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The renormalization group approach to the theory of critical behavior is reviewed at an intro-

ductory level with emphasis on magnetic systems. Among recent results reported are the dependence
of critical exponents above T, on dimensionality d = 4 —c, on the symmetry index or number of
spin components, n; on the range and anisotropy of exchange couplings; and on dipolar interactions
and lattice anisotropies, in ferro- and antiferromagnets. Calculations of the scaling functions for
the equation of state and critical scattering are summarized.
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I. INTRODUCTION

This article reviews the recently developed ideas, in large
part due to K. G. Wilson of Cornell University, of the
renormalization group approach to the theory of critical
phenomena. It also describes the application of these new
ideas particularly to the theory of critical magnetic behavior,
where the variety of interactions occurring in real magnetic
materials present a strong challenge to our theoretical
understanding. No attempt will be made to explain fully
the calculational details or to expound all the results; the
aim is rather to give a general Aavor of the new approach
and its scope, and an impression of the applications made
and the results achieved. At the very least, the reader should
gain a notion of the importance of the spatial dimensionality,
d, of a physical system, and of the number, rt, of components
of the vector order parameter (e.g. , of the spontaneous
magnetization vector). The dimensionality will be general-
ized to coetienous values and written d = 4 —e, where ~

will be used as a small parameter. Similarly we will first
let e, which might be termed the symmetry index or degree

of isotropy, become infinite, and then use 1/n as a small
parameter. In addition, the reader should become ac-
quainted with some of the renormalization group terminol-
ogy, particularly the concept of a ".fixed point Hamiltonian",
K*, and its relative stability.

A,t the outset, let us draw attention to some of the basic
papers. Wilson (1971a) introduced the fundamental con-
cepts of the renormalization group approach (see also Wilson
and Kogut, 1974) . (It should be remarked that the relation
to the original renormalization group in field theory is not
quite as close as the use of the same name might suggest. )
The idea of an expansion in powers of e = 4 —d was
introduced by Wilson and Fisher (1972) . In work by
Wegner (1972b) and Pfeuty and Fisher (1972), aniso-
tropic exchange was considered and the cross-over expo-
nent @ was calculated for the first time. More recently,
Amnon Aharony and Fisher considered dipolar inter-
actions (Fisher and Aharony, 1973; see also Aharony
and Fisher, 1973; Aharony, 1973c and 1973d). Long range
isotropic power law interactions had been discussed pre-
viously with Ma and Nickel (Fisher, Ma, and Nickel, 1973)
and by Suzuki (1972; Suzuki, Vamasaki, and Igarashi,
1972) .' The early paper by Larkin and Khmel'nitski (1969;
see also Aharony, 1973a) anticipated some of the ideas and,
in particular, analyzed the case of dipolar interactions for
Ising-like (u = 1) systems in d = 3. Wegner's general re-
formulation and discussion of the corrections to scaling
should be especially noted (Wegner, 1972a; see also Wegner
and Riedel, 1973). The method of 1/u expansions was
developed independently by Abe (1972, 1973; Abe and
Hikami, 1973) in Japan, without explicit reference to the
rerIormalization group, and, eA'ectively, by I'errell and
Scalapino (1972) .

In this short survey, the literature cannot be further
reviewed, but a list of names of some of those (not men-
tioned above) who have contributed significantly to the
Beld will give an idea of the amount of work underway and
already accomplished: Brezin, Wallace, Zinn- Justin, Le
Guillou, Amit, de Dominicis, de Gennes, Balian, Toulouse,
Migdal, Avdeeva, Hikami, Igarashi, Yamasaki, Kadanoff,
Grover, Houghton, Riedel, Halperin, Hohenberg, I.ubensky,
Rubin, Baker, I.iu, Chang, Stanley, Niemeijer, van
I eeuwen, Sak, Nelson, Bruce, and Kosterlitz. Reference to
th.e work of some of these authors will be made below. Other
more detailed theoretical reviews now or soon available are
by Wilson and Kogut (1974), by Ma (1973b), and by
Wegner (1974a). A conference proceedings, with lively dis-
cussion reports and papers concerning the connection to
6eld theory, has recently appeared (Rerrormatisatiori Group,
1973).

* Revised and updated version of a lecture prepared at the Aspen
Center for Physics, Colorado, and delivered at the International Con-
ference on Magnetism, Moscow, U.S.S.R., 22 August 1973.

' See also S.-K. Ma, (1973a), expecially for details of the 1/n expan-
sions.
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II. CRITICAL BEHAVIOR

Before discussing the renormalization group method, it is
appropriate to define some of the standard critical expo-
nents and to sketch the phenomenological scaling theory of
critical behavior. ' This theory has been very successful, but
it is only the recent developments that give it a more funda-
mental basis and offer a way of calculating the critical
exponents and scaling functions, which remain incompletely
specified by scaling postulates.

Let us consider a ferromagnet in equilibrium at temper-
ature T and under the action of a uniform magnetic field
H. We will use the reduced temperature variable

(2.1)

where T, is the critical temperature (or Curie or Neel
point) and consider properties as t —+ 0 with H = 0. The
analogies with other physical systems are well developecP
and will only be mentioned occasionally and in passing. In
this regime, the initial susceptibility (or, for a fluid, the
compressibility on the critical isochore) diverges a,s

the singular part of the free energy F(T, H) varies asymp-
'totically as

f(T, H) = —(t~BT)—'F (T H) t2 ~F(H/t~), (2.4)

where the gap exponent 6 is determined in terms of n and
p by

(2 3)

cVO(T) =8
i

t ie, (2.6a)

where the exponent is predicted by the exponent relation

For a Quid the magnetic field JI is to be replaced by the
chemical potential difference p —tj, (T), where tj,,(T) is the.
value on the vapor pressure curve and its linear extension. '
The scaHng function V(y) depends only on a single variable,
but is not otherwise given explicitly by the theory. From
Eq. (2.4) we flnd that the spontaneous magnetization (or,
for a fluid, the density discontinuity) vanishes when t —+ 0
as

(2.2) P = k(2 —~ —v) (2.6b)

Ca=o(T) = A/t, (2.3a)

where the critical exponent y is observed to have values in
the vicinity of 1.36 for ferromagnets like Ni and Fe, but
near 1.22 for anisotropic magnetic materials such as CrBr3
and for fluids. ' (For antiferromagnets and alloys, similar
remarks apply to the staggered susceptibility xo' observable
in neutron scattering. ) The mean-field or "classical" pre-
diction, p = 1, is clearly incorrect. The specific heat in zero
field (or at constant volume for a fiuid) displays a critical
anomaly which may be characterized by

M/te W(H/t~), (2 7)

where W(y) is again a single-variable scaling function. This
relation has been strikingly verified in a number of experi-
ments. ' The work of Comly and Kouvel, and of Ho and
I-itster on CrBr3 might especially be cited. ' '

Experimental observation confirms this relation with
values of P from about 0.31 for alloys to 0.36 for magnets.
In addition, it follows that the equation of state, M =
01'(T, H), can be written asymptotically in the reduced or
scaled form

or, more usefully in practice, by

C~ o(T) A. (t —1)/n, (2.3b)

In addition to thermodynamic behavior, the variation of
the scattering intensity with wave vector q, and tempera-
ture, is of particular interest in the critical region. This is
proportional to

where n 0.1 for anisotropic magnets and for Auids, as we
now know from the pioneering work of Voronel' (Bagatskii
et aL, 1962; Voronel' et at. , 1963), while n 0 for the
lambda transition in liquid helium four, and u ~—0.1 for
Ni and other isotropic magnets. Note from Eq. (2.3b)
that n = 0 generally implies a logarithmic divergence
while n & 0 implies a finite cusp at which, however,
(for n ) —1) de/dt diverges to 0D.2 Classical theory pre-
dicts only a jump discontinuity in C(T).

The scaling theory of critical behavior now asserts that

See, e.g. , M. E. Fisher, 1967, Rept. Prog. Phys. 30, 615, and Fisher,
M. E., 1970, Critical Phenomena, Proceedings of the International School
of Physics: Enrico I'ermi Summer School Course Varenna, 1970,
&o. 51, edited by M. S. Green (Academic, New York, 1971.) A general
formal discussion of scaling, including hyperscaling and conformal
covariance, etc., is given by M. E. Fisher, 1973, in Proceedings, the
Nobel Symposium No. 24, Collective Properties of Physical Systems,
edited by B.Lundqvist and S. Lundqvist (Academic, New York, 1973.)' For recent reviews of experimental data, see M. Vicentini-Missoni,
(1970} and L. J. de Jongh and A. R. Mie-dema, (1974) .

6(q, T) = g exp(iq x)G(x, .T), (2.8)

where the basic two-point correlation function is

G(x T) = (So S„) (2.9)

in which S„denotes a (localized) spin a,t site X. )In a Quid,
the pair density function g&(x) replaces G(x).$ At the
critical point itself, one has

G (x) ~ D /xd —2+q

as x —+~,
oi &.(q) = D./V' ",

q
—+0, (2.10)

G(x, T) —x "+' &D(x/&), —$~t ", (2.11)

where the exponent g, which is hard to measure experi-
mentally, is observed to lie in the range 0.03—0.1 (in dis-
agreement with the classical, Ornstein —Zernike value rt = 0).
As t —& 0 (in zero fleld) scaling predicts the form
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where $ is the correlation length or, equivalently,

G(q, T) 'Ct &D(q'/t ")

The correlation length exponent is given by

~ = ~/(2 —n).

(2.12)

(2.13)

(b) n = 2, XI or "planar" spins, 5 = (S,Sil).

(c) n = 1, uniaxial or Ising spins, S = S'.

The last, Ising-like case also describes classical density
fields as appropriate to Quids, alloys, etc. The n = 2 or
XI"-like case includes quantal fields since the wave function
P = (P', P") has independent but equivalent, real and
imaginary components.

The scaling function D(s') represents the scattering "line
shape" near T,. %hen g ) 0 it must necessarily deviate
from a simple Lorentzian (or OZ) form close to the critical
point, although this may be hard to detect (as will be seen
further below) .

We may also consider (as observed by Stanley, 1968) the
limit n —+ ~; this corresponds precisely to the exactly
soluble "spherical model" invented by Berlin and Kac. For
this limit one finds that scaling is obeyed with exponents

n = (4 —d)/(d —2), y = 2/(d —2),
III. THEORY q=0, for2&d&4(n= ~), (3.4)

The task of theory is now clear: firstly, it should show
how to calculate the exponents, n, p, and q, as functions of
whatever essential physical parameters are needed to deter-
mine them. (To find what these are, is, of course, part of
the problem!) Secondly, theory should predict or justify
scaling (or, perhaps, reveal its failure). Thirdly, it should
lead to explicit calculations of the scaling functions I'"(y),
W(y), D(s'), etc. Lastly, a complete theory ought, to yield
a description of the correctians to the asymptotic scaling
laws and concrete estimates of their magnitude.

(3.1)

dcEq 00

(2') ' Cd g dg~ (3.2)

where Cd ——(2ir) "Cd ——2rr+s/I'(sd) . Since the gamma func-
tion I'(s) is definable for arbitrary z, we may likewise
extend the definition of dimensionality to continuous vg/nt. s
of d. LMore thought is needed when the integrand depends
on scalar products, such as k.x, q r, etc. , but this may
also be dealt with (Wilson, 1972).) It will turn out later
that, having defined continuous d, the difference

a=4 —d, (3.3)

forms a natural and important small parameter.

Once we have a lattice with sites x we must populate it
with spins 5„.(We apparently consider localized spins but,
in reality, all that is assumed is a "spin density field";
more generally we would take a scalar density field, or a
complex, second-quantized wave-mechanical field, etc.)
We suppose the spin vector has n consponents, i.e., 5„=
(5„")with p = 1, 2, . . . n, which enter equally into inter-
actions. The basic cases for this symmetry index are

To buiM. a thoery let us start with a description of space.
Ke may consider a lattice structure of spacing a, generated
by a set of nearest neighbor vectors G. The lattice sites will
have coordinate vectors x = (x,) with i = 1,2, . . . d, where
d is the spatial dimensionality By habit .we normally con-
sider only d = 3, 2, and 1. However, d enters theoretical
calculations in an essential way only through space and

, momentum (or wave number) integrals such as

a= 0,

for

P= s, and q= 0,

d&4(n= ~). (3 5)

A=2d=672 2 7
ld

q=0, for d & 4 (n = —2). (3.6)

The required statistical mechanical analysis may also be
performed exactly for one-dimensional models (Balian and
Toulouse, 1974; Nelson and Fisher, 1974a); here one
finds i) = 1 and P = 0. Finally, following the hint of
the spherical model, one may anticipate that for d & 4
and al/ values of n, critical behavior will be classical with
cr = 0, P = rs, y = 1 and rt = 0. (This is confirmed by the
renormalization group calculations. )

With this information, it is instructive to make a plot
of the (d,n) plane for 1 & d & 4 and —2 & n & ~; see
Fig. 1. On the boundaries of this region the critical behavior
j's known; unfortunately, we are seriously interested only
in the interior~ Specifically, the values n = 1, 2, and 3 can
be realized in magnetic materials. SuperQuid helium, and
helium three/four mixtures near Ti, are described by n = 2;
normal Quids, Quid mixtures, and alloys by n = 1. The case
n = 0 turns out to describe the statistics, size, and shape of
a long self-avoiding walk, or polymer chain in solution, as
pointed out by de Gennes (1972).4 Regarding spatial dimen-
sionality, d = 3 is always available, while d = 2 applies to
films, rnonolayers, and submonolayers. Two-dimensional
systems can also be well-approximated physically by care-
fully chosen layered magnetic systems. One dimension can
also be modeled with surprising accuracy by suitably
"designed" crystals with linear chains of magnetic ions (see
de Jongh and Miedema, 1974).

Note the sharp boundary in critical behavior at d = 4 which
turns out to be quite general.

Now one may (Balian and Toulouse, 1973; Fisher, 1973)
further generalize to contin000s n. On considering negative
values of n one discovers that n = —2 is also a soluble case;
namely the so-called Gaussian model for which scaling is
again obeyed with exponents.

See also R. G. Bowers and A. McKerrell, (1973), J. de Cloiseaux
(a) n = 3, «dinary or Heisenb«g spins, 5 = (5*,5",5'); (to be pubhshed); and P. G. Gerger and M. E. Fisher (1974).
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For Inany theoretical purposes it is also convenient to
allow the spin length ~5~ to vary continuously. It is then
essential, however, to include in the statistical probability
(or Boltzmann factor) a spin weighting functiorl, which
restricts the fluctuations in spin length. The partition func-
tion for a system of 2V spins is then

Z~PC] = Tr~jexpk, l,

where the reduced Hamiltonian 3C is defined by

se = —(K/kBT) + 'N,

(3.9)

(3.10)

in which 'K represents the spin weighting function: this will
normally be a sum of identical terms —tv(s;) for each spin
which become very large and negative as

~

s
~

becomes large
(specific forms are mentioned below). For a fluid system,
the weighting function represents the limitations on density
imposed by the presence of hard repulsive cores in the pair
interaction. Note that specification of BC determines the
temperature, as well as the external magnetic field, pressure,
etc. , and all the interactions, which are presumed to be
translationally invariant (although inequivalent crystal
sites, etc. , may be allowed). Finally the thermodynamics
follow as usual from the free energy per spin

I(J 1 . Diagram of the (d, n) plane showing the expansion variant)les

e = 4 —d and 1/ri, the boundaries at e = ~ and —2, and d = 1

and 4, and various physically relevant cases.

.In the interior region of Fig. 1, the only exact results are
for n = 1 and d = 2, where Onsager's famous solution of
the two-dimensional Ising model leads to the answers. 2

However, the renormalization group approach will enable
us to penetrate in from the boundaries at d = 4 and n =
by expansions in e and 1/u, respectively. Hence we will

gain a fairly accurate picture of the variation of critical
exponents over the whole (d,e) plane. Indeed, for systems
with short range, isotropic coupling, i.e. , an interaction
Hamiltonian of the form

f[3C] = F(T,H) /knT —= lim V ' ln Z~[~].
-+op

(3.11)

The thermodynamic limit, .h ~ ~, is of course essential if
true critical behavior is to be investigated.

IV. THE RENORMALIZATION GROUP APPROACH

(a) The given (or initial) Hamiltonian BC is transformed
or reeormalised to obtain a new Hamiltonian BC'; formally
we write

The general ideas underlying the renormalization group
approach may be formulated as follows (Wilson, 1971;
Wilson and Kogut, 1974; Wegner 1972a).

, iC jsxl = Kiso. e~ch. s P J(x x ) s~'sx' (3 7) fC~X' = R[dC]. (4.1)

(as we have assumed implicitly above), the pa, rameters d
and e seem to be the only ones determining the critical

.exponents. As the soluble examples indicate, we may expect
the exponents to vary continuously with u and ii (at least
over the main regions of interest) .

In writing the above Hamiltonian, the normalized spins
or local variables

s = 5/[5(5+ 1)]'" (3.8)

have been introduced. (For a fluid, s is a scalar (n = 1)
and represents the density. ) The Hamiltonian (3.7) then
represents attractive pair interactions (Fisher, 1967, 1970,
1973). If one considers 5~ ~, the spins s become classical
vectors of unit length. As far as one can see theoretically,
at present, the quantal effects implied by finite spin values
5 do not play a role in determining critical exponents or
scaling functions. (The same goes for quantal effects in nor-
ma, l fluids and alloys. )

(b) The renormalization group operator R acts to reduce
the number of degrees of freedom (i.e. spin variables) from
;V to

iV' = V/bd, . (4;2)

where d is again the dimensionality, while the spatial reseal
ing factor, b, exceeds unity. Different types of renormaliza-
tion operator may be constructed. Frequently R is defined
via a partial trace over (iV —1V') of the cV spin variables, or
over suitably transformed variables (see below), so that the
renormalized Hamiltonian itself is then given by

exp O' =- Tr'~ ~. (exp Kl. (4.3)

Z~, [X]= Z~[X]. (4 4)

(c) The essential condition to be satisfied by R is that
the partitiors furlctiori must be preserved, that is,

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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x~x' = x/b. (4.5)

Momenta are, naturally, rescaled reciprocally b&

q~ q' = bq.

(e) Finally, in order to preserve the basic spin fluctua-
tion magnitude, the renormalized spizz vectors are rescaled as

This follows from (4.3), for example, merely by taking the
remaining part of the trace over X' variables, to calculate
Zx [K'$. We also assume implicitly that the renormalized
Hamiltonian 3C' again displays translational invariance.

(d) In order to preserve the spatial density of degrees of
freedom (i.e., of spins), all spatial nectors, entering into
correlation functions, etc. , are resca/ed by the factor
according to

models with hierarchical interactions of the general type
first introduced by Dyson (1969). These models, however,
are rather unrealistic and cannot be solved exactly (al-
though see Bleher and Sinai, 1973). Much simpler renormal-
ization groups can be constructed in exact closed form (as
finite dimensional algebraic recursion relations) for one-
dimensional Ising models with additional variables such as
staggered magnetic fields, second neighbor interactions,
etc.z In these cases the critical behavior (at T, = 0) can be
found exactly and thus the full apparatus of the renormal-
ization group approach can be studied analytically in
explicit and instructive detail. '

Having defined a renormalization group R, the theory
takes the following steps:

(i) The transformation is iterated:

(4.9)

~/sx~ s w& = s~/c) (4.6)

where the spin rescaling factor c depends on 3C, i.e. , c =
c[3C). In more complex cases different rescaling factors for
different classes of spins may be needed. '

Strictly this last step is an essential feature only of 3Agegr

renormalization groups in which the basic local variable
(or spin) is transformed into an equivalent renormalized
variable to which it is linearly related. Not all renormaliza-
tion groups are of this character' although we will only
discuss linear groups.

Evidently the renormalization group operator depends
on b and c. Under its action, it follows from Eqs. (3.10)
and (4.4) that the free energy transforms according to

RPC"1 = re*. (4.10)

(iii) Examination of the transformation relation (4.8)
for correlations reveals that a fixed point Hamiltonian is
critical in the sense that its basic pair correlation function
is long ranged. Specifically one finds from (4.8) a functional
equation for G[x;K~g with unique solution

G[x;K*] 1/x'" c* = c[K*]= b (4.11)

Comparison with (2.9) shows that the exponent q is thus
determined via

(ii) One then attempts, by varying the parameters of the
initial Hamiltonian, to locate a fzxed poizzt Hazzziltozzzazz, K,
which is approached under iteration. The fixed point
Hamiltonian is defined by its invariance under R, namely,

Similarly from Eq. (4.6) one finds, for a linear renormaliza-
tion group, that the basic spin —spin correlation function
transforms as

G[x;kj = .zG[x/b;k'g. (4 8)

' See Nelson and Fisher (1974b), Nelson, Kosterlitz, and Fisher, (1974).
Applications to displacive transitions in peorvskites under ansiotropic
stress have been discussed along similar lines by Aharony and Bruce
Phys. Rev. 33, 427 (1974).' Bell and %ilson (to be published); Niemeijer and van l.eeuwen,
(1973), and (1974) describe a nonlinear renormalization group for
Ising spins, s = ~1, and apply it to the numerical solution of the
two-dimensional Ising model; see also Nelson and Fisher 1974a.

These two relations ultimately lead to scaling properties.

The exact construction of a renormalization group is in
general a very dificult task. For this reason Wilson, in his
original work (Wilson, 1971a), devised an appz o~i male
renormalization group (as a nonlinear integral operator)
which later, however, turned out (Wilson and Fisher,
1972; Wilson, 1972) to be exact to first order in e = 4 —d
(although approximate in higher orders) . Baker (1972;
Baker and Golner, 1973) then showed that Wilson's
approximate renormalization transformation was actually
exact for a special class of essentially one-dimensional spin

(4.12)

(4.13)

where, now, L is simply a lizzear operator (on Hamiltonians) .

(v) Having a linear renormalization operator, one can
ask for its eigezzoperators Q;, and eigezzvalues A;, defined as
usual through

LQ = A, Q, . (4.14)

7 Nelson and Fisher (1974a). An exact renormalization group for
the one-dimensional Ising model was studied independently by L. P.
Kadano6, 1973, in Eenoyezulizution Group (1973), pp. 21—23.

All Hamiltonians 3C that approach BC' under iteration lie
on the surface of criticality in the space of Hamiltonians and
are similarly critical. [The relation (4.12) demonstrates
that in general one also has to vary the spin scaling factor
dependence c = c[BCj in order to find a nontrivial fixed
point. j

(iv) To discuss the approach to criticality the renormal-
ization operator is ]inearized about 3C*. Thiy yields

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974



602 M. E. Fisher: The renormalization group in the theory of critical behavior

The operator L and, hence, its eigenvalues depend explicitly
on b, but from the semigroup (or iterable) property of R

one sees that one shouM have

Comparison with the phenomenological scaling relation
(2.4) now yields the identifications, first, of the exponents as

(4.15)
2 —n= d/X, , 3 = Xi/Xi, (4.22)

where the X,- are independent of the original choice of b.
The Q, form a spectrzini of eigenoperators or critical variables.
One may generally identify one of these Qi ( 8) as the
energy density (or, at least, its even or symmetrical part)
and another Q, ( M) as the order parameter, or magnetiza-
tion. The corresponding eigenvalue exponents X~ and X2 will
be positive for normal critical behavior. /The constant or
spin-independent term in the Hamiltonian may always be
identified (Wegner, 1972a) as an eigenoperator Qo with
X0 ——d. This then plays a special but, for many purposes,
largely ancillary role, so we will not discuss it here (Wegner
1972a; Ma, 1973b; Nelson and Fisher, 1974a. In general
there are also redundant or nonphysica, l operators, with
spurious exponents depending on the choice of R, which do
not affect physical observables (Wegner, 1974b) .)

(vi) Finally, for a near-critical Hamiltonian BC, one
expa. nds about the fixed point, R'.* in terms of the Q, by
writing

~ = BC*+ g h, Q;. (4.16)

(From a rigorous viewpoint the completeness of the Q, may
well be questioned, but we will expect at least "asymptotic
completeness" as regards the description of the behavior of
thermodynamic expectation values near criticality. ) The
free energy f(Kg may then be viewed as a, function of the
coefficients h, which, in turn, represent the (linear) scaling
fie&ds In particu. lar, hi will vary linearly with T, so that
essentially one has T —T, ~ t ~ h&. Similarly h will be
the ordering field, i.e. , proportional to the direct magnetic
field H for a ferromagnet). On inserting the expansion
(4.16) into (4.13) and using (4.14), one finds

(4.1.7)

On using (4.14) and the basic free energy renormalization
relation (4.7), we finally obtain

f(ki, hg, k3, ~ ~ ) b "f(b"hi, ii"'hi, b"'h3, ~ ~ ~ ). (4.19)

The rescaling factor b is now effectively arbitrary since, by
iterating (4.18), we find

k i" = A'k = 5'"~h = (6 ) "ih (4.20)

in which bg = b' can be made as large as we please.

(vii) The relation (4.19) is, in fact, an asymptotic
homogeneity ~elation, which implies scaling. I'o see this we
choose b so that b~'t = 1 and recall that h~ kit and
k& k,&, where k, and k& are constants. We then obtain

f(& ~ »3 *.~ ) =i""'f(k k.RiP2i"~ k/P~~"~ .) (421)
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On neglecting the nonlinear terms, this may be re-expressed
as the diagonalized recnrsi on, relations

(4.18)

and then of the scaling function as

V(y) f(ki, key), (4.23)

where we have dropped the dependence on hs, h4, ~ ~ ~ which,
however, we will return to shortly. (The nonsingular parts
of the total free energy are looked after by the spin-inde-
pendent field ho which v e are neglecting. )

Similar arguments applied to the correlation function
renormalization relation (4.8) using (4.12), lead to scaling
of the correlation functions in agreement with (2.11) and
yield the identification v = 1/Xi.

Four principal conclusions follow from the analysis
sketched above:

(B) The values of the critical point exponents follow from
the eigenvalues of the linearized renormalization group;
specifically one has the formula (4.12) for q, the relations
(4.22), and

(4.24)

v = 1/Xi ——(2 —n)/d. (4.25)

(C) Over large classes of Hamiltonian, BC, one has uni-
versality, in that the values of the critical exponents and
the character of the scaling functions do not depend on the
"details" of the Hamiltonian. The universality class en-
compasses all Hamiltonians on or near the critical surface
(or subspace) which flow into the given fixed point. More
concretely, operators Q& for which A& ( 1, or Xz ( 0, are
irrelevant: their addition to a Hamiltonian near 3C* cannot
change critical exponents. This is evident from (4.20) which
shows that the corresponding fields hI, decay rapidly under
iteration of the renormalization group and simply "relax"
back to the fixed point values. The fields hA, can then asymp-
totically be set equal to zero in (4.21). On the other hand,
irrelevant operators do contribute to the correcti ons to
asymptotic scaling, which are nonuniversal in character
(see Wegner, 1972a; Wegner and Riedel, 1973; and also
below) .

(D) In addition, and most significantly, the fixed point
formalism yields a description of crossover phenomena. In
particular, there may be extra operators Q, (over and
above Q, =8 and Q, =II) which have A;) 1, or X;) 0,
and so are relevant: as follows from Eq. (4.20), the effects
of a relevant operator grow unstably under iteration and
so carry BC away from the fixed point BC* to a net fixed
point with new (in general) different eigenvalues and, hence,
with dQTerent critical exponenjs. (The instability associated
with Qi and Q& is removed by adjusting T and H, or t and
hi, to their critical values. )

(A) The existence of a fixed point Hamiltonian about
which the renormalization group is linearizable implies
critica/ point scribing of the free energy and of the correla-
tions for all Hamiltonians which lie sufficiently close to BC*.
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To appreciate the significance of this behavior we will, in
Sec. V, review briefly the scaling theory of crossover effects
and show how it relates to the renormalization group
analysis. This section may, however, be skipped on a first
reading.

~iso. exch. + ghanian. exch. q (5.1)

where the leading isotropic part has the form of Fq. (3.7),
which involves only rotationally invariant s ~~s coupling
between spins. For concreteness let the spins be e = 3
component, or Heisenberg spins and suppose J(x —x')
vanishes except for nearest neighbor pairs, (x,x'), on a three-
dimensional lattice. %hen g = 0 the total Hamiltonian 3C

thus describes a Heisenberg system whose susceptibility
diverges as

V. CROSSOVER AND MULTICRITICAL
PHENOMENA

1

The simplest example of a crossover phenomenon is prob-
ably that occuring in a weakly anisotropic magnetic system. '
Consider a system with Hamiltonian

x.(T, g) = t-~ 'X(g/~'), (5.6)

exponent which will have the Ising value y(m = 1) 1.25
(see Pfeuty, Fisher, and Jasnow, 1973, 1974) .

The situation for negative g is similar, except that now
the perpendicular, xx, and yy spin components dominate
so that the ordered state and critical behavior are expected
to be XI -like with reduced symmetry index m = 2 and

in (5.4) replaced by j' = y(m = 2) ~1.31 (see e.g.
Pfeury, Fisher, and Jasnow, 1974).

In the renormalization' group context we thus expect that
at the 'Heisenberg, or v = 3, fixed point there will be an
additional relevant critical variable, say, Qa, proportional
t.o K,„;„,„,h Lin the symmetry-adapted form given in
Eq. (5.3) j. Small but nonzero values of the corresponding
field h3 k&g then build up unstably and carry the system
either to an Ising-like, e = 1 fixed point, or, for opposite
sign of h3 g, to an XF-like, m = 2 fixed point. Around
each of these new fixed points there will again be scaling.

However, the two forms (5.2) and (5.4) (and, similarly,
for the XY critical behavior) can be combined for small g,
(Riedel and Wegner, 1969) by the scaling hypothesis

xo(T,g = 0) Ct ", (5.2)

where y = y(zz = 3) 1.38 is the Heisenberg critical
exponent (see e.g. Ritchie and Fisher. 1972). But sup-
pose now there is also anisotropic coupling present of the
form) say)

~anise. exch. = J g t Sx Sx' 2 (Sx~Sx' + Sx Sx' ) ].
(x,x~)

(5.3)

Note we include the s s* and s"s" terms in the way exhibited
so that (BC;„,,h. )g &

——0; this choice is dictated by con-
siderations of symmetry Land to do otherwise can yield very
misleading results (Fisher and Pfeuty, 1972)g.

Now for positive g the strength of the s's', or parallel
coupling, is increased to J(1+ g) but the perpendicular,
s*s* and s&ss', coupling is' decreased to J(1 —2g) . Hence one
expects the system to order into a uniaxial or Ising-like
state with a reduced symmetry irIdex of only m = 1. The
transverse or perpendicular fluctuations may become quite
large, but they will not go critical. Correspondingly the
critical behavior will become

where X(s) is the crossover scaling function /normalized
by X(0) = 1$ and g is the crossover exponent, first intro-
duced by Riedel and Wegner (1969, 1970; Riedel, 1971).
(The hypothesis (5.6) has actually been written in an
"extended" form using t in place of t (Fisher and Jasnow,
1974; Pfeuty, Jasnow, Fisher, 1973, 1974).) Divergence of
the crossover function at particular positive and negative
arguments, i and z, then reproduces the anisotropic behavior
(5.4) and its analog for g ( 0. Furthermore, (5.6) leads
straightforwardly (Riedel and Wegner, 1969; Pfeuty,
Jasnow, and Fisher, 1973) to predictions for the g depend-
ence of the anisotropic amplitude C(g) and of the critical
temperature shift, AT, (g) = T,(g) —T,(0). A moment' s
reflection shows that while g/t& remains small compared to
unity, the observed critical behavior will closely f'ollow the
isotropic, zz = 3 form (5.2). However, as t becomes smaller,
g/t& becomes larger and, for g ) 0, approaches z. The
observed behavior must then "cross over" to the charac-
teristically anisotropic form of divergence with exponent y.
The actual shape of the crossover scaling function, X(s),
determines how rapidly or how gradually the actual cross-
over occurs.

Now the crossover hypothesis (5.6) can clearly be ex-
tended to the whole free energy by postulating

xo(T,g & o) =~(g)~ ", (5.4)
f(t, H, g) = P Y(H/i', g/t~), - (5.7)

t = t& —T.(g) j/&. (g) (5.5)

Correspondingly p denotes the new, anisotropic critical

where owing to the shift in the cxitical temperature to
T, (g), we have defined the shifted reduced temperature
variable

exponent as

@ = X3/Xi (5.8)

which reduces to the origina, l scaling hypothesis (2.4) when

g = 0. Finally, comparison with the general renormaliza-
tion group prediction (4.21) yields the same exponent
identifications (4.22) as before but also gives the crossover

Fisher, (1966); Riedel and Wegner, (1969); Riedel and XVegner,
(1970);Riedel, (1971);Fisher and Pfeuty, (1972); Fisher and Jasnow,
(1974). For a numerical study of anisotropy crossover, using series
extrapolations, see Pfeuty, Jasno~, and Fisher (1974). Y(y, z) = f(ki, kzy, k3s) . (5.9)

and identifies the generalized free energy scaling function as
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In this last formula we have again assumed that all other
variables are irrelevant (or, if relevant, absent for reasons
of further symmetry, etc.). More generally, if there are
other relevant variables present they will have crossover
exponents given by

p, = x;/xi. (5.10)

Graphical examples of such slow crossover in the context of critical
exponent renormalization by constrained variables (Fisher, 1968) have
been exhibited by Scesney and Fisher, (1970); The problem has also
been discussed by Riedel and Wegner, (1974) in an interesting paper
based on "model" recursion relations, including the essential nonlinear
terms dropped in Eq. (4.18).

'0 See also EenormulisaHon Group especially concerning the field-
theoretic Thirring model which also displays continuously variable
exponents or "anomalous dimensions" (Wilson, 1970, 1971).

This aspect of the theory is particularly applicable to
magnetic critical behavior since, as will be indicated, there
are many small, but nonzero terms in real magnetic Hamil-
tonians that are possible candidates for relevant operators.

The general formalism of crossover scaling and the re-
normalization group approach apply equally to behavior
near multicriticai points, which are characterized physically
by the meeting or ending of lines of critical points. The
simplest examples of such points are tncri tical points
(GrifTiths, 1970, 1973), which have been observed as mag-
netic transitions in dysprosium aluminum garnet (DAG)
and FeC12, as superfluid/fluid transitions in He' —He' mix-
tures, as displacive transitions in ammonium halides, and
as normal Quid transitions in multicomponent mixtures
( Griffiths and Widorn, 1973). In the space of field variables
normally accessible physically, a critical line ends at the
tricritical point and continues as a first order transition
line (Griffiths, 1970, 1973).The first renormalization group
analysis of a tricritical point was made by Riedel and
Wegner (1972) .

More recently it has been pointed out Fisher and nelson
(1974) that the spin flop point -in the (H~i, T) phase dia-
gram of a weakly anisotropic uniaxial antiferromagnet, such
as MnF2, can be regarded as a bicritical point and also dis-
cussed in scaling terms. A renormalization group analysis of
bicritical and related tetracritical points, has been presented
by Nelson, Kosterlitz, and Fisher (1974). We will not,
however, in this short review, enter further into these inter-
esting but intricate phenomena.

It is clear from the discussion of crossover scaling that a
small crossover exponent @, implies a very slow crossove
so that it may be very hard experimentally to see the new
exponents u, P, y', etc. In practice with a restricted range of
log

~

t ~, one may instead observe an effective, or apparent
critical exponent taking some intermediate value which
varies continuously with the coupling parameter g between,
say, p and j.' In most real cases one must recognize that
such continuous variation of exponents with parameters
is owly an observational artifact. However in the case of a
marginal operator, Q, , which has A, =—1 or X, = 0 so that
@, —= 0, the renormalization group does, in fact, allow such
continuous variatiori of exponents with a field g, in the
Hamiltonian. LHowever, the existence of a marginal oper-
ator does not by itself imply continuously variable expo-
nents (Kadanoff and Wegner, 1971).jio A celebrated exam-

Vl. PRACTICAL RENORMALIZATION GROUP
CALCULATIONS

Most renormalization group calculations so far carried
through have followed the lines of the original works. The
main steps are:

(a) Adoption of a coetiuuous local variable o. r spin s, with
a magnitude constrained by a weight factor

exp/ —rv(s) j = exp( —-',
~

s ~' —n
~

s ~' — ),

(u ) 0), (61)

for each individual variable s . The i7,
~

s
~

term here plays
a vital role—it approximates the sharp spin-magnitude cutoA'
in real systems. But except in special circumstances t certain
types of tricritical point (Riedel and Wegner, 1972), etc.g
higher order contributions to the initial 3C (proportional to

~

s ~', etc. ) seem to be inessential. (Ultimately, however,
this point may warrant further detailed investigation
especially in relation to spin 2 Ising models where the strong
constraint s = &1 might still play a special role. )

(b) Introductiori of momentum space variables a~ =
(a~")„=i „,normalized to remove all temperature and.
other variation from the dominant q dependence of the
reduced Hamiltonian 3'. This dependence thus takes the
form

2
g Oq'0 —q)

q
(6 2)

pie of this so-called "nonuniversal" behavior occurs in the
exactly soluble two-dimensional eight-vertex, or Baxter
model (Baxter, 1971, 1972). However, the existence of a
marginal operator in the model seems to depend crucially on
the existence of a special symmetry L'the identity of two
Ising sublattices into which the system can be decomposed
(Kadanoff and Wegner, 1971)). Breaking this symmetry
most probably leads back to characteristic two-dimensional
Ising behavior. For similar reasons, it seems unlikely that
critical exponents which truly vary continuously will bc
found in real physical systems; rapid or slow crossovers
from one discrete exponent value to another one, should
rather be the order of the day ~

The discussion of crossover effects we have given, relates
to relevant operators. Formally, however, one may take it
over for an irrelevant operator with, say, a field gj„which by
(5.10) then has a negative crossover exponent @i,. In this
ca,se the scaling relation (5.7) still applies (with gi, replacing
g) but the combination g~/t» = gi, t~~'~ now vanishes as
t ~ 0 evee for g~ & 0. Thus no crossover, in fact, occurs; this
simply confirms the irrelevance of gA, as before. However, if
one expands the scaling function F'(y, s) with respect to s
for small z (as will often be justifiable) one in fact generates
corrections to asymptotic scaling (Wegner, 1972a; Wegner

.and Riedel, 1973) which vary as t'»~ If
~

@.&
~
( 1, these

corrections are quite singular and may, in fact, interfere
with the observation of true asymptotic power laws (see
e.g. Fisher, 1970). LOf course analytic corrections varying
as t. t2, etc. , must always be expected; these are generated
through the nonlinear corrections to the scaling fields which
were neglected in Eq. (4.18).J
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where the useful notation f~ was defined in Eq. (3.2); in a
finite system we have f~ = a ~X 'g~, where the sum runs
over the appropriate discrete Brillouin zone.

To see explicitly what is involved we may first introduce
the Fourier transformed spins

e~ = Q exp(iq x)s„. (6.3)

sc = —se;... . ,h, /koT —p (-,'~ s ~' —u
~

s ~')

If, for illustrative purposes, we then start with the isotropic
exchange Hamiltonian (3.7), the full reduced. Hamiltonian
becomes, using (6.1) in truncated form,

The first term, quadratic in the o.~t', represents the zero
order, Gaussian. or "free-field" Hamiltonian which embodies
the original pair interactions and the ~ ~

s ~2 weighting
terms. As seen above and discussed further below, most of
the details of the physical Hamiltonian go into the specifica-
tion of the corresponding two-point potential V2&"(q). The
second, quartic, or four-point term derives, as seen in Eq.
(6.4), primarily from the nonquadratic part of the spin
weighting function. However, under iteration of the renor-
malization group, new quartic terms may be generated
and must thus be allowed for. The most important of these,
which covers many practical cases, is a term of cubic sym-
metry: thus one may usually take

—'V4&"(q q' q") = u+ vB
f

L1 —J (q) /ke7')~. 3

a a' q." (e~ s~') (s~" 's —~~' —~")

where

Z(q) = Q exp(iq x)J(x) = J(0) —ja'q'+ O(q'),

(6.4)

(6.5)

where v is proportional to the magnitude of the cubic con-
tribution. Details of the lattice structure, etc. , would enter
into q-dependent terms here, and into the O(q4) terms in
Eq. (6.'7); however, such contributions turn out to be
irrelevant. More generally one might have to consider a
V4"~" with four distinct spin indices (Brezin, I.e Guillou,
and Zinn-Justin, 1974; Nelson and Fisher, 1974; Nelson,
Kosterlitz, and Fisher, 1974). External magnetic fields will
call for a linear term in (6.10) and cubic, or three-point
terms may then be induced as well. The next step is:

8~ = (k&T/j a"+')'trna„ (6.6)

the reduced Hamiltonian becomes

3C ———1
2 Lr+ v'+ O(v')3o~ ~~

a q.' a"
&a" 0 —a—a' —q" r (6.7)

the expansion being always possible for short range inter-
actions. Now, if we define the 0-~ through

(d) Definition of a renorrnaHsation group by a partial
trace over high momentum variables. Owing to the assumed
lattice structure of spacing a, the momenta q are essentially
restricted by

~ q ~
& m/a. (This neglects details of the shape

of the Brillouin zone which, however, will also prove irrele-
vant. ) More generally the physics of condensed matter will
always dictate some form of fixed, high-momentum cutoff.
(This contrasts with quantum field theory where there is
normally no natural cutoff, so that the problem is to take
the cutoff to infinity, or the lattice spacing to zero. ) Fol-
lowing (4.3) we thus define R by taking a trace over all
variables 0.~ satisfving

which exhibits the form (6.2). The parameter r js b &I V la/- (6.12)

r = (ko/ja') (T —To), koTO ——J(0), (6.8) Evidently this introduces the spatial rescaling factor b.

so that it becomes now the basic temperature variable.
Second we have

u = a" 4(keT/j)'u) 0- (6.9)

ge = —-', g V,~"(q) o,~~"~

which represents the quartic part of the weighting function
ui(s) .

We have for this example now completed the third step
for the simple Hamiltonian (3.7), namely:

(c) Construction of the reduced IIarnittonian in rnornenturn

space. More generally the reduced Hamiltonian takes the
form

A little thought shows that we have defined a linear
renormalization group Lsee Sec. IV.ej since any spin com-
ponents o~ with

~
q~a/m. ( b remain untransformed by the

partial trace. Accordingly a spin rescaling factor, c/BCJ,
must be introduced as in (4.6). This factor will normally
be chosen to keep the coefficient of q20.~.o=~ in the renormal-
ized Hamiltonian, 3C, corrstaet, in accord with the original
normalization (6.2) . It is found that this prescription leads
to a nontrivial fixed point describing critical behavior for
short range interactions Las embodied in Eq. (6.7) j; more
generally, however, other forms of rescaling may be needed
to reach an appropriate fixed point. "

(e) The final and crucial computational step is to realize
R by a perturbationexpansion treat, ing u and w as small
parameters. As might be expected, this leads to a graphical

~ ~ ~ (6.10)

—~Z V4""(q q q )oq"i''"ir a"ir ~—a'~"
cl aI a'~

' See, for example, the discussion by Sak (1973), of the crossover
from long range to short range behavior Fisher, Ma, and Nickel (1973);
Suzuki, (1972); and Nelson and Fisher (1974) and Nelson, Kosterlitz,
and Fisher (1974) .
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formulation abounding in Feynman type integrals. The
essential feature, however, is the discovery that the small

parameter is not, in fact, u (which in field-theoretic language
would be regarded as the "coupling constant") but rather,
as announced earlier, the dimensionality digerencet
&=4 —d.

For readers interested in some of the technical details
a few equations should give the feel for what is involved
and, in particular, demonstrate how and why ~ enters as a
parameter —however, those interested only in the results
are strongly advised to skip this material. As usual the free
graphical "propagator, "Gob'"( q), derives from the quadratic
potential. Diagramatically one may write

(6.13)

where we recall from (6.8) that, the temperature appears
essentially only in r ~ (T —To), with To being the mean
field critical temperature. The perturbation "vertex" may
be denoted

() &) =—(n+»"); (6.15)

The factor —reflects the same factor in Eq. (6.10); however
propagator lines in other graphs do not carry this factor.

For isotropic short range forces one may by Eq. (6.7),
simply take

(6.14)

a, factor b"c, and each integral J~ a factor b ".As mentioned,
the va, lue of c is to be determined by normalization of the
dominant q dependence; here this simply means that Go'
should be of the form 8„„/(r'+ q'), i.e., the coeflicient of q'
remains unity after renormahzation in order to retain (6.2)
for K'. Now there is no first order contribution to the q
dependence of G0', so this yields

c2 b2—8+0 (u2) (6.17)

r' = b2Lr + 4(n + 1)uAi(r, b) ),

u' = u(1 + e lnb —4(n + 8)uA~(r, b) j,

(6.18)

(6.19)

Comparison with (4.12) reveals that, if some fixed point is
found with r = r~ and u = u*, then the exponent g is given
by it = O(I*'). It now follows that to order n, the prefactors
in (6.16) become simply b', and b' ~ = b', respectively. The
origin of the parameter e is thus seen as resulting essentially
from a competition between the q'

~
s~ ~' and u

j
s ~4 terms

in BC, or, picturesquely, between the delocalizing effects of
the "dynamical" interactions between sites, and the local-
izing tendency of the "kinetic" restrictions on the spin
magnitudes. In any event, when e is small one has b'
1 + e lnb and, as an anzatz, we assume that both r and u
are of order e in the fixed point region. This anzatz effec-
tively decouples the recursion relations for r and u from
those for any other parameters in the Hamiltonian. To
leading order these recursion relations are then found to be

for simplicity we will describe only the v —= 0 situation.
Each in-going or out-going line carries a momentum and a
spin-component'index. To leading order in u the renormal-
ization group equation (4.3) now becomes a set of non-
linear recursion relations jcompare with (4.18j which may
be written schematically as

Ai(r, b) = (r + q') —' = E' (1 b ')/a'+ O(r e)

(6.20)

where, with d = 4 + O(e), the graphical integrals lead to

r);(r, b) = f (r+ q') ' = bC, )rrb+ O(r, ), (6.21)
( )'= b""f( )+&E( )+(/)j

+ where E j and E2 are constants and the superscript & on the
integrals denotes the outer zone of integration (6.12).

() () ' = b"'( () () — L() & 0
The u equation clearly has a trivial fixed point u* = 0+()K ) + (~ )~ + ' '

~r which then implies r* = 0. This fixed point corresponds to
simple Gaussian behavior, as might be expected, and leads,
for all n, to the corresponding exponents given in (3.6) .

("-)'= b""f(.") —" f, (6.16) However, there is also a nontrii)iai fixed point with, to
leading order in e,

where, as before, we do not need the constant (spin-inde-
pendent or "vacuum expectation" term) .

e lnb

4(n+ 8)A2(0, b) 4Eg(n + 8)
' (6.22)

As usual, internal lines in diagrams carry propagator
factors Go""(q) and imply momentum integrations and
spin index summations, but the momentum integrations
run only over the "outer zone" (6.12). Owing to the spin
summations, each closed (solid line) loop in a diagram
contributes a factor e. In this way one finds that the coefFi-
cients of u in the first two recursion relations are propor-
tional to (n+ 2) and (n+ 8), respectively. This is the
only way, to this order, in which the spin symmetry index
enters. The exponents of b and c in the prefactors follow
from simple dimensional considerations: each spin 0-~ yields

which is independent of b. Correspondingly one finds

Ei (n+ 2) e+ O(e')
Eg (n+.8)

(6.23)

For e ) 0 (or d ( 4) this fixed point turns out to be the
important one. Indeed if one starts out with small u near
the Gaussian fixed point, one merely crosses over to the
nontrivial fixed point; the Gaussian fixed point is thus un-
stable. The converse happens for e ( 0, which explains
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g = O(e'), (6.24')

although, of course, one needs to know the coefficient (see
below). To complete the analysis to first order in e, we
linearize the recursion relations about the nontrivial fixed
point, noting that (BAi/Br) =, —A~. In terms of the devia-
tions Ar = r —r* ~ t and hu = u —u*, we find

b'(1 —p„elnb) 4K,(e + 2) (b' —1) ar

why the critical exponents in more than four dimensions
stick at their classical values for all e. The fact that both
u* and r* are of order e confirms the anzatz and allows one to
linearize to successive orders in ~ and thereby carry through
the general program outlined in the previous section. .

From the argument following (6.17) we already see that

In the analysis just sketched, we have followed the full
renormalization group formalism; but, as a matter of fact,
if one knows, or is prepared to assume, enough about the
form of the answers (e.g. , scaling forms, etc.), one may
side-step the recursion relations and use purely graphical
methods of computation (Wilson, 1971a, 1972; Wilson and
Kogut, 1974; Tsuneto and Abrahams, 1973). However, the
actual justification of such techniques seems best accom-
plished via the renormalization group approach. This is
especially so in the case of crossover phenoemna (Saks,
1973; Nelson and Fisher, 1974; Nelson, Kosterlitz, and
Fisher, 1974) .

T'he appearance of the factor rI, associated with closed
loops suggests that a graphical resummation to collect up
the leading contributions of diagrams with many loops
might yield a systematic expansion. The procedure (which
is appreciably more comphcated than the e expansion)
can be carried through and does indeed yield the desired

hu'
, Au 1/n expressions Abe, 1972, 1973; Fisher, Ma, Nickel, 1972;

Suzuki, 1972; Abe and Hikami, 1973; Ma, 1973a).e+ 2
with p„=++8 (6.25)

Ai b'{1 —P(n + 2)/(n + 8) je lnbl,

A2 = A„1—~ ink, (6.26)

and so by (4.15) we obtain

1

{ Contributions of order e to the upper right hand matrix
element also come from terms of order u' neglected in
(6.18).j Thus we conclude that

Vll. EXPONENTS EOR ISOTROPIC SHORT
RANGE EXCHANGE

One of the most important outputs of the practical renor-
malization group calculations has been expansions for the
critical exponents. In leading order in e(&0) the deviations
from classical behavior for . systems with isotropic short
range exchange are revealed by

N+2
2(e+ 8)

n+2
2 — e+ O(e'),e+ 8

1—
2

3

2(n + 8)
(7.2)

l~2 ——li„=—e + 0 (e') . (6.27)

Finally we may apply (4.25) to find the correlation
exponent

n+2
2p = 2/Xi = 1 + e+ O(e )

2(n + 8)
(6.28)

By (5.8) we also find the crossover exponent for the irrele-
vant variable

~

s ~4, namely,

P„=l~i/X„= —-', e+ O(c'). (6.29)

Note that these results are independent of b as anticipated
in the general discussion of Sec. IV.vi.

4 —n (n, + 2)'(n+ 28)

2(e+ 8) 4(e+ 8)' (7 3)

A+2
2(n+ 8)'

b= 3+e+ ~ ~ ~, (7 4)

where 6 is the exponent for the critical isotherm where
M'. ' The first significant feature is simply the sign of

the deviations from the classical values as d falls below 4;
the second is the characteristic, but weaker, dependence
on n, the degree of isotropy. Both features accord per-
fectly with experimental, evidence and with the analysis
of exact series expansions (see e.g. , Fisher, 1970, 1973;
Pfeuty, Jasnow, and Fisher, 1973, 1974; and especia, lly
Wortis, 1973).

The fact that
i @„~is' probably less than unity for e 1

indicatt s that significant sirIgular corrections to asymptotic
scaling may well be encountered in real three-dimensional
systems (as against just analytic corrections varying as t, t,
etc. , see Sec. V).

We may note that from (6.28) and (6.24), all the other
standard critical exponents can be found to O(e) via (4.25)
and the usual scaling relations for exponents (discussed in
Sec. II).

Higher order terms have been calculated, to ~' by wilson
(1972), and more recently, to third order by Brezin,
Le Guillou, Zin- Justin, and Nickel (1973; Brezin,
LeGuillou, and Zinn-Justin, 1974d; see also Ketley and
Wallace, 1973). (The number of coauthors is indicative of
the labor needed to get the correct answer!) In each case one
further power of e becomes available for ii (and b) than cal-
culated for u, p, and I . The expansion for n when truncated
at second order and evaluated at e =— 1 (i.e., d = 3) yields
the estimates cx ~ 0.08, —0.02, and —0.10 for e = 1, 2 and
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TABLE I. Third order c expansion' for the exponent y. TABLE II. Fourth order expansion~ for the exponent q.

(n + 2) (n + 2) (n'+ 22n + 52}
2( + 8) 4( + 8)3

("+ ')
8(n+ 8)3

+ 24
(n + 2) (n + 3) —(10n + 44) P(3)

(n+ 8)

55n2 + 268n + 424+ 4 .3+ O(.4).
(n + 8)2

n+ 2 n+ 2 24(3n+ 14)
2(n + 8)2 8(n + 8)2 (n + 8) 2

I + 2 l
—SrP + 234ig + 1076+ 2(n+ 8)' 16(n+ 8)'

3n' + 53n + 160 + 3 (5n + 22) g (3)—8
(n + 8)'

(3n + 14)'+ 45 &4+ O(~').(n+ 8)4

From E. Brezin, J. C. LeGuillou, J. Zinn-Justin, and B. G. Nickel
(1973). From E. Brezin, J. C. LeGuillou, J. Zinn-Justin, and Nickel (1973).

3, respectively. These results correlate surprisingl& well TABLE III. First order 1/n expansions for exponents for 2 & d ( 4.
numerically with the experimental observations summarized
in Section II. — "+

The fourth order expansion for q is exhibited in Table
II. In conjunction with Table I and the exponent scaling
relations (2.12), (2.25), (2.5), (2.6b), and

d(B —1)/(8+ 1) = 2 —q, (7 5)

all exponents can then be calculated to third order in e.

The 1/e expansions are also instructive (see Table III)
although for the values of e of practical interest they seem
less accurate numerically (and they are much harder to
calculate). However, convergence may apparently be im-
proved, as suggested by Suzuki (1973a, and to be pub-
lished), by noting that 1/(e+ 8) rather than 1/n is the
basic expansion variable.

Despite the limited numerical accuracy presently obtain-

Although one can see that all coefFicients in the expansion will be
rational functions of n for isotropic short range forces, the coefFicients
become nonanalytic functions of n for biconical Axed points: see Fisher
and Nelson; Nelson, Kosterlitz, and Fisher (1974).

Because of its impressive complexity, the third order
expansion for p is quoted in Table II Perhaps the most
interesting technical feature is the appearance of a trans-
cendental number, namely i (3) = gi"k ', in the third
order term. Note also the factor (e + 2) in each coefficient
which confirms that e = —2 yields the Gaussian value
y = 1. The denominators are all powers of (n + 8) ."From
a purely numerical point of view, however, the results are
a little disappointing. Thus truncation of the series for
n = 1 and d = 3 at order e, e', and e' yields p 1.17, 1.245,
and 1.195, respectively. These figures may be compared
with the best series estimates for the d = 3 Ising model
(see e.g. , Fisher, 1967), which gives y 1.250. However,
one should not be too surprised since various arguments
(Wilson, 1971a., 1972) indicate that the e expansion is
probably only asymptotic for finite n Lalthough for iz =
it evidently converges to the exact spherical model result

(1 —~~) '$. Nevertheless, if appreciably longer series
coUld be obtained, Pade approximant and other summation
techniques would probably be successful.

4 —d 4(d —1) Ag 1
1 — —+ 0

d —2 (4 —d) n n2

where

2(4 —d) A—+0-
d n n2

2I'(d —2) sin(2d —1)7r
Ag =

Lr(-, d —tlj (-;d —t) ' Ag ——4/z-'

A4, = -',.as e ~ 0, A2+g = ~~0 as 8 —+ 0

able from the e and 1/e expansions, they serve, in combina-
tion with other evidence already mentioned, to give us an
excellent picture of the over-all variation of the exponents
with d and e. Figure 2 is a plot of contours of constant
values of the exponent n which illustrates this. Note in
particular, the locus on which a = 0 (corresponding to
a logarithmic divergence), which passes through the
"Onsager point" (d = 2, n = 1) and near the "helium point"
(d = 3, n = 2). Above this locus, which region includes
three-dimensional Heisenberg systems, the exponent n is
negative and the specific heat rises only to a Rnite cusp. '
Below the n = 0 locus the specific heat diverges to infinity
as a power law. For d & 4 the mean field discontinuity
represents the dominant behavior. It is interesting that
the one-dimensional Ising point (d = e = 1) seems to be
a point of conRuence of the contours.

As shown in Figs. 3—5 similar global contour diagrams
may be drawn for other exponents. The uniform increase
of the susceptibility exponent & from unity at d = 4 and
n = —2, to ~ for d 2 and e)) 1 is striking. Again the
one-dimensional Ising model is a point of conQuence. The
dashed lines around e = 2 and 3 for d = 2, indicate a basic
gap in our current knowledge! If, in fact, transitions occur
at nonzero temperatures in such isotropic two-dimensional

' From M. E. Fisher, S. -K. Ma, and B. G. Nickel (1972); M. Suzuki
(1972), S. -K. Ma, (1973};R. Abe, (1972, 1973); R. Abe and S.
Hikami, (1973).
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TABLE IV. Important classes of magnetic interactions

Type of spin —spin
interaction

Form of
interaction

Dominant contribution
to V&~" (g)

(I) Isotropic, short range
rz-vector exchange

lattice structure effects

(2) Single-ion arzisotropy with reduced
syrrzmefry index nz & rz

Anisotropic short range exchange

(3) Cubic short range (dipolar induced)

—J(x)sp s

—D„(sp~)'

—D~(x) /so"s»" + sgsx" g

g P{x„')s

(r + q')8„„
+ &4g ~pv +
r„B„„
(r„+r„)a„„

f(v.)'&:

(4) Pseudodipolar (short range) n = d

(5) Dzyaloshinskii-Moriya n = d

{6) Isotropic dipolar n = d

(7) Anisotropic dipolar
symmetry index spaz & n

(8) Long range isotropic exchange 0 & 0. & 2

—K{x)(x so) (x s )

A(x). sp As,

p(g,va) '/~'—jrd (x„x„/x')—s„,) gso~s, "

gs ~ gs"gs"

—(J„/H")so s.

zG) gxEIJ, vx + C.C.

g(gygv/g )

g"R"&&/V

~ Note that ~z„„is the totally antisymmetric Levi-Civita symbol.

d=2 d= 5 d=4
borderline. Hut in any event, this issue does not seem to
matter at all as regards realistic systemsI

Spherical ~- —:—
model.

:~ n=G)
VIII. CROSSOVER EFFECTS IN MAGNETIC
SYSTEMS
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FIG. 5 Diagram of the (d, n) plane showing contours of constant P.
There is a region where p ) —,', and a nonphysical region of negative p.

exponent P apparently becomes negative. This feature,
already implied by the Gaussian results at e = —2, is, of
course, quite unphysical; so are the values of n (exceeding
unity) in the same region of the (d, e) plane. Perhaps this
behavior means that the contours do not continue analyti-
cally into this (unphysical) domain; one may speculate
that there is a locus, m = 1 —3(d —1) = g + 3~, running
from (d, e) = (1, 1) to (2, —2) on which n= 1, P= 0,

and g = 2 —d, and which represents a special

As pointed out earlier, much of the charm and complexity
of magnetic phenomena arises from the many terms of dif-
ferent symmetry, spatial form, and magnitude which enter
realistic Hamiltonians for magnetic materials. The renor-
malization group approach offers a systematic method for
studying the effects of such terms on critical behavior and
for distinguishing between them —something that was
sorely missing in previous theories of critical behavior.
Some of the most important classes of magnetic interactions
and effects are listed in Table IV together with the type of
term to which they give rise in the general Fourier trans-
formed two-point interaction, V,~"(q), which appears in
Eq. (6.10).

The interaction types (1) to (4) in Table IV are all of
short spatial range and exhibit high spatial symmetry so
they give rise, in leading order, only to quadratic momentum
dependence. Of course details of lattice structure lead to
fourth and higher order momentum dependence as indicated
under (1). However, the various interactions differ sig-
nificantly in their spin symmetry. Thus, under (2), uniaxial
single-ion anisotropy a'nd planar or XI"-like exchange
anisotropy are illustrated. The Dzyaloshinskii —Moriya
cross-product interaction, (5), is short ranged but of lower
spatial symmetry and gives rise to spiral magnetic struc-
tures, etc. A renormalization group treatment has been
presented by Liu (1973).

On the other hand the dipole —dipole interactions, (6),
are of very long range and, as indicated, yield a very singular
low-momentum dependence. Because of the direct coupling
of spin and space, one must take m =. d (Fisher and. Aharony,
1973;Aharony and Fisher, 1973; Aharony, 1973c, d) . Actual
dipolar interactions also generate (Aharony and Fisher,
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Cubic
n~5

Cubic
n&5

SHORT
RANGE

EXeH.

DIPOLAR

plus

SHORT
RANG&

The isotropic term u is always present. The cubic term pro-
portional to v can arise from single-ion terms of the sort
D4Z„(spi') in the original spin Hamiltonian or from aniso-
tropic biquadratic exchange such as J.&(so&s„&)'.But it may
also be generated via dipolar, pseudodipolar, and two-point
cubic interactions. The cubic term is of particular signifi-
cance in displaciye transitions in perovskites and similar
materials (Cowley and Bruce, 1973; Bruce and Aharony,
1974) . A further discussion of the various types of interac-
tion term has been presented by Aharony (1974a), who also
lists various results for crossover exponents, etc. , which we
will not present. In special cases n~e may have to consider
more general fourth order interactions as mentioned in Sec.
VI.c (Nelson and Fisher, 1974b; Nelson, Kosterlitz, and
Fisher (1974); Brezin, I.eGuillou, and 7inn- lustin, 1974c).

A. Gaussian and Heisenberg, XY., and Ising
fixed points

. LONG

RANGE

-1/xd'~

DZ YALOSHI NSKII-
—MORI YA

I'IG. 6 Crossover map for magnetic fixed points for d ( 4. The arrows
show the direction of instability under the perturbations characteristic
of the more stable 6xed point. The crossover exponents @„pd,and p~
refer to cubic, dipolar, and long range perturbations to the isotropic
short range fixed point, respectively, See text for further explanations.

V4&"(q, q', q") ~ u+ vB„„. (8.1)

1973) short range cubic and pseudodipolar couplings as
listed under (3) and (4) in Table IU; in antiferromagnets
these terms arising from dipolar coupling may thus play a
role even if the long-range character does not affect critical
behavior (which, of course, is associated with a superlattice
momentum vector in an antiferromagnet, rather than with

q = 0) . Anisotropic dipolar interactions (7) may enter
when the gyromagnetic ratio g8 is replaced by a vector gz&"

(or, more generally, by a tensor gz""). Finally (8) we in-
clude very long range interactions decaying as 1jx"+ . Such
interactions are not particularly realistic (although they
may be approximated in some materials) but they are most
instructive theoretically (Fisher Ma and Nickel, 1973;
Suzuki, 1972): indeed, in the spherical model they already
lead. to distinct exponents (Joyce, 1966). The various cou-
pling parameters e4, r„,f, g. h, ~ ~ ~ appearing in the column
for V2"" are proportional to the magnitude of the corre-
sponding terms in the original Hamiltonian /but they are
effectively normalized by the strength of the short range
isotropic coupling which is assumed always to be present:
see Sec. Vi.bg. As before, the parameter r is proportional
to (T —To), where To is the isotropic mean field critical
temperature (see Eq. 6.8) g.

To the list of important two-point interactions in Table
IV we should add the expression (6.11) for the four-point
interaction, namely,

Under the influence of the various terms exhibited in Eq.
(8.1) and Table IV, a variety of fixed points may occur.
Some of these are shown schematically in Fig. 6. The
topmost is the trivial, or Ga.ussian fixed point (oval obloifg)
with u = v = 0, i.e., no four-spin terms. This fixed point
has exponents q = 1 and g = 0 Lsee Eq. (3.6) $ but, for
~i ( 4 (or c ) 0) it is unstable with respect to the four-spin
terms and rapidly crosses over with exponent P„=, ~e
(exactly) to some other fixed point, as indicated by the
arrows. At the next level of stability are the short range
exchange fixed points: on the left, the isotropic "Heisen-
berg" fixed point (circle) with degree of isotropy n; on the
right, the anisotropic, "XV"or "Ising" fixed point (elhpse)
with reduced symmetry index m & n, i.e. , the dominant
exchange interactions still have m-fold rotational symmetry.
(Formally we may allow ns = n. )

B. Anisotropic crossover

As indicated in the figure, the anisotropic exponents y,
n, q, etc. , have identically the same form as do the isotropic
exponents (discussed in the last section) but with m replac-
ing n (Fisher and Pfeuty, 1972). The isotropic fixed point
is unstable with respect to anisotropic single ion or exchange
terms, as indicated by the right-going arrow. To second
order the corresponding anisotropy crossover exponent is
(Wilson, 1972)

ne (n'+ 24n+ 68)n~'

2(n+ 8) 4(n+ 8)'

which accords well with numerical estimates of p
and 1.25 for n = 2 and 3 in three dimensions (Fisher and
pfeuty, 1972; pfeuty, Jasnow, and Fisher, 1973, 1974). To
order 1(n one finds (Hikami and Abe, ] 974)

(8.3)

where Ad is defined in Table III. AVe may mention that. the
analysis of the spin-Bop bicritical point in anisotropic anti-
ferromagnets (Fisher and Nelson, 1974; Nelson and
Fisher, 1974b; Nelson, Kosterlitz, and Fisher, 1974)
indicates that P should be directly observable in such sys-
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tems via the scaling variable (H~ ~

—EI
~ ~,q) /k~, where H

~ ~

is the value of the parallel applied field H~
~

at the spin-Bop
point.

C. Cubic critical behavior

The cubic fixed points (squares on the top left) are asso-
ciated directly with the parameter i in Eq. (8.1). Their
stability with respect to the isotropic Heisenberg fixed
point changes as e passes through the value

i'(d) 4 2&+ &x&2+ 0(&3)

~ (4+ 3.176m)/(1+ 1.294'), (8.4)

n —4 ii'+ 16m'+ 4~+ 240,
2(ii+ 8) 2(e+ 8)'

and the two cubic exponents

(8.5)

where c+ = (5/12) L6| (3) —1) (Aharony, 1974c; Wallace,
1973; Fisher and Nelson, 1974; Nelson, Kosterlitz, and
Fisher, 1974). For d = 3 we find n~ ~ 3.13, so that the
ordinary e = 3 Heisenberg fixed point is probably stable
with respect to cubic perturbations, i.e. , the exponents
do not change. Since the. cubic critical exponents (Aharony,
1974c; Wallace, 1973, Ketley and Wallace, 1973) are also
numerically similar to the isotropic exponents for e 3, it
seems likely that the effects of any cubic instability would
be very hard to see experimentally (although effects might
appear in the phase diagram (Bruce and Aharony, 1974a) ].
For completeness, however, we record the cubic crossover
exponent (Aharony, 1974c; see also Wallace, 1973) from the
isotropic short range fixed point:

6223'
34 58956

(iso. dipolar), (8.8)

which yields n ~ —0.135 at e = 1. This is to be compared
with the corresponding isotropic short range result written
with n = d = 4 —~, which isa —e'/8 = —0.125 ate = 1.
It is doubtful that a difference as small as 0.01 in a magnetic
specific heat exponent can be determined experimentally
(or, that one can trust the e expansion to this accuracy).
Nevertheless one should, in principle, see some differences
between ferromagnetic specific heats and aeHferromagnetic
specific heats since, as mentioned, dipolar interactions do
not affect antiferromagnetic critical points. Furthermore,
the induced f and h perturbations in Table IV turn out to
be quite stable ('as indicated in Fig. 6 by the ingoing arrows
with free ends). Some experimental evidence does point in
this direction (Kornblit, Ahlers, and Buehler, 1973; Sala-
rnon, 1973; Lederman, Salamon, and Shacklette, 1974).

From Eq. (8.8) and the value of q mentioned, one can
find other dipolar exponents to order e'. For the sake of
comparison, we mention

and similarly in m for anisotropic dipolar interactions (pro-
vided m ) 1) . For this reason these exponents for n,
m = 2 or 3 change by a surprisingly small amount; further-
Inore the direction of the change is an increase mary from
the classical values. When e = d = 4 —e (fully isotropic
case) the exponent gq;~ becomes (20/867) e', which, to this
order, also represents an increase (by about 11 jo) compared
with g = (1/48) e' for short range critical behavior.

Recently the dipolar exponents have been calculated to
second order in e (Bruce and Aharony, 1974b; Aharony and
Bruce, 1974a). The specific heat exponent becomes

(8.6)

9 2111
34 19652

(8 9)

(Bruce and Aharony, 1974b; Aharony and Bruce, 1974a).
which yields pz;~ 1.372 at e = 1 (or e = d = 3). The
corresponding short range result written with e = d' = 4 —e
is

(e —1)
(17ii' + 290pt— 424), e' + (8.7)324'~ 11

~v = 1+ 4~+ —~'+
96

(8.10)

from which all the other exponents can be obtained through
the scaling relations as explained in Sec. VII. which yields p 1.365. Again the difference is probably

unde tectably small.

D. Dipolar effects

The addition of dipole —dipole interactions to short range
exchange forces is, of course, essential to describe ferro-
magnetic materials; it results in another crossover (Fisher
and Aharony, 1973; Aharony and Fisher, 1973; Aharony,
1973c and 1973d) with crossover exponent @d;~ = y. This
relation can be understood as crossover occurring when the
inverse susceptibility, x ' P, becomes comparable with
the fixed demagnetization factor. The new dipolar fixed
points have, to first order in e, exponents yd;~. and p which
are obtained from the exchange forms (6.1) and (7.2)
merely by replacing the factor (m + 8) by

t: +8 —4/( +2)j
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Finally, we should mention that the dipolar fixed point
appears weakly unstable with respect to cubic perturbations
with parameter v; but it is not known to what fixed point
the instability leads (Fisher and Aharony, 1973; Aharony
and Fisher, 1973; Aharony, 1973c, Bruce and Aharony,
1974b). This is not too serious, however, since the instability
seems too weak to be experimentally detectable (even if it
survives down to e = 1 or 1 = 3) .

E. Uniaxial dipolar systems, etc.
It should be noted that dipolar forces in uniaxial, Ising-

like systems (ns = 1) are an interesting special case.
Loosely, one may say that dipolar forces suppress longi-
tudinal fluctuations; but an Ising-like system has no trans-
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verse spin components to pick up the Auctuation strength~
For d = 3, this suppression of the critical fluctuations leads
to classical exponent values, but with logarithmic correc-
tion. s (Larkin and Khmel nitskii, 1969; see also Aharony,
1973a and d) . Specifically, the susceptibility is predicted to
vary as

as t —+0.

Recent experiments by Als-'Nielsen, Holmes, and Guggen-
heim (1974) bear out this striking prediction although, not
surprisingly, the subtle logarithmic factor could not be
isolated. Nonclassical exponents are predicted for d ( 3;
but this seems of academic interest only.

It may be remarked in passing that similar logarithmic
factors, but with exponent (e + 2) /(e + 8) for general e,
arise on the bo~derli ee d = 4 for short range isotropic systems,
as indicated in Figs. 2 and 3 (see Fisher, Ma, and Nickel
1973). A borderline at three dimensions with logarithmic
factors, as in the anisotropic dipolar Ising model, also
occurs in the analysis of tricritical phenomena (Riedel and
Wegner, 1972) . In that case, however, it arises from a com-
petition between the usual u

~

s ~' term (which may go
iiegative under renormalization group iteration) and the
higher order uq

~

s
~

term. Again, nonclassical tricritical
exponents are predicted for two-dimensional systems and
might eventually be observable there.

F. Long range interactions

Finally, all the previous fixed points are unstable with
respect to long range interactions of the type indicated in
Table IU and Fig. 6, provided 0. & 2 —q. ' The crossover
exponent from the short range isotropic fixed point
(Aharony, 1974a) is @i,„,= (2 —g —0.)v. Although such
forces are not very realistic, it is interesting that the border-
line dimensionality changes from d = 4 to d = 20- which
can go down to d = 1 (or lower). In leading order, the
results (7.1)—(7.3) for p, P, and n then remain valid with
~ replaced by e' = 4 —(2d/a. ); however, the second order
expressions are much more complex (Fisher, Ma, and
Nickel, 1973; Suzuki, 1972; Suzuki, Yamasaki, and Igarashi,
1972; Ma, 1973a) . The exponent g is ahvays equal to 2 —0.

when long range forces act.

IX. FURTHER CALCULATIONS

As pointed out above, a good theory should not only
provide the critical exponent values but also yield the
various scaling functions. Such calculations have so far
been made both for the eqnatioii, of state"" and for the cor
relations for short range exchange interactions in zero field"
and in general fields" "

"See, for example, the discussion by J. Sak (1973) of the crossover
from long range to short range behavior

"Brezin, Wallace, and Wilson (1972, 1973); Brezin and Wallace
(1973) have made a 1jn calculation; Avdeeva and Migdal (1972);
Bruce and Aharony (1974); Aharony and Bruce (1974).

Fisher and Aharony (1973b). Aharony (1973b, 1974b) has made
a 1jn expansion of the correlation scaling function for zero field.

' Brezin, I,e Guillou, and Zinn-Justin (1974a, 1974b); Combescot,
Droz, and Kosterlitz (1974).

' Earlier calculations had tested the exponent relation y = (2 —q) v

within the Feymann graph expansion method (Wilson, 1972; Amit,
1972; Amit and Shcherbakov, 1973; Abe and Hikami, 1973).

H = ciE~O(1 —8)', (9.1)

t = c&E(1 —b(P8') (9.2)

M = c3Rt'0, (9.3)

where —1 & 9 & 1; one can choose c, = 1 (all i) provided
bo is specified correctly (to order e') and M is suitably
normalized. This form agrees quite well with experiment
(Schofield, Lister and Ho, 1969; Ho and Litster, 1970;
Uicentini-Misson, 1970) although it is not quite consistent
with the best numerical evidence for the three-dimensional
Ising model. "The linear model is also found to be incom-
patible with the third order e calculations performed by
Wallace and Zia (1974).

For isotropic XV and Heisenberg-hke systems (e & 2),
however, the linear model definitely does cot apply (Brezin,
Wallace and Wilson, 1973; Brezin and Wallace, 1973). In
particular the differential susceptibility XT (T, H) =
(8M/BH) T below T, is found to diverge as H' i+@ when
II —+0. This prediction follows at low T from spin wave
theory but had also been anticipated to hold Inore gener-
ally. " A,t present, however, it is lacking proper experi-
mental verification in the critical region.

The equation of state has also been calculated by Aharony
and Bruce (1974a; Bruce and Aharony, 1974b) for dipolar
interactions. Numerically the results are again close to the
short range expres'sions. However, the ratio A+/A of the
specific heat amplitudes above and below T, is (to order so)

predicted to be 20%%uq larger for dipolar coupling; this may
perhaps provide an experimental test of the difference. The
cubic equa, tion of state has also been obtained (Aharony,
1974c; Wallace, 1973); the numerical changes are once
again small. Cenerally we Inay conclude that even though
critical exponents and other universal parameters can
depend on subtle features such as lack of full isotropic sym-
metry and dipolar interactions, the prime determinants
numerically are just the dimensionality d and the under-
lying isotropic symmetry index e.

B. Correlations and scattering

The calculation of the scaling function D(s2) for the cor-
relations or critical scattering )see Eq. (2.11)) has also

"Gaunt and Domb (1970); Tarko and Fisher (1973, 1974); these
latter articles report a numerical study of the equation of state and
correlations of the three-dimensional Ising model for general fields and
temperatures.

'0 See, for example, Fisher, Barber, and Jasnow (1973).

A. Equations of state

The work. of Brezin, Wallace, and Wilson (1972, 1973)
and, independently, of Avdeeva and Migdal (1972), for
e = 1 yields the scaling function W(y) for the equation of
state Las defined in Eq. (2.7) ), to order c' (for short range
interactions) . The most striking result is that the so-called
"linear model" of Schofield (1969; see also Fisher, 1970)
is exact to this order. Specifically, this means the asymptotic
equation of state can be written parametrically in terms of
a "radius" E, measuring the distance from the critical
point, and an "angle" 0, as
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been carried to second order in e (and to first order in 1/ii)
(Fisher and Aharony, 1973, 1974; Aharony, 1973b, 1974c)
but the general results cannot be expressed as simply as
the equation of state for e = i. For small s, i.e. , low q at
fixed t & 0, and with an appropriate normalization so that
s = qadi(T) (Fisher and Aharony, 1973; Tarko and Fisher,
1973, 1974), one finds

D(s') = 1/[1+ s' —s4Z, (s) j, (9.4)

where

(9.5)

in which Q(y) is given by an explicit but complicated
integral. This demonstrates unambiguously that the
Lorentzian or Ornstein —Zernike approximation fails, but
only in order r2 (or order 1/e). In addition Q(0) ~ 0.0038
is remarkably small numerically. However, in the opposite
limit of s» 1, which corresponds to t ~ 0, one finds more
singular behavior. Specifically, as already conjectured on
general grounds, 2' the T dependence of G(q, T) has"- leading
terms of order 5' "and f, which combine to give a maximum
in the scattering (at fixed q) above T,. In fact, if one sets

. 7 = t/( fiqa)'i", (9.6)

where the correlation length varies as (i(T) fia& " (see
e.g. Tarko and Fisher, 1973, 1974), one can, to order e',
write

C~(q, T) = C~, (q) f1+ (& —1)r(r— —1)jn —r +.
as 7 —+ 0. (9.7)

"See, for example, Fisher and Burford (1967); Ritchie and Fisher
(1972); and Fisher and Langer (1968).' Fisher and Aharony (1973 and 1974); Aharony (1973 and 1974}.
See also Brezin, Amit, Zinn-Justin (1974).

A similar result is found in the 1/e expansion (Aharony,
1973b, 1974b). Note that as n —+0 the second term cor-
rectly reproduces the expected logarithmic singularity
r 1nr t in(. From Eq. (9.7), the position of the scattering
maximum is readily estimated. The results confirm the
somewhat uncertain predictions based on series expansion
studies (Fisher and Burford, 1967; Ritchie and Fisher, 1972;
Tarko and Fisher, 1974) and are in accord with the only
available magnetic measurements (Bally, et a/. , 1968;
Als-Nielsen, 1970; Popovici, 1971) which reveal this in-
triguing phenomenon, although it has also been seen in
observations on beta brass (Als-Nielsen, 1969). Further
experiments would be valuable.

The calculations by Brezin, Le(~uil}ou, and Zinn-Justin,
(1974a, b) and by Combescot, Droz, and Kosterlitz,
(1974) of the correlation functions to order s' im a fieId
yield the scaling function Z4(y, s) with y = II/y~, which
generalizes (9.5). The corrections to the Lorentzian or
0—Z form are found to be an order of magnitude larger
below T, and in a field near T, than above T„'but numeri-
cally the deviations, for moderate values of s =

qadi, are
still quite small ~ These conclusions agree with recent series

extrapolation studies for three-dimensional Ising models
(Tarko and Fisher, 1973, 1974). Various important uni-
versal ratios such as fi+/fi, the ratio of correlation lengths
above and below T„canalso be calculated and compare well
with ising model results. Experimental data are presently
quite scarce but the predictions are now ready to be tested!
It is worth, remarking that the correlation scaling functions
for rl, & 2 have an interesting singularity structure in a
field, which involves the anisotropv crossover exponent qb

(Brezin, Le Guillou, and Zinn- Justin, 1974a) .

C. Other aspects

The calculation of full crossover scaling functions, such as
X(z) in (5.6), 'has not yet been achieved but there is hope
that methods will shortly be found to overcome the diN-
culties associated with the necessity of taking proper
account of ]vvo or more fixed points at the same time.

Successful renormalization group calculations have also
been undertaken (Aharony, 1973e; Wegner, 1974c; Sak, to
be published) to elucidate the problem of the interaction
between magnetic and lattice degrees of freedom, and the
effects on the critical behavior of a compressible ferromag-
net. Long range Coulomb interactions have been considered
in the context of charged Bose gases (Ma, 1972). An in-
teresting extension of the renormalization technique by
Lubensky and Rubin (1973) enables one to study semi-
infinite systems and to calculate the crucial surface scaliisg
critical exponent 0»."The e and 1/e expansion technique
has also been generalized by Suzuki and Igarashi (1973,
1974; Suzuki, 1973b), and by Halperin, Hohenberg, Ma, and
Siggia" to deal with time and freqmen-cy dependent cr-itical
pheiiomena. '5 The results are fascinating and quite intri-
cate, revealing unsuspected corrections to mode —mode coup-
ling calculations and also circumstances where d = 6 is the
borderline demensionality for dynami c criticaI behavior
/above which "classical" Van Hove type theory applies
(Halperin, 1973)j.

Lastly in our chronicle we must ask: "What about cal-
culations which yield the corrections to scaling and reliably
indicate the size of. the asymptotic critical regions" The
renormalization group techniques clearly lead the way to
such calculations even though none can be reported at this
time. We must however, hope, that before too long someone
sufficiently courageous and energetic will undertake such
work and see it through! Only then can we consider the
theory fully developed and fully testable.
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2' See Barber (1973); Binder and Hohenberg (1973); see also the
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25 See review by Halperin (1973) and also Abe and Hakami {to be
published) .
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