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This review discusses the physical properties of nematic, cholésteric, and smectic liquid crystals.
Molecular theories of the liquid crystal phases are discussed and the molecular field theories of
the phase transitions between the various liquid crystal phases are presented. The elastic theory
and hydrodynamics of liquid crystals is developed. A wide variety of phenomena in liquid crystals,
including elastic distortions, disclinations, flow properties, fluctuations, light scattering, wave
propagation, nuclear magnetic resonance, effects of magnetic and electric fields, electrohydro-
dynamics, and optical properties, is discussed.
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I. LIQUID CRYSTALS IN GENERAL

Liquid crystals are a state of matter intermediate be-
tween that of a crystalline solid and an isotropic liquid.
They possess many of the mechanical properties of a
liquid, e.g., high fluidity, inability to support shear, forma-
tion, and coalescence of droplets. At the same time they are
similar to crystals in that they exhibit anisotropy in their
optical, electrical, and magnetic properties. The name liquid
crystal was first suggested by Lehmann (1889) to charac-
terize this state of matter. Such terms as mesomorphs or
mesoforms, mesomorphic states, paracrystals, and aniso-
tropic or ordered liquids or fluids have also been proposed
and used in the literature. Liquid crystals which are ob-
tained by melting a crystalline solid are called thermotropic.
Liquid crystalline behavior is also found in certain colloidal
solutions, such as aqueous solutions of tobacco mosaic virus
(Bawden and Pirie, 1937; Oster, 1950) and certain polymers
(Robinson, Ward, and Beevers, 1958). This type of liquid
crystal is called lyotropic. For this class, concentration (and
secondarily temperature) is the important controllable
parameter, rather than temperature (and secondarily
pressure) as in the thermotropic case. Most of the present
discussion is equally valid for either class, although we will
generally have a thermotropic liquid crystal in mind.

The quintessential property of a liquid crystal is its
anisotropy. In this section we will list some of its manifesta-
tions and introduce an order parameter which characterizes
and quantifies it. The bulk of this review will then develop
the physical implications of this anisotropy. Essentially no
other assumptions about the nature of a liquid crystals are
necessary.

Liquid crystals are found among organic compounds;
the organic molecules may be of a variety of chemical
types, such as acids, azo- or azoxy-compounds, and choles-
teric esters. An extensive listing is given by Kast (1969).
The role of molecular geometry in liquid crystals has been
discussed by Gray (1962). Certain structural features are
often found in the molecules forming liquid crystal phases,
and they may be summarized as follows:

(a) The molecules are elongated. Liquid cryétallinity
is more likely to occur if the molecules have flat segments,
e.g., benzene rings,

(b) A fairly rigid backbone containing double bonds
defines the long axis of the molecule.

(c) The existence of strong dipoles and easily polarizable
groups in the molecule seems important.

(d) The groups attached to the extremities of the mole-
cules are generally of lesser importance.

Two liquid crystals, para-azoxyanisole (PAA) and p,p
methoxybenzylidene #-butylaniline (MBBA), which have
been extensively studied are shown in Fig. 1. Some impor-
tant physical properties of these two .liquid crystals are
given in Sec. XIX.
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FIG. 1. Molecular structure of para-azoxyanisole (PAA) and p-meth-
oxy benzilidene p-n-butylaniline (MBBA).
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FIG. 2. The arrangement of molecules in liquid crystal phases. (a)
The nematic phase. The molecules tend to have the same alignment
but their positions are not correlated. (b) The cholesteric phase. The
molecules tend to have the same alignment which varies regularly
through the medium with a periodicity distance p/2. The positions
of the molecules are not correlated. (c) The smectic A phase. The
molecules tend to lie in planes with no configurational order within the
planes and to be oriented perpendicular to the planes.

A classification of liquid crystals based on their structural
properties was first proposed by G. Friedel (1922), and
they are generally divided into three main classes:

1. Nematic. A simplified picture of the relative arrange-
ment of the molecules in the nematic phase is shown in
Fig. 2a. The long planar molecules which are usually in-
volved are symbolized by ellipses. The nematic phase is
characterized by long-range orientational order, i.e., the
long axes of the molecules tend to align along a preferred
direction. The locally preferred direction may-vary through-
out the medium, although in the unstrained (equilibrium)
nematic it does not. Much of the interesting phenomenology
of liquid crystals involves the geometry and dynamics
of the preferred axis, and so it is useful to define a vector
field n(r) giving its local orientation. This vector is called
the director. Since its magnitude has no significance, it is



M. J. Stephen and J. P. Straley: Physics of liquid crystals

taken to be unity. The director field is easily distorted
and can be aligned by magnetic and electric fields, and by
surfaces which have been properly prepared. On optical
examination of a nematic, one rarely sees the idealized
equilibrium configuration. Some very prominent structural
perturbations appear as threads from which nematics take
their name. These threads are analogous to dislocations in
solids and have been termed disclinations by Frank (1958).
They are discussed in Sec. V.

There is no long-range order in the positions of the centers
of mass of the molecules of a nematic, but a certain amount
of short-range order may exist as in ordinary liquids. The
molecules appear to be able to rotate about their long axes
and also there seems to be no preferential arrangement of
the two ends of the molecules if they differ (hence the sign
of the director is of no physical significance) . Thus optically,
a nematic behaves as a uniaxial material with a center of
symmetry. The existence of a center of symmetry in a
nematic is indicated by the absence of ferroelectric phe-
nomena, and also by the absence of second harmonic genera-
tion in light scattering (Durand and Lee, 1968).

This structure for a nematic is supported by the x-ray
data [a review of x-ray work on liquid crystals has been
given by Chistyakov (1966) and Delord (1969) ]. Recently
de Vries (1970) has suggested on the basis of x-ray and
optical data that another type of nematic phase (cybotac-
tic) exists. In this phase the molecules are arranged in
groups in such a way that the centers of mass of the mole-
cules in each group lie in a plane, i.e., there is short-range
order of the smectic type.

2. Cholesteric. The cholesteric phase is like the nematic
phase in having long-range orientational order and no
long-range order in the positions of the centers of mass of
molecules. It differs from the nematic phase in that the
director varies in direction throughout the medium in a
regular way. The configuration is precisely what one would
obtain by twisting about the x axis a nematic initially
aligned along the y axis. The director and the Fresnel
ellipsoid are seen to rotate as one progresses along the twist
axis. In any plane perpendicular to the twist axis the long
axes of the molecules tend to align along a single preferred
direction in this plane, but in a series of equidistant parallel
planes, the preferred direction rotates through a fixed angle,
as illustrated in Fig. 2b.

This secondary structure of the cholesteric is charac-
terized by the distance measured along the twist axis over
which the director rotates through a full circle. This dis-
tance is called the pitch of the cholesteric. The periodicity
length of the cholesteric is actually only half this distance
since n and —n are indistinguishable. For some reason, the
structure of cholesterics is frequently referred to as a helix
(with the appropriate pitch and axis) ; this usage has meta-
phoric value but little physical content.

A nematic liquid crystal is just a cholesteric of infinite
pitch, and is not really an independent case. In particular,
there is no phase transition between nematic and cholesteric
phases in a given material, and nematic liquid crystals
doped with enantiomorphic (not mirror symmetric) mate-
rials become cholesterics of long (but finite) pitch. The
molecules forming this phase are always optically active,
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i.e., they have distinct right- and left-handed forms. The
spiral arrangement has the opposite sense for the two types
of molecules. A racemic mixture of right- and left-handed
forms has a nematic structure (Robinson, 1966).

The pitch of the common cholesterics is of the order of
several thousand angstroms, and thus comparable with the
wavelength of visible light. The spiral arrangement is
responsible for the characteristic colors of cholesterics in
reflection (through Bragg reflection by the periodic struc-
ture) and their very large optical rotatory power (see Sec.
XVIII). The pitch can be quite sensitive to temperature,
flow, chemical composition, and applied magnetic or electric
fields.

Again one rarely sees, on optical examination of a choles-
teric, the idealized equilibrium configuration described
above. An important type of disclination often observed
in cholesterics was first described by Grandjean (1921). If
the cholesteric is confined in a wedge-shaped space between
tilted glass plates, optical patterns consisting of alternate
light and dark stripes are observed. The stripes are parallel
to lines of equal thickness along the glass surface and have
been commonly referred to as Grandjean planes. . The
Grandjean planes are actually singular lines: an undis-
torted spiral structure can only be realized in regions where
the gap width is an integral multiple of the half-pitch and
in between the spiral is deformed (see Sec. V).

3. Smectics. The important feature of the smectic phase,
which distinguishes it from the nematic, is its stratification.
The molecules are arranged in layers and exhibit some cor-
relations in their positions in addition to the orientational
ordering. A number of different classes of smectics have
been recognized [a review has been given by Sackmann
and Demus (1969) ]. In the smectic A phase the molecules
are aligned perpendicular to the layers, with no long-range
crystalline order within a layer (see Fig. 2c). The layers
can slide freely over one another. In the smectic C phase
the preferred axis is not perpendicular to the layers, so
that this phase has biaxial symmetry. This phase was first
identified by de Vries (1970) and by Chistyakov e al.
(1969) by x-ray diffraction. The smectic B phase has been
studied by Levelut and Lambert (1971) by x-ray diffrac-
tion. The observations suggest that there is hexagonal
crystalline order within the layers. A model of the smectic
B phase has been proposed by de Gennes and Sarma (1972)
in which the layers can slip on each other but cannot rotate
on each other. The smectic D and E modifications have
been reported by Sackmann and co-workers [see Sackmann
and Demus (1969) ]. Optically the D modification appears
to have a cubic structure, and the x-ray patterns are con-
sistent with a cubic packing. The x-ray patterns obtained
from the smectic E phase prove the presence of a layered
structure, and also indicate that there is a high degree of
order of the molecular arrangement within the planes (Diele,
Brand, and Sackmann, 1972b). Further work is required to
elucidate the nature of these phases.

In general a smectic, when placed between glass slides,
does not assume the simple form of Fig. 2c. The layers,
preserving their thickness, become distorted and can slide
over one another in order to adjust to the surface conditions.
The optical properties (focal conic texture) of the smectic
state arise from these distortions of the layers. From ob-
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servation it is inferred that the layers form a series of Dupin
cycides [a simple discussion has been given by Bragg (1934)
and in Sec. XV].

A number of substances exhibit nematic (or cholesteric)
and smectic phases. An extensive study of the phase dia-
grams of a large number of compounds has been made by
Sackmann and co-workers (Sackmann and Demus, 1969).
The general rule appears to be that the lower temperature
phases have a greater degree of crystalline order. Examples
are: (i) the nematic phase always occurs at a higher tem-
perature than the smectic phase; (ii) the smectic phases
occur in the order A — C — B as the temperature decreases.

Further background material is available in the following
list of review articles, books, and conference proceedings:

Brown and Shaw (1957) ; Gray (1962) ; Fergason (1964);
Brown, Dienes and Labes (1965); Chistyakov (19660);
De Gennes (1974); Durand and Litsler (1973); Saupe
(1973) ; Porter and Johnson (1967); Saupe (1968); Brown
(1969) ; Sackmann and Demus (1969); Pincus (1970);
Heilmeier (1970); Brown, Doane, and Neff (1970); Brown
and Labes (1972).

A. The order parameter

Suppose, for simplicity, that the molecules composing a
nematic or cholesteric liquid crystal are rigid and rodlike
in shape. Then we can introduce a unit vector v along
the axis of the 7th molecule which describes its orientation.
This vector should not be confused with the direcior n
which gives the average preferred direction of the molecules.
Since liquid crystals possess a center of symmetry, the
average of ¥ vanishes. It is thus not possible to introduce
a vector order parameter for a liquid crystal analogous to
the magnetization in a ferromagnet, and it is necessary to
consider higher harmonics or tensors. A natural order
parameter to describe the ordering in a nematic or choles-
teric is the second rank tensor

1
Ses(r) = VZ (e P — F6ap) (1.1)

when the sum is over all the V molecules in a small but
macroscopic volume located at the point r. The v, are the
components of v referred to by a set of laboratory fixed
axes. This order parameter is'a symmetric traceless tensor
of rank two and in general has five independent components.
In the isotropic state, where the molecules have random
orientations, S,z vanishes.!

In order to define an order parameter for nonlinear rigid
molecules, we introduce a Cartesian coordinate system
¥'y’?’ fixed in the molecules. In the case of a uniaxial liquid
crystal the order parameter tensor is defined by (Saupe,
1965)

Swp (r) = (oS 0n cos g — 36ap ), (1.2)

where cos 6. is the angle between the o’ molecular axis, and

1 Strictly speaking S,s only vanishes in the isotropic state when the
thermodynamic limit of Eq. (1.1) is taken. A certain amount of short-
range orientational order is present in the isotropic state.
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the preferred direction or optic axis and the angular brackets
indicate an average over the molecules in a small but macro-
scopic volume as in Eq. (1.1). In the case of linear mole-
cules, or molecules with a well defined long axis about which
they rotate rapidly, the two definitions (1.1) and (1.2)
are equivalent. The order parameter (1.2) is necessary in
the interpretation of the NMR spectra of nematics (see
Sec. XIV).

In real liquid crystals the molecules may be flexible in
contrast to the rigid models considered above. Different
parts of the molecules would then have to be described by
different Sap tensors. It is then preferable, as suggested
by de Gennes (1971a), to define the amount of order in
terms of a macroscopic property which is independent of
any assumptions about the rigidity of the molecules. Such
a definition of the order parameter is also preferable from
a thermodynamic point of view. The macroscopic property
chosen by de Gennes to represent the amount of order is
the anisotropy in the diamagnetic susceptibility. We define?

Qag = Xap — %60437(777 (1.3)

where x.s is the magnetic susceptibility tensor per unit
volume. Qg is again a symmetric traceless tensor of rank
two and has five independent components.

Since magnetic interactions between molecules are small,
the susceptibility is approximately the sum of the suscepti-
bilities of the individual molecules; then Q,g is simply related
to Ses for rigid molecules. Let the principal susceptibilities
of a molecule be x1@, x.©@, and x3®, and choose the molecu-
lar fixed axes #’, 3, and 2’ to coincide with the principal
axes of the susceptibility. Then it is not difficult to show for
a uniaxial liquid crystal

er = QW = 2AV[(S.7/’.1/’ + SZ'z’)Xl(m + (Sz'z’ + Sx’z’)Xz(O)
+ (Serer + Sy’z/')X3<O)]

sz = ‘?\?(‘S‘IE’I’XI(O) + SZ/'II'XZ(O) + SZ’-’-'X3(O))! (1'4)

where &V is the number of molecules per unit volume. Owing
to the identity S + Sy + S.or = 0, there are two
independent parameters on the right-hand side. For mole-
cules with axial symmetry we have

Qap = Nxa® Sag, (1.5)

where xo©@ = x|© — x.© is the anisotropy in the suscepti-
bility [x@ and x,© are the susceptibilities along and
perpendicular to the axis, respectively].

Any other second-rank tensor property of a liquid crystal
could be used in place of Eq. (1.3). We could, for example,
have chosen to define Q.4 in terms of the electric suscepti-
bility. However, then the simple relation (1.4) could not
be expected to hold. The electric susceptibility cannot be
taken as the sum of the susceptibilities of the individual
molecules, as local field corrections are much more impor-
tant in the electric case.

2 By convention repeated indices are to be summed over.
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It is possible to describe both uniaxial or biaxial ordering
in liquid crystals by means of the order parameters (1.1)—
(1.3).

1. Uniaxial symmetry

The single preferred direction of the molecules in this case
is along the director n. For uniaxial symmetry the order
parameter (1.1) can be written in the form

Sap = S(nang — ¥ap), (1.6)
where 7, are the components of n in a laboratory fixed
coordinate system. In particular, if we choose n along the
2 axis of this coordinate system, the three nonzero com-
ponents of .S are

Szz =

w

S; Sz = Sz/y = —%S- (1-7)
The scalar quantity .S is a measure of the alignment of the
molecules. Quantitatively, if f(8) sin 8 d@ is the fraction of
molecules whose axes make angles between 6 and 6 + dé
with the preferred direction,

S = / (1 — 2 sin%)f(6) sind db. (1.8)
0

In the isotropic phase .S = 0, and in the nematic or choles-
teric phases 0 < .S < 1. The limit S = 1 corresponds to
perfect alignment of all the molecules and, of course, can
never be realized in practice.

In the uniaxial case the order parameter (1.3) can be
written in the form

Qaﬂ = Q(nxxnﬂ - %501[9)- (19)

The quantity Q = x;; — x. is the anisotropy in the mag-
netic susceptibility.

The most important classes of liquid crystals belong to
the uniaxial case (the smectic C phase being the principal
counterexample) . According to Eq. (1.6), the order param-
eter for all such systems can be characterized by a magnitude
Q and a direction n, where the latter is the principal axis
of the order parameter tensor. The theoretical development
below depends merely upon the ‘existence of n and is by no
means restricted to the case of rigid symmetric molecules.

2. Biaxial symmetry

Biaxial phases of nematic and cholesteric liquid crystals
have not been observed. The smectic C phase is an example
of a liquid crystal with biaxial symmetry. The order param-
eter can be put in the general diagonal form

Q2 = X2z — %va =P,
Q% = Xaz — %X“W = _%(P - R)y
Qu = Xoy — %X’Y’Y = —3(P+ R). (1.10)

It now depends on two scalar quantities, P and R, which
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are given by
P = %(szz - Xazzx — ny)
-R = Xz — Xyy- (111)

Once two axes are fixed, the third is also determined so
that this is the most general type of symmetry that can
occur for a second-rank symmetric traceless tensor. Possible
biaxial forms of nematic liquid crystals have been discussed
by Freiser (1970), Fan and Stephen (1970), and Alben
(1973).

II. MOLECULAR FIELD THEORIES OF LIQUID
CRYSTALS

A. Landau theory

Let us assume, following Landau (1937); Landau and
Lifshitz (1958), that the Gibbs free energy density g(P, T,
Sas) 1s an analytic function of the order parameter tensor
Sas. In particular this quality is supposed to obtain near
the transition temperature. To the extent that S.s is a
small parameter, we may expand g in a power series. Since
the free energy must be invariant under rigid rotations, all
terms of the expansion must be scalar functions of the
tensor S.s. The most general such expansion has the form

g€= g+ 35A4SasSas - §BSasSpySa

+ 1CSapSasS15Svs — xaHaSasHsg (2.1)

correct to fourth order in S,s (de Gennes, 1969a). Here g.
is the free energy density of the isotropic phase. There is
just one distinct invariant of order 2, 3, and 4, as shown:
other forms (such as Sas.Ss,.5,65s«) can be reduced for uni-
axialliquid crystals to one of the forms given (3 Su5SasSy5:S+s,
in the example) when consideration is taken of the fact
that the trace Sa., vanishes. The last term of (2.1) is the
magnetic anisotropy energy due to the presence of the
applied field H.

The coefficients 4, B, and C are in general functions of
P and T. We shall see below that this model equation of
state predicts a phase transition near the temperature
where A vanishes. We will assume A has the form

A=A (T —T%). (2.2)
The transition temperature itself will prove to be somewhat

above T*. The coefficients B and C need have no particular
properties near 7*; we will regard them as constants.

The assumption that g is analytic in S.s cannot be justi-
fied, although in succeeding sections we will give some
examples of models for which it seems to hold. The validity
of the expansion restricts us to small values of .S. Experi-
mentally S~ 0.5 just below the transition, for which the
expansion (2.1) can only be qualitatively correct.

In a uniaxial liquid crystal Ses takes the form

Saﬁ = S(nang - %5,,5) . (2.3)
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FIG. 3. Landau theory: dependence of the Gibbs free energy on
the order parameter. The cases of the three special temperatures,
T**, T,, and T* are shown. The equilibrium value of the order param-
eter (which minimizes G) is indicated in the latter two cases.

Substituting this into Eq. (2.1), it becomes

g=gi+ 345* — &HBS*+ $CS* (2.4)
in the absence of a magnetic field. The equilibrium value
of S is that which gives the minimum value for the free
energy. The dependence of g; on S for several choices of T
is shown in Fig. 3, and for each case the equilibrium value
of Sisindicated. We see that there is a discontinuous phase
transition at a temperature 7 slightly above 7*. The source
of this first-order phase transition lies in the presence of
the odd-order powers of S in the expansion (2.4); the
existence of these terms is in turn due to the fact that the
sign of .S has physical meaning. A general discussion of the
relationship between symmetry and the order of a phase
transition has been given by Landau and Lifshitz (1958).

The value of .S which minimizes Eq. (2.4) can be found
algebraically. It will be a root of the derivative of (2.4),
which is

AS —3BS?* 4 3CS* = 0. (2.5)
The solutions of this equation are
S=0 isotropic phase
S = (B/AC)[1 4+ (1 — 24B8)1%] nematic phase,
(2.6)

where 8 = AC/B? A third solution, corresponding to a
maximum of the free energy, has been suppressed. Of the
two solutions to Eq. (2.6), the one with the lower free
energy will obtain; the transition temperature 7', will be
such that the free energies of isotropic and nematic phases
are equal, as shown in Fig. 3. From Eqs. (2.6) and (2.4)
this point can be determined to be

B=1d7; To=T*"+ o(B/A'C). (2.7)
Above T, the isotropic phase is stable; below 7', the nematic
is stable.

The value of the order parameter at the phase transition
is

S. = B/3C. (2.8)

The difference in entropy between the two phases is found
by differentiating Eq. (2.4) with respect to temperature.
The resultant latent heat per unit volume is

L= (A'B¥/27C%) T.. (2.9)
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The temperature 7% corresponds to the limit of meta-
stability of the isotropic phase. It should be possible, in
principle, to supercool the isotropic liquid to this tempera-
ture. At T*, where the coefficient 4 in the free energy
changes sign, the isotropic phase becomes unstable (because
S = 0is not a local minimum of the free energy, as shown in
Fig. 3). Likewise, the nematic phase becomes unstable
when 8 > 3'z. This determines a temperature 7%% = T% 4
B?/244’C which is the limit of metastability of the nematic
phase on heating. The temperatures 7* and T** also have
the significance that they are the apparent “critical points”
for the isotropic and ordered phases, respectively. Thus
susceptibilities and correlation lengths, which increase
as the transition point is approached, will appear to be
headed for a divergence at a temperature slightly beyond
the transition temperature 7.

Further applications of Landau’s theory to the properties
of nematogens in the isotropic phase will be discussed in
Sec. XIII.

B. Theory of Maier and Saupe

Maier and Saupe in a series of papers (1958, 1959, 1960)
have given a microscopic model for the phase transition
in a nematic liquid crystal. They consider the orientation-
dependent part of the van der Waals interaction between
pairs of rodlike, nonpolar molecules, which they reduce
to an internal field seen by one molecule by averaging over
the positions and orientations of all the other molecules. In
performing this averaging, it is assumed that there is no
anisotropy in the positional correlations (that is, the neigh-
bors of a given molecule are arranged in a spherically sym-
metric way), and that the distribution of orientations of
each molecule is sufficiently and accurately described by
the average order parameter tensor Ses. The result is that
a given molecule feels an effective potential

Vv, §) = —540Sap(vars — $0ap), (2.10)
where v is a unit vector along the axis of the molecule, and
Ay is a quantity independent of orientations and dependent
on interparticle spacing according to

Ao = 0(2_ Ryj7), (2.11)

where the sum runs over all particles except particle 1, the
average is an ensemble average, and ¢ is a constant.

" The probability distribution for the orientation of a
molecule in the presence of this internal field is

f(v) = Cexp[—V(v, S)/kT] (2.12)
where
Ct= [dvexp[—V (v, S)/kT]. (2.13)

Here dv indicates an integration over all orientations of .
The theory is made self-consistent by requiring that the
average value of v,vg — 36as be equal to Sqs [see Eq. (1.1) ]:

Sag = [ dv(varg — %8ag)f(¥). (2.14)
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In the case of a uniaxial liquid crystal this equation can be
simplified. Taking the preferred direction to be the zaxis, and
defining 8 to be the angle between v and 2, the 2z component
of Eq. (2.14) can be written

S = 21rC/ (3 cos®® — %) exp[—V (8, S)/kT]sind do,
0

(2.15)
where, according to Eq. (2.10)
V(,S) = —A0S(3 cos?? — 1) (2.16)
and C may now be written
C = 2 f"exp[—V(e, S) /R T sind db. (2.17)
0 ,

The other components of Eq. (2.14) vanish or give no new
information.

It is readily seen that one solution of Egs. (2.15) and
(2.17) is S = 0, which corresponds to the isotropic phase.
Nontrivial solutions can also be found. After an integration
by parts, and with Eq. (2.17) substituted, Eq. (2.15) can
be written

S = {lexp(s)/xD(x) — 1/*] — 3, (2.18)

where x = (34,S/kT)Y? and D is Dawson’s integral
(Abramowitz-and Stegun, 1964, p. 319)

D(x) = f exp(s?) dy. (2.19)
0

For each value of x Eq. (2.18) determines a corresponding
value of S and 7. The resulting relationship between S
and 7 is shown in Fig. 4.

We see from this figure that for a range of temperature
there are three possible solutions to Eq. (2.15). The solu-
tion which will actually obtain is that which gives the
lowest free energy per particle, which may be calculated as

F(T,S) = —3A405?+ kT InC/4w. (2.20)

It should be noted that Eq. (2.15) is the derivative with
respect to .S at fixed 7 of the free energy, so that the solu-
tions to Eq. (2.15) are automatically extrema of F. The
free energy as a function of temperature is also shown in
Fig. 4. The Maier—Saupe theory predicts a first-order phase
transition at a temperature 7' defined by

kT = 0.220A4; (2.21)

the value of the order parameter at the transition is

S, = 0.43, (2.22)
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FIG. 4. Maier-Saupe theory: dependence of free energy F and order
parameter .5 on temperature. Along the horizontal axis the parameter
Ao/kT is plotted. Corresponding points are indicated by Greek letters;
the phase transition occurs at 8 where A4o/kT, = 4.55; the phases v
and § are unstable.

independent of A,.

In reality the nematic-isotropic phase transition occurs
at constant pressure, and there is a small discontinuous
change in density at T.. The location of the phase transition
is then determined by the equality of the Gibbs free energy
per particle of the nematic and isotropic phases. When this
density change is taken into account S, and A/kT. are
no longer constants at 7' but vary weakly in the pressure
(or density).

To summarize, the Maier—Saupe theory is based on three
assumptions:

(a) an attractive, orientation-dependent van der Waals
interaction between molecules,

(b) the configuration of the centers of mass is not af-
fected by the orientational-dependent interaction,

(c) the mean field approximation.

The interaction in the Maier—Saupe model has been
criticized by Kaplan and Drauglis (1971). They pointed
out that the van der Waals interaction leads to a value
of the constant A, which is too small to explain the observed
values of T%.. The experimental measurements of the order
parameter in PAA by McColl and Shih (1972a, b) also
indicate that short-range repulsive forces are important. A
number of authors have considered the effects of attractive
and repulsive forces on the ordering in liquid crystals
(Alben, 1971; Wulf, 1971; Deloche, Cabane, and Jerome,
1971). The Maier-Saupe theory is thus best viewed as a
semiphenomenological model based on the mean field
Hamiltonian (2.10). The parameter Ao is to be regarded
as containing the contributions from both attractive and
repulsive intermolecular forces with quadrupole symmetry.
A generalization of the Maier—-Saupe model to include
forces of other symmetry has been given by Freiser (1971)
and Chandrasekhar and Madhusudana (1970).

The free energy [Eq. (2.20) 7] can be expanded in powers
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of .S and put into Landau form with the identifications

34 A
A= ——°<T — —°>
2T Dklg
T
70 (kpT)?
9 Ag

= . 2.23
C 700 (klgT)s ( )

In the isotropic phase, where .S is small (even in the presence
of perturbations), the expansion is accurate: Landau theory
and Maier—-Saupe theory give identical predictions for the
isotropic phase.

C. Onsager theory

We consider a collection of orientable particles interacting
pairwise through some potential V(r, m; s, n) which de-
pends on both position (r, s) and orientation (m, n). On-
sager (1949) has shown how the Mayer cluster theory
(1958) may be used to give an expansion for the equation
of state of this system. The terms of this series also depend
on the orientation distribution function f, which gives the
fraction of molecules per unit solid angle having various
orientations. Onsager’s expression for the Helmholtz free
energy per particle is (for number density p)

F/ET = [ f(n) Inf(n) dn + Inp
+ 3p [ f(m)f(n) B(m,n) dm dn
4+ 32 [f(Df(m)f(n)C(l,m,n) dldm dn — ---.
(2.24)
The coefficients B(m, n) and C(1, m, n) are called second

and third virial coefficients, respectively. They may be
~ calculated from V(r, m;s, n) as

B(m,n) = — [ ®(r,m;s,n) dr (2.25)
C(l,m,n) = — [ ®(r,];5,m)®(r,1;t,n)
X ®(s,m;t,n) drds, (2.26)

where ® = exp(—V/kT) — 1. For the particular case of
hard-wall interactions, B(m, n) is just the volume which
a particle of orientation m may not enter due to the presence
of another particle of orientation n. In the particular case
of cylindrical rods with spherical caps,
B(y) = 20 LD? + #xD° + 212D | sinvy |, (2.27)

where « is the angle between m and n, and L and D are
the length and diameter of the rods (Onsager, 1949).

Onsager neglected the third and higher virial terms on
the basis of estimates of their magnitude near the transition
density. Numerical calculations for 4 model indicate that
the ratio of the contribution of the third virial term to that
of the second is approximately 10D/ L near the phase transi-
tion (Straley, 1973c). Thus the expansion (2.24) is rapidly
convergent for very long rods, so that the Onsager theory
may lay claim to a sort of exactitude; however, there are
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few liquid crystals for which the condition L/D > 10 can
be said to hold,® and thus few systems to which the Onsager
theory can be literally applied..

The equilibrium form of f can now be determined as
that form which minimizes the free energy subject to the
normalization condition

ff(n)dn =1 (2.28)
implicit in the definition of f. A variational derivative of
Eq. (2.24) (with the third virial term discarded) leads
to the integral equation

f(n) = Cexp[—p [ B(n,m)f(m) dm], (2.29)
where C is a constant to be determined by normalization.
Comparison of this equation with Eq. (2.12) shows that
we are dealing with a form of molecular field theory, with
the difference that the configurational average energy of
orientation in Eq. (2.12) has been replaced by an orienta-
tion-dependent configurational entropy. The second virial
coefficient will be temperature-dependent for a general
interaction [ through Eq. (2.25) ]; however, for a hard-wall
interaction B is independent of temperature, and the phase
transition will be brought about by changing the density p.

The integral (2.29) can be solved numerically for any
form of the second virial coefficient which can be expanded
in Legendre polynomials (Lasher, 1970). The procedure
is to expand f (or its logarithm) in a series by some iteration
technique. The solutions are qualitatively similar to those
of the Maier-Saupe equation. The principal remaining
difference is that the Maier-Saupe theory is commonly
applied to liquids, which are only slightly compressible,
whereas the Onsager expansion is most appropriately
applied to dilute suspensions of particles for which the
change in free energy with density is relatively small.
Therefore the Onsager theory predicts large changes in
density at the transition, as is appropriate to such systems.

Other approaches to the orientable rod gas have been
given by di Marzio (1961), Isihara (1951), Cotter and
Martire (1971), Lasher (1970), and Alben (1971). Straley
(1973b) has compared these theories and showed how they
apply to poly(y-benzyl-L-glutamate), with the conclusion
that for sufficiently long rods most theories are equivalent
to that of Onsager and in rough agreement with experiment,
and that for shorter rods no theory seems to have a very
good claim to accuracy. A molecular description of nematics
has also been discussed by Lubensky (1970).

Ill. CURVATURE ELASTICITY THEORY

A. Curvature strains

In a given microscopic region of a liquid crystal there is a
definite preferred axis ‘along which the molecules orient
themselves. Even in equilibrium the direction of this axis
can vary from place to place, and it can be forced to vary
by the action of external forces and boundary conditions.
We will refer to the deformation of relative orientations

3For PAA or MBBA, L/D ~ 4. Only suspensions of polymers
(such as poly-y-benzyl-L-glutamate) meet the condition.
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away from the equilibrium position as curvature strains;
and the restoring forces which arise to oppose these de-
formations we will call curvature stresses or torques. If
these changes in molecular orientation vary slowly in space
relative to the molecular distance scale, we will be able
to describe the response of the liquid crystal with a version
of continuum elastic theory. This theory of curvature in
liquid crystals was originated by Zocher (1933), Oseen
(1933), and Frank (1958).

We will assume a variant of Hooke’s law, in which the
curvature stresses are proportional to the curvature strains
when these are sufficiently small; or, equivalently, that
the free energy density is a quadratic function of the curva-
ture strains in which the analog of elastic moduli appear as
coefficients.

Oseen (1933) based his arguments on the assumption
that the energy of the liquid crystal can be written as the
sum of pairwise interactions of molecules. This pair inter-
action depends on the relative orientations of the two
molecules. This is similar to the way in which Cauchy first
considered the elastic theory of solids. It is well known that
the Cauchy theory contains fewer independent elastic
constants than the most general form for the elastic energy
of a solid. Therefore we will follow Frank (1958) in basing
the theory of the curvature elastic energy on the symmetry
properties of the liquid crystal alone.

We consider a uniaxial liquid crystal and let n(r) be a
unit vector giving the direction of the preferred orientation
at the point r. In most liquid crystals the sign of this vector
has no physical significance, as the two ends of the molecules
do not differ in an important way. For molecules with
permanent dipole moments this may not be the case, and
the sign of n becomes important. However, once n is defined
at some point we assume it varies slowly from point to
point, and thus it is defined by continuity at other points
in the region. In multiply connected regions it may be
necessary to introduce mathematical surfaces of discon-
tinuity where n changes in sign, but there is no physical
discontinuity, at least for nonpolar molecules. At r we
introduce a local right-handed Cartesian coordinate system
x, v, 2 with z parallel to n. The x and y axes may be chosen
arbitrarily because the liquid crystal is uniaxial. Referred to
this coordinate system, the six components of curvature
at this point are defined by (see Fig. 5)

splay s1 = On./ox, sy = Ony,/dy,
twist h =

—dn,/dx, Iy = dn/0y,

bend by = On./93, by = On,/0z. (3.1)

These curvature strains can also be defined by expanding
n(r) in a Taylor series in powers of x, ¥, 2 measured from
the origin:

1n.(r) = swx + Ly -+ biz + O(#%),
1y (r) = —hax + soy + bz + O(#?),
n.(r) =14 O(?). (3.2)
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FIG. 5. The three distinct curvature strains of a liquid crystal:

‘(a) splay, (b) twist, and (c) bend.

B. Free energy

We now postulate that the Gibbs free energy density g’
of a liquid crystal, relative to its free energy density in
the state of uniform orientation (which is not necessarily
the equilibrium conformation), can be expanded in terms
of the six curvature strains (3.1):

6 6
g =2 kai+ 5 X kijaa; (3.3)
=1 1

5=

when the k; and k;;(=#k;;) are the curvature elastic con-
stants and for convenience in notation we have put

G =351, @=L, a=>b, a= —4L, a= s,

aeg = bg.

(3.4)

Because the crystal is uniaxial, a rotation about z will
make no change in the physical description of the substance,
and consequently the free energy density g’ should be in-
variant under such rotations. By consideration of a few
special cases (such as rotations of 3w and ir about z), it
is readily shown that there are only two independent moduli
ki, and that of the thirty-six k,;, only five are independent.
The general expression for the free energy density, written
in terms of .a set of eight independent moduli, becomes
(Frank, 1958)

g =lki(si+ s2) + ke(ti + &) + Fku(s1+ 52)?
+ ko (ty + £2)2 + Skas(b:? + bs?)
+ k(si+ 52) (b + ) — (ke + ko) (5152 + o).
(3.5)
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The last term can be written

- i(nx ‘9_”") _ i(n, 9@) (3.6)
ox dy ay ox

and consequently it will contribute only to surface energies

(Ericksen, 1962a). Thus we can omit the last term in

considerations involving the properties of the bulk liquid

crystal. This term can only affect the boundary conditions

and will be dropped henceforth.

In the presence of further symmetries g’ can have still
simpler forms.

(a) If the molecules are nonpolar or, if polar, are dis-
tributed with equal probability in the two directions, then
the choice of the sign of n is arbitrary. We have chosen a
right-handed coordinate system in which z is positive in
the direction of n. A reversal of n which retains the chirality
of the coordinate system generates the transformation

n— —n, x—x, 2— —2.

Invariance of the free \energy under this transformation
requires

ki =lkp=0 (nonpolar). (3.8)

If % 5 0, the equilibrium state has finite splay. Since
the ends of the molecules are distinguishable, they will in
general carry a dipole moment. In an insulator the condi-
tion V-n > 0 then implies V-P 5 0 (where P is the electric
polarization), and a space charge will exist. Simple geo-
metrical considerations show that it is not possible to have
uniform splay in an extended three-dimensional volume.
Simple examples of uniform radial splay are a thin spherical
shell of radius 2/s, or a thin cylindrical shell of radius 1/so.
Since such structures have large surface-to-volume ratio, it
is not valid to neglect the effects of surface tension.

All known liquid crystals appear to have symmetry
between n and —n, even in the cases where the molecules
themselves are not symmetric.

(b) The choice of a right-handed coordinate system is
arbitrary unless the molecules are enantiomorphic* or
enantiomorphically arranged. Practically, it appears that
-enantiomorphy does not occur unless the molecules are
optically active and thus can be distinguished from their
mirror images. Enantiomorphy also vanishes in racemic
mixtures containing an equal number of left- and right-
handed molecules. In the absence of enantiomorphism g’
should be invariant under reflections in a plane containing
the z axis, such as the transformation

x— x, z— 2.

y— =y, (3.9)

4 Materials which cannot be brought into coincidence with a reflected
image are enantiomorphic. They can be distinguished as right- and
left-handed, and commonly exhibit optical activity.
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This introduces the constraints

ke =Fkia=0 (mirror symmetry). (3.10)
In summary, Eq. (3.5) gives the most general dependence
of the free energy on the curvature strains in a uniaxial
liquid crystal. Further, &, vanishes in the absence of polar-
ity, k, in the absence of enantiomorphy, and k;; vanishes
unless both polarity and enantiomorphy occur together.

It is conventional to define

so = —ki/ky to = —ky/ks (3.11)
and to add constants to g’
g = g + Fhusd® + Fhnts?
= ghu(si+ 52— $0)2+ Skna(ti + 85 — 19)*
+ 3o (022 + 82) + kia(s1 4 s2) (31 + &) (3.12)

so that it is now evident that sy and /4, are the splay and
twist of the state which minimizes the free energy—the
equilibrium state. Thus the cholesteric phase is charac-
terized by £ # 0. '

The free energy density can be written in a vector nota-
tion. We note that

s1+ s2 = n./dx + 9n,/dy = V-n,

— (i + 1) = 9n,/dx — In,/dy = n-(V x n),

b + b = (9n./92)* + (9n,/32)2 = (n-vn)?,

s+ 52— 2ty = 3 (Vi) (Vn:) (3.13)
%J
which may be substituted into Eq. (3.5) to give
g = 3k (Ven — 50)2 + 2key(n-curln + 4)?
+ 1k (n-Vn)2 — kyp(Ven) (n-curln).

(3.14)

For the purposes of qualitative calculations it is sometimes
useful to consider a nonpolar, nonenantiomorphic liquid
crystal whose bend, splay, and twist constants are equal.
The free energy density for this theoretician’s substance is
just ' '

g = 3k(V-n)*+ 3k(V x n)* (3.15)
which is equivalent to
g = 3k 22 (Vanj) (Vin;) (3.16)
%57

apart from a surface term.

Curvature elastic moduli and curvature stresses also
arise in solids and in principle should also be included in
the elastic theory of solids. However, the elastic moduli %
associated with curvatures are generally of order of magni-
tude 10~% dyn and the energy associated with the curvature
is very small compared with the energy required to elas-
tically deform a solid.
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C. Effects of magnetic and electric fields

The diamagnetic susceptibility of a liquid crystal, owing
to the anisotropic form of the molecules composing it, is
also anisotropic. In the uniaxial state it is a second-rank
tensor with two components x;; and x,, which are the
susceptibilities per unit volume along and perpendicular
to the axis. The susceptibility tensor thus takes the form

X = X0i5 + Xa®in;, (3.17)
where x, = x|;'— x. Is the anisotropy and is generally
‘positive. It is thus possible to exert torques on the liquid
crystal by applying a field. The presence of a magnetic
field H leads to an extra term in the free energy of

gn = —IxH* — ix.(n-H)2 (3.18)
The first term usually will be omitted as it is independent
of the orientation of the director. The last term gives rise

to a torque on the liquid crystal—if x, is positive the mole-
cules will align parallel to the field.

The dielectric susceptibility of a liquid crystal is also
anisotropic and has the same form as the magnetic suscepti-
bility. Thus, in principle, we can achieve the same effect
with an electric field as with a magnetic field. In an electric
field E there will be an additional free energy

go= —(1/8m)eF? — (1/87)e,(n-E)?2, (3.19)
where ¢, and e are the dielectric susceptibilities defined
similarly to the magnetic susceptibilities. In practice the
alignment of a liquid crystal by an electric field is com-
plicated by the presence of conducting impurities which

make it necessary to use alternating electric fields (see
Sec. XVII).

D. The curvature stress tensor

The curvature elastic free energy density in the presence
of a magnetic field can be written

g(nsy ;) = 3kn(Ven — 50)% + 3k (n-curln + 4)?2
+ 3k3(n-Vn)2 — ki (Ven) (n-curln)

— 1x.(n-H)2 (3.20)

It depends on the components of the director 7; and on
the curvature strains, #;; = 9dn,/0x;. We can define a
curvature stress tensor by®

Hij = —Bg/an,,,

= Aeijknk bl kgs(n-Vi)n,- it B(Sij, (321)

where e is the completely antisymmetric tensor of rank 3,
and
A= kgg(n'Curln + to) —_ klz(V'n)

B = kn(V'n — So) _ kun-curl n. (322)

® We use a convention where repeated indices are to be summed over.
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We can give physical interpretation to the curvature stress
IL;;. Consider the molecules lying in a plane whose normal
is the unit vector v. Then there is a torque acting on the
molecules in a unit area tending to rotate them. If we regard
the components of II;.vm as a vector, the surface torque
per unit area on a surface element in the fluid is

L= —n x IT-v. (3.23)

The free energy [Eq. (3.20)] also depends on the com-
ponents of the director #,; and we can define a body curva-
ture force f; by

fi = dg/on.
= Aeini,; + ku(n-Vnu;)n;: — x.:(n-H). (3.24)
The body torque per unit volume is
Ly=n x f. (3.25)

The equilibrium state of a liquid crystal is obtained by
minimizing the total free energy

G = f drg (s, ni.;) (3.26)
14

with appropriate boundary conditions and subject to the
condition that the magnitude of n be unity. Allowing #;
to vary in Eq. (3.27), we obtain

a a
oG = /- dr[ £ 6%1—" £ 61’1,1*,]]
Vv am a%i,]'

d Ja 9 a 9
= /dr[ gani—ani*—iJF—( § 6n>]
o, 696_7' anm- ax]- ani,]‘

(3.27)

The last term in the integrand can be transformed into a
surface integral and only enters the boundary conditions.
We then find the Euler-Lagrange equation

—(8/9x;) (0g/0n; ;) + 0g/on: = vyn,
or

9/0x11:; + fi = vy, (3.28)

where v is a Lagrange multiplier and is to be determined
so that n? = 1. Care must be exercised in assuming con-
strained solutions to Eq. (3.28) [an example of a constrained
solution is #, = cosy(r), mn, = sing(r), #n.= 0, which
automatically satisfies n? = 17]. Equation (3.28) can be
written s; = —vyn; where
hi = —8/x1;; — fs

and has been called a molecular field by de Gennes (1971a)
in analogy with magnetism. Equation (3.28) is then equiva-
lent to h x n = 0. Assuming a constrained form for n

initially and minimizing the elastic energy (3.26) does not
necessarily lead to stable solutions.
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The curvature stress II;; as given by Eq. (3.21) is not
unique because it is always possible to replace II;; by

Hij - H,']' - (6/6xk)A,JA (329)
where Aj is antisymmetric in the indices 7, £. This replace-
ment leaves the equilibrium condition (3.28) unchanged.
The last term of (3.5), which we have omitted, is of this
kind and leads to

Aijk = 2(5“1% - 51'k1’Lj). (330)

More general variational principles for liquid crystals
than Eq. (3.27) have been given by Ericksen (1962b)
and Leslie (1968a, b). They considered the case where the
density could vary as well as the director and in this way
obtained a hydrostatic theory of liquid crystals. However,
the energies associated with compression are very much
larger than those associated with orientational deforma-
tions, so that we will generally be able to regard the liquid
crystal as incompressible.

Conversely, the curvature elastic energies are almost
negligibly small in cases where the compressional energies
are of interest. It is found, however, that the sound velocity
is slightly affected by orientational order (see Sec. XII).

E. Long-range order in curvature elasticity theory

The Oseen—Frank curvature elasticity theory of liquid
crystals is based on the assumption that there is long-range
orientational order of the molecules in the liquid crystal.
This means that the orientation of molecules at a point in
the liquid will affect, through the curvature elastic energy,
the orientation of molecules at points far removed from
it. It is instructive to consider the simple situation of Fig. 6
where a nematic liquid crystal is confined to a spherical
region of radius R.. On the boundary of the region the
director is constrained to be along the z axis. A small spheri-
cal region of radius R; at the center is constrained to have
the director make an angle 6, with the z axis. The elastic
energy of this structure is easily evaluated. For simplicity
we consider the theoretician’s liquid crystal (whose elastic
constants are equal) so that the free energy density is
given by Eq. (3.16):

g = (k/2) (Vinj) (Vin).

(3.31)
In the region » > R; the director has the form
#n, = sind, n, = cosf (3.32)
and substituting in Eq. (3.31)
g = (k/2)(v0)> (3.33)

The minimum free energy is obtained when 6 satisfies
Laplace’s equation

Vi = 0. (3.34)

The solution satisfying the boundary conditions of the
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FIG. 6. A strained configuration. A liquid crystal confined between
concentric spheres is constrained to have one orientation at the surface
at Rp and a different orientation at the surface at R;. For the case
R: = 0.3R: and 6, = 45°, we show how the orientation varies with
position, both as a graph and as a representation in cross section.

problem is

0 = [Rib/ (R, — Ri) J(R:/r — 1). (3.55)
The total free energy is

G = [27kR\Rs/(Ry — Ry) 0% (3.36)

We see that in the limit R,— o the free energy G =
2wk R:0y is finite. Thus, however large the specimen, the
boundary conditions are important and influence the
orientation in the bulk of the liquid crystal: we have long-
range orientational order. The older swarm theory of liquid
crystals was based on the idea of strictly finite ordered
regions with dimensions comparable with the wavelength
of visible light. The success of the elastic theory in explain-
ing the many phenomena discussed in the following sections
leaves little doubt as to its validity.

F. Rotational symmetry

The invariance of the free energy density g(w., #n:;)
under rigid rotations implies an identity, originally due to
Ericksen (1961), which is satisfied by the curvature stresses.
This identity will be used in Sec. VI. If a liquid crystal is
subject to an infinitesimal solid body rotation, the director
and its derivatives transform as

ni — n; = Qin;

nei — iy = Qattg,; + Qi k. (3.37)

Quantities in the rotated coordinate system are denoted
by a prime, and Q,, = —Q., etc. is the infinitesimal angle
of rotation about the z axis. To first order in ,; the variation
in the free energy density is

gnd i) — gni, ni;) = [fm; — Wangp — My 5 Qs
(3.38)

In order for this to vanish, the expression in the square
bracket must be symmetric in the indices ¢ and j (Q; is
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an arbitrary antisymmetric matrix). Thus

fon; — fimy — Wang e + Wapmg e — Wpang,; + Mg, = 0

(3.39)

which is the required identity. It may also be verified
explicitly using the definitions (3.21) and (3.29).

IV. APPLICATIONS OF CURVATURE ELASTICITY
THEORY

A. The nematic phase

The nematic phase lacks polarity and enantiomorphy,
and thus is characterized by sy = { = ki = 0 in the free
energy density [Eq. (3.20)]. The three nonvanishing
moduli ki1, ke, kss must all be positive. The elastic free
energy takes the form

= 3k (V-n)?+ 3k»(n-V x n)?

+ $ks(n-vn)? — Ix.(n-H)2 (4.1)

The direction of n in a sample is usually determined by
‘the boundary conditions, and several techniques have been
devised for the preparation of nematic monocrystals ori-
ented by the effects of boundaries. The directors of many
nematics tend to assume an orientation parallel to the
direction in which an adjacent solid surface has been rubbed.
Such rubbing may be done on glass with a dry cloth or a
polishing material. A simple explanation of the orientation
parallel to the direction of rubbing has been given (Berre-
man, 1972): an additional elastic energy in the nematic
would occur due to distortion near the rough surface if the
molecules were forced to lie against the surface with the
director lying across, rather than parallel, to the grooves
and ridges produced by the rubbing. If the surface is rough
in both dimensions, such energy considerations explain a
tendency for the molecules to align perpendicular to the
surface (homeotropic condition). A perpendicular orienta-
tion of the director at a solid surface can also be obtained
by coating the surface with a monolayer of material (e.g.,
cetyltrimethyl ammonium bromide) that is wetted by a
nematic. The nematic may then be bonded in some par-
ticular orientation at the surface (Chatelain, 1954; Proust
et al., 1972).

Information on the elastic constants can be obtained
from a number of experiments. The three most important
are:

(a) observation of disclinations (Sec. V);

(b) measurement of the intensity of light scattered by
the liquid crystal (Sec. VIII); and

(c) the distortion of an initially aligned structure by a
magnetic field (Fredericksz transition)

Values for the elastic constants in PAA and MBBA ob-
tained from the Fredericksz transition are given in Sec. XIX.

B. Fredericksz transition in nematics

Consider a nematic liquid crystal contained between
two glass slides. The interaction between the nematic and
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FIG. 7. TFredericksz transition, perpendicular case. The liquid crystal
is constrained to be perpendicular to the boundary surfaces and a
magnetic field is applied in the direction shown. (a) Below a certain
critical field H,, the alignment is not affected. (b) Slightly above H.,
deviation of the alignment sets in. Here H = 1.07H,, 6,, = 30° and
£ = 0.30d. (c) As the field is increased further (to 1.9H,) the deviation
increases (6,, = 80°).

the glass is assumed to be such that the director is con-
strained to lie either perpendicular or parallel to the glass
at the boundaries. When a magnetic field, applied per-
pendicular to the director, exceeds a certain critical value,
the optical properties of the system change abruptly (we
assume the magnetic susceptibility anisotropy is positive
in this section unless otherwise stated). The magnetic field
and the boundaries both exert torques on the molecules
and when the field exceeds H. it becomes energetically
favorable for the molecules in the bulk of the sample to
turn in the direction of the field (see Fig. 7). This effect,
first observed by Fredericksz and Zolina (1931), can be
used to measure some of the elastic constants. There are
several geometries in which the deformations produced by
a magnetic field can be studied, of which we discuss three
principal cases (Saupe, 1960b; Pieranski, Brochard, and
Guyon, 1972; Rapini et al., 1968). Other geometries have
been considered by Dafermos (1968) and Leslie (1970a).

1. Perpendicular case

In this case the director is constrained to be perpendicular
to the glass surfaces. Let the z axis be perpendicular to the
glass surface and the field H lie along the x direction (see
Fig. 7). The director will have the form

n, = cosf(z), n, = sinf(z) (4.2)

so that @ is the angle between the director and the z axis.

The elastic energy per unit area g4 from Eq. (4.1) now
takes the form

1 rae
g4 =75 / dz[ (k1 sin%0 + ks cos20) (90/0z)2
/2

—d

— XoH? sin?0], (4.3)
where d is the thickness of the sample. In the undistorted
structure (@ = 0) the field does not exert a torque on the
molecules—they are 'in metastable equilibrium. We will
suppose, for simplicity, that k;y = ks = % [ the more general
case where ki1 # k3 has been considered by Saupe (1960b)
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and Rapini ef al. (1968)7]. We define the length ¢ =
(k/x.H?)? and Eq. (4.3) becomes

1k df2
=55

=28 )., dz [£2(96/92)% — sin®].

(4.4)

Minimization of the free energy leads to the differential
equation

£2(8%0/02%) + sinf cosd = 0. (4.5)
There is a trivial solution & = 0 which satisfies the boundary
conditions. If the maximum distortion 8, is small

= On coé(&*lz) 4 (4.6)

is a good approximate solution. The boundary conditions
for this solution require that d = &, or, equivalently,

H = (ka/xa)"*(w/d), (4.7)
which holds even if %11 £ k3;. The distortion shown in Fig.
7b is largely “bend” with little “splay.” Thus a measure-
ment of H, is a measurement of ks, provided that x, is
known. For fields weaker than H. only the trivial solution

exists, and there is no distortion of the nematic structure.
For ks ~ 1078 dyn, xa ~ 107% cgs, we find Hed ~ 1 G-cm.

The general solution to Eq. (4.5) is readily found. The
first integral is

£2(d0/dz)?* + sin? = sin®f,, (4.8)
where the constant of integration has been identified by
observing that df/dz = 0, where 6 takes on its maximum
value. This maximum presumably lies halfway between
the glass surfaces at z = 0. The equation may be further
integrated to give

1y _ 5/0 de’
z #= o (sin®, — sin%’)!/2

= & cscOnF (csCln, 8),
(4.9)
where F is the incomplete elliptic integral of the first kind,

and we have used the boundary condition 8§ = 0 at z = 3d.
The maximum distortion is found by putting z = 0,6 = 6,
3d = £ cschnF (c5COm, O) = EK (sinbn), (4.10)

where K is the complete elliptic integral of the first kind.
For fields just above H.,

6, ~ 2[(H/H,) — 1] (4.11)
and for large fields,
sinf,, ~ 1 — 16 exp(—nH/H.). (4.12)

The dependence of 6,, on H is shown in Fig. 8; and Fig. 7
shows the general form of the distortion for three cases.
This latter figure also makes the point that & can be directly
interpreted as the distance which a disturbance can pro-
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90°
efﬂlx
FIG. 8. Dependence of 6,
60° and & on H, as given by Egs.
"¢, (4.10) and (4.15). Param-
eters appropriate for MBBA
300 were chosen (n, = 1.75, 1o =
Ol 1.54,» = 0.29).

H/H,

pagate into the liquid crystal in the presence of an ordering
field. The length £ is called the magnetic coherence length
and arises in many problems involving the distortion pro-
duced by a magnetic field. '

The distortion of the director by the field can be detected
optically because there is a change in the refractive index
of the material. This is the method employed by Saupe
(1960b). Let the principal refractive indices of the nematic
be 7o (ordinary wave) and #. (extraordinary wave). From
Fig. 7 for a light wave polarized along z, the refractive
index locally is '

Rl (4.13)
n= . .
(n.? sin% + ng? cos?d) /2
The average change in the refractive index is
] a2 ,
6=4dt dz(ne — n). (4.14)
—d2
Using Eq. (4.8), this can be put in the form
5 ) 28 /“’m a6
n, dJy (14 vsin®)12(sin%,, — sin%)/?
14+ \]2
=1 — (2&/d) (1 + v sin%,,) 12K (——)] :
(2¢/d) (1 + v sin’m) [CSC20m+V
(4.15)

where v = (2 — n?)/n? For small deformations the
change in refractive index is
6= no[(H— H,)/H,] (4.16)

and for large fields § approaches 7, — 7. The general be-
havior of § is also shown in Fig. 8.

An alternative method for observing the bend deforma-
tion has been used by Williams and Cladis (1972). The
sample is illuminated with convergent light, and the inter-
ference figure of the uniaxial material is observed. H. was
taken to be the value of H for which the interference rings
just began to be distorted.

The effects of boundary conditions on the Fredericksz
transition have been discussed by Rapini and Papoular
(1969). They considered both the case where the molecules
make a fixed angle ¢ different from 0 or 37 with the surface
and the case where the surface forces are comparable with
the elastic forces, so that distortion of the alignment may
take place at the surface. In both situations they find that
the apparent elastic constants would be decreased.
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FIG. 9. Fredericksz transition, par-
allel case. This figure is the analog
of Fig. 7b.

2. Parallel case

Assume instead that the molecules are constrained to be
parallel to the glass at the surfaces. If a magnetic field is
applied perpendicular to the surface, the structure distorts
as shown in Fig. 9. This distortion is largely “splay” with
only a small admixture of “bend”; the transition occurs at
the field

H, = (ku/x.)"*(w/d). (4.17)

The analysis of the elastic theory with ki3 = kg3 differs from
the foregoing perpendicular case only by a rotation of axes
through 90°. The change in refractive index is given by
Eq. (4.15), but now refers to a wave travelling along z
with polarization along x.

3. Twist case

A third possibility is that the field is applied in the plane
of the glass, but perpendicular to the direction of the mole-
cules which are parallel to the surface. We assume that the
molecules at the surface do not twist in the direction of the
field: this geometry then shows a transition to a twisted
state and observation of this effect can provide information
on the elastic constant ks. We assume that the molecules
are initially aligned along x and the field is applied in the
y direction. The director has the form

ne = cose(3), n, = sing(z).

Substituting this form in the free energy [Eq. (4.1)], we
obtain for the elastic energy per unit area

daj2 .
g4 =3 f dzl k2 (9¢/02)* — xoH?* sin’ ]. (4.18)
—dj2 '

This is of exactly the same form as Eq. (4.4), the only
change being the substitution of %y for k. Thus the critical
field from Eq. (4.7) for this geometry is

H, = (w/d) (ks/xa)" (4.19)
and observation of this effect provides information on k..
This distortion can be detected optically by observing the

rotation of the interference figure of a nematic (Cladis,
1972).

Twisted nematic structures can also be obtained by
rotating one of the glass plates in its plane or by previously
rubbing the two glass plates in different directions. These
twisted structures have been discussed theoretically by
Leslie (1970b). If a field is applied parallel to the twist
axis, he has shown, for small values of the twist, that a
critical field exists at which the molecules begin to rotate
in the direction of the field. This critical field has been
measured by Gerritsma et al. (1971) by a capacitance
method (Shtrikman ef al., 1971). Twisted nematic and
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cholesteric structures have also been considered by Ericksen
(1967a, 1968a, 1969a).

. C. Cholesteric phase

This state is distinguished from the nematic state by the
presence of enantiomorphy. The elastic free energy density
takes the form in the absence of a field from Eq. (3.14)

g = $ku(V-n)2+ 3kyn(n-V x n+ f)?+ 3ks(n-vn)?
(4.20)

and the state of lowest free energy has a finite twist. There
is only one structure of uniform twist: that in which n is
constant in each of a family of parallel planes and the twist
is normal to these planes (see Fig. 26). Explicitly if we
choose the axis of twist to be the z axis, the cholesteric state
is given by ‘

"y = COSlZ,

n, = sinfyz. (4.21)

This state has the lowest free energy, g = 0. The pitch is
given by 2w/t, but since n and —n are indistinguishable
the period of repetition is m/f. The pitch can be of the order
of magnitude of the wavelength of visible light and is then
important in the optical properties of these materials (see
Sec. XVIII). It should be emphasized that the planes in
which n is constant only exist in a geometrical sense. The
molecules in the cholesteric phase do not lie in planes (in
contrast with the smectic state) and the cholesteric phase
is thermodynamically identical to the nematic phase.

- The elastic moduli in these materials can also be studied
through the effect of an applied magnetic field. We consider
below the two special cases where H is perpendicular and
parallel to the twist axis. The situation is simpler when
the field is applied perpendicular to the twist axis—the
field has the effect of unwinding the structure and there is a

- critical field above which the cholesteric has nematic order-

ing (de Gennes, 1968a; Meyer, 1968).

1. H perpendicular to the twist axis
In this case we can take the director in the form

n, = sing(z), n, =0,

H, = H.

It

cos¢(z),
H,=H,=0,

Ny

(4.22)

The elastic energy, including the magnetic energy, from
Eq. (4.20) is

G = %‘/’ dr[kzg(ad)/az - l())2 — xoH? sin%]. (423)
v

The Euler-Lagrange equation which follows from minimiz-
ing G is

ka2 (9%¢/322) + xoH? sing cos¢ = 0 (4.24)

which is again of the form (4.5), except that now the con-
stant ks and the characteristic length & = (kyo/x.H?)2
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£7(5%/92?) + sing cosp = 0. (4.25)
The first integral of this equation is

£2(3¢/02)% + sinZp = 1/«2 (4.26)

Unlike the foregoing cases, the integration constant (x7%)
is greater than unity: ¢ is a periodic function in space and
there is no ¢,. The dependence of ¢ on z is given implicitly
by the integral

3 ¢ d¢’
— = —_— 4.27
k&2 ./0 (1 — «%sin%gp’)1/? ( )

This is a definition of a Jacobian elliptic function and

sing = sn(z/«&), 2 = kb F(x, ¢). (4.28)
The spatial period of the structure, corresponding to a
variation of ¢ by 2, is given by

P = k&K (x), (4.29)
where K (k) is the complete elliptic integral of the first
kind. The value of « is determined by minimizing the free
energy. The elastic energy per.unit volume is

oH?
- X /p dz[£2(d¢p/dz — 1y)? — sin’e |
0

§= 2p
— 2xaH? e ¢ 2 - 2 . ain?
= » /0 (90/0%) [£2(0¢/02 — t)? — sin’p].

(4.30)

Substituting from Eq. (4.26), the elastic energy density
" can be put in the form

2g — 1 ‘ T
kooto® tokskK (k) 1°E2K?

[1 = 2E(x)/K(x) ],

(4.31)

where E is the complete elliptic integral of the second kind.
Now we calculate dg/d«x [noting that (9/dx) (E(x)/x) =
—K (x)/¥*] and equate to zero, giving

E(x)/x = §wlok (4.32)
which determines « as a function of & (and hence H).
Using this result, the equation for the pitch (4.29) can
be written in the form

(2/m)*K (x) E(), (4.33)

Pp/po =

where po = 2w/l is the pitch in zero field. For small fields,
k is small and from Eq. (4.32) we find

p/po =1+ gg(teka) ™ (4.34)
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FIG. 10. Fredericksz transition
in a cholesteric. As the field is
0.6} K o =th, increased the cholesteric unwinds
and the pitch becomes infinite.
The parameter « is determined
04} by Eq. (4.32). ’
0.2r
A } i
o} o I
t0/62

and the pitch varies slowly with the fourth power of the
field. There is a critical field H, determined by [ correspond-
ing to the value x = 1 in Eq. (4.32)]

1/tts = w/2; H, = (mlo/2) (k22/xa) "2 (4.35)
above which the liquid crystal has nematic ordering. The
measurement of this critical field can provide information
on ke if x, and 4 are known. Typically for ks = 10~% dyn,
X« = 1078, and 4 = 10* cm™, we find H,~ 10*-10° G. In
Fig. 10 the dependence of « and p on field is shown. The
pitch diverges logarithmically as H, is approached:

4H,

V4
n——/—""FF -
(H2 — H?)2

_2 1 (4.36)
po o
Finally from.Eqs. (4.31) and (4.32) the elastic energy
density can be put in the simpler form

g = (kut®/2)[1 — 1/ (bkax)2]. (4.37)

The transformation from a cholesteric to a nematic
structure was first observed by Wysocki et al. (1968) in
electric fields and by Sackmann ef al. (1967) in magnetic
fields. The unwinding of the twisted structure has been
confirmed by Baessler et al. (1969) and Kahn (1970) for
electric fields and by Durand ef al. (1969) and Meyer
(1969a) for magnetic fields. Williams and Cladis (1972)
have obtained ksy/x. for MBBA doped with a cholesteric
from the observation of the pitch and the critical field

[Eq. (4.35)].
2. H parallel to the twist axis
If the susceptibility anisotropy is negative, this situation

is stable. For a positive anisotropy the situation can be
quite complicated, and conical configurations such that

7. = cosf

(4.38)

7, = sinf cose(z), n, = sinf sing(2),

can exist. In the absence of boundary conditions, de Gennes
(1968a) and Meyer (1968) have shown that the free energy
is a minimum only when § = 0 (nematic ordering parallel
to H) or # = w/2 (cholesteric state) if ks3 > keo. The free
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energy has the value in these two cases

g = (Rate?/2)[1 — 1/ (te52)%], 6=20 (4.39)

g=0, 6 =m/2. (4.40)
From these results it would appear that a discontinuous
transition from the undistorted cholesteric to the nematic
ordering occurs at a field

Hy = (koo/xa) 0. (4.41)
But this is below the field (4.35) so that the nematic ordered
state is unstable against winding up into a cholesteric whose
axis is perpendicular to the field. Even below the field
(4.41) the free energy is lowered by a distortion which
rotates the axis of the cholesteric to be perpendicular to
the field: the free energy (4.37) is lower than (4.40).

When k33 < k2 Meyer (1968) has shown that a range of
fields exist for which 6 and ¢ can change continuously.
Solutions of this kind have also been considered by Leslie
(1970b). The case where a magnetic field is applied at an
angle to the twist axis has not been studied.

The w/2 rotation of the twist axis has been observed in
electric fields by Kahn (1970) and Wysocki et al. (1969)
and in magnetic fields by Rault and Cladis (1971) and
Rondelez and Hulin (1972). A conical deformation has
been observed in electric fields by Baessler et al. (1969).

Helfrich (1970a, 1971a) and Hurault (1973) have dis-
cussed a periodic, one-dimensional deformation of a choles-
teric: above a field Hpg, a periodic bending of the cholesteric
planes with a wavelength A is nucleated. The field Hy and
A\ are (Hurault, 1973)

IIHz = (6}622}333) llz/xad, )\2 = 37r(k33/k22) 1/2((17/f0) ’

(4.42)

where d is the thickness of the specimen. Thus if df > 1
the field Hy is much less than (4.41) and N> 1. This
deformation has been observed by Rondelez and Hulin
(1972). Two-dimensional periodic deformations of a choles-
teric have been observed in electric fields by Gerritsma
and van Zanten (1971) and in magnetic fields by Scheffer
(1972a).

D. Curvature piezoelectric effects

The symmetry of all known nematic and cholesteric
liquid crystals is not compatible with ferroelectricity, and
splay and polarization cannot appear spontaneously. It
has been pointed out by Meyer (1969b) that it is possible
to induce splay and polarization in a liquid crystal by
mechanical stress or by the application of an electric field.
The effects will be largest in liquid crystals whose molecules
possess a large permanent dipole moment and whose shape
reflects the presence of the dipole moment. Examples con-
sidered by Meyer are wedge-shaped molecules with a per-
manent dipole moment along the length of the molecule,
and crescent-shaped molecules with the permanent dipole
moment perpendicular to the long axis of the molecule. It
would be expected that in the first case a splayed structure
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would also show polarization, and that in the second case
a bent structure would show polarization.

A formal theory of these piezoelectric effects has been
given by Meyer. They arise out of terms in the free energy
which are bilinear in the electric field E and the curvature
strains. Thus the piezoelectric part of the free energy density
has the form

g = — 2 eu(0n:/0x;) Ey,

7.k

(4.43)

where the e, are the piezoelectric coefficients. The free
energy must again be invariant under the symmetry opera-
tions of rotations about the director and change of sign of
the director. These are sufficient to reduce e to just two
independent coefficients; imposition of mirror symmetry
produces no further relations, so that the piezoelectric
effects are the same in nematic and cholesteric liquid
crystals.

Written in vector form the piezoelectric part of the free
energy density is

g = —e.(V-n)n-E — ¢;,(n-vn) -E, (4.44)
where the coefficient e;. describes the interaction between
splay and polarization, and e;. is the interaction between
bend and polarization. Either sign of the piezoelectric coeffi-

cients is possible. The electric displacement (for zero field)
is given by

D = —4r(3g,/dE)

= 4me,(V-n)n + 4mwes(n-Vn), (4.45)

which shows how splay and bend can induce a polarization
in the liquid crystal. The sign convention on the coefficients
is as follows: if they are positive, in the case of a splay
locally the director seems to radiate from (or towards) a
point, and the induced field is directed away from that
point; in the case of a bend the director is locally tangent
to a circle, and the induced field points towards the center
of the circle. For a given spatially varying director V-D
is generally not zero so that the strained liquid crystal has
a space charge.

The origin of the piezoelectric effects in liquid crystals
is different from that occurring in solids. The strains in
liquid crystals are curvature strains, whereas in a solid
tensile and shearing strains are involved. Thus in a solid
with a center of symmetry no piezoelectric effects can
appear, while a liquid crystal with a center of symmetry
(as assumed here) can be piezoelectric.

A simple geometry in which the piezoelectric effects can
become manifest is that in which the liquid crystal is con-
tained between two coaxial cylindrical electrodes. We
suppose that the orientation of the molecules is determined
by the boundary conditions at the electrodes. If the bound-
ary condition is such that n is constrained to be perpendicu-
lar to the electrode surfaces, we have a situation in which
there is pure splay. From Eq. (4.45) the electric displace-
ment in the case of no applied field is

D = 4we.(r/7?). (4.46)
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In the other case where the molecules are constrained to
lie parallel to the surface of the electrodes, we have a case
of pure bend and from Eq. (4.45) °

D = —4mwes.(r/7?). (4.47)

In these geometries V-D = 0 so that the polarization
produces a surface charge only. Meyer has estimated that
the surface charge is of order 107 electrons/cm (10~2 stat
C/cm) length of the cylinder. This is rather small and has
not been observed. Conducting impurities would easily
mask this effect.

An alternative method for observing piezoelectric effects
in a liquid crystal has been suggested by Helfrich (1971b).
He considered a nematic confined between two glass plates
separated by a distance d. The molecules are assumed to
lie perpendicular to the glass. An electric field is applied
parallel to the glass and the dielectric anisotropy e, is as-
sumed to be negative so that the molecular alignment is
dielectrically stable in the presence of the field. The geom-
ctry is the same as that in Fig. 7a. If piezoelectric effects
are present Helfrich has shown that the structure will
distort. Thus the free energy density according to Eq.
(4.3) (with ky = kg3 and H = 0) and Eq. (4.44) (with

€. = —ez) is

¢ = 1k(30/32)? — € F(36/0z), (4.48)

where 6 is the angle that the director makes with the z axis.
Dielectric terms have been neglected as they may be shown
to be small for thin films. In the case of perpendicular align-
ment as in Fig. 7a, the forces exerted on the molecules
at the wall are quite weak and do not prevent a bending

of the molecules at the wall. Under these circumstances

the free energy is minimized by choosing

80/3z = (ess/k) E. (4.49)
This corresponds to a symmetrical distortion of the struc-
ture and the distortion can be detected optically as in the
Fredericksz transition (Sec. IVB1). The average change
in the refractive index for light propagating along z and
polarized perpendicular and parallel to the field is

/2
5= (1/d) dz(ng — n),

—d/2

(4.50)

where 7 is given by Eq. (4.13). For small distortions

- B
24 ne k

Effects of this kind have been observed by Haas et al.
(1970) in MBBA. The optical path difference was found
to vary with the square of the voltage and no threshold
was observed for the optical effects. The absence of a thres-
hold also rules out the possibility that the observations
could be due to electrohydrodynamic effects (see Sec.
XVII). From the experimental values of Haas et al., Hel-
frich has estimated that |es | = 7-10* cgs. This value
is in fair agreement with a theoretical estimate of ez, by
Helfrich (1971b).

(4.51)
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The possibility of piezoelectric effects near disclination
lines, where there are large curvatures, in bulk nematics
and in droplets has been considered by Meyer (1969b)
and by Dubois-Violette and Parodi (1969). Meyer has
suggested that the induced space charge may serve to
explain the aggregation of nematic droplets in the isotropic
liquid. The piezoelectric corrections to the dielectric con-
stant of a nematic have been considered by Derzhanski

" and Petrov (1971).

E. Domain walls

The stable configuration of a nematic is uniform orienta-
tion; however, there are nonuniform metastable configura-
tions which cannot readily relax. The most important class
of these are the line singularities (disclinations) to be
discussed in the next section; in the presence of an orienting
field, however, there is also possible a nonsingular con-
figuration (Helfrich, 1968; de Gennes, 1971b) in which
the director undergoes a 180° reversal. The phenomenology
becomes even richer in the presence of orienting surfaces,
as we shall show subsequently.

For the case of a uniform field in an infinite volume, it is
useful to reconsider the situation discussed in Sec. ITIE: a
liquid crystal constrained to have one orientation outside
a sphere of radius R, and a differing orientation inside a
concentric sphere of radius R; (see Fig. 6). If the angle 6,
is increased to 180°, then a uniform magnetic field will
entrain both the interior and exterior regions and prevent
the configuration from untwisting. The magnetic field
also affects the liquid crystal between R; and R,; now
rather than being distributed over the entire interval, the
strain becomes restricted to a wall whose thickness is the
magnetic coherence length £, in order to maximize the
volume of liquid crystal aligned by the field.

For the case where all three elastic constants are equal,
the condition for force balance is [according to Eq. (4.1)]

3%/3r* + (2/r) (80/dr) + £ 2sinf cosh = 0, (4.52)

where £ = (k/x.)2H™; if »>> £, the middle term may be
neglected and the resulting equation can be integrated to

give

6 = 2 arctan exp[ (r — r9) /£], (4.53)
where 7, determines where the wall is (arbitrary, someplace
between R; and R;). It is readily seen that # takes on the
values 0 and = when | r — 7o |>> £. Thus the reorientation
takes place over a short distance, especially in the limit
of high fields, and the configuration may be accurately
described in terms of domains of uniformly oriented mate-
rial separated by reorientation walls. The walls are con-
tinuous: they may be terminated only at boundaries or by
the introduction of a line singularity at the wall edge.

The nature of the reorientation varies locally. For exam-
ple, in the xz plane of Fig. 6, the distortion is a mixture of
splay and bend; along the y axis, the distortion is purely
twist. Since the corresponding elastic constants are dif-
ferent, the associated wall energies (which may be regarded
as “surface” tensions) differ, so that small domains will
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tend to have elliptical shape. These same surface tensions
will cause the domains to shrink and vanish: only viscosity
opposes the reorientation of the director, and hence the
movement of the wall.

F. Domain walls in films

Just above the Fredericksz transition, the director is
tilted slightly in the direction of the field, as shown in
Figs. 7 and 9. In addition to the configurations shown
(“tilted to the right”), there is also possible the mirror
image (“tilted to the left”), and we can readily imagine
that domains of both types can coexist, with domain walls
separating them. (An experimental difficulty is that a
preference for one configuration over the other will occur
for non-uniform fields or fields that do not lie exactly per-
pendicular to the alignment of the director below the critical
field.) Brochard (1972) has given the theory for this
geometry.

Domain walls can occur in each of the Fredericksz geom-
etries. The surface forces will tend to align them perpendicu-
lar to the glass slides, but their orientation is otherwise
arbitrary. There are, however, the special geometries where
the plane of the wall contains both n and H, which is then
a pure twist wall, and a wall perpendicular to this, which
is a bend-splay wall.

We will consider just the twist wall in the perpendicular
geometry (Fig. 7) with the simplification k1, = ks3. Brochard
shows that with this simplification all geometries lead to
the same differential equation with the same boundary
conditions, so that this is in fact a fairly general case. As
before, we define 6 as being the angle between the director
and the z axis, but now 6 depends on y as well as z and is a
solution to the equation
£2(0%/02% + (koo/k11)3%0/0y%) + cosh sinf = 0. (4.54)
The boundary conditions are that # vanishes on the planes
2z = =3d, and that for large v, 6 approaches £6(z), where
6(z) is the function found in Sec. IVA. This equation may
be reduced to the case where all elastic constants are equal
by rescaling the y coordinate. The equation is not particu-
larly tractable, but Brochard observes that the function

6 = 0, cos(mwz/d) tanh(8y), (4.33)

where 02 = 2(1 — m£3d™?) and B = 30,67 (ku/k2)'?, is a
solution of

52(620/622 + (k22/k11)620/ay2) + 6 — %03

= —30.° cos(3mz/d) tanh®(By). (4.56)
For H only slightly larger than H., 6, is small and the
right-hand side is negligible; the left-hand side is an ap-
proximation to Eq. (4.53), again appropriate in the limit
that H is only slightly larger than H,; thus Eq. (4.54) may
be regarded as an approximate solution-of Eq. (4.53). We
see that the width of the domain wall is 2£/8, = V2£(1 —
H2/H?)~2. This form has been verified experimentally
by Leger (1972). For H >> H,, the surfaces affect only a
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thin boundary layer and the domain wall conforms to the
description of the previous section.

V. DISCLINATIONS IN NEMATICS AND
CHOLESTERICS

. The nematic state was named for the apparent threads
which can be seen in a nematic under a microscope. It was
first explained by G. Friedel (1922) that these are lines
on which the direction of the local preferred axis (the
director) changes discontinuously. In analogy with dis-
locations in crystals, these line singularities have been
called “disclinations” by Frank (1958). They occur in
cholesteric and nematic liquid crystals. Because there is
no crystal lattice in a liquid crystal, the disclinations have
a line topology rather than a topology of surfaces dividing
the material into domains as in a crystal. The disclination
lines may have any form and generally are not constrained
to be straight lines (with a few exceptions). The motion
of disclination lines provides one of the mechanisms for
the change of the configuration of a liquid crystal.

A disclination line L can be formed by the following
operations, analogous to the Volterra process for the forma-
tion of dislocations in crystals, beginning with an unper-
turbed configuration (Kleman and Friedel, 1969).

(a) A cut along a surface .S, limited by a line L, is made
in the liquid crystal. It is assumed that the molecules are
not disturbed by this cut and on the upper and lower sur-
faces, S; and S., of S the molecules are firmly anchored
in place.

(b) The surfaces S; and S, are then rotated relative to
each other about an axis v by an amount Q. The symmetry
of the liquid crystal requires that the rotation Q be a multi-
ple of =, i.e., @ = mm. The integer m is called the Frank
index of the disclination.®

(c) Any empty space created by the operation (b) is
filled with undistorted liquid crystal or conversely any

“extra material is removed. The whole structure is then

allowed to relax viscously. The index m is chosen to be
positive if material is removed and negative in the case that
material is added.

An example of the Volterra process is shown in Fig. 14
and is discussed further after we have investigated some of
the simpler types of disclination lines. Some examples of
disclinations are shown in Fig. 11.

Given a single closed path through a liquid crystal, can
one tell whether it encircles a disclination line just by
examination of the behavior of the director along the path?
The answer is that disclinations of odd index can be de-
tected, but that no test for a disclination of even index
can be given. Furthermore, the index of the odd-index
disclinations cannot be resolved.

An observer travelling such a path can distinguish the
preferred axis, which he can represent as a unit vector.
The direction of this vector changes continuously along
the path (barring the possibility that the path intersects a
disclination line). After carrying the vector around the

6 The order of a disclination has also been defined by S = m/2
(Bouligand and Kleman, 1970).
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path, the observer may find that the vector has returned
to its original orientation, or it may have the reverse orienta-
tion. Since the sign of the director has no physical signifi-
cance, this latter possibility cannot be ruled out; under
these circumstances we will have to introduce a branch
plane in the medium, at which the sign of the director is
reversed. In this case we can definitely conclude that there
must be a disclination line encircled by the path, correspond-
ing to the edge of the branch plane.

Because the director is a vector, it is not meaningful to
ask whether the director rotates through mmr: the tip of the
director traces out some path on the unit sphere which can
always be deformed continuously into a point. Thus liquid
crystals are distinct from systems with two-dimensional
order parameters (such as superfluids). Although it is
possible to ask whether the director rotates around the
path (so that the path is knotted with the track of the
tip of the director), such cases do not necessarily demon-
strate the presence of disclinations; indeed, this behavior
can be exhibited by some paths in a perfectly oriented
nematic.

The discussion has a certain significance for the stability
of disclination lines. These structures involve changes of
the director over short distances, and thus large curvature
strains. It would surely be energetically advantageous to
eliminate the singularity and spread out the disclination
into some strain pattern consistent with the boundary
conditions. But as we have seen, the boundary conditions
on any closed path surrounding an odd-index disclination
are sufficient to require the introduction of a branch plane;
the edge of the branch plane (the disclination itself) can
be localized to essentially microscopic accuracy. On the
other hand, the boundary conditions cannot force a dis-
clination of even index, and Meyer (1973) has suggested
that even-order disclination lines can always relax into a
nonsingular strained configuration.

In nematics the rotation axis v (used in the Volterra
construction) can be taken to be perpendicular to the pre-
ferred direction n of the molecules. Any rotation about an
axis parallel to n can relax viscously back to the unper-
turbed configuration. Although v may have an arbitrary
orientation relative to the disclination line, there are two
special cases (the rectilinear disclinations) which are some-
times discussed:

(1) Axial disclinations. The rotation axis v is parallel
to the disclination line (Fig. 11a, ¢). This type has been
considered by Oseen (1933), Frank (1958), and Dzyalo-
shinskii (1970).

(2) Perpendicular disclinations. The rotation axis v is
perpendicular to the disclination line (Fig. 11b, d). This
type has been considered by Friedel and de Gennes (1969).

Besides these rectilinear disclinations, it is possible to
have disclination lines or loops of arbitrary shape which
have some of the characteristics of both the above types.

Disclination lines in cholesterics are of a richer variety.
A cholesteric is essentially biaxial, since at each point in
space we can define the local twist axis t, by

n x (u-v)n = (2r/p) (u-t)t, (5.1)
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FIG. 11. Disclinations in a nematic: (a) axial disclination of index

1; (b) perpendicular disclination of index 1; (c) axial disclination
of index 2; and (d) perpendicular disclination of index 2. In figures
(b) and (d) the director is tilted out of the plane of the paper; this
is presented by the convention that the tips of the “nails” point towards
the reader, to the extent indicated by the foreshortening of the nails.

where u is an arbitrary vector and p is the local value of
the pitch. Disclination lines in cholesterics can be singu-
larities of the director field, the twist axis field, or both.
Kleman and Friedel (1969) have given a general topological
discussion of disclination lines in cholesterics. They have
shown that there are essentially two types of axial dis-
clinations in cholesterics. The first type results from a
rotation (in the Volterra process) by an angle mmr about
an axis parallel to the twist axis [x™ type disclination].
The second type results from a rotation by an angle mwr
about an axis perpendicular to the twist axis and parallel
to the director [A“ type disclination] or perpendicular
to the director [7™ type disclination]. These latter types
are illustrated in Fig. 12 for m = 1.

(a) x type disclinations. The disclination line is parallel
to the twist axis and only a director field singularity occurs.
These disclinations are closely similar to the axial disclina-
tions that occur in nematics: the structure is just that of a
nematic containing an axial disclination line which has been
twisted about the line. This type of disclination is also
equivalent to a dislocation produced by a translation: in
the Volterra process the two surfaces .S; and S» are trans-
lated relative to each other by the Burgers vector b =
(m/2)p (which is a symmetry operation of the cholesteric)
(Klemand and Friedel, 1969). x type disclinations have
been discussed by Bouligand and Kleman (1970) and
Rault (1971).

(b) N and 7 type disclinations. It has been shown by
Kleman and Friedel (1969) that isolated N and 7 type
disclination lines are necessarily rectilinear. They result
from the usual Volterra process and the line is parallel
to the rotation axis v. The essential difference between
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the X\ and 7 type disclination is that the N type disclination
line is a singularity of the twist axis field but is not a singu-
larity of the director field. The 7 type disclination line is a
singularity in both the twist axis and director fields. For

this reason the elastic energy associated with a = type is

probably greater than that associated with a X\ type.

A x type disclination may assume any shape, but a single
X\ or 7 must be straight. The possibility does exist that \
and 7 type disclinations of opposite sign are coupled to-
gether, e.g., a At and N~ or At and 7—; these pairs may then
take any shape. Such pairs of disclinations of opposite sign
are equivalent at large distances to a multiple disclination
of the x type. Such pairs have been discussed by Kleman
and Friedel (1969), Bouligand and Kleman (1970), and
Cladis and Kleman (1972b).

The optical striations (Grandjean planes) observed in
cholesterics in regions of variable thickness were first ex-
plained by G. Friedel (1922) as arising from a discontinuity
of the molecular orientation. Observations by many authors
(see Cano, 1968) have established that these striations
occur when a region of m half-twists adjoins a region of
m + 1 half-twists. Jumps of two half-twists have also
been observed (Orsay Group, 1969¢, d). The disclination
lines separating such regions have been denoted (order)
1-lines and (order) 2-lines, respectively, by the Orsay
Group. The 2-lines are observed to be unstable in magnetic
fields and buckle into a zigzag shape while the 1-lines are
stable. The 2-lines can be explained in terms of the model
of Kleman and Friedel (1969) of compensating pairs of
X\ and 7 type disclinations. The instability in a magnetic
field can be understood in terms of the different molecular
configurations within the cores of the N\ and = type dis-
clinations.  The 1-lines have been explained by de Gennes
(1968c) in terms of perpendicular type disclinations in
cholesterics (see Sec. V.E).

Point disclinations on the surface of nematics have been
discussed by de Gennes (1970b). They can be formed when
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FIG. 12. Axial disclinations in a cholesteric. The 7+ disclinations
of index ==1 result from a rotation of =7 about an axis perpendicular
to the director and the twist axis. The A* disclinations of index =1
result from a rotation of 4= about an axis parallel to the director and
perpendicular to the twist axis. The 7 type disclinations are singu-
larities in both the twist axis and director fields, and the \ type are
singularities in the twist axis field.
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a magnetic field is applied to the nematic or under suitable
boundary conditions (see Sec. VD). Point disclinations
at a nematic-isotropic liquid surface have been studied
experimentally by Meyer (1972). The existence of point
disclinations in the bulk of a nematic has been considered
by Nabarro (1973). This article also contains an interesting
application of Poincaré’s analysis of the singularities of
vector fields to nematics.

A detailed description of the actual molecular orientation
near a disclination line requires a solution of the Oseen—
Frank elasticity equations of Sec. TIT. We now consider the
solution of the elasticity equations for some of the simpler
disclinations.

A. Axial disclinations

This type of disclination line was first considered by
Oseen (1933), Frank (1958), and Dzyaloshinskii (1970).
These disclination lines have been called axial by Friedel
and de Gennes (1969) because the relative rotation of the
molecules required to form the disclination line takes place
about an axis parallel to the disclination. We suppose that
the disclination lies along the z axis and the director n of
the molecules then lies parallel to the x, y plane: the geom-
etry is effectively two dimensional. The elastic energy
[Eq. (4.1) with H = 0] takes the form

G =% [de[ky(Ven)? + /ezs(mVn)?], (5.2)

The disclinations only involve splay and bend. We will
make the simplifying assumption Fky = kg = k. Then
letting

n. = cosp(x,y),  n, = sing(x, y) (5.3)
and substituting in Eq. (5.2) we find
G = 3k [ dr[[(0¢/0x)% + (96/3y)*]. (5.4)

The elastic energy is minimized when ¢ is a solution of the
two-dimensional Laplace equation

(02/02% + 92/9y?) ¢ = 0. (5.5)

The constrained form (5.3) may be shown to be a solution
of the Euler-Lagrange equation (3.28) in general when
ki = ks, If Ryy # ka3, it is only a solution if the Frank
index m = 4 or m = 2, and in the latter case the disclination

line must have cylindrical symmetry (see below) (Cladis
and Kleman, 1972a; Dzyaloshinskii, 1970).

Since there are no parameters with the dimensions of
length in the problem, ¢ can only depend on the azimuthal
angle ¢ defined by (see Fig. 13)

x = 7 cosy, y = 7 siny. (5.6)

The solutions of Eq. (5.5) representing disclination lines are

¢ = smy + ¢ (5.7)
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FIG. 13. Coordinate system
for description of an axial dis-
clination in a nematic. The dis-
clination line is the z axis. The
director at the point (xy) makes

< an angle ¢ with the x axis which
P is dependent only on the azi-
muthal angle .

where m, the Frank index, is a positive or negative integer.
As y varies from 0 to 2w, the angle ¢ that the director makes
with the x axis varies from ¢y to ¢o + mm. ¢ is a constant
and in all cases except m = 2 changing ¢y merely rotates
the figure.

The pattern of “flux lines,” i.e., the lines which are tan-

gent to n, is given by the solutions of

dy/dx = ny/n.. (5.8)
In the polar coordinates (5.6) this equation is
d/dy Iny = cot(p — ¢). (5.9)

It follows from this equation that there exist singular flux

lines which are radial and whose direction is determined by

o—y=vm; Y =1[2/(m—2)J0r — ),

m# 2 (3.10)
where v is an integer. The second result follows from Eq.
(5.7). The number of such lines is (m — 2). In the special
case m = 2, Eq. (5.9) has the solution

v = ¢ exp(y cotey), (5.11)
where ¢ is a constant. The form of the disclination now
depends on ¢y. It has been shown by Dzyaloshinskii (1970)
that if &y # ks only the two solutions ¢o = 0, m/2 are
allowed. Disclination lines with m = 1 and m = 2(¢p = 0)
are shown in Fig. 11.

The elastic energy per unit length associated with a
disclination, obtained by substituting Eq. (3.7) in Eq.
(54),1s

gr = (w/4)km? InR/ro, (5.12)
when R is the size of the sample and 7, is a lower cutoff
radius (the core size). Thé elastic energy increases as m* so

that the formation of disclinations with large m is ener-
getically unfavorable.

The nature of the core of a disclination line has been
discussed by a number of authors. Fan (1971) included the
order parameter .S in the description of a disclination and .S
decreased to zero at the core (isotropic liquid core). It has
been shown by Cladis and Kleman (1972a) and Meyer
(1973) in the case of m = 2 disclinations that the elastic
energy is reduced if the molecules are allowed to relax
out of the plane perpendicular to the disclination line. This
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FIG. 14. Volterra process for the formation of a m = —1 disclina-

tion line. (a) A cut .S is made terminating in the line L. (b) The two
surfaces of the cut are rotated away from each other by an angle of
180°, and the void is filled with nematic material. The structure result-

_ing is topologically equivalent to (c), which is a slightly less strained
configuration. (d) A m = 41 disclination formed by a similar process
(compare Fig. 11).

solution has no singularity on the axis. Irregularities have
been observed on disclination lines by Rault (1972a) and
interpreted as arising from the tendency of molecules to
lie parallel to the line in order to reduce the core energy.

The Volterra process for the formation of a disclination
(m = —1) is shown in Fig. 14. The two surfaces, .Sy and .S»
of the cut S, are rotated by 7/2 (counterclockwise) and
—x/2 (clockwise) about an axis perpendicular to the
paper, respectively. The net effect is a rotation by = which
is a symmetry operation of a nematic. The space formed
by this deformation is then filled with nematic (Fig. 14b)
and the whole structure is allowed to relax viscously (Fig.
14c). A disclination with m = -1 is obtained if we rotate
'St and S by —#/2 and w/2, respectively. The material
is then joined along the cut S and the excess material is
removed (Fig. 14d). In general the formation of a dis-
clination of negative index requires the addition of material,
and of positive index requires the removal of excess material.

The x type disclinations in cholesterics (parallel to the
twist axis) are closely similar to the above disclinations in
nematics. In the case ki1 = ka3 the solution of the elasticity
equations representing a x disclination line is obtained by
superposing the cholesteric twist on the deformation due to
the disclination, i.e., from Eq. (5.7)

¢ = dmp + iz + o (5.13)

B. Perpendicular disclinations

The perpendicular type of disclination has been discussed
by de Gennes (1968c). The relative rotation of the mole-
cules required to form this type of disclination is about an
axis perpendicular to the disclination line. Assume as before
that the z axis is the axis of rotation and that the disclina-
tion line lies along the y axis (see Fig. 15). The director is
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FIG. 15. The coordinate system for description of a perpendicular
disclination in a nematic.

parallel to the «, y plane and is taken in the form

%y = cose(x, 2), n, = sing(x, 2). (5.14)

The elastic energy [Eq. (4.1) with H = 0] is (for nematics)

G = 3 [ dt[ (b sin®b + ks cos’) (3¢/0x)?

+ ks (99/02)%]. (5.15)
The disclination in this case also involves twist. In the case
ki1 = kyp = kg3 = k the energy is minimized if ¢ satisfies
the two-dimensional Laplace equation

(82/0x% + 0%2/92%) ¢ = 0. (5.16)
The solutions representing disclinations are
¢ = Fmx + o, (5.17)

where m is a positive or negative integer and x is the angle
between the x axis and a line from the origin to the point
%, 3. In the plane z = 0 the configuration is simple (with

o= 0):

¢ =0, x> 0;
¢ = (7w/2) (modr), x < 0(m odd)
¢ = 0(mod =) (m even). (5.18).

Disclinations with 4= are obtained from each other by
reflection in the x, y plane. Perpendicular disclinations are
shown in Figs. 11b, 11d, and 15. The elastic energy per
unit length of this type of disclination is also given by
Eq. (5.12).

This type of disclination can also exist in cholesterics
and is important in the interpretation of the Grandjean

planes (see Sec. VE). In the case ki = ki3 the solution

is again obtained from the nematic case [Eq. (5.17)] by
superposing the cholesteric twist. The case of a small ani-
sotropy (ki # kss) has been considered by Caroli and
DuBois-Violette (1969).

C. Disclination loops in nematics

The properties of disclination loops in nematics have
been investigated by Friedel and de Gennes (1969). A
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FIG. 16. A disclination loop L between glass slides a distance d
apart. T is the area of the projection of the loop onto the xy plane

situation in which such loops may arise is the following: a
nematic is confined between parallel glass slides and the
boundary conditions at the glass are that the molecules lie
in the surface. The upper slide is then turned through an
angle gd (d is the distance between the slides) ; when this
angle is sufficiently large, it will be advantageous to relax
the torsion by forming a disclination loop.

Suppose that the disclination loop is parallel to the glass
slides which are parallel to the x, y plane (see Fig. 16) and
that the director has the form

n, = cose(x, v, 2), 1y, = sing(x, y, 2). (5.19)
In the case ku = kyy = kg3 = k the elastic energy [Eq.
(4.1) with H = 0] is minimized if ¢ satisfies the three-
dimensional Laplace equation, V2% = 0, everywhere except
on the loop itself (branch surfaces where ¢ changes dis-
continuously by mr are also allowed). A comparable prob-
lem arises in the magnetic field of a current loop; the solution
at the point P = x, y, 2 is known to be

o(x,y,2) = (m/4)Qp + 92+ ¢, (5.20)
where Qp is the solid angle subtended by the loop at P, m is
the Frank index, and ¢ is a constant. The solid angle Qp
changes by 4w on passing through the loop and thus ¢
changes by mmw. If the size of the loop is small compared
with d and the loop is far removed from both surfaces, we
may ignore the images of the loop which otherwise would
have to be included to satisfy the boundary conditions. The
second term in Eq. (5.20) is the uniform twist imposed
on the nematic.

The elastic energy of the loop is

Gr = (k/32) [ dr[m*(VQp)? + 8qm(3Qp/d2) ], (5.21)

where the first term is the elastic energy of the strain field
of the loop and the second term is the interaction between
the uniform twist and the loop (the elastic energy of the
uniform twist has been omitted). Using the equivalence
between the disclination loop and a current loop, the elastic
energy (5.21) is

 GL = (wk/8) (m?L; — 8mqZ), (5.22)

where L; is the self-inductance of the equivalent current
loop and X is the area of the projection of the loop on the
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FIG. 17. A point disclination on the surface of a liquid. The liquid
surface is represented by the solid line; the dashed line is the equilib-
rium position of the surface. The molecules lie parallel to the surface
at the surface, but are perpendicular to the surface far from it. The
scale of the boundary layer is the coherence length £. The disclination
causes a dimple on the surface of the liquid, whose dimensions are
characterized by the lengths A and e\, as shown. This figure is not to
scale in the sense that the lengths £ A, and e\ are not generally of
comparable size.

x, y plane. In the special case of a circular loop of radius R
parallel to the x, y plane L; = 47 R In8R/7,.

From the condition (8/dR)G, = 0 we determine a
critical radius R, = (m/4q) In (2/gr,); loops with R >R,
will tend to grow. The elastic energy required for the forma-
tion of a loop of critical radius is

GL(R = R,) = (w%m?/16q) (In2/gr,)2. (53.23)

Taking ¢! =d = 1 cm, m = 1, & = 107% dyn, this energy
is 1078 ergs which is large compared with thermal energies,
and spontaneous nucleation of loops in the bulk is im-
probable (more probable is the nucleation on surfaces).
From Eq. (5.22) the elastic energy is lowered by the
formation of a loop of radius R when ¢R > —In8R/7,; this
determines the angle of twist for which it is energetically
favorable to form a loop. This result is only approximate
as we have not considered the boundary conditions. A
detailed investigation of disclination loops in nematics has
been made by Nehring (1973).

Disclination loops in cholesterics have been considered by
Friedel and de Gennes (1969). Suppose the nematic state
has been produced by applying a magnetic field exceeding
the critical field H, [Eq. (4.35)]. As the field is decreased
through H,, the aligned state becomes metastable, and it
was suggested by Friedel and de Gennes (1969) that the
nucleation of the cholesteric state proceeds via the forma-
tion of disclination loops.

The energy of the disclination loop (with ki = ks =
k33 = k) iS

G = (k/2) [ dr[(V¢)? — 2t0(d¢/dz) + 1/£ cos’p ],
(5.24)

where £ is the magnetic coherence length and the energy
of the completely aligned state has been omitted. The first
two terms are the elastic energy of the loop, and the third
term is the magnetic energy. We estimate this latter term
approximately by replacing cos¢ by unity in a region of
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volume 4w R2%. From Eq. (5.22) for a circular loop of radius
R we have
G = 3kx*R[In8R/ry — 2Rty(1 — H/H.)]. (5.25)

The critical radius for stability of the loop is approximately

1 H, 8¢
R, = —|———)In—. 5.26
410 (H - H6> n Yo ( )
The energy of a loop of this radius is
km? H, ° 8\ '
Gk = I GEY
’ ( ) 16tn Hc — H n 7o ( 7)

Using £ = 107¢ dyn and {, = 10° cm™, this energy is 1012
(H./H, — H) ergs; it is much larger than thermal energies
and nucleation would be expected to take place only on
surfaces. Observations of nucleation in cholesterics near
H_ have been made by Durand ef al. (1969).

D. Point disclinations in nematics

Consider a free surface of a nematic at which the director
is free to orient itself in any direction lying in the surface
(below we consider the case where the molecules lie parallel
to the surface). A magnetic field is now applied perpendicu-
lar to the surface, tending to orient the molecules in this
direction. De Gennes (1970b) has shown that, in the pres-
ence of these opposing forces, it is energetically favorable
for the surface to distort and break up into a domain struc-
ture with a regular array of point disclinations.

A similar situation has been achieved experimentally by
Meyer (1972) by arranging that the molecules align per-
pendicular to all other surfaces except the free surface. The
boundary conditions replace the magnetic field. Isolated
point singularities were observed by Meyer but no domain
structure.

We assume that the undisturbed surface of the nematic
is the plane z = 0 with the nematic occupying the half-
space z < 0. The boundary condition is that the molecules
are parallel to the field for 2 << 0 (see Fig. 17). The small

displacement of the surface in the z direction is ¢ («, ). The

elastic energy including the magnetic field energy is (with
ki = ko = kgy = k)

G=3%[dr[k> (Vin)? — x.(n-H)?2]. (5.28)
.5
We take the director in the form
n, = cosh, n, = sinf (5.29)

and substituting in Eq. (5.28) gives the elastic energy per
unit area

kot 2 L s <
o= 5 | _ da[£:(56/02)* + sin0]. (5.30)

The elastic energy associated with variations in the x, y



M. J. Stephen and J. P. Straley: Physics of liquid crystals

directions and a constant term have been omitted, and £
is the magnetic coherence length. The elastic energy is a
minimum when 6 satisfies the equation

£2(0%/92%) — sinf cosf = 0 (5.31)
which has a first integral satisfying the boundary condition
0=0atg= —o0:
£2(00/92z) — sin? = 0. (5.32)
At the free surface the surface tension forces require that
n be parallel to the surface and thus, at the surface z = ¢, 0

takes the value 8. = (w/2) — |V{|. Substituting Eq.
(5.32) in Eq. (5.30), the elastic energy per unit area is

Om
dé sinf
0

ga =7

='§<1 —ve D). (5.33)

The first term in Eq. (5.33) is the elastic energy associated
with a flat surface; we will subtract it out and measure
energies relative to a flat surface. The second term depends
on the form of the surface.

The equilibrium form of the surface is determined by
minimizing the total surface energy
Ga =% [dedy[o(VE)? — (2k/8) | VS| + pge®],  (5.34)

where o is the surface tension, p the density, and g the
acceleration of gravity.

Owing to the structure of the integrand, —¢ gives a mini-
mum free energy if ¢ does. Thus both dimples and pimples
appear as possible structures. We will assume ¢ (p) radially
symmetric and positive, and 9;/dp < 0. Then the surface
free energy is

Ga = o [ pdp[(35/8p)* + 2¢(3¢/0p) + (1/N2)¢7],
(5.33)
where N = (0/pg)'/* and € = k/%0. € is the angle the surface
makes with the horizontal at the point singularity. Minimiz-

ing this equation with respect to variations in { leads to
the Euler-Lagrange equation and the boundary condition

19 a 1
—“<P—§>~)§?= —e/p

pdp\ dp
(05/0p) pmo = —e. (5.36)
The solution of this equation is
/2
¢(p) = he / d6 exp[ — (p/\) cosh] (5.37)
0

and is shown in Fig. 17. The fluid displacement at the point
singularity is ¢(0) = mhe/2 and at large distances (p>>\)
$(p) = e\¥/p.
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The total energy associated with a single point singularity
from Eqgs. (5.33) and (5.34) is approximately

Gp = ¢kt — a2 InR/\. (5.38)

The second term is the surface energy (5.35) and the first
term is the elastic energy of the singularity assumed to
extend a depth £ in the nematic. The constant ¢ is of order
(w/4) In(R/r) [see Eq. (5.12)7, where R is the distance
separating the singularities. It becomes energetically favor-
able to form such a singularity when the magnetic field
exceeds

cpg

= @w [m]m-

Using £ = 107% dyn, xo = 107%cgs, p =1 gcm™, and ¢ =
10 cgs, we find H, = 10* G, A = 0.1 cm, and {(0) = 1073
cm.

(5.39)

The case of line singularities lying along the surface has
been discussed by de Gennes (1970b) with the conclusion
that they are less stable than the point singularities. For
fields H > H, we would expect to obtain some two-dimen-
sional lattice arrangement of point singularities. The slope
of the liquid surface near a point singularity e is small
(~10~*) and difficult to detect. However, the neighborhood
of the singularity is optically distinct from the bulk of the
material in that the direction of the optical axis changes
rapidly (Meyer, 1972).

E. Grandjean planes

When a cholesteric is confined between glass slides, which
form a wedge of small angle, a succession of dark and light
regions (Grandjean planes) is observable in polarized light.
It was first suggested by G. Friedel (1922) that these planes
result from discontinuities in the twisted cholesteric texture.
If the molecules at the glass surfaces are constrained to lie
in a particular direction parallel to the surface, then as the
distance between the slides increases it becomes possible to
accommodate a greater number of turns of the twisted
structure (see Fig. 18).

It was suggested by de Gennes (1968c) that a perpendicu-
lar type of disclination line separates adjoining regions of
m and m + 1 half-twists. An alternative explanation, based
on compensating pairs of N and 7 type disclinations, has
been suggested by Kleman and Friedel (1969). Two types
of disclination lines, separating regions where the number
of half-twists jumps by one and two, have been observed
(Orsay Group, 1969c¢, d). They appear to be well accounted
for by the de Gennes and Kleman—Friedel type disclina-
tions, respectively.

Following de Gennes we analyze the situation in Fig. 18.
The perpendicular disclination is along the y axis in Fig. 18,
and the director is taken in the form

n, = cos[p(x,z) + 2], n, = sin[¢(x, 2) + #z].

(5.40)
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o
' FIG. 18. Structure of a — JF N —
Grand-jean plane. To the e B
left of O the cholesteric ~— — — oL o e
makes one half-twist; to .. ¢ ¢ +» o+ . @ —_— - =
the right, two half-twists. — ST =
The disclination line at 0 = e e .,
this possible. — = —— —
Q
o

The boundary conditions are that the cholesteric has m + 1
half-twists well to the right and » half-twists well to the
left in Fig. 18. The equilibrium state is determined by
minimizing the elastic energy

G = Yk [ dr[(3¢/ax)% + (9¢/05 + 1 — 10)?]. (5.41)

This leads to the condition ¢ = 4, and the equation
(82/0x% + 92/97%) ¢ = 0.

The solutions of this equation representing disclination
lines have been discussed in Sec. V.B. In the present case
the disclination line has index m = 1. The boundary condi-
tions at z = =#=d/2 can be satisfied by the method of images:
We suppose that a series of identical disclination lines are
obtained by multiple reflection of the line at x = 2 = 0 in
the boundary planes z = 4=d/2. This leads to a series of
disclination lines at * = 0, 2 = 0, &d, =42d,.... These
points are denoted by 0, O4,... in Fig. 18. The solution
is thus

¢ =352 Xn (5.42)

where x, is the angle between the x axis and the line from
O,, to the point x, z, y = 0. The structure is shown in Fig.
18. These disclination lines are probably responsible for
the optical striations or discontinuities observed in the
wedge-shaped geometry. A detailed analysisvof the struc-
ture and energy of these disclinations has been given by
Scheffer (1972b).

A similar phenomenon to that occurring in the wedge
geometry has been observed in cholesteric drops with a free
surface placed in a magnetic field (Rault, 1972b). For zero
field no lines of discontinuity are observed. When the field
is applied perpendicular to the pitch axis, the surface mole-
cules are forced to align parallel to the field. Above a critical
field a lattice of disclination lines forms, analogous to that
observed in the Grandjean wedge geometry.

A different type of optical striped texture has been
observed by Cladis and Kleman (1972b) in cholesterics
with large pitch held between parallel glass slides. The
distance between the stripes is approximately p/2. These
observations were explained by assuming that the mole-
cules lie in planes perpendicular to the glass and twist
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uniformly in the interior of the sample. The boundary
conditions can be satisfied by including a lattice of x®
disclinations at the surface. A more stable situation results
if the x® disclinations split into X and 7 pairs.

VI. HYDRODYNAMIC EQUATIONS FOR NEMATIC
LIQUID CRYSTALS

The anisotropy of a liquid crystal has some interesting
implications for its hydrodynamic behavior. For example,
a new hydrodynamic mode (not present in normal liquids)
associated with fluctuations in the director occurs (in addi-
tion to shear wave and sound wave modes). There are a
number of distinct geometries for Poiseuille flow of a nematic
in a capillary—in fact five independent viscosity constants
are required to describe the general behavior of the system.
The thermal conductivity of a nematic is also anisotropic
and requires two constants for its description.

Discussion of the hydrodynamics of liquid crystals pro-
ceeds on two levels. It is first necessary to derive a set of
hydrodynamic equations consistent with the conservation
laws. Then these equations must be solved for geometries
relevant to experiment.

In the first subsection of this section we present and
describe a practical set of hydrodynamic equations due to
Ericksen (1959, 1961, 1966a, 1967b, 1969b) and Leslie
(1966, 1968a, b). The remaining subsections present alter-
nate derivations of such equations and discuss their domain
of validity. Applications of these equations are deferred to
later sections.

A. Hydrodynamics

Most disturbances in many-body systems take place and
damp out in very short times. An exception to this generali-
zation is a local variation in a quantity which is subject to
a conservation law: such a perturbation can persist for a
relatively long time because the conservation requirement
effectively hinders its dispersal. Hydrodynamical equations
describe the propagation of disturbances in the local den-
sities and currents which correspond to conserved quantities.

This prescription has to be altered slightly in the case of
liquid crystals because there is no locally conserved quantity
corresponding to rotations of the director (Straley, 1971),
so that a Bogoliubov inequality treatment of the dynamics
cannot be given (Forster ef al., 1971).

We have followed the method of Ericksen and Leslie, who
introduce an equation of motion for the director. The pro-
cedure is subject to challenge (Forster et al., 1971) since
some of the terms thus introduced are not of truly hydro-
dynamical character (i.e., they give finite rate constants for
infinitely long wavelength disturbances). We will assure the
reader, however, that within the limitations that we impose
the description we give below is in agreement with the
alternate descriptions.

A number of alternate descriptions of the hydrodynamics
of nematic liquid crystals have been given (Stephen, 1970;
Forster et al., 1971; Huang, 1971; Jahnig and Schmidt,
1971; Martin et al., 1972; and Lee and Eringen, 1971). All
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‘these formulations of the hydrodynamics are in essential
agreement with the present formulation in the interesting
case of disturbances which vary slowly on space and time,
i.e., the truly hydrodynamic modes of the system. The
advantages of the formulation of Forster ef al. (1971) and
Martin ef al. (1972) are discussed in Sec. VI.H.

B. Hydrodynamic equations

The hydrodynamic equations relate the density p, the
fluid velocity v, the director n, the temperature 7", and
their time and space derivatives. In formulating these
equations, it is convenient to define the quantities

Ng = (8,/61) ni + V'V’}’Li, (61)

the time derivative of n in a frame moving with the liquid;

= %curlv, (6.2)
the local angular velocity of the fluid;
N=n—o xn, (6.3)

the rate of change of the director relative to the moving
fluid;

J = pv, (6.4)
the momentum density; and
dij = 2(0v;/9x; + dv;/0x;), (6.3)

which is the strain rate tensor for an isotropic fluid.

We will assume here that the liquid is incompressible.
This is a realistic assumption since the bulk modulus of
liquid crystals is so large compared with the curvature
strain constants that in circumstances in which the latter
are relevant, the density must be very nearly uniform. Thus
the continuity equation (conservation of mass) has the
form

divv = 0. (6.6)

We shall now display a set of hydrodynamic equations. A
derivation of these equations is given in Secs. VI.E-VL.G; it
is shown there how the various conservation laws and
symmetries to which the system is subject enforce the form
given here. :

The hydrodynamics of a nematic liquid crystal is deter-
mined by the equations for momentum transport?

(8/8t) J: + (8/0x;) T+ + (3/(3.’)61')17']' =0 (6.7)
and equation for the director
(8/0x)MLs; + fi + fif = vni (6.8)

7We use a Cartesian tensor notation; repeated indices are to be
summed over.
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and an equation describing entropy transport

(0/0t) (ps) + V-(psv + T7'q) = R, (6.9)

where s is the entropy per unit mass. The hitherto unde-
fined quantities which enter into these equations are:
— the part of the momentum flux tensor independent of

dissipative effects

T{j = pU;V; -+ P&ij - ij(a/axi)%k, (610)

where P is the pressure and I1;; is the stréss tensor (3.21);

— the part of the momentum flux tensor involving dis- .
sipative effects

tij = —oumindnn; — asniN ; — agnN; — aads;

_ ammk(z’hl,j - ()!6(]1'/;}’%%]',

(6.11)

where the «; are temperature- and pressure-dependent
parameters having the dimensions of viscosity (g cm™!-
sec™h).

— the heat current
qi = —Bmn;(3/0x;) T — B:(8/0x;) T, (6.12)

where the 8 are thermal conductivity coefficients and T is
the temperature;

— the entropy production R(= ds/dt)
TR = *“lu‘([{j + filAfi — T“’q,(aT/Oxl) 5 (613)

— the part of the body force associated with the presence
of velocity gradients

fi’ = (as it az)Ni + (013 + 0‘2)(11']'”]'- (6.14)

The body force f; is defined in Eq. (3.24).

- C. Some comments on these equations

Equation (6.7) relates the change in momentum density
to the local forces. The conservative forces are contained
in T;;; they arise from gradients in kinetic energy density
(the Bernoulli effect), pressure, and curvature stress den-
sity. The conservative forces are generally negligible in
the examples we shall consider: the first term is of second
order in the velocity, the pressure plays the role of a Lagran-
gian multiplier (conjugate to the incompressible fluid
condition), and the third term is second order in the gradi-
ents of the director. The nonconservative (viscous) forces
are contained in ¢;. Six different tensors of the correct
symmetry can be formed from the director and the deriva-
tives of the velocity; an Onsager relation

(6.15)

ag = as.+ a3+ as

allows one to be eliminated (Parodi, 1970). There are a
number of different conventions for expressing the viscosity
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TABLE I. Combination of viscosity coefficients common in the
literature.
e generally (not in this chapter)
M=oz — o } Leslie (1966), Parodi (1970)
Yo = — a5 = a3 + o Forster et al. (1971)

m = 3(as + ou + ag) ] Miesowicz (1936)
72 = 5(ou~+ as — az) J» Parodi (1970), Sec. VII
= jou ’
v = 3(ou 4 as + a3 + au + 20)
ve = jou Forster et al. (1971)
v3 = % (ou + a5 — ya0/11)
N = —v/n
mE =g,
@ =g Helfrich (1969a, 1970b)
e = oy
M=o —a3= —y } Atkin and Leslie (1969)
A= —(ztaz) = —7

tan?0y = —as/az Sec. VII

Typical numerical values for the viscosity coefficients are given in
Sec. XIX.

coefficients (and various combinations of them) which are
summarized in Table I. The origins of these definitions are
explained below or elsewhere, as indicated in the table. The
condition that entropy production (and all friction con-
stants that can be measured in a real experiment) be positive
restricts the possible values of the a; as explained in Sec.
VLF.

The director equation expresses the balance of curvature
stress and torques due to shear flow. We will frequently use
in Eq. (6.14) v1 = a3 — a» and v» = a3 + a»; these param-
eters with the dimensions of viscosity determine the relaxa-
tion time for the director, and the torque exerted on the
director by a shear flow, respectively. Forster e/ al. have
pointed out that v, is not an independent dissipative coeffi-
cient, but that the ratio v»/v: is a reactive coefficient which
determines the response of the director to a local shear (see
Sec. VL.H). The inertial terms that might be expected
in an equation of motion have been deleted because the
observable motions are always overdamped, so that the
kinetic energy of rotation of a molecule about its center of
mass of very small. In the static case and absence of gradi-
ents of the velocity field, f;” vanishes, and Eq. (6.8) reduces
to Eq. (3.28) for static equilibrium. The right-hand side
of Eq. (6.8) is a Lagrange multiplier term; v is to be deter-
mined by the condition that n is normalized to unity.

Equation (6.9) equates the time derivative of the local
entropy density plus the transport of entropy by the flow
of the liquid and thermal conductivity to the local rate of
entropy production. Equation (6.12) predicts anisotropy
of the thermal conductivity.

D. Reversible hydrodynamics

In the remaining subsections of this section, we shall give
derivations of the equations presented in Sec. VI.B and
some defense of the statements made there.

Initially we shall not consider dissipative processes. The
flow is assumed reversible; entropy is conserved. We there-
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fore write the conservation laws

(8/9t)p+V-J =0, (6.16)

(8/0t) (ps) + V- (psv) = 0, (6.17)
and

(8/3t) Ji + (8/dx;) Ty = 0. (6.18)

For the purposes of this section, inertial terms will be
added to Eq. (6.8) for the director so that it now reads

(8/0t) (In:) + (8/0%;) (Mawv;) + (8/0x)Mi; + fi = 0,
(6.19)

where [ is the moment of inertia per unit volume: I = pa?,
where ¢ is the typical dimension of a molecule.?

Equations (6.16) through (6.19) represent a complete
system of hydrodynamic equations of a liquid crystal, but
T';; is as yet unknown. In order to determine its form we
use the law of conservation of energy

(8E/dt) +V-Q = 0, (6.20)

where E is the energy per unit volume of the liquid and Q
is the energy flux. The tensor 7; should have the property
that this equation is satisfied automatically. This is not in
itself sufficient to determine 7%;, but we may further use
the principle of Galilean relativity® in the following way.
If we transform to a coordinate system moving with the
fluid, i.e., with velocity v and angular velocity @ = % curl v,
the only motion remaining is the rotation of the molecules
relative to the moving coordinate system. The rate of change
of the director relative to the moving fluid is given by N
[Eq. (6.3)]. The Galilean relativity principle allows us to
determine the dependence of all quantities (in particular
the stress tensor 7', the energy F, and the energy current
Q) on the velocity v for a given value of N by use of the
transformation laws for mechanical quantities from a
stationary coordinate system to a moving coordinate sys-
tem. Then the consistency of Eq. (6.20) with Egs. (6.16)—
(6.19) determines the remaining dependence of 7;; and Q
on N uniquely.

We now investigate how the stress tensor T';, the energy
E, and the energy current Q in the stationary coordinate
system are related to their values in the moving coordinate
system (which we denote by a subscript 0). The stress

8 The inertial terms are included only for convenience in the deriva-
tion of the hydrodynamic equations. These terms are negligible in
all the applications to low-frequency phenomena in the following
sections (see Sec. VIII). At higher frequencies the inertial terms can
be important, but then Eq. (6.19), which contains a single relaxation
time, would not be expected to provide an accurate description. Several
relaxation processes could be important.

9 The method was introduced by Landau (1941) and Landau and
Lifshitz (1959) and has been used extensively by them to discuss the
hydrodynamics of superfluids. The application to liquid crystals has
been given by Stephen (1970).
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tensor T'i; will transform as for an ordinary fluid:

quj = pUV; + Toij- (621)
In order to investigate how quantities like £ and Q in
Eq. (6.20) transform, we take a simple model in which the
liquid is composed of dumbbell-like molecules. Each mole-
cule consists of two masses M; and M, rigidly connected.
We focus attention on one molecule where M is at r; and
M, at rs. The center of mass R and the director n of this
molecule are given by

R = M_I(erl '+‘ Mgrg), n = (r1 —_ rg)/a, (622)
where M = M, + M, is the total mass, and @ is the length
of the molecule. The energy of this molecule is

e=LMR? 4 LIm?+ U, (6.23)
where Iy = (M1Ms/M)a* is the moment of inertia and U
is the potential energy. We now transform to a coordinate
system moving with velocity v and angular velocity . The
energy ¢o measured by an observer in this coordinate system,
is

0= MR —v)?+ 30 — @ xn)2+ U. (6.24)
The kinetic energy vanishes, as it should, if the coordinate
system is rxgldly fixed to the molecule. In the case where
R = vand @ = % curl v, ¢ is the intrinsic rotational energy
of a molecule exc]udmg that part produced by the fluid
flow. From Egs. (6.23) and (6.24) we find

e=3Mv*+ Iy(w xn)-(n1 — ® X n)

+ (0 x 1)+ e (6.25)

When we generalize this to the case of a fluid, the energy
E per unit volume will transform as follows:

E=3v? 4+ JT(0 xn)- N+ 3il(w x n)2+ £, (6.20)

where 7 is the moment of inertia/unit volume, and F, is
to be identified with the thermodynamic internal energy
which satisfies the thermodynamic identity

dEy = pdp + Td(ps) + fudn; — + NWd(INy).

(6.27)

Hi]‘d%i,]‘

Here p is the chemical potential per unit mass, and the
last term of Eq. (6.27) simply expresses the fact that the
relative angular velocity N is the derivative of the energy
with respect to the relative angular momentum.

By using similar arguments we can show that the energy
current Q, is related to its value Qy; in the moving coordinate
system by -

Qi = [#pv* + I(0 x n)-N + /(0 x n)* + EJo;
+ v T0i; + (0 x n) 10 4 Qy;. (6.28)
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The quantities Toi;, o, and Qo; in Egs. (6.21), (6.26),
and (6.28) will depend only on N and other thermodynamic
variables, but not explicitly on v. Ty; and Qo; are now
determined uniquely from the consistency of Egs. (6.16)—
(6.20). The details of this calculation are similar to those
of Landau (1941) and Landau and Lifshitz (1959) in the
superfluid case, so we will only give the general outline. In
the equation of conservation of energy (6.20), we substitute
for E and Q from Egs. (6.26) and (6.28) and calculate the
time derivative of E, from Eq. (6.27). All the time deriva-
tives are eliminated using Egs. (6.16)—(6.19). The resultant
equation, after some rearrangement, has the form

0=09E/dt+ V-Q = (8/9%;) (Qu; —
+ (Eo — up — TpS - 1N2)V'V + Toiﬂ)i,j

+ eme,vi,5.

NIL;)

(6.29)

The terms not containing v and terms linear in v are inde-
pendent. This uniquely determines T;; and Qo; as

Tgij = (—E() + up + TpS + IZVz) 6”‘ — ijnk,i (630)
Qo; = NI (6.31)
With these. definitions, the hydrodynamic Egs. (6.14)-

(6.17) and (6.20) are completely determined.
In the stationary case, when all time derivatives vanish
from Eqgs. (6.16) and (6.18), we have

(8/0;) Toi; = 0 (6.32)

(8/9x;) My + fi = 0. (6.33)

From Eq. (6.27) Eq. (6.33) can be written in the form

(8/0x;) (0 Eo/dn;,j) — (8Eo/dni) = 0 (6.34)

where the derivatives with respect to #; and #,,; are taken

at constant density and entropy. When we impose the

condition n? = 1, this equation is just the Euler-Lagrange

equation (3.29). We now turn to Eq (6.32) which from
(6.30) can be written

p(du/dx;) + ps(8T/0x;) — fumr,s + Wrvmne, s

— (8/0%;) (jmy.5) = O. (6.35)
Using Eq. (6.33) to eliminate f, this reduces to
p(Ou/dx:) + ps(8T/dx;) = 0 (6.36)

which is the usual condition for the hydrostatic equilibrium
of an ordinary fluid, and in that case is equivalent to the
pressure being constant.

E. Conservation of angular momentum

The conservation of angular momentum puts a restric-
tion on the symmetry properties of the quantities Ty,
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IT1.;, and g;. We define the angular momentum tensor density
by :

pMi; = Fp(xiv; — xv;) + 31 (naj — nj)
and it must satisfy the conservation relation

(8/0t) (pM i5) + (9/0xx) (pM iju1)
4 3€0/8%:) [ (%:To5e — % Toa) + (nilljy — ndla) ] = 0.
’ (6.38)

Substituting Eq. (6.37) in (6.38) and eliminating the time
derivatives by means of Egs. (6.16) and (6.18) gives

Toij — Tojs + Waymjp — Wignep + 1’szj - njfi = 0.

(6.39)

This is a symmetry requirement that the stresses must
satisfy in order that angular momentum be conserved. This
equation has already been verified in Sec. II1 [Eq. (3.40)7].

F. Irreversible hydrodynamics
In the presence of dissipative effects, the hydrodynamic
equations (6.17)—(6.20) are generalized to

0Ji/ot + (8/0x;) (T + ti) = 0, (6.40)

(8/90) (ps) + V- (psv + ¢/T) = R, (6.41)

(8/9t) (Ins) + (8/0x) (Inhiv;) + (8/0x;) (TLij + msy)
+ fi+ [ = n, (6.42)

(OE/d3t) +V-(Q+ Q') = 0. (6.43)
We shall show below that m;; vanishes to the accuracy to
which we are working. The inertial terms in Eq. (6.42) are
only important at high frequencies which are outside the
hydrodynamic regime and will be dropped in what follows.
The extra fluxes and forces in Egs. (6.40) through (6.43)
are subject to the restrictions

(i) that they vanish in the steady-state condition,
(i) that they also satisfy the symmetry property (6.39),
(iii) that the entropy production R be positive.

The quantities Q” and R are determined as before by sub-
stituting Eqgs. (6.26) and (6.27) into (6.43), the time
derivatives being eliminated by means of Egs. (6.16) and
(6.40)—(6.42). It is found that

Qi = g; + vitij + Ny (6.44)

TR = — 0,7 — WM, + f/n, — T_lq,;T,i, (645)
where v;,; = dv;/dx; and T,; = dT/9x;. Using the symmetry
property (6.39), we can write 7R in a more convenient
form. Thus

Ligvij = tidij + lijwi; = ligdig + 5 (L — i) wig, (6.46)
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where

wii = (Vs — Vj,i).

(6.47)

Using Eq. (6.39) to eliminate ¢;; — #;; in Eq. (6.46), we find

Lijvi; = tidiy — mijwam,; 1 fiwgn; (6.48)
and on substituting this result in Eq. (6.45)
TR = _[[j([ij — m,-Ni]- -+ f/Ni — T;lqiT,i, (6.49)

where N;; = 7;,; — wank,; and is the change of the director
gradient relative to the moving fluid.

1. Nematics

In order to develop the theory further it is necessary to
have constitutive equations for the quantities #;;, 7, f7,
and ¢;. We first consider the case of nematic liquid crystals
and make the assumption that the fluid has a center of sym-
metry and that n and —n are indistinguishable. Thus #;
and ¢; must be unaltered when n is replaced by —n, and
fi and r; must change sign. We will confine ourselves to
constitutive relations which are linear in the quantities
dij, N, and T; and neglect terms involving the gradient
of the director. We also note that terms like #;V; cannot
appear owing to the condition n® = 1. The most general
equations which meet these requirements have been given
by Leslie and are

tij = — (mdi + pernpdip) 055 — (psdin + ponnpdiy) nin;

— w5 Ny — pettNy — urd iy — psdauit; — uehingdij,

(6.50)

= Nade + Nattattpdap) 1+ NNy + Nsdignj, (6.51)

gi = —Bwman;T,; — BT, -(6-52)
— (6.53)

The coefficients u;, A, and B; depend on p and 7". The sym-
metry relation (6.39) requires that

M= pg — ps; Ns = pg — ps.
These constitutive relations are consistent with the general
symmetry relations for nematics discussed in Sec. III in
that they transform as vectors and tensors for rotations

about the director or for reflections in a plane containing
the director. )

In the case of an incompressible nematic liquid crystal,
we have the extra relation dy, = 0, and the constitutive
relations may be taken in the simpler form

ti; = —-alnknpdkpnmj - agij - 0[3717';'\'7]' - 0{4([,'1'

— asdaiit; — ashifgdyj, (6.55)
fq;’ = 71AV1; —+ ’deiﬂlj, (656)
g = —Bwmn; T ; — BT s, (6.57)
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where the coefficients a;, v:, and B; depend on 7'. The sym-
metry relation (6.39) requires that

Y1 = o3 — a, Y2 = ag — as. (6.58)

The dissipative coefficients «; and v; in Egs. (6.55)—
(6.57) [or the w; and A; in Egs. (6.50)—(6.52)] all have
the dimensions of a viscosity. The constitutive relations
are somewhat different from those usually considered in
hydrodynamics. In the hydrodynamics of ordinary fluids
the dissipative fluxes are expanded only in the spatial
gradients of velocity, temperature, etc. Here it is necessary
to include the quantity /V; which describes the rotation of
the director relative to the fluid. Thus in Eq. (6.56) the
coefficient v; determines the rate of relaxation of the director
relative to the fluid motion. The equilibrium state in a
rotating fluid is where the director rotates with the fluid
corresponding to N = 0. The term v, in Eq. (6.56) leads
to a coupling between the orientation of the director and
shear flow.

In Eq. (6.55) there are six viscosity coefficients a;. It
* will be shown in Sec. VI.G that invariance under micro-
scopic time reversal leads to the relation

(6.59)

Y=ot a3 = g — o5

leaving a total of five. The viscosity of the fluid naturally

depends on the relative orientation of the director and the

flow. This is discussed further in Sec. VII.

Upon substitution of Eqs. (6.55)~(6.57) into (6.49), the
entropy production is expressed in terms of the tensor d;;
and the vectorsn, N, and VT

TR = ay(ndimn;)? + 2vanidiN; + cudsidi;
+ (a5 + ) nidindrn; + v1(N)?

+ %ﬁ (n-v7T)2+ ﬁ—TZ (V)2 (6.60)

For all physical processes, the entropy production must be
positive. This implies certain conditions on the viscosity
coefficients, which can be derived from Eq. (6.60) by
consideration of the range of possible values forn, N, v T,
and d;; (except for the fact that d;; is symmetric and trace-
less, the components of all these quantities can vary in-
dependently). These are

(a7} > 0, 2(11 + 30{4 + 2&5 + Zae > 0,
v1> 0, Y1(2as + a5 4 ag) > v,
B:> 0, B+ B> 0. (6.61)

2. Cholesterics

In the case of incompressible cholesteric liquid crystals,
some additional terms consistent with the symmetry are
possible in Egs. (6.55)-(6.57). For cholesterics it is not
necessary that the constitutive relations be invariant under
reflections in planes containing the director. We again
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assume that n and —n are equivalent. Now the following
additional terms ¢;;9, ;) and ¢;© should be included in
Egs. (6.55)-(6.57):

tij(c) = —Q;i€siNx T,l — asniejkka,z (662)
fi© = ysepn; T (6.63)
g = —BsesuniNi — Baeijindiin. (6.64)

From Eq. (6.39) we require that v3 = as — az. The Onsager
reciprocal relations (Prost, 1972, and Section VI.G) give
the additional relations v; = —8; and a7+ as = —pBa.
These equations show that a temperature gradient in a
cholesteric will exert a torque on the fluid and the director.
Conversely, according to Eq. (6.64) a heat current is
induced if the director rotates relative to the fluid. These
terms are consistent with an observation by Lehmann
(reported by Oseen, 1933) that in certain cases drops of a
cholesteric, spread out between glass surfaces, were put
into violent rotation when heated from below. The theory

.of this effect has been discussed by Leslie (1968b).

G. Onsager reciprocal relations

When deriving the constitutive relations (6.50)—(6.52)
and (6.55)—(6.57), the spatial symmetry properties of the
liquid crystal were taken into account. The conservation of
angular momentum led to the relations (6.54) and (6.58).
We now consider the Onsager reciprocal relations which
reflect the time reversal invariance of the microscopic
equations of motion of the individual particles. This has
been discussed by Parodi (1970). We will show that this
invariance leads to the relations

Ns = w5+ ue = po — us

Vo= a3+ s = ag — as (6.65)
and, in Egs. (6.62)-(6.64),
Y3 = —Bs
ar+ ag = —f4. (6.66)

In order to obtain the reciprocal relations we must iden-
tify the independent thermodynamic fluxes and forces. The
entropy production (6.49) is given by

TR = —iijdij +fi,[\7i — (ql/T) T,i. (6.67)
From this form it is not clear that #;; and f;’ are independent.
For the present purposes R is more conveniently written

in the following way. We introduce the angular velocity
of the director Q which is given by

n= (Q xn), (6.68)
and introduce an antisymmetric tensor £,; such that
Qi; = —, (6.69)
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where (¢, 7, k) is a cyclic permutation of («, y, z). The rate
of change of the director relative to the fluid is now given by

N;= (Qlk - wik)nlc

Qang,

Il

(6.70)

where the last relation defines the antisymmetric tensor
Q.. We also introduce the symmetric and antisymmetric
parts of the stress tensor

i = §(t; + t50) (6.71)

(6.72)

1@ = 5(ti; — t;:) = ¥(fi'n; — nify).

The last relation follows from Eq. (6.39). The entropy
production (6.67) can now be written

TR = —lij<s)dij —'I— [,’j(")ﬁij - (q,/T) T,i. (673)

We can now identify the three independent thermodynamic
forces

xl-j“) = dij, x»;j@) = Qij, x,v(” = (1/T) T_i. (674)
The corresponding fluxes are
Ji® = —4,,@ Ji® = t@, J® = —q.
(6.75)

The constitutive relations (6.55)-(6.57) and (6.62)-
(6.64) can now be written as relations between the fluxes
(6.75) and the forces (6.74):

Jii® = LijuWdy + L™ + Lij 18 (1/T) T g,
Ji® = Lijmu®de 4+ Lijsa®Q 4 Lij 1@ (1/T) T,
J® = L; w®dy + L@ + Ly (1/T)T ;.
(6.76)
The Onsager reciprocal relations state that
Lij 1" = Ly, (6.77)
Lij,/c(m) = Lk,ij(al), (6.78)

For example, from Eqgs. (6.55) and (6.56) we find that

Lij1"? = § (a2 + as) (damm — n:m851)

Li1,i;® = 3v2(8anmy — niudji) (6.80)
which from Eq. (6.77) leads to the second result of Eq.
(6.65). The first result of Eq. (6.65) is obtained by applying
Eq. (6.79) to the constitutive relations (6.50) and (6.51).
In a similar way Eqgs. (6.78) and (6.79) lead to the identities
(6.66).
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H. Alternative form of the hydrodynamic
equations

Another form of the linearized hydrodynamic equations
for an incompressible nematic has been given by Forster
et al. (1971) and Martin ef al. (1972). In this section we
demonstrate that these equations are identical with the
linearized equations of Ericksen and Leslie given in previous
sections. In Eq. (6.8) for the director we retain only terms
linear in the curvature strains:

(a3 - az)Ni + (0(2 + ag) dij%j —|— (3/69@')11@' = Yn;.
(6.81)

We now use this equation to eliminate N, in the stress
tensor [Eq. (6.11)7] and the relations (6.58) and (6.59).
The stress tensor for an incompressible fluid can then be
written

i = 1P + 1,0, (6.82)
where
1D = —aumpnpdipning — cuds;
— [(ozos — aes) /vi)(dawmin; + dpmmn;)  (6.83)
i = (v2/2v1) (nillie . + nTl 1)
+ $n 0l — $00Lg 5. (6.84)

We can interpret those two parts of the stress tensor as the
dissipative and reactive parts. The dissipative part (6.83)
is symmetric and (for an incompressible fluid) contains
three viscosity coefficients. The reactive part arises from
the reaction of the director back on the fluid flow. It is not
symmetric in Eq. (6.84), but it can also be written in a
symmetric form

L = (vo/2v1) (Il s, + willn) — 9 (Wysp + My )
+ 300l . + 3000 5. (6.85)

It is easily verified that

b = i,/

(6.87)
so that the equations of motion are unchanged whether we
use 4;7 or ;7. The hydrodynamic equations of Forster
et al. (1971) are given by Eq. (6.81) together with the
conservation relations (6.6), (6.7), and (6.9). The advan-
tage in using a symmetric form for the stress tensor is that
angular momentum is automatically conserved.

These equations (for an incompressible fluid) contain
four dissipative coefficients; the three viscosity coefficients
appearing in Eq. (6.83) and v; = as — a2 in Eq. (6.81)
which determines the relaxation time for the director. The
ratio va/v1 = (as + a2) /(a3 — o) appearing in Egs. (6.81)
and (6.84) is a reactive coefficient determining the response
of the director to the local shear and the reaction of the
director back on the fluid.



M. J. Stephen and J. P. Straley: Physics of liquid crystals

VIl. STEADY STATE AND SLOWLY VARYING
FLOW

We now consider applications of the hydrodynamic
equations set forth in the previous section to several simple
problems.

A. Orientation of the director by a velocity shear

We consider the case of a fluid flowing in the x direction
with a velocity gradient along y so that ‘

v, = u(y), 2 = v, = 0. (7.1)

A magnetic field in the xy plane is also imposed. The director
will have the form

n = xcos¢(y) + ysino(y). (7.2)

The two components of the director Eq. (6.8) are

[(as — a2) (8/0t) — k(3%/8y*) — H.*xa] cosé
+ (#'ay — H,H,x,) sing = v cos¢
[(az — ) (0/8t) — k(82/0y?) — H,?x,] sing
+ (a3 — H,Hyx,) cosp = v sing,
where the Frank elastic constants have been taken all
equal to k, and where ' = du/dy. The unknown 7 is deter-
mined by the condition 7,2 + »,2 = 1. It may be eliminated
from Eq. (7.3) to give
[(as — az) (8/01) — k(3%/0y*) J¢
—+ XG(IL2 — H,?) sing cos¢ + (#'az — H.H,x,) cos’p
— (W' ag — H.Hyx,) sin’¢ = 0. (7.4)
Let us consider first the uniform solution. The first term
is discarded; the remainder can be written as an equation
for tan ¢ by dividing by cos?. Introduce further H? =
H.?+ H/2, tangy = H,/H, and Eq. (7.4) becomes
XaH? cos2¢y tang + (u'az — FxH? sin2¢y)

— (' oy — Ex.H? sin2¢yr) tanp = 0 (7.5)

whose solution for tang is

tangy = [xaH? c0s2¢y == Q|20 as — x.H? sin2¢y 1,
(7.6)
where
0 = [x2H* + 4uawas — 2u' Hx, sin2¢m (s + as) 72
‘ ' (7.7)
We will argue below that only the lower sign solution is
stable against small oscillations. The high and low field
limits of Eq. (7.6) are
H— o

(7.8)

tango ~ (cos2¢y — 1)/sin2¢y = tangy,

Rev. Mod. Phys., Vol. 46, No. 4, October 1974

(7.3):

649
(so that the director is aligned by the field) and

tangy ~ —)(agas) 1/2 | u' |/a2u' = tang,, H = 0.

(7.9)

Thus a velocity gradient also aligns the director, at an
angle ¢, to the direction of flow.

In order that ¢, be a physical angle it is necessary that
as and a3 have the same sign. This condition can also be
written |v.| > 71 and seems to be always found experi-
mentally [the opposite case | vz | < 1 has been considered
theoretically by Ericksen (1966b, 1969b) 1.

Since v; = a3 — as must be positive [see Eq. (6.61)7],
the possible choices are oz < a3 < 0 and a3 > o, > 0. The
former gives alignment of the director roughly in the direc-
tion of the flow with a small component in the direction
of positive #’; the latter gives alignment nearly perpendicu-
lar to the flow direction. The former is the expected behavior
of long molecules and is the behavior observed experimen-
tally. Molecular models to explain the flow alignment in
nematics have been discussed by Helfrich (1969b, 1970b,
1972). Shear orientation of liquid crystals has been studied
experimentally by Porter and Johnson (1962, 1966) and
Meiboom and Hewitt (1973). Typical measured values of
¢, are 18° for MBBA.

Crossover between orientation near ¢z and orientation
near ¢, occurs when x.H? and (ase;)'?u’ are comparable.
For typical parameters this implies that a Kilogauss and
a 1 cm/sec per cm flow gradient are equally effective in
aligning the director.

We now consider the stability of the solution (7.6)
against small oscillations. Expand Eq. (7.4) to linear order

indp = ¢ — ¢o:

(a3 — ) (0/0¢) 6¢p — k(3%/0¥?) 6¢p = —xaH? cos ¢Pudp
+ (20« — x H?sin2¢y) tangedp = ==06¢40. (7.10)

In order that the amplitude of 6¢ decrease in time, the
coefficient of ¢ on the right-hand side must be negative,
confirming our choice of sign in the solution (7.6).

We may also study the effect of surfaces and disclinations
which introduce perturbations of the orientation from
¢o. According to Eq.(7.10) these die out in a length £ given
by

2 =Fk/Q (7.11)
which reduces to the magnetic coherence length in the
limit of large fields. For a 1 kG field or a 1 cm/sec per cm
flow gradient & is of order 1073 cm: the boundaries will
have no effect except in the smallest samples. Boundary

effects have been discussed by Leslie (1968a) and Ericksen
(1968b) .

B. Viscosity of an oriented flow

An incompressible nematic or cholesteric liquid crystal
has-five viscosity coefficients in Eq. (6.11) when we take
into account the relation (6.15). We now investigate how
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these viscosity coefficients are related to the viscosity that
would be measured in a shear flow experiment. We suppose
that the liquid is flowing steadily in the « direction while a
linear velocity gradient exists along the y axis so that
2, = #’y and that a magnetic field is applied which is suffi-
ciently strong to suppress boundary and shear flow aligning
effects. Then the tangential shearing stress on a plane of
unit area perpendicular to y is

_t:cy = %u/[a‘i + (0(3 + aG) nxz '+’ (055 - az) 75112

+ 2aum.n,%], (7.12)

where 7, and », are the components of the director along
x and v, respectively. The effective viscosity is then

n= —luy/u. (7.13)

We see that the effective viscosity coefficient depends on
the orientation of the molecules. Miesowicz (1936, 1946)
[see also Parodi (1970)] has defined three principle vis-
cosity coefficients corresponding to the cases where the
director is

(1) parallel to the flow

(2) parallel to the velocity gradient

(3) perpendicular to both the
gradient.

flow and velocity

The corresponding viscosity coefficients are:

m = 3(as+ a5+ a3),

tlou+ a5 — o),

Il

N2
(7.14)

— 1
n3 — 04,

These are necessarily positive [as can be shown from
Eq. (6.61)7; furthermore, if a» K a3 < 0, as required for
shear orientation, n; < 7.; experimentally 0 < 7, < 53 < 7.
This inequality was demonstrated by Miesowicz (1946)
for PAA. By a measurement of the flow orientation and the
three principle viscosity coefficients, it is possible to deter-
mine o, a3, as, and as. The determination of «; would
require a measurement of the viscosity when the director
lies in the plane containing the direction of flow and the
velocity gradient and at some angle to each. In most cases
oy is small (see Table II).

In the absence of the aligning magnetic field the director
field is oriented by the shear, as discussed in the previous
subsection. Since the alignment angle ¢, is small, the effec-
tive viscosity measured in this geometry is nearly the same
as m. Tseng, Silver, and Finlayson (1972) have given a
detailed discussion of the actual velocity profile under these
conditions. They also point out that the effective viscosity
will be velocity dependent, since the size of the regions
near the walls and near the center of a tube where the shear
orienting effect must compete with the elastic forces de-
pends on the magnitude of the shear. Several other flow
problems and the effects of boundaries on the flow have
been considered in the literature. Atkin (1970). has con-
sidered Poiseuille flow of nematics and Atkin and Leslie
(1970) and Currie (1970) have considered Couette flow.
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C. Torque due to rotation in a magnetic field

Let a container of liquid crystal be placed in a strong
magnetic field, whose direction changes in time at a constant
rate (or equivalently, have the container rotate uniformly
relative to the field). The molecules in maintaining their
alignment with the field encounter a viscous force opposing
their motion relative to the fluid.

We assume that the boundary conditions at the container
walls are v = 0 (no slip), but that the molecules at the walls
may rotate freely. Since the director is constant in space,
the director Eq. (6.8) becomes

(a’s - Olz)fvi + (0{2 + ag)d{jﬂj + XaHiHjnj = YN
(7.15)

The torque on a volume element dV due to the magnetic
field is

dtr = x.(n x H) (n-H) dV (7.16)
and so the corresponding total torque on the liquid in the
container is

T=—J (s — ax)n x (d0n/3t — ® x n) dV

— [ (s + a3) (n x d-n) dV. (7.17)

The terms involving derivatives of the velocity field actu-
ally make no contribution to the integral. They all have
the form 4 dv;/dx;, where the prefactor involves the com-
ponents of n, which are constant throughout the volume
at a given time. When the integral over x; has been per-
formed, these terms can be expressed in terms of the value
of v; at the boundary, which is by hypothesis zero for the
case of the stationary container. Thus the nonvanishing
part of Eq. (7.16) is

7= —(as — a)[n x (8/0)n].V = viwrV, (7.18)

where wy is the angular velocity of the magnetic field.

Extension to the case of a rotating container is readily
made. The velocity field is divided into the velocity field
of a rotating solid body and an arbitrary field which van-
ishes at the boundaries; again the latter gives no contribu-
tion to T. The resultant torque is

T =

(0{2 — a3) {n x [(a/at)n — W X n:]}zV

= 'yl(wH - wo) %4 (719)
if the axes of rotation of the field (wyx) and the container
(wo) are the same. Thus all such experiments are a measure
of v1 = a» — a3; they have been performed by Zwetkoff
(1939a, 1939Db), Prost and Gasparoux (1971), and Meiboom
and Hewitt (1973).

In the case of steady-state flow the torque applied by
the field (which is what we have calculated) is the same as
the torque which acts on the container walls. Alternate
derivations of this torque from this point of view can also
be given (Prost and Gasparoux, 1971). The steady-state
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flow field is just solid body rotation (v = 0 for the sta-
tionary container) (Jenkins, 1971).

In the derivation of Eq. (7.17) it is assumed that wg <
we = XoH?/2v:. In this case it can be shown from Eq.
(7.14) that the director rigidly follows the rotating field
and makes an angle & with the field given by sin2é = wx/we.
The case of high rotation speeds wy > wc¢ has been con-
sidered by Leslie, Luckhurst, and Smith (1972). The
director now lags behind the field and can be shown to
rotate with a mean angular velocity wg — (wn? — wc?) /2.
The effects of boundary conditions have also been con-
sidered by Leslie, Luckhurst, and Smith and found to be
small when wy < we.

A related problem has been considered by de Gennes
(1971b) in which the orientation of the molecules in a
nematic slab is fixed on the lower boundary but free to
rotate on the upper boundary (free surface). A rotating
field is applied in the plane of the slab and de Gennes dis-
cusses the appearance and migration of 180° walls in the
slab. :

Other methods of obtaining the coefficient v; include a
study of the dynamics of the orientation of nematics by a
variable magnetic field (Brochard, Pieranski, and Guyon,
1972; Pieranski, Brochard, and Guyon, 1973) and studies
of cholesteric liquid crystals in variable magnetic fields
near the aligning field H. (Wysocki, 1971; Parsons and
Hayes, 1973).

D. Capillary flow in a cholesteric

The viscosity measured for a cholesteric forced through
a capillary is much larger than for similar nematic and
nonordered liquids (Porter, Barrall, and Johnson, 1966).
The explanation for this effect lies in the fact that as the
molecules move along the twist axis they must rotate (to
maintain their orientation with the local director) which,
similarly to the case of the previous section, implies a large
viscous force (Helfrich, 1969c). ’

Let the capillary be a circular tube of radius a. It is
assumed that the twist axis of the cholesteric coincides
with that of the tube (which is taken to be the z axis)

n(z) = xcos(2wz/p) + y sin(2wz/p) (7.20)

and that this orientation pattern is firmly fixed at the walls
of the capillary so that its distortion due to the flow may be
neglected. Even with these simplifications, the hydrody-
namic equations yield rather formidable equations for the
velocity field. We will then proceed by assuming a simple
form for the velocity field v(r), and evaluate the entropy
production [Eq. (6.13)7] for this choice. In steady state
this entropy production is balanced by the work done by
the pressure gradient

TR = (dP/dZ) <vz>:

where (v.) is the z component of the velocity averaged
over the cross section of the capillary. The result for dP/ds
will depend on our choice for v(r), but the essence of our
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argument will be that no matter how v(r) is chosen,

dP/dz ~ n{v.)p2, (7.21)
where n is some average of the viscosity coefficients. In
contrast, ordinary Poiseuille flow would replace the p—2
by a~%. Since these quantities differ by a factor of 10° for
typical experiments, this implies a large apparent viscosity
for the cholesteric. Equation (7.21) also implies that the
total rate of flow out of the capillary (for given pressure
head) varies as a? whereas in ordinary Poiseuille flow it

" varies as a.

First consider a velocity field of the form

v = zu(r), (7.22)

where # is an arbitrary function except that it must vanish
at » = a, the walls of the tube. The only nonvanishing
terms of Eq. (6.13) are

RT = Q4(Zijdj‘i + (ag _ az)lV2. (723)
Since the director is time-independent,
RT = a4(Vu)2 —+ i(as - az) (n'VV)2
4+ (as — o) 2mu/p)2. (7.24)

The first term is the usual Poiseuille term. The first two
terms are of order (v./a)? which is negligible compared
to the last term (~(v./p)?). The latter implies

dP/dz = vidw?{v.2)p~2%/ (v,) (7.25)

which is comparable to Eq. (7.21).

The velocity field (7.22) is much too simple; in particular
we might expect the liquid to rotate about the z axis. This
“backflow”” will have the effect of reducing the N? term,
since now

N? = [(2m0./p) — 3(curlv), P+ [(v-¥)n ] (7.26)

Choice of a velocity field with a large rotation about the 2
axis [ (curl v),~v,/p] could cause the first term of Eq.
(7.26) to cancel in whole or in part. The actual velocity
field undoubtedly does have such character; however, other
terms in R involving the rotational part of v arise which
guarantee that the pressure gradient has the order of magni-
tude indicated by Eq. (7.21). An approximate solution
to this problem has also been given by Lubensky (1972b).

E. Force on a disclination line and domain walls

An argument similar to that of the previous section can
be used to estimate the viscous drag force per unit length
acting on a disclination line moving relative to the fluid
(Imura and Okano, 1973a). For simplicity, we assume a
stationary axial disclination line along the z axis, which is
not being disturbed by the flow of the liquid:

n(r) = x cosime(r) + y singme (1), (7.27)
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where m is the index of the disclination line and ¢ =
arctan(y/x) is the angle defined in Fig. 13. We also assume
the liquid is flowing at constant velocity v in the x direction.
Then the entropy production is

TR = [y (a3 — a2)?[(8/8x)n(r) P dr (7.28)

according to Eq. (6.13), which leads to

TR = (a5 — o) v*im? [y [(8/8x) ¢ (r) J? dr

Il

yZ
%(as - a2)m27)2L / mdxdy

= i1(az — a)m?®L In(R /7o), (7.29)
where L is the length of the line, and the integral has been
cut off at the radius R of the container and the radius 7,
of the core of the disclination line. The entropy production
is balanced by the rate at which work is done to maintain
the flow

of = TR, (7.30)

where f is the force on the disclination line. Then

f/L = im(as — az)m?v In(R/7) (7.31)

is the force per unit length.

Similarly, for an infinite planar domain wall we may
write [from Eq. (4.53)]

n(r) = ztanh(u-r/¢) + ysech(u-r/¢),

where z is the direction of the uniform magnetic field, u
is a unit vector normal to the wall, and the y direction is
chosen arbitrarily. We assume a uniform velocity field
parallel to u which does not distort the wall and is not
affected by the wall. Then the rate of entropy production is

TR fV (a5 — ) ?[u-Vn(r) &

= (a3 — o) V%2 // dx'dy’ / dz’ sech? (Z—g) , (7.32)

where 2/ = u-r and the «’, 9’ axes lie in the plane of the
wall. Thus the force per unit area acting on the wall is

F = (o5 — )8 [ dg’ sech?(2'/§) = w[ (a5 — o) /£].
(7.33)
Brochard (1972) discusses the case of the thin film

geometry taking some account of the deflection of the
velocity field by the wall. It proves to be a small correction

(~10%,).

Vill. FLUCTUATIONS IN NEMATIC LIQUID
CRYSTALS

In a nematic liquid crystal the molecules tend to be
aligned along a constant direction. However, there are
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thermal fluctuations around this equilibrium configuration.
This section is devoted to an investigation of the amplitudes
and time dependence of these fluctuations. The low fre-
quency normal modes of a nematic liquid crystal are a
combination of orientational and shear wave motion. In
addition, it is possible to propagate compressional waves
(sound waves) in the liquid. The frequency of these sound
waves is high compared to the relaxation rates of the orien-
tational and shear waves, however, and so we can neglect
the coupling between the sound waves and these latter
waves; in this section we regard the nematic as incompressi-
ble. Sound waves in nematics are discussed in Sec. XII.

Since the polarizability of a molecule and of the ordered
medium is very anisotropic, the orientational fluctuations
give rise to fluctuations in the dielectric constant of a
nematic which scatter light strongly. The scattered light
is strongly depolarized. According to the elastic theory of
Sec. III, the energy required to create an orientational
disturbance of wave vector ¢ is proportional to k¢g? where
k is an elastic constant. This vanishes for long wavelengths
corresponding to the fact that it takes no energy to rigidly
rotate the director. It is thus easy to create long wavelength
fluctuations. The turbid or milky appearance of nematics
is a result of the strong light scattering at long wavelengths.
If the nematic is heated above the transition temperature,
these long wavelength, low-frequency modes no longer
exist, and a clear liquid results. For this reason the transition
temperature is sometimes called the clearing temperature.

The first measurements on light scattering from nematics
were made by Chatelain (1948), who measured the in-
tensity and angular distribution of the scattered light. More
recently, with the advent of lasers, it has been possible to
measure the spectral distribution of the scattered light. Such
measurements have been made by the Orsay Liquid Crystal
Group (1969b) on the nematic PAA and by Haller and
Litster (1970a) on MBBA. Measurements of the intensity
of the scattered light gives information on the elastic con-
stants, and the spectral distribution gives information on
the viscosity coefficients. The normal modes of an incom-
pressible nematic have been considered by de Gennes
(1968b) and the Orsay Group (1969a) using the Ericksen—
Leslie hydrodynamic equations.

A. Basic formulas of light scattering

In this subsection we give the basic formulas for the
scattering of light by the fluctuations of the dielectric
constant of a medium.

In the case of interest to us the fundamental fluctuating
quantity is the director

n(r,t) = no+ én(r, ), (8.1)
where ng is the equilibrium director. The small fluctuation
én must be perpendicular to n, because both n and n, are
unit vectors. Thus én has but two independent components.
When discussing a fluctuation of particular wave vector
q, we will use the coordinate system of Fig. 19. The com-
ponent én., which lies in the plane of q and n,, and éxn,,
which is perpendicular to this plane, will prove to be un-
correlated, and thus define the polarizations of the two
independent fluctuation modes. ’
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FIG. 19. Geometry to describe a single
plane-wave disturbance in a nematic.
The z axis is chosen to lie along the
director no and the wave vector q of the
disturbance lies in the xz plane.

Each point in the medium is described by a dielectric
tensor €;(r,?), whose dependence on space and time is
determined by the fluctuations taking place. We will sup-
pose that these fluctuations are small so that

€i; (T, 1) = ei; + beii(x, 1), (8.2)
where ¢;; is the average dielectric tensor. In the case of the

fluctuating director, the fluctuation in the dielectric tensor
arising from én is [see Eq. (3.17)]

561’]‘ = Ea(aninoi + n()ianj)’ (83)

where e, = ¢/ — €, is the anisotropy in the dielectric con-
stant.

We consider an incident light wave of frequency wo, wave
vector ko, and polarization along the unit vector p, and a
scattered light wave of frequency w;, wave vector ki, and
polarization p;. The frequency and wave vector transfer
are

(o << wop)

W = Wo — w1

As w K wy, the wave vector transfer ¢ = 2(wo/c) sin(6/2),
where 0 is the angle of scattering. In terms of these quan-
tities - the differential scattering cross section, per unit
volume, per unit solid angle d2, and per unit angular fre-
quency dw is given by

do/dQdew = (1/327°) (w1/c)*(q, w), (8.5)
where
1@0) = [ dr f " b exp(iq T — dwl)
Vv —c0
- (de(11t1) e (tate) ), (8.6)

where the angular brackets indicate a thermal average and
de = pi-de-po. For the case of a fluctuating director we
substitute Eq. (8.3) for e, with the result

I(q,w) = e > (PorNoPi- &+ Por & p1-Mo)2/a(q, w),

a=x,y

(8.7)

where the sum is over the two dynamically independent
components of én, é#n. and én,, and I,(g, w) is the correla-
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tion function -

Ia(q, w) = f{irm'[ dtm exp(iq-rlg — ’L'wllz)

. <61’I,,_Y (1'1[1) 07, (rzlg) > (88)

Apart from the slowly varying factor (wi/c)* in Eq.
(8.5), all the spectral information is contained in the cor-
relation functions 7,(q, w). The total intensity of the light
scattered per unit volume, per unit solid angle is obtained
by integrating Eq. (8.5) over all frequencies. Using Egs.
(8.7) and (8.8), we find

do/d® = (/167 (/0)* 3 (pomopr- &

a=z,y
+ Po- & p1°10)*1a(q) (8.9)
where we replaced wi by wo in the factor (wi/c)* and
Ia(q) = fV drys eXp(iq'r12> (6%,,(1‘1)5%4 (1'2) > (810)

The total intensity is thus proportional to the mean square
fluctuations of wave vector q of the director.

B. Amplitude of the fluctuations

Thermal fluctuations in orientation of the director give
rise to corresponding fluctuations in the dielectric tensor
of a liquid crystal. The amplitudes of these fluctuations are
determined by the elastic constants discussed in Sec. III,
as will be shown presently. It will be shown in the next
subsection that the fluctuations are greatly damped by the
viscous terms, so that the hydrodynamics of the substance
are important to the dynamics of the fluctuations.

We will treat the simple case of small oscillations about a
uniformly oriented liquid crystal. The equilibrium director
n, is oriented along the z axis by a field having that direc-
tion. The general disturbance én can be regarded as a
superposition of the plane-wave disturbances

on(r,t) = V-2 Re[dng exp(iq-r) ], (8.11)

where 6ny is a complex number containing both amplitude
and phase. The increase in free energy due to this disturb-

ance is given by Eq. (3.21). Keeping just the quadratic
terms, there results

5G = % ‘ 6nqw ‘Z(kIIQaz2 + k33922 + XaHz)

+ % l 0% gy fz(kmq:Z + kssq;‘ + xoH?). (8-12)
(In the coordinate system defined by Fig. 19, q does not
have a y component.) Application of the equipartition
theorem of classical statistical mechanics gives

1.(q) = kpT[kug? + kasq.? + xoH? ]

1,(q) = keTlkng + kug:? + xaH*T™ (8.13)
The combinations of elastic constants entering here arise
from the fact that the fluctuations are combinations of
splay and bend for 7. and twist and bend for 6#,.
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We may now use Eq. (8.9) to obtain the intensity of
scattered light as a weighted combination of the 7,(q). It
should be noted that for H = 0 the I, diverge for small
g, indicating that the energy required to create a fluctuation
gets smaller the longer the wavelength of the fluctuation.
This implies that light will be scattered very strongly close
to the forward direction, where ¢ is small. Thus a nematic
liquid crystal is always critically opalescent in the absence
of a field. This accounts for the turbidity of these materials.

Magnetic fields can suppress the fluctuations of orienta-
tion, but only wavelengths longer than kY2x, '2H~! (where
k is one of the curvature elastic constants) are affected;
since x, and k are of order 1078 cgs units, only large fields
(H > 10® G) will have any effect on the scattering of light
except in the extreme forward direction.

Measurements of the intensity of the scattered light can
provide information about the elastic constants of nematics.
The temperature dependence of the light scattering in the
absence of a field is determined by 2k~ [apart from the
slowly varying factor 237" in Eq. (8.13)7. It will be shown
in Sec. XIIT that ¢, varies like the order parameter S and
k varies with the square of the order parameter. Thus the
ratio ¢2%/k is independent of S and the intensity of light
scattering should vary slowly with temperature, in agree-
ment with the experimental results of Haller and Litster
(1970). '

C. Dynamics of the fluctuations

The spectrum of the scattered light is determined by the
dynamics of the fluctuations. The orientation fluctuations
of the director are coupled to the fluid velocity by viscous
effects, and in fact are overdamped: the modes which the
elastic theory of the previous section predicts do not
propagate.

We now consider the linearized hydrodynamic equations
for the coupled motion of the director and the fluid velocity,
both of which are regarded as small. We will assume that
the nematic is incompressible, thus neglecting a small
coupling between the sound wave modes and the director
fluctuations; we also ignore temperature variations. The
two equations we shall need are the equation for the director

which is Eq. (6.42) with a term of order én x v omitted,
and Eq. (6.40) for the fluid velocity

p(a'l)i/alf) + ViP -I— Vjt;;j = 0. (8]5)

The quantities f, f/, II;;, P, and ; must also be given linear
form. All that survives of f + f' is

fi + fil = _XaHi(n'H) “+ yn; + viN; + Yol iitoi.
(8.16)
The Lagrange multiplier v serves to guarantee the condition

that n be a unit vector, or equivalently, that ng-én = 0. It
may be determined by constructing the z component of
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Eq. (8.14) (the coordinate system is again that of Fig.
19). However, since v enters into the nontrivial x and y
components of Eq. (8.14) only as a coefficient of én, it is
sufficient to evaluate it just to zero order in v and én, which
gives just

¥ = XoH. (8.17)

We are assuming that the liquid crystal is incompressible,
so that

vev(r, i) =0, (8.18)

or, introducing a plane-wave representation for v similar to
Eq. (8.11),

4a02(q, £) + gv.(q,?) = 0. (8.19)

The pressure P is essentially a Lagrange multiplier which
ensures that this condition holds. Thus taking the diver-
gence of Eq. (8.15) gives

vipP + V.nglij = 0, (820>
. or, in terms of the Fourier transforms of P and ¢,

We will use Eq. (8.19) to eliminate v, wherever it occurs.
Thus for a plane-wave disturbance

Ne. = (9/30)6n, — %i(¢¥/q)v., N, = (a/ai)ém — 3ig.v,
oz = (i/2¢:) (¢ — gD e, dye = iy, (8.22)
and from Eq. (6.55)
lrz = — 1040z,
e = —Fiagaty,
ty: = —ax(8/0t) émy + Figquvy(on — as — ),
e = 1G:0: (o1 + aq + a5 + ag),
lee = —a3(0/08) 810 + (3/2q.) vo(0rsg?
+ (s + as) (g2 — ¢.2)),
b = —a2(9/08)0n, 4 (3/2¢:) vo(cag?
+ (u+ a5) (¢ — ¢.)). (8.23)

The elements of II;; needed are found from Eq. (3.22):

I, = —iknqxém, ny =

1I,. =

——ikgquﬁnz,,

sz = ”ik%Qzanla _ik.‘i.‘iq‘z(sny. (824)

Combining these results, Eq. (8.14) comes to have the form

[1(8%/022) + 71(8/3t) + K@ () Jona + iC®(g)va = 0
(8.25)
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where a = %, y, repeated indices are not summed, and

K® = k1% 4+ ksq? + xH2,

C® = —(1/2¢.)[1¢* + v2(¢* — ¢:5) ]

K® = kyg? + kq.? + xoH?,

C® = 3(v2 — 71)q. (8.26)
and Eq. (8.15) becomes

[p(3/00) + P (g) Jow — 10 (q) (8/30)3me = 0, (8.27)
where

P(z) = %9_2(27719734 + 27]2QZ4 + asz2Qz2),

PW = 3(oug.® + 2mg?),

Q@ = g:q"(aags” — g:?),

Q¥ = ayg,. (8.28)
We have introduced the abbreviations

m= %(aab—i- as+ ag), -

N2 =%(a4 + o — ),

Am = 2(011 + a4) + (243 + Ag + a3 — Oy, (829)

where 71 and 7, are the Miesowicz viscosity coefficients
[Eq. (7.13)7.

The normal modes are now determined from Egs. (8.25)
and (8.27). As promised, these equations separate into two
sets involving the pairs #., v, and #,, v,. To determine the
modes, we suppose all these quantities have a time de-
pendence e~*¢. Further, at low frequencies we may neglect
the first inertial term in each of (8.25). This approximation
will be discussed further below. The equations for ., v.
are then

(—iwy1 + K®)on, + iC@p, = 0

(—twp + P@)o, — wQ®6n, = 0 (8.30)

with a similar set of equations for 87y, v,. In each case we
get the secular equation for the normal mode frequencies

WPy + iw(pK@ + 5 P@ — C@Q@) — K@@ P@ = 0,
(8.31)

We first consider the case where the magnetic field is
zero. Let us first estimate the orders of magnitude of the
various terms in Eq. (8.31). We assume that the six viscosity
coefficients « are all of order 0.1 poise and that the three
elastic constants have comparable magnitudes k=~ 10°
dynes. Then the various functions that enter into Eq.
(8.31) are approximately

P@ ~ 77‘]21
C@ ~ Q@ ~ ng,

K@ ~ kg, (8.32)
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The form of the modes depends on the value of the dimen-
sionless parameter

u = kp/7%; (8.33)

using the above values of %, «, and p = 1 g/cm3, we find
uw==210"% The smallness of this parameter allows us to
simplify Eq. (8.31); in the limit x << 1 the two solutions
are

. K@ pl
T P@ — C@O@
wr@ = —(i/py1) (1 P@ — C@P@) = —iTp,

wS(a) = _iI‘S(rx)

(8.34)

We have defined the damping constants I of the two modes,
both of which are overdamped. The modes are a mixture of
hydrodynamic and director motion and the suffixes .S and
F stand for slow and fast relaxation behavior. Thus

Tgx~kg*/n,  Tr*~ng*/p. (8.35)
The slow mode corresponds to a slow relaxation of a curved
nematic structure with the torques due to curvature being
opposed by frictional effects. In the fast mode, inertial
effects of the fluid are important and the relaxation rate is
characteristic of a shear wave in a fluid. These shear modes
are discussed further in the next section. In both modes the
rotation velocity of the molecules wén, is comparable with
the velocity gradient gv. The relaxation rates are propor-
tional to ¢? which is characteristic of hydrodynamic modes.
In the special case where the modes propagate along the
z axis, the two types @ = x, y become identical, and the
damping constants are

It

I's
Tr

kg [v1 + (aa/2m2) (v1 — %) J!
(¢%/2p) [ 2m2 + (ao/v1) (71 — 72) J-

Il

(8.36)

We now examine the modes in the high field limit, which
corresponds to

xH? > 1%¢%/ p. (8.37)
This inequality can only be achieved with the strongest
fields and small-angle scattering: with H = 10* G, x, =
107% 5 = 0.1 P it requires ¢ < 10?> cm™. In this limit we
find one orientational mode with relaxation rate

@ = xoH2/v: (8.38)

and one shear wave hydrodynamic mode with relaxation
rate

@ = pe/p, (8.39)

The effective viscosity coefficients which enter these shear
wave modes are just those that would be measured by the
technique of Miesowicz: for ¢, = 0, P® involves 7, and
P® involves 73 = as/2, and for g, = 0, P®@ involves 7,
only. The orientational mode has the greater relaxation
rate in this case.
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We have neglected the inertial term I(82/8#2)6n in the
equations of motion (8.25). We must compare lw? with
the elastic restoring force k£¢®>. The moment of inertia I per
unit volume is of order pa? where @ is a molecular dimen-
sion. The ratio of these terms is then

12/ kg =~ pa®w?/ k. (8.40)
For the slow mode in the small u limit this ratio is u(ga)?
and thus always negligible. For the fast mode it is (ga)?/u
and thus becomes important for ga > u'2. However, we
will show below that the light scattering is dominated by
the slow mode so that the neglect of inertia in this context
is satisfactory. The opposite limit of high frequencies has
been investigated by Ericksen (1969), and there the normal
modes have a very different character.

D. Correlation functions

To determine the spectrum of the scattered light, we
require the Fourier transforms (8.8). These can be obtained
from the hydrodynamic equations (8.25) and (8.27).
Consider, for example, the 67., v. mode. It is more con-
venient now to take the Laplace transform in time of these
equations. Thus we define

Sma(s) = /m dt exp(—st) ona (1)
1]

5a(s) = f” dt exp(—st) v (0). (8.41)
0

Then multiplying Eqgs. (8.25) and (8.27) on the left by
et and integrating over ¢ gives the two equations [again
omitting the inertial terms in Eq. (8.25)7]

(y1s + K@) 6n,(s) + 1CD,(s) = v167,(0)
(ps + P@)ve(s) — isQ@éna(s) = pv.(0) — iQ®6m.(0),
(8.42)

where 67.(0) and v,(0) are the initial values of é#, and
v, at £ = 0. Solving these equations for é%.(s), we find

(1150 + NPE = COO) oma(0) — ipC2.(0)

oals) = D@ (s) ’
(8.43)
where
D@ (S) — s2p,},1 _l_ s(pK(x) + ;ylP(ae) — C(:c)Q(x))
+ K@ p@, (8.44)

The calculation of the Laplace transforms of the correlation
functions is now reduced to a determination of equal time
correlation functions. Hence

Y15 + V1P — Co@Qp®
D@ (s)

1.(q,s) = Ia(Q); (8.45)

where o = x, y and I,(¢q) is given by Eq. (8.13). In the
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limit u << 1 we have

Dy (s) = pyi(s + Tsa@) (s + Tra@), (8.46)

where the relaxation rates I' are given in Eq. (8.34). Sub-
stituting Eq. (8.46) in (8.45), we obtain the simple result

1,(q,s) = 1.(q) /(s + Ts@) (8.47)

in which only the slow mode contributes. The Fourier
transform 7,(q, w) is related to the Laplace transform by

I,(q,w) = 2Rel,(q,s = iw)

1a(Q)[2Tsa/ (0? + Tsa?) ]

It

(8.48)

which gives rise to a Lorentzian line shape. The scattered
light in general is the sum of two Lorentzians [Eq. (8.7)7].
It is possible to separate the two modes by arranging that
the polarization of the incident and scattered light is per-
pendicular to x or to y.

We can summarize the results of these calculations on the
light scattering by orientation fluctuations in nematics as
follows. The light scattering is dominated by the slow
modes in which a distorted molecular configuration relaxes
exponentially to equilibrium. In the slow modes the deflec-
tion én of the director is larger than the amplitude of the
velocity fluctuation (én ~ vg/T's), and this is the reason
that the slow modes dominate the light scattering. Measure-
ment of the linewidths of the scattered light gives informa-
tion on the ratio of elastic constants to certain viscosity
coefficients. Measurements of the intensity of light scatter-
ing gives information on the elastic constants.

Measurements on the spectral distribution of light scat-
tered from PAA have been made by the Orsay Liquid
Crystal Group (1969b, 1971a). Using Zwetkoff (1937,
1943) measurements of the -elastic constants, they were
able to determine the viscosity coefficients as, as, s, as, 71,
and v, generally in good agreement with the measurements
of Miesowicz (1946). Forster ef al. (1971) have also made
a comparison between the predictions of the hydrodynamic
theory and the Orsay light scattering data and shown that
the agreement is satisfactory.

The application of a magnetic (or electric) field leads
to a decrease in the intensity [Eq. (8.13) ] and an increase
in the linewidth [Eq. (8.34)] of the Rayleigh scattering.
These effects have been observed by Martinand and Durand
(1972) and used to determine the bend elastic constant.

IX. SHEAR WAVES IN NEMATIC LIQUID
CRYSTALS :

In the previous section we showed that there are two
types of normal modes of nematic liquid crystals. There is
a “‘slow” mode, which is chiefly responsible for the Rayleigh
scattering of light by nematics, and a “fast’” mode, which is
predominantly a shear wave, similar to the shear wave
modes which occur in normal liquids.

The shear wave modes are nonpropagating and damp
out in a short distance; however, they can be observed by
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FIG. 20. Three geometries for shear waves. The arrows give the
direction of the flow velocity v and the half-arrow gives the orientation
of the director n. In each case the z axis is taken parallel ton. (a) The
director is parallel to the flow; (b) the director is parallel to the direc-
tion of propagation of the wave; (c) the director is perpendicular to
both the flow and the direction of propagation.

using a reflectance technique, in which a shear wave in a
solid is reflected from a solid-nematic interface. Measure-
ment of the coefficient of reflection in this experiment gives
an effective viscosity coefficient, and thus provides another
useful way in which some of the viscosity coefficients of
a nematic liquid crystal may be determined. This technique
was first used by Martinoty and Candau (1971) for the
nematic MBBA. They have also considered the relations
between the coefficient of reflection, the effective viscosity
coefficient, and the Ericksen-Leslie viscosity coefficients.

We will consider the three different geometries shown in
Fig. 20 for the propagation of shear waves relative to orien-
tation of the director of the molecules. In (a) the director
n is parallel to the flow velocity; in (b) n is parallel to the
direction of propagation of the shear wave; and in (¢) n
is perpendicular to both the flow velocity and direction of
propagation of the shear wave. In the case where there is a
strong magnetic field applied to the nematic so that the
director is fixed, the effective viscosity coefficients which
determine the shear wave damping in these three geometries
are exactly those defined by Miesowicz (see Sec. VII,B).
When there is no magnetic field, or it is small, the fast
modes are a combination of shear and orientational motions,
and the effective viscosity coefficients are changed.

The shear wave modes are driven by the motion of the
solid surface, which is oscillating with a given frequency
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w. The complex wave vector of the shear wave is found by
solving the dispersion relation (8.31). Making the ap-
proximation that 4 <<1 [Eq. (8.33)], we find that the
propagation constants of the slow and fast modes in the
three geometries of Fig. 20 are (in the absence of an ex-
ternal field)

gSa = (1+ 1) (ﬂa’Ylw/anm)W,

gra = (14 3) (pw/2n4) 12, (9.1)

gsoe = (1 4 2) (mv1eo/ 2ksgma) 112,

grs = (1 + 1) (pw/2ms) 112, (9.2)

gsc = (1 + 1) (‘Ylw/2k22)1/2,

gre = (1 + 1) (pow/as) 12, (9.3)
where

Na = M — (043/2)[1 + (’Yz/’)’l)]

M=+ (/2)[1 — (vo/m) ] (9.4)

In Egs. (9.1)-(9.3) the subscripts .S and F indicate the
slow and:fast modes, respectively, and the subscripts a, b,
or ¢ indicate that the geometry is either that of Fig. 20a,
20b, or 20c. In case (c) the slow mode is purely orientational
and the fast mode is a pure shear wave, as is easily seen by
examining the equations of motion (8.30) for this case. The
effective viscosity coefficients 5, and 7, which determine
the damping of the fast shear wave modes in cases (a) and
(b) are given by Eq. (9.4). Using the two identities v; =
a3 — as, Y2 = a5 — a, it may be shown that 5, = n. This
is a consequence of the fact that the stress tensor can be
written in a symmetric form (see Sec. VI,H). If we choose
the fluid velocity » along « in Fig. 20b, then the equality
L. = lzz 1S equivalent to 5, = .

In the case of a strong magnetic field the director motion
is prevented, and the modes are pure shear wave modes.
The damping constants are given by Eq. (8.39), and the
corresponding propagation constants are given by

gra = (1 4+ 1) (pw/29:) /2,
grm = (1 + 1) (po/2m2) 112,
gre = (14 ) (pw/as) 2. (9.5)

As remarked above, only the principal viscosity coefficients
of Miesowicz 1, 12, and 73 = 3oy enter here. The fast (a)
and (b) modes have different damping constants as we no
longer have the symmetry tz, = t.a.

As discussed in Sec. VII,A, the relation vo ~ —v,; is
approximately obeyed. Physically this corresponds to the
fact that the molecules prefer to lie approximately along
the direction of the flow velocity in shear flow. Under these
circumstances 7,~n;. Thus the damping of the shear
flow modes in cases (a) and (c) is determined almost
entirely by the Miesowicz viscosities 7 and 753: the director
motion is small. On the other hand, in case (b) the director
motion is important, and 7, can be considerably different
from 7. This mode will also be sensitive to the application
of a magnetic field.
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A. Reflection of shear waves at an interface

We consider a shear wave being reflected at normal
incidence to a solid-nematic interface.’® At the surface the
boundary conditions are: .

(i) the tangential components of the velocity must be
continuous;

(i) the tangential stresses on the two sides of the inter-
face must be equal. We consider the cases (a), (b), and
(c) separately.

(a) We suppose that the solid -nematic interface is
the plane « = 0 and that shear waves are incident normally
on the interface from the solid which occupies the region
x < 0. In the solid we have an incident and a reflected
wave. The velocity fields associated with these waves are,
respectively,

Il

A; exp(igr — iwt)

Ve

v, = A, exp(—igx — iwt), (9.6)
where ¢ = (ps/us) /% and u, is the shear modulus in the solid
and p; is the density. In the nematic liquid we have a trans-
mitted wave which in general is a linear combination of the

slow and fast modes,
v, = Ag exp(iqé.,x — iwl) + Arp exp(igrax — iwt). (9.7)
The continuity of the velocity at x = 0 gives
A;+ A, = Ag + Ar. (9.8)

In the solid the stress on the interface in the z direction,
T .., is given by

Too = — (iue/w) (90./0x). (9.9)
From Eq. (9.6)
Tw=2(4;— 4,), (9.10)

where Z is the mechanical impedance of the solid, Z =
(psus) V2. In the liquid from Eq. (6.55) the surface stress is

by = —a3(8/08) 1z — 11(8v./0%). (9.11)

We assume that at the surface the orientation of the mole-
cules is fixed owing to the strong surface forces. Thus in
Eq. (9.11) we take 6%, = 0 and then for Eq. (9.7) atx = 0

tw = —in(gsads + qradr). (9.12)
The equality of the stresses now gives the second condition
Z(Ai —_ Ar) = "‘i?‘]((]saAs + QFaA_F)- (9.13)

From Eqgs. (9.8) and (9.13) the reflection coefficient R is

10 The case of oblique incidence has been considered by Martinoty
and Candau (1971).
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given by

R=4,/4:= (Z — Z,)/(Z+ Z.), (9.14)

where Z,, the mechanical ifnpedance of the nematic, is
given by

[1+ (gsads/qradr)]

e = [14 (4s/4F)]

—imgra (9.15)

The ratio of the amplitudes 4s and Ar is determined by
the equation of motion of the director (8.25). For the
particular geometry of Fig. 20a it becomes

[—iwy: - k11(82/942) Jons + % (v1 + v2) (99,/9x) = 0.
(9.16)

Using the condition that #, = O at the surface and Eq.

(9.7), we find
A ‘ a k110542
As _ q_F. (w’?’l + ’L 1198 2) . (917)
Ap gSa (wy1 + 1k11QFa )

Substituting for ¢s, and gp, from Eq. (9.1), we find
As _ _ (Pnlku)llz[ 1 — (2ne/m) ]
Ap 2v1ma® 1 — (pku/vima) 1"

The prefactor is u/2; thus As/Ar < 1 and it can be ne-
glected in Eq. (9.15). In the same way we find

(9.18)

1+ (gseds/qradr) = 2n4/m. (9.19)

Substituting into Eq. (9.15), we find the mechanical im-

pedance of the nematic is
Zo= (1= 1) (puma/2)"", (9.20)

The resistance R, and the reactance X,, defined by Z, =

R, — iX,, are thus equal. The real and imaginary parts
of the dynamic viscosity are defined by

nal = 2RaXa/p0), ﬂau = (Ra2 - -Xaz) /Pw- (9‘21)
Thus from Eq. (9.20)
o' = 7, 1= 0. (9.22)

In the case of a strong magnetic field 7, is replaced by m
[Eq. (9.5)].

(b) The solid-nematic interface is the plane z = 0.
Proceeding as above, we find that the surface stress in the
nematic is now given by Eq. (6.55) (with 67, = 0)

ty. = —n2(d,/02) ; (9.23)
the mechanical impedance of the nematic is
Zy = (1 —14) (pam/2)'%; (9.24)
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and the real and imaginary parts of the dynamic viscosity
are
77bu = 0.

= 7, (9.25)

In a strong magnetic field ns is replaced by 7.

(c) In this case we only need consider the single shear
mode in the liquid. We take the plane « = 0 to be the solid-
nematic interface. From Eq. (6.55) the surface stress in
the liquid is

tys = — (aa/2) (97,/0%). (9.26)

As above we find the mechanical impedance of the nematic
is

Zo = 5(1 — 1) (pwoes) '1? (9.27)
and the dynamic viscosities are
7t = /2, =0 (9.28)

An applied field has no effect in this case.

B. Discussion of the reflection coefficient

If the mechanical impedance Z of the solid is known, the
mechanical impedance of the nematic at the interface can
be determined from a measurement of the reflection coeffi-
cient R. From Eq. (9.14)

Lo = Z[(l - Ra)/(l + Ra):]a (929)

where « = a, b, or ¢. The complex reflection coefficient can
be written

= | R. | exp(iba) (9.30)

and then

1 — | Ry |* — 2i| Ry | sin 6.
14+ | R, 12+ 2| Ry costy

Zo= 27 (9.31)

In all the cases considered the real and imaginary parts of
Z, are equal, and so

sinf, = (1 — | Ra /2] Ra|. (9.32)

Thus it is only necessary to determine | R, |.

The penetration depths X of the wave into the nematic
are determined by Eqgs. (9.1) through (9.3). In case (b),
for example, these are

Asp = (2k33712/ 77b’wa)” 2

e = (2ms/pw) 12, (9.33)

For w in the range 10-100 MHz, k33 >~ 10~¢ dyn, n=~ 0.1 P,
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and p = 1 g/cm?, we find
1078 cm < Agp < 3.1077 cm
107t cm < Ay < 4.107% cm. (9.34)

The orientation mode is thus attenuated in a very short
distance, several molecular lengths. The shear wave hydro-
dynamic mode propagates about 10~* c¢m into the liquid,
and it may be possible to perform transmission experiments
on thin samples.

As discussed above, for most nematics v.>~ —v, and
then the viscosity coefficient 7, =~ n;. Also in case (c) only
the Miesowicz viscosity 73 = %a4 enters. The most interest-
ing case is (b) where the director motion is important. The
viscosity coefficient #, in this case will differ appreciably
from 5, and will also be sensitive to an applied field.

The viscosity coefficients in cases (a) and (c) have been
measured by Martinoty and Candau (1971) for MBBA.
Far from the phase transition the values obtained by the
shear wave technique and those obtained from conventional
viscometry are in good agreement.

Similar studies have also been made in cholesteric liquid
crystals (Martinoty and Candau, 1972a,b). Propagation
of shear waves in cholesterics has been considered theo-
retically by Brochard (1971). The behavior of the imped-
ance depends on the relative magnitudes of the pitch p and
the penetration depth Ap for shear waves. From Eq. (9.34)
we see that these lengths can be comparable. Brochard
considered the two geometries (a) and (c) above, where
the pitch axis is normal to the solid-liquid crystal interface
and the molecules at the surface are parallel or perpendicu-
lar to the shear wave velocity, respectively. The impedance
depends on the ratio p/Ap: for p K Ap, Z, = Z, and the
impedance is isotropic as it is averaged over many turns
of cholesteric structure; for p >>\p, Z, % Z, and Z, and
Z, are close to their values for nematics. The calculated
pitch dependence of Z, and Z, is in good agreement with
the dependence found experimentally by Martinoty and
Candau if the pitch is not too small.

X. FLUCTUATIONS IN CHOLESTERICS

The spiral structure of a cholesteric alters the nature of
the fluctuations about equilibrium. In an infinite cholesteric
the phase fluctuations diverge (the phase determines the
origin of twist) (Lubensky, 1972a)—but as we shall see,
this has no significance for the laboratory materials. Some
of the modes found in nematics no longer have a hydro-
dynamical character in cholesterics; that is, the damping
is not proportional to g2 The modes of cholesterics have
been investigated by Fan et al. (1970) and Lubensky
(1972b).

We choose the axis of the cholesteric to be the z axis of a
Cartesian coordinate system. In equilibrium the directors
n, of the molecules lie in planes normal to this axis and have
the form

Mor = COShg, Moy = SiNgh, o = lo3. (10.1)

The arbitrary phase has been chosen so that n, is along
the x axis at z = 0.
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A. Fluctuations of the director

We can describe the fluctuations of the director by writing
it in the form

n = ny + én, (10.2)
where 6n represents the small fluctuations. The condition
that n is a unit vector requires ng-én = 0, and is auto-
matically satisfied by

ony = —¢ singy, on, = ¢ COSey. (10.3)
Physically ¢ corresponds to the fluctuations in the phase
of the twisted cholesteric. The other independent com-
ponent, 6%., represents a tilting of the cholesteric axis and
is a combination of splay and bend.

We assume, for simplicity, that k1 = ks = k, and intro-
duce Egs. (10.1)-(10.3) in the Oseen—Frank elastic energy
equation (3.16). Retaining only terms quadratic in the
small fluctuations, the elastic energy is

AG = lk/ dr[ (V)2 + 4tedn.[ cospo(dp/dx)
: v

+ singo(9¢/y) ]+ t2dn.2 + (Vén,)Z], (10.4)

where surface energies have been neglected. This quadratic
form can be partially diagonalized by introducing

w = 0n, + ty'[cosgy(d¢/dx) + singo(de/dy) ]. (10.5)

Substituting in Eq. (10.4), we find

AG = ik [ dritw? + (Vw)? + (d¢/32)2
+ 4(8¢/0z) [singo(dw/dx) — coseo(dw/dy) ]

+--- }7 (106)
where terms involving higher-order derivatives have been
omitted temporarily. This form indicates that fluctuations
for which w = 0 have a restoring force proportional to
g.? for wave vectors along the z axis. For wave vector gu,
perpendicular to the pitch axis, the restoring force is propor-
tional to a higher power of g+ than g2 To investigate
further the long wavelength fluctuations (with wavelength
greater than the pitch), we assume w and ¢ in Eq. (10.6)
vary slowly compared with the pitch. We may then average
Eq. (10.6) over many pitch lengths and, now including
terms involving higher derivatives, we find

2
(AG)oy = 3k f dr [zmﬂ + (Vw)? + (a—‘ﬁ)
v 9z
?_22)
+ 3y
¢

_ 62¢2
+ 3o 2(6x2+5;—2)]'

Introducing Fourier transforms gives us
(AG)ay = 3k 22 { (8@ + @) | wq [
qQ
+ [ + 347 (¢ 02> + ¢+*) ]| ¢a [}
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The mean square fluctuations in wq and ¢, are then
kT
k(e + ¢*)
2k T
k(20°q2 + ¢:2q1* + qu*)

(wq ) = I.(q) (10.9)

(¢al?) =Is(q) = (10.10)

Equation (10.9) shows that fluctuations in wq, and hence
0#.q, do not diverge as ¢— 0. This indicates that this
variable is not a hydrodynamic variable (it is also shown
below that the relaxation frequency for fluctuations in
6n.q does not vanish as ¢— 0). On the other hand, the
fluctuations in the phase ¢4 do diverge as ¢ — 0 and in the
case ¢. = 0 behave as g1~*. This has the consequence that
the mean square fluctuations in ¢ diverge for an infinite
cholesteric. It also has the consequence that the phase of a
cholesteric is not correlated over arbitrarily large distances
so that the pitch of a cholesteric is not a true order param-
eter. The arguments are very similar to those used by
Landau and Lifshitz (1958, Chap. 13) to show that an
extended three-dimensional body with crystalline order in
one direction cannot exist. The correlation function for
the phase is exp[ —®(7) ] where

®(r) = 3((¢(r) — ¢(0))*)

3(2m)7* [ dq[1 — exp(iq-1) I{| ¢ba [*)-

It

(10.11)

This function has been evaluated by Lubensky (1972a). In
the interesting case when r is along the z axis, we have

®(z) = (kpTt/4V2rk) log(2g.2/V2t), (10.12)
where ¢ is the maximum wave vector for fluctuations for
which Eq. (10.10) applies (gm ~ f,). This function diverges
as z— oo indicating the absence of true long-range order
in the phase angle ¢. Using 7" = 300°K, #, = 3 X 10° cm™,
and £ = 107% dyn, we have ®(z) ~ 102 logz#, which shows
that distance at which correlations become small is ex-
tremely large. The presence of boundaries or a magnetic
field perpendicular to the axis has the effect of stabilizing
the structure. These arguments are thus not relevant to
samples used in the laboratory.

B. Light scattering from cholesterics

The differential scattering cross section for light is given
by Egs. (8.5) and (8.6). We again assume that the fluctua-
tions in the dielectric constant arise from the director
fluctuations and are given by Eq. (8.3). From Egs. (10.1)
and (10.3) the fluctuations in the dielectric constant are
given by

0e = P1-6e-Po

= el (Po'Mo)z+ (Mo X P1) + (P1+Mo)z- (o X Po) Job
+ e[ (Porno) (p1+2) + (p1-my) (Po-z) Jom,.  (10.13)
Note that ée depends on position both through the fluctua-

tions ¢ and &z, and n,. The correlation function for the
dielectric fluctuations in Eq. (8.6) can now be expressed
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in terms of the correlation functions for the director fluctua-
tions defined by

I¢(r7 t) =
I.(r, 1)

(¢(r,1)¢(0,0) )
(6n(x, 1) 6n,(0,0) ).

Il

(10.14)

The differential scattering cross section is again given by
Eq. (8.5) with

1(q, ) = A[L(q + 2to, @) + 15(q — 2to, ) ]

+ B[T.(q + to,w) + I.(q — to,w) ] (10.15)
where
4 = je(po + po®) (pra* + pu?)
B = ifa‘z[(POxPlz + Pl:cPOz)z + (P()yp]z + PlyPOz)zj,
(10.16)

to is a vector of magnitude #, along the twist axis, and we
have introduced the Fourier transforms of the correlation
functions (10.14). In evaluating Eq. (10.15), we have
supposed that the dimensions of the scattering region in
the cholesteric are much larger than the pitch 2w/#. Terms
which vary like exp[==if(2% + 2)] have been neg]ected
because they average to zero.

The total intensity of the scattered light is obtained by
integrating Eq. (10.15) over all frequencies and is pro-
portional to

I(q) = A[I,(q+ 2to) 4+ I,(q — 2to)]

+ BlL.(q+ t) + 1.(q — to) ] (10.17)
where the correlation functions are given by Egs. (10.9)
and (10.10). The scattering of light by the phase fluctua-
tions diverges at q = =42t,, i.e., at exactly those wave
vector transfers which lead to first-order Bragg scattering.
The light scattering by the splay bend mode is a maximum
for @ = ==t;, but does not diverge. Only the first order of
Bragg scattering enters Eq. (10.17) because we have not
considered multiple scattering of the light, i.e., we have
stopped at the first Born approximation. This is valid
provided e, is small." The results (10.17) were first given
by Pincus (1969c¢) in the special case where q is along the
pitch axis.

It should be noted that the results of this section are for
the case of a perfect cholesteric containing many twists. The
wave vector transfer along the pitch axis ¢, is assumed less
than or comparable with #. A cholesteric of very long pitch,
i.e., ¢. > fp will essentially behave as a nematic.

C. Dynamics of the fluctuations

The dynamics of the fluctuations are described by the
linearized hydrodynamic equations for the coupled motion
of the director and the fluid velocity. We will again make
use of the Ericksen-Leslie hydrodynamic equations of Sec.
VI. A different set of hydrodynamic equations for choles-
terics has been given by Lubensky (1972b). The orienta-
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tional modes of hydrodynamical character (which are of
greatest interest in light scattering) are almost identical
in the two versions of the hydrodynamics. We will assume
that the cholesteric is incompressible and ignore any tem-
perature fluctuations. '

In the special case where the wave vector of the fluctua-
tion is along the pitch axis, the linearized hydrodynamic
equations are particularly simple. The linearized director
Eq. (8.14) for the phase fluctuations is (neglecting inertial
terms)

[71(8/8t) + ko (8%/322) Jop = O (10.18)

and is not coupled with the fluid velocity. This mode is
analogous to the én, mode (Eq. 8.25) in nematics. From
Eq. (10.18) the phase fluctuations of wave vector g- are
damped with a damping constant

bq = kaogq/v1. (10.19)
The case where the wave vector ¢ is perpendicular to the
twist axis has been investigated by Lubensky (1972b) and
an overdamped mode very similar to Eq. (10.19) was found.
The correlation function in Eq. (10.15) for either mode is
given by

I4(q, @) = [2Tyq/ (* + Tyg?) JI4(q). (10.20)
In the light scattering this function is evaluated at q + 2t,,
and thus the linewidth remains finite as ¢ — 0.

The 67, mode has been investigated by Fan ef al. (1970)
for ¢ along the pitch axis. They showed that this mode is
overdamped with a damping constant

(kaste® + k11g.?) (e + g + Ole)
Yiloy + as) — va0s

Iy = (10.21)

This mode is not strictly a hydrodynamic mode as T',, does
not vanish as ¢ — 0.

Rapidly damped shear wave modes also exist in choles-
terics and have been investigated by Fan et al. (1970),
Lubensky (1972b), and Brochard (1971), and have a
similar character to those in nematics. Shear wave re-
flectance measurements on cholesterics have been made by
Martinoty and Candau (1972a,b).

XI. SURFACE WAVES ON NEMATICS

The surface (or capillary) waves on nematics provide a
further application of the hydrodynamic equations of Sec.
VI. These waves have been observed by Langevin (1972)
in PAA and MBBA by light scattering from the free sur-
face. The spectral distribution of the scattered light gives
information on the surface tension and viscosity coefficients.
The dispersion relation for surface waves in nematics has
been determined from the hydrodynamic equations by
Papoular (1969a), Papoular and Rapini (1969), and by
Langevin and Bouchiat (1972). The form of this dispersion
relation depends on (a) the boundary conditions at the
surface; (b) the orientation of the molecules at the surface.
We will assume that the surface is a free surface, i.e., nematic
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liquid-vapor. The orientation of the molecules in PAA and
MBBA at a free surface has been investigated, using light
reflection techniques, by Bouchiat and Langevin-Cruchon
- (1971). They found that in PAA the preferred direction
of the molecules lies in the plane of the surface, while in
MBBA the preferred direction makes an angle ~ 15° to
the normal to the surface and is temperature-dependent.

In the case of surface waves in nematics we will assume
that the forces which determine the orientation of the
molecules at the surface are strong and even when the
surface is distorted by the wave, the director makes a fixed
angle with the normal to the surface. In this case.it has been
shown by Langevin and Bouchiat (1972) that the disper-
sion relation for surface waves on nematics is very similar
to that for surface waves on normal liquids. The effective
viscosity coefficient entering this relation depends on the
angle between the wave vector q of the surface wave and
n,;, the projection of the director on the surface. The orien-
tation of the director is generally determined by the applied
magnetic field H assumed to be parallel to the surface.

- Owing to the similarity between surface waves on normal
liquids and nematics, we first briefly discuss surface waves
on normal liquids (Landau and Lifshitz, 1959, Chap. 7).

A. Surface waves on normal liquids

The equation of motion of the liquid (assumed incom-
pressible) is given by the Navier—Stokes equation

p(a‘l)i/al) -+ VjT,'j =0 (111)
where the stress tensor is
Ty = Pby — n(9vs/dx; + 9v;/0%;), (11.2)

where P is the pressure and 7 is the shear viscosity coeffi-
cient. We neglect the effects of gravity which are only
important at very long wavelengths. The liquid occupies
the half-space 2 < 0 with the undisturbed surface the plane
z = 0. We require a solution of Eq. (11.1) which vanishes
as 2 — — o and satisfies the boundary condition that the
surface stresses vanish at the free surface

Tijb; — Pob; = o[ (R1)™' 4 (Rx)™']bs, (11.3)

where b is a unit vector normal to the surface, P, is the
external pressure, o is the surface tension coefficient, and
R; and R, are the principal radii of curvature of the surface.
For small vertical displacements {(x, ¥) of the surface

(R)T 4 (Ro)™t = —(8%/8a% + 82/9y1) ¢ (w, 9).  (11.4)
The solution of Eq. (11.1) takes the form
§(x,9) = ¢ exp(igr — iwt),

7. = v,(2) exp(igx — dwt),

v, = v,(2) exp(igx — iwt),

P = Py+ Pi(3) exp(igx — iwt), (11.5)

assuming that the surface wave propagates in the x direc-
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tion. With this geometry no surface wave involving v, is
possible. By substituting Eq. (11.5) in (11.1) and using the
condition that the liquid is incompressible

ique + v,/ = 0 (11.6)
we obtain
(—iwp + n¢®) ve — nv.” 4 igPy = 0
(—iwp + ng®)v, — 9./’ 4+ Py = 0, (11.7)

where a prime indicates differentiation with respect to z.
The solution of these equations may be taken in the form

2.(2) = A, exp(ms),
v,(2) = A.exp(mz),
Pyi(z) = Piexp(mz). (11.8)

Substituting Eq. (11.8) in (11.6) and (11.7) we obtain

iqds +mA, =0
(—dwp + n(g? — m?)) Az + ig Py
(—iwp 4+ n(g? — m®))A, + mP, = 0.

Il

(1‘1.9),

The allowed values of m are determined by setting the
determinant of the coefficients of Eq. (11.9) equal to zero.
This gives

(—twp + n(g® — m?)) (¢ — m*) =0 (11.10)
which has the two solutions
my = (g* — iwp/n) 2 (11.11)

m = g,

The solution with Re m > 0 is always to be taken, in order
to satisfy the boundary condition at 2 = — . The fluid
velocity and pressure in the bulk of the liquid are

%:(2) = A1 exp(gz) + Az exp(mes),
v:(2) = —i[Asexp(gz) + (g/mz) As exp(maz) ],
Pi(z) = (wp/q) A1 exp(gz). (11.12)

The coefficients 4; and A4, are to be chosen to satisfy
the boundary condition (11.3). Substituting Eq. (11.12)
in (11.3) we obtain

(wp + 2ing®) A1 + 2ing®ds = o¢’¢
2gmeA; + (@ + ma?) As = 0. (11.13)

There is a further consistency condition v,(z = 0) = 4{/d¢
which can be written

These equations lead to the dispersion relation

Do(w) = 0
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where
Dy(w) = 0¢’/p — (@ + 2ing®/p)* — 4nPmag’/p*.  (11.15)

The solution of Eq. (11.15) depends on the magnitude of
the dimensionless quantity op/7%g.

(1) g < op/n%. For long wavelengths and small viscosity,
the solutions of Eq. (11.15) are approximately

w = x(a/p)"?¢"% — (2ing*/p) (11.16)

and correspond to propagating waves.

(ii) ¢ > op/n*. For short wavelengths and large vis-
cosity, there are two solutions of Eq. (11.15), ws and wr,
corresponding to slowly and rapidly damped waves:

ws —i(aq/n)

wr = —i(ng*/p)c, (11.17)
where ¢ = 0.91262...is a solution of [1— (¢/2) =
(1 — ¢)¥2. The rapidly damped wave is analogous to a
shear wave in the bulk liquid.

The spectral intensity of the mean square fluctuations of
the surface have been given by Bouchiat and Meunier
(1971):

P(w) = (kgTq/mwp) ImDy(w) .’ k11.18)

The spectral intensity of the scattered light is proportional
to P(w).

B. Surface waves on nematics

The discussion of surface waves on nematics follows the
same general lines as in normal liquids. An additional feature
is provided by the coupling between orientational fluctua-
tions and the fluid velocity. As above, the nematic occupies
the half-space z < 0, and the unperturbed free surface of
the nematic is the plane z = 0. The equations of motion
of the fluid (assumed incompressible) are (see Sec. VI.A)

p((’)vi/(')t) + (B/E)x]) (tij + T@'j) =0 (1119)

fit+ £+ (8/0%x,)I; = 0, (11.20)
where nonlinear terms have been neglected and the stress
tensor #; is given by Eq. (6.11). Equation (11.20) is the
director equation, I1;; and f; darise from the elastic restoring
forces and applied field, and f,’ is given by Eq. (6.14). The
boundary conditions at the free surface are the same as for
Eq. (11.3):

t,:jbj — Pob; = U[(Rl)_l + (Rz)—ljbi. (1121)
The surface tension o is necessarily the same in all direc-
tions, i.e., the orientation of the director does not affect the
surface stress. The simplest situation is where the director
in the unpetturbed state n, lies in the free surface and
parallel to an applied field H (as in the case of PAA). We
consider the two special cases below: (a) q L ng, (b) q || ny,
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where ¢ is the wave vector of the surface wave. The case
where the director makes an angle with the surface (e.g.,
MBBA) is considered in (c).

(a) q L no. The surface wave propagates perpendicular
to np which lies in the surface. From symmetry there is no
coupling between the director and the fluid velocity. The
dispersion relation and spectral intensity of the surface
waves are given by Eqs. (11.15) and (11.18), respectively,
with the viscosity coefficient 5 replaced by 3as.

(b) q || no. The surface wave propagates parallel to the
unperturbed director which lies in the surface. The solution
of Egs. (11.19) and (11.20) can be taken in the form (11.5)
together with

n. = n.(2) exp(igx — iwil), (11.22)

where 7, is the small displacement of the director in the
% direction. From Eq. (6:11) the components of the stress
tensor required are

Tzz + lew = P — (al + a4 + as + aﬁ)d.z:m,

Tzz + tzz =P — (X4d5;.;

T + o = -'OlgNz - (C!4 -+ aﬁ)llzg’

Tie+ tie = —aoN, — (s + a5)dy.. (11.23)

Substituting Eq. (11.23) in (11.19), we obtain the equa-
tions for the fluid velocity

(—dwp + ¢ (s + as+ a5 + a6) ) vz — 3 (s + s+ ag) v’
—3q(os + as — a)v. + igP1 + dwazn,’ = 0 (11.24)
[—iwp + 3¢ (s + a5 — ) v, — o,

—(4/2)g(as + a5 + a)v’ + Py — wgagn, = 0.
The equation for the director (11.20) is

(_“7:‘-"71 + k33q2 - k11(32/<922) + XaHz) L7

=/ g(v1 — v2)v.+ 30’ (nm+ 7)) =0. . (11.25)
This equation can be simplified as the elastic terms and
magnetic field terms are small. For £ = 10~% dyn, x, =
1077, H = 3000 G, and ¢~ 300 cm™, we have kg®~ 10!
cgs and x.H?~~1 cgs. These are to be compared with
wy1 where v; >~ 0.1 poise and w is the frequency shift which
may be several MHz. With neglect of these terms Eq.
(11.25) becomes

—idwyin: — (/2)g(vi — v2)v. + F(v1 4+ 7v2) 2’ = 0.
(11.26)

This approximation has the following consequence. The
boundary condition f,, = 0 gives
a3Nz + (a4 + aﬁ) dzz = 0,

2=0. (11.27)

From Eq. (11.26) evaluated at 2 = 0, we thea find
(dzcr) 2=0 — 07

(N.) om0 = O. (11.28)
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The first boundary condition is the same as in a normal
fluid. The second requires that the molecules at the surface
always remain parallel to the surface.

Equations (11.24) are simplified by using (11.26) to
eliminate 7, and the condition V-v = O:

[—iwp + @(ns’ + 3’ — 202") Joo — mi'v”" + igPr = O
(—iwp 4+ ¢@m)v. — 29" — m')v.) + P/ = 0. (11.29)
Apart from the different viscosity coefficients, these equa-

tions are of exactly the same form as Eq. (11.7) for a normal
fluid. The viscosity coefficients entering Eq. (11.29) are

2771’ = a4+ ag — Ols("/z/71), 2772/ = oy

78’ + 4m’ = on + 204 + a5 + as. (11.30)

This is the notation of Langevin and Bouchiat (1972)' and -

differs from Miesowicz (Table I). The solution of Eq.
(11.29) is taken in the form (11.8) and it is found that the
solutions for m are

2m'ma? = (nd + 2n) ¢* — iwp
2

[ (s + 4m'ns’) — 2dwpns’'@? — w?p? V2

(11.31)
The dispersion relation for the surface modes is
Du(w) =0 (11.32)
with ‘
Dy(w) = og*(m? — m?)

— pw2[<m22 _,_ q2) ml—l — (M12 + ql)m2~1]
— tom’ (m? + @) (m2 4 @) [(m) ™ — (m2) 7],
(11.33)

The solutions of Eq. (11.32) again depend on the quéntity
ap/n’q where 7 is a typical viscosity coefficient. For typical
values of the parameters, op/7* ~ 10* cm™.

(1) ¢g< op/n%. The solutions of Eq. (11.32) correspond
to propagating waves with

w = =£(0/p)1P¢"* — (2ig’/p) (m + 3u5"). (11.34)

(i) ¢ > op/7* As in the case of a normal liquid, we
obtain a slowly damped and rapidly damped wave. For the
slowly damped wave, the solutions of Eq. (11.31) are
approximately

my = q[1 + n5/2m" == (ns/m’ + ns'?/4m/2) V2 ]2,
2
(11.35)

From Eq. (11.33), neglecting the second term, for the

slowly damped wave
@ (ml + m2)
7]1' m1m2(1 + mlz) (1 + m22> )

(11.36)

wg = —
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FIG. 21. The free surface in a per-
pendicular field. The director lies paral-
lel to the free surface but reorients to
be parallel to the field in a distance &.

Tl
-
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The solution for the rapidly damped wave is of the form

wr = —(in/'¢%/p)c, (11.37)

where ¢ is a constant.

It should be noted that the dispersion relation has the
particular solution #; = m.. It has been shown by Lan gevin
and Bouchiat (1972) that for the special value of the fre-
quency satisfying this relation, no special feature appears
in the light scattering spectrum.

The spectral intensity of the scattered light is given by

Pn(w) = (kBT/mu) Im[(mf - mlz)/Dn(w)]. (1138)

(c) We briefly consider situations where the director
makes an angle with the free surface. Langevin and Bouchiat
(1972) have considered the case where the director lies
parallel to the free surface and a field H is applied per-
pendicular to the surface (see Fig. 21). When ¢ <1,
where ¢ is the magnetic coherence length, the spectrum of
surface waves reduces to Eq. (11.38), i.e., case (b), q || no.
If g¢ < 0.1, the spectrum of surface waves may be shown
to be equivalent to that of a nematic with q || ny and covered
with a film of thickness ¢ and a viscosity coefficient depend-
ing on 7y, 7', and 73" of Eq. (11.30).

In the case where the director n, makes an angle with
the surface and ¢&¢ < 0.1 the spectrum of surface waves
in a vertical field or a horizontal field H || q is that of case
(b) and in a horizontal field H 1. q is that of case (a)
above.

In summary the spectrum of surface waves in nematics
gives information on the surface tension ¢ and a; when
H | q and on o and " + §75’ when H||q in the interesting
case of small viscosities.

The light scattered from a free surface of two liquid
crystals, PAA and MBBA, has been observed by Langevin
(1972). In PAA where the director lies in the surface the
viscosity is small and the spectrum can be analyzed in
terms of Eq. (11.34). No anisotropy in the spectrum was
observed for H 1 q and H || q. The surface tension and
viscosity coefficients deduced . from the measurements at
122°C were o = 38 &= 4 dyn/cm and 7’ = m’ + /8 =
0.036 &= 0.004 P. From Table I 5.’ = 73, and this value is
in good agreement with that of Miesowicz (Table II).

In MBBA the director makes an angle of 75° with the
surface and the viscosity is much greater than PAA. This
makes the analysis of the spectrum more difficult and we
refer the reader to the paper of Langevin (1972) for details.
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Xil. SOUND PROPAGATION

There have been a number of recent experimental studies
on the velocity and absorption of sound in the liquid crystal
MBBA (Martinoty and Candau, 1970; Lord and Labes,
1970; Mullen et al., 1972; Wetsel et al., 1972; Natale and
Commins, 1972; Eden et al., 1973), and in PAA (Kemp
and Letcher, 1971). Earlier work on the ultrasonic prop-
erties of liquid crystals has been reviewed by Edmonds and
Orr (1966). The velocity of sound s is of the same order
(~10° cm/sec) as found in ordinary liquids. The experi-
ments of Mullen ef al. (1972) on MBBA oriented in a
magnetic field show that in the frequency range 2-10 MHz
there is a small anisotropy in the sound velocity. They found
s|} — s+~ 1073 where 5|} and s1 are the sound velocities
for propagation parallel ahd perpendicular to the director.
The absorption of sound is very anisotropic and strongly
temperature-dependent (Lord and Labes, 1970; Natale
and Commins, 1972). Eden et al. (1973) have studied the
velocity and absorption of sound in MBBA over a wide
range of temperatures and frequencies. For 77K T, in
the nematic phase the dispersion in the velocity and absorp-
tion can be well described by a single relaxation process. In
the vicinity of the transition the properties of MBBA are
characteristic of a multiply relaxing fluid. The sound velocity
shows a pronounced minimum and the absorption a maxi-
mum for T~ T.. )

There have been a number of theoretical studies of the
dispersion in the velocity and absorption of sound in liquid
crystals. Hoyer and Nolle (1956) have interpreted the
pretransitional effects in the sound velocity and absorption
in terms of the Frenkel concept of heterophase fluctuations.
Edmonds and Orr (1966) have discussed the sound dis-
persion and absorption by use of an analogy with the
behavior of normal liquids in the vicinity of a critical point.
A more quantitative discussion has recently been given
by Imura and Okano (1973b). The temperature dependence
of the sound velocity has been discussed by Kapustin and
Mart’yanova (1971) using the Maier—Saupe theory. The
hydrodynamic equations for liquid crystals have recently
been generalized by Jihnig (1973a) to include a frequency
dependence of the elastic and dissipative parameters arising
from slowly relaxing internal processes. The equations
have been used to discuss the dispersion in the velocity
and absorption of sound.

A. Sound velocity

The experimental observation of the anisotropy in the
sound velocity in MBBA indicates that at the frequencies
used (2-10 MHz) the liquid crystal has some of the prop-
erties of an anisotropic solid, in that the compressibility
is different parallel and perpendicular to the director.
According to our present ideas about the structure of liquid
crystals they should behave as liquids at sufficiently low
frequencies, and the compressibility should be isotropic.
The observed anisotropy is probably the result of a slow
relaxation process in the liquid crystal. The observations of
Mullen et al. (1972) indicate a relaxation time of approxi-
mately 1078 sec. Jihnig (1973b) has suggested that this
relaxation process is associated with the flexibility of the
hydrocarbon chains. We note that the relaxation time for
an orientational fluctuation of wave vector ¢ is of order
kq?/n (see Sec. VIII, C), where k is an elastic constant and
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n is a viscosity coefficient. Using & = 10~% dyn, n = 0.1 P
and s-= 10° cm/sec, we see that for all experimentally
attainable wave vectors sq > kg?/n. This indicates that the
director does not relax appreciably during a period of oscilla-
tion of the sound wave.

The experimental results on the sound velocity anisotropy
can be interpreted in terms of the elastic properties of a
simple model. At these frequencies a liquid crystal in some
respects behaves like a solid, and the elastic free energy
density contains terms like

Fel = %Cll(ux:z + uyy)2 + C13uzz(ua:a: + uyy) + %C33u222
‘ (12.1)

when the C,; are elastic constants and the u,; are elastic
strains. The director has been chosen to be along the z axis.
This elastic energy density is similar to that for a uniaxial
solid except all terms relating to shears have been set equal
to zero. The additional relation Ci2 = C;;Cs3 eliminates
propagating shear wave modes. The ratio of the compressi-
bilities parallel and perpendicular to the director is Cy1/Css
and the sound velocity is given by

s = p_ll:Cn + (C:;a - Cu) COSZBJ, (12.2)

where 0 is the angle between q and the director. This angular
dependence is consistent with the observations of Mullen
et al. (1972) and the sound speed anisotropy

S| — S1 3[(Css) 12 — (Cpy)V2]
A= =
N -+ 251 (C33)1/2 + Z(Cu)l/z (123)

is of order 10~%. A single relaxation time approximation
for the frequency dependence of the anisotropy gives

Cyu(w) — Culw) = const wr2(1 + wir2)~L (12.4)

The observed frequency dependence of the velocity ani-
sotropy was closer to linear than that given by Eq. (12.4).
The relaxation time 7, was estimated to be ~10-8 sec.

In cholesterics a small anisotropy in the sound velocity,
independent of frequency, has been calculated by Lubensky
(1972b). The velocity was found to be slightly higher
along the pitch axis and the anisotropy A = FEyt?/2ps%. For
kyy = 1075 dyn, f{, = 10° cm™!, and s = 10° cm sec™, we
have A = 107%. This effect is probably too small to be
measured and would be masked by relaxation effects. The
possible existence of a slow structural relaxation process in
cholesterics has been pointed out by Papoular (1970). He
estimated that the time 7,, for the pitch to relax to its
equilibrium value is 75,71 = kooli?/n, where 7 is a viscosity
coefficient. Using the above values and # = 0.1 P, 7, ~
10~° sec. This relaxation process could couple with the
sound wave through the pressure dependence of 4 and
would lead to a dispersion in the sound velocity in the range
wTsp ~ 1 of the same form as Eq. (12.4). The sound at-
tenuation would show a dispersion proportional to wrs, (1 +
WTsp?) L

The sound velocity shows a pronounced minimum as
T, is approached. This can be understood qualitatively as
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arising from the increase in the specific heat as the transition
is approached (Kapustin and Mart’yanova, 1971). We
write the free energy density as the sum of two parts

F = Fit Fo(T — To), (12.5)

where F; is the free energy density of the isotropic phase
and F, is the contribution of the ordering and is assumed to
depend on I" — T'.** where I'.** is the superheating critical
temperature. Then, neglecting for simplicity the difference
between the adiabatic and isothermal sound velocities, we
have approximately

s2 = p(82F;/0p?) + p(82°F/0T?) (8T .**/dp)?

st — PC(aTc**/ap)z/T:

(12.6)

where s; is the sound velocity in the isotropic phase, and
C is the specific heat. The increase in C leads to a decrease
in the sound velocity as T is approached, in qualitative
agreement with the observations of Mullen ef al. (1972)
and Eden ef al. (1973).

B. Absorption of sound

The sound absorption can be related to the viscosity
coefficients discussed in Sec. VI. The simplest discussion is
based on the entropy production function R [Eq. (6.13)].
As discussed in the previous section we may assume that
the director relaxes so slowly relative to this period of
oscillation of the sound wave that the terms involving n
can be neglected. For longitudinal sound propagating in
the z direction (not necessarily parallel to the director)
from the equation of continuity

podz. = —Ap/dt = pyw sin(wt — ¢z), (12.7)

where p, is the amplitude of the density fluctuation. All
other components of d;; vanish. The rate of entropy pro-
duction (loss of energy from the wave) is

TR = —d.itee = (0% po?) w0 sin?(wt — qz)u(6), (12.8)
where
w(0) = py + w4 (po+ ps 4 ps 4 o) 2 + pant (12.9)

and the u; are the viscosity coefficients defined in Eq.
(6.50). The sound attenuation constant « is the fractional
loss in amplitude per unit length. This is § the ratio of the
average energy loss TR to the energy transport E =
3(p*/po*) s°. Thus

a(0) = 3(w*/pos*)u(6). (12.10)

The anisotropy of the sound attenuation has been measured
in MBBA by Lord and Labes (1970), Wetsel et al. (1972),
and Natale and Commins (1972), and in PAA and p-azoxy-
"phenetole (PAP) by Kemp and Letcher (1971). From the
angular dependence the latter authors were able to obtain
values for some viscosity coefficients in PAA and PAP. In
MBBA the anisotropy in the absorption varied approxi-

Rev. Mod. Phys., Vol. 46, No. 4, October 1974

M. J. Stephen and J. P. Straley: Physics of liquid crystals -

mately linearly with the frequency in the range 2-6 MHz
while in PAA the absorption was frequency-independent
in the range 5-18 MHz.

C. Dispersion

We consider in this section the effect of a relatively slow
internal relaxation process (with time scale comparable to
the ultrasound period) on the velocity and absorption of
sound. The hydrodynamics of liquid crystals has been
generalized by Jidhnig (1973) to include a frequency de-
pendence of the elastic and dissipative parameters. The
treatment of Jihnig is based on the general theory of Rytov
(1958, 1970). A simple discussion is contained in Landau
and Lifshitz (1959, Chap. 8).

In the presence of a slow internal relaxation process for
a parameter (for example, the order parameter S), the
assumption that local thermodynamic equilibrium is estab-
lished in a time short compared to the period of the sound
wave is not justified. In the simplest case it is assumed that
the internal parameter is governed by an equation

3S/dt = —7r71(S — Sy). (12.11)
We have chosen the order parameter as an example of an
internal parameter, and 7 is the relaxation time for .S to
relax to its equilibrium value So. Assuming S’ = S — .S,
has the time dependence exp(—iwt), we have

(1 — dwr)S" = (8.S0/3p) 0, (12.12)
where p’ is the density fluctuation produced by the sound

wave. The pressure fluctuation may be shown to be (Landau
and Lifshitz, 1959)

P’ = s + (80® — 5) [por/ (1 — twr) ]V -v, (12.13)
where
$o2 = (0P/0p) eq, So2 = (0P/dp)s. (12.14)

The sound velocities sy and s, apply in the two cases (a)
wr <1, (b) wr > 1. In (a) the order parameter relaxes
to its local equilibrium value in a time short compared
with the period of the sound wave, while in (b) the fre-
quency of the sound is so high that the order parameter
does not relax. From Eq. (12.13) we see that there is an
additional contribution to the bulk viscosity of

§ = pr(se® — 500 /(1 — dwr) (12.15)
which depends on the frequency. Neglecting all other dis-
sipative processes, the dispersion relation for a sound wave
of frequency w and wave vector ¢ is

/@ = s¥ + (s0® — s2) [iwr/ (1 — dwr)]. (12.16)
solving for ¢ we obtain

g = (w/s0) + (11/258) (s> — s%), wr <1

g = (0/50) + i[(se2 — 5 /2755°],  wr>1. (12.17)
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When wr < 1, the attenuation is proportional to the square
of the frequency, and the sound velocity is so. In the oppo-

site case of high frequencies, wr > 1, the sound velocity -

is s», and the attenuation is independent of frequency. The
attenuation has a maximum at the frequency given by
oT = (So/s0) 2

The dispersion in the sound velocity and absorption have
been studied in MBBA by Eden ef al. (1973). For T <K T,
the dispersion is well described by a single relaxation time
7~ 1078 sec. The relaxation time and the strength s,2 —
so? increase substantially as T, is approached. In the vicinity
of T, the acoustic properties are complex and characteristic
of a multiply relaxing fluid.

XIll. APPLICATIONS OF MOLECULAR FIELD
THEORY

The molecular field description of the nematic-isotropic
or cholesteric-isotropic transition was developed in Sec.
II. We now consider some applications of this theory to
phenomena in liquid crystals at temperatures close to the
transition temperature 7,. A number of pretransitional
effects connected with fluctuations in the order parameter
Sa«s can be observed just above 7. These pretransitional
or short-range order effects have been discussed by de
Gennes (1969a, 1971a).

A. Magnetic birefringence

Above T, the order parameter is small and in the presence
of a uniform field the free energy density [Eq. (2.1)] is
2A4SupSas — 3XaH HsSap

§— &= (13.1)

where summation over repeated indices is implied.

We have omitted the cubic and quartic terms in Eq.
(2.1) because they are small. The equilibrium value of the
order parameter is determined by minimizing Eq. (13.1)
with respect to S,z subject to the condition that S.s have
vanishing trace. This condition is relaxed by means of a
Lagrange multiplier v; thus

ASep — xXaHoHg + v8ag = 0. (13.2)
The condition S,, = 0 gives v = 3x.H? and then
Sap = (xa/ A) (HoHpg — 5H?50p) . (13.3)

It has been shown by de Gennes (1971a) that any tensor
property with the same symmetry as S will be propor-
tional to Sag if S,s is small. Thus the dielectric anisotropy
can be written

beap = (Mxa/A) (HoHg — 5H?80p), (13.4)
where M is a constant of proportionality. We denote by
n;; and n. the refractive indices for a light wave polarized
parallel and perpendicular to the magnetic field. From
Eq. (13.4)

1’LH2 — ni? = MXEH2/A

= a(T)H2. (13.5)
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Since M and x, are not expected to behave anomalously at
T* this predicts that «(7) ~ (T — T*)~'. Thus o™!
should extrapolate to zero at T* (but the interval beyond
T, cannot be observed), and vary linearly with temperature
above T, [in principle, «(7) could have a slightly stronger
nonanalytic singularity at 7%, as occurs with conventional
critical phenomena. Since the critical region is hidden from
us, it is probably fruitless to introduce this sophistication.’]
Near T., « may be much larger than in other organic liquids,
approximately according to the enhancement

a(Te)/a(2T.) = T./(T, — T%). (13.6)

Measurements of the magnetic birefringence in MBBA
have been made by Stinson and Litster (1970) who find
that the linear law a=(T) ~ T — T* is well obeyed. T*
is within a few degrees of 7, giving an enhancement of
about 100 from Eq. (13.6). This should be contrasted with
the prediction of the Maier-Saupe theory which gives
[see Eq. (2.21)]

T./(T, — T*) = 0.2240/(0.224, — 0.204,) =
(13.7)

B. Elastic constants and coherence lengths in
nematics

We now consider a nematic liquid crystal in which the
order parameter is slowly varying in space. The free energy
will contain terms which depend on the gradient of the
order parameter. These terms must be scalars and con-
sistent with the symmetry of a nematic. If we confine
ourselves to terms of O(.5?), the most general form for the
inhomogeneous part of the free energy density is

g = 3L1(VaSpy) (VaSsy) + 1Ly (VaSay) (VsSs,). (13.8)

We will refer to the constants L; and L, as elastic constants.
In the Oseen—Frank curvature elasticity theory (see Sec.
IIT), we found three independent elastic constants for
nematics in contrast to just two here. Evidently Eq. (13.8)
is only qualitatively correct in the nematic phase; in general
it is necessary to retain higher terms in the expansion in
S. The elastic constants L; and L, will depend on 7' and
P, but to a good approximation may be considered to be
constants. .

In order to obtain the relations between the constants
L; and L, and the Oseen—Frank elastic constants we sub-
stitute Eq. (1.6) for a uniaxial liquid crystal in Eq. (13.8):

gr = 5(L1+ $L2) (VS)2+ §L:(n-V.S)?

-+ S2[L1ng,an5,a —+ %LZ(V-n)2 + %Lg(n-Vn)zj
4+ $L,[2(V:n)n — n-vn]- (V.S?). (13.9)
In the case where S is constant this can be reduced to the

form found by Oseen and Frank by neglecting terms which
only contribute to surface energies and writing

ng,aMpe = (V-n)2+ (n-v x n)2+ (n-vn)2. (13.10)
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Then

8sp = 52[(L1 + %Lg) (V-n)2 + Ll(n-V X n)2

+ (Li+ 3Ls) (n-vn)?]. (13.11)
Comparison with Eq. (3.14) gives
by = kg = 252(L1 + %Lz)
koo = 28%L;. (13.12)

Thus to order S2, kiy = k33 and all three elastic constants
vary with temperature like .S? (Saupe, 1960a). When the
magnitude of the order parameter S varies spatially, from
Eq. (13.9), there are cross terms between splay and bend
and V.S.

The elastic constants of liquid crystals have been calcu-
lated by means of extensions of the Maier-Saupe and
Onsager theories (Sec. II) by Nehring and Saupe (1971),
Priest (1972, 1973), and Straley (1973a).

Stability of the equilibrium nematic configuration re-
quires that for any deformation the energy Eq. (13.8)
must be positive. The necessary conditions can be shown to
be

L >0, Li+ 3L, > 0. (13.13)
It is possible for L. to be either positive or negative. It
has been shown by de Gennes (1971a) that the orientation
of the molecules at a nematic-isotropic liquid interface
can depend on the sign of L,. If L, > 0 the surface energy
is less when the molecules lie parallel to the interface, while
if L, < 0, the surface energy is less in the perpendicular
configuration.

It was shown in Sec. VIII,B that the intensity of light
scattering by orientational fluctuations in nematics is
proportional to e2kp7/kg?, where ¢, is the dielectric ani-
sotropy and % is an elastic constant. In the nematic phase
€2~ S? and from Eq. (13.12) &~ S? so that the light
scattering intensity is only slowly varying with temperature
(from the factor k3 7"). This is in accord with the observa-
tions of Chatelain (1948) on PAA and of Haller and Litster
(1970) on MBBA.

Corresponding to the two elastic constants in Eq. (13.8),
we can define two coherence lengths

B = L/l4], &=|LI/|Al (13.14)
According to the mean field theory both have the form
& | (T/T*) — 1|72 where & is a microscopic length
determined by the range of intermolecular forces & ~ 20 A.
At T, using T,— T* ~ 1°K, the coherence length is
enhanced by a factor of 10-20. The particular combination
of & and & which enters a given problem depends on the
type of deformation involved. For qualitative discussion
we will assume & ~ & ~ &,

C. Elastic constants in cholesterics

The order parameter in cholesterics is also defined by
Egs. (1.1) or (1.3). In optically active materials the mag-
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netic susceptibility tensor is symmetric. The expansion of
the free energy in powers of Sug is given by Eq. (2.1) (as
in the nematic case). New features appear when we con-
sider the terms involving gradients of S, Symmetry
allows an additional term besides those given in Eq. (13.8)
and for cholesterics

€00 = 3L1(VaSsy) (VaSpy) + 3L2(VaSay) (V5Ss,)
— 2toL1€agy SV 5 Spu, (13.15)

where e, is the totally antisymmetric tensor of order
three. The last term in g, is a pseudoscalar which changes
sign under inversion: such terms can appear in the free
energy of cholesterics but not in nematics. The pitch of
the cholesteric is 2w/t When Eq. (1.6) is substituted in
(13.15) the last term becomes +#L;S?n-curln, in agree-
ment with the corresponding term in the elastic energy
Eq. (3.14).

The equilibrium form of the order parameter in a choles-
teric is given by

Sapg = S(Rartg — $6ap) (13.16)

with #. = coslez, 1, = sint, and #. = 0. The magnitude
of the order parameter .S is determined as in the nematic
case by minimizing the free energy

g(C) = g+ gsp(C) (1317)

where g is given by Eq. (2.1). Substituting Eq. (13.16)
in (13.17), we find (when H = 0)

g9 — g = 3(A4 — 3Lu?) S* — HBS*+ 1CS4  (13.18)
This is of exactly the same form as in the nematic case,
Eq. (2.4), and thus all the results of Section II.A may be
taken over for the cholesteric case.

D. Light scattering in nematics above 7.

Light scattering in liquid crystals arises from orienta-
tional fluctuations (see Sec. VIII)- or equivalently order
parameter fluctuations. There is a large increase in these
fluctuations as 7. is approached from above. The light
scattering intensity with wave vector transfer ¢ is propor-
tional to the spatial Fourier transform of the correlation
function of the fluctuations in the dielectric constant:

I1(q) = [v drexp(iq-r) (¢(r)8e(0) ), (13.19)

where 8¢ = po-de+p1, Po, and p; are unit vectors along the
directions of polarization of the incident and scattered

light, and ée is'the fluctuation in the dielectric tensor. In

the isotropic phase e is proportional to the order parameter
[Eq. (13.4)]
Seap = M Sap (13.20)

and we can write Eq. (13.19) in terms of the order param-
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eter fluctuations

I(g) = M2 [ dr exp(iq 1) (Sas(r) Sys(0) )poapoyprspis.
(13.21)

The particular component of the order parameter is deter-
mined by the polarization of the incident and scattered
light.

The mean square fluctuations in the order parameter can
be calculated from the free energy density equations (2.1)
and (13.8). Introducing the Fourier transform

L

Sas(r) = <v>w>§ exp(iq-1) Ses(q),
Sas(—q) = Sas™(q) (13.22)

into Egs. (2.1) and (13.8) and integrating over the volume
V, we find for the fluctuation part of the free energy (omit-
ting cubic and quartic terms)

AG =32 [(4 + Lig") | Sap(q) I*

+ L2gagsSay(Q) Spy*(q) - (13.23)

Without loss of generality we choose q along the z axis of a
Cartesian coordinate system. Making use of the “traceless
tensor”’ condition S,, = O to eliminate .S.., we find

AG =X [3(A4 + Lig + §L.g") | ST
a

+ 1A+ Lig) | S
+ (A + Lig? + $Log®) (| Saa P+ | Sy [P

4+ (4 + Lig®) | Soy 7] (13.24)
where we have omitted the argument ¢ and
St = Sex = Sy (13.25)
The equipartition theorem then gives
2ksT
S+ 2\ — ,
q (9) *) 3A(1 + £2¢° + 2£2¢%)
2k T
N 2)=4(| S 2) = ———
(S0 1) = 4¢1 Sal0) 1) = o
’ YesT
Sz2(g) 2) = (| S,:(g) I?) = 2 .
(1 8ale) 1Y = (180 0) ) = i s
(13.26)

The denominators of each of these expressions has the form
A (14 £¢*) where £ is some combination of the coherence
lengths (13.14). In a typical light scattering experiment,
g ~ 10° cm™ and since £ ~ 102 A, we have {g ~ 107! and
the angular dependence of the scattering is small. The
intensity of the light scattering from fluctuations is thus
proportional to (7" — T%*)!, which becomes large close
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to T. with an extrapolated divergence at 7*. This tempera-
ture dependence has been verified in MBBA by Stinson
and Litster (1970). The small angular dependence of the
scattered light in MBBA in the isotropic phase, arising
from the factors £2¢? in Eq. (13.26), has been observed by
Stinson and Litster (1973). They were able to determine
&= (68=+=10)[(7T/T*) — 1] A in agreement with
the mean field prediction for the temperature dependence.
Earlier results by Chu et al. (1972) gave a different tem-
perature dependence for & (impurities may have been a
complicating factor).

E. Light scattering in cholesterics above T.

The calculation of the light scattering intensity in choles-
terics arising from order parameter fluctuations proceeds
exactly as in the nematic case in the previous section. The
only difference is that the contribution to the free energy
density due to spatial variations is given by Eq. (13.15).
The mean square thermal averages of the fluctuations are

2krT (1 + &%)

ISR =408 ) = P T o — araig]

(] Sez |2)

(1 Sye ?)

3k T (1 + &% + 387
= . 13.27
A [(1 + El2g2 + %522q2)2 —_— £14t02q2] ( )

The fluctuations in S* are the same as in the nematic phase.
If we examine (| S |?), we see that (for given &) the
maximum scattered intensity is at an angle determined by
g = 0 if &#, is less than } as in the nematic case. If &4 is
greater than § a maximum appears at a finite angle deter-
mined by &%¢? = 2£1 — 1. We then have a broad scattering
peak reminiscent of the Bragg peak in the ordered phase.
De Gennes (1971a) has pointed out that, as the isotropic—
cholesteric transition is of first order, &(7T.)t < 1. If &ito
attained the value 1, the fluctuations in S,, would di-
verge for ¢ = #. The temperature 7©* determined by
§(T©@*)t, = 1 is thus the temperature below which the
isotropic phase is unstable against the formation of a spiral
structure. The first-order transition occurs at a temperature
T, greater than T@*, and thus £ (7,)% is less than unity.
Probably in most cases &(7.)f < 4 and the tendency to
build up a spiral structure in the isotropic phase is small.

Rayleigh light scattering in the isotropic phase of choles-
teryl 2-(2-ethoxyethoxy)ethyl carbonate (CEEEC) has
been observed by Yang (1972). Both the temperature
dependence and wave vector dependence of the intensity
were found to be in good agreement with the mean field
predictions [Eq. (13.27)]. Bragg type scattering due to
cholestericlike ordering in the isotropic phase was observed
close to 7.

F. Dynamics of fluctuations above 7.

The dynamics of fluctuations in nematics and cholesterics
has been considered by de Gennes (1969a, 1971a). In Sec.
VIII it was found that there is an important coupling
between orientational and shear wave motions in nematics
below T'.. We anticipate that these features will also be
present above 7. The equations of motion for v, the fluid
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velocity, and S,s, the order parameter, are taken by de
Gennes in the form

0(90:/0t) + VP + VsTas = 0 (13.28)

(8/01) Sag + Pog = 0. (13.29)
Equation (13.28) expresses the conservation of momentum
and 7.4 is the stress tensor. We regard the liquid as in-
compressible and the pressure P is a Lagrange multiplier
to be determined so that V-v = 0. Equation (13.29) de-
scribes the relaxation of the order parameter; this equation
replaces the director equation considered in Sec. VI. We
regard v and S,s as small quantities and have omitted all
terms quadratic or of higher order in these variables. We
will also omit temperature fluctuations, as they do not
couple strongly to the orientational or shear wave modes.
Thus we need not counsider the equation of motion of the
entropy.

The stress tensor, Ta/g; and ®,s must be determined. The
entropy production R may be shown to be

RT = _Taﬂdaﬁ - <I>a5¢a8 (1330)
where
dog = 5(0Va/ 0% + 3v5/0%a), $ag = —03g/0Sas,
’ ‘ (13.31)

where g is the free energy density. We now expand 7, and
P, in terms of dug and ¢as. These phenomenological rela-
tions must satisfy the Onsager reciprocity and the entropy
production must be positive definite. Phenomenological
relations satisfying these requirements are

Topg = —1'dap — vap

DPog = vdap — {ap- (13.32)
The entropy production is positive provided

7 >0, ¢>0. (13.33)

The hydrodynamic equations are

p(9va/0t) + VaP — Va(n'das + vépas) = 0 (13.34)

(9/01) Sup — $bap + vdag = 0. (13.33)

At long wavelengths we may neglect the derivative terms
in the free energy and then ¢.s = — A4 .Sqes. Thus the order
parameter relaxes at a rate {4 to its equilibrium value. The
parameter » describes the torque exerted on the order
parameter tensor by a velocity gradient. 5’ is a shear vis-
cosity coefficient. The shear viscosity measured in a capillary
flow experiment is

no = 1"+ (*/¢). (13.36)
The ‘‘traceless” condition, S.. = 0, is satisfied by Eq.
(13.35) as the fluid is incompressible. We now consider
some applications of these equations.
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'G. Flow birefringence

We suppose that the liquid is flowing steadily in the x
direction, and there is a velocity gradient in the y direction
so that the fluid velocity takes the form 2,(y). We will not
consider the boundary conditions on the fluid as these will
not have an appreciable effect on the orienting effect of
the shear flow in the bulk of the fluid. From Eq. (13.35),
using ¢as = — A Sas, we find that the only nonzero com-
ponent of Sus is

Sey = —(v/2¢4) (avz/_ay) . (13.37)
We can reduce the order parameter to diagonal form by
choosing a new set of axes ', 3" which are rotated counter

‘clockwise by an angle of w/4 with respect to the x, vy axes.

In this new coordinate

Sz = Say, Sy = —Say

(13.38)

and other components are zero. From Egs. (13.20) and
(13.37) we obtain the difference in the two principal di-
electric susceptibilities

6511’.7:' = 5€y'y’ = ZMSxy
—(Mv/cA) (9v./y).

I

(13.39)

Thus the anisotropy in the principal refractive indices
n,” and n,’ is

et — g = —B(T) (90,/99), (13.40)
where B8(7T') = Mv/¢A. The most important temperature
dependence arises from the.factor 4, and 8! should vary
approximately like 7" — 7 close to 7. The transport
coefficient »/¢ has the dimensions of a viscosity coefficient
and its temperature dependence might be expected to be
similar to that of the shear viscosity in the isotropic liquid.
In PAA the shear viscosity varies as exp(W/kT), where
W can be regarded as an activation energy for diffusion
(Porter, Bassall, and Johnson, 1966). Recent measurements
of the temperature dependence of flow birefringence in
MBBA by Martinoty et al. (1971) are in good agreement
with Eq. (13.40). The temperature dependence of v/{ was
obtained by comparing the magnetic birefringence equa-
tion (13.5) (Stinson and Litster, 1970) and the flow bire-
fringence equation (13.39) and found to be exponential
with W = 4.7 kcal/mole. When the temperature depend-
ence of »/¢ is taken into account the coefficient 4 was found
to be accurately linear in T with 7, — 7% ~ 1°K.

H. Inelastic light scattering

The spectral distribution of the light scattered by order
parameter fluctuations is determined by the Fourier trans-
form in space and time of ‘the correlation functions of the
order parameter:

T5(q,w) = /dr/ dat

X exp(iq-t — iwt) (Sap(r, t) Sap(0, 0) )
(13.41)
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(no summation over repeated iﬁdices). The particular com-
ponent I,z which is relevant depends on the polarization
of the incident -and scattered light as in Eq. (13.21).

For very long wavelengths we may neglect the coupling
between the order parameter and the shear flow in Eq.
(13.35) and the order parameter obeys the simple equation

(8/0t) Sus + §A.Sus = 0. (13.42)

The relaxation rate of the order parameter, I' = {4, be-
comes small close to T, as T" — T*. If the gradient terms
in the free energy [Eq. (13.8)] are included, T is replaced
approximately by Ty = {A4(1 4+ £¢?) where £ is a com-
bination of the coherence lengths [Eq. (13.14)7]. The
correlation function (13.40) is given by the Lorentzian form

Tap(q, ) = [2T/(T2 + o) J(| Sas(Q) [*). (13.43)

At shorter wavelengths it is necessary to take account
of the coupling between the orientational and shear wave
modes in Egs. (13.34) and (13.35). Without loss of general-
ity we consider a plane wave with wave vector g propagating
in the z direction. From Eqgs. (13.34) and (13.35) we then
find that the variables v, and S.. are coupled and v, and
Sy are coupled. From symmetry these pairs give identical
modes. The other components of the order parameter,
Sze, Syy, and Si, are not coupled to the hydrodynamic
flow and relax as in Eq. (13.41) with the rate T

The Fourier transform in space and Laplace transform
in time of Egs. (13.34) and (13.35) for the variables .
and S.. are

(sp + 30} v.(q, 5) + igrA Saz(q,s) = pva(g, t = 0)
(s +¢4)S:.(q, 5) + 3ivgua(q,s) = Sz.(g,t = 0).
(13.44)

The Laplace transform of the correlation function (13.41)
is then

I.(q,s) = [(ps + 3n'¢®) /D(s) J(| S:=(g) |?),  (13.45)
where
D(s) = (sp+ 37'¢*) (s + £4) + »*¢°4. (13.46)
Finally the correlation function (13.41) is
I:cz(Q; w) = ZReIzz(q, S = 7/(.0)
_ 2T (4p%0 + non’q*)
(2p0? — Tog?)? + w?(2pT" + 7'¢?)*
X (| Sz:(q) 1*), (13.47)

where 7o is given by Eq. (13.36). The spectral distribution
is more complicated than a single Lorentzian. In the limit
nog? K 2pT" we recover Eq. (13.43). In the opposite limit
7’g2 >> 2pT" we also find a single Lorentzian with an increased
width IV = T (n¢/%').

The linewidth T' = {4 of the Rayleigh scattering in the
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isotropic phase of MBBA has been measured by Stinson
and Litster (1970) and found to be several MHz. The
viscosity coefficient ¢! was assumed to have an exponential
temperature dependence, exp(W/kT), with W~ 7.1
kcal/mole. The temperature dependence of the coefficient
A was then found to be accurately linear with 7, — 7% ~
1°K in agreement with the mean field prediction. The
linewidth of the Rayleigh scattering in the isotropic phase
of a cholesteric (CEEEC) has been measured by Yang
(1972) and found to be of order 1 kHz (much smaller
than in MBBA). The temperature dependence was found

to be similar with some departure from linearity close to
T.. '

I. Shear waves

The hydrodynamic equations (13.34) and (13.35) also
have a shear wave mode solution. We again consider a
plane wave with wave vector ¢ along the z axis and fre-
quency w. After eliminating the variable S,. by means of
Eq. (13.35) the equation obeyed by the fluid velocity is

(—twp + 3n(w)¢?) v = 0, (13.48)

where the frequency-dependent viscosity coefficient is given

by

n(w) =7 + P4/(T — iw)]. (13.49)
Thus at low frequencies, w < T, the effective viscosity is
7" + (»24/T), while at high frequencies it is »’. The shear
wave impedance [see Eq. (9.20) ] is
= 3(1 — 1) (pan (w) )12 (13.50)
The real part of the impedance, R = ReZ, may be shown
to be (Martinoty et al., 1971)
R = (pw) 2[me + (mit + md) 5], (13.51)

where #; and 7. are the real and imaginary parts of 5(w),
respectively:

m=n"+T4/(@+ 1], n=[w?4/(+T)]

(13.52)

It has been pointed out by de Gennes (1971a) that the
concept of an effective viscosity coefficient only applies
when the penetration depth of the shear waves, 6 =
| n/pw |'2, is much larger than the coherence length £(T).
When w ~ T, we have

£2/62 ~ Lip$/n. (13.53)

This parameter is of the same order as the parameter u =
kp/n? ~ 10~ introduced in Sec. VIII. Thus £/6 ~ 10~% and
the above considerations are realistic. The shear impedance
in MBBA above T, has been measured by Martinoty et al.
(1971). The results are well described by the de Gennes
theory.
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J. Viscosity coefficients

We briefly consider the relation between the viscosity
coefficients «; introduced in Sec. VI and 7, [Eq. (13.36)]
(Papoular, 1969b). Suppose that the liquid is flowing
steadily in the x direction and a linear velocity gradient
exists along the y axis. The effective viscosity in the nematic
phase [Eq. (7.12)is

2‘)’] = 4 + (aa + as) ﬂx2 “|" (a5 —_ az)?’lﬁ + 26(1%;52%1,2,
(13.54)

‘where %, and 7, are the components of the director along
x and v, respectively. In the isotropic phase we average
over all orientations of the director: (#,2)ay = (#,2)ay =
3, () )av = 75, and

2 = 2no = as+ o+ (o + s+ s — ). (13.55)
It has been argued by Papoular (1969b) that 7 > 7 (see

Table I) and the VlSCOSlty coefficients should increase
abruptly at 7.

Below 7. the (#2)ay were expressed by Papoular in
terms of the order parameter .S. The qualitative features
of the temperature dependence of the viscosity coefficients,
observed by Porter, Barrall, and Johnson (1966), can be
explained in this way in terms of the temperature depend-
ence of S.

XIV. NUCLEAR MAGNETIC RESONANCE

Nuclear magnetic resonance (NMR) spectroscopy in
liquid crystals differs from that in normal liquids in one
important respect: in normal liquids the direct dipole-
dipole interaction between nuclear spins averages to zero
as a result of the rapid molecular tumbling. In liquid crystals
the molecules are partially oriented and the direct dipole—
dipole interaction between spins on the same molecule is a
major factor determining the form of the NMR spectrum.
Typically direct dipole interactions between protons in
the same molecule may give rise to shifts up to 5000 Hz.
Owing to the rapid translational diffusion of the molecules
in the liquid crystal phase the dipole-dipole interaction
between spins on different molecules averages to zero.

NMR studies have found a number of applications in
the field of liquid crystals:

(1) The dipolar splitting of resonance lines yields a
measure of the order parameter (if the nuclear separation
i1s known) (Saupe, 1964). When applicable this technique
is the most accurate available. The procedure may be
complicated in that molecules which show liquid crystal-
linity are typically large and contain a large number of
proton spins. As a consequence, there exists a large multi-
plicity of spin states and the NMR spectrum under low
resolution is a single broad line with some superimposed
structure, or under high resolution is a complex spectrum
of lines.

(2) The alignment of impurities dissolved in a liquid
crystal can be measured by NMR (Saupe and Englert,
1963) or the closely related ESR technique (Carrington
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and Luckhurst, 1964). These spin probes tend to be aligned
by their interaction with the host molecules. The highly
resolved NMR spectrum of a simple solute molecule can
frequently be observed on top of the broad unresolved
spectrum from the liquid crystal solvent. A great deal of
precise information can be obtained about the ordered
solute molecule, including relative bond lengths and bond
angles and the signs and magnitudes of spin-spin coupling
constants and anisotropic chemical shifts. Reviews of these
applications have been given by Buckingham and Mc-
Lauchlan (1967) ; Luckhurst (1968); Snyder and Meiboom
(1969) ; and Diehl and Khetrapal (1969), and they will
not be discussed in this section.

(3) Spin relaxation processes arise from fluctuations in
the medium, among which the orientational fluctuations
are an important component. These latter fluctuations lead
to a characteristic frequency dependence (7~ w!/?) for
the spin-lattice relaxation time (Pincus, 1969a). A study
of these relaxation times can give information about the
spectrum of fluctuations.

A. The Hamiltonian

. The Hamiltonian for a system of nuclear spins in a mole-
cule in the presence of an external field H along the z direc-
tion is

3C = — > giBuHIi — > (g:giBa%/7:)
7 >7
X (3(vi-L) (vi;-1;) — LI, (14.1)

where g; is the nuclear gyromagnetic ratio of spin i, 8, is
the nuclear magneton, 7;; is the separation of nuclei 7 and
J, and vy; is a unit vector along r;;. The first term in Eq.
(14.1) is the Zeeman energy of the spins in the applied
field and the second term is the dipole—dipole interaction
between the nuclei. Under most circumstances H ~ 10 G,
whereas the field due to one nucleus at the position of
another is of order 8,/#* ~1 G. Thus the Zeeman energy
dominates the Hamiltonian. The applied field generally
determines the direction of the preferred axis in the nematic
(surface effects may also be important).

The small chemical shifts and indirect spin-spin coupling
constants have been omitted in Eq. (14.1). For protons in
diamagnetic materials the chemical shifts range up to
5.107%2 G for H = 10* G, and the indirect spin—spin couplings
range up to about 2.1073 G. Nuclear quadrupole interactions
have also been neglected.

For the purposes of illustration we will consider a simple
model in which the molecules are taken to be rigid rods
with two identical nuclear spins located on the axis sepa-
rated by a distance a. The Zeeman energy is

3, = —gBH (I1. + In:). (14.2)

The dipole-dipole interaction is conveniently written

Ia = —(g%8.%/a*) { (3wt — 1) 1.1,
—_ %(If“[z‘ + [1—12+):] + %[V+211~I2_ + C.C.]

+ 8.[v_ (LIt + L1 + c.c. ], (14.3)
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where vy = v, & iy, I* = I, & il,, and v is a unit vector
along the molecular axis. The components of v and I are
referred to a space fixed set of axes «x, y, 2 with the applied
field along z. The three terms in the square brackets in
Eq. (14.3) have different effects. The first term gives rise
to a first-order shift of the energy levels of the spin system
for oriented molecules. This term effectively alters the
magnetic field acting on a spin. It also gives a contribution
to the spin-spin relaxation time 7%. In normal liquids
3v2 — 1 averdges to zero owing to the rapid molecular
tumbling and the energy level shift is zero. The second and
third terms can give rise to higher-order shifts in the nuclear
spin energy levels, but more importantly contribute to the
spin-lattice and spin-spin relaxation times. These effects
have been discussed in normal liquids by Abragam (1961).

B. Dipolar shifts of energy levels in nematics

In the simple model introduced above the important
dipolar shift in the NMR spectrum arises from the first
term in Eq. (14.3)

3 = — (g W2/a%) (3v.2 — l)I:Ilzlﬁz

— iU+ I L) (14.4)

Assuming both spins have I = } this interaction splits the
NMR spectrum by

fidw = §(g%./a*) 3v — 1), (14.3)
where the angular brackets indicate an average over the
motion of a molecule and over all molecules. Two limiting
cases arise depending on the time 7 of typical fluctuations
of the molecular axis.

(a) Awr>> 1. In this case the molecules are essentially
stationary during the interaction time Aw™'. The average
of Eq. (14.5) over all molecules then leads to a spectrum
depending on the instantaneous distribution of orientations
of the molecules in the specimen (i.e., a “powder” type
spectrum).

(b) Awr < 1. In this case the molecules reorient rapidly
and the splitting depends only on the average molecular
orientation.

In liquid crystals the latter case is generally realized in
NMR. The situation may be reversed in ESR where Aw
is much larger (Pincus, 1969b). The orientational fluctua-
tions in liquid crystals give a 7 of order 10~ secs (see Sec.
XIV.D). In NMR Aw~ 10° sec™! and Awr ~ 1074 We
are thus justified in averaging Eq. (14.5) over the motion
of a molecule. We assume that the time average is equiva-
lent to a space average over the orientations of many mole-
cules (as in the definition of the order parameter in Sec.
I.A). The average in Eq. (14.5) can then be expressed in
terms of the order parameter S

Aw = (3g2B8.2/#a®) S. (14.6)
[Note that we have assumed that the director and applied

field are in the same direction. If the angle between the
director and the field is «, then .S in Eq. (14.6) is replaced
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FIG. 22. The nematic order parameter in PAA versus temperature
at the constant molar volume 221 cm?®/mole. Circles, experimental
data of McColl and Shih (1972); cross, experimental transition value
of S. The dashed curve is a theoretical model including steric and
energetic effects (see McColl and Shih).

by %S(3cos’a — 1)]. If the internuclear distance a is
known, the measurement of the dipolar splitting of the
NMR line gives directly the value of the order parameter.
The order parameter in PAA measured by McColl (1972)
and McColl and Shih (1972) and reduced to constant
volume is shown in Fig. 22.

For molecules of a general shape the dipolar splitting
is determined by the Hamiltonian ‘

JCdQ) = - Z (gigjﬁnz/rijs) <3 Coszeij - 1)[11‘2[]':
>

— UM+ 11 ], (14.7)
where 6, is the angle between v,; and the field. The average
£(3cos?;; — 1) can be expressed in terms of the order
parameter (1.2) and factors depending on the molecular
geometry. Introducing a coordinate system «’, ¥/, 2’ fixed
in the molecule and assuming the directions of H and n
coincide, we have

%<3 COSZG,']' - 1> = <P‘l(n'vij) >

tm i Vom* (vi) (Ve (n) ),

m=—2

(14.8)

It

where the ¥V are normalized spherical harmonies [ ¥"* =
(=)mY;™] (Messiah, 1964) and the unit vectors are to
be expressed in the molecule fixed axes. The Vy"(v;;) are
factors depending on the molecular geometry and the
(Yy™(n) ) are related to the order parameter (1.2) by

(V(n) ) = 3(5/16m)'2S,..,
(Vo(n) ) = — (15/8m)2(Sursr + iSy2),

(Y2(n) ) = (15/320)12(Sarer — Sy + 2iSary). (14.9)

In general the dipolar Hamiltonian (14.7) will depend on
the five parameters Sqg. If the principal axes in the mole-
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cule of this tensor are known, then only two parameters
remain:

Sa =285, Sy — Sarwr = 2D, (14.10)
where S is the usual order parameter and D is a measure
of the difference of the alignment of the two transverse
axes of the molecule along the director. In this ‘case Eq.

(14.8) simplifies to

1{(3cos?;; — 1) = £5(3 cos?8;/ — 1) — 3D sin%,;/

X cos2¢;, (14.11)
where 0;/ and ¢,/ are the spherical polar angles of the
vector v;; in the molecular coordinate system. The ani-
sotropy in the magnetic susceptibility of a nematic also
involves the parameters .S and D [see Eq. (15.2)] (assum-
ing the principal axes of the molecular susceptibility and
Sag coincide). These parameters have been determined
by Alben, McColl, and Shih (1972) in PAA from the NMR
and susceptibility measurements. Assuming a principal axis
system in which the 2’ axis is the long axis (axis of smallest
moment of inertia) and the &’ axis is perpendicular to the
benzene rings, it was found S~ 0.52, D~ 0.07 at 120°C.
The fact that D is positive indicates that the &’ axis has
Jess tendency than the ¥’ axis to lie along the director.

Above T, in the presence of the field H, the order param-
_eter has a small nonzero value given by Eq. (13.3). Thus
in the isotropic phase a small dipolar splitting of the NMR
" lines exists. Using the values x, = 1078, H = 10* G, 4’ =
105 cgs, and T — T* = 1°K, we find § = 1073, The dipolar
splitting in the isotropic phase is thus of order 10—% G which
is at the limits of observation and would require a very
homogeneous field to be resolved.

The NMR spectra of impurity molecules dissolved in a
nematic host were first observed by Saupe and Englert
(1963). Equations (14.8)-(14.11) also apply to the case
of impurity molecules with the change that .S is replaced
by its value for the impurity molecules. The ESR spectra
of impurity free radicals aligned by their interaction with a
nematic host have been observed by several workers [for
reviews see Luckhurst (1968), Diehl and Khetrapal (1969),
and Pincus (1969b)]. If the free radicals have anisotropic
g tensors or anisotropic hyperfine interactions with neighbor-
ing nuclear spins, the impurity order parameter may be
obtained in a similar way to that discussed above for the
dipolar interactions of nuclear spins. In this case one must
be careful about the condition Awr << 1 where Aw is the
relevant anisotropic shift or splitting. Typical hyperfine

splittings are of order 10 gauss which gives Aw >~ 10% sec™. -

Thus for 7 = 107 sec one is close to the limit Awr ~ 1. An
extra broadening of the ESR lines is expected in this case
(Abragam, 1961, Chap. VIII).

Many molecules which show liquid crystallinity are
large and contain a large number of magnetic nuclei. The
NMR spectrum under low resolution is a single broad line,
and the method of moments has been used to analyze the
spectrum (Lippmann and Weber, 1957; Bravo et al., 1969).
The second moment, (Aw;?), of the NMR spectrum for
nuclear species ¢ resulting from dipole-dipole interactions
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is (Abragam, 1961 Chap. IV)

(Aw?) = 3(g2Bn/NHI:(L; + 1)
X Z 7i¢'-6<(1 —3 cos20¢ir)2>

o/#4

+ 3(g:°8.4/72N ;) ch: g2l (I + 1)

" X g1 — 3 cos™i)?). (14.12)
The first sum is over all the N; spins in the molecule of
the same species as the observed spin and the second sums
are over all the spins ¢ and the unlike spins % with spin I;
in the molecule. In each case 7;; is the distance separating
the two spins, ;; is the angle between v,; and the applied
field, and the angular brackets indicate an average over
many molecules.

C. Dipolar shifts of energy levels in cholesterics

In this section we consider briefly the dipolar splitting
in the NMR spectra of cholesterics for the simple model of
a linear molecule containing two identical spins (Pincus,
1969b). The cholesteric is more complicated than the
nematic because the molecules have a twisted arrangement
and they do not all have their axes parallel to H. We assume
that the cholesteric is a single crystal, and we consider the
two cases where H is parallel and perpendicular to the
twist axis.

1. H parallel to twist axis

Assuming that the cholesteric structure is not distorted
by the magnetic field, the preferred direction of all the
molecules is perpendicular to H. Then from Eq. (14.5) the
NMR splitting is

Aw = 3(g?8,%/1a%) S (14.13)

which is —3 the value obtained in the nematic state. Again
measurement of Aw provides a direct way of obtaining S.

2. H perpendicular to twist axis

This geometry is more complicated because (a) molecules
in different cholesteric planes are not equivalent with
respect to the field; and (b) the field distorts the cholesteric
structure. We first consider the case where the applied
field is sufficiently weak that the distortion of the cholesteric
structure can be neglected. According to Sec. IV.C, this
requires H << H;,. We use the geometry of that section in
which the twist axis is the z axis and H is along the y axis.
For a particular group of molecules whose preferred direc-
tion makes an angle ¢ with the x axis, the splitting, according
to Eq. (14.5), is

Aw(g) = 3(g%.2/%a’) S(3 sin*¢ — 1) (14.14)
and varies between 2w, and —w., where wn = $(g%8,%/%0%) S.
The NMR spectrum of these molecules consists of two
lines at frequencies wo = 3Aw(¢). The power absorbed
per unit volume at a frequency shift «’ from wo is propor-
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tional to the number of molecules per unit volume, N («"),
with frequency shift «’. Taking into account the two possi-
ble transitions,

N =1 [ N@D — b))

0

+ 8o’ + 30w (e) )] dé, (14.15)
where N (¢) is the number of molecules per unit volume
with orientation ¢:

N(o) = (N/p)(02/3¢), (14.16)
where V is the number density and p is the pitch of the
cholesteric. In the case of a uniform twist ¢ = fo2, p =
2w/ty, and No(¢) = N/2x. Then Eq. (14.15) gives

Nolw') = (V/AmF(e' ), wn/2 < | | < om,
= (V/4m)[f(Jo" ) + f(= " D],
0<|o|<awn/2, (14.17)
where

fe D) = Llom — [ D) Gom + [ ) T2

The function No(w’) is plotted in Fig. 23 (and referred to
there as H ~0).

When the cholesteric structure is distorted by the ap-
plied field, the distribution of the molecular axes, V(¢),
_can be obtained from the results of Sec. IV.C. It is given by

N(¢) = (N/p)[k&/ (1 — «*sin?g) /2], (14.18)
where & = (kao/x.H?)'?, p is the pitch, and « is a parameter
determined by H and the zero field pitch (see Sec. IV.C).
From Eq. (14.12) we then obtain

N(o) = (Ne&a/20)g(| " DF([ "), 3om <[]0 | < wn
= (V&/2p)[g(| " Df(| " ])
+eg(= " D=1 D], 1o | <iom
(14.19)
where

gD =[1 = 3(&¥om) (| & | + $om) ]2

The function V(') is plotted in Fig. 23 for H = $H, and
H = 0.92H,. .

Thus in the cholesteric case we obtain a continuous spec-
trum of width 2wn,. The order parameter in the cholesteric
can be determined from a measurement of w,. When H —
H, the cholesteric assumes a nematic structure with the pre-
ferred direction for all the molecules parallel to the field. In
this limit it can be shown that N(w') — (N/4)[6(o’ —
wm) + 8(w -+ wn)] and the spectrum consists of two sharp
lines separated by 2wm as in the nematic case considered
in the previous section.
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FIG. 23. NMR absorption spectrum of a cholesteric with the mag-
netic field perpendicular to the pitch axis for different. values of the
magnetic field. -

It was pointed out by Pincus (1969b) that these results
are modified if the molecules diffuse rapidly along the twist
axis. The broadening of the spectrum will be reduced. As
an illustration,. suppose the molecules diffuse along the
pitch axis and that the molecular axis adiabatically follows
the local order as the molecule diffuses. Then, if the molecule
ie., 4D/p* > wm, where D is the diffusion constant, the
broadening of the spectrum disappears. In this case it is
appropriate to average Eq. (14.14) over all values of ¢
and the NMR spectrum consists of two lines. For an un-
distorted cholesteric structure (sin%) = % and the splitting
is

Aw = §(g%8.%/1a®) S. (14.20)

In the more general case when H is not much less than H,

and the cholesteric structure is distorted, we have from
Fq. (14.18)

(sin%¢p ) = j

0

/2 ) /2
N(¢) sin’ do / / N(¢) do
0

= (1/&®)[1 — (E/K)] (14.21)

when K and E are the complete elliptic integrals of modulus
k of the first and second kind: The splitting of the NMR
lines is

Aw = $(g%8.%/%a*) SL(3/:) (1 — E/K) — 1]. (14.22)

As H — H,, «— 1, and we approach the nematic state and
the effects of translational diffusion become unimportant.

D. Nuclear relaxation in nematics

The orientational fluctuations in a nematic are an im-
portant mechanism for spin relaxation and lead to a charac-
teristic frequency dependence of the spin-lattice and spin—
spin relaxation times (Pincus, 1969a). We again consider
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the simple model of rodlike molecules with two nuclear
spins located on the axis. The molecules are aligned by the
applied field. If we assume that the fluctuations in orienta-
tion of the molecules are small, v, is nearly constant in
Eq. (14.3) and to a first approximation the term leading
to relaxation of the spins is

Hd(Z) — _%(gz n2/a,3) yz[y__(flzjz'}‘ - Il+122> -+ C.C.]-
(14.23)

The spin-lattice relaxation time derived from this inter-
action is given by Abragam (1961, Chap. VIII):

Tyt = 2(g%8a4/a®) I(I + 1) J (wo), (14.24)

where J(wo) is the value of the Fourier transform, at the

nuclear Larmor frequency, of the correlation function of
the orientational fluctuations

J(wo) = fwdtG(t) exp (—iwot), (14.25)
where
G(t) = @.(Dv_(H)v.(0)r (0) ). (14.26)

The transverse relaxation time is 7, = 277 (Abragam,
1961, Chap. VIII). To a first approximation we regard
v, in Eq. (14.26) as independent of the time, and we replace
G(t) by

G(t) = () (r—(D)r4(0) )

=325+ 1) G_()r(0) ). (14.27)
In the last line we have expressed (v.?) in terms of the order
parameter S. The factor (2.5 4+ 1) describes.the average
molecular alighment and is 1 for. complete alignment and
% for random orientations. Different approximations to
this correlation function have been made by Pincus (1969a),
who found it was proportional to .S, and Lubensky (1970),
who found it was proportional to S% Equation (14.27)
is exact for small fluctuations where ». is constant to a first
approximation and (apart from a numerical constant) is
also correct in the isotropic state. The orientational fluctua-
tions in nematics have been discussed in Sec. VIII, and
the correlation function (14.27) has been determined.
Using Eqgs. (8.13) and (8.48) (assuming ki = ks = kg =
k)

kT s
2+ xaH?w? + Tg?’
(14.28)

1 2
J) =525+ 1) (27)3/‘“1@

where I's is given by Eq. (8.34). In the case where all the
Frank elastic constants are equal, we have approximately
Ts = (kg + x.H?) /7, (14.29)

where 7 is a typical viscosity coefficient. The terms in x,H?
in Egs. (14.28) and (14.29) may be neglected, as they are
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very small compared with %k¢? over practically the entire
range of the integral in Eq. (14.28). The corrections due
to these terms have been considered by Blinc ef al. (1969).
From Eq. (14.28) we then find

T(wo) = [(28 + 1) ksT/3nk](n/2kwo) 2. (14.30)

The spin-lattice relaxation time can now be written

1—‘1_1 = tztc;

(14.31)

where wp = g¥8.%/fia® is the dipolar frequency and the
correlation time

te=L[2S 4+ DksT/2xk]I(I + 1) (n/2kwo) 2. (14.32)

One of the most striking features of this result is the fre-
quency dependence #, ~ wo V2. For T = 300°K, k = 10~
dyn, » = 0.1 P, and wy = 107 sec™, we find £, = 10~° sec.
This was the estimate used in Sec. XIV.B for the correlation
time for orientational fluctuations. For a dipolar frequency
wp =~ 10° sec™!, we find 77~ 1 sec, which is comparable
with the spin-lattice relaxation time in ordinary liquids
arising from the rotational and translational diffusion of
the molecules.

Other contributions to the relaxation in a nematic arise
from the modulation of intermolecular dipole-dipole inter-
action. This fluctuates because of the relative orientational
fluctuations of the molecules, and also because of the rela-
tive translational diffusion of the molecules. An analogous
calculation leads to :

7‘1 inter_1 = (35’4/2) <5n4/7’06)1(l + 1) Jinter(w), (1433)

where 7 is the average separation of the molecules,

Jinter(w) = [(25 + 1) kpT/3nk]{ 2w (k/n) + D]},
(14.34)

and D is the translational diffusion constant. It has been
assumed that the translational motion and orientational
fluctuations are independent. Using Stokes law D~
kT /6rna, where a is the molecular dimension; thus D
and k/n are of the same order of magnitude and T} jneer!
is comparable with Eq. (14.31).

The striking frequency dependence of Eqgs. (14.30) and
(14.34) arises from the fact that the amplitude of the
orientational fluctuations diverges as ¢ — 0. Contributions
from other fluctuations will not behave in this way, allowing
us to separate the contributions of the orientational fluctua-
tions. The frequency dependence 77~ we!/? in nematics
has been verified by Weger and Cabane (1969), Blinc
et al. (1969), and Doane and Visintainer (1969).

XV. DETERMINATION OF THE ORDER
PARAMETER

There are several methods by which the order parameters
in a nematic can be determined experimentally. The NMR
method, discussed in the previous chapter, is generally
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the most accurate when applicable. In this section we dis-
cuss some other methods for the determination of the
order. parameter in nematics.

A. Magnetic susceptibility

The relation between the order parameter and the mag-
netic susceptibility is given by Egs. (1.4) and (1.5). If
the molecules are axially symmetric, the anisotropy in
the susceptibility is

Xa = XII — X+
Nx @S,

(15.1)

where IV is the number density and x,® is the anisotropy
in the susceptibility of an isolated molecule (the effects of
molecular interactions have been neglected). Thus from a
measurement of x,, S can be obtained provided N and
X«® are known. The latter quantity can be obtained from
measurements on single crystals, the assumption being
made that the molecules are completely aligned in the
crystal. This method for the determination of .S was used
by Zwetkoff (1942) and Saupe and Maier (1961).

If the molecules are not axially symmetric, the two order
parameters (14.10) are required, and the anisotropy in the
susceptibility is

Xa = (A/‘/Z)I:S(ZXS(O) — Xl(l]) — XZ(O)) + D(XQ(O) — XI(O))],
(15.2)

where x,;@ are the principal molecular susceptibilities. The
order parameters .S = 0.52 and D = 0.07 have been ob-
tained by Alben, McCall,
120°C (see Sec. XIV.B).

B. Refractive index

Let aqs® be the polarizability tensor of an isolated mole-
cule and define an average polarizability by an equation
analogous to (1.3)

Qg = D805+ @0 ® Sas, (15.3)

where a©@ is the average and «,® the anisotropy in the
polarizability of a molecule (assumed uniaxial). We may
not, however, identify (1 + 4mwna)'/? with the refractive
index; there are important local field corrections (« is the
component of a,s determined by the polarization of the
light wave). Zwetkoff (1942) and Chatelain (1955) used
the Lorentz—Lorentz internal field, which is strictly only
valid in materials of cubic symmetry, to relate the polar-
izability to the refractive index. Saupe and Maier (1961)
have argued that a nematic is more like a uniaxial crystal
and used the internal field determined by Neugebauer
(1950) for a uniaxial crystal to relate the measured refrac-
tive indices to the polarizability. In this model the refractive

indices for the extraordinary and ordinary waves are given
by

(ne — 1)/ (n2+ 2) = (4x/3)[n/(Ax + a™) ]
(e — 1)/ (n6* + 2) = (4n/3)[n/ (A4 ax™)],
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where A4; and A4, are parameters dependent on the crystal
structure (4; + 24, = 0) and «;; and . are the principal
components of the polarizability tensor (15.3)

a) = a® + 20,08

aL = a® — 10,08,

(15.5)

Again measurements of the refractive indices in the nematic
and crystal (assumed perfectly aligned) are required to
determine ) — a1 and @9, respectively. The parameter
Ay was determined experimentally by setting the average
polarizability of a molecule in the nematic and isotropic
phases equal. Methods of measurement of the refractive
indices of nematics have recently been discussed by Haller,
Huggins, and Freiser (1972). )

C. Dichroism

This method for determining the order parameter re-
quires the existence of a convenient absorption band, either
electronic or vibrational, in the molecule which in the
simplest case is linearly polarized. Suppose the transition
moment has an oscillator strength f and is linearly polarized
making an angle « with the long axis of the molecules. Then
it is not difficult to show that the oscillator strengths parallel
and perpendicular to the director are

fir=3f+ 3f(1 — §sin’e) S

fi =3 — (1 — §sin%) S. (15.6)
Solving these equations for S gives
S = (fu = fu)/f(1 = § sin’). (15.7)

The experimentally determined values of f|; and f.1 cannot
be used directly in this equation as there are corrections
due to local field effects and the anisotropy in the refractive
indices. Using the Neugebauer (1950) form for the internal
field, Saupe and Maier (1961) have shown that the actual
oscillator strengths are related to the experimentally meas-
ured oscillator strengths by

. 3n.
f” = = = fH(exp)
n/? + 2 — 2a(n/? — 1)
fi= 3o Fulom), (15.8)

n'?+ 24 a(ny? — 1)

where @ = 3A4,/47wn and n.” and %, are the refractive indices
excluding the contribution from the particular absorption
band of interest.

D. X-ray scattering

It is also possible to obtain information on the orienta-
tional ordering in nematics from the intensity and angular
distribution of x-ray scattering (de Gennes, 1972c). At
short wavelengths,- ga > 1, where q is the wave vector
transfer in the scattering and ¢ ~ 1-2 A is a bond length
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"in a molecule, the scattering intensity is proportional to

I(q) = Z o * (exp (iq-Ryj) ). (15.9)

The sum extends only over those atoms in a single mole-
cule, «; is the atomic form factor of atom 7, and R;; is the
distance separating the atoms ¢ and j. Terms in Eq. (15.9)
which atoms ¢ and 7 are on different molecules have been
omitted because the fluctuations in the phase factor q-Ry;

for these terms make their contribution to the scattered-

intensity small. For two neighboring atoms on the same
molecule, the distance R;; is nearly constant and the con-
tribution to the intensity only decreases as (qR.;) .

In order to carry out the averaging in Eq. (15.9) the
exponential is expanded in spherical harmonics (Messiah,
1964, Chap. 9). Taking into account the axial symmetry
of the nematic

I1(q) = X I:(g) Pi(cosby), (15.10)
=0

where 6, is the angle between q and the director,
Ii(q) = (214 1)d' X aia;*1(qRi;) (Pi(n-vyy) ),  (15.11)
i

71 is the spherical Bessel function, and v;; is a unit vector
along R,;. This result can be simplified by introducing a
set of axes a/, 9’, 2’ fixed in the molecule and referring both
vectors to this set of axes. Then

(Pi(nevy) )= (4o/20+ 1) 20 Vi*(vy) (Ym(n) ),

m=—1

(15.12)

where the ¥ ;™ are the normalized spherical harmonics and
the unit vectors are to be expressed in the molecule fixed
axes. The case / = 2 has been considered in Sec. XIV.B.
Substituting Eq. (15.12) in (15.11)

Iz@) = g: Cin(q) (¥ ™(n) ), (15.13)

where the Ci(q) depend on the molecular geometry':

Cin(q) = 4mi’ Z aio; 1 (qRi) Yim* (vs;) . (15.14)
2,7

The relations between the (V,”(n) ) and the order param-
eters are given in Eq. (14.9). In general there are five un-
known quantities Sqsg- [if the principal axes of this tensor
are known, only the two parameters S and D, Eq. (14.10),
remain_]. For axially symmetric molecules only the term
m = 0 in Eq. (15.13) remains (this would appear to be a
good approximation in many cases as D << .S).

The factor 7;(¢) in Eq. (15.10) can be determined from
an analysis of the angular distribution of the scattered
intensity. The interest in this method lies in the possibility
of obtaining information about the higher harmonics, e.g.,
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! = 4 in the orientational distribution of the molecules. The
NMR method and other methods discussed in this chapter
only give information about the / = 2 harmonics. Measure-
ments on the degree of order in nematics by x-ray scattering
have been made by Delord (1969).

XVI. SMECTIC LIQUID CRYSTALS

The smectic phases of a liquid crystal are layered struc-
tures. In the A and C phases there is no long-range posi-
tional order in the arrangement of the molecules within the
layers and thus each layer resembles a two-dimensional
liquid. Adjacent layers may slip easily over one another. In
the A phase the long axes of the molecules are perpendicular
to the layers, while in the C phase they make a finite angle
to the normal to the layer. Less is known about the low-
temperature B phase. It is associated with a more regular
mosaic structure (Sackmann and Demus, 1966; Taylor,
Fergason, and Arora, 1970). A single domain B phase
gives an x-ray diagram with peaks at certain points of a
three-dimensional reciprocal lattice suggesting a hexagonal
order in each layer (Levelut and Lambert, 1971). It has
been suggested by de Gennes and Sarma (1972) and Martin
et al. (1972) that the B phase differs from a crystal in that
the layers slip easily on each other, i.e., their shear modulus
is zero. Within each layer there is a crystalline arrangement
which can support shears. This model is supported by the
recent observations by Liao ef al. (1973) of propagating

longitudinal and transverse sound wave modes in a smectic
B.

A. Focal conic texture

In the absence of any constraints, the layers in a smectic
A would be flat. The molecules tend to lie parallel to one
another as their side-to-side attractions are relatively
strong. In general, however, a smectic placed between
microscope slides or cooled from the isotropic liquid does
not assume the simple form (with flat layers), but becomes
bent in order to conform to the boundary conditions. The
arrangement is something like the strata in a geological
formation, but the smectic arrangement is simpler because
the layers, while preserving their thickness exactly, can
slide easily over one another and adjust to the surface
conditions. It has been shown from a study of the optical
properties of the smectic texture that the surfaces of the
layers form a series of Dupin cyclides (which we describe
below). An extensive discussion has been given by Bragg
(1934) and more recently by Bouligand (1972), so that a
brief description will suffice here.

The Dupin cyclides are generated as follows. Consider
an ellipse: the locus of the vertices of the circular cones
passing through the ellipse is a set of four hyperbolas, of
which we choose one arbitrarily. This hyperbola passes
through one focus of the ellipse and lies in the plane per-
pendicular to the ellipse which contains the major axis.
Conversely, the ellipse is a locus of the vertices of circular
cones passing through the hyperbola. It is possible to draw
surfaces which are perpendicular to all straight lines which
pass through both conics. These surfaces are Dupin cyclides,
and they have the special property that any two surfaces
are equidistant everywhere. This makes it possible for a
layered smectic structure to assume this form. In the smectic
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FIG. 24. A special case of the Dupin cyclides. The starting ellipse
was chosen to be a circle, and the corresponding hyperbolas degener-
ated into straight lines. Every line (e.g., OA) passing through the
circle and axis is normal to the layers. In general a cone-shaped region
e.g., OAQ’) is filled with the smectic. .

A case the optic axis at any point coincides with the straight
line passing through the two conics.

This arrangement is best illustrated by considering the
simple case where the ellipse becomes a circle and the
hyperbola becomes the straight line perpendicular to the
plane of the circle and passing through the center. The
cyclides are now toruses which are intersected at right
angles by every straight line that passes through both the
circle and its axis. This is shown in Fig. 24. The more general
case is obtained by letting the circle become an ellipse
and the cones in Fig. 24 be pushed over to one side. The
toruses become distorted, but the characteristic properties
of the cyclides are maintained—every straight line passing
through the ellipse and hyperbola is normal to the layers,
and the surfaces are equidistant. The packing of the cones
to fill up all of space, and the optical properties of the
resulting texture, is discussed in detail by Bragg (1934). It
has also been shown by Geurst (1971) that this focal conic
texture of a smectic liquid crystal follows from the appro-
priate Oseen—Frank elastic free energy (see below).

B. Elastic theory of smectics A

The simplest treatment of the elastic theory of smectics
A is due to Oseen (1933). He neglected all changes in
internal parameters such as the density, the distance /
between layers, and the deviation of the preferred direction
n from the normal to the planes, since these distortions
would be expected to require relatively large energies. Thus
Oseen considered only undulations of the layers in which
! is kept constant and the director remains normal to the
planes. The local state of a smectic A may then be described
in terms of the director n(r) which is a unit vector along
the preferred direction of the molecules and normal to the
planes containing the molecules. The condition that the
distance between the planes remain constant can be written

B
l‘lf n-dl = constant, (16.1)

A

where 4 and B are any two points fixed in the medium.
This integral measures the number of layers which is crossed

in going from A4 to B and must be independent of the path.

along which the integral is taken. Thus we must have
curln = 0, and the only allowed distortion is a splay. The
elastic theory of the smectic A structure based on the
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director only will be identical with that derived for nematics
in Sec. III because the two structures have the same sym-
metry properties. Using the condition curln = 0, the
elastic energy [Eq. (3.14) ] reduces to

F = 3kn(V-n)? — x.(n-H)2 (16.2)

A smectic A behaves like a nematic in which ks and ks

have large values so that twists and bends do not occur.
The only allowed deformation is a splay, and the smectic
A can deform into the focal conic texture described in the
previous section (Geurst, 1971).

A small deformation of n is related to the deformation
of the planes containing the molecules in the following
way. In the planar equilibrium state assume that the optic
axis n is along the z axis, and let #.(x, y) be the displace-
ment of a plane in the z direction. This is independent of
z in order that the planes remain equidistant. Then the
deformation of n is given by

on, = —Oou./ox, ony = —0du,/dy. (16.3)

The possibilities for fluctuations are greatly restricted
by the condition curln = 0. For small deformations én(q)
of n with wave vector q, this condition requires that én(q)
vanish except when ¢. = 0, i.e., only fluctuations parallel
to the planes are allowed.

It is thus necessary to generalize the Oseen description
to allow for deformations of internal parameters (de Gennes,
1969b). We let u.(r) be the small displacement of the
planes in the z direction, én(r) the small change in the
director, and Ap(r) the small change in the density. Retain-
ing only quadratic terms in the small displacements, the
elastic energy takes the form

F = ju[(on. + du./0x)? + (6n, + du./dy)%]
+ 34 (Ap)? + $B(0u./92)% + CAp(du./dz)

+ $n(Von)? — fxa(n-H)2 (16.4)

In this expression p is the elastic force constant for rotating
the molecules relative to the normal to the layers, 4 and B
are the compressibilities of the smectic parallel and per-
pendicular to the layers, and C is a cross term between
these two types of compression. We will generally make the

simplifying assumption that u is large, which imposes the
constraint (16.3). Then Eq. (16.4) becomes

F=3A4(Ap)2+ 3B(0u./32)2 + CAp(0u./d2)
+ 3k11(8%u./ 3% + O%u./9y?)?
+ %XaHz[(BMZ/ax)Z -+ (auZ/ay)2]7

i

(16.5)

where we have assumed that the field H is along the z
direction and have omitted a constant term, —x,H? This
is the form for the elastic free energy density of a smectic
considered by Landau and Lifshitz (1958, Chap. 13) and
de Gennes (1969b). Stability requires that 4B — C2 > 0.
Using Ap = —p (e + #yy + #.,) where u,, etc. is the
displacement in the x direction and #., = du./dx, it can
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be written in the alternate form

F = 340 (tee + 1) + (B + Ag? — 2Cp) .2
+ (Ap? — Cp)thos(thae + 1yy) + Fk11(0%u./0x?
+ 9%./8y)? 4 xaH?[ (0u./3x)2 + (du-/dy)?].
(16.6)

It is of interest to compare this with the elastic energy
density of a uniaxial crystalline solid:

F = %Cll (ua:xz + uyyz) + Cl2urxuyy + Cléﬂ‘za(”xr‘ + uyy)
+ %C%uzz? + %Csb(ux; + ug/zz) + (Cn - C;?)uzyz.
(16.7)

Thus a smectic will not support shears (Csp =0, Cyy =
C12). The elastic constants in Eq. (16.6) are related to the
usual elastic moduli C;; by

Ap? = Cy,

Ap2 - Cp = C13, B + Ap2 - 2Cp = C33.

(16.8)

The elastic free energy [ Eq. (16.5) ] can be used to discuss
elastic deformations of a smectic A. We briefly consider the
case of a smectic in which the density is held constant, i.e.,
Ap = 0. Minimizing the free energy with respect to varia-
tions in %, leads to the linear equation

[B(82/02%) — k11(8%/9x% + 9%/9y?)?

+ xH2(8%/9x* + 0%/0y*) Ju.(x, y, z) = 0. (16.9)
This equation, with given boundary conditions, determines
the elastic deformation of the layers. A rough estimate for
the ratio of the elastic constants is (ku/B)Y2 ~ [ where I
is the smectic layer spacing,  ~ 20-30 A. For a deformation
with wave vector ¢, in the xy plane the variation in the z di-
rection has a characteristic length of order (B/ki)2q, 2 ~
(Ig.®)7t> ¢, when ¢,/ << 1. Thus if a smectic plane is
deformed, e.g., on the surface, the deformation will extend
almost unchanged over many planes.

C. Depolarized light scattering

This form for the static deformations of a smectic plays
an important role in the depolarized light scattering by
smectics recently observed by Clark and Pershan (1973)
and Ribotta ef al. (1973). The smectic lies parallel to the
xy plane with optic axis along z (see Fig. 25). It is supposed
that static deformations exist in the smectic which lead to
depolarized light scattering: if the light enters the smectic
as an ordinary ray, part of the light is scattered as an extra-
ordinary ray and vice versa. The deformations lead to a
very small variation in the refractive index in the z direction
and the light scattering is restricted by the condition %,, =
k.. as shown in Fig. 25. The wave vectors %, and k, of the
ordinary and extraordinary waves are given by

Nollg
(no? sin%0, + n.2 cos?,) 12’

(16.10)

ko= (w/c)no, ko= (w/c)
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4 FIG. 25. Geometry to describe depolar-
ized light scattering by static deformations
Ge ko ke in smectics. The wave vectors of ordinary

(ko) and extraordinary (k,) waves are
shown.

where #, and 7, are the principal refractive indices. The
condition ko, = k.. then gives the following relation be-
tween the angles 6, and 6,:

7, COSO,
(n0* sin%0, + 1,2 cos,) Y2’

cost, = (16.11)

In the experiment either k, or k., may be the wave vector
of the incident light, and according to Eq. (16.11) the
scattered light will lie on a circle around the z axis. In
Fig. 25 the case n, > 7, and 6, < 6, has been sketched.

If the incident beam lies in the xz plane then the de-
polarized scattering is determined by the 8e,. component
of the dielectric constant. By symmetry 0¢,. ~ €,(9u./3y)
and thescattered intensity is proportional to e,2g,2(| #.(q) |2),
where q = k, — Kk,. Thus the scattered intensity is zero
in the xz plane (¢, = 0). The scattered intensity would
also be expected to be small for large values of g, as the
amplitude of the deformations will be small at shorter
wavelengths. Experimentally a crescent of scattered light
is observed with zero intensity in the xz plane in qualitative
agreement with the above considerations.

D. Fredericksz transition in smectic A

The possibility of a Fredericksz transition in a smectic
A in a magnetic field has been considered by Rapini (1972).
One possible geometry which he considered is shown in
Fig. 26. The smectic is confined between parallel glass
slides with the boundary condition that the molecules at
the surfaces remain parallel to the surfaces. The layers are
thus normal to the surface at the glass. The magnetic field
H is applied perpendicular to the glass. The results of
Rapini indicate that a transition does occur at a critical
field H, of the same order as that found in the nematic case
(Sec. IV,B). However, for H > H, the distortion increases
very slowly with increasing field and will be difficult to
detect.

This transition can be discussed by generalizing the
elastic theory of smectics A of the previous section. We
neglect all internal parameters and take the elastic energy
in the form

F = 3kn(V-n)’ — jxo(n-H)* + $ E((n — n,) n,)?,
(16.12)

where n, is a unit vector along the y direction. The last term
in Eq. (16.12) is thus quartic in the small deformation 8,
and will determine the rate of increase of the deformation
with field above H.. Dimensional arguments lead to the
rough estimate %,/ E ~ 2, where / is the layer separation
in the smectic. From Fig. 26 we may take the director in
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-\ = X

- ik FIG. 26. Fredericksz transition in

4 T — \ ¢ a smectic A.
— —

the form

-

7, = sinf(x) 7y = cosf(x). (16.13)
Substitution of Eq. (16.13) into (16.12) and minimization

of the elastic energy with respect to 6 leads to the equation

k11 cosb(d/dx)[cosf(d8/dx) ]+ (E + x.H?) sinf cosd
— Esin = 0. (16.14)

If this equation is linearized in 6, it is found that a non-
trivial solution satisfying the boundary conditions is first
possible when the field reaches the critical value

H, = (n/d) (k11/xa)""* (16.15)

which is the same as in the nematic case. From Eq. (16.14)
we obtain the first integral

k11 cos?0(dB/dx)? = (E + xoH?) (cos® — cosn)

— 2E(cosf — cosBn), (16.16)

where 0, is the maximum distortion at x = 0. From this
equation we obtain the inequality

(xoH? 4+ E) (cosb + cosfn) — 2E > 0 (16.17)

which leads to

cosbm > [1 + (xHY/E)T* or 0.2 < 2xH?/E.

(16.18)

Thus we expect 8,2 < 2(l/£)?, where £ is the magnetic
coherence length. At the transition £ ~ d and thus 6, is
very small. This result is a consequence of the fact that it
costs a large energy to rotate the molecules relative to the
normal to the layers. The transition has been called a
“ghost” by Rapini and is probably not observable.

E. Fluctuations in smectic A

In order to study fluctuations in a smectic A we introduce
the Fourier transforms of the fluctuations in density and
layer displacement

Ap(r) =

V=12 37 exp(ig-1) pg Pa = p—q*
q

u,(r) = Upq = Usq™. (16.19)

V=12 37 exp(4q-1) u.q
q

Substituting in Eq. (16.5) and integrating the elastic energy
density over the volume V of the smectic, we find the
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elastic free energy
Feo = % Z [A | Pq |2 + (quz + k119L4 + XaHZQ_L2) I Uzq fz
q .
+ 'L.CQzuzqP—q]- (16.20)

Using the equipartition theorem, we find the mean square
fluctuations

Uoult) = 25 (G )
A Bg? + kng.t + XoH%q,*
kT
BQz2 + kIIQJ_4 + XaH2QL2
iCqs kT
A Bg?+ kug.* + xaH?q.?’

(lueq [*) =

(Meqpq) = (16.21)

where B = B — (C%/4).

The mean square fluctuation of a layer is

(u?) =

f dq (| 2q 2). (16.22)
q<gm

1
(2m)?

We have introduced a cutoff g» at short wavelengths where
the expressions (16.21) break down. Substituting Eq.
(16.21) in (16.22) and carrying out the integration, we find

| (2 )~ [k T /47 (kuB)'2] In2¢mé, (16.23)

where £ is the magnetic coherence length. The mean square
fluctuations of a layer thus diverge in an infinite sample
when H — 0.

The instability of a layered structure, periodic in one
direction, has been discussed by Landau and Lifshitz
(1958, Chap. 13), de Gennes (1969b), and also in Sec. X
in the case of the cholesteric structure. The smectic struc-
ture is readily stabilized by a magnetic field or by bound-
aries. Using the numerical values B = 10" ergs/cm?, ky; =
10® dyn, x, = 1075, H = 1 G, and ¢» = 10" cm™, We find

((w2)z =1 A Wthh is small. These fluctuations can have
the effect of blurring the distinction between the “ordered”
(smectic) and disordered (nematic) phases. In finite regions
or in the presence of a field H it is possible for order to exist.
The transformation from nematic to smectic phases need
not be marked by a phase transition since there is no sym-
metry being broken.

F. X-ray scattering

The effects of fluctuations of the layers on the scattering
of ‘x rays has been considered by Caille (1972). Denote
the position of the nth layer in a single domain smectic by
%, = nl + u,.(p), where u,. is the displacement of the
layer and ¢ = «, y. The intensity of x-ray scattering with
wave vector transfer q is proportional to

I(q) = [f1* 22 [ de exp(ig.nl) exp(iq.-e)Gn(p),

(16.24)
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where f is the molecular scattering factor (assumed iso-
tropic) and

Gu(e) = (explig:(u.(e) — u0(0))]) (16.25)

gives the effects of fluctuations. Using a continuum ap-
proximation [as in Eq. (16.5)7], G.(g) = G(r), where

G(r) = exp{—[q¢.2/(2m)*] [ dq’

X [1 — exp(—iq"-1) J{| ud” [*)}. (16.26)

The mean square fluctuations (with H = 0) are given in
Eq. (16.21), and (16.26) can be evaluated to give

G(r) = exp(—M) (B/4n%az)¥ <L az .
= exp(—2M) (I/2mp)?X p*> az (16.27)
where A
M = kgTyn/2Bod?, - X = kgTw/2Bal?, * = ky/B,
(16.28)

and v is Euler’s constant. The integral in Eq. (16.26) has
been cut off at ¢’ = 2n/l. M is the Debye-Waller factor
in which we have set g. = 2w/l corresponding to the first
Bragg reflection. The dependence of the x-ray intensity
on ¢ is obtained by substituting Eq. (16.27) in (16.24). For
the two principal directions

1) ~ . — @n/D) 4%,
g. = 2m/l.

q. =0

—1+2X
~qy ,

(16.29)

In a smectic X ~ 1 and the dependence of the intensity on
wave vector is anisotropic and very different from that in
a crystalline solid (where X = 0). The anisotropy arises
because the fluctuations of the smectic layers are more
strongly correlated in a direction perpendicular to the
layers than parallel. The anisotropy in the intensity has
been observed by Diele ef al. (1972a). Close to the smectic—
nematic transition B — 0 and M and X both become large.
In this case the harmonic approximation used here is not
valid.

G. Light scattering in smectic A

The scattering of light is determined by the fluctuations
in the dielectric constant. By symmetry we can relate these
fluctuations to the fluctuations in the orientation, density,
and layer spacing « by

O€zz = GlAp —+ b_L (au/az) ,
de.. = a))Ap + b)) (0u/0z),

der. = —e,(Ou/9%),
0€y, = —eu(au/éy), (1630)
where €, = €| — €, is the anisotropy in the dielectric con-

stant and ¢ and b are certain coefficients. An interesting
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case is that of depolarized light scattering which is deter-
mined by de;. or d¢,.. From Eq. (16.21) we have

e’k Tq.?
b6 (q) |?) = 3 . 16.31
(] dexz(g) 2) Boi T Figd + wia? ( . )
This becomes large ¢. = 0 and then
(| 8e:2(q) ') = e’kpT/ (kuigs* + xaH?) (16.32)

which is of the same form as found in a nematic. The large
scattering occurs from the thermal undulations of the layers.
The condition ¢. = 0 could be achieved by scattering from
the surface waves on a smectic or by very precise alignment
of a single crystal. This latter condition is difficult to achieve.
From Eq. (16.31) we require the angle ¢ between ¢ and the
layers to be ¢ = q./q~~ (ku/B)Y2q~~ gl = 10~ — 10~%. Bril-
louin scattering from the density fluctuations in a smectic
A has been observed by Liao et al. (1973) and will be dis-
cussed further below.

H. Dynamics of fluctuations in smectic A

The character of the modes of a smectic A depends on
the direction of propagation. We assume that the smectic
layers lie parallel to the xy plane. For a general direction of
propagation gz, ¢. # 0 it was shown by de Gennes (1969b)
that there are two propagating sound wave modes and one
overdamped transverse viscous mode. The propagating
modes are a mixture of longitudinal and transverse modes.
In the case ¢. = 0 (propagation along the layers) there is
one propagating longitudinal mode, one overdamped shear
mode, and a very slowly damped undulation mode. In the
case ¢, = 0 (propagation perpendicular to the layers) there
is one propagating longitudinal mode and two viscously
damped shear modes. The smectic A is thus intermediate
between a solid (three propagating modes) and an isotropic
liquid (one propagating mode and two overdamped shear
wave modes).

The equation of motion of the smectic A is

p(0vi/ot) + (8/9x;) Tij = 0, (16.33)

where v; is the velocity and 7%; is the stress tensor. The
reactive part of the stress tensor, 7, is determined from
the elastic energy [Eq. (16.6)]. Using Ap = —p(#tzs +
Uyy + #..) where ., = u./0x, etc. and u,, u,, and u, are
the displacements in the «, v, and 2 directions, we find

sz(r) = —APZ(Ma:x + uzz) + Cpuzz,
T:ez(r) = _Apz(uz’z + ”zz) + Cp(%m + 2”53) - Buzz,
T = [k (8%/99%) — xaH2(8/3%) Juts. (16.34)

We assume, without loss of generality, that the disturbance
is propagating in the xz plane and denote the wave vector
by @ = ¢., ¢.. Thus terms in #,, are zero.

The viscous part of the stress tensor T;® is taken to be
symmetric. The most general form consistent with the
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uniaxial symmetry of a smectic A is
T = - (mdur + nedimng) 8:5

— (sl + nadrimxng) nin; — nsdyj.

Substituting Eqs. (16.34) and (16.35) in (16.33), and
assuming that the disturbance varies with time like
exp (—iwt), we obtain the three equations

Cow + (3/2) g*nsJo, = 0, (16.306)
o[ po? — AP + 1w (g2 (m + ns) + 3¢2n5) ]
- ’Iftz[_—_Ap2 - Cp — w (7]1 + n + %775) ]quz = O) ‘
(16.37)

uz[pw“’ - pq.f(Ap - ZC) - qu - 932(k11q12 + Xqu)
+ iw(g.2nr + 3g2m5) ] — u Ap* — Cp

— iw(m + ms + 375) 1goq: = O, (16.38)
where nr = m + n2 + 73 + ns + n5. Equation (16.36) leads
to an overdamped transverse mode familiar in isotropic
liquids. We first consider Egs. (16.37) and (16.38) in two
special cases:

(i) g. = 0. Equation (16.37) leads to a propagating
longitudinal sound wave mode with dispersion relation

w? = pAq? — iwg[ (m + ns)/p]. (16.39)
Equation (16.38) leads to two overdamped modes with
approximate dispersion relations

ws = —2i(kug? + xaH?) /15,  wr = — (i/2p)nsgc>

(16.40)

These modes are very similar to the slow and fast relaxing
modes of nematics (see Sec. VIII). The slow mode in this
case is an undulation of the layers.

(ii) ¢- = 0. Equation (16.37) leads to a viscously damped
transverse mode of exactly the same form as Eq. (16.36), as
must be the case from symmetry. The longitudinal sound
wave mode is described by Eq. (16.38) and has dispersion
relation

w? + dwgnr/p — ¢ Ap + (B/p) —2C]1= 0. (16.41)

(ili) ¢z, g.# 0. In the case of a general direction of
propagation, Eqgs. (16.37) and (16.38) lead to two propagat-
ing sound wave modes. To determine the velocities of these
modes, we neglect the viscosity coefficients and the small

terms in k1; and H2. The dispersion relation for these modes
is

ot — ?{Apg? + [Ap + (B/p) — 2CJg.%}
+ (BA — g2 = 0. (16.42)
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The two sound velocities thus satisfy the relations
s+ s = Ap+ [(B/p) — 2C] cos?
si2s32 = (AB — C?) sin%f cos?, (16.43)

where 6 is the angle between the direction of propagation
and the normal to the smectic planes.

Liao, Clark, and Pershan (1973) have observed the
Brillouin scattering from monodomain samples of 8-methyl
butyl p((p-methoxy benzylidine) amino) cinnamate in the
smectic A and B phases. Their results confirm that there
are two propagating sound waves in the smectic A struc-
ture, and they have measured the three elastic constants
A4, B, and C. The orientational dependence of the velocities
also agrees well with that predicted by Egs. (16.43). In
the smectic B phase Liao et al. observed three propagating

.. modes, which is consistent with the assumed crystalline

ordering within the layers of this phase.

I. Molecular field description of the smectic A

. Phase

The Maier-Saupe molecular field description of the
nematic phase (Sec. II) has been extended by McMillan
(1971) and Kobayashi (1971) to describe the smectic A
phase. An additional order parameter is introduced to
describe the positional ordering of the molecules in the
layered structure. As in the Maier-Saupe theory, McMillan
assumes that the ordering arises from the angular-dependent
attractive interaction between molecules. The specific form
for the potential used was

V(rap,va-vs) = (3 cos?ap — 1)

278123

X exp(—ras?/7?), (16.44)
where C is a constant, 7,5 is the distance between the centers
of mass of the molecules A and B, 6,3 is the angle between
their molecular axes v4 and vg, and 7, determines the range
of the force.

In the molecular field description the potential (16.44)
is replaced by an effective potential for a single molecule

V(ra,va) = Ny [ drg dvg P(rg,vs) V(Tan, va-vs),

(16.45)

where P(r,v) is the probability of finding a molecule at r
with orientation v and N7 is the number of molecules. We
will assume that the smectic A phase is uniaxial and that
the positional ordering takes place in planes normal to the
z axis. In this case the probability P only depends on the
coordinate z and the angle 6 that the molecule makes with
the z.axis; it can be expanded in a Fourier series:

P(r,Vj = (1/2xV)[PO(8) + PV () COS(Z%Z/I) +---],
(16.46)

where V is the volume. The effective one-molecule potential
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can also be written in this form

I

V(r,v) V(z,6)

Vo(8) + Vi(8) cos(2xz/l) ++--,

I

where

Vo(6a) = (NV/2x) [ drg dvg P®(0s) V (raB, va-Vs),
Vi(6x) = (N/ZT) fdrB dvg PV (05) V (7aB, Va-VsB)

X cos(2m/l) (24 — 2zB), (16.47)

and IV is the number density. With the potential assumed
by McMillan, Eq. (16.44), we find
Vo(0) = —AoS(1 — 3 sin%),

V1(0) = ——Aocw'(l - %sin20), (1648)

where 4o = NC, a = 2exp[— (77y/1)%>], and the order
parameters are defined by

S = / sinddo P® (6) (1 — 2 sin’)

0

o=13 / $inddd P® (0) (1 — § sin’6). (16.49)
0

The order parameter .S describes the orientational ordering
and is the same as that of Maier and Saupe. The order
parameter o is related to the ordering of the molecules into
layers and is a measure of the amplitude of the density wave
along z.

The theory is made self-consistent by choosing the dis-
tribution function to be
P(r,v) = (L/2xVI) exp(—V (z,0) JkT), (16.50)

where L is. the length of the specimen in the z direction
and the normalization constant is

7= /OL ds / $inddd exp[ — V' (z, 8) /B T]. (16.51)

0

Comparing Eq. (16.46) and Eq. (16.50), we have

L
PO(9) = I f dz exp[—V (z,0)/kT]
0

PO(G) = 21—1‘/& dz cos(2wz/1) exp[—V (2, 0)/kT].
0
(16.52)

When these results are substituted in Eqgs. (16.49), we
obtain the two self-consistency requirements

L T
S =17 / s f sindd8 exp[ — V (,6) /kT](1 — 2 sin’]
0 1]

L T :
g = 1‘1/ dz/ sinfdf exp[ —V (2, 0) /kT]
o 0
X cos(2mz/l) (1 — 2 sin%). (16.53)
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There are three possible solutions to these equations.
(a) S=a=0 isotropiclliquid phase.

(b) S # 0, ¢ = 0 nematic phase.

(c¢) § # 0, ¢ £ 0 smectic phase.

The most stable phase is that which minimizes the free
energy per particle

= —(A40/2)(S?+ ao?) — kT Inl. (16.54)
The two equations (16.53) have been solved numerically
by McMillan to obtain the order parameters, transition
temperatures, entropy, and specific heat. Two parameters,
Ao and «, enter the theory. The nematic-isotropic transition
temperature 7' is determined by Ao. The other parameter
a = 2 exp[ — (wry/1)*] varies between 0 and 2 and deter-
mines the smectic-nematic transition temperature 7sn.
Tsx is an increasing function of o and coincides with T,
for o = 0.98. The smectic-nematic transition is of second
order for @ < 0.7 and of first order for 0.7 < a < 0.98. The
orientational order parameter is continuous at a second-
order smectic-nematic transition and changes discontinu-
ously at-a first-order transition. Possible second-order
nematic-smectic phase transitions have been reported by
Doane et al. (1972) in the homologous series 4-n-alkoxy-
benzylidene-4’-phenylazoaniline and by Cabane and Clark
(1973) in 4-nitrile-benzilidine-p-NV octyloxy-aniline.

McMillan has argued that the layer spacing [ is deter-
mined by the length of the molecule while the range of the
force 7, is determined by the interaction of the central
core of the molecules. On this assumption « increases with
increasing length of the molecules in a homologous series of
compounds in which the central core of the molecule is the
same and the length is determined by the attached alkyl
chains. This is in qualitative agreement with the phase
diagrams of homologous series studied by Arnold (1968).

Recent x-ray measurements by McMillan (1972) on
cholesteryl myristate indicate that the order parameter
varies more rapidly with temperature in the smectic phase
and exhibits a smaller jump at Tsy than predicted by the
above model. The reason for the large jump in the order
parameters at 7sn in the model is the strong correlation
between the orientational and positional order parameters.
McMillan (1972) has modified the above model by including
an attractive s-wave potential, which relaxes this correla-
tion, and obtained better agreement with experiment.

‘J. Landau theory of nematic-smectic A transition

The Landau theory of the nematic—smectic A transition
has been considered by de Gennes (1972a) and McMillan
(1972). A useful analogy between smectics A and super-
conductors has been pointed out by de Gennes (1972a). The
order parameter in a smectic A determines the amplitude
of the density wave. Retaining only the lowest Fourier
component, we can write the density as

p(r) = po+ 3 exp(2miz/l)x(r) + c.c.], (16.55)
where po is the average density and the order parameter
x(r) is a complex quantity slowly varying in r: The phase
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of x determines the position of the layers. Near the nematic-
smectic transition we assume that x is small and expand
the free energy density in powers of x: ‘

g= g+ A(T) | x P+ 3B | x |*+ 3mi | 9x/0z2 |?
+ 3mH | [0/0x — (2wi/l) om.Ix |?

+ | [o/0y — (2mi/1)ém, Ix [P}, (16.56)

where g, is the free energy density of the nematic state. It
has been assumed that the smectic layers are parallel to the
xy plane and the fluctuations in the director, é#,,, are
included in order that the free energy be invariant under
small rotations of the layers. The condition that x is small
is satisfied in the nematic state and in the smectic state if
the transition is of second order. We assume that the coeffi-
cient A(T) = A’(T — Tsx*), where Tgx* is close to the
nematic-smectic transition temperature (for a second-order
transition Tsn* = Tsx) and B, m;, m; are constants.

The free energy [Eg. (16.56)] is of exactly the same
form as the Landau-Ginzburg free energy density for a
superconductor (de Gennes, 1966) if we identify én with
the vector potential. This analogy can be carried further:
the condition that the layer separation in the smectic is
constant is

I Fn-dl =0 (16.57)
where the integral is taken around a closed circuit in the
smectic. This condition is equivalent to the flux quantiza-
tion in a superconductor.

In the presence of elastic distortions the free energy
density [Eq. (16.56) ] must be supplemented by the elastic
free energy density

gt = 3ku(Ven)2+ 3kop(n-curln)? + 3ks(n x curln)?

(16.58)

It is useful to define a quantityh = (2x/I) curl n, analogous
to a magnetic field, and then the last two terms of Eq.
(16.58) are equivalent to the magnetic field energy density
in a superconductor.

Two important types of lengths enter into Egs. (16.56)
and (16.58):

(a) coherence lengths & = [2mA (T) ]2, where m may
be either m,; or m, These lengths determine the distance
over which a local perturbation .affects | x |. For example,
the core of a dislocation in the smectic phase is of dimension

3

(b) penetration depths N = (I/27) (mkB/A)Y2. A small
twist or bend deformation applied to the surface of a smectic
penetrates a distance A into the bulk smectic (% is the
appropriate elastic constant; ks, for twist and ks; for bend).

The order parameter and director are determined by
minimizing the free energies (16.56) and (16.58). The
resulting equations have been extensively studied in the
theory of superconductivity (de Gennes, 1966), and this
analogy leads immediately to the following results in the
case of a second-order transition.
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(1) A splay deformation does not couple to the order
parameter | x | if the phase of x is chosen appropriately.
Thus a splay deformation, i.e., undulation of layers or
focal conic structure, will not affect Ts.

(2) As in a superconductor the ratio x = A\/£ plays an
important role. When h = (2x/l) curln is nonzero (i.e., in
the presence of twist or bend), two types of behavior can
occur depending on the value of k.

(a) If k < 1/V2 the smectic behaves like a type I super-
conductor and the nematic-smectic transition is first order
for finite h. The transition temperature Tsx (%) is deter-
mined by equating the free energies of the deformed nematic
state and the smectic state:

(k/2) (curln)?2 >~ A Tsn(h)]/2B (16.59)

with kB = ks, kg for twist and bend, respectively. In the
smectic state the twist or bend is excluded. This is the
analog of the Meissner effect in superconductors.

(b) If k > 1/V2 the smectic behaves like a type IT super-
conductor and shows a mixed state. In the smectic mixed
state the deformation % is relaxed by the formation of a
regular array of dislocations. Thus if a deformed nematic
state is cooled, a second-order transition to a smectic mixed

state occurs at a temperature Tsx™ given approximately
by

| b |mg? = x
or

A (Tsx — Tsx™) = (1/2m) | 1|, (16.60)

where m = m, for twist and m = (mmm,)'2 for bend de-
formations. If the deformation described by % takes place
over a distance d, then %~ 2r/dl. Using the estimate
2mA' Tsn X &2~ 172 the decrease in the transition tem-
perature is )

(Ten — Ten™)/Tsn =2 1/d (16.61)

which may be measurable.

(3) The twist and bend elastic constants ks, and ks are
analogous to the susceptibility in the superconducting
case. In the nematic phase, at temperatures, just above
T'sn, fluctuations will lead to an increase in these elastic
constants. This is the analog of fluctuation diamagnetism
in superconductors (Schmid, 1969). The order parameter
vanishes on the average in the nematic state, but close to
Tsx fluctuations lead to the formation of smectic droplets

. of size £ These droplets do not accept twist or bend de-

formations, and thus give rise to an increase in the elastic
constants ky» and ks. The order of magnitude of the
effect is simply estimated as follows: the free energy
density associated with a deformation 6% of extent £ is
(1/2m) (2mw/1)26n? | x |%. This leads to a contribution to an
elastic constant of 8k~ (1/2m) (2x/1)%8| x 2. The free
energy required to produce a fluctuation in | x |2 of volume
£ 1is A(T) | x |?8 ~ kpT, which gives | x [~ 2mkpT/E.
Thus we obtain the estimate 6k ~ (27/1)2%kzT&. The exact
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- results (de Gennes, 1972a) are

5k22 = (7rk3 T/6'mglf") [ml/A ( T) ]lﬂ

"8kss (wkegT/61%) [m, A (T) 2.

Il

(16.62)

In each case the fluctuation contribution is predicted to
increase as (7" — Tsx)™*. The molecular field description
gives » = % while an analogy with critical phenomena
suggests y =~ 2,

A large increase in the bend elastic constant near the
smectic A transition has been observed in p-butoxyben-
zylidene-p’-B-methylbutylaniline (BBMBA) (Cheung and
Meyer, 1973) and in p-cyanobenzylidene-p’-octyloxy-
aniline (CBOOA) (Cheung, Meyer, and Gruler, 1973;
Cladis, 1973) using the Fredericksz transition technique. In
BBMBA the nematic—smectic A transition is weakly first
.order and the exponent » >~ 3. In CBOOA recent volumetric
studies (Torza and Cladis, 1974) show that the transition
is also (very weakly) first order. The temperature de-
pendence of the bend elastic constant in the purer samples
(Cladis, 1973) gave an exponent » >~ 4. The splay elastic
constant in these materials showed no anomaly as expected
theoretically. The twist elastic constant in CBOOA has
been measured by Rayleigh scattering by Delaye, Ribotta,
and Durand (1973). The fluctuation contribution was
found to diverge with an exponent » ~ 2.

(4) The liquid structure factor .S(¢) has been measured
by x-ray scattering in several liquid crystals by McMillan
(1972, 1973). Strong pretransitional scattering was ob-
served in the nematic phase just above Tgx and interpreted
using the Landau theory. From Egs. (16.55) and (16.56)
the contribution to S(q) from fluctuations in x is (neglect-
ing director fluctuations)

ksT ,
A(D) {1+ &2 g- | — Q@n/D) P+ E2?}
(16.63)

S(q) =

where £; and &; are the two coherence lengths. The scattered
intensity-as a function of ¢ is a Lorentzian centered at the
position of the first Bragg peak. McMillan (1973) has
obtained values for 4, &, and & from the x-ray data on
p-n-octyloxybenzylidene-p’-toluidine and confirmed the
wave vector dependence in Eq. (16.63). The observed
temperature dependence of these parameters in this liquid

crystal agreed with the molecular field predictions.
®

K. Elastic theory of smectics C

In the smectic C structure the preferred direction of
alignment of the molecules is tilted away from the normal
to the layers. A smectic C can then be biaxial (Taylor,
Fergason, and Arora, 1970) whereas a smectic A is uniaxial.
The elastic theory of smectics C has been considered by the
Orsay group (1971b) and by Rapini (1972). This theory: is
the analog of the Oseen description of smectics A, and all
changes in internal parameters (density, interlayer distance,
and tilt angle) are neglected. The Orsay group used the
Lagrangian description for the elastic strains in which a
vector Q(x, y, z) describing the local rotation is introduced.
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In order to be consistent with the elastic theory for nematics

. (Sec. III), we use an alternative Eulerian description based

on the director. This is compared below with the Orsay
theory in Sec. XVI,K2.

1. Eulerian description

The unperturbed smectic C structure is taken to be a
planar layered structure with the z axis perpendicular to
the layers. We introduce two unit vectors x and n; x is
normal to the layers and n is along the preferred direction
of the molecules as shown in Fig. 27. In the unperturbed
state k¥ = ¥ is along the z axis, and n = ny lies in the xz
plane making an angle 6, with %o. A small elastic distortion
is described by the components k., «, of ¥ and 6%, = n, —
Hor, 1y and 6m, = n, — no, of n. In the Oseen description
the constraints are

(a) n? = 1;i.e., ng-dn = én, sinfy + on, coshy = 0.
(16.64)
(b) n-x = cosby; i.e., the tilt angle is constant. Together
with Eq. (16.64) this gives
07y = Ky COSHy

01, = — Ky Sinb. (16.65)

(¢) curl x = 0; i.e., the distance between layers is con-
stant. In terms of the components . and «,, this condition is

Okz/ 0% = Ok,/0z = O

Oky/dy = dk,/0x. (16.66)
We can thus define six independent curvature strain com-
ponents

ay = dn,/dy a = dn,/dz az = dn,/ox

@y = OKk,/0x as = éhcy/aj)

ag =. £(9ks/ 0y + 9k,/0x). (16.67)
We now proceed, as in the nematic case, to expand the free
energy density up to terms quadratic in the curvature
strains:

6
2o a0,
7,7=1

6
g= o+ 3% (16.68)
i=1

where the « are the curvature elastic moduli. The symmetry
properties of the smectic C structure places restrictions on
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these elastic moduli which may be determined as in the
nematic case. For nonpolar, optically inactive molecules
all the linear terms vanish and the most general expression
for the elastic energy density contains nine elastic constants:

g = %au(”yy)z + %a22(nyz)2 + %a«?'&(%yz)z + a23nyznyx
+ %0544'{%2 + %a%’(yyz + a45szkyy + 1470y Ko

+ ausnyyryy, (16.69)

where 7,, = dn,/dx etc. Certain terms which only con-
tribute to surface energies have been neglected. The first
four terms in Eq. (16.69) refer to rotations of the director
without any distortion of the layers. The elastic moduli
aus, o5, and ays refer to undulations of the layers, and the
last two terms are cross terms between these two types of
elastic strains. The stability of the smectic C structure
imposes the following inequalities on the elastic moduli:

ay, age > 0, Qooisy > atog?, anoy > ond

(01110655 - 01152) (dna44 - 04142) > (01110145 - a14a15) 2.

(16.70)

The elastic energy is used below to discuss some possible
types of Fredericksz transitions induced by applying a
magnetic field to a smectic C (Rapini, 1972). As in the
smectic A case, all transitions involving a distortion of the
layers are probably not observable, as the distortion of the
molecular alignment increases very slowly with increasing
field. Thus for the discussion of the Fredericksz transition
we need only retain the first four terms of Eq. (16.69). It is
convenient to introduce a vector n, = n — (n-x)xp which
lies in the plane normal to %, and satisfies n;2 = constant.
In vectorial notation the elastic energy density is

g = %au(V-nl)Z + %azzl(n¢'cul‘ln_g)2 + %aaa(K()‘CurlnL)?

— aog’(n -curln,) (xo-curln,), (16.71)

where o’ sin®y = aws, aws’ sinfy = awg. The first three terms
of Eq. (16.71) are analagous to splay, twist, and bend in
nematics, respectively. These types of rotations were first
discussed by Saupe (1969). This expression may be general-
ized to a cholesteric type of smectic C where the tilt
angle varies linearly with z by replacing n,-curln, by
n,-curln; + {n,* where the full pitch is 2x/4.

2. Lagrangian description

The Orsay group (1971b) has used the Lagrangian
method to describe the strains in a smectic C. In this de-
scription a vector Q(r) whose direction gives the axis of
rotation and whose magnitude gives the angle of rotation
of the medium at r is introduced. The elastic energy density
can be written in terms of Q by noting that the changes in
the unit vectors x and n are related to Q by

K—’K(): Q X Ko
n—n = Q xn, (16.72)
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The constraints (16.66) can now be written
sz = Qyz =
Qtz ny =Y, (1673)

where @, = 0Q./dy etc. Substituting these results in Eq.
(16.69) gives o
g = %1411&2:46.1:2 + %A219xy2 + %A 12511;:1:2 + %‘Blﬂz:c2 + %32921{2
+ %Biigzz? + Blsﬂzzgzz + Clgzc:cﬂzz + CZszSZzy
(16.74)
where we have used the notation of the Orsay group for

the elastic moduli. The relations between these elastic
moduli and the «;; are (with s = sinfy, ¢ = cosf)

Au = cPogs + 2045 + 2cas, Ao1 = o + o5 + 2cay5,

Ay = 44, B, = ‘Sza.sa, B, = S?an, B; = ;20422,
By = s2a23, Cl = —S(Cazs + am),
C = —S(Can + a15) . (1675)

L. Fredericksz transition in smectic C

There are a wide variety of geometries in which an ex-
periment to measure the distortion produced by an applied
magnetic field (Fredericksz transition) can be made. A
number of important cases has been considered by Rapini
(1972). The smectic is confined between parallel glass
slides, and it is supposed that the boundary conditions at
the glass are such that the molecular orientation is fixed
at the boundary. Rapini has shown that all transitions
requiring a distortion of the layers are probably not ob-
servable because the distortion of the molecular alignment
increases very slowly with increasing field. The interesting
cases thus involve a rotation of the preferred direction n
about the normal to the layers. We denote the three princi-
pal susceptibilities of the smectic by x;, 2 = 1, 2, 3. x3 is
the susceptibility along n, x; the susceptibility perpendicular
to n in the xz plane (Fig. 27), and x. is the susceptibility
perpendicular to both these directions. The type of
Fredericksz transition depends on the relative orders of
magnitude of these ‘susceptibilities. We consider three
principal geometries in Fig. 27 in which the enclosing glass
slides are parallel to the layers.

(a) H || no. If x» > x3 the field will induce a twist of the
director n about the z axis. Introducing »,, = sinf cos¢(z),
ny, = sinfy sing(z) in the elastic energy (16.71), and in-
cluding the magnetic energy, we find (again s = sinfy,
¢ = cosby)

g = 3as?(3¢/32) — FH x15%c*(1 — cosg)? + xos? sin’p
X x3(s% cosp + ¢2)%]. (16.76)

Retaining only the terms quadratic in ¢ in Eq. (16.76), the
critical field is found to be

o= ()"
d \x2 — x3

(16.77)
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(b) H 1 n, with H in the xz plane. If x» > x: the field
will induce a twist of n about the z axis. The critical field
may be shown to be

) (7% 1/2
H = — .
cd \x2 — xa

(c) H along vy axis. The field can again induce a twist in
n around z. The critical field is

I s < o )1/ 2
‘ d \x16® + x38 — x2 ’

In general we expect x3 > x2 ™ x1 in which case (a) will
not occur and (b) may not occur, or occur only for ex-
tremely large fields, and the important case is (c). We
refer the reader to the article by Rapini (1972) for a dis-
cussion of other geometries in which a Fredericksz transition
may occur.

(16.78)

(16.79)

M. Fluctuations in smectic C

The Fourier transforms of the fluctuating quantities 7,
k=, and &, are introduced in the elastic energy [Eq. (16.69) ]:

G = 32 [(ang? + ang.® + ong.? + 209:9:) ‘ Myq |2
a

+ auge® | Keq [P+ asss® | Kuq |2+ 2045029y Kaqky—q

+ 2014gaGykaatty—q + 20150, Kyaty—a - (16.80)

The constraint (16.66) requires that k.q = Kkyq = O unless
g. = 0. We thus consider the two cases:

(a) g» # 0, kzq = Kkyq = 0. The only fluctuations that
occur are constrained to take place without distortion of
the layers. The mean square fluctuations in 7, are

kT
aan + a229z2 + a339x2 + 20&239@% )

(Ima 7y = (16.81)

(b) ¢. = 0. In this case it is possible to have fluctuations
in which k.q, ky,q 5 0. These fluctuations are-undulations in
the layers and are quite similar to those occurring in a
smectic A.

The fluctuations in the dielectric constant are

dei; = € (10:0m; + n0;0m.), (16.82)
where ¢, is the dielectric anisotropy (the structure is as-
sumed approximately uniaxial). The components are given
by

65951: =

2€,5CKz,

beyy = 0, €., = — 2€,5CK«

O€ry = €57y, O€z: = €,(C* — %) Ky, O€y, = €.

(16.83)

The most interesting fluctuations, special to the tilted
smectic- C structure, are those involving #,. These would
appear in depolarized light scattering (involving de,, or
de,.). These fluctuations probably explain why the smectic
C phase is more turbid in appearance than the A phase,
where strong fluctuations and scattering can only occur
when ¢, = 0.

The Rayleigh scattering of light by a smectic C liquid
crystal, 4 —4’ decycloxybenzilidene 3 chloro phenylene-
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diamine, has been observed by the Orsay group (1973).
From the observed polarization selection rules the scattering
could be attributed to the thermally excited twist fluctua-
tions discussed above. The fluctuations are purely damped
as in nematic liquid crystals.

N. Landau theory of smectic A-C transition

The ordered smectic C state can be described by giving
the magnitude 6 of the tilt angle of the molecular axes with
respect to the normal to the smectic planes and the azi-
muthal angle ¢ of the direction of the molecular axes. An
appropriate order parameter to describe the order in
the smectic C state is thus the complex number x = sinf
exp(i) = x= + ixy (de Gennes, 1972b; 1973). Assuming
that x is small near the transition temperature 7Txc the
free energy density is expanded in powers of x:

g=g+a|x*+3b|x4 (16.84)
where ga is the free energy density of the A phase and a
and b are temperature-dependent parameters. The free
energy is independent of the angle ¥. In the presence of
spatial variations of the order parameter the distortion free
energy density may be taken in the same form as for nema-
tics (de Gennes, 1973) [see Eq. (4.1)]. In the present case
the director has the form n = (xs, x,, 1) and substituting
in Eq. (4.1) we find

ga = 5k1(8xz/0x + 9x,/9y)? + 3ks(9x2/ By — 9xy/0%)?
+ 3k3((0x2/92)% + (9xy/02)%). (16.85)

It was first pointed'out by Parodi (see de Gennes, 1973)
that three elastic constants are involved.

De Gennes (1972b) pointed out that the A transition
in “He is described by a similar two-component order param-
eter, and he suggested that if the A-C transition is of second
order, the critical exponents may be the same as those in
“He. From Eq. (16.84) and the analogy with *He the follow-
ing results are obtained:

(a) The tilt angle (order parameter) just below Tac
is given by

Ix| = —a/b~ (Tac — T)*# (16.86)

with 8 ~ %.

(b) The mean square fluctuations in x of wave vector q
in the A phase close to Tac are

(Ixa ") = kaT/a(T) ~ (T — Tac)™, (16.87)
with v ~ 1.3. The mean square fluctuations in the di-
electric constant, de.. and de,., are proportional to Eq.

(16.87), and a strong divergence in the intensity of de-
polarized light scattering close to Tac should occur.

(¢) If a magnetic field H is applied in the xz plane,
to first order in x, an extra magnetic energy density
—3¥xaH-H.(x + x*) must be included in Eq. (16.84). This
field produces a nonzero tilt angle in the A phase (ignoring
distortion of the layers)

Xe = 8inb = IxoH.H,/a(T) ~ (T — Tac)™. (16.88)
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For H = 10* G and T — Tac = 1°K, de Gennes (1972b)
has estimated @ ~ 3.10~* rad which may be detectable.

The smectic A—-C transition may be more complicated
than that considered here: a discontinuous change in the
layer spacing may occur; or the fluctuations in the layers
and the anisotropy in the fluctuations may be important.

. XVIl. ELECTROHYDRODYNAMICS

Nematic liquid crystals subjected to dc and ac electric
fields exhibit several important effects involving the aligning
effects of electric fields, the flow of ions (either ionized
impurities or intrinsic charge carriers), and the induced
hydrodynamic flows. Compared to the behavior of isotropic
liquids under electric fields, liquid crystals exhibit a much
larger variety of phenomena which lead to some interesting
electro-optical applications.

We have already briefly mentioned the aligning effects
produced by an electric field in nematics in Sec. III. The
dielectric anisotropy, €, = €| — e;, where ¢ and €, are
the dielectric constants parallel and perpendicular to the
director, may be positive or negative. If an electric field
is the most important aligning force on the molecules, the
axis along which the dielectric constant is a maximum
would be expected to become parallel to the applied field;
i.e., if ¢ > 0, the molecules would align parallel to the
field; while if ¢, < 0, the molecules would align perpendicular
to the field. This does occur when alternating fields of
sufficiently high frequency are used (see below). On the
other hand, for dc or low frequency fields PAA, MBBA, and
other nematics with negative dielectric anisotropy tend
to align with the preferred axis parallel (rather than per-
pendicular) to the field. This anomalous alignment has
been studied extensively by Carr and co-workers (Carr
1967, 1969, and references cited therein). It was first pro-
posed by Zwetkoff and Mikhailov (1938) that the anoma-
lous alignment is due to the anisotropic conductivity of a
nematic. Carr (1963) and Carr and Chou (1973) by a
study of doped nematics, have shown experimentally that
electrical conduction plays an important role in the anoma-
lous alignment of a nematic in an electric field. Above a
critical frequency of the field, which is determined by the
space charge relaxation time, the behavior in external
fields can be explained by considering only the dielectric
properties.

The conductivity of a nematic is generally larger parallel
to the preferred axis than perpendicular. Exceptions appear

to be those nematics which show a smectic C phase at lower -

temperatures (Rondelez, 1972). The dielectric anisotropy
and resistivity anisotropy have been measured in MBBA
by Diguet et al. (1970) and Rondelez, Diguet, and Durand
(1971), and in PAA by Meier and Saupe (1966) and by
Sussman (1971). The anisotropy in the conductivity of
PAA is in accord with the anisotropy in the viscosity found
by Miesowicz (1946) (the viscosity is least for sheared
flow parallel to the director in PAA). Helfrich (1969a) has
discussed a theoretical model which includes the effects of
ion currents in the nematic and the anisotropy in the con-
ductivity and dielectric constant. He showed that the
torques on the molecules arising from the ion current may
more than offset the torque arising from the electric field
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thus explaining the anomalous alignment of nematics with
€ < 0 in low frequency fields.

Since the first experiments of Williams (1963), a large
amount of work has been devoted to the study of electric
instabilities in nematics. These effects have potential
applications in display devices (Heilmeier, Zanoni, and
Barton, 1968). Three main types of instabilities have been
observed in nematics: the first occurs in dc fields, the second
in ac fields of low frequency, and the third in ac fields of
higher frequency. The most important observations on
these instabilities have been summarized by Rondelez
(1970) and the Orsay Group (1971c):

(a) dc fields. Williams (1963) studied a nematic con-
fined between two electrodes and observed that there is a
threshold voltage (~5 V) above which a convective in-
stability occurs: the nematic breaks up into regular patterns
or domains visible in polarized light with direction of polari-
zation parallel to the initial direction of molecular alignment
(Teaney and Migliori, 1970). The patterns may be hex-
agonal, linear, or intermediate and depend on the surface
state of the electrodes. These patterns are produced by
twin rotating flows of opposite angular momentum (Durand
et al., 1970; Penz, 1970)) which may interact to give the
observed patterns. At higher voltages the stationary flow
patterns give way to turbulence. In the turbulent state
the light scattering by the nematic is very strong and has
been called ‘“dynamic scattering’” by Heilmeier et al., (1968).
The scattering of light above the dc threshold has also
been studied by Bertolotti ef al. (1971a,b).

The flow patterns described above persist when the
nematic is heated above the nematic-isotropic transition
(Koelmans and van Boxtel, 1971). This observation sug-
gests strongly that the mechanism for this instability is
not specific to the nematic phase. Convective instabilities
in normal liquids have been studied extensively by Felici
(1969) and have similar features. The observations of
Gruler and Meier (1971) of a voltage threshold for the
onset of hydrodynamic flow in nematics with both positive
and negative dielectric anisotropy is consistent with this
view. The dc instability disappears when blocking electrodes
(electrodes separated from the nematic by thin insulating
sheets) are used (Rondelez, 1970).

In the presence of a magnetic field two threshold voltages
can be distinguished (Orsay Group, 1971c). The threshold
voltage for the appearance of hydrodynamic flow is inde-

‘pendent of the field up to 20 kG, the highest field used.

The threshold voltage for the appearance of the optical
patterns increases with the field. For zero field the two
thresholds coincide. This field effect can be simply under-
stood: above the threshold for hydrodynamic flow a shear-
flow induced torque acts on the molecules; misalignment
of the molecules takes place when the shear rate (and thus
the applied voltage) is large enough to overcome the align-
ing effects of the magnetic field and the elastic torque.

(b) Low frequency dc fields. When a low frequency ac
field is applied to a nematic with e, < O a threshold voltage
(~7 V) above which optical patterns and hydrodynamic
flow sets in is observed (Williams, 1963). No threshold
voltage is observed if initially the director is parallel to
the applied field and ¢, > 0 (Gruler and Meier, 1972). The



690

spatial period of the optical patterns and flow are of the
order of magnitude of the separation between the electrodes
(50-100 um). In appearance this instability is very much
like that occurring with dc fields; it can be distinguished
from the dc one through several observations of Rondelez
(1970) and the Orsay Group (1971c): (i) the threshold
voltage is unaffected when blocking electrodes are used;
(ii) there is no convective instability in the isotropic phase
of the nematic; and (iii) in the presence of an external
magnetic field, the thresholds for the appearance of periodic
deformations and hydrodynamic flow increase but they
always coincide.

These results show that this instability is characteristic
of the nematic phase and that injection of charge carriers
at the electrodes is not required. This would indeed be
expected to be the case as soon as the period of the field
is shorter than the transit time of a charge carrier in the
nematic. It is also observed that the voltage at which this
instability occurs increases with the frequency of the ac
field up to a cutoff frequency w,. The cutoff frequency has
been shown, by suitably doping the nematic with ionizable
molecules, to be proportional to.the conductivity of the
nematic (Teaney and Migliori, 1970; Heilmeier and Hel-
frich, 1970). In the Orsay Group experiments with MBBA
(1971c), w, was varied from 50-3000 Hz.

(c) Higher frequency ac fields. At higher frequencies
(w > w,) and voltages of the applied ac field, another type
of instability occurs (Heilmeier and Helfrich, 1970). It is
commonly called the “fast turn off mode” for reasons which
will be explained below. The onset of instability in this
case is observed optically (Orsay Group, 1971c) by the
appearance of parallel striations of a short spatial period
(~3 um). The period of these striations is much shorter
than the period of the patterns observed by Williams in
the dc and low frequency ac cases (~50 um). Slightly
above threshold the striations bend and give what the
Orsay Group have called “chevrons.” This instability has
been extensively investigated by them in MBBA (Galerne,
1973) . Using samples of different thickness they have shown
‘that the threshold depends on the field rather than the
voltage as found in the dc and low frequency ac: cases.
Again the injection of current carriers at the electrodes is
unimportant and the instability is characteristic of the
nematic phase and does not exist in the isotropic phase. The
field threshold increases with frequency like w!/2. An applied
magnetic field does not change the value of the threshold,
but increases the spatial period of the optical striations.

To summarize this discussion of the instabilities in nema-
tics, the observations indicate that the dc instability is
not specific to the nematic phase but also occurs in normal
liquids. On the other hand, in the two ac regimes the in-
stabilities are closely related to the anisotropic character
of the nematic phase.

Helfrich (1969a) has discussed theoretically the effects
of the anisotropy in the conductivity and dielectric constant
on the dc instability in nematics. The Orsay Group (1970)
and Dubois-Violette et al. (1971) have extended the Hel-
frich model to the ac case and discussed the ac instabilities.
A simple discussion has been given by de Gennes (1970a).
In the remainder of this section, in subsection A, by way
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of introduction we first discuss the convective instability
in normal liquids. In B the Helfrich model for electrohydro-
dynamic effects in nematics is presented. In C this model
is used to discuss the dc instability and (in D.E.F.) the
ac instabilities in nematics (for ¢ < 0). In G the case
€, > 0 is considered, and in H instabilities of cholesterics
and thermal instabilities are briefly discussed.

A. Convective instability in a normal liquid

A nonpolar liquid or nematic in the isotropic state is
confined between two parallel plane electrodes of infinite
extent (to avoid any edge effects) separated by a distance
d. Electrons or ions are injected into the liquid from one
electrode (we only consider the case of unipolar injection)
giving rise to a gradient in charge across the sample such
that the charge density is greatest at the injecting electrode.
As the voltage across the electrode is increased, the apparent
mobility of the ions increases and above a critical voltage
Vo cellularlike hydrodynamic flow can be observed in the
liquid. This effect has been studied theoretically by Felici
(1969) and experimentally by Filippini et al. (1969). It
can be understood as follows: suppose a fluctuation in-
creases the charge density ¢ in a region to ¢ 4 8¢: then this
region will be dragged by the field and at the same time the
charge fluctuation will tend to decay to the local charge
density. For voltages V < V,, the motion of the charge
fluctuation is sufficiently slow that it has time to decay
to the local charge density. When V > V,, the motion of
the charge fluctuation relative to the gradient of the local
charge density is sufficiently rapid that the fluctuation
never decays to the local value. Convective flow of the
fluid is set up. The critical voltage for this to occur has been
calculated by Atten and Moreau (1969, 1970). We will
give a simplified derivation.

We begin by discussing the hydrodynamic equations in
the presence of electric fields. The current of the injected
ions is given by

J® = ¢(KE +v), (17.1)

where ¢ is the ion charge density, K is the ion mobility, E
is the electric field acting on the ions in the fluid, and v
is the fluid velocity. The last term of Eq. (17.1) arises
because the ions will relax by collisions with the molecules
of the fluid to the local fluid velocity. The ions will satisfy
an equation of continuity

(8g/0t) +V-JO = 0. (17.2)

The electric displacement D in the nonpolar fluid satisfies
Poisson’s equation

v-D = 4nrq. (17.3)

The equation of motion of the fluid (which we regard as
incompressible) is
(8/0t) (pv) + (8/0x;) T = 0, (17.4)

where p is the fluid density and T'; is the stress tensor. For
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a simple incompressible fluid the stress tensor is

Tij = Pé8;;+ pviw; — n(dv,/9x; + dv;/0x;) + Ty,
(17.5)

where P is the pressure, 7 is the shear viscosity, and 7',

is the stress arising from the electric fields and is given by

(Landau and Lifshitz, 1960)

T,© = —(1/8r) (D;E; + D;E; — D-Es)),  (17.6)

where D; = eFE; is the electric displacement. We take this
tensor in symmetrical form and neglect a term arising from
the variation of e with density. In a nearly incompressible
fluid this term can always be included in the pressure in
Eq. (17.5).

The complete set of hydrodynamic equations is (17.2)-
(17.4). When we introduce the electric pot_ential ¥ such

that E = —VV¥, these equations become
(dg/dt) — KV - (qV¥) = 0, (17.7)
eV = —4mq, (17.8)
p((ivi/dl) + VP — gV, 4 gV ¥ = 0, (17.9)

where d/dt = (8/dt) + v-V is the substantial derivative.
The force exerted on the fluid by the electric field is given
by the last term of Eq. (17.9). We first investigate the
static solution of (17.7)-(17.9).

1. Static Solution

At low voltages the fluid is stationary and a steady ion
current flows. Let the first electrode lie in the plane z = 0
and be at a voltage Vo, while the second electrode is in the
plane z = d and is at zero potential. Equations (17.7)-
(17.9) reduce to

(8/82) (qo(8/02)¥o) = 0,
€(8%/922)¥, = —4wrqo,

dPy/3z + qo(9/82)¥ = 0, (17.10)

where the subscript O indicates the steady value of a quan-
tity. The solutions of Eq. (17.10) satisfying the boundary
conditions are

Yo = Vo[1 — (z/d)*2],
Qo = (3¢/16m) (Vo/d*z1/2),

Py = (9¢/32x) (Vo/d?®) + constant. (17.11)
There is a uniform current in the fluid given by
Jo:® = (9¢/327) (VRE/d®) K. (17.12)
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2. Convective instability

Linearize Eqgs. (17.7)--(17.9) about the static solution
(17.11) by setting

7= @+ qu,
¥ =W, + ¥,
P = Py+ Py, (17.13)

where g1, ¥, and P; are small quantities. The fluid velocity
v is also regarded as a small quantity. Substituting Eq.
(17.13) in (17.7)-(17.9) and neglecting quantities of
second order in these small quantities, we get the linearized
equations

3q1/0t + v-Vqo + (87K /e) gog1 — K (Vqy) - (Vo)

— K(Vgo) - (V) = 0, (17.14)
eV, = —dmqy, (17.15)
p(a'l)l/at) + VlPl — T)Vz'U-L‘ + qui‘I’l + qlvi\Ilo = 0.

' (17.16)

These equations are difficult to solve because go and ¥,
depend on the z coordinate. Atten and Moreau (1969,
1970) have used numerical methods. We will only give an
approximate discussion. Thus neglecting terms which are
qualitatively unimportant, we replace Eqs. (17.14) and
(17.16) by

3q1/0t 4+ v.(3g0/05) + (2/7)qr = O (17.17)

7V, = q1(8/32)¥,, (17.18)

where 77! = 4wKgo/e. We will approximate further by
replacing ¢o by a constant average value and use the ap-
proximations

which follow from Eq. (17.11). We now assume a solution
of Egs. (17.17) and (17.18) with ¢ and v, varying like

exp(ikx), where k = 2w/d is the smallest wave vector for
a fluctuation. From Eq. (17.18) we find

v, = (Vod/47r21})q1. (17.20)
Substituting in Eq. (17.17) we find
dq1/dt + (2/1 — Vogo/Anw®n) gy = O (17.21)

The static solution (17.11) thus becomes unstable at a
critical voltage given approximately by

Vo = 87"2"7/ GoT

It

327K /e. (17.22)
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An exact calculation of V. has been given by Atten and
Moreau (1969, 1970). When the voltage exceeds this value,
any long wavelength fluctuation ¢; will tend to grow and,
from Eq. (17.20), convection will be set up. For n = 0.1 P,
e = 3, and an ion mobility K = 1075-10"% cm? sec™*- V!
this critical voltage is Vo, >~ 5 V.

The determination of the flow velocity and ion current
in the fluid above the instability requires a consideration
of the nonlinear terms in the hydrodynamic equations which
may have the effect of stabilizing the system or may give
rise to turbulence. This is a complicated problem and we
will be content with locating the position of the instability,
which can be accomplished by a linear analysis.

The nature and origin of the mobility K of the charge
carriers is not well understood. In MBBA it is of order
1075-10-% cm? sec™1- V! (Briére et al., 1972). It has been
suggested by de Gennes (1970a)- that it arises from a lag
of the polarization cloud produced in the solvent by the
ion..In a polar solvent like water the slow relaxation of the
dipole moments of the water molecules is the most impor-
tant contribution to the relaxation of the polarization cloud
(Zwanzig, 1963). In organic liquids like MBBA, de Gennes
(1970a) has suggested that the anisotropic dielectric con-
stant and its slow relaxation is an important factor in the
mobility. The dielectric relaxation time is of order 1-10
MHz in MBBA (Rondelez et al., 1971).

B. Electrohydrodynamics of nematics
The mobility of ions in a nematic is a second rank tensor

and is given by

Kij = K6+ Kaning, (17.23)

where K, = K|, — K, and K|, and K, are the mobilities
parallel and perpendicular to the preferred axis.

This tensor has exactly the same form as the dielectric
tensor

(17.24)

€5 = 61_6{]' + €qMi 75,

where ¢, is the dielectric anisotropy. The ion current in a
nematic is now

T = q(K;E; + v;) (17.25)

and as before satisfies the equation of continuity (17.2).
Likewise the electric displacement D satisfies Poisson’s
equation (17.3) but now D is related to the electric field E
by the more complicated relation

The equation of motion of the fluid (regarded as incom-
pressible) is
p(d/dt)v; + 8/0x;(ti; + T;®@) = 0, (17.27)

where ¢; is given by Eq. (6.11) and 7@ is given by Eq.
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(17.6) . Finally we have the equation for the director (6.8).
In this equation we will neglect inertial effects, but we must
include the torque on the director due to the electric and
magnetic fields. The director equation is then

Y1 (dnz/dl - wijn,-) + ’deijﬂj — (ea/47r) (n-E) E;

— Xa(-H)H; + (8/02,)IL;; = —yn, (17.28)
where II;; is the elastic restoring force [Eq. (3.21)] and
we have only included the part of f; in Eq. (3.24) which
involves the electric and magnetic fields. The other terms
are quadratic in the curvature components. The coefficient
v in Eq. (17.28) is the usual Lagrange multiplier and is
determined by the condition n? = 1.

The electrohydrodynamic equations for nematics are
thus provided by Egs. (17.2), (17.27), and (17.28), and
Poisson’s equation (17.3). We now make use of these
equations for a discussion of electrohydrodynamic in-
stabilities in nematics.

C. dc instability in nematics

The most interesting case is where the dielectric anisot-
ropy is negative, i.e., ¢, < 0. The anisotropy in the ion
mobility is taken to be positive, i.e., K, > 0. The molecules
will then prefer to lie perpendicular to an applied field, i.e.,
along x in Fig. 28. There is then a static solution of Egs.
(17.2), (17.27), and (17.28) of exactly the same form as
(17.11) except that e and K are now replaced by e, and K, .

We now examine the stability of this solution following
the discussion of de Gennes (1970a). Suppose that there is a
fluctuation in charge 8¢ in a region (denoted by A in Fig.
28). If e, < 0, the molecules are initially aligned along x.
Owing to the charge fluctuation, the electric field will have
components along « as shown in Fig. 28a. The molecules,
which prefer to be perpendicular to the field, will have the
orientations shown. The gradient in flow velocity produced
by the motion of A will tend to rotate the molecules in the
same way as the field. These torques on the molecules
will be opposed by elastic restoring forces. The current will
also have a component along #, the direction of which will
be to increase the amount of charge in the fluctuation. We
see then that the nematic alignment tends to favor hydro-
dynamic instability when e, < 0. The opposite case when
€, > 0 is illustrated in Fig. 28b. The molecules now prefer
to lie parallel to the applied field as shown. The effects of
gradients in the hydrodynamic velocity are now small. The
direction of the transverse current is now such as to tend to
deplete the charge fluctuation. The nematic alignment thus
tends to favor hydrodynamic stability in the case ¢, > 0.

JAE E e

zx\J @ }J
NN

e,>0

FIG. 28. Charge fluctuation in nematics. (a) e; < O the molecules
lie perpendicular to resultant field and the transverse current feeds
the fluctuation. (b) e, > O the molecules lie parallel to the resultant
field and the transverse current depletes the fluctuation.
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We now make a more detailed investigation of the dc
instability in nematics. As in Sec. XVIL,A, we linearize the
hydrodynamic equations (17.2), (17.27), and (17.28) by
setting

=g+ q,

E =E,+ E,,

ny = 1, n, = ¢,

P = Py+ Py, (17.29)

where ¢o, Eo, and P, are the static values of the charge,
field, and pressure, given by Eq. (17.11) with € and K
replaced by e, and K,. The small quantities ¢, E;, and P,
are the fluctuations in the charge, field, and pressure, respec-
tively. For simplicity we will neglect the small modification
in the z component of the field so that E,; is along x, and
we will denote it by E.. As before, we only examine fluctua-
tions in the xz plane and neglect any dependence on the y
coordinate. Then ¢ represents the bending of the director
in the z direction. Using Egs. (17.24) "and (17.26), the
electric displacement is related to the electric field by
(retaining terms linear in E. and ¢ only)

D, = €1 E: + epFEo

D, = e, E,. (17.30)
Substituting in Poisson’s equation (17.3) we get
€1 (0E:/0x) = —eEgp + 4wy, (17.31)

where ¢ = d¢/dx and is the component of bend. From
Eqgs. (17.23) and (17.25) the components of the current are

Je= qo(K|Es + KopEo+ v2)

J.= Jo+ qu: + qK, Eo. (17.32)

When these are substituted into the equation of continuity
(17.2), we get [with the same approximations as in Eq.

(17.17)]

3q1/0t + q1/7 + v.(9g0/32) + ouEah = 0, (17.33)
where

= Ao (Ky/e)) + (Ki/e))] (17.34)
and

o = @Ko — (K )/e) ] (17.33)

The next-to-last term of Eq. (17.33) is the convective part
of the ion current. The last term gives the effect of nematic
ordering, through the anisotropy in the mobility and di-
electric constant, on the ion current.

The director equation follows from Eq. (17.28). Only
the z component of this equation is relevant, and then v
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may be set equal to x,(n-H)? where the field H is applied
in the « direction. After linearization of this equation, we
find

1(9¢/0t) — 5 (v1 — v2) (02./0x) + 5 (v1 + ¥2) (9./92)
— (e/dm) Eo( Ex 4 ¢ Ey) — [ku(az/az?)

+ ka3 (9%/9a?) — xoHJp = 0. (17.36)
After differentiating Eq. (17.36) with respect to x and
eliminating £, by means of Fq. (17.31) we find

v1(8¢/0t) — 5(v1 — v2) (8%0./9x2)
+ 2 (v1+ 72) (8%:/0%92) — (ea/e1)) Eon
— [(eaer/4me))) Eg? + k11(8%/02%) + k3a(92/942)
— xH? W = 0. (17.37)

In this equation the term proportional to Fyq is the force
producing the curvature in the nematic, and the opposing
forces are contained in the last term, which consists of a
restoring force due to the dielectric anisotropy, the elastic
forces, and the effect of the applied magnetic field. In the
time-dependent case these terms also lead to a relaxation
effect,

Finally, the momentum equation follows from Eq.
(17.27). We will only require the z component of this equa-
tion. The x component of this equation together with the
incompressibility condition determine the pressure. The
required components of the nematic stress tensor (6.11) are

bx = —ad — 3(as+ a5 — ) (9v./9x)
— 3(as+ a5 + o) (90,/02)

lae Py + Py — a4(6v2/62).

It

(17.38)

The electromagnetic part of the stress tensor from Eq.
(17.6) and (17.30) are

Il

TZ.E (e>
TZZ (6)

—(1/8m) (e + €1) EoEyr + eap E*]
- (61/87) Eg.

(17.39)

Substituting these results in Eq. (17.27) and using Eq.
(17.31) to eliminate 9E./dx, and the incompressibility
condition to eliminate v, we find

p(30./30) + 9P/ — as(9W)01) — (s — an — o)
- X (0%./02%) — 12(0%./3x%) + (eqer/8me))) Eotp
—3(1+ e /e)Eo = 0, (17.40)

where 7, is given by Eq. (7.13). The electric forces acting
on the fluid are provided by the last two terms of Eq.
(17.40).

The small fluctuations in the charge density, the director,
and the fluid velocity are described by Eqs. (17.33), (17.37),
and (17.40). The equations will be used for a discussion of
fluctuations and instabilities in both dc and ac fields.
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To investigate the dc instability we again make the
approximations (17.19) and assume that the voltage across
the sample is related to the field by Vo = Eod. The fluctuat-
ing quantities ¢i, ¥, and v, are assumed proportional to
exp(tkx) with & ~ 27/d. The domain size has been meas-
ured by Penz (1971) and Lacroix et al. (1972) and found
to be close to 2d. A more complete treatment of the bound-
ary value problem has been given by Penz and Ford (1972).

From the momentum equation (17.40), omitting the
pressure term and the time derivative, we get

72(0%,/0x2) = (e /8me ) EAYy — 3(1 4+ €e./€) qiFo.
(17.41)

From the director equa;tion (17.37) in the static case we
get (assuming for simplicity that v, = —v1)
v1(0%,/03%) = — (e/€1) Eoqr — [ (eae/4mey)) Eo?

— ]€33k2 - XaH2]\0~ (1742)

Then using these two equations to eliminate v, and ¥ from
the charge equation (17.33), we find

l]oVo
272 (y1 + 292)

Vet Ve VoV
ve+ve )T

aql/al + (]1/7' —

(17.43)

where

Vo= — (8”3é|1/€aél)[71(1'+ e,L/fll) - 277‘?(611/5”)]

X [Ko — ea(Kyi/e) ], (17.44)
Va2 = — (167, /eaer ) [ 2n2/ (v1 + 2m2) ]

X [kss + (d%/4n?) x.H?],
V2 = 3V2(1 + e /e) (1 + v1/2n0). (17.43)

The instability now sets in at a critical voltage, Vy, deter-
mined by ‘ :

Voe=L(Vi—= V) Vo2 + ViV2l/ (Vo2 + Vi2), (17.46)
where

Vi=8r*(vi+ 2n) [(Ki/en) + (Ki/er) ] (17.47)

For MBBA at 25°C ¢ = 4.7, ¢, = 5.2, and kg > 10—
- dyn, and assuming 7: ~v;=~0.1 P, we find V,~ V,~
6 V. V;and V, are of the same order of magnitude as the
critical voltage (17.22) in a normal liquid; i.e., for K ~
1075-10"% c¢m? sec™'-V~! we have V;~ V, ~5 V. There
are two types of solutions to Eq. (17.46), depending on the
relative magnitudes of V; and V,,.
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(a) Vi> V,. The solution of Eq. (17.46) is approxi-
mately

Vo Vi(V/V?), Ve>V; (17.48)

I/YOC2 Vr' - Vn7 Vb < Va, (1749)

In each case the instability is of the Felici type of convec-
tive instability. In the case (17.48) the dielectric and
mobility anisotropy do not play a role. Thé inequality
Vi > V,; can be realized if the applied magnetic field or
elastic energy is large enough. In the case (17.49) the
magnetic field and elastic energy are not important. V; — ¥V,
can be written

Vi—= Vo= 320[n:(K. /1) + (v1/2) (Ka/ea) ] (17.50)

The second term here represents the effect of the dielectric
and mobility anisotropy. For ¢, < 0 and K, > 0 the critical
voltage is reduced, whereas for ¢, > 0, K, > 0 it is in-
creased.

(b) Vo> V;> V,. This case generally only occurs
when ¢, < 0 [see Eq. (17.44) J. The solution of Eq. (17.46)
is approximately

VOc = a,I:Vz/(Vn - V’L) ]1/2- (17.51)

The elastic properties of the nematic now play an important
role. This is the case considered by Helfrich (1969a) and
the instability is now essentially one of the director.

The magnetic field has the effect of opposing any director
motion. In the limit of a very strong field when the director
motion is frozen out, we thus obtain the solution (17.48)
corresponding to the convective Felici instability. At lower
fields, if Eq. (17.51) applies, the critical voltage will in-
crease approximately linearly with H [when the magnetic
energy x.H? exceeds the elastic energy ka3 (2m/d)?].

Experimentally, the Orsay Group (1971c) has observed
two thresholds in the presence of a magnetic field in the
nematic MBBA. The first threshold, corresponding to
hydrodynamical motion, is independent of the field up to
20 kG. This threshold presumably corresponds to the usual
convective Felici instability as in Eq. (17.48). This in-
stability also persists in the isotropic phase of MBBA. The
second threshold observed by the Orsay Group corresponds
to the appearance of optical patterns in the nematic. This
threshold increases with H and is not dependent on the
orientation of the field. From our linearized equations we
are only able to determine the first or lowest threshold
corresponding to the onset of hydrodynamic flow.

D. ac instabilities in nematics

Two types of instabilities have been observed in nematics
in ac fields. (a) For frequencies w less than a certain critical
frequency there exists a critical voltage Vo.(w), depending
on frequency, above which the nematic breaks up into
domains (Williams, 1963). The spatial periodicity of the
domains is comparable to d, the separation of the electrodes
(Penz, 1971). (b) For frequencies w > w, another type of
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instability occurs, first reported by Heilmeier and Helfrich
(1970), called the “fast turn off mode.” The onset of in-
stability manifests itself in the appearance of a chevron
structure which can be observed optically (Orsay Group,
1971c). The spatial period of this structure is much smaller
than d.

Both these instabilities have been investigated by the
Orsay Group (1970) and DuBois-Violette ef al., (1971).
The time-dependent equations of the Orsay group follow
from Egs. (17.33), (17.37), and (17.40). We neglect convec-
tive effects and then the charge equation (17.33) becomes

(8q1/01) + (q1/7) + ouEop = 0. (17.52)
We again will consider fluctuations which vary as e** and

then from the momentum equation (17.40) (omitting the
inertial and pressure effects) we get

12(0%05/022) = —a(0Y/0t) + (eqer/8me))) B

— 3(1 4 e./€) 1 Eo. (17.53)

When this is substituted in the director equation (17.37),
we obtain

(ay/at) + (1/T)¢ + (quEo/n) = 0, (17.54)
where
1T = «E¢ + 8 (17.55)
£=(71—‘/2(1+2)_2>~1‘ (17.56)
n 4ne e/ en/n
In Egs. (17.55) and (17.56)
a = — (e, /4rey )1 + (v1 — v2) /4no], (17.57)
B = (kssk® + xaH?) /7', (17.58)
1" =71+ (0a/2m) (vi — 7). (17.59)

It can be shown from the inequalities [Eq. 6.617 that 7’
is positive. For materials with ¢, < O we see that 7, «, and 8
are always positive. For materials in which e,/e;;>> 0 it is
possible for 7 to be negative and « will also be negative.
These two cases will be examined below.

The equations describing the coupled charge density
and director fluctuations are Egs. (17.52) and (17.54). The
coupling of the charge and director is of a parametric type
and is via the electric field. In the absence of any field the

charge density fluctuations decay in a time 7 and the direc-

tor fluctuations in a time 7. In the presence of an ac field

Ey = E,, cosw! the equations have very different types of

solutions which depend on the frequency w.

E. Conduction mode (07 < 1)

In general the relaxation time 7 of the charge is much
shorter than the relaxation time 7" for the director. If the
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FIG. 29. Conduction mode. (a) Eois up. (b) Eis down. The direc-
tor is approximately stationary and in each part of the cycle is per-
pendicular to the resuitant field.

frequency of excitation is such that w7>>1, then the
solution of Egs. (17.52) and (17.54) may be approximately
taken in the form

¥
1

I//(O)

q® sinwt 4 ¢@ coswt

(17.60)

so that the charge density oscillates while the director is
stationary. The nature of this mode is illustrated in Fig.
29. Substituting Eq. (17.60) in (17.52) and (17.54) and
neglecting harmomcs we obtain

wq(l) 4+ q(‘z)/,,. + o Ey©® = 0,
wq(2> — q(l)/,,. = 0,

3 (@B + B O + En/29¢® = 0. (17.61)

From these equations we obtain the secular equation for
this mode

(BaEu? + B) (1 + o) — (our/2) En2 = 0. (17.62)

The critical ﬁeld Fome for the onset of this mode is

Emc2 _ Ea2(1 + w2T2) ‘
. TP T (17.63)

where

E? = B/a, &= opr/n00. (17.64)
From Egs. (17.34), (17.35), (17.56), and (17.57) we have
(putting v» = —v1)

1—2 [1 — (€||/€a> (v1/272) (1 + G_L/Ell)]

(1+)\) (1+71/27I2)v ’
(17.65)

¢ =

where X = (¢/e.) (K, /K||). Apart from th. denominator
(which is close to unity), this is identical with the parameter
introduced by DuBois-Violette ef al. A closely related
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parameter 0 has been introduced by Helfrich (1969)

O = —e (§2— 1). (17.66)
From Egs. (17.63), (17.64), and (17.57) we note that if
6 > 0 a real critical field for the onset of the instability
exists, while if 8y < 0, there is no instability.

For MBBA K(I/KL = 15, €| = 4.7, €, = 5.2 (Diguet

et al., 1970), and taking v1/29,~>~ 0.7 we find {? = 2. Re-

_cently a case where {2 = 1 and no instability was found

has been reported by Gosczianski et al., (1974). We also

note that {2 = V,,/V; and E?2 = V,2/d? where V,, V;, and

V. are given in Eqgs. (17.44)—(17.47). In the dc case, apart
from a factor of 2, Eq. (17.63) reduces to (17.51).

We can make the following observations from (17.63):
(1) A cutoff frequency

= (2 — 1)2/r (17.67)

at which E,,— o« exists. w, is proportional to the con-
ductivity and typically w,~ 771~ 10? sec”’. From Eq.
(17.61), q(”/g(l) = (wr)7' > 1. When Eq. (17.60) is sub-
stituted in (17.53) we see that associated with the charge
fluctuations is a steady flow. (2) The condition, w,7T > 1,
for the solution (17.63) has been investigated in detail by
DuBois-Violette et al., (1971). From Egs. (17.55) and
(17.63) assuming a E,?/w, << 1, this condition is

1w, T 2 (kysk? + xH)r/v < 1. (17.68)

For H = 0 and k£ = 2=/d this requires that d > d, where

dc = 27r(k337'/n') 1/2.

(17.69)

For k3 = 107% dyn, r = 1072 sec, and 5’ = 0.1 P we have
d. = 10~® cm. With the condition d > d, it can be shown
that Eq. (17.63) is valid for practically the whole frequency
range 0 — w,.

(3) From Egs. (17.63), (17.57), and (17.58) the threshold
voltage Ve = (1/V2) Ened is

V2 = V2(1 4+ o%?) /[ — (1 + o*2) ], (17.70)
where V,2is given by Eq. (17.45). For small magnetic fields,
£ > d, where £ is the magnetic coherence length (% =

- kss/x.H?), V, is independent of d and a voltage threshold
exists. For large fields, £ > d, V, is proportional to d, i.e., a
field threshold proportional to H exists. These results are

in reasonable agreement with the observations of the Orsay
Group (1971c). -

F. Dielectric mode (wr> 1)

At high frequencies when wr is large, the charge will be
approximately stationary. The solution of Egs. (17.52)
and (17.54) may now be taken approximately in the form

@ =4q?
¥ = YWY sinwl + ¢@ cosw? (17.71)
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FIG. 30. Dielectric mode. (a) Eo is up. (b) E,is down. The charge
density is approximately stationary and in each part of the cycle the
director is perpendicular to the resultant field.
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so that in-this mode the director fluctuates while the dis-
tribution of charge is stationary. The nature of this mode
is illustrated in Fig. 30. Substituting Eq. (17.71) in (17.52)
and (17.54) and neglecting harmonics we obtain

(q®/) + Sou B =
wlﬁ(l) -+ [(a/Z) E? 4+ ﬁ]‘//(z) + q(O)Em/?? = 07

—ob® + [(a/2) B + B = (17.72)
Setting the determinant of the coefficients in these equa-
tions equal to zero leads to the secular equation

W = 32(En? + E)[E.2/ (B + E2) — 17].
(17.73)

This equation determines the threshold field E, at which
instability arises for a fixed value of w. The optimum wave
vector k for the fluctuations at threshold is determined by
minimizing E, with respect to £ (which enters into E,).
This leads to the equation determining the wave vector,

(kssk? + xaH?) = 20n'[(§2 — 2)/¢7]. (17.74)
When this result is substituted back in Eq. (17.73), we

find that the threshold field is given by

En? = (o/a) (4/87). (17.75)

DuBois-Violette e/ al. (1971) have obtained a more exact
solution for the threshold field:

= (w/a) C1(¢?) + constant, (17.76)

where C1({?) is tabulated and the constant is independent
of w.

The mode described by Eq. (17.71) is a propagating
orientational mode (in the absence of charges it would be
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overdamped). The threshold field is large, and correspond-
ingly the relaxation time 7 [Eq. (17.55)7] is short. For
w = 102 sec™!, n' = 0.1 P, E,,~ 10>-10* V/cm, and T ~
102 sec. This is the origin of the name “fast turn off”’ for
this mode. The director fluctuations scatter light strongly,
as first observed by Heilmeier and Helfrich (1970).

From Egs. (17.74) and (17.76) we note the following
results.

(1) The field threshold is independent of wave vector %
and sample thickness and varies with frequency as «»'/?. This
is quite different from the charge density mode and con-
firmed by the observations (Orsay Group, 1971c).

(2) The spatial periodicity of the director fluctuations is
determined by Eq. (17.74). A more exact result (DuBois-
Violette et al., 1971) is

kask? + x.H? = wn’C2(£?) + constant, (17.77)

where C; is tabulated and the constant is independent of
w. This result shows that (a) for fixed H, k% depends linearly
on w; and (b) for fixed w, k33k% 4 x.H? is a constant. Both
these results have been confirmed by the Orsay Group
(1971c) in MBBA.

It should be noted that the above discussion is valid for
wr > 1orw > w, where w, is the cutoff frequency (17.67). A
numerical investigation of the region w~ w, has been
carried out by DuBois-Violette (1972), who showed that
the voltage threshold for the onset of the conduction regime
is an S-shaped curve. Thus in a certain range of frequencies
w; < o < wp Williams domains appear at a voltage thres-
hold, while at higher voltages turbulence and dynamic
scattering occur. When the voltage is further increased, the
turbulence diminishes and finally the flow patterns dis-
appear completely. The threshold for chevrons (dielectric
regime) occurs at higher voltages. Such effects have been
observed by the Orsay Group (1972) and de Jeu and van
der Veen (1973).

G. Dependence of instability threshold on ¢,

By mixing suitable nematic components, it is possible to
vary the dielectric anisotropy and even change its sign
(Kashnow and Cole, 1972; Alder and Raynes, 1973). The
instability threshold for the charge fluctuation or conduc-
tion mode (17.63) is conveniently written

YEn2 = D*(1+ o) /[ea(1 + P — )],

1

(17.78)

where

D? = (4me) /er) [ (Rask® + x 1) /(1 + v1/29) ].

It is assumed that the director is initially in the plane of
the electrodes. The dependence of {2 [Eq. (17.65)7] on e,
for MBBA is shown in Fig. 31; for this case {2 = 1 at ¢, =
€0~ —2, and {? <1 for ¢ > 0. From Eq. (17.78) the
following behavior occurs on increasing e,:

(a) € < €. No threshold field exists and the nematic
is stable at all fields and frequencies. A nematic with e, ~
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—35 has been investigated by de Jeu el al., (1973) and
found to have a conduction mode instability. Even for this
case it appears that €, > €.

(b) €w < € < 0. This is the case considered in Sec.
XVII,D. The conduction regime exists for w < w, and the
dielectric regime for w > w,.

(c) e > 0. The conduction regime exists at all fre-
quencies. At the values e, and e,2 where ¢ = O the threshold
field is independent of frequency. When {? = 0, the torques
due to the anisotropy of the dielectric constant and con-
ductivity just cancel. When {2 < 0, the threshold field is
an increasing function of w, and when {2 > 0, it is a decreas-
ing function of w. Some results in the case ¢, > 0 have been
obtained by Gruler and Meier (1971) and de Jeu and
Gerritsma (1972).

H. Other instabilities

The instabilities of cholesterics in electric fields parallel
to the pitch axis have been studied theoretically by Helfrich
(1971a) and by Hurault (1973), who has extended the
theoretical model of DuBois-Violette et al., (1971) to the
cholesteric case. The predicted and observed behavior
(Rondelez et al., 1972; Arnould and Rondelez, 1974) is
very similar to that of nematics. For e, > 0, a single thres-
hold for the formation of domains is observed, while for
€, < 0, a conduction and dielectric regime are observed. A
memory effect above the threshold for the conduction
mode has been observed by Heilmeier et al. (1969).

Hydrodynamic instabilities in nematics and cholesterics
under thermal gradients have been studied theoretically by
DuBois-Violette (1971, 1973). The instabilities are similar
to the Benard instability in normal liquids. The anisotropy
in the thermal conductivity plays an important role in the
liquid crystal, and the threshold thermal gradient is much
lower in the ordered phase than in the isotropic phase.
Convective instabilities have been observed in nematics
subjected to a temperature difference of only a few degrees
(Guyon and Pieranski, 1972; Pieranski, DuBois-Violette,
and Guyon, 1973).

XVIIi. OPTICAL PROPERTIES OF CHOLESTERIC
LIQUID CRYSTALS

Cholesteric liquid crystals have some unusual optical prop-
erties, the best known of which are the color effects seen
in reflection under white light. These effects have their
origins in the interactions of the light with the twisted
arrangement of the molecules and the concomitant spatial
variation of the dielectric constant.

The optical properties of uniformly twisted structure
have been discussed by Mauguin (1911), Oseen (1933),
de Vries (1931), and Dreher et al. (1971) for the case of
light incident parallel to the twist axis. The case of oblique
incidence has been considered by Conners (1968), Taupin
(1969), and Berreman and Scheffer (1970a,b; 1972). In
Sec. XVIII,A we will outline some general considerations
relevant to this problem; in Sec. XVIII,B we consider
the solutions of the wave equation for the special case of
propagation parallel to the cholesteric axis.
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FIG. 31. Dependence of > [Eq. (17.65)] on e.. The parameters
used were K||/K; = 1.5, v1/2n2 = 0.7, 1(ej; + €1) = 5.05, and e, =
—.07 and are appropriate for MBBA.
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FIG. 32. Dispersion of light in a right-hand twisting cholesteric. The
right-hand circularly polarized wave is strongly affected when its wave-
length is comparable to the pitch. The left-hand circularly polarized
wave of the same wavelength is unaffected. This figure and Fig. 33
were drawn for the case #n, = 1.57, no = 1.51.

A. General properties of the cholesteric structure

The variation in dielectric constant through the medium
is small (An/n~ 0.03; see, for example, Teucher et al.,
1972), and consequently we will imagine (and verify in the
next section) that the normal form of waves propagating
through the medium is not very different from ordinary
circularly polarized waves. Such a wave will be strongly
affected only if its half-wavelength nearly matches the
periodicity length (or its projection on the wave vector)
and if the sense of its rotation is the same as that of the
twisted structure. The effect on the dispersion relation of the
wave should otherwise be the same as encountered in other
cases of waves in periodic structures; in particular, a “band
gap”’ should appear at the matching wavelength

Ao = p sind. (18.1)
The factor of 2 usually encountered in the Bragg formula
is missing: the periodicity length is one-half the pitch
because n-and —n are indistinguishable optically. Figure
32 is an illustration of the form of the dispersion relation
near Ao. The size of the band gap is determined by the
strength of the periodic perturbation. Light having exactly
the wavelength A\ can travel at two distinct speeds by
having its electric vector aligned with the principal axes
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of the dielectric constant. These two waves determine the
extrema of the band gap so that

wy = 2mwc/n_N, w_ = 2mwc/n N, (18.2)
where 2y, n_, are the greater and lesser, respectively, of the
indices of refraction. Frequencies between w- and w, do
not correspond to a propagating wave; if light of frequency
in this range and of the appropriate circular polarization
to match the sense of the twist is directed at the liquid
crystal, it is totally reflected. The polarization of the re-
flected light also matches the sense of the twist (so that
the reflection process is time-reversible) ; thus right-polar-
ized light is reflected as right-polarized light! by a right-
hand cholesteric. Left-polarized light of the same frequency
suffers only the weak reflection usually encountered at
dielectric surfaces.

The reflected b&nd is typically narrow (Aw/w ~ An/n ~
0.03), so that a pure color is reflected, which depends on
the angle of incidence relative to the cholesteric axis, as
well as the pitch, which may in turn be strongly dependent
on temperature and other environmental considerations.

Plane polarized light incident on a layer of liquid crystal
traverses it as a superposition of the two circularly polarized
waves having the same frequency. Since the wavelengths
of these waves can be substantially different, a large phase
difference develops in a short distance, which implies a
large rotary power

R.P. = F()\er — )\L-I) (183)

which can amount to a hundred revolutions per mm [for
example, see Landolt-Bornstein (1962), and Teucher ef al.
(1972)7]. It is also evident from Fig. 32 that the rotary
power has opposite signs on the two sides of the reflection
band: below w_, A\pg < Ar; above wy, Ag > Ar.

B. The wave equation in a twisted structure

It will be assumed here that the cholesteric structure
can be represented adequately by a regular precession of the
principal axes of the dielectric constant along the twist
axis, thus ignoring any fluctuations in the pitch; and only
the special case of propagation parallel to the twist axis
will be treated. The precessing dielectric tensor has the form

€; = €bij + e(nim; — 36:), (18.4)
where #; are the components of the director. These are
given by

n, = coskz, @ = sinfyz, (18.5)
where the pitch is 2m/4, (this is a right-hand twisting struc-
ture).

Anticipating that waves of circular polarization give the
more convenient representation, we shall write the electric

1 In contrast ordinary isotropic mirrors reverse the sense of circular
polarization on reflection.
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field as a superposition of a right-hand circularly polarized
wave with an amplitude Eg, and a left-hand circularly
polarized wave with an amplitude E:

E = Re[Ep(x+ 1y) + Er(x — iy) ]

and similarly for D. The coefficients Dg, D, are related to
ER, EL by

DR = éoER + %éa eXp(—Zi[QZ) EL,

DL = éoEL + %Ga exp(Zitgz) ER. (187)
The wave equation is

(9°E/9z?) = "D /oe, (18.8)

where the small magnetic susceptibility has been neglected.
Substituting from Eq. (18.7), and assuming the wave has
frequency w,

[62(62/322) + EowszR
[62(62/622) + GowszL

Il

—%e.? exp(—2iloz) I,

It

——%eawz exp(2it0z) ER. (189)

These equations describe a wave of one polarization weakly
coupled to one of the reverse polarization and different
wavelength. They have such structure that if (Eg, ;) is a
solution, then (E.* Egr*) is also. We might then seek a
solution of the form

Er = Aexp[—i(Pz — wt)]+ Bexpli(Qz —wt)] -

(18.10)

and correspondingly for E; = Egp*.

becomes

Equation (18.9)

A(PP? — euw?) exp[—i1(Pz — wl) ]+ B(2Q? — &w?)

X exp[i(Qz — wt) ]
= $ea?{A* exp[—i(2tz — Pz + wt) ]

+ B* exp[—1(26z + Qz — wt) 1}. (18.11) ,
If P and Q are related by
P —Q =2, (18.12)

then only two independent waveforms occur. Combining
the coefficients of these,

A(AP? — euw?) = jew?B*

B(3Q? — ew?) = Leqw?A*. (18.13)

The complex conjugates of these equations are found by
consideration of the equation for E;. The equations are
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self-consistent only for
(P¥? — uw?) (Q%® — ew?) = LeJwt (18.14)
which may be solved for »? to give
. 62 eO(P2 + QZ) :l: [6()2(P2 _ Q2)2 + €a2P2Q2]1/2
T2 € — te,2 ’
(18.15)

The form of the normal waves is given by Eq. (18.6) with

Ep = Ae=i®Pee0 L o[ (P2 — ew?) [eg?]

X A* exp[—i(21z — Pz — wi) ] (18.16)
which may also be written
Er = Be!@ ) 4 2[ (%2 — ew?) /€aw?]
X B* exp[—i(2hz + Oz — wil) ] (18.17)

and EL = E}e*.

Discussion of these results must be divided into three
cases: :

(a) P> 2— (Q>0)

The two solutions (18.15) are approximately «? =
2 P?/ey and w? = ¢*Q%/e; the corresponding waveforms are
a right-polarized wave with a small left-polarized component
[the coefficient of the second term of Eq. (18.16) is small],
and a left-polarized wave with a small right-polarized
component [ the coefficient of the second term of Eq. (18.17)
is small]. The dispersion relation foy this latter solution
has been plotted in Fig. 32 for Q near /.

(b) P<O0— (Q< —24)

Reference to Eq. (18.10) shows this to correspond to
waves propagating in the backward direction. Interpreta-
tion is the same as in the previous case, except that P and Q
have interchanged roles.

() 0< P < 2y— (=2 < Q<0)

The waveform in this case consists of a sum of forward-
and backwards-travelling waves, both having the same
helicity as the cholesteric structure itself. At P = {p = —Q
there are two solutions for w?

wi'z = 62102/ (Eo =+ %éa) (1818)

which define the band gap [compare Eq. (18.2)7]. The
general solution for this case has also been plotted in Fig. 32.

Except near the band gap, Pc¢ = (ew)'? and Qc =
(€gw) /2 are good approximations to the forward-going wave
solutions of (18.14), and by expansion we may give the
correction terms

e ogs = w + (e’/32toe0) [foc F (&) V2], (18.19)
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TABLE 1I.

Properties of PAA near 125°C and of MBBA near 25°C.»
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of MBBA near 25°C

Properties of PAA near 125°C
Specific gravity 1.168 (1)
Melting point 117.5°C
Clear point 135°C

Magnetic anisotropy xa

Zero frequency

Dielectric €| 5.538 (35)
Constants €L 5.705 (5)
Optical

Constants o 1.565 (7)
(Na D line) e 1.829 (7)

_ Surface tension 38 dyn/cm (8)
Sound velocity

Frank constants:

1.18 X 1077 (3)

1.34 X 10° cm/sec (9)

1.088 (2)
16°C
46°C

0.97 X 1077 (4)

4.7 (6)
4 (6)

1.54 (2)
1.75
40 dyn/cm (8)
1.54 X 10° cm/sec (10)

ki (dyne) 4.5 X 1077 6 X 1077
ko2 2.9 X 1077 (11) 4 X 1077 (12)
kss 9.5 X 1077 7.5 X107
Viscosity coefficients
(See Table I)
1 (centipoise) 6.7 (13); 5.8 (14) 77 (15)
e —7.0 (13), —7 (14) —80 (15)
o 4.3 (13); 6.5 (15)
ay —6.9 (13); —6.4 (14) —77.5 (15)
as —.2 (13); —.6 (14) —1 (15)
oy 6.8 (13); 8.3 (14) 83 (15)
as 4.7 (13); 2.5 (14) 46 (15)
ag —2.3 (13); —4.5 (14) —35 (15)
m 2.4 (16);1.5 (14) 16.3 (17); 24 (15)
72 9.2 (16); 8.6 (14) 25.2 (17); 103 (15)
73 3.4 (18);4.1 (14) 16.1 (17); 41 (15)
o 9.1° (13); 20° (19) 7° (15); 19° (19)
B (cal cm™.sec™? 5107 (20)
By -deg™! 3x10~ (20)

& (1) Schenk (1898).as cited by Hoyer and Nolle (1956). (2) Haller,
Huggins, and Freiser. (1972). (3) Zwetkoff (1939b); Gasparoux and
Prost (1971). (4) Gasparoux and Prost (1971); see also Landolt-
Bornstein (1959). (5) Maier, Barth, and Wiehl (1954). (6) Diguet,
Rondelez, and Durand (1970). (7) Chatelain and Germain (1964);
Brunet-Germain (1970). (8) Langevin (1972). (9) Kemp and Letcher
(1971). (10) Mullen, Liithi, and Stephen (1972). (11) Zwetkoff
(1937, 1943); Orsay Group (1969b). (12) Haller (1972). (13) From
a data review by Tseng, Silver, and Finlayson (1972) based on the

where ¢, and g¢_ are, respectively, the wave vectors of P
and Q type corresponding to the same frequency; in terms
of these the specific rotary power may be written

R.P. = ¢y — ¢ = (0*/326c?) (¢®le? — ew?) L. (18.20)
The rotary power has opposite signs on the two sides of the
band gap centered on w = cfy/(&)2. Most of the rotary

1.0
z
£ . .
g LEET RIGHT _FIG.' 33. Reﬂectxvny.of a semi
& 05{ POLARIZED PoLARiZED | infinite slab of a right-hand
E’ twisting cholesteric with #», =

1.57, Ny = 151

08 [Xe} 1.2
Ve, /¢

Rev. Mod. Phys., Vol. 46, No. 4, October 1974

work of Miesowicz (1936, 1946), Zwetkoff (1939a), and Marinin and
Zwetkoff (1939). (14) Orsay Group (1971a). (15) Gahwiller (1971).
(16) Miesowicz (1946). (17) Langevin (1972). (18) Miesowicz (1946).
According to Tseng, Silver, and Finlayson (1972), the viscosity in
the absence of an ordering field (rather than the viscosity with director
oriented in the direction of flow) is being quoted here, and the true
value of 73 is closer to 3 centipoise. (19) Meiboom and Hewitt (1973).
(20) Pieranski, Brochand, and Guyon (1972).

power is due to the large dispersion of the ¢y branch of
Eq. (18.19) (compare Fig. 32).

C. Reflection from a thick slab

We will consider a plane-faced slab with the cholesteric
axis perpendicular to the face; the medium is bounded by
glass of index of refraction #. Light is incident on the surface
perpendicular to it.

The waveforms (18.16) and (18.17) are such that in any
plane of constant z the wave is elliptically polarized; but
since two wavelengths are involved, the axis of the ellipse
precesses through the liquid crystal. Light entering the
medium will in general excite both normal waves of the
same frequency, unless its polarization is in proper corre-
spondence to the ellipticity of one normal wave at the
surface. The general reflectivity is a combination of the
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reflectivities measured under the conditions that excite
only one normal wave.

Let us assume that only one normal wave is excited; let
its form be given by Eq. (18.16) with 4 = 1. In the glass
there are both incident and reflected waves whose polariza-
tion must be determined: let E have the form (18.6), where

= Sexp[—i(gz — wt) ]+ T exp[i(qz — wt)]
4+ Uexp[i(gz + wt) ]+ Vexp[—i(gz + wt)]
(18.21)

and E; = Er* and where ¢¢ = nw. The condition of con-
tinuity of E at the surface z = 0 is

S+ U=1; T+ V=2[(P%— euw’)/(ew?)];
(18.22)
continuity of dE/dz gives
¢S —qU = P;
—qT + qV = 2[(P%® — ew?) (2ty — P)/(eaw®) ].
(18.23)
This set may be solved to give
S=Q+P T=2P262—€0w(q+})—2f0)
2q €qw? 2q
Uzq—P V=2P202_60w2<q_‘_210_1)>.
2g €Quw? - 2g
(18.24)

The reflectivity is the ratio of the reflected intensity to that
incident

_ U2 + VZ
- S+ 77
_ (g — P)lled 4 4(g + 2 — P)UP%E — ew?)’
(g + P)uwte? + 4(q — 2t + P)2(P%® — gu?)?’
(18.25)
The behavior of this function for the spec1al case 1> = 1

is shown in Fig. 33.

For the uniformly twisted cholesteric, and for normal
incidence, there is only one reflection band. At oblique
incidence higher-order reflection bands appear. If the
cholesteric is distorted (e.g., by a magnetic field) higher-
order reflection bands also occur for normal incidence
(Chou, Cheung, and Meyer, 1972; Dreher, 1973).

XIX. PHYSICAL PROPERTIES OF PAA AND
MBBA

We have collected here some measured values for the
physical parameters of the common liquid crystals para-
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azoxy anisole (PAA:MW = 258) and p-methoxy benzi-
lidene p-n-butylanaline (MBBA:MW = 267) (see also
Fig. 1). Our intention is to provide some idea of the magni-
tude of these quantities; we have not attempted to review
the experiments critically (see Table II).

Both of these substances are somewhat labile (Denat,
Gosse, and Gosse, 1973): Langevin (1972) and Haller
(1972) both report considerable decrease of T, in MBBA
over a time period of several days. The physical constants
reported depend considerably on purity and temperature.
This makes it difficult to compare the results of different
workers, and so we have preferred where possible to choose
sets of data from a single source.
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