporitaneous"
breaking of gauge invariance. It is conceivable that this is the way in which nature has chosen to
unify weak and electromagnetic interactions. It is hoped that a reader of this review will come to
understand the meaning of the erst three sentences in this abstract and will then be able to proceed
to confront a rapidly growing literature in the subject of gauge theories.

CONTENTS
I. Introduction
II. The Goldstone Theorem
III. The Higgs Loophole
IV. The Higgs Mechanism, or Where

Have All The Goldstone's Gone?
V. The S-Matrix
VI. Non-Abelian Gauge Symmetries
VII. Weinberg's 1967 Model
VIII. Conclusions

1

10
15

17
25
28
32
43

of orthogonal states with the property that

Hio) = o,

where H is the Hamiltonian of the theory, and ~0) is one
of the vacua. Since tt has the quantum numbers of a
vacuum, its vacuum expectation value is not forced by
any symmetry principle to vanish, i.e., we may have

ol~(x)lo) = &ol~(0)lo) = z + o, (1.2)
I. INTRODUCTION

Elementary particle theory seems to proceed from
fashion to fashion in intervals of two to three years. A
few familiar names from the recent past will give the
general idea: renormalizable field theories, dispersion
relations, conserved and partially conserved currents,
current algebras, Regge poles, etc., etc. At the moment
when these specialities are at the height of their activity,
most practitioners have neither the time nor inclination
to go back and read the very early literature in the
discipline, so that a group of standard references is
arrived at and these become oft quoted and rarely read.
When one actually does go back to read these early
papers, one is often amazed by how much their authors
knew or conjectured, and one comes to the conclusion
that these papers rearranged and unified are probably the
best introduction to the subject. That will be the spirit
and methodology of this review. Anything novel on the
part of the present author is unintentional.

The plan of attack in this review is as follows, %'e
begin (in Sec. II) in 1960 when Nambu (Nambu, 1960;
Nambu and Jona-Lasinio 1961)observed that the natural
interpretation of a conserved b,S = 0 axial vector current
in weak interactions is in the limiting case of a world in
which the mass of the meson is set equal to zero. At
essentially the same time, Gell-Mann and Levy (1960)
produced several field theoretic models in which this
phenomenon was shown to occur as a consequence of the
field equations appropriate to the model. Of these mo-
dels, the so-called "o" model is, in the present context,
the most interesting. In its simplest version, there are
three basic fields in the Lagrangian: an isotopic vector
pion, an isotopic doublet nucleon, and an isotopic singlet,
Lorentz scalar, tr meson. The latter has the quantum
numbers of "a vacuum state" of the strong interactions.
We use the phrase a vacuum state advisedly since in this
class of theories there are in general an infinite number

' Work partially supported by NSF grant GP-36777.

where A. is a real number and e is an Hermitian operator
with dimensions of a mass. We assume that

with

&ol~'(o)lo) = o (1.6)

a'(x) = o(x) —h.

otherwise the "vacuum" and the one-particle state will
not be orthogonal. As we shall see, it is possible to
arrange the Lagrangian of the a model in such a way that,
at the outset the pion and o have a "bare" mass. The
nucleons appear to be massless but, in fact, acquire a
mass that is'proportional to A., the vacuum expectation
value of the e. To achieve exact conservation of the axial
vector current, A„, in this theory, it is necessary to give
the pion zero bare mass. This, it turns out, corresponds to
a limit in which the theory is invariant with respect to the
group SU(2) X SU(2); exact chiral invariance. Hence, in
this way of realizing the symmetry, zero mass bosons —in
this case the pions —make their appearance. In 1961,
Goldstone conjectured that such zero mass bosons would
be an inevitable consequence of a symmetry realization
of theories like the o-model in which the Lagrangian
would be fully invariant with respect to a continuous
group, but in which the vacuum would not be invariant

o(x) = exp[ —i(Px)]ct(0)exp[i{Px)],

with —note the metric convention +, +, +, —to be used
throughout—

(Px) = P ~ x —Pot,

where the P„are the generators of space —time displace-
- ments. %'e always assume that

pjo) = o.

If we want to give the tt field. a particle interpretation, we
are forced to redefine it in such a way that
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under the group. (In the tr model, as we shall see, the axial
charges do not annihilate the vacuum, which allows
(Oltr(0)l0) A 0 so that the nucleons acquire a mass. ) This
conjecture appeared to have been fully demonstrated in
a paper by Goldstone, Salam and Weinberg, (1962)' who
presented several "proofs" of same. In the next section,
we shall present a proof due to Gilbert (1969) in which
the assumptions that go into the argument are made
especially clear.

Here is where things stood until 1964 when Higgs,
responding to G-ilbert's argument, showed that there was
a loophole in it.' As we shall see, Gilbert's argument—
essentially a restatement of one of the proofs in Gold-
stone et a/—makes use of the "manifest covariance" of
certain matrix elements. In essence this means that if we
are considering the matrix element of a Lorentz four-
vector operator J„we can construct this operator's matrix
elements only out of the covariants at hand which, in this
case, transform like four-vectors. A familiar example is
the matrix element of a current between states of zero
spin and four-momenta P and P';lP), lP') in which, by
covariance,

A„(x) ~ A„(x) + (1/es)(t)/t) x")A(x).

y, (x) ~ y, (x) cos(A(x)) + yg(x) sin(A(x)),

$2(x) ~ —
Q& (x)sin(A(x)) + @2(x)cos(A(x)),

(i.i i)
(i.12)

(i.i3)

where es is the bare electric charge, and A(x) is an
arbitrary "gauge function" of space —time. A choice of
gauge can be made so that

Lagrangian model of a gauge theory =ssentially charged
scalar electrodynamics in which the scalar field has no
bare mass, but rather self-interactions of a prescribed
type —where one could see the would-be Goldstone me-
sons disappear from the theory as observable particles. In
fact, what happens is exceedingly remarkable. The zero
mass photon also disappears from the theory! More
precisely speaking, one begins with the Higgs Lagran-
gian' which contains A„(x), the photon, and p, (x) and
@2(x) the Hermitian fields which combine to yield the
charged fields p-(x) = [p~(x) +. pt(x)]/~2. The bare
mass of all these objects is taken to be zero so that the
Lagrangian is invariant against transformations of the
form (see Sec. IV for details)

(P'I J.(o)l» = (P + P').+.(q') + (P —P').P-(q')
(1.8)

(l.i4)

with F,(q') being arbitrary "form factor" functions of
and

q' = (P —P')'. (i.9)
(ol@,(o)lo) = & (i.i5)

There are no other four-vectors one can construct out of
the four-momenta P and P'.

In making this argument, one had better be sure that
the J, in question is really a four-vector and not some
object that has four components but a more complicated
transformation property. Indeed, as Higgs stressed, the
photon field A„(x) is just such an object. We shall go into
this more carefully in Sec. III, but we remind the reader
here that the "radiation gauge" condition

V A(x) =0 (1.10)

' See also S. Bludman and A. Klein (1963).' A suggestion of the role of covariance is found in A. Klein and B. W.
Lee (1964).Professor A. Salam has pointed out to the author that P. W.
Anderson (1958) should be regarded as the True Father of this subject
since he noted that Goldstones could be avoided in the BCS electron
model if long-range Coulomb interactions were included —a forerunner
of the Higgs mechanism.
' One can use the covariant "Lorentz gauge" condition (8/Bx„)A„(x)= 0. This introduces unwanted degrees of freedom and leads to its own
difficulties with the Goldstone et al. (1962) argument. These have been
analyzed by T. W. B. Kibble (1967) and will be discussed in Sec. IV of
this review.

is clearly noncovariant which means that if we wish to
maintain transversality of the photon in all Lorentz
frames, the photon field A„(x) cannot transform like a
four-vector. ' This is no catastrophe, since the photon field
is not an observable, and one can readily show that the
S-matrix elements, which are observable have covariant
structures. In his 1964 note, Higgs argued that in gauge
theories one might arrange things so that one had a
symmetry breakdown because of the noninvariance of
the vacuum; but, because the Goldstone et al. proof
breaks down, the zero mass, Goldstone mesens need not
appear. In a subsequent note, Higgs (1964) constructed a

It then turns out that &2(x) acquires a mass, while @&(x)
combines with A, to form a vector field

B„(x) = A, (x) —(I/e, il) (t)/t) x")yi (x), (1.16)

which, in fact, satisfies the equations of motion of a
massive vector field of mass ceil. Indeed, as Higgs showed
in a subsequent publication (1966), once one realizes that
this is what is going to happen one may rewrite the
original Lagrangian in such a way that the only fields that
appear in it are a massive scalar field and a massive
vector field with complicated nonlinear interactions be-
tween them. The theory written in this way shows no
traces of its original gauge-invariant electromagnetic
origins. The fact that the vector meson has acquired a
mass in this way is referred to in the contemporary
literature as the "Higgs mechanism" and the scalar fields
with nonvanishing vacuum expectation values in such
theories are now known, appropriately, as "Higgs fields. "

Between 1964 and 1967, some interesting develop-
ments of a technical nature took place. In 1964 Englert
and Brout discovered the Higgs mechanism independent-
ly by a different route, which we review in Sec. V. They
again studied scalar electrodynamics with a broken gauge
symmetry realized by nonvanishing vacuum expectation
values of the scalar field. However, rather than dealing
with the equations of motion, they quantized the theory
using Feynman-like rules. The new feature here is that
there are graphs in which the scalar meson is emitted and
simply disappears into the vacuum. These graphs con-
tribute to the vacuum polarization tensor of the photon
which, as is well known, determines the propagator of the
interacting photon. Englert and Brout showed, in lowest

4 The Lagrangian considered in this paper is a gauge invariant version
of the original Goldstone (1961) Lagrangian.

Rev. Mod. Phys. , Vol. 46, No. 1, January 1974



Jeremy Bernstein: Spontaneous symmetry breaking and all that

nontrivial order, that these graphs shift the pole in the
"photon" propagator from q' = 0 to q' = —e, rl' where
the notation is the same as above. This is, of course, the
Higgs phenomenon. They also generalized this result to
the case in which the gauge symmetry is not the simple
Abelian phase group U(1) but some arbitrary compact
Lie group. Here any generator which fails to annihilate
the vacuum will, by the Higgs mechanism, induce a mass
for the corresponding "photon" provided that the Higgs
scalars are introduced accordingly. In the real world
there is only one massless vector meson, the photon, and
from the Higgs viewpoint it remains massless because the
vacuum has no net electric charge. ' The electric charge,
Q„must annihilate the vacuum; i.e.,

(t)/t)x„)J„(x) = 0 (1.18)

does not imply the time independence of

Q = fd'xJ, (x, e (1.19)

In fact, even the mathematical existence of such global
charges is a very delicate matter' in these theories.
Finally, in 1967, Kibble presented an elegant mathemat-
ical treatment of the various models previously consid-
ered and, in particular, showed that the breakdown of the
Goldstone theorem in the gauge theories could also, as
one would expect, be demonstrated in the Lorentz gauge
characterized by the manifestly covariant condition

(t)/Bx„)A„(x) = 0. (1.20)

What happens here is that the Goldstone et al. argument
goes through so that there are, apparently, Goldstone
particles. But these, it turns out, are decoupled from the
rest of the fields and can simply be factored out of the
theory.

It is probably fair to say that while no one doubted the
correctness of these arguments, no one quite believed
that nature was diabolically clever enough to take advan-
tage of them. In fact, as of this writing, no one can be
sure that nature has been clever enough to take advan-
tage of them. However, in 1967, Weinberg proposed an
application of these ideas to weak and electromagnetic
interactions which, subsequently, has convinced many
theorists that nature should take advantage of the possi-
bility of gauge theories with nongauge-invariant vacua.
We shall discuss this model and its generalizations in
Secs. VII and VIII, but here we wish to give some of the
flavor. It is well known that when Fermi (1934) construct-
ed the first field theoretic model of P decay, he employed
an interaction modeled as closely as possible on quantum
electrodynamics. In Fermi's theory the leptons interact

' If this were not so, no one particle state would have a well defined
electric charge.
~ These and many related questions are treated in the excellent review
article by Ci. S. Ciuralnik et al. (1968).

(1.17)

Also in 1964 Guralnik, Hagen, and Kibble investigated
the electrodynamic model of Englert and Brout and
Higgs and made the important observation that in these
models, the local symmetry condition

with the neutron and proton weakly via "currents" of the
form

P„(x) = itI.(x)y„&.(x), (1.21)

while charged particles interact with hadrons via a con-
served current of the form

H. = e() J„' x D"" x —y J„' y d'xd'y, 1.23

where J„(x) is the conserved electromagnetic current, and
D""(x —y) is the photon propagator. All evidence on
electromagnetic interactions is consistent with a photon
of zero mass which means that two charged particles
interact via the I/~x —

y~ Coulomb potential in the low
energy, static limit.

On the other hand the "weak photon, " at least at this
writing, is not known to exist. However, it is known that
an eAective weak interaction of the form

H„= G J"""x J""x d"x (1.24)

gives a good representation of all the data on weak
interactions at relatively low energy. Taken literally, this
would correspond to a current —current interaction me-
diated by a weak photon of infinite mass. Clearly at least
some of the weak photons, if they exist, must be charged.
i'„(x), for example, changes charge by one unit, and all
the data so far are perfectly consistent with a hypotheti-
cal, charged, weak photon with a mass of at least 5 BeV.
Hence, a striking distinction between electromagnetic
and weak interactions is the mass of the carrier.

(2) Weak interactions are "weak", and electromagnetic
interactions are not. At first sight, this might appear to
deal a death blow to all hopes of unifying the two
couplings. However, just the difference in masses be-
tween the weak and electromagnetic photons may save
the situation. The quantity H, , defined above, is dimen-
sionless since J„™has dimensions of E' and D~(x) has
dimensions of E'. (Here E stands for a dimension of
energy or inverse length. ) Thus, ee is dimensionless.
However, the same argument shows that G has dimen-
sions of (1/E'). In a theory with a weak photon it turns
out that

G = c(g'/m'. ), (1.25)

where g is the weak dimensionless charge, m is the mass
of the weak photon, and c is a numerical constant
depending on the theory. (In Weinberg's 1967 theory'
c = I/4~2). Since m is not known, we can always
imagine finding an m„such that g' —eo. All we know so

' These are effective dimensionless elements of the S-matrix.
' See also A. Salam (1968).Both Weinberg and Salam conjectured that
the theory would be renormalizable.

(1.22)

There are, of course, several obvious distinctions between
electromagnetism and P decay, only some of which
Fermi could have known in 1934. We list a few:

(1) The photon is known to exist. Thus, the electromag-
netic interaction, in fact, takes the form (in lowest
nontrivial order)'
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far from low-energy weak interaction experiments is 6
which is given experimentally by

Gm,' —10 '. (l.26)

' As well as C and CI' violation." In these theories, we always assume that the Lagrangian is gauge
invariant so that none of the "photons" has a bare mass to begin with.

Here m, is the mass of the proton. Typically, to arrange
this we need m ~ 40 BeV.

(3) Finally, of course, there is parity nonconservation
in the weak interactions, ' which means that the weak
photon will have interactions with both axial vector and
vector currents. This, as we shall see, can be arranged.

The big barrier to unification would appear, at first
sight, to be the enormous discrepancy between the mass-
es of the weak and electromagnetic photons. In a conven-
tional broken symmetry, one would begin with a Hamil-
tonian that commutes with all the operators generating
the symmetry. The solutions to this "unperturbed" prob-
lem would classify themselves into degenerate multiplets
labeled by the quantum numbers of the symmetry group.
Hence, we would recognize the validity of such a symme-
try in nature by observing such degenerate or nearly
degenerate —in mass —multiplets. The lack of complete
degeneracy we would explain by adding a "small" term
to the Hamiltonian which fails to commute with the
symmetry generators. Clearly, a photon with zero mass
and a weak photon with a mass of 40 BeV do not appear
to fall into an approximately degenerate multiplet. It is
just here that the Higgs mechanism may save us and
allow a unification, although in a new and unconvention-
al sense. In the gauge theories all photons have zero mass
provided that the vacuum is invariant under the gauge
group. " Once this requirement is dropped, the Higgs
scalar fields can develop nonvanishing vacuum expecta-
tion values and all of the photons except the electromag-
netic photon acquire mass. There is no reason why any
of these masses need be small. The size of these masses,
as we shall see, depends on the coupling constants
characterizing the self-couplings of the Higgs fields and
these can be large. One would not be able. to detect the
symmetry by looking for nearly degenerate multiplets but
rather by relations among coupling constants and cross
sections. Apart from the elegance of the idea, there is the
additional payoA that such combined weak and electro-
magnetic theories can be found so that the resultant
mixture is "renormalizable", which means that the con-
vergence of the individual terms in the S-matrix is no
worse than quantum electrodynamics, which we know—
despite the problem of infinities —to be the most precise
physical theory so far invented. This means that, for the
first time, a weak interaction field theory has been found
in which the weak interactions remain genuinely "weak"
in higher orders in perturbation theory. Heretofore, what
has happened is that the lowest order matrix elements are
characterized by the weak constant G, but all of the
higher orders diverge and must be cut oA arbitrarily. In
the gauge theories no cutoff is needed, and one can, in
principle, find answers to all of the questions involving
weak and electromagnetic couplings to arbitrary order.
Even if none of the models so far produced survive
experimental testing, the gauge theories are a new and
remarkably subtle class of finite —after renormaliza-

tion —field theories. All of these matters will be discussed
in more detail at the end of this review. However, enough
has been said so far perhaps to convince the reader that,
in Einstein's phrase, " while gauge theories with vacuum
broken symmetries may or may not be the "true Jacob, "
they demand "serious attention. "

(l)/()x„)J„(x) = O. (2.1)

We call the "formal charge" associated with this
current

Q(t) = f d'x J, (x, t), (2.2)

"formal" in the sense that this integral taken over all
space may not exist. Even so, objects like

d'x Jo x, t, y, t

where p is some field operator, may exist provided that
we commute first and then do the integral. Where it is
relevant, we shall be careful about this. Formally, we can
write for a conserved current

d'xV Jx, t = d dt (2.3)

Hence, there are two possibilities,

d'xV ~ J x, t = 0 (2.4)

or

(2) d'xV Jx t & 0. (2.5)

The latter case may occur provided that there exists a
pair of states lP) and lP') such that

(p if d'xp . J(x, t)i p)

=i' d'xP'PJxt P

= t '(P' —P) .f (P'~ J(x, t)~P) d'x

= t-'(P' —P)
~ P'exp —i Px J 0 exp i Px P d'x

= (2m)'/i5'(P' —P) exp[i(E —E )t](P' —P)
(P'I J(0)IP)

+ 0 (2.6)

" Taken from a letter written by Einstein to Max Born in 1926
concerning the discovery of quantum mechanics. The letter is quoted in
M. J. Klein (1970).

In our metric (t)/tix„) J(x, t) = V S(x, t) + (ti/t)it) Jo(x, t) = V
. J(x, t) + Jp(x, t).

II. THE GOLDSTONE THEOREM

We imagine a theory described by a Hamiltonian 0
and we assume that there are one or more "currents"—
operators that transform as four-vectors under proper
Lorentz transformations —which are conserved in virtue
of the equations of motion;" i.e.

Rev. Mod. Phys. , Vol. 46, No. 1, January 1974
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This can only happen if

limp p(P'l J(0)lP& = (x) (2.7)
which might occur in a theory with a zero mass boson
coupled to J„(0)."We shall return to this case later and
suppose, for the time being, that

g = t[H, g] = 0. (2 8)
Let the eigenstates of H be designated as lE.&. Then,
formally

HglE. &
= E.glE. & (2.9)

so that QlE„& is an eigenstate of H with energy E„. If
lE„& is an eigenstate of Q with eigenvalue q, then this
degeneracy is trivial, otherwise lE.& and QlE„& may
represent orthogonal states with distinct quantum num-
bers. We may apply these considerations to the "vac-
uum" state characterized by the requirement that

= 0 (2.17)

glo& ~ 0. (2.IS)
We might be tempted, then, to identify QlO& as a second
vacuum state. This interpretation can be maintained, but
only with caution. To see what is involved, " consider

Since

&oIQQI» = f d «&oI&(*&)Q(,&)l» (2.19)

exp[i(P x)]Q(t) exp[—i(P x)] = Q(t), (2.20)

limit process represents the creation of a one-electron
state with energy —momentum P„.

In the theories we are about to consider, we sometimes
have

P„lo& = 0, (2.10) we have

where P„are the energy —momentum operators of the
theory. We always assume this of the vacuum. In conven-
tional theories

U = exp(ing), (2.11)

with Q Hermitian and n real, is a unitary operator which
generates whatever symmetry of the Lagrangian gave rise
to the conservation of J„.Hence, if the states are to reAect
the symmetry, we must have

Since

a11d

&DIQQI» = f ~ *&01J'.(o)NO)l»

Qlo& + o

fd'x = m,

(2.21)

(2.22)

(2.23)

or

exp(ing)lO& = lO&

glo& = 0.

(2.12)

(2.13)

the state QlO& is not normalizable. This is difficult to live
with but not impossible, since in all applications we will
consider commutators involving J()(x, t) and then inte-
grate safely later. However, it does mean that

As a concrete example, consider the statement that the
electron is an eigenstate of electric charge with eigen-
value +1.This is a consequence of the gauge condition

(2.24)U = exp(ing)

is not a unitary operator in a simple sense —another
manifestation of the broken symmetry. Nonetheless, ex-
pressions like UAUt can be meaningful, since if the
'exponentials are expanded, the resulting commutators
may be well defined. Clearly this is a subject in which
common sense will have to guide the passage between the
Scylla of mathematical Talmudism and the Charybdis of
mathematical nonsense.

To study the Goldstone theorem, we imagine we have
a theory with n conserved currents J„'(x), . . . , J„"(x), n
formal Hermitian charges Q)(t) = f d'x J()'(x, t), . . . ,
Q.(t) = f d'x J()"(x, t), and n Hermitian scalar fields
p)(x) p„(x) satisfying equal time commutation rela-
tions of the form

[Q &'(x t)] = +&'(x f) (2.14)

where Q is the conserved electric charge", and g is the
electron field operator, provided that

(2.15)glo& = 0.
We can see this from the equations

Ql~p) = Q hm, -- f d'xg'(x, t) „, U(P)lo)
2rt

= lim, „d'x, ~ x, t
&)2

UP 0
2~ "'

+lim, - d'x ~x, t
g

UP 0
2rt

[Q'(f) 0'(»t)] = r"0 (x f) (2.25)

where v„-j, is a pure imaginary totally antisymmetric
(2.16) function of the three indices. "We shall assume that

where U(P) is a solution of the Dirac equation and the

In such a theory the matrix element develops a pole at q'
= (P' —P)' = (P' —P)' —(Er —E~)' = 0 which can occur at P
= P'. I am grateful to M. A. B. Beg for discussions of this question.
'4 Actually, this is one of the cases in which (8/8x„)J„(x) = 0 does not
imply that Q(t) = 0 when higher order radiative corrections are includ-
ed. The "bare" charge dresses itself. This is not relevant to what we are
trying to illustrate here.

(Ol[g (t) @'(x t)]IO& = ~"(Olyk(x t)lo& e 0 (2.26)

for at least some values of the indices, which means that

"This discussion follows E. Fabri and L. E. Picasso (1966) and G. S.
Guralnik et al. (1968)." We are allowing here for the possibility that the charges may be
functions of time. Examples of all of this will be furnished in due
course.
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at least one charge fails to annihilate the vacuum and at
least one scalar field develops a nonvanishing vacuum
expectation value. Keeping this in mind, we choose such
an i and j and consider the quantity"

~„"(k) = f d x('OI[J„(xO), A(, 0),]lo)exp[i(kx)] (.227)

We shall assume that the eigenstates of P„—the energy—
momentum operator —are complete and have positive
definite norm "W. e label these states In). Hence,

M,'-(k) = g f d'x exp[i(kx)]

((ol J„'(x)ln) (nl@,(0) lo&

—(ole'(0)ln) (nl J'(~) lo)]
= (2~)' 2 (~'(P. + k) (oIJ'(o)ln) (nlrb'(0) Io&

n'(P„—k) (ol@,(o)ln&(nl J,'(o) lo&).

(2.28)

Mj' = «(k, )k„pf(k') + k„p,'(k'), (2.33)

where the p" (k') are, as yet, arbitrary functions of k' and

l
«(k, ) = kp & 0

k, &0. (2.34)

The reason for this form is that M„(k) consists of two
sums, one of which, because of the 6 functions, contrib-
utes when ko ) 0, and the other when ko ( 0. The «(kp)
function expresses this compactly. According to the
Goldstone hypothesis

(a/ax„)J„( ) = o. (2.35)

is not always true. Whenever it is true, and this assump-
tion is joined to the others above, we have, as we shall
now see, the Goldstone theorem. The fact that it fails to
be true in gauge theories, like electrodynamics, is the
loophole through which the Higgs mechanism finds its
way.

Given manifest covariance we may write

«(k, )k'p['(k') + k'p2'(k') = 0

Since @,(0) is a scalar operator, under proper Lorentz
transformations, the only states In) that can contribute to
this sum have no intrinsic spin. This does not conflict
with the four-vector character of J„since J„can connect
two spinless states; i.e. J„can connect In) and Io). so evaluating this for k ) 0 and k ( 0 o.
However, it does imply the following"

(2.36)

(OIJi (0)IP Er) = a(P', (Pn))P„+ b(P', (Pn))71„, (2.29)

where g„ is a constant, timelike, four-vector which, in a
suitable Lorentz frame, we can write as

k'[p,'(k') + p,'(k')] = O

k'[p" (k') —."(k')] = o

(2.37)

(2.38)

The covariant solutions to these functional equations are

71 = (0, 0, 0, 1), (2.3o) p, (k') = c[()(k') (2.39)

(Ol V(0)IP, E ) = Pa(P', E ), (2.31)

where a(P, Er) is an arbitrary function of the indicated
variables. There is no other direction available for
(OIV(0)IP, Er) to point in. One may, of course, give a
formal argument involving the rotation generator. In our
case, J(0) is a three-vector and this argument goes
through. As we see below, an extra assumption is needed
to fix (ol Jo(0)IP, E ).

However, to knish his proof of the Goldstone theorem,
Gilbert (1964) did make an extra assumption which we
may call "manifest covariance. " He assumed that

and a and b are arbitrary functions of the indicated
variables. This is a consequence of the three-dimensional
rotational covariance of the theory. We always assume
that the vacuum is a scalar under the full Lorentz group.
Hence, from the spin-zero character of IP, Ep), it follows
that for any three-vector operator V(0)

and

p, (k') = c,a(k'), (2.4o)

(Ol[g, (r), y, (0)]IO&,=. = ~,k(OI@k(O)IO) ~ O. (2.41)
I

This, we sha11 now show, guarantees that cl does not
vanish. Since Q;(t) may not exist, we had better write the
commutation relation above as

d'x OJp'x, t, 20 Of=p=vjik 0 &0 0 10.

where c[ and c& are as yet undetermined constants. If we
can show that either of these numbers is not zero, we
have the Goldstone theorem, for returning to the sum
over states In) which yields M„"(k) this would mean that
there would be at least one such state of spin zero and
P' = 0: the dreaded zero mass Goldstone boson!"

We have not used, as yet, the condition

(2.42)(oIJ.(0)IP, E~) = P, a(P') (232)

is is, of course, consistent with the general form, but it This will certainly be equivalent to the first exPression,
provided that J()'(x, t) is a "local operator" so that

"We follow here the argument of Gilbert (1964)." For Lorentz gauge electrodynamics there exist an infinity of states
with nonpositive norm; i.e., (2 i 2) = Oneed not imply! 2) = 0. See,
for example, J. M. Jauch and F. Rohrlich (1955) and T. W. B. Kibble
(1967)."This is not quite the most general form. There can be an additional
term of the form cnxb"(P) which enters the argument of the next
section.

[J,'(x, o), Q, (0)] = (-)'(x) „-„Q„(0). (2.43)

Note that since k' = k' —kp, the two signs of kp correspond to the
same k' which justifies the next equation.""Dreaded" because, experimentally, there is no such object, although
the'pion, as we shall see, appears to do its best to behave like a
Goldstone.
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Jeremy Bernstein: Spontaneous symmetry breaking and all that 13

This feature is preserved even in the gauge theories as we
shall see."Now, using the above

Mpv (k) = E(k'p)kp ci 6(k ) + kp cp B(k )
(2.44)

d'xexPi kx 0 Jo'x t j0 0

and noting that

~(k') = ~(lkl —kp)/21k l
+ ~(lkl + kp)/21k I (2.45)

e.g., the gauge theories, this result, as we shall see, is
drastically altered.

To conclude this section, we shall present an example
where all of the conditions of the theorem appear to be
applicable and where the Goldstone bosons are a wel-
come consequence. The example we have in mind is the
so-called "o model" of Gell-Mann and Levy (1960). We
first write the Lagrangian for only pions and the e, and
then adjoin the nucleons. Consider

we have"

dkoMp' k k=o = d x2m'6 t 0 Joi x, t, 0 0

(2.46)= 2~i;,, (ol@,(0)lo)
=CIAO.

Because of the e(kp) in Mpp(k), the term involving c&

cannot cancel against the term involving c2 for all ko.
Hence the proof is done.

It will be appreciated that this argument made use only
of the equal time commutation relations between Jp'(x)
and p, (0). However, the following remark is interesting.
Consider

E(x) = —
2 ~ y(x) .

~ „y(x) +
~ o(x)~ „o(x)

a 0

— '[e( ) e( ) + .( )' —P]'

a a
e( ),e( ) —4P 'e( ) e( )

a a
o(x)

~
„o(x) —4Pn'o(x)'

—a'[o(x)' + @(x) @(x)]' —~'P'.
Here p(x) is the pion field with

3

@(x) @(x) = X @ (x)'

(2.52)

(2.53)

= ci cos (I k
I t) + i c2 sin (I k

I
t)

M,"p)i= f exp(ik, pM'(k)dk,

exP ikot P ko kocl6 k + koc26 k dko

(2.47)

where the @'s are Hermitian, as is tr(x), and n and P are
real numbers which may have either sign. Note that n is
dimensionless, and P has dimensions of the square of a
mass. This Lagrangian is invariant under the following
infinitesimal transformations:

(1) isotopic spin
=2m d'xexpi k x 0 Jo'x, j0 0.

When k = 0, we conclude that

d x 0 Jo x, t, j 0 0 = cl 2K

Q —+@+Ax@,
0' ~ 0,

(2 48) where A is an infinitesimal constant vector, and

(2) chirality

(2.54)

which would, of course, follow from current conserva-
tion. Here ci does not depend on t provided that

I

Q —+ Q —Atr,

tr ~ tr + A
(2.55)

d'x 0 V J'x, t, j0 0 =0. 2.49
which yield, respectively, the conserved currents

Hence, the assumption of manifest covariance has
ruled out the presence of poles at P = 0 in the matrix
element (Ol J(0)l P) despite the presence in the theory of
zero mass particles. '4 Put somewhat differently, assuming
manifest covariance,

(01J.(0)IP) = PF(P'). (2.50)

Since IP) is a state, here, with P' = 0, and since J„ is
conserved, we have

V„(x) = —y(x) X (t)/t) x')y(x) (2.56)

A, (x) = -o(x)(O/ax )@(x) + (a/ax")o(x)@(x), (2.57)
from which we can construct the formal charges Q; and
Qs;. Of interest to us in the sequel are the following
commutation relations involving the charges and the
fields which are a consequence of the canonical commu-
tator for bosons"

P'F(0) = 0, (2.51)
[Q;(X, t), p, (X', t)] = i5'(X —X')5vrr (2.5S)

thus F(0) cannot diverge like a pole. In the general case, d'x' Ao x', t, , x, t = —i6„o x, t (2.59)"This has to do with the Lorentz covariance of J„which requires that
Jp be a function of the fields and their conj ugate momenta with no
dependence on the gauge fields except as they occur in conjugate
momenta. See, for example, L. S. Brown (1966)."Keep in mind that while kp is an odd function of kp, t(kp)kp is an even
function.
~ This point was first emphasized to me by M. A. B. Beg. In fact, the
argument can be turned around to give another proof of the Goldstone
theorem.

and

d'x'Ao x', t, o x, t = i; x, t . (2.60)

"Keep in mind that p; and p, are independent fields for i / j and

A', (x) = —@;(x)e(x)+ e(x)j;(x).
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The commutation relations among the charges"

i& j lCJrk k&

Si p Sj ~~Jrk k &

i y 5j —ltJrk Sk ~

(2.61)

(Z,62)

(2.63)

particular, if we call l0) a state of lowest energy, we
would expect that such a state would obey,

&oI (o)'+ 0(0) e(0)IO) = p (27o)
We can satisfy this, in leading order, if we choose"

express the invariance of the Lagrangian against the
SU(2) X SU(2) transformation group generated by this
charge algebra. This invariance yields, as we now argue,
two totally diferent views of the m —a universe depend-
ing on the sign of the constant P in E(x):

(1) The conventional view —p ( 0. An examination of
E(x), in this case, shows that

&Olo(0)lo& = V p x 0 (2.71)

&ol@(0)lo) = 0. (2.72)

This, however, makes a particle interpretation of the o
field impossible. However, if we caH

m.' = m.' = —4pn', (2.64) X(x) = o(x) —WP, (2.73)

i.e, m and a are degenerate states with distinct quantum
numbers. In the real world, the m and o are imagined to
have opposite parities; i.e., if P is the parity operator we
can choose

and

P~(0)P-' = -~(0) (2.65)

Po(0)P ' = tr(0). (2.66)

Since these fields occur quadratically in E(x), parity is
conserved by this theory. However A„(x), defined above,
is a pseudovector. If such a symmetry realization mani-
fested itself in nature, we would expect to see opposite
parity m's and e's nearly degenerate in mass. There have
been reports of scalar resonances in the literature, but
these have masses of 700 MeV or more, while the pion's
mass is only 140 MeV. To conipound matters, for this
po'int of view, if nucleons are added, as we do below,
these must have zero mass in the symmetry limit and
would also come in parity doublets. All of this makes a
conventional SU(2) X SU(2) symmetry scheme look
rather unattractive. Hence, we are led to try something
else.

(2) The Goldstone view —P ) 0. This choice of sign
does not affect the symmetries of i'(x) with respect to the
SU(2) X SU(2) group. However, the parameter pn' no
longer acts like a mass. In fact, the terms

2pn'[n(x)' + y(x) y(x)] —n'[o(x)' + cp(x) p(x)]'

we can write an effective Lagrangian in which all the
fields have a particle interpretation. In higher orders we
would define

m„' = Sn'p

m' = 0. (2.77)

Higher order corrections will modify m„but will leave
m„= 0 alone, since all of the conditions of the Gold-
stone theorem are satisfied and the proof was independ-
ent of perturbation theory. From the Goldstone point of
view, it is the fact that

x(x) = o(x) —&Olo(o)IO» (2 74)

where &Older(0)l0) would have to be computed to the given
order. In fact,

P(x).„„,„, = —
—,'(8/Bx, )y(x) (8/Bx") y(x)

—l((~/~x. )X(x)(~/»")X(x) + gn'pX'(x))
—n'(@(x) @(x) + X'(x))'

+ 4u p X( )(0( ) . 0( ) + X'( )) — 'p'.
(2.7S)

The theory remains invariant under the symmetry gener-
ated by the transformed currents and charges, but notice
that to this order

—0.' 2 2 (2.67) &Ol~(0)IO& = 0 (2.7g)

o(x)' + @(x) @(x) = p
while in the p ( 0 case the unique answer is

(2.68)

act like a mesonic coupling potential. We may look for
the classical fields tr and p that minimize this potential.
The answer is any of the infinite set obeying

which allows the X to become massive. "
This picture looks like a better fit to the observed

meson spectrum, and the "small" observed pion mass can
be put in by hand, if necessary, to break chiral symmetry.
Moreover, it is quite straightforward to add nucleons to
the stew. To this end we adjoin

tr(x) = rr(x) = 0. (2.69)
In quantum theory we can translate this into a statement
about expectation values of the Hamiltonian and, in Here

&- (x) = —0(x)y. (~/~x. )4(x)
—g &(x)(tr(x) + iv P(x)y5) &(x). (2.79)

cjk is the totally antisymmetric function of i, g, k characterized by the
definition 6123 = 1. Diligent application of the equal time commutation
relations among the fields will yield these results. In these expressions
we consider, where necessary, the charges at equal times and first
commute the current densities and then integrate if the charges appear
ill defined.

&4~(x) j'
" (Oi +0)i0) A 0 would violate parity conservation.
"Otherwise stated, Q; i 0) = 0 while Q&; i 0) + 0.

(2.go)
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8
A.(x)—

The r are the isotopic spin matrices, and y5 has been The equations of motion
inserted because of the pseudoscalar character of the p.
We must now enlarge the SU(2) X SU(2) transforma-
tions to include

a a
&

„A„(x)=0 (3.3)

g(x) (1 + i(v/2 A) g(x) have no unique solution until the potentials are assigned
a "gauge. " We shall frequently choose to work in the
"radiation gauge" defined by the condition that

Q(x) ~ (1 + i(r/2 . Ays) q(x). (2.82) V A(x)=0 (3 4)

The full Lagrangian is now invariant under the total
isotopic and chiral transformations leading to the con-
served currents

V, (x) = i g(x)y„(~/2)g(x) —y(x) x (8/Bx")y(x) (2.83)

and

which is, of course, the transversality condition of a free
physical photon. It is just here that the noncovariance has
slipped in. This is worth examining in rather pedantic
detail. In matrix notation, we can write the equation for
an infinitesimal Lorentz transformation of the coordi-
nates as

A„(x) = i &(x)y„ys(r/2)q(x)
—( (x)(g/rex )@( ) —@(x)(g/gx ) ( )) (284) where

x' = (1+ e)x, (3.5)

We again have a choice:

(1) P ( 0. This leads as before to, in leading order,

m.' = m.' = —4pn'

(3 6)

For example, if the transformation is to a moving frame
in the 1-direction

but

m~ —0

since no bare nucleon mass appears in i'(x).
(2) P ) 0. In this case, as before,

(2.86)

with

0 0 0 iP
0 0 0 0
0 0 0 0
iP 0 —0 0

(3.7)

while

m.' = 0

m„' = 8Pn'

(2.87)

(2.88)
Thus, a four-vector field V(0) will transform as

(3.8)

mN g~p ~ (2.89)
Hence

V'(0) = (I + ~)V(0) (3 9)

After displacing e in P(x), all traces of the particle
multiplets have disappeared, although E(x) is invariant V'(x) = (exp[—i(px)]V(0)exp[i(px)])
under the aPProPriately redefined symmetry generators.

[ (p )]V (0) [ (p )] V( ) V( )In the next section, we turn to the Higgs loophole which
applies when electromagnetism is put into the game.

III. THE HIGGS LOOPHOLE
using the Lorentz invariance of (Px). If we Fourier
transform this relationship we have in momentum space

Before returning to the vacuum-broken symmetries, we
wish to consider the question of how a theory can be
Lorentz covariant but not "manifestly" Lorentz covar-
iant. " Since this is the key to the Higgs loophole, it is
worthwhile to study, carefully, an example. We consider
free electrodynamics given by the Lagrangian

with

Thus

V'(k') = V(k) + eV(k),

k' = (1 + e)k.

(3.i I)

(3.i2)

with

1
e,(x) = -4F„.(x)F""(x)

i r aA„(x) aA„(x) l aA"(x)
2( ri 8 ) Bx, (3.i)

(k'V'(k')) = (k(l —e)(1 + e)V(k))
= (kv(k))

where, as usual,

(3.13)

( )
BA„BA.

F~ x
(kV(k)) = k V(k) —ks Ve(k). (3.14)

(32) Now, clearly, if the photon field A(k) transformed like
V(k) we could never maintain the condition"In &his &rea&rnent we have found Bjorken and Drell (1965) very useful.

Note, however, that our metric conventions diA'er from theirs. k' . A'(k') = k A(k) = 0. (3.i5)
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16 Jeremy Bernstein: Spontaneous symmetry breaking and all that

M" = )t d'x tA(x, t) 8 A(x, t)
a

0Xk

Therefore, let us suppose that A(k) has a difI'erent Here e is as above, and for Lorentz transformations
transformation property designed to maintain transver-
sality. Later we shall see how this transformation emerges
from the field theory. Hence, we assume

A(k) = (1+.)A(k)+ E(k), (3.16)

where E(k) is the extra term of order P. We carry out this
work for the free photon, as an example, where

—x/2[A(x, i) +'(V x A(x, e))']),

(3.3o)

k A(k) =0,
A.(k) = o,

(3 17) Tlius

(3.18) UA;(0)U ' = A;(0) + ieek[M'", A, (0)). (3.31)

and

k'= k' (3.19)

As M'" is independent of time, we can set t = 0 and
write

Thus

A.(k ) = ..A'(k) + E.(k). (3.2o)

[Ad'*, d;(0)] = f d—x[(x '/2) A(x0) , (d0'),]

/ d XXO tj X AJ- X, O (3.32)
Hence, to have

A0(k') = 0 (3.21)

d'k kk, .
i )~dsx— , xk ','A, (x, o)

(2 )'

we must have

Further,

E.(k) = —.„A'(k).

which reduces to the expression above, Eq. (3.25), for
E;(k) when one Fourier transforms and takes the trans-

(3.22) versality of A(k) into account. If A;(0) transformed like
the spatial component of a four-vector we would have
had simply

0 = k"A;(k') = k„(6"'+ ~"')(6;, + ~;,)A'(k) + O'E, (k)
(3.23)

or
since

UA, (O)U-' = A, (O), (3.33)

O'E;(k) + O0~'A;(k) = 0.

Thus, all requirements are satisfied with

E„(k) = —k„k./lkl'. .A'(k)

(3.24)

(3.25)

which establishes the conflict between gauge and Lorentz
transformations.

But how does this transformation arise in the context
of a canonical field theory? To see this, we must first give
the correct canonical commutation relations. The only
nonvanishing commutator among the vector potentials is

A.(o) = o. (3.34)

It is the extra term that maintains the gauge condition in
all Lorentz frames.

If A; has this complicated transformation property, one
may ask how the S-matrix manages to be Lorentz
covariant in the conventional sense in Coulomb gauge
electrodynamics. The answer, as is well known, goes, in
outline, as follows:

Suppose we express in momentum —space the Coulomb
gauge condition in a given Lorentz frame as the state-
ment that

[A;(x, t), A, (x', t)] = iB„'"(x —x-') (3.26) (OA(I )) + (~k)(~A(k)) = O, (3.35)
where the transverse 6 function ()„' is defined by

0„-'(x) = (I/(2v)') f d'k exp[i(k, x)][0„-—(k;k/]k]')]

(3.27)

and has been introduced to maintain the transversality of
A;(x, t) Now if lP). and lq) are any two eigenstates of P.,
the quantum mechanical covariance condition is, where
lP') and lq') are the Lorentz-transformed states UlP)
and Ulq),

(P'IA„(0)lq') = (PIUA„(o) U-'lq), (3.28)

where in this - frame we can choose

rt = (0, 0, 0, 1). (3.36)

A, (k) ~ o. (3.37)

Now for a given k we can construct four orthonormal
four-vectors; i.e., the two polarizations ~I, ~2,

.
q and a

vector k defined as

In writing the condition this way, we can also allow for
the fact that for the interacting fields

and"

U = 1 + (i/2)kM.

k„= [k„+ (krf)rf„]/lkl'

(3.29) Thus, we have the completeness statement

(3.38)

M We have put the space —time variable equal to zero in Av(x) to simplify
the transformation.

2

&(, &v =
gpv + 'gA'riv k(ekv,

A, =l
(3.39)
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kd„"(k), = f d'x(0 [Id„(x),0, (0)l[0&«0 Ii(kx)I
iD,'(x', x),„= (oi T(a„(x')W„(x))io)

$ d'k exp[ —i(k(x' —x))]
J (2rr)' k' + i»

d"k exp —ik x' —x
(2')' k' + i»

= k'M„"(k)g —k„k"M„'d(k)~

= b(k', (rtk)) [k'rt„—k, (rtk)] (3.47)

(3 40) assuming that the various integrations by parts are legal.
We may notice two very significant things about this
expression:

where the sign of the last term is determined by the fact where we can dispense with the»(k0) since a(k, (rlk)) etc.
that k and ri are orthogonal to» .From this it follows that are general functions of k0 and k'." Therefore,
the free photon Green's function in the Coulomb gauge is

k'rt„rl. —k„k„—(kri)(k„ri. + k, t)p) k"M„"(k)d = 0 (3.48)

When, in the S-matrix calculations, this Green s function
is taken between vertices corresponding to a conserved
current, it can be shown that the terms proportional to k„
or k„do not contribute. The remaining noncovariant term
proportional to g„g„ is just the Fourier transform of the
static Coulomb potential and is canceled by the explicit
occurence of the Coulomb potential in the Coulomb
gauge Hamiltonian. Hence, effectively, the Green's func-
tion acts like the covariant object g„„/(k + i») which is
the key to restoring the covariance.

The reason for bringing this up is that we now want to
study, a la Higgs (1964), what happens to the Goldstone
theorem in a theory in which there are n gauge fields
Ap(x) ~ A„"(x), and n Hermitian scalar fields
@)(x) @.(x); gauge fields like the photon, but which
obey the condition that for some i and j
M„'-(k), = f d'x(01[d'„(x), 0 (0)]10)exp [i(kx)] e-"0.

(3.41)

The notation is as before, except that A'„(x) and the
current J„'(x) are connected by the Maxwell equation

identically. Hence, in contrast to the situation described
in the last section Eq. (2.39) and Eq. (2.40), no conclusion
about the function b(k', (rtk)) can be drawn from the
conservation of M„"(k)d. In other words, we are not
forced to a form factor of the form 5(k'), and hence the
proof of the Goldstone theorem has broken down Note. ,
incidentally, that the gauge condition

implies that

V. A(x) =0 (3.49)

M(0(k)g = 0

forl = 1, . . . , 3, while

M0" (k)d A 0.

(3.51)

(3.52)

This is a rephrasing of the theorem that single photon
cannot be emitted in a 0—0 transition.

(2) Because of the arbitrary dependence of b(k', (t)k))
on ko it is no longer true that

a(k', (rik)) = c6(k'). (3.50)

This is not the Goldstone meson because a particle of
finite mass may have k' = 0. It does mean that

(3.42) d'x 0 Jo'x, t, , 0 0 (3.53)
so that

(()/()x„)J„'(x) = 0.

is a constant independent of t. To see this, refer back to
Eq. (2.48). Here is a case in which

(()/()x„)J„(x) = 0 (3.54)

(3.55)

We come back to this more fully later. For the moment,
let us turn from the discussion of the breakdown of the

(3 44) Goldstone theorem —the Higgs loophole —to a discussion
of the "Higgs mechanism" which supplants the Gold-
stone theorem in the gauge theories.

(kA'(k)) + (rtk)(t)A'(k)) = 0

with

We shall suppose that the fields A'„(x) have no bare
mass and hence enter their sector of the Lagrangian as in does not imply that
Eq. (3.1). Hence, for this Maxwell equation to have a
solution, we must pose a gauge condition which we take
to be that of Eq. (3.35), thereby losing manifest covar-
iance; i.e.,

rl = (0, 0, 0, I).

There is no reason, now, why the vector g„should not
enter the expression of M„"(k)& along with k„. In fact, by
three-dimensional rotational covariance, and in the ab-
sence of manifest Loreniz covariance,

The last section reproduces, essentially, the contents of
the Higgs letter of 1964. The letter contained no particu-

(3.45) IV. THE HIGGS MECHANISI[N, OR WHERE HAVE
ALL THE GOLDSTONE'S GONE?

M„"(k)d = a(k', (rfk))k„+ b(k', (rtk))rip + crt„b'(k),
(3.46)

"The last term in Eq. (3.46) could arise if there were a constant term
in the matrix element Eq. (3.41). In any case, it drops out in what
follows. For additional discussion, see Cxilbert (1964) and Klein and Lee
(1964).
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18 Jeremy Bernstein: Spontaneous symmetry breaking'and all that

lar gauge model and did not suggest. what would happen
in a theory if all the conditions described in the last
section of this review were met. This was also clarified by
Higgs in 1964 in terms of a model which can be described
as scalar boson electrodynamics, where the boson is
given a pure imaginary bare mass and a quartic selfcoupl-
ing. In fact, most of the models which exhibit the Higgs
mechanism are variants on this theme, but where more
"photons", bosons, and fermions are added. Once one
understands the original model, the extension to the more
complicated models such as Weinberg's 1967 model is
not dificult to grasp, since the basic ideas are very
similar. Our starting point is the Lagrangian (For the
expert, we have indicated the "counter terms", which
render the theory finite, by the + ~ ~ . These will not
concern us here because we will not consider "closed
loop" corrections. )

E() =.-'F.()F"'()—.-'F.()i,.A'() —,A"(),I

+ +.(x) .
~ @(x) + e"(x) . e.(x)

—y" (x) ie() q y(x)A, (x)

+ ™oy(x)y(x) 'f (y(x) '-y(x)) + ' (4 1)

The writer hopes that the reader will not be put oA by
this slightly arcane looking notation which he will now
explain. In order to avoid having more than first deriva-
tives in the Lagrangian, it is convenient to write it as
above a la Schwinger. " To recover the familiar field
equatlOnS 011e Val les Fs„(X), As(X), (()/() X )Aq(X), Qp(X),
P(x) and (I)/()x„)g(x) independently. To complete the
notation, by g(x) we mean

(4.2)

or, symbolically,

—P'+ E' = —I() (4.8)
which is to say that mo acts like an imaginary mass. This
reminds us of the P ) 0 sector of the (r model discussed
in Sec. II. In fact, with this example in mind, we are going
to present an approximate solution to the equations of
motion with the ansatz

ieo(0 Q(0)IO) = e() ~f @2(0)
)I

~-~ (0) &

A 0. (4.9)

The consequences will emerge in what follows. We may
derive the equations of motion. We list these below
indicating which variations were used in each case.

BF„,: F""(x) = (I)/() x„)A"(x) —(I)/I) x„)A'(x) (4.10a)

By": (()/()x")y(x) + y„(x) —ie, qy(x)A, (x) = 0 (4.10b)

By: (I)/rix")y"(x) = ie, qy"(x)A„(x) + ms@(x)
—U'@(x) (@(x)) . @(x) (4.1oc)

BA„: (()/()x")F""(x) = ie, y—'(x) . qy(x). (4.10d)

Before we discuss the approximate solution to these
equations, we shall consider the basic gauge symmetry of
the Lagrangian. Clearly, in virtue of the last equation, the
quantity

1"(x) = iy'(x) qy(x)
= —i((()/() x„)P(x) —ieo q y(x) A" (x)) q y(x) )

—i[(()/()x )y(x) q y(x) + e, y(x) . @(X)A"(x)]
(4.»)

is a conserved current. " To see the role of the charge
associated with this current as a symmetry generator, we
find the conjugate "momentum" to g(x):

and

(0 i )— II„(x) = BE(x)/
~
„=y„(x).

BI)@(x)

(4 3 ) Thus, we can write

(4.12)

The first thing we wish to observe before we consider the
general equations is that, despite appearances, the term- with

m(') g(x) g(x) is not a mass term. To see this, let

(2 (t) = i f II, (x, t) . q @(x,I) d'x, (4. i3)

e() ——f =0
and vary with respect to P„(x) and P(x). Thus

0"(x) = —(I)/() x )0(x)

[y; (x', t), II,(&(x, t)] = iB„-B'(x' —x),
4.4

Therefore,

[J()(x, t), y(x', t)] = B'(x —x')q y(x', t)

or defining, formally, with A « 1

(4.14)

(4.15)

(()/()x„)y"(x) = m() y(x), (4 6)
or

[V' —(8'/Bt')]y( ) = — .'@(x) (4.7)
"The author was first introduced to this technique in J. Schwinger's
lectures in field theory in 1952. He recalls —still—the sinking feeling he
experienced when Schwinger stated that the "natural" representation of
a spin-zero field was the five-component object (@„(x),@(x)). In the
subsequent years, he has come to see that Schwinger had a point;
computations with the Lagrangian are greatly simplified.

U(A), = (i + iAg, (t)),

U(A), I'~ ("') 'IU(A);'
&@2(x,t) p

It'y)(x, t)) t' @2(x, t)
)I

4 $2(x, t) ) &
—p) (x, t) )

t' cos (A)qtII (x, t) + sin (A)@2(x, t) &

(, cos (A)@2(x, t) —sin (A)ltll (x, t) j '

(4.i6)

(4.17)

II Despite tllc cxpllc1t RppcRfRIlcc of Ax(x) 111 J&{K)11 ls a true four-vcc'tor
in all gauges. See, for example, L. S. Brown (1966) or B.Zumino (1960).
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That the Lagrangian is invariant under such rotations of
the fields p is evident from its form. However, there is a
wider invariance under "local" rotations defined in terms
of a local "angle" A(x), where A(x) is an essentially
arbitrary function of space —time. Let

(4.31)Kx) = n+ @'(x)

where

(4.32)

F (x) = (B/Bx„)A"(x) —(B/Bx.)A"(x), (4.33)

y„(x) = —(B/Bx")y'(x) + ie, qrfA„(x); (4.34)

((B/Bx") —ice qA„(x))y"(x) = —f 'rf(y'(x) rf). (4.35)

A„(x) -+ A, (x) + (I/es)(B/Bx")A(x). (4.20)

Without this last transformation the Lagrangian would
not be invariant since the derivative B/Bx„has no simple
transformation property when A is a function of space—
time. However, the quantity

(B/Bx")F (x) = ie, y—"(x) qrf = —my,'(x)
= m'((1/m)(B/Bx„)yl(x) —A"(x)) (4.36)

(4.21)
where we have definedy„(x) = —(B/Bx")P(x) + iesqgx)A„(x)

is "covariant" under these transformations; i.e.,
m = es~2(mp/f). ( )

We turn to Eq. (4.36) shortly, but first let us look at Eq.

@, (x) ~ @, (x)cos(A(x)) @, (x)s;n(A(x)) (4 23) (4.35) in the limit es = 0. It reads, separating the compo-
nents,

4.37

while

( p
!E~~(mo/f ) ) '

and p'(x) the "quantum fiuctuations" will be taken to be

(x) ~ y (x) sin (A(x)) + y (x)cos(A(x)) (4 19) "small. "We then write the equations for Q'(x), dropping
terms in p" and esp'. Thus, we have the approximate set

and

F„.(x) ~ F„.(x), (4.24)
(B/Bx„)(B/Bx")yl(x) = 0 (4.38)

(oly, (0)lo& = 0

«Ie (o)Io& = v~( .If) (4.27)

as one of an infinite set of equivalent possibilities allowed
by the local U(l) invariance discussed above. " In fact,
we will later re-do this work by choosing a A(x) so that
after rotation

which makes the invariance of E(x) evident.
At this point, one may proceed in various directions

but to maintain contact with what has gone before we
begin by following Higgs (1966). We can minimize the
energy if we demand that the vacuum satisfies

0 = (olm.'@(x) @(x) —V'(y(x) y(x))'lo&. (4.2S)

In leading order we can choose

(B/Bx„)(B/Bx")y,'(x) = Z~ y,'(x) (4.39)

(B/Bx")A"(x) = 0,

the Lorentz gauge. In this gauge

(4.41)

In the second of these equations, +2ms does have the
correct sign to be a mass. Hence, p,'(x) represents a boson
of mass ~2ms. But what of @I(x)? Is it the Goldstone
boson? We can get an important insight if we consider,
using Eq. (4.36),

B B (I B B, B

,....F () =0=!—B..B„~()-B.,A"()!
(4.40)

This equation is incomplete until we specify
(B/Bx")A"(x). First we shall consider the choice"

@I(x) = 0 (4.28) (B/Bx")(B/Bx„)y)(x) = 0. (4.42)

@'( ) = V'@'( ) + e'( ) (4.29)

or

tan(A(x)) = —[y, (x)/y, (x)]. (4.30)

This enables one to short circuit some computations, but
at the expense of introducing a rather formal looking
transformation which may hide the physics. Let us,
following Higgs (1964) and Guralnik et al. , deal directly
with the equations of motion by linearizing them. We let

J„(x) = h.(mA„(x) —(B/Bx")@i(x))

Where we have included in the current the factor

(4.43)

In other words, in the Lorentz gauge pI (x).is a Goldstone
boson but it is decoupled from the rest of the system This.
decoupling will, in fact, maintain itself to all orders so
that in the Lorentz gauge there is a harmless Goldstone
boson. We have found the Goldstone in the linearized
theory by studying the equations of motion. If everything
is consistent, we would naturally expect to be able to
prove the Goldstone Theorem in the Lorentz gauge. To
this end, consider J„(x) defined by

~ The rotations of the Cartesian "coordinates" @~(x) and +(x) are
equivalent to phase transformations of the complex fields p-(x)
= 4(x) ~ &%(&)/V2.

X = ~2(mp/f ),

"A fuller treatment is given in T. W. B. Kibble (l967).

(4.44)
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so that J„(x)will have dimensions of L'. Then (8/Bx")B"(x) = 0. (4.56)

yielding

Jo(x) = i[.(mAO(x) + j)(x)) (4.45)
/

In summary then, the linearized approximation to the
Higgs Lagrangian solved in the Lorentz gauge shows:

l. a Goldstone theorem

[J,(x, r), y') (x', r)] = —i''(x —x')

with, of course,

(4.46) 2. an uncoupled Goldstone meson

3. a massive scalar meson

4. a massive vector meson.
([I/[I x„)J„(x,r) = 0, (4.47)

so that the conditions of the Goldstone theorem are
satisfie. .

Indeed, if we look at the expression for M„(k) in the
linearized approximation, we find

m(k) = Jd"x exp i[kx)x(0[[ma„(x)

(II/O ")y'( ) y'(0)]0)

=iA.k„d'xexpi kx 0 I x, I 0 0

= 2vriiM„B(k' + [I')~(ko),

Indeed the ratio of the masses of these last two objects
is given by

~&mo/m = e,f, (4.57)

yielding the remarkable result that these masses are given
in terms of each other as a function of the two dimen-
sionless coupling constants of the theory. No trace of any
multiplet structure remains, and what is left of the gauge
symmetry is expressed in the mass formula Eq. (4.57).

If the theory is to make sense, we would expect that the
observable physics should be independent of the gauge of
A, (x). To see how this happens, we shall re-do the work
in the radiation gauge with

where we have used the expression for the free-boson
commutator V A(x, r) = 0, (4.58)

and allowed for the possibility that @)(x) might be
massive with mass [M. We see that Eq. (4.48) is only
consistent with

eo J„(x) = m[mA„(x) —(8/Ox")yI (x)] (4.59)

is still conserved in view of the antisymmetry of F~(x);
(4 50) however, we now have a nontrivial connection between

A„(x) and Q) (x), namely
k "M„(k) = 0

i~(x ['). —= . [ '(x) '(o)] where we lose manifest covariance and where we expect
that the Goldstone theorem will break down. In the limit

d'k . » e, = 0 the equation for p&(x) is unchanged so that this

J (2 )3
"p ' ] ' ( " ) ( ' ) field still corresponds to a boson of mass ~2mo. The

current

p' = 0 (4.5l)

A" (x) —
~

A"(x)
a a

which is the Goldstone theorem.
This appears to dispose of @)(x) and @2(x), but what

are we to make of A„(x)? To obtain an insight, we look
at the field equation

(8/Bx„)(d/(Ix')y', (x) = mA, (x), (4.60)

a
0 X~

Ao(x)—
a a „,l aA"(x) = m' —

~
y) (x) —A" (x)

(4.6l)

or

so that p) (x) is no longer a free mass zero boson. To this
equation we can adjoin

2 1 ()= m' —
~

y') (x) —A" (x)

which, in the Lorentz gauge, becomes

(4.52) a
V A( )x— „A(x) = m' —Vy') (x) —A(x) (4.62)

C) X BX„HZ
and

A"(x) = m' — y)(x) —A"(x) . (4.53) .. a 8, I . ,
1 0

A, ( ) + „Ao(x) = —m' —j', ( ) —A, ( ) . (4.63)
BX 0X fPl

This is clearly not the equation of a massless photon. In
fact, and in anticipation of later work, if we call This strange looking array of equations may be solved as

follows: Since
B"(x) = A"(x) —(I/m)(B/[Ix„)y) (x) (4.54)

we can write, in view of the equation satisfied by @)(x),

(8/Bx")(8/Ox, )B"(x) = m'B."(x), . (4.55)

which is to say that B"(x) satisfies the equation of a free
vector meson of mass m with the constraint

or

V A(x)=0,
'V'A( 0)x= mV'y')(x),

A'0(x) = mP)(x) + E(x),

(4.64)

(4.65)
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where

V'F(x) = O (4.67)

and the mass ratios remain the same. There are still some
points to focus on. First, what has happened to the
Goldstone theorem? To explore this we study, as usual,

for all x. Since A, is nonsingular as a function of x, F(x)
is a constant which we wi11 set equal to zero. Thus lJ.( ) 0'(0)l = ( /. )[ ~.( ) —(a/a ")@'( ) 0'(0)l.

(4.75)
Ao(x) = m@I(x). 4.68

As we have seen, in the linearized approximation
Hence, in the Coulomb gauge @I(x) is not a Lorentz
scalar but the time derivative of As(x). But we have seen
from the last section that in the Coulomb gauge A„(x) is
not a four-vector. We carried out this work for a free
photon, but more generally under a Lorentz transforma-
tion generated by U(~)

U(f)A (x)U (6) = 2 (x ) —6 A, (x ) + (a/ax„)A(x, tj,
(4.69)

where A(x, 'e) is a complicated function of the fields
which we computed explicitly only for the free field
case."Thus, if we call, as before

J„(x) = (m'/e, )B„(x), (4.76)

where in this approximation B„(x)is a free vector meson
of mass m. Hence it is B„(x) that is to be quantised
according to the statement

lB.(x) B (~)l = —tI g" ——, ~ ~ I~(x —~, ~')a a~

(4.77)

with A(x' —y, m') defined as above. Thus in the linearized
approximation the only state in the sum over states that
contributes to

B"(x) =
I

—— y', (x) + 3"(x)
I

( 1

m ~x

~'(x) — ~.(x) I (4.7o)
1 r' a

~"(x) —
a

~"(x) I

M(k) = fd xmpf''(k~)I(OIIJ(x), K(0)i~ID)

d'xexpi kx m' eo 0 Bx, 10 0

(4.7s)

is
I B(k)), a state of one B vector meson. "If @I(0)were a

this quantity is a four-vector, since the term involving true Lorentz scalar we would have

A(x, 'e) will cancel out in the Lorentz transformation.
Clearly &Oi@', (0 B k (4.79)

(a/ax")B„(x) = 0 (471) since B„ is a spin-one particle, and hence M„(k) would
vanish, contradicting the basic vacuum broken symmetry

which follows directly from the antisymmetry of F""(xjor
hypothesis. However &(oj, as noted above, is nor a

from the equation scalar. In fact since

(a/ax„)(a/ax")PI(x) = mAs(x) = m @](x). (4.72) B„(x) = W, (x) —(1/m)(a/ax )@,(x) (4.SO)
Among other things, this last equation means that in this
gauge @&(x) no longer functions as a Goldstone boson.
We shall return shortly to an examination of how the
Goldstone theorem breaks down here. From Eq. (4.72)
and its companion we have

V A(x) =0 (4.81)

(a/ax")(a/ax, )A"(x) = m'2" (x)

we conclude at once that

(a/ax")(a/ax, )B„(x)= m'B„(x).

(4.73)

(4.74)

V B(x) = —(I/m)V'y', (x)

or, symbolically,

@'(x) = —(I/~)(1/V')V B(x).

(4.s2)

(4.83)
Hence in the Coulomb gauge we have:

(1) no Goldstone theorem

(2) no Go1dstone meson

(3) a massive scalar meson

(4) a massive vector meson

(oly~(o) I B(k)) —~ ~/Ik I',

where e„(k) is the B„polarization vector satisfying

(4.84)

This @l(0) can connect the vacuum to the spin-one B
state; i.e.,

"See, for example, J. D. Bjorken and S. D. Drell (1965) p. 89. In the
free-field case we wrote the extra term in momentum space as

(ke(k)) = 0. (4.s5)

E,(k) = —(k„ko/ik i') EpiA'(k)

which in coordinate space becomes

X(a)a.„)~(..,) = ~(a(a )f, *,
, ~ (..„,, )

which is of the general form given in Eq. (4.69).

It is just here, in this model, that the noncovariance
which spoils the proof of the Goldstone theorem has
slipped in.

I" I am grateful to Dr. Hugh Osborn of Cambridge University for an
enlightening correspondence on these matters.
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We can make this discussion more precise by comput- the "charge" is not a constant of the motion. When
ing ep —+ 0

[B„(x),y', (y)] = —m[8„(x), (1/ V') V B(y)]
i(', g B a)= —

I
m' —,—— „ IA(x —y, m')

V„' By; By")
a a i ai a- a a

m ""By" By, (,
"

By pl By" By" By.

( B&(' Bl (' a&+
I n —

II n I

—
I n I—~(x —»~')

Byi (, ay& (, ay~

(4.86)

where

rl = (0, 0, 0, 1),

d'x 0 Jpx t, '0 0 = i 2 mo 497

1
8p(x) = —,V"Ap(x, f).

We might, naively, assume that

(4.99)

fd x[s,(xt), (l(p, )] =,~[d'xv'[A. (xt)(l(p),,] = p.

and is independent of t.
From the equation of motion in the Coulomb gauge,

8„(x) = —,
I B „B A„(x) —

B
„io(x) I, (4.98)

I ia a a

we have

and where we have used

(B'/Bf')]A(x —y rrt') = m'A(x —y, m'). (4.88) However we easily show that

(4.100')

Hence

() ==1I ~"k -(nk)k, i
e. ~ qk'+ (~k)(nk)~

x (rfk) )t d'x exp [i(kx)]A(x, m') (4.89)

= —2mi —
I

", " l(gk)6(k'+ m')e(kp)

which is of the Higgs form derived in the last chapter, Eq.
(3.47), as the escape from the Goldstone theorem. Note
that since

if we set

m = y 2 (ep m p/f ), (4.90)

ep = 0 (4.91)

M„(k) -+ (~2 m /f )p2rrik„B(k')e(kp) (4.92)

which is precisely the covariant form leading to a Gold-
stone theorem. This illustrates the essential role of the
gauge fields in escaping the Goldstone boson. For ep A 0
we see that us

A(x) = —tan '[y) (x)/@2(x)]. (4.los)

[Ao(x, f), p'(0)] = 'm(1/ V') (a/af)A(x, rrt') (4.1O1)

so that surface terms cannot be neglected and the a,bove
integral does not vanish. This is, of course, a familiar
feature of the Maxwell theory where the equation

(B/Bx")F (x) = —eJ"(x) (4.102)

does nor imply that the electric charge is zero. Again,
surface terms play an essential role because of the zero
mass character of the photon.

The treatment so far has been confined to the lowest
nontrivial order of perturbation theory. To see how these
results generalize to all orders is no easy matter. "How-
ever, if one is not squeamish about somewhat obscure
looking formal transformations one can get a feeling of
how this will work out. To this end we are simply going
to use the local U(1) invariance to "rotate" @)(x) out of
the game, As

(t I (x) = p) (x)cos (A(x) ) + @2(x)sin (A(x) ), (4.103)

@2(x) = —@((x)sin(A(x)) + p, (x)cos(A(x)), (4.104)

we may rotate away Q((x) with the choice

Thus

Mp(k) = 2)rl (m/ep)kp e(kp)6(k + m ). (4.93) @I(x) = o (4.106)

dkpexp ikpt ~o I([. = 2mi ~ ep cos k + ~
y,'(x) = gy, (x)'+ y, (x)'.

Moreover under this transformation

(4.107)

=2m d'xexpi k-x 0 Jpx, 10 0. &. ~ + l

(4.94) 11('B
If we set k = 0 in this expression it becomes

d'X0 JpX t, 10 0 = imeo COSmt.

In other words, even though

(B/Bx")J„(x) = 0,

(4.9s)

(4.96)

—0 (x) a„,@2(x))l

(4.108)
~' See, for example B. W. Lee (1972) for a discussion of the general S-
matrix.
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r„'.(x) = r„,(x),

Ql(x)„= —ep gQ~'(x) + Qz(x) A„'(x),

(4.109) and drop the coupling terms. The perturbation is to be
taken in powers of ep and f while ep/f is taken as order

(4 110) unity. Hence to lowest nontrivial order

@2(x). = —(~/~x")(Q@l(x) + @2(x)) (4111)
Since E(x) is invariant under the local U(1) group, the

field equations are covariant and become

(8/Bx")G""(x) = —m'8" (x) (4.125)

t', , t'2mp& &

)z.(„) (4112) (~/~ ')(~/~ .)x( ) = —
I l —3/2f'I f,

'
I Ix( )

= 2mp x(x). (4.126)

(4113) We would then quantize these free fields by the condi-
tions

ancl

(8/Rx")G""(x) = e,'y,'(x)'A"(x)

while the remaining two equations are the identity

(4.127)

1

„(e,@,(x)~„(x)) = „(e, ,(x)~„(x)) (4.114)
" ' " i " m' ~x" ~x" r

a
y', (x) = mp'y, '(x) —

2
f'y,'(x)' and

[&.(x) x(x)l = 0 (4.128)

+ ep ~,@2(x)A,'(x). (4.115)
a

Up to this point the local U(1) symmetry has not been
manifestly broken. We achieve this as before by demand-
ing that

(Ole'(0)IO) = n « (4.116)

We shall now see in this more general context how this
fixes the gauge and breaks the symmetry. To this end let

[x(x),x(J)1 = —i~(x —J 2m'). (4»9)
In this gauge all trace of the massless fields we began with
has disappeared. In fact we can now verify to lowest
order that

d'x 0 Bx' 6" x = —m' d'xB' x, t = 0. 4.130

To see this, note that in view of the quantization

X(x) = 4~(x) —ri (4.117)

where it is understood that in each order in the coupling
constants q is readjusted so that to that order where

[A(k, h) exp[ i(kx)—] + At(k, h) exp[i(kx)]], (4.131)

(OIx(0)IO) = 0, (4.118) (ke(k, h.)) = 0, (4.132)
and to conform with the notation of the linearized theory
let

A„'(x) =— B„(x).
The exact equations now take the form

(4.119)
We have therefore

w, =QIkI +m. (4.133)

G'"(x) = (ii/Ox„)B" (x) —(8/Bx„)8"(x) (4.120)

(~/~x")G""(x) = el[a'+ 2—x(x)n + x'(x)l&"(x) (4121)
and

But

3 '1 cpk, A.

[A(k, A) exp [iwk t] + At(k, A) exp [ iwk t]].—(4.F34)

x(x) = mp[n+ x(x)]

—2f'(n' + 3n'x( )+x3~X'(x)

+ x'(x))

ep(O, A) = 0.

Thus to this order, and in fact to all orders,

d'x x' 6" x = 0.

(4.135)

(4.136)

+ e.
&

X(x)&.(x)0xp

We reduce to the linearized theory .if we let

q = ~2(mp/f)

m = ~2(epmp/f )

(4.122)

(4.123)

(4.124)

In summary: While the physical particle content of the
three gauges we have studied is the same, the mathemat-
ical structure is quite diA'erent. The last gauge we have
studied is called the "unitary" or U-gauge since the 5-
matrix constructed from the X and B fields will be
manifestly unitary. The task of showing that all of the S-
matrices belonging to diff'erent gauges lead to the same
physics is exceedingly intricate. We give a hint of how
this works in the next section.
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We conclude this section by adding spin-1/2 particles
to the amalgam in a preliminary way. In what follows we
will consider g(x), a spin-1/2 field, A„(x), the vector field,
and the Higgs mesons p(x) and pt(x) where in terms of
the old language

J„(x) = II„(x) + S„(x).

If we wish to interpret

(4.145)

which is reflected in the conservation of the combined
generators

@(x) = l@(x) + t0 (x)]/V& (4.i37)
8 = d X 0 x, t (4.146)

~'( ) = [e ( ) —~ ( )]/V2. (4.138)

In this new language the local U(1) invariance becomes
phase invariance. It is convenient to do thing~ this way
because it unifies the treatment of the spin-1/2 particles
and the Higgs mesons. Hence we write"

I f II „(I
E(x) = ——

l

A" (x) — A"(x) l4~~~
t'a . i, t'a

0 + ie0A„(x) le(x) l
—le0A" (x) ly(x)( Bx ) ( (lxtt

+ ~l @'(x)@(x)—U'(@'(x)@(x))'
( ()+ &(x) l y.

&
™tl0(x) —te 0(x)v, &(x)A"(x)

() XIi

(4.i39)
The first part of the Lagrangian is our old friend, while
the last two terms are the "baryon" addition. We notice
that E(x) has the following invariance:

as a conserved baryon number, we must insist that

B40,
B=0,

(4.147)

(4.i48)

Blo) = 0. (4.i49)

S(t) = Jd xS(x't)t, , (4.i51)

so that, from the canonical commutation relations,

Sp X, t, X, t d X = X, t. (4.152)

Without this last condition no state would have a well
defined "baryon number" and the whole concept would
become meaningless. Clearly we also have

(4.150)

i.e., no meson has baryon number.
However we can formally define

q(x) ~ e'&(x),

e() ~(),
A„(x) ~ A„(x),

(4.140)

and

[S,B] = 0 (4.153)

So we can say that p has one unit of S number. On the
other hand

where A is a real number. This leads to

(2)

[S(t),g(x, t)] = 0. (4.154)

((j/(Ix„)II.„(x) . —= . ((I/(Ix„)(iq(x)y„q(x)) = 0. (4.141) We can now carry through the Higgs analysis on the S
current and p fields. We look for a solution of the theory
with

4(x) ~ 0(x),

@() "e(),
A„(x) ~ A„(x),

(4.142)
so that

(0~Id x [S(x t), 0'(0')]~0) '+, 0

(0I@(0)10) = n + o

(4.155)

(4.156)
which leads to the conservation law

B . 8 t'B
S„(x) —= ' i

~ l ~
+ iepA„(x) ly'(x)y(x)

Bx(t Bxtt i Bx

& a—pt(x)l „—ie0A„(x)p(x) l
= 0 (4.143)(Bx j

At this point we may bring time reversal into the
discussion. The basic statement of time reversal invar-
iance upon which we shall build is the condition on the
current, where T is the time reversal operation,

TJ(x, t)T ' = —J(x, —t), (4.157)

and finally there is the local invariance TJ0(x, t)T ' = J,(x, t). —(4.158)

(3)
4(x) ~ e'""'4(x)

y(x) e"("i4(x)

A„(x) ~ A„(x) + (I/e0)(B/Bx")A(x),

(4.i44)

"This is a model of how to implement, say, baryon number conserva-
tion in the Higgs context. This Lagrangian form was given by S.
Weinberg in a January 1972 unpublished lecture.

Ty, (x, t)T-' = y, (x, —t),

Ty, (x, t)T '= —y, (x, —t),
-

so that for the complex fields p(x)

Ty(x, t) T '= y(x, t). -—
(4.159)

(4.i60)

(4.161)

We can achieve this if we choose the time reversal phases
as follows:
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Hence

(01@(0)lo) = (01@(0)10)*.

Since we assume

Hence, there must be a cancellation between the two
charges that make up fd'x Jp(x, t). It is interesting to see

(4 162) schematically how this cancellation~ takes place in low-
est nontrivial order. We must have in this order

we conclude that

(4.163)

(4.164)

pp1 Bp x, t d x+ ieo ~ x, t x, t d'x = 0.

This follows from the explicit Green's function solution
to the equation for the Heisenberg field B„(x); i e.,

This is consistent with the result we would obtain by
rotating into the U gauge. Note that the U gauge trans-
formation

@I(x) = 0 (4.165)

«l~:(0)I0) = ~, (4.167)

this q is real. The U-gauge Lagrangian becomes, written
in terms of fields with vanishing vacuum expectation
values, [a constant has been dropped in I'(x), and we have
called g'(x) = e'At"&g(x) as we must also transform the g:]

I'-(x) = 0'(x)
I y.

&
+ mf lf'(x)

= ZG""(x)l
Z

„B.(x) —
&

1 „„(8 (1
„B„(x)

~

1 m', l O a+;G ()G,.() ——2B,'()-». X(),„.X()
2

—2' X'(x)B„'(x) —ep mX(x) B„'(x)

pz(x) = Q@) (x) + @2(x) = Q2@t(x)y(x) (4.166)

will preserve the time reversal character of the theory.
Hence, if we rotate into the U gauge and make

(il/Bxg)(8/Bx")B„(x) = m'B„(x) + i,e tt(x)y„q( x)

valid to order ep, with g(x) a free spinor.

mp A„(x)A'(x)

cannot be invariant under

(5.1)

V. THE S-MATRIX

In this section we are going to discuss the Higgs
mechanism from the point of view of the S-matrix, which
means in terms of Feynman diagrams. In most treat-
ments" of this subject one usually begins with an unper-
turbed Lagrangian, which eventually defines the interac-
tion representation and already contains the effects of the
Higgs mechanism in the lowest nontrivial order. In this
Lagrangian the "photon" has already become massive.
One then studies the higher order corrections. However,
following Englert and Brout (1964), we can begin one
step earlier and trace, in terms of Feynman graphs, how
the "photon" acquired its mass in the first place. This
gives an additional insight into the Higgs mechanism
which Englert and Brout discovered independently.

To begin with, we may ask how the usual field theory
accommodates the fact that the photon —the real pho-
ton—has zero mass. The fact that the photon has no
"bare mass" follows from gauge invariance, since a mass
term in the Lagrangian

2&X~
[m2 3/2f 2 2] ( )

2

—
&

X(x)'+ nX(x) l,ml —
2

n'
I
—

2 X'(x)
f' ~ I', f', 'I nf',

—"~'( b.~'( )B"( )

A„(x) ~ A„(x) + (1/e, )(B/Bx")A(x). (5.2)
If this were all there were to it, the Higgs mechanism
could never operate, since the Higgs Lagrangian is also
gauge invariant.

Of course, this is nor all there is to it. We must, in fact,
stud the hoton ro a ator to see if photonic interac-

ive the photon a
d to be—we first
or—

(4.168)
p p p g

with the notation as before. The current tions have, somehow, conspired to g

J„(x) = iepf'(x)y„Q'(x) + m'B„(x) + ep X (x)B„(x) deal with the unrenormalized propagat
+ 2ep mB„(x)x(x) (4.169)

I rk 'Hd4
is conserved and has a vanishing charge. However the I( )~ (2~)4J
"baryon" current

f (x) = iep0 (x)7 4''(x) (4.170} i, )

—d'x(0)T(A„(x)A. (0)))0)exp [i(kx)],
2m

is separately conserved. This follows from the invariance
of P(x) under

(5.3)
~ A reader who actua11y repeats this computation wi11 find that the
condition

0(x) ~ e"0(x)

X(x) ~ X(x),

B„(x) B„(x).

(4.171)
d'xft x, t x, t = 0

will come in in an essential way. He (or she) should also remember that
for the free B„(x)

We certainly do not want

d X OX t =0.
d'xBO x, t = 0.

(4.172) "See, for example, B.W. Lee (1972).

Rev. Mod. Phys. , Voe. 46, No. 1, January 1974



Jeremy Bernstein: Spontaneous symmetry breaking and all that

where

Dts(k)„„= g„„/(k' + ie). (5,5)

In the limit ~ —+ 0 Eq. 5.5 has a pole at k' = 0, the
photon mass. If the exact Green's function had a pole
somewhere else, the photon would have acquired a mass
through interactions and this would manifest itself, for
example, in the fact that the static limit of the interaction
between two charged particles would not be the Coulomb
potential but rather a Yukawa potential with an exponen-
tial falloA whose range would be the inverse of the
reciprocal of the position of this pole. Hence, the full
theory must arrange itself so that the position of the pole
is not shifted and, indeed, in the Higgs theory this
arrangement must break down somewhere.

To see how this happens we must study the structure
of the exact photon propagator. This is a matter of
summing, at least symbolically, the full set of Feynman
graphs. "The exact photon propagator will be drawn as
the blob in Fig. 1. This blob can be represented in
perturbation theory as follows:

(a) Define a "proper" contribution to the blob as any
diagram that cannot be rendered disjoint by removing a
single photon line. See Fig. 2 for examples of "proper"
and "improper" contributions.

(b) Remove the external photon legs and call II„„(q)
the sum of all "proper" graphs to arbitrary order in eo, the
unrenormalized charge. (The factor ieo in front is conven-
tional. )

(c) Thus, the exact photon propagator —again ignoring
gauge terms —.is, dropping the ie which defines the Feyn-
man contour (See Fig. 3).

e

i'(q') = i "," + —,—(tee II„„(q))—,

+ —,(teo II~(q') —,(ice II„"(q'))—,+q' q' q'
(5.6)

T(A„(x)A„(0)) = 8(t)A„(x, t)A„(0) + 0(—t)A„(0)A„(x, t)
(5.4)

and the A„(x) are the unrenormalized photon fields. For
the free photon —neglecting gauge terms —Di(k)„„ is sim-
ply

To make the next step we must remind the reader of a
result from field theory, namely,

q"II„,(q) = 0 (5.7)
i.e., II„„(q)is a conserved tensor. This is a consequence of
the fact that A„ interacts with a conserved current. "
Hence, this result holds in the Higgs-type theories in
which gauge invariance is broken, but the photon in all
gauges interacts with a conserved current. Thus, since
II„„(q) is a tensor and depends only on q„q„and g,„, we
must have

tDi(q') ~ = t z
———2e'g II(q')

+ —cog, II'(q') + . . .
q2 PV

q' q 1 + e.'II(q')) (5.9)

All of this goes through for the Higgs theory. Why then
is the photon massless, while in the Higgs theory it
acquires mass? This has to do with the analytic structure
of II(q') in the two theories. So long as II(0) isPnite; i.e.,
has no pole at q' = 0, the photon will remain massless.
However, if as q —+ 0

II(q ) il'/q' (5.10)
the "photon" will acquire a mass cog. In ordinary quan-
tum electrodynamics, there is no way that II(q') can
acquire a pole at q' = 0. This could happen only if there
were a zero mass intermediate state in one of the proper
diagrams. Since II(q ), by definition, involves only prop-
er photon graphs and since all other massless particles-
the neutrinos —have no electric charge, all one-particle
intermediate states in the normal theories have a nonzero
rest mass. However, as we shall now see, the Higgs
theories are something else. To carry out our program, we
return to the Higgs Lagrangian which we write in its
complex form as

II,.(q) = (q'g, . —q. q )II(q') (5 8)
It is the properties~ of II(q') that determine the function-
al form of Dt(q )„„and, in particular, the position of its
poles. Hence, dropping terms in q„q„since these do not
contribute to the S-matrix,

E(x) = P, (x) + Et(x) (5.11)

FiG. 1. The exact photon propagator. In this,
and subsequent diagrams, wavy lines are photons,
and solid lines are charged particles. &.(x) = -4(, ~"(x) —,~„(x) ~

1( t)

t) t—,.+'( ),„+( ) (5.12)

Fm. 2. Figure 2(a) is a typical "proper" diagram, while 2(b) is an
"improper" diagram.

FK'. 3. The "bubble sum"
for the exact photon propaga-
tor.

4' Once again, we follow the exposition in J. D. Bjorken and S. D. Drell
(1965), although not their metric conventions.

4' Bjorken and Drell (1965) show this in quantum electrodynamics using
a Ward identity. The Ward identity in Q.E.D. follows from current
conservation alone, as is evident from the Takahashi proof (1957). Other
proofs can be given using gauge invariance, but current conservation
suffices.
44 We are being rather sloppy here about renormalized and unrenormal-
ized quantities. In general, the unrenormalized II(q ) will be infinite for
all q'. To render it finite, it will have to be subtracted at, say, the
physical mass of the "photon. "This nicety will not trouble us in what
follows, since we shall not go beyond the no-loop approximation. A
discussion of the role of the singularities in II(q') and the "photon"
mass was given first by Schwinger (1962).
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(ol~(o)lo& = o (5.14)

it would not exist, since everything is hopelessly infrared
divergent because of the zero mass scalar mesons. How-
ever, let us assume the vacuum-broken symmetry condi-
tion and shift tt (x) so that

e, (x) = -te. W. (x)l 0'(x) e(x) — y'(x)y(x) I

la a

ax„
—«'A„(x)A" (x)y'(x)y(x) + mo y'(x)y(x)

——f2(pt(x)p(x))' + counter terms . (5.13)2

If this theory were quantized in a normal way with

FIe. 4. These diagrams represent the leading corrections to the free
photon propagator in the Higgs theory. The wavy line is the photon,
and the dashed line is the @(0). The vertex in Fig. 4(a) is given by
eo(tt'/2), while each vertex in Fig. 4(b) is given by iq„(tteo/~2), where

q„ is the "photon" four-momentum.

2 2)
tDt(q')~ = t(g"/q') 1/I 1+ '2

q' ) (s.2o)

which means that the "photon" has acquired a mass a la
Higgs. The pole is achieved here because of the zero mass
scalar bosons in the intermediate states.

We may develop an elegant appearing propagator,
including gauge terms, if we adopt the Landau gauge for
the free photon propagator, i.e.,

with

@'(x) = @(x) —(n/V 2) (5.15)

The tensor

tDt'(q') = tl:g" —(q"q/q'l(I/q'). (5.21)

(ol@(o)lo& = o (s. i6) 4 = lg" —(q.q/q')1 (s.22)
0 1

with 21 real. We leave g„(x) alone. Thus, in terms of the
shifted variables (5.23)

1(
p, (x) = ——

I
w"(x) — w"(x) I4 gt)x„t)x. Hence, the sum can be performed as before and yields

(s.i7)
. / qq& 1 1

1+ II( (s.24)

while

P-r(x) = —t'eo ~„(x)l ~
y'(x)—

( BXitt

2
—e,' 2 A„(x)A"(x)

,„e'( ),I

v. (q) =
I g" + "," I/(q'+ m'). (5.25)

with the same II(q') as in Eq. (5.8). The important thing
to note about Df(q')„„ is that it is nor the propagator—
even in the lowest nontrivial order —of a free vector
meson with mass. This latter propagator would be

—t'«~, (x) I y'(x)
~

0'(x) —
~

0'(x)e'(x) I

—e() X X

+ ", (~'( ) + ~'( )) I&.( )~"( )

+ '(e'( ) + ~/v/2)'(@'( ) + n/v 2)
2

——2((@'( ) + n/v2)'(e'( ) + ~/v 2))' (5.

Ii (q) = (q'g —q. q)(1/q') (5.19)

where we have taken account of the fact that the interac-
tion representation propagator of the @' goes as (1/q').
Thus, the effective "photon" propagator goes, when
summed over such point couplings, as

We may now proceed, following Englert and Brout
(1964), to quantize the theory and derive the Feynman
rules. The interaction representation involves a zero mass
photon and a zero mass @'. The leading order contribu-
tions to the "photon" propagator are given by the two
diagrams in Fig. 4. Thus, in this approximation

It is not transverse and the presence of the factor q„q„/m'
causes severe ultraviolet problems.

What is very striking about the derivation of the
broken symmetry propagator, Eq. (5.24), from the under-
lying electrodynamic model is that the theory remembers
enough of its electrodynamic origins to produce the
gauge term q„q„/q' which is not badly behaved at high
energies. The remarkable fact that the "photon" in this
theory acquires a mass in this special way enables the
theory to escape the snares of both infrared and ultravi-
olet divergences. In the last analysis, it is, at least in this
respect, no worse than quantum electrodynamics. 4'

4' The qualification we have in mind here has to do with the so-called
"Adler anomalies. " See S. L. Adler (1969) and also J. S. Bell and R.
Jackiw (1969).These are "anomalous" terms in Ward identities involv-
ing two-vector and one-axial-vector currents. The presence of these
terms is, in some sense, the price one pays for unifying weak and
electromagnetic interactions, since inevitably there must be a coupling
to the nonconserved axial current. In the gauge theories these anomalies
can spoil the renormalization program. It is possible to cancel out the
anomalies in a large class of models —not including, by the way, the
Weinberg 1967 model in its original form and this is sometimes
regarded as an important criterion for selecting among gauge models.
See, for example, Zumino (1972) for a summary of what is involved. On
the other hand, these anomalous terms only enter the S-matrix in order
g' so, from a practical point of view, they do not injfuence agreement
with low and medium energy experiments.

Rev. Mod. Phys. , Vol. 46, No. 1, January 1974



Jeremy Bernstein: Spontaneous symmetry breaking and all that

FK". 5. This figure represents the "bubble sum" leading to the exact
unrenormalized p' propagator. Each bubble is the exact sum over
"proper" diagrams. The dashed lines are the free propagators p'.

FIG. 6. The leading contribution to the p' propagator correction.

The leading contribution to the p' corrected propaga-
tors are given by the p't(x)p'(x) terms in Et(x) (Fig. 6.)
These are proportional to

Let us now discuss the p' propagator in the same spirit.
We can write the exact unrenormalized @' propagator as
a series (see Fig. 5),

Hence, we have

rrlo f 'q = m—o ~ (5.32)

l l 2 l
iDf(q') = —,— ,P(q')—+ ,P'(q'—) +q' q' q'

q' (1+ P(q')) (5.26)

mP e'(x) +
I I

@'(x) +2J 2j
—2f'((@'( ) + n/V2)'(@'( ) + n/V2))'

2= ~' '
—, + "2(@'(x) + e'( ))+ @'(x)e'(x)

2 4 2
—— "—+ "—(y'( ) + e'( ))'+ @'( )'@"( )2 4 2

3

(y'&(x) + y'(x)) + q'y'(x)y'(x)
v2

+ V2q(y'(x) + @'(x))e'(x)e'(x)

(5.28)

The terms linear in p'(x) and g't(x) represent "spu-
rion" interactions in which @' can disappear into the
vacuum. These are inadmissable since @' has been adjust-
ed to have a vanishing vacuum expectation value. Hence,
a consistency condition to leading order is

m,'(q/V2) = f' '/r2iV2

This equation has two solutions:

(5.29)

Here we have, in analogy to the photon situation, defined
the "blob" function, say E(q'), to be of the form

iP(q') . —= . q'P(q') (5.27)

so that the @' acquires a mass if P(q') has a pole at
q' = 0. To see this pole develop we may consider the &'-
self-coupling terms in Pt(x); i.e.,

P(q') = 2m,'/q' (5.33)
and we recover the result of the linearized theory.

Croing beyond this no-loop ("tree") approximation
brings us up against the infrared problem in all its glory.
Clearly, what is required is an iterative procedure in
which first the tree graphs are summed to give the p' and
"photon" a lowest order mass, and then the radiative
corrections are added on. An approach to this is given in
a paper of Coleman and Weinberg (1973).4' One fascinat-
ing result of their work is that even if m0 = 0, the limiting
case between the real and imaginary mass situation, the
p' will still acquire a mass because of ordinary electro-
magnetic radiative corrections provided that the theory is
solved with the vacuum broken symmetry conditions.
This result appears to resolve the problem of what
significance one is to attach to the notion of a charged.
particle of zero mass. In particular, what is the limit of
scalar boson electrodynamics when the boson bare mass
mo is allowed to tend towards zero? For me ) 0 we have
ordinary quantum electrodynamics which is a renormali-
zable theory. For mo ( 0 we must interpret the theory a
la Higgs. We no longer have electrodynamics, but rather
the theory of a massive vector meson interacting with a
Higgs scalar of finite mass. As Coleman and Weinberg
show, if mo —+ 0 from either above or below, the theory
retains its Higgs form provided that one includes correc-
tions of at least order o.. Zero mass "electrodynamics" is
neither the theory of zero mass particles nor is it electro-
dynamics, but it does appear to be perfectly sensible. The
interested reader should consult the paper by Coleman 8'c

Weinberg for details. We now resume the line of devel-
opment that will lead us to the unified theories of weak
and electromagnetic interactions.

VI. NON-ABELIAN GAUGE SYMMETRIES

Up to this point in the discussion, we have been
concerned with gauge transformations that produce c-
number —that is, numerical —changes of phase of the
"charged" fields. These changes of phase can be "global",
i.e.,

g=0. (5.30) 4(x) ~ exp(in)4(x) (6 1)
This solution would take 'us back to the unbroken
symmetry situation with its insoluable infrared difhculties
and is, therefore, unacceptable.

where o. is a number independent of x, or they can be
"local", i.e.,

g(x) -+ exp [in(x)]g(x). (6.2)

rl =~2 —' (5.31)
Let us recapitulate what we have learned about the
invariances of suitable Lagrangians under these transfor-

This returns us to the linearized theory of the previous
section so that we adopt it.

~ See, for example, S. Coleman and E. Weinberg (1973) for an updated
and complete discussion of these questions within the Higgs framework.
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mations by means of a very simple example which we will
soon generalize. Consider

&o(x) =, 4(x)7.(~/8x. )4(x) (6 3)
the Lagrangian for a free massless fermion field. Clearly,
it is invariant under the global gauge transformation
given in Eq. (6.1) and we may readily show that this
implies the conservation of"

(6 4)

among themselves. In this review we shall mainly restrict
our concern to a relatively simple generalization, the
SU(2) group. But enough of the basics are involved here
so that one may confront the literature with its growing
profusion of groups without excessive difhculty. We will
then break this symmetry with the Higgs mechanism also
suitably generalized.

Let us then suppose we have two massless spinor fields
g~(x) and g~(x) which we combine into the "doublet"
spinor

It is not invariant under the local gauge transformation.
Indeed, if we call

&0 (x) &

e(x) =
1,~())l (6.1 1)

then

&(x)' = exp[in(x)]&(x),

& (x) = 0(x)V.&„&(~)

( () ()= &(~)'V. l &„—i
&

n(x) I&'(x)
q(x) ~ exp [i)I,S]q(x), (6.13)

(6 5) The free Lagrangian of this system is

E(x) = &(x)y„(t)/t)x, )q(x). (6.12)

Now let S be any 2 X 2 Hermitian matrix. Clearly, l'(x)
is invariant under all global phase transformations of the

(6.6)

which exhibits the lack of invariance explicitly. However,
we can restore the invariance if we couple the P(x) to a
photon, i.e., a vector field with no bare mass, in the usual
way: S = n . (r/2. ) + In„ (6.14)

where A is a real number. However, any 2 X 2 Hermitian
matrix can be written as

e(x) = eo(x) + e, (x) + et(x) = &(x)y, (t)/&x„)&(x) where no ~ . 0.3 are real numbers, the v are the Pauli 2 X 2
spin matrices, and I is the 2 X 2 identity matrix. Hence-
forth, we shall define

where we now demand that, along with the local phase
transformation of the g(x),

T = T/2 (6.15)

where
6.8A"'(x) = A"(x) + (I/es)('d/t)x„)n(x).

We also assume that the function F(A„(x)) is invariant
under the transformation given by Eq. (6.8), i.e.,

F'(w„(x)) = F(w„(x)). (6.9)

(6.16)

Now clearly the part of S that is proportional to I
commutes with everything else so that it can be factored
out of the exponential; i.e.,

This will be assured if, as before, I' is a function of

t) A" (x)/t) x. —t) A"(x)/t) x, . (6.1())

Hence, we might say that if the photon did not exist we
might have invented it to restore local gauge symmetry.

We now propose —following Yang and Mills (1954)—
to generalize these considerations to operator phase trans-
formations which, in general, will no longer commute

4' This is a special case of the following observation which can be
generalized to non-Abelian transformations: Let

4(x) (l + A(x))0(x).

where A(x) is a real c number such that

A(x) « l.

n = n(x) (6.18)

where each of these components is taken as irtftnitesimal.
Incorporating the A into the definition of the n we write

With

S = 1+ in(x) . T. (6.19)

exp(iAS) = exp(ihno I)exp(i)in T). (6.17)

The first factor is simply a U(1) Abelian gauge transfor-
mation of the type previously studied. The new work is
contained in the factor exp (i)in T). These are the
SU(2) transformations represented by the traceless 2 X 2
matrices T. To make the rest of the work tractable, we
consider

Then if E(x) is invariant under

Wx) (l + A)0(x)

for constant A; the quantity
we have

e'( ) = (1 + ( ) T)V( ) (6.20)

( )
K'(x)
BA(x) h(x)=0

Bx"

where P'(x) is the transformed Lagrangian, is a conserved current as a
consequence of the Euler-Lagrange equations. See, for example, M.
Cabell-Mann and M. Levy (1960) for a more detailed discussion.

0(x)V.(8/~x. )&(x) = 0'(x)

n(x) T 14'(x).

(6.21)
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30 Jeremy Bernstein: Spontaneous symmetry breaking and all that

Hence, to restore the invariance, the previous example Furthermore, from the definition of 8„(x) and the famil-
would suggest that we introduce a triplet of "photons", iar properties of the 2 X 2 spin matrices, we can show
b„(x), i.e., the Yang —Mills fields, by the prescription that

(B/ Bx„)f(x) ((B/ Bx„) —igb„(x) T)P(x). (6.22) F„,(x) = T f„,(x), (6.32)

We must now find how the b„(x) transform to keep the
newly constructed Lagrangian invariant. As above, let us
define the local SU(2) unitary transformation S(x) by the
equation

where

F„„(x)= (B/Bx")b„(x) —(B/Bx")b„(x) + gb„(x) x b„(x).
(6.33)

g(x) = S(x)g(x).

Further, let us call the "covariant derivative"

(6 23) Finally, as we now know the transformation properties of
B„(x), we can infer directly those of b„(x). For an
infinitesimal transformation of the form

D„= (B/Bx") —igb„(x) . T
~ =— (B/B x") —igB„(x),

(6.24)
S(x) = 1 + in(x) (v/2), (6.34)

b„'(x) = b„(x) + b„(x) x cx(x) + (1/g)(B/Bx")a(x), (6.35)

where the 8„(x) are defined to be

8,(x) . =— b„(x) T, (6.25)

and have been introduced to simplify the writing. Thus,
the covariance condition of the D„derived from the
statement

which is to say that b„ transforms like a conventional
isovector under global gauge transformations, but that
local gauge transformations add an additional term pro-
port'ional to (B/Bx')cx(x). However f„„(x), as defined
above, Eq. (6.33), does transform like an isovector since
the extra term drops out, i.e.,

1S

(6.26)
f„'.(x) = f„,(x) + f„,(x) x a(x). (6.36)

Putting all of these remarks together, we can construct
the full invariant —against local SU(2) transformations-
Lagrangian involving fermions and Yang-Mills fields,

(B/Bx") —igB„(x) = S '(x) [(B/Bx') —igB„'(x)]S(x)
(6.27) E(x) = ——

~ „b,(x) — „b„(x)+ gb, (x) x b„(x)
~

1( a a
4 (Bx" Bx

igS '(x)8„'(x)S(x) = igB„(x) + S '(x) [BS(x)/Bx"]

(0 . v—4(x)V. I B„—ig2 b"(x),l0(x) (6.37)

(6.28)

8„'(x) = S(x)B„(x)S '(x) + (1/ig) [BS(x)/Bx".]S '(x).
(6.29)

It is the last term of the right-hand side of this equation
which reflect the local character of the transformation. It
is now a matter of some algebra to discover how various
functions of 8„(x) transform,

A very important observation in this respect is that,
unlike the Abelian case, the quantity (B/B x")B„(x)—(B/Bx")B„(x) is not convariant. Indeed, after some
.straightforward algebra one finds instead that the tensor"

E„,(x) = (B/Bx")8„(x) —
B

„8„(x)
a

—ig(8„(x)8,(x) —8„(x)8„(x)) (6.30)

enjoys the property that

We could have included a mass term g(x)g(x) in E(x)
without disturbing the invariance, but for reasons which
will soon be clear, we prefer not to. On the other hand, a
term of the form b„(x) b"(x), while invariant under
global SU(2), is not invariant under local SU(2) and
hence is excluded in E(x).

We may arrange to break this symmetry a la Higgs by
adding Higgs fields in close analogy to the Abelian case.
However, here we shall add an SU(2) doublet

(6.38)

The significance of the +, 0 superscripts is the following:
So long as we add a Higgs Lagrangian of the form

E (x) = —
I B„,+ igZ b.(x) I@'(x)
( B

. v—ig- b"(x) ~y(x)EBx„2 )

E,'.(x) = S(x)E„„(x)S(x)'.

~ Recall that since the T do not commute

B„(x)B„(x)a B„(x)B„(x)-

(6.31)
where

+ le'( )e( ) —2f'(0'( )e( ))' (6 39)

@'( )x0( x)
= @'( )'x@'( )x+ @'( )'x@'( ) x(6 4o)
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we preserve the local SU(2) invariance of the total However, before doing this it is worthwhile to rotate, say,
Lagrangian. However, as we saw at the end of Sec. IV, p'(x) out of the game. This will define the passage to the
there is also a global phase invaria. nce under U-gauge. Under an SU(2) transformation,

g(x) ~ exp(iA)P(x),

y(x) ~ exp(iA. )y(x),

b, (x) ~ b„(x).

This implies the conservation of the current

(6.41a)

(6.41b)

(6.41c)

@'(y) = exp tin(x) ~/2]e(x)

=
l cosl I + irf ~ »nl l ly(x), (6.50)

&n(x)& . . t'n x & &

2 ) ~. 2 ))
where

~ a
I:(x) = i 0(x)y.&(x)+ I ~, + ig2 b.(x) l@'(x)@(x)

—@'(x)l , —ig — b, (x) l@(x) .q()x" 2 " ) (6.42)

In addition, there is the conserved isotopic spin current
whose existence follows from the invariance under

n(x) = ln(x)l~

and we have called ln(x)l simply n(x). Thus,

t'nx)& . . &nx &

Q"(x) = cosl l
+ i sinl lrt, g'(x)E2)

+ i(rt. —irt, )sinl 2 ly'(x)
t' n(x) i

(6.51)

(6.52a)

&'(x) = [1 + in . (v/2)]g(x)

e'( ) = [1+ (/2)l~( )

b„'(x) = b„(x) + b„(x) X n.

(64») and

(6.43b)

(6.43c)
y'(x) = cosl 2 l

—t sinl 2 lq. y'(x)
t'n(x) i . . t'n(x) &

)

+ i(rt. + ii), )sinl 2
ly'(x).(n(x) i

Thus, we find for the conserved isotopic spin current (6.52b)

T.(x) = t 0(xh. 24(x)

+ l, , + g-, b.( ) le'( )-2~( )

v& t) . v—e'(x)-l, —is- b.(x) le(x)

+ f„„(x)x b"(x). (6.44)

The second term in T„(x) is a generalization of the
familiar fact that the Klein —Gordon electromagnetic cur-
rent involves the electromagnetic field itself, while the last
term reflects the fact that the Yang —Mills field b„(x) also
carries isospin and must be included in the isotopic spin
current. If we call the "electric charge"

Hence, if we rotate about the y direction we can achieve

y"(x) = 0 (6.53)

l6
ct(x)

&lE2)
(~'( )e'( )' + @'( )~'( )' — (~ ( )~'( )' —~'( )~ ( )

2le'(x)l'
(6.54)

which reduces to the work of Sec. IV, Eq (4.105) when @'
and p' are Hermitian. After rotation we can set

g = fd'xl;(x, t) + fd xT(x, t)='(r/2) +, r„ (Ol@"(0)lo) = ~ X 0

(6.45) and from the time reversal condition

(6.55)

then p'(x) carries charge +1, while p'(x) carries zero
charge.

Since the field momentum conjugates to @(x) is

T~"(0)T-' = ~"(0)
conclude, as above, that

(6.56)

we have

II(x) = [(d/t)t) + igr . b (x,st)]y'( t)x(6.46)

We can define4'

(6.57)

d'xTox0, 0 = t 2 0. (6.47) x() =e"()—n (6.58)

(ol@(o)lo) = ~ ~ 0, (6.48)

where g is, in general, a complex two-component column
vector. Hence, we can displace as usual and write

X(x) = @(x) —n (6.49)

Hence, if we are to have vacuum broken SU(2) symme-
try, we must have

and work out EH(x) in this gauge in terms of these
variables. Thus,

4' The reader will notice that g(x) is not Hermitian. A reader who has
studied Weinberg (1967) may wonder why his surviving Higgs field is
Hermitian and ours is not. The difference, as we shall see in the next
section, is that Weinberg's group is SU(2) X U(1); i.e., he has an extra
local Abelian gauge symmetry corresponding to hypercharge conserva-
tion. Hence, Weinberg can rotate the phase of p'(x) away after he has
made his SU(2) rotation, without spoiling the equations of motion.
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32 Jeremy Bernstein: Spontaneous symmetry breaking and all that

&H(x) = —
z .X'(x) &„X(x)

a t nos since both. appear to be massless and left handed) we
can express these facts by the pair of equations

+ — (X'( ) + ~)b:( ), X( ) y„(B/Bx„)v(x) = 0, (7.1)

X'(x)b:(x).(X(x) + n) yg v(x) = v(x). (7 2)

—
4 b„'(x)

b"'(x)[X(x)X'(x) + (X(x) + X'(x))n + 3']
+ ~l(X(x) + ~)'(X(x) + ~)
—lF'KX(x) + n)(X(x) + n)']'.

(We shall always use Hermitian y-matrices. )
This latter equation is equivalent in momentum —space

to the statement"

(~ P)v(~) = —v(~). (7 3)

(6 59) Any solution to the Dirac equation, g(x), can be written

It is clear from the expression for I'H(x) that both the
"photons" and the x have acquired a mass. From the
relation

0(x) = l(1+ y )4(x) + l(I —
V )4(x)

&'(x) + g'(x).
(7 4)

( „( )
(b„)(x) + ib„,(x)) (b,"(x) —ib2(x))

~2 ~2
+ b,', (x),

we see that the "charged" Yang —Mills fields

b„(x) = [b„)(x) + ib„2(x)]/~2,

(6.60)

(6.61)

b„(x) = [b„,(x) —ib~(x)]/~2, (6.62)

acquire the same bare mass gq/~2 as b„„ the "neutral"
field.

The reader, given the development of Sec V, should
have no difFiculty in generalizing the argument there to
compute the no-loop b„vacuum polarization tensor a la
Englert and Brout to obtain the same masses as those in
the U gauge. This was actually done by Englert and
Brout for the general compact lie group in their 1964
letter. In fact, the work of this chapter goes through
essentially unchanged if, instead of

Clearly, g (x) and g"(x) are eigenfunctions of y5 with
eigenvalues ~l. However, it is only if the particles are
strictly massless that these states are also eigen-states of
o - P, i.e., have a definite handedness. "

There is no hope of unifying the description of elec-
trons and neutrinos unless we begin from a situation in
which initially they are both massless. We must, then,
arrange things so that the neutrino remains massless
while the electron acquires a mass. In constructing such
models one is, at present, handicapped by an incomplete
knowledge of the lepton spectrum. Are there heavy
leptons —particles with the quantum numbers of elec-
trons, muons and neutrinos, but with masses of hadronic
magnitude one or more GeV? One simply does not
know. The Weinberg 1967 model has, in any case, the
virtue of being among the unified gauge models of weak
and electromagnetic interactions in which no new leptons
are needed. (It can be generalized still remaining within
the domain of the known leptons by adding the p, meson
and, possibly, its neutrino in a fundamental multiplet as,
for example,

(bp x bv)i = eijk bpj bvk q (6.63)

we replace ~„; by a general "structure function" f„-k of the
Lie group, and instead of the isotopic matrices

where v(x) is formed out of
(6.64)

(7.5)

we have the corresponding generalized "isotopic spin"
algebra. Needless to say, "photons" and Higgs; fields will
proliferate like rabbits, but the essential mathematics
goes through as above.

We turn next to the weak interactions and Weinberg's
1967 model.

Vll. WEINBERG'S 1967 MODEL

All theories of the weak interactions must incorporate
two basic facts about neutrinos. The neutrino is massless
and left-handed. " If v(x) is the neutrino free field (we
make no distinction between electron and muon neutri-

~ Needless to say, these statements are true only within experimental
error. One must be open-minded enough to accept the possibility in
principle —however unattractive —that the neutrino might have a small
mass and might not be exactly left-handed.

and

PLX='PX (7.6)

Pg X = '
Vp X (7.7)

the muon anti-neutrino. This leads to an SU(3) x SU(3)
gauge model with 16 real gauge fields as opposed to the
SU(2) X U(1) model with four real gauge fields. The
consequences of doing this are studied in S. Weinberg

lf4fg P =

"Here P is the unit momentum three-vector."Free Dirac particle with mass m and momentum p, of course, satisfies
I

(in + m)gv) = o.

The statement follows from the identity in the Hermitian representation
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(1972a), which the reader may consult for details. The
group theoretical aspects of this model were already
worked out in an early paper by A. Salam and J. C. Ward
(1964). (This was done prior to the introduction of the
Higgs mechanism, so that the various masses were put in
by hand and the renormalizability was obscure. In fact,
without the Higgs mesons, the theory cannot be made
finite. ) We consider, following Weinberg (1967), the
following object:

We may integrate by parts over space on the last term
and use the radiation gauge condition to drop it. Thus,
we have simply

~(&) = Jd'xn. (x, t) x b" (x, t) (7.i8)

since

L(x) = l(1+ V ) I

& v(x) &

(e(x) )

()/()x„g„(x) e 0

in the interacting case r(t) will be a function of time.
(7 g) From the canonical commutation relations we have

where both e(x) and t (x) are four-component Dirac fields
corresponding to zero bare mass. Now following the
work of the last section, we can write a Lagrangian which
is invariant under local SU(2) transformations as fol-
lows:

P-(x) = —
4~ ~

„b.(x) —
~

.b„(x) + gb„(x) x b,(x) ~

1& ) 2

I'9 g—L(x)y„~ —ig 1"(—x) ~
L(x)."(Bx„2

The conserved "isotopic spin" current is then

(7.9)

g„(x) = f (x) x b"(x)

= [(()/() x")b.(x) —(8/()x")b„(x) + gb„(x) X b„(x)l

x 1"(x). (7.11)

Of special interest is/4(x), i.e.,

(j
g„(x) =

~ ,b"(x) —
~

„b,(x) + gb, (x) X b.(x) ~

x 1"(x). (7.12)

T„(x) = iL(x)y, 2L(x) + f„„(x)x 1"(x). (7.10)

Because an expression like this may look unfamiliar, it is
worthwhile to examine it somewhat more carefully. Let
us look first at

[&(t) &(t)'l = i&'- &(t)'

We may next study

(7.i9)

d'x v~ x, t e~ x, t — ' . 7.21
),ex, t )

The following identity will come in handy. Let I' and I"
be any two 4 X 4 matrices —each is some linear combina-
tion of the 16 independent matrices in the Dirac alge-
bra—and let $(x) and g'(x) be any four-component Dirac
fields then using the equal-time anticommutation rela-
tions of the P and g'"

4-"(x, t)1:pA(x, t), 0'-'(x, 't)1'-'
p A'(x, '

t)l
= 8'(x —x')

{q'.(x, t) &p (x,' t)I'.p I'pp

—~'..(x,'t) q,(,t)r.,I ..), (7.22)

if g and g' are the same fields and otherwise the commu-
tator is zero. If we let f(x) be the eight-component field

g,' = iL(x)q„2 L(x) = i(u(x)e(x))q„2[

(7.20)

We shall want to consider

(t) = J'd x)l(x't),

If we quantize in the radiation gauge with

V . 1(x) = 0, (7.i3)
then, noting that the canonical momentum to b„(x) is

we then see that

4(x) = I,( ), (7.23)

II„(x) = K(x)/() b„= b„(x) —gb„(x) x b.(x), (7.14)

we have the equal time commutation relation

[b,(x, t);, II,(x', t), ] = i6„6,',"(x —x') (7.15)

where g'(x —x') is the transverse 5 function obeying

Thus,

a
6,", (x —x') = 0. (7.16) or

[~'(t) &'(t)Jl = ie «'(t)k (7.26)

r(t) = fd xg (xt)'. ,

d'xG„x, t X b" x, t

d'x
&

box, t xb' x, t
( 8

"That is,

[Qx, t), q't(x', r)] = t)'(x —x')

(7.17) if f and g' are the same field and

[4x.r) 0'(x', r)l. = 0

if Q and g' are distinct fields.
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Hence, with

T = ~(r) + ~'(r)

and remembering T is independent of time, we have

[T„T,] = ie„RT».

Moreover, the state

~L(P)& = lim J(d'xq'(x, f)

E(x) = —
4~ &

„b„(x)—
&

„b„(x)+ gb„(x) X b„(x) ~

1& 0 ()

4 i0x" " 0x","

isa a
4I q ~ ~

q
~ .()x P[(P )]i i ) 'llo& (729)(2~)"' & (1+&),

)
~e

of the isotopic spin, but is rather a linear combination of
the isospin and hypercharge. This suggests that we en-

(7 27) large the local invariance group to include a local U(1)
invariance associated with the hypercharge. This will
mean introducing an additional "photon" which we will

(7 28) call a„(x); it is not to be confused with the true photon
A„(x) which will emerge, in due course, from the wash.
Thus, the new Langrangian invariant under local SU(2)
X U(1) transformations is

provided that

TlL(P)& =
2 L(P)&

has the property that

(7.3o) —i —a'(x) —ig . b"—(x)
~ L(x).2 2

(7.36)

( ()—R(x))„~
~

—ig'a"(x) ~R(x)

ia—L(xb. l
&

T, io& = o. (7.31)

Hence, we see that
~
L(P)& is a doublet representation of

SU(2), while T; is the SU(2) generator.
Even if we were to confine ourselves to the weak

interactions alone, we cannot stop here. In the first place,
our SU(2) invariant Lagrangian is both y5 invariant and
parity conserving, so that, in particular, the electron
would never acquire a mass. Therefore, we must give the
electron a right-handed component to go along with its
left hand. Thus, we define

There are several points to be made in connection with
this Lagrangian and, in particular, we wish to understand
the origin of the g'/2 which appears in the last term.

Let us call"

NL = d'xL~ x, t L x, t

d'xe~ x 1+y~ 2ex +~~ x 1+F5 2vx
(7.37)

~R(P)& = lirn d'xe'(x r),q,
'

e(P)~O&

(73') N = J R'(x, t)R(x, t)d x= fd''xet(x)[(l —y )/2]e(x).

Using the assembled technology along with the identity (7.38)

(1+ ~s)(1 —)5) = o (7 33) Note that the operator

we easily show that ~R(P)& is an SU(2) singlet, i.e.,
~3 —NR — NL

T, ~R(P)& = O. (7.34)

Hence, the Lagrangian, with R(x) —= [(1 —)5)/2)e(x),

P(x) = —
4 ~ ~

„b„(x)—
~

„b„(x)+ gb„(x) x b„(x) I

1&

d . v—L(x)) „~
—l'g — b"(x) ~

L(x)"(()x„2 )

d x p x '
p x4

—e'(x)
I le(x) —e'(x) I le(x)
&1+ )5& f 1 —)5')

4 )

—R(x)y„~ R(x),
a

(7.35) e'(x)
~

t'1 + ), ')
, & 1 + )5&ex — st x lp(x)2 p
'

q 2

is also invariant under local SU(2) transformations. We
could, of course, break this symmetry a la Higgs but we
would not get electromagnetism. The reason is that all of
the b"(x) will acquire the same mass there would be no
massless photon. This can be traced back'to the fact that
the physical photon is nor a member of an SU(2) triplet.
Put in a slightly diferent way, the electric charge is, in
general, not simply proportional to the third component

5d Here, R(p) and e(p) are solutions of the free-particle Dirac equation
for massless particles.

(7.39)

g = r;+()/2), (7,4o)

"Note, incidentally, that

[R(x, r), L'(x', t)], = 0.

where, in the absence of the Yang —Mills coupling, Q is
the total electric charge. If we call Y the leptonic hyper-
charge, then to conform to the notation of the last section
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where"

y = —2' —%L. (7.41)
Thus, if the hypercharge "photon" a„(x) couples to R(x)
with a coupling ~g'~, it must couple to L(x) with a
coupling (~ g'~/2). The signs and over-all scale have been
chosen to conform to the notation of Weinberg (1967). It
is, by the way, straightforward to show that

[I'(r), ~'(r)] = Q (7.42)
so that the SU(2) and U(1) groups are independent and
commuting. Before we go on to break the SU(2) X U(l)
symmetry, we would like to fish the real photon out of
this soup so we can keep track of how it remains massless
and how its interactions maintain parity conservation. To
this end, we write out the coupling of a„(x) and b3(x) to
R(x) and L(x) in detail; i.e.,

ig'R(x)y„a" (x)R(x)

-+ iL(x) y„~
—a'(x) + g —b,"(x)

~
L(x)

r'g', I,
"&2

&I —y5& g' „&I+ y~l= ie(x)y„g'a"(x)( '
[ + —a"(x)]2 ) 2 ( 2 )

—-b,"(x)I
I e(x)g „(I+ y5&

2 ( 2

/

+ iv(x)y„ 2 a"(x) +
2 b,"(x) 2

'
v(x).

(7.43)
To fish the photon out we shall demand that only its
neutral partner, which after Weinberg (1967), we shall
call Z„(x), couples to neutrinos so as to preserve both its
electromagnetic neutra. lity and the (1 + y5)/2 character
of the weak couplings; i.e., we must have, since we
exclude a direct neutrino —photon coupling

or, solving,

g'a+bg = Q, (7.5Q)

and

(g'+ g") '(g'Z" (x) + g~'(x)) = a"(x) (7.53)

Thus,

(g'+ g") '(gZ"(x) g—'&"( x)) = bl(x) (754)

i g 'R(x)y„a"(x)R(x)

+ iL(x) y, l

—a"(x)+ g —bs(x) I L(x)
t'g' „
( 2 2 )

(g +g ) -() (1+
/+. . .ie(x)y„e(x)A" (x)

g +g
+ ie(x)

( "—') ( '+ ")'
'"4(g'+ g")' '"' 4

—Er'(x).

It is very interesting to note that, in this model, the
requirements that the neutrino be electrically neutral and
that A, and Z„by dynamically independent have yielded
a photon coupling which depends only on y„, i.e., is both
charge conjugation and parity conserving. The rational-
ized bare electric charge is then given by

~"( ) = [1/(g'+g')'](g "( ) —g'bl( )) (751)
or, inverting,

Z"(x) = 2(g'a" (x) + gb2(x)), (7.44)

where c is an over-all normalization factor. We can
determine c from the requirement that Z"(x) be a canon-
ical field obeying the equal time commutation relation-
say, in the Coulomb gauge—

[Z, (x, r), II,(x,' t)] = iB,", (x —x'). (7.45)
Thus, using the canonical independence" of a„and hI, .

(c'/4)(g" + g') = l. (7.46)
Thus,

z"(x) = [I/(g" + g')'l[g'a" (x) + gbs(x)l (7 47)
Let us call the photon —the real one—

A"(x) = aa"(x) + bb,"(x). (7.48)
From the canonical requirements, including the canoni-
cal independence of A" and Z", we have

—pt (x) ' = ' l L(x)y~[7) b)"(x) + 2'2b2(x)]L(x)

~here

= i
2 L(x)y„[r+(b", (x) —ib2(x))

+ 2. (b)(x)" + ib2(x))]L(x),

2, = 7' = (r) + i22)/2

or

—&((x) = i
2 v(x)y„2 e(x)(b,"(x) —ib2(x)

.g (1+ y5)

~ = gg'/(g'+ g' )
In addition to Et (x), there is also i' t'(x) defined by

(7.SS)

(7.56)

(7.57)

a' + b' = l (7.49)

"Our notation differs somewhat from Weinberg (1967). It is a matter
of choice where one includes the signs and over-a11 factors. We prefer
to use an integral hypercharge, whereas other authors call the hyper-
charge the mean multiplet charge. For doublets this is ~J. So long as
we are internally consistent, the final physics will be the same. Our
coupling constants g and g' are chosen so that our final Lagrangian
agrees with Weinberg (1967).

+ e(x)y„2 '
v(x)(b("(x) + ib2(x)) .

(7.SS)

If we call

W„'(x) = (W„(x)) = [b „(x) + ib,„(x)]//~2 (7.59)

we have finally
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—Er+(x) = [v(x)y„(1 + ys)e(x)w "(x) while a.calculation using the antisymmetry of the A„, etc.
to get the numerical factors straight shows

+ g(b„(x) x b„(x) b"(x) x b"(x))]

Ig / pgA (x)

x W-"(x)(,W„(x) — „W„'(x) i

f a, a

—w'"(x))
a „w, -(x) —

a
„w-(x)

f

f a a

—g ~ (x)W„'(x)W.-(x)

g~ W+'(x)e(x)y„(1 + ys)v(x) + h.c. (7.61)
so that

+ e(x)y„(1 + y )v(x) W'"(x)]. (7.60) E. g(2b ( ) ~ b ( ) . b .
( )

We have been through this in such detail because other-
wise the coupling constant factors in Weinberg (1967)
appear very mysterious. In particular, the definition of g
introduced above ultimately depends on the SU(2) local
gauge invariance. Indeed, if one goes back to the more
ancient literature on this subject, " one will find the
coupling constant g&—"A" for "ancient" —introduced
via the expression

g~ = g/2v2. (7.62)
One must keep this in mind when comparing forn1ulae.

We wish next to rewrite the vector meson part of the
Lagrangian in terms of Z„, A„and 8„=. This will fix the
electromagnetic and weak interaction properties of the
vector mesons themselves. Let us call

a„„(x) . —= . (a/ax")a. (x) —(a/ax„)a„(x) (7.63)

A„„(x) =— . (a/ax„)A. (x) —(a/ax„)A„(x) (7.64)

Z„„(x) . —= (a/ax')Z. (x) —(a/ax")Z„(x) (7.65)
and

b„„(x) = (a/ax")b„(x) —(a/ax")b„(x) (7.66)
which is, of course, not the complete Yang —Mills tensor
but only that part valid when g = 0. We will produce the
remainder later. Thus, we find

r a—w-"(x)
i
—„w; (x) — „w„'(x) ilax" " ax"

(7.7O)
+ gz"'(x) s'„'(x)s„(x))

2

2(g [(Z (x)) W„(x)w (x)

—Z„(x)W "(x)Z„(x)W+"(x)]

+ g"[(w„(x))'w, (x)w-"(x)

+ ~,(x)W-"(x)~,(x)W'"(x)]

+ g'g[A„(x) W "(x)Z„(x)W'"(x)

+ gZ" (x) W "(x)~,W„(x) — „W„-(x)
~

()

while

(~ (x))' = (g'+ g") '

[g'(Z" (x))' + g'(~'(x))'
+ 2gg'Z„, (x)A""(x)] (7.67)

+ Z„(x)W-"(x)~„(x)W'"(x)

—2Z„(x)A'(x) W. '(x) W "(x)])
2

——[(w„(x)w" (x))' —(w, -(x))'(w'(x))'].

(b„„(x))' = 2~ a
„W„+(x)—

a
„W„'(x)

~

( Q ()

x
(

w-"(x) —
a

w-"(x)
i

& a „a
+, , [g'(Z,„(x))' + g"(A„„(x))'g'+ g'

—
2 gg'Z„, (x)A""(x)].

Hence, the kinetmatic part of the vector meson Lagran-
gian, Eo(x), is given by

E:( ) = -'-[(.. ( ))'+ (b..( ))']

(Z„„(x))'+ (A„(x))'

+ 2i „W. (x) —
a „W„(x) i

a

x
( a

W '(x) —
a

W "(x) (, (7.69)
( a, a

"For example, R. P. Feynman and M. C'rell-Mann (1958) or T. D. Lee
and C. N. Yang (1960).

Clearly, someone would have to be a True Believer
before undertaking detailed computations especially in
higher orders —with a Lagrangian that is so complicat-
ed."We shall elucidate some of its virtues after we have
broken the symmetry —the SU(2) X U(1) symmetry —by
the Higgs mechanism. Hence, we add to the rest, the
Higgs Lagrangian EH(x) with

"Indeed, as far as the author knows, no one attempted such calcula-
tions until 1971 when Hooft (1971) derived the Feynman rules for a
variety of gauge theories including the vacuum broken SU(2) x U(1).
He attempted a proof, using Ward identities, that this model was
renormalizable. His original argument neglected the problem of anom-
alies—see Footnote 46—which was clarified by a variety of authors
later. See Zumino (1972) for a review and a full list of references.
Professor A. Salam (1969) was certainly an early true believer, but did
not, as far as the author knows, publish a detailed argument to
demonstrate the renormalizability. Following Hooft's reopening of the
renormalizability question, Weinberg (1971) showed how, in several
physically interesting examples, his 1967 model resolved many of the
problems of convergence and unitarity which had beset the prior weak
interaction theories based on intermediate vector mesons. The renor-
malizability of the theory has now been demonstrated to most people' s
satisfaction to all orders in perturbation theory —see, for example, B.
W. Lee (1972) and the references contained therein. The theories appear
to be consistent. It now remains to be seen if they are true.
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t) . v .g'
EH(x) =

l „+ig —b„(x) —i a—„(x) ly'(x)tt)x 2 2

x
l

—ig . b—"(x) + i —a'(x) ly(x)
t) . v „.g'

gt)xs 2 2 j
+ '~'( )e( ) —U'(@'( )~( ))',

where

(7.71)

(y'(x) &

@(x) =
l o( (7.72)

Here again we must clarify the origin of the new terms
in EH(x) which are proportional to g'. As before we let

Q = T3 + Y/2 (7.73)

so that the hypercharge assignments to @' and p' are +1.
(Both members of the isotopic doublet have the same
hypercharge since the SU(2) and U(1) generators com-
mute. ) In contrast, the SU(2) doublet L has hypercharge
—1 refIecting the fact that the negatively electrically
charged electron is the "particle", awhile the positively
charged positron is the antiparticle. The SU(2) singlet R
has hypercharge —2. The hypercharge of the vector
mesons is zero, which is reflected in the fact that the
coupling constant g' does not occur in the Yang —Mills
Lagrangian. Hence, the covariant derivatives of the U(1)
gauge group become in the three cases, in terms of the
coupling constant g' chosen to agree with Weinberg
(1967),

D„R(x) = ((t)/tix") —ig'a„( )x) R(x), (7.74)

Thus,

f' y'(x) & t' 0
~ e'(x) & Ee"(x)&

However, this p'(x) is not Hermitian. We may write

(7.79)

D„e(x)-, „-;l ~-(x)g
t) x"

(2 j

so that EH(x) is given by

(7.81)

P„( ) = — R(x) „R(x)

+'(' ' )(II; ()Z"()2~2
+ W„(x)Z"(x))R'(x)

y"(x) = expli0(x)]R(x), (7.80)

where 8(x) and R(x) are Hermitian. To rid ourselves of
8(x), we may make a U(1) local gauge transformation
allowed by the local hypercharge gauge invariance. A11 of
the other fields, L, R, a„and b„, are now to be thought of
as taken in this gauge. We will understand this and not
pollute the notation still further by festooning field
variables with primes. Hence, in the U-gauge, the covar-
iant derivative above takes the form —note the absence of
A„(x)—

D„L(x) = ((t)/t)x") —i 2 a„(x))L(x) (7.7S)
( 2

—
l

'—IIs (x)II'-"(x)

2 + &2

+ g g Z„(x)Z"(x) l
R'(x)

D, y(x) = ((~/~x") + t'(g'/2)a. (x))e(x) (7 76)

The reason for exhibiting this in such detail is made
evident in the next step when we ask which of the two
neutral vector mesons acquires a mass in the U-gauge
when the SU(2) X U(1) symmetry is vacuum broken. To
this end, note from the structure of Ett (x) the full
covariant derivative

s
—ig2 bp(x) + i 2 as(x) ll s

tl, v .g' l /y+(x)&

+ 2 (g'a, (x) —gr3 b 3(x)) l, l. (7.77)i, (y'(x) &

Following the steps of the last section, we can rid
ourselves of p+(x) by making the SU(2) transformation
defined by

l&
n(x)

&l

~, 2)
(~ ( )~'( )'+ ~'( )~ ( )' — (~ ( )~'( )' —~'( )~'( )'))

2le'(x)l'
(7.78)

+ me R'(x) —g'R(x)'. (7.82)

"This is an ancient observation and can be demonstrated by the remark
that an expression of the form A + By& has the opposite transformation
properties from (A' + B'y5)yP under exp(iky5) Hence, in .a chirally
invariant theory the two cannot coexist in the Preen's function —or its
inverse —which means that no mass can develop. A bare mass is
excluded from the Lagrangian by the same argument.

Hence, in the U-gauge we have the very important
results that the electromagnetic photon does not couple
to the Higgs field. We shall exploit this in a moment.

Up to this point, we have not given the leptons any
kind of interaction which could generate a mass. We can
trace this back to the basic Lagrangian in which right-
handed leptons are coupled only to right-handed leptons
and left-handed leptons only to left-handed leptons. Thus
the leptonic terms have, so far, an invariance under
global chiral phase transformations of the form exp iAys.
which, if maintained, would preclude any mass term
from developing. "This can be remedied by introducing
a chiral noninvariant coupling of the form —before going
to the U-gauge—

E„'(x) = —G(L(x)y(x) R(x) + R(x)@'(x)L(x)), (7.83)
where 6 is a new coupling constant that has no necessary
relation to either g or g'. In this sense, parity nonconser-
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vation and, as we shall see, the electron mass are put in
by hand from the beginning. Perhaps in the ultimate
gauge theory —if there is one—these might be derived
from something even more fundamental. Since L(x) and
p(x) belong to conjugate representations of SU(2), while
R(x) is an SU(2) singlet, EH(x) is locally invariant under
SU(2). Moreover, since the hypercharges of L(x) and
p(x) are +1, respectively, while R(x) has a hypercharge of
—2; E&(x) is also invariant under the local U(1) group.
Hence, we can rotate the whole shooting match to the U-
gauge where

(3) We have

( 2 2+ &2

=
I

g w (x)rv-"(x)+ g
4 z„(x)z'(x)

I

(7.91)x (ri' + 2riX(x) + X'(x))

or the bare masses of the 8'and Z are

mw+ mw — g 7/ /2, (7.92)

( 2 2+ r2

I
—w, (x)w-"(x)+

4 z„(x)z"(x) IR'(x)

PH(x) = —Ge(x)e(x) R(x). (7.84)

where

R(x) = x(x) + ri, (7.89)

and R{x)is now to be understood as the Higgs field in the
U-gauge. The entire Lagrangian —while expressed in the
U-gauge, is still invariant .under local SU(2) X U(1)
gauge transformations. We now break this by letting, as
before,

where

2
=1+

2fPl~ g

1

cos'(8) '

m' = (g'+ g")tl'/2, (7.93)

(7.94)

(0lx(0)I0) = o (7.86)
tan(8) =—. g'/g {7.9S)

What happens' ?

We list the consequences numerica11y. '

(1) The electron acquires a bare mass m, = Gri, which
is undetermined in the theory, since G is arbitrary. At this
point, we should mention that the muon and its neutrino
have not yet entered the discussion. These can be incor-
porated in complete analogy to the electron terms. How-
ever in the Weinberg —1967 model the muon —electron
mass ratio is put in by hand choosing the coupling
constants suitably. It is to be hoped that some gauge
theory will eventually be found where it would be forced
by the structure of the model.

(2) The x field acquires a mass since, as in the Abelian
case,

m(~) R(x)' —g'R(x)' = (m02 —g'q')
+ x(x)2q(m,' —f 'ri')

+ x'( )( '- 3f'~') —2f~x'( )
—V'x'(x) (7.87)

As before, we may drop the constant term since it
produces a harmless uniform phase change in all the
transition elements (Weinberg, 1972b). To leading order
we must have

ri = m, /f (7.8S)

to rid ourselves of terms in which x(x) can vanish into the
vacuum, contradicting

Hence, in this order

(0lx(0)10) = o (7.89)

m„= ~2mo (7.90)

as before, and the remaining terms are complicated self-
interactions of the x.

defines the Weinberg (1972b) mixing angle, which must
be determined empirically. In the same notation, the
electric charge is given by

ge=g'/l l+ 2 I =gsin(8), (7.96)

which is to say, the three constants g, g', and e are aH of
the same order of magnitude.

(4) The bare mass of

The author's attention to the arguments given below was called by
Professor J. C. Taylor in the spring of 1972. They arose in connection
with a calculation —unpublished —of radiative corrections to elastic
electron-neutrino scattering done in collaboration with the present
author, in which we used the Weinberg (1967) mode1.

A„(x) = 1/(g' + g") (ga„(x) —g'b„3(x)) (7.97)

is zero, since in the U-gauge the photon is decoupled
from the Higgs field so the Higgs mechanism does not
work on it. Since there are no zero mass charged particles
left in the U-gauge, we would expect to be able to pursue
the general arguments on the vacuum polarization tensor
to show that the photon remains massless to all orders in
all the coupling constants. There are some tricky points
in this argument however. Because all of the gauge
theories with photons and heavy neutral vector mesons
both coupled to electrons —as in the Weinberg (1967)
model —have in common these difFicult points, it is worth
going into a bit more detail. "

The essential problem is that in these theories the
photon and the massive neutral vector mesons can mix
via the weak and electromagnetic interactions. Figure 7
illustrates such a mixing term as it would arise in the
Weinberg —1967 model. Hence, one must make a renor-
malization perscription which defines the physical un-
mixed neutral vector meson fields. These fields wi11 have
the correct physical masses, i.e., mass zero for the photon.
Hence, in the SU(2) X U(1) model we define the renor-
malized Z field Z„'(x), and the photon field A'„(x), so that
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e+ FK". 7. A diagram illustrating the Z—j mix-
ing in the SU(2) x U(1) model. The Z cou-
ples to the electron —positron pair via the
"weak" coupling, while y couples to the pair
via the electromagnetic coupling.

for the physical Z state lzke) with k the momentum and
e the polarization and for the physical y state lyke) we
have

while

(ol~".(x)lv«) = e:e~p[t(kx)1

(olZ,"(x) Zke) = e„'exp[i(kx)],

(7.98)

(7.99)

(olz„"l~k.) = o,

(ol~", lzk. ) = o.

(7.100)

(7.101)

The vacuum polarization tensor for the Z —y system is
a 2 X 2 matrix whose diagonal terms are the y—y and Z—Z
transitions and whose off-diagonal term —the tensor is
symmetric is the Z—y transition. In writing down this
expression, we bear in mind that the photon couples to a
conserved current while the neutral vector meson does
not. If we call mz the renormalized, i.e., the physical,
mass of the Z, then the renormalized vacuum polariza-
tion tensor M„„(k) takes the form, in the Feynman gauge"

1& ()
e(x) = ——l, b.(x)—4tax'

li' a a—
4l a „a„(x)—

a „a,(x) I

(3 g g'
, + tg- b.(x) —t' —a.(x) ly'(x)(8x 2 2

a . v „ .g'
x

l ig . b"(x) —+i a"—(x) lp(x)
t ax„2 2 )

OX
„b„(x)+ gb, (x) x b„(x) l

(7.1O7)

where

and. II&(k)„„must be subtracted at k' = —mz T. his pre-
scription plays an essential role in maintaining the mass-
lessness of the physical photons in those gauge theories
with both photons and massive neutral vector mesons.

While the U-gauge argument for the vanishing of the
photon mass has the advantage of a certain simplicity, it
does not clearly illustrate the genera1 discussion of the
Higgs mechanism and the breakdown of the Goldstone
theorem from which we began. Hence, we would like to
examine this question afresh in the general gauge using
the linearized theory. To this end, we can forget about
the lepton couplings and consider a system described by
the simplified Lagrangian

(y+(x) &

@(x) =
l~ o( (7.108)

We have local SU(2) X U(1) invariance and hence the
conserved currents. The notation is the same as in the last
section,The reader will notice that there are three independent

polarization functions: n~ (k'), II2(k'), and n&(k)„„.The
tensor covariants in front of these functions have been
fixed by the requirement of current conservation when it
is applicable. The fact that the off-diagonal matrix ele-
ment is conserved refiects the fact that the y couples to a
conserved current even though the Z does not. The
renormalization has been fixed by the requirements that

T„(x) = f„„(x)x b"(x)

a . v .g'
+ i

l
+ ig b„(x) —i a„(—x)—ly'(x) —y(x))
vi'a . v .g'—y"(x) —

l „ —ig . b(x) +—i —a, (x) ly(x)2 qBx" 2 2

(7.109)
n, (k') —o(k')

II (k') —O(k' + m,')
(7.1O3)

with
(7.104)

M„„(k) =
( k'g„„ + (k'g, „ —k„k„)II,(k') (k'g„„ —k„k„)II,(k') i

(k'g„„—k„k.)n, (k') {k'+ m,')g„. + n, (k)„,)
(7.1O2)

II, (k)„, —O((k'+ m.')'). (7.1O5)
d'xTox0, 0 = v 2 0. (7.110)

These conditions imply that

1

k'
M„„(k)

' = g„„ l

1

k'+ nz,'

+ nonsingular terms . (7.106)

Hence, the poles will be correctly located. Therefore, to
pass from the unrenormalized to the renormalized propa-
gators n& (k') must be subtracted at k' = 0 while II2(k')

In addition, the U(1) invariance implies the conserva-
tion of

Y„(x) = i l a „+ ig2 b, (x) —i a„(x) ly"(x)y(x)—

.g'—y'(x)l „—ig b„(x) + i —a„(x) ly(x—)

(7.111)

"This is the gauge in which the free photon propagator D~o(k) takes the
form

D~ (k) = g„,/(k'+ is).

In the work that follows, we do not display the i~ term explicitly.

d'x Ypx0, 0 = 0.
If we form the electric charge

(7.112)

(7.113)
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we have the pair of equations

d'x Tp3x, p + Ypx, p 2, +0 = '0 7.114

where

and

n=l, „ I

&01
(7.124)

d x Tp3 x 0 + Yp x 0 2, ' 0 = 0. 7.115

Whatever else happens electric charge must be con-
served and all states must have well-defined electric
charges. Hence, we must demand that

(7.116)

t'y"(x) l
e'(x) =

I .,() I (7.125)

is treated as "small. "Thus, approximately, for the neutral
fields,

It is this requirement, as we shall now see, that keeps the
photon massless. In particular, in all gauges

&01@'(0)I0) = &0ll:Q, @'(0)]I0) = 0. (7.117)

This is, of course, consistent with the U-gauge statement
that

+/ 0 (7.118)

(01@'(0)lo) = ~ ~ 0.

Again, we may invoke time reversal to prove that

(7.119)

but it is more general. Since Q commutes with p'(x), no
corresponding condition holds for (Ol@'(0)IO), and we
may break the symmetry by demanding that

and

= 2" i &, (@'(x) —@'(x)')

2

~ (x) + gg»" (x))

b,"(x) —
q

b'(x)
I

8

(~"( ) —~'( )')

2
—

2
(gg'a" (x) + g'bl(x)).

(7.126)

(7.127)

(7.120)

Now we can solve the theory in the linarized approxima-
tion in the general gauge to discover the various masses.
The equations of motion for the vector fields are given by

a"(x) —
&

a"(x)
I

8 i'8
Thus,

g(x) =— i (y'(x) —y"(x)'). (7.128)

To find the neutral vector fields that propagate with a
definite mass —clearly a"(x) and b3(x) do not we fir—st
multiply Eq. (7.126) by g' and Eq. (7.127) by g and call
the Hermitian field

= g
—yt(x)l —ig b"(x) + z

—a"(x-) Iy(x)
g', t'8 . v „.g'„
2 i Bx„2 2 )

+ ig b"(x) —-i a"(x)—Ig'( )x@( )x
(() . v „.g'„
(Rx„2 2 )

(7.121)

and, dropping the self-coupling Yang —Mills terms, "

, ateg' „I
~

a"(x)— a"(x)
I

2 ~2

g(x) —" g (g'a'(x) + gb,"(x))

(7.129)

b"(x) —
~

b"(x) I

8 |'8 „8
i vy'(x)——

2

g~ „I ~
b,"(x) —

~ b3(x) I

gl~ gl8(x) —
2

(g'a" (x) + gb,'(x)), (7.130)

~() =~ ~+'()

"They do not, in lowest order, contribute to the masses.

(7.123)

x
I

—ig- . b"(x) + i —a"(x) Iy(x)
( a

(()x~ 2 2

.g'
+ g —. b"( ) —' —"( ) le'( ) 0( ) .

iBxp 2 2 ).
(7.122)

We shall solve this set approximately by setting

or, adding

a"(x)
I

a —,r a
&

. g'I
&

~"(x)—

+ gl ~
b,"(x) —

~
b3(x) I

d „8
0x~

2—
2

(g'+ g')(g'a"(x) + gbl(x)) (7.131)
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4t

while a similar computation shows that

B i'B „Ba, gl a
a"(x) —

a
„a"(x) I

, ~a
b&(x) — b&(x) I (7.132)

B,(@"(x) —@'(x)')

+
2

(g' + g")'21
a Z„(x) = 0 (7.140)

along with the conjugate partners. This last equation is
better rewritten as—using its conjugate partner—

In view of what has gone before, it is evident how we are
going to interpret these equations. But before doing so,
we shall complete the set. From the approximate equa-
tions

B ( B b"(x)—

(e'( ) + ~"( )') = 2 '(e"( ) + ~"( )')

(7.141)

y'(x)2. @(x)
a

The significance of the last equation is evident, namely,
in all gauges

we have

2

——2~'( )b"( )~( ),

B (bf(x) + ib2(x)) l
Bx„

a ( a (b,"(x)+ ib2(x))
Bx" ( Bx„

. g 21 By'(x)' g'ri' (bf(x) + ib,"(x))Bx„2

(7.133) X(x) = f@"(x)+ @'(x)'1/2 (7.142)

is the physical i.e., "observable, " Higgs particle of bare
mass +2mo in complete agreement, as it must be, with
the U-gauge result. The significance of the remaining
equations is evidently gauge-dependent, since they in-
volve the divergences of the vector fields a„(x) and b„(x).
These equations are fully consistent —as they must be—

(7.134) with the equations derived simply by noticing that the
vectors such as

which ensures that

f2~2 ~2 (7.135)

(ol@'(o)lo) = o, (7.136)

we find, after some manipulation, the approximate equa-
tions

B B &y+'(x)l i B, fo&
0.() I+2ax (g'.() —g'&, (x))I „,I

( mo(y"(x)' + y"(x)) ) (7.137)

and the conjugate partner. We can rewrite these as

along with its conjugate partner.
Clearly, what is happening here is that, in the spirit of

the earlier sections, the three scalar degrees of freedom,
@'(x), @'(x), and 0(x) = i(P'(x) —P"(x) ) are combin-
ing with the vector fields a„(x) and b, (x) to produce
massive mesons W„+, W„, and Z„, and the photon A"
which is massless. However, before we can be sure of this
interpretation we must look at the approximate equations
of motion for pt(x) and p'(x) to see whether everything
is consistent and where the physical Higgs particle is
buried. If we impose the consistency condition in leading
order

a„,(x) =
a I a „a„(x)—a „a„(x) I (7.143)

B B & B B

are conserved. As we have seen before, the obserued
particle content of the theory is independent of the
gauge. In the Lorentz gauge @"(x),P"(x), and i(P'(x)—p'(x)~) are Goldstone mesons that factor out of the
physical particle spectrum, while in the Coulomb gauge
these objects are coupled to the spatial divergences of the
vector fields and are not Lorentz scalars at all, thus
defeating the Goldstone theorem. In al/ gauges W„', S„',
Z" are observable massive vector mesons with bare
masses identical to those found in the U.-gauge, while A"
is the massless photon.

In the next, and anal, section we will comment briefiy
about generalizations of the Weinberg —1967 model,
about its renormalizibility and experimental consequenc-
es. As a preliminary to this Herculean task we wish to
discuss the subject of the static electromagnetic proper-
ties of the charged vector mesons in a theory like the
Weinberg —1967 model or its successors. We wish to
clarify the following two points:

(1) It is sometimes claimed that the "principle" of
minimal electromagnetic couplings prohibits an intrinsic
Pauli magnetic moment for elementary particles. This is
true for spin —lj2 charged particles where, as we have
seen, the electromagnetic Lagrangian is obtained from
the free Lagrangian by the substitution

B
„&+'(x) —i~ B

W„(x) = 0 (7.138)
(ajax„) ~ (ajax„) lepA (x), (7.144)

B .@'( ) + 2(g'+ g")"'~a, ( )

yielding the familiar electromagnetic coupling

&r(x) = —«0&(x)y„&(x)&"(x) (7.145)

= m,'(y"(x)' + y"(x)) (7.139) with no intrinsic Pauli coupling. But for a charged spin—
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one principle there is an ambiguity in this "principle" as
follows. Let

e, (x) = —-I „W. (x) — „W„(x) I

x
I

W-"(x) —
&

W-"(x)
I

i a „a
—m.' W„(x)W-'(x) (7.146)

+," ()W ()-, W ()W () I

(7.147)

where ~ is a free, i.e., arbitrary, parameter. Thus,

A. (x) = ~I W,'(x)
8

W.-(x)

yielding the free equations of motion. To Ep(x) we may
add a total derivative and derive the same equations of
motion. Let us add (8/Bx„)A„(x) where A„(x) is defined
by the expression

~.() ---,I„„.w ()-,„,w (),I

II' ()

x
I

W-"(x) — W-"( ) I

t 8 „a
—m.' W„'(x)W '(x) —iep&, (x)

~ W ()I...w'()-, .w "()
I

—W, (x)I W "(x)—
g OX' 8x„W"(x) I

—ep2[A" (x)A, (x)W+"(x) W. (x)
—A„(x)W"(x)A. (x) W "(x)]. (7.154)

We see, glancing back at the Weinberg 1967 Lagran-
gian, that terms of both the EP(x) and the gauge dis-
placed E'(x) form occur.

(2) This brings us to the second point to clarify; i.e.,
what do these terms mean physically? In particular, what
is the meaning of E& (x), and what is ~ in the Weinberg—
1967 model? We approach these questions by examining
the nonrelativistic limit to the equations of motion of
W'=(x) in an external classical field. We drop terms of
order eo. In this approximation, the equation of motion
for, say, W "(x) becomes

W.'(x)
&

W„(x) I.
8, 8

We may now make the gauge substitution

(7.148)
W "(x) —

&
W "(x) I

—m.'W "(x)
()

= ie. (~,(x)W-"(x) —W„(x)W-"(x))

W„+(x) ~
I

&
+ iepA"(x) IWp+(x) (7.149)

a . &8
8 Xlt ( Rxq )

and so forth, to produce

A„(x) ~
&

A„(x) + iep~A„(x)
&

„(W+"(x)W' "(x)
a

+ ie,
I

W-"(x) — W-'(x) I~„(x)i Ox'

—ieoipI
8

A, (x) —
8 A„(x) IW '(x). (7.155)

i'8 8

8 x~ ~&v )
We shall be specializing A„(x) to a constant uniform
magnetic field with

—W"( )W "( )) Ap(x) = A(x) = (8/8x„)A, (x) = P. (7.156)

(7 15p) We also have the subsidiary condition, dropping terms of
order eo,

The quantity

M"(x) = i „(W "(x)W-"(x) —W "(x)W "(x)) (7.151)

is clearly a conserved current and the interaction

EP(x) = —e, ~A„(x)M"(x)

is clearly as "minimal" as that with K = 0.
We can also write this Lagrangian modulo a total

derivative which cannot effect the equations of motion,

r a „—te.W, (x) I
W-"(x)

~.( ) —
8 ~,( ) Iw '( ) I.

(7.157)
In going to the static limit with an external magnetic
field, we shall drop terms of order (1/m') as compared to
terms of order 1/m . Using the subsidiary we have the
approximate equation

W-"(x) —m.' W-"(x)

~ () = "I, .~.()-, .~.() Iw "()w-'()i a a
x" " ax"

(7.153)

We shall see what this expression means physically
shortly. For comparison, let us make the gauge substitu-
tion in Ep(x); i.e.,

t'= iepI 2A, (x) W "(x)
C) Xlt

—(1+ ~) I W„(x) — ~„(x) IW-'(x) I.
8 8

(7.158)
If we take a uniform magnetic field
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A, = ~,;((x,HI/2), (7.1S9)

wehaveforv =s = 1, 2, 3

p, = es(1+ a)/2m. . (7.161)

A glance at the Weinberg —1967 Lagrangian shows that
in this theory a = 1." We can trace this back to the
group property of the underlying Yang —Mills Lagrangian
and it will vary from group to group.

A similar —albeit somewhat more complicated —com-
putation can be done to test the response of the 8' to an
external electric field. Here one looks for the coefficient
of

W. (x, o)

which gives the quadruple moment. Since the quadruple
moment goes as (I/m') one cannot neglect terms of this
order in the equations of motion. If one works through
the debris, one will find, with a defined as above,

Q = —eoam 2

so tha, t Q is also determined by the group.

(7.162)

Vill. GONGLUSIONS
In evaluating gauge theories, Bjorken (1972) has intro-

duced the useful distinction between "believable" gauge
theories and those merely "not in contradiction with
experiment. " The former Bjorken defines to be those
theories that deepen our understanding of "Great Ques-
tions. "His list of same includes the origin of lepton mass
and, in particular, why the ratio of electron to muon mass
is of the order of the fine structure constant, what
accounts for the value of the Cabbibo angle, ~ etc. To
Bjorken's list we may also add the origin of CI' violation"

"This feature of the SU(2) x U(1) Yang —Mills Lagrangian was recog-
nized in the important paper of Salam and Ward (1964) in which the
particle masses are put in by hand rather than by the Higgs mechanism.
~ For the uninitiated, this "angle" measures the weakness of AS = 1

weak processes relative to the AS = 0 processes wc have been consider-
ing. Experimentally,

sin(8) 0.2.
The origin of this number only becomes a Great Question when the
gauge theories are extended from leptons to hadrons. How to do this is
also a Great Question." T. D. Lee (1973) has recently given a model of a spontaneously
broken gauge theory in which a spontaneous, i.e., vacuum-broken CP
violation of the right order of magnitude is a feature. The source of the
CP violation in Lee's model is the presence of, say, two distinct Higgs
fields coupled to each other which have vacuum expectation values that
are relatively complex with respect to each other. The reader will recall
how we used T-invariance in Sec. IV—Eq. (4.157) and what follows-
to show that in this case

(014(0)lo& = ~,
where g is real. In Lee s model this assumption is given up. The reader
is advised to read Lee's paper for details.

(ti/Bx')(t)/t) x,)W '(x) —m'. W' '(x)
—le, (H r x V W'(x) + (1 + a)(W(x) x H), ).

(7.160)

Clearly, the ' first term on the right-hand side is an
"orbital" interaction with H while we can readily show
that the spin magnetic moment is

(1+
L 2

R 2

E'
~ v, sin P + E'cos P

(s")
(-)

(8.1)

(8.2)

and perhaps even the value of the fine structure constant
itself. Bjorken concludes, and in this we concur, that no
gauge model so far devised is "believable"; the Great
Questions are still Great Questions, but we now have a
new context in which to think about them.

On the other hand, essentially none of the gauge
models —suitably doctored —are, as far as the author
knows, as yet in contradiction with experiment. As we
have indicated in the beginning of the last section, the
most significant handicap in model building is that we
simply do not know the physical particle spectrum. %'e
do 'not know where the lepton spectrum stops —in mass-
and we do not know how many —if any w—eakly interact-
ing vector mesons there are. Even the existence of the
"classical" charged 8'- weak vector mesons is, as of this
writing, still not established. A similar and even more
vexing question arises when we attempt to extend the
gauge models to include hadrons. These generalizations
involve "quark" currents which are constructed so that
the approximate symmetries of the strong interac-
tions —SU(3) or SU(3) x SU(3)—or, perhaps, other
groups are respected. How many quarks are there, and
where, if anywhere, are they observable as physical
particles? We simply do not know. In contemplating
these questions, one acquires a certain sympathy towards
the physicists and chemists of the late nineteenth century
who realized clearly that the atomic hypothesis produced
marvelous regularities among the phenomena, but who
were in doubt as to whether or not the atom existed.

Without getting too involved in the gauge group theo-
retic details we can say that all models so far proposed
appear to fall into one of two classes, which may be
overlapping:

(1) Models with neutral vector mesons (massive), in
addition to the photon, of which Weinberg (1967) may
serve as the canonical example.

(2) Models in which the only neutral vector meson that
couples to leptons is the electromagnetic photon. These
models are all characterized by the presence in them of
heavy leptons.

As a brief illustrative aside, we give an example of a
model of Class 2. This is a model due to Georgi and
Glashow (1972), which has the feature that the only
neutral vector meson in the theory is the electromagnetic

. photon. The only charged massive vector mesons are the
O'-. The gauge group used by G-corgi and 6-lashow is
SU(2) alone. As we have seen in the last section, the use
of SU(2) doublets alone a la Weinberg (1967) will not
give electromagnetism and the weak interactions; we had
to adjoin an independent U(1) group. However, Georgi
and Glashow propose to use the triplet representations of
SU(2). Here is where the heavy leptons come in. In
particular, they define for the electronic leptons, E+, E',
e, and v„where E' and E' are the hypothetical heavy
electronic leptons, the triplets
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and the corresponding singlets

Ss ——[(1 —7&)/2] (E' sin P —v, cos P).

However, in Class 1 theories there is the additional
perturbative chain, in the same order, which is derived

(8.3) from the sequence

rn. = 53.0 BeV sin P, (8.4)

setting for them an upper limit of 53 BeV on the 8 =

mass. This mass is, needless to say, generated by a Higgs
mechanism. Indeed, in their model they introduce a
Higgs SU(2) triplet

(8.5)

Here P is an arbitrary mixing angle which could it turns
out, in principle be determined from the relation that
holds in their theory

v, +v, —+Z —+e++e .

One may "Hip" the v, and the e+, taking particle into
antiparticle to obtain the elastic scattering. It is claimed
(see B. W. Lee 1972 b) that the very difficult experiments
of Gurr ef al. (1972) set a limit on the Weinberg angle of

sin'8 ~ 0.4.

(No such elastic electron —neutrino scattering events have
actually been seen. )

A more characteristic prediction of Class 1 theories is
that the reaction (v„ is the muon neutrino)

where

y(x) (w, (x) x w (x)), (8.6)

Since electric charge is conserved, only the neutral Higgs
field @' acquires a real nonvanishing vacuum expectation
value, which we may call 71. Thus, the SU(2) invariant
vector meson mass term will take the form

v„ + e ~ v„ + e

which is "forbidden" i.e., occurs only in higher orders, in
the conventional wea. k interaction theories (t„+e—& 8' violates the conservation of "muon number"), is
"allowed" in the Class 1 theories. The perturbation chain
in lowest order is

v„+ v„~Z' —+e++e

which can be "fiipped" to yield

which means that only 8'= will acquire a mass a la Higgs.
We will identify 8„' with the electromagnetic photon. It
couples to

v„ + e ~ v„ + e

As of this writing, no such events have been seen. (See B.
W. Lee, 1972 b, and references cited therein. ) There exists
also a class of processes involving hadrons such as

g = g~ + Qs (8.8) v+P —+ v+P
in the usual parity and charge-conserving fashion. The
scheme is very elegant, but as Bjorken (1972) remarks,
"the believability rating of the model plummets toward
zero as one notices that m, is given as the difference of
two terms, one a bare mass term = (mE/2) (ms is the
mass of the heavy electronic lepton), the other emerging
from the spontaneous breakdown g X f ~ (Q); the nota-
tion as above. No rationale for the miraculous cancella-
tion is given. " It is probably fair to say that if by an
equivalent miracle all of the Glashow —Georgi particles
should turn up at the right sorts of masses, the right sort
of "rationale" would also turn up.

All Class 1 models have in common the predicted
existence of neutral weak currents transmitted by the
massive Z' of Weinberg (1967) or its equivalents. These
currents modify all of the predictions of the usual weak
interaction theories. For example, " the Weinberg (1967)
model gives a definite prediction for the "diagonal"
process v, + e —+ v, + e in terms of the Weinberg mix-
ing angle 0. [See Eq. (7.96) for the definition. ] This
process also occurs in lowest order in the conventional
weak interaction theories via the perturbative chain

v, +e ~ 8 —+v, +e .

~ See, for example, Weinberg (1972b) for a discussion of many of these
predictions, and B. W. Lee (1972b) for a recent survey of the experi-
mental situation.

v+P —+ v+X+m+

in which neutral currents —Z' induced processes —play a
role. These are confounded, in their interpretation, by
details of the strong interactions, but so far no unambig-
uous neutral current eAects have surfaced. If this con-
tinues, Class 1 theories will, sooner or later, be definitiv-
ely ruled out." This will not do in the gauge theories,
since a plethora of Class 2 models remain.

The fact that no "believable" unified gauge model of
weak and electromagnetic processes has, as yet, been
found should not be allowed to obscure what even the
imperfect models that have been found accomplish.
Therefore, it is appropriate to close this review by giving
a few examples of how some of the longstanding di&cul-
ties in leptonic weak interaction physics appear to have
found their'resolution in the gauge theories. We shall
work in the context of the Weinberg (1967) model.

An ingenious variant of the Weinberg (1967) model has been
produced by Beg and Zee (1973).This model, based on SU(2) x U(1),
has both a Z' and a heavy lepton, as well as innumerable quarks —nine,
to be exact. It turns out that a choice of mixing angle can be made in
their model so that the Z' couples only to neutrinos. With this choice,
needless to say, there is no convict with any of the present experiments.
The reader is urged to consult their note for details.
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Similar results are forthcoming in the other models. We
begin with the discussion of a reaction which, although
far from being directly observable, has served as a useful
theoretical laboratory for several years (Gell-Mann er al. ,
1969), i.e.,

Fr@. 8. The convention-
al weak interaction Feyn-
man diagram giving the
reaction v, + v, —& 8'+
+ 8'.

1 i

(8.9)

In conventional theories this process takes place via the
diagram given in Fig. 8. The essential physics which
illuminates the difficulty with this process can be stated
as follows: a massive 8' meson, unlike the photon, has
three states of polarization reprsented by the normalized,
orthogonal four-vectors:

w+ Fr@. 9. A kinematical
diagram in the barycen-
tric system for v, + v,~ fY+ + 8' . The double
arrows on the neutrrno
lines show the directions
of the neutrino spins rela-
tive to their momenta.
The neutrino is "left
handed", while the anti-
neutrino is "right hand-
ed.

@
(-) —~(+)t—

)
v'ipse'+ m~2 p

mg fpf

(8.10)
FrG. 10. The Z con-
tribution to v, + v,~ 8"+ 8 . Note
the coupling constants
whose combination is
fixed by the group
structure.

ZQ

(8.1 1) ve)
If P is taken in the z direction, then these three polariza--
tions correspond to spins in the z direction or "helicities'
of +1, —1, and 0 respectively. Of interest for the rest of
the discussion is the somewhat weird, but perfectly
permissible reaction in which both the 8'+ and 8., are
longitudinally polarized, i.e., have zero helicity. The
neutrino and antineutrino have opposite helicities. (See
Fig. 9 where the reaction is drawn in the barycentric
system. ) The interest in considering this special reaction
is that the total angular momentum of the final 8'+, 8'
system is fixed in the limit in which the neutrino momen-
ta tend to infinity. This comes about because the neutrino
and antineutrino have equal and opposite helicities.
Hence, for longitudinally polarized 8 s, the whole reac-
tion must vanish in the forward direction, which means
that if ()) is the scattering angle, the angular distribution
must contain sin(8) as a factor to conserve angular
momentum. For finite energies there are additional
cos(8) terms in the angular distribution, but these tend
towards unity as P, the neutrino energy, tends toward
infinity. Following Weinberg (1971) we can write the
scattering amplitude in the form, where E, P, 6), p all refer
to the 8'+,

/(g )
ig' & P"'sin(g)e "(
mk 8m~2 (2E)'/'

P
2 E'(1 ——cos (tI)))F

——cos (8)) —ply
E 2

P
2

—ppg~+ gpss,', „-. , 16 P sin(8)e ".
m2w 16m.

(8.12)

This amplitude and hence the differential crosssection

22+ /
1

l/2 g
2

(()2 + (l&2l l/2

Fre. 11. A heavy electron con-
tribution to v, + v, —+ 8"+ 8'
in Class 2 theories.

tend, inadmissably, to infinity, with the energy in viola-
tion of the P-wave unitary limit. Within the conventional
theory the only remedy was to arbitrarily cut the theory
oA at some finite energy. However, in Class 1 theories
such as Weinberg (1967), there are additional diagrams
involving the neutral vector mesons. (See Fig. 10; Figure
11 shows the kinds of additional diagrams in Class 2
theories with heavy leptons which serve to keep these
theories finite and unitary). It must be strongly empha-
sized that the mere presence of these extra diagrams does
not guarantee that they will fix up the unitarity problem.
The crucial point is that these diagrams in the gauge
theories are hooked together by the group structure, as
the %'einberg Lagrangian, displayed in the last section,
makes clear. (See Fig. 10, where the coupling constants
are explicitly indicated. ) If these interactions were intro-
duced with arbitrary coupling constants, no cancellations
~ould take place, and if one imposed conditions to
enforce such cancellations, one would be led back. to the
group. Again following Weinberg (1971), the diagram of
Fig. 10 leads to an additional contribution to v, + r,
—+ 8'+ + 8' of the form
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Ve

Ve

FIe. l2. The 8' meson
contribution to the muon
electromagnetic structure.
Particle lines have been
suitably labeled. A similar
diagram holds for neutri-
no scattering where the
roles of the muon and
neutrino are inter-
changed.

ig' 1 P'~'sin(0) exp( —ip)
m.' 8m~2 (2E)'~'

+ 2m.']/[4E' —m,']).
(8.i3)

If we consider the limit in which E is much larger than
all the masses in the game, we find

We do not, fortunately, intend to calculate anything with
this vertex except to count the degree of divergence in
Fig. 12. Naively counting powers would lead to the
conclusion that this graph diverges as

d4a —Z4,

where A is a cutoff. However, it turns out that careful use
of gauge invariance reduces the degree of divergence by
two —the graph is "only" quadratically divergent. This
means that some sort of regulator method must be
introduced even to give the graph a unique meaning. If
not, various momentum routes are inequivalent. We can
do this a la T. D. Lee (1962) by defining the following
regulated propagators and vertex which satisfy the Ward
identity and hence preserve ordinary gauge invariance:

with

~ (P)+ ~, (q) - ~(P'),

f, (0, @) + f, (8, @) —+
16 sin(8) cos(8) exp( —ip)/[E(1

P——cos(~))1E
(8.i4)

Not only is this remarkable expression consistent with
unitarity —note the 1/E falloff —but the angular distribu-
tion has the physically reasonable. feature that it peaks in
the forward direction as P/E ~ 1.

The example we have just given is a very nice illustra-
tion of how the gauge theories work in the cure of
diseases that have plagued the weak interactions at the
"no loop" level. At this level there are no infinities, since
none of the diagrams involve integrations which might
diverge. Here, as we have seen, the diS.culties are asso-
ciated with unitarity and vanish in the gauge theories. We
would like to end this review with an illustration of how
the gauge theories deal with infinities arising from loop
integrations. We shall focus on the diagram of Fig. 12,
which has a long history beginning with Bernstein and
Lee (1963).These authors worked in what corresponds to
the U- gauge, using a gauge-invariant regularization
procedure to be discussed shortly. We have drawn Fig. 12
with external muons —a contribution to the electromag-
netic structure of the muon. If the role of muons and
neutrinos are interchanged in Fig. 12, one has instead a
contribution to the electromagnetic structure of the neu-
trino, which was, in fact, the concern of Bernstein and
Lee (1963). Later we shall comment about this quantity
in connection with the Weinberg 1967 model.

Before introducing any regularization, the 8' propaga-
tor in the U gauge takes the form

qq, &t~.(q) =
I g,.+'"", I/(q'+ m-') (8»)m' j

The R'—8'—y vertex for arbitrary ~—the "anomalous"
moment —can be written (T. D. Lee, 1962) for the
transition

(I ()q q"
8 18

$„(q) = t'es u(p') [F&(q')y„+ (I/2m„)o„„q"F~(q')]u(p),
(8.20)

where u(p) is a free-muon spinor, o„„=(I/2i ) (y„y„—y„y„), and q = p' —p. Written this way, F&(0) is the
charge renormalization and

F~(0) = (g. —2)/2 (8.2i)

the anomalous muon magnetic moment. It turns out that
Fig. 12 leads to a quadratic and logarithmic divergence in
F&(0), which in the Weinberg theory —or any other—
must be absorbed in the charge renormalization. If e in
Eq. (8.20) is the observable charge, then the renormaliza-
tion must be defined so that

Fj(0) = 1. (8.22)

On the other hand, F&(0) computed from Fig. 12 is only
logarithmically divergent. This can be traced back to the
extra factor of q" in front of F2(q') which, it can be
shown, reduces the degree of divergence by one. (Loosely
speaking, one diff'erentiates $„(q) to obtain F2(0) and this
produces an extra power in the propagator denominators
in Fig. 12, thus improving the convergence. ) After a
number of different attempts by several authors who
produced mutually contradictory results, the expression

"There is an additional conserved parity-violating term that is propor-
tional to

O' = Ee.[g- (p + p'). + 4 + ~)(g"p + p. 'g. )
—(I + ~)(g,ps + p-gs, )1. (8.19)

Clearly, as $ ~ 0, these expressions reduce to their
predecessors. Now at least for $ A 0 the graphs have
meaning. Let us define the muon electromagnetic vertex
in terms of form factors F&(q') and F2(q') as follows:"

u+ q =s'
= r«[g~s(p + p )» + &(g~sps + p~glu)

—(1+ ~)(g:p/ + p-g~. )l.

(8.16)
y5(y. e' —(m)~. )

that can come in because we are considering weak corrections to the
(8.17) electromagnetic vertex. It is not relevant to the present story.
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for the 8 meson contribution to F2(0) was definitively
settled by Brodsky and Sullivan (1967), who programmed
the rather intricate trace algebra on a computer. They
found, using the regularization technique described
above (we have rewritten their result using the modern
definition of g [see Eq. (7.62)], that

F, (o) = ' ",(2(l —~)log(t) +
3 )

= 1.16 X 10 ' 2(1 —tc)log(() + — . (8.23)
10

)=0

The most significant feature of this expression is, of
course, the fact that it diverges for all values of K except
K = 1, which is precisely the value of ~ fixed by the
SU(2) X U(1) group structure in the Weinberg theory.
[See Eq. (7.161) and the discussion that precedes it.] This
is another beautiful example of how these gauge models
cure pathologies in the weak interactions. One may also
note two other properties of Eq. (8.23).

1) F2(0) ~ 0 as m„—& 0. This is a special case of the
theorem, to be discussed below, that the helicity conserv-
ing weak and electromagnetic interactions will not pro-
duce a magnetic moment for a "neutrino" which is an
eigen-state of helicity.

2) The Weinberg theory produces finite corrections to
F~(0) for the muon, which in order of magnitude are~ 10 '. In addition to Fig. 12, there are other finite
graphs involving Higgs fields or Z"s which have been
computed (see, for example, Jackiw a.nd Weinberg, 1972)
and yield numerical results that depend on unknown
Higgs masses and coupling constant ratios, but are
expected to be of a similar order of magnitude. The
present experimental value for F2(0) (Brodsky, 1972) is
given for the muon as

F (0) = (11661.6 ~ 3.1) x 10 '

so that these weak interaction corrections are below the
level of both experimental error and the dificult to
estimate strong interaction corrections. The experimental
value is at present consistent with ordinary quantum
electrodynamics. It has been pointed out (Primack, 1972)
that Class 2 theories with suitable choices of the masses
of the heavy leptons etc. could produce weak interaction
corrections large enough to approach present experimen-
tal error. Any improvement in the experiments on the
muon magnetic moment could help to constrain such
models.

Finally, we turn to a discussion of the "electromagnetic
properties" of the neutrino, Fig. 12 with the muon and
neutrino interchanged. In the early theories such as
Bernstein and Lee (1963), only the conventional particle
spectrum —only charged W's and the observed leptons-
was considered. In such theories the quantity —J„' is the
electric current—

v+e —+v+e. (8.27)
Hence, if these theories were to be consistent, F, (q') had
to be finite. In fact Fig. 12 produces —as mentioned
above —a quadratic and logarithmically divergent expres-
sion, and much effort was expended to try to give these a
meaning, In Class 1 models, however, to every graph with
a photon exchange one must add a similar graph with a
Z' exchange. These occur in the same order in e—the
electric charge —since the various charges and masses are
hooked together via the gauge group. Hence, photon
exchange diagrams by themselves are not observable, and
need not be and indeed are not finite, even after renor-
malization. What must be finite is the S-matrix for
neutrino —electron scattering, including al/ radiative cor-
rections. To show this in the U gauge in %'einberg's
model involves detailed calculations which have been
carried out (Bernstein and Taylor, 1972, unpublished;
and especially S. Y. Lee, 1972). It turns out that if enough
graphs are included, cancellations of the infinities do take
place leaving small finite radiative corrections which
might some day be measurable.

It is clear from what has been said in this review that
the gauge theories are leading us into a new domain of
large masses and small distances. What is lacking is
experimental guidance to see if the whole idea is true as
well as beautiful. Of theoretical speculations there are
plenty.
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(8.25) eliminates the magnetic moment term in Eq. (8.24).
Since the neutrino is chargeless, we must have

F, (0) = 0. (8.26)
In these theories F&(q') could in principle be determined
in a reaction like

(v'~J„'(0)~v) = iu(v')y„Ft(q')u(v),

with u(v) a neutrino spinor satisfying

Y5u(v) = u(v)

(8.24)

(8.25)

is an "observable. " Note that, as mentioned above, Eq.
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