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The London —Ginzburg —Landau concept of superconductivity as a macroscopic quantum state is
reviewed. Experimental measurements are then discussed of resistance below T„and of enhanced
diamagnetism above T„both caused by thermodynamic Quctuations away from the Ginzburg-
Landau state of lowest free energy. Next the limitations on superconductivity at nonzero frequencies
are reviewed: normal electron dissipation ~co', and strong absorption above the energy gap fre-
quency. Sum rule arguments relate the superfluid response at low frequencies to the gap; effects
of strong electro'n —phonon coupling are also found. Finally, results of recent work on the resistive
state of superconducting 6laments above the critical current are summarized.
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VI. Superconductivity above the critical current Fritz London introduced the idea that in the supercon-
ducting state of a metal, some of the electrons "condense"
into a quantum state extending over macroscopic dimen-
sions, or in Casimir's words ".over miles of dirty lead wire. "
The number density of the "superconducting electrons" e,
is operationally inferred from the measured penetration
depth X of a magnetic field (within which the diamagnetic
screening currents flow to give the Meissner effect) by the
London relation

I. INTRODUCTION

In 1911,Kamerlingh Onnes discovered superconductivity,
i.e., that certain metals conduct an electric current without
resistance when they are cooled below a characteristic
crit&cal temperature, T„ typically in the liquid helium range
of a few degrees Kelvin (Onnes, 1911). To this perfect
conductivity, Meissner in 1933 added the discovery of the
perfect diamagnetism of superconductors (Meissner and
Ochsenfeld, 1933) . These discoveries fascinated many
people both because of the intellectual novelty of a sort of
electronic perpetual motion machine and because of the
obvious potential for practical applications. These phe-
nomena were nicely described by a pair of equations pro-
posed by London and London (1935); their model wa, s
generalized in a decisive way by Ginzburg and Landau
(1950) to provide our present basic conceptual picture of
how the phenomena may be understood in terms of a macro-
scopic quantum state. This phenomenological description
subsequently received its microscopic foundation from the
BCS theory (Bardeen, Cooper, and Schrieffer, 1957)
through the work of Gor'kov (1959a,b) . The rapid advance
continued with such landmarks as the theoretical dis-
coveries of type II superconductors by Abrikosov (1957a,b),
and of coherent tunneling of pairs by Josephson (1962).
Perhaps large scale technical applications of these concepts
may be made after another twenty year interval, in the
late I970's.

(nzc'/47m e') "'

Cinzburg and Landau (1950) extended this concept by
introducing a "wave function of the superconducting elec-
trons" P(r), such that e, =

I
P(r) I'. P(r) was taken as a

complex order parameter, going to zero continuously at T„
where X —+ ~. This P(r) was allowed to vary in space and
in response to applied 6elds, whereas the e, of the London
theory had been taken to be a function only of temperature.
These variations were presumed to be determined by the
principle of minimization of the thermodynamic free energy,
with a postulated expansion of the thermodynamic free
energy density in powers of

I P I' (or e,) and of gradients
of P of the form

f = f-+ - I~ I'+ ~/2 I~ I'+ 1/2~*I L(&/') v
—(e*/c) A$P I'+ 8'/Sm. (2)

for this type of talk, I shall emphasize work with which I
. have been associated. Specifically, I shall concentrate on
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quency ~„and dissipative processes above the critical cur-
589 rent I,.
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II. SUPERCONDUCTIVITY AS A MACROSCOPIC
QUANTUM STATE
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From this vast panorama, how can I construct a meaning-
ful talk in the time available' The approach I have chosen
is to first describe how perfect conductivity and perfect
diamagnetism are understood in terms of the Ginzburg-
Landau picture. Then I shall consider a number of experi-
ments and related concepts which have helped define the
limits of validity of this basic picture, and also the limits
of the superconducting domain. As is, I believe, customary

In this P must be positive, but by definition of T„n must
change from positive above T, to negative below T„. near
T„we can set n = n'(T —T,) .The combination of V and A
is that required for f, to be gauge invariant. The variational
principle then leads to two coupled non-linear differential
equations governing P and A:

nP+ P I P I'P + (1/2nz~) L(5/i) V —(e*/c) Ag'f = 0

*Buckley Prise .Lecture March 1974.
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(c/4m) v x (v x A) = J'= e*5/2m*i(Q*VQ —PV'P*)

—(e*'/nz*c) y*PA =—
~

e ~'e*v„(4)

where we write P as
~
P le'& and identify

v, = (1/no*) [5V'q —(e*jc) A7 (4a)

as the gauge-invariant velocity of the superconducting
electrons.

Consider first the case of a superconducting wire of length
I,, closed on itself to form a superconducting ring carrying a
persistent current. With x measured around the ring, the
wave function will vary as exp(ikx). For P to be single
valued, the phase p = kx can change only by 2~+ if x —+

x + I.. Thus, k I. = 2+~, and the currents in the ring ca,n
have only values such that Lintegrating Eq. (4a) 7 the
quantity 4' has a quantum value

C' =—C + (m*c/2e) jv, ds = mCo, (5)

We now know that P essentially describes the center of
mass motion of the Cooper electron pairs so that e* = 2e,
but the value of m* depends on one's normalization conven-
tion. To the extent that we can ignore the nonlinear term
in Eq. (3), it is seen that P obeys the Schrodinger equation
for free particles of mass m* and charge e*, while —n plays
the role of the energy eigenvalue. Similarly, Eq. (4) is the
usual quantum mechanical current expression for such
particles. Thus, although Eq. (3) can not be derived from
the Schrodinger equation, for qualitative arguments we
can carry over our familiarity. with ordinary quantum
mechanical examples.

The same principle allows us to see how persistent cur-
rents can be understood. Because of the quantization, the
current cannot decay continuously, as in a normal con-
ductor, but only in quantum jumps in which the total
phase change around the ring changes by a multiple of 2m.
PIn the atomic analogy, this corresponds to a jump from a
d state to a p state, for example7. If no such quantum jump
occurs, there is eo resistance, not just a small resistance, ' our
task is then to show that we can account for the low prob-
ability of these quantum jumps. We shall turn to that in a
moment.

But 6rst, let us note that the perfect diamagnetism dis-
covered by Meissner also has a qualitative explanation
from this macroscopic quantum picture. The Meissner
state corresponds simply to the state with Auxoid quantum
number e = 0 for all possible circuits in the medium. Since
the Aux C is then zero for all paths except those involving
the surface penetration layer where v, & 0, it follows that
8 = 0 everywhere except in this surface layer. In this
context, also, the atomic analogy is suggestive. The restric-
tion to e = 0 corresponds to considering an atom whose
ground state is an s-state. Then the (orbital) magnetic
moment is zero in the absence of a field, but is governed by
the Langevin —van Vleck' susceptibility

x —= M/B = —1/6(1V/V) (e'/yrtc') (r') (6)

in the presence of a field. With (1V/V) replaced by
~ P ~',

this will approach —~ for our "macroscopic atom" in
which (r2) reflects the sample size rather than an atomic
dimension. Thus B = H + 4~3' —+ 0 while M ~ H/4m. —

Now let us turn to some experiments.

where

Co = ho/2e 2.07 X 10 ' gauss-cm', (5a)

III. RESISTANCE IN ONE-DIMENSIONAL
SUPERCONDUCTORS

and where C = „&f A ~ ds is the magnetic flux enclosed by
the path. This C is the/I uxoid of the circuit, as introduced
and defined by F. London' '; it differs from the magnetic
flux C' by the term in +v, ds. London also remarked, in a
famous footnote, ' that the Quxoid should be quantized as
we have found here, but lacking the pairing theory, he
assumed Co ——bcje. It is obvious that fluxoid quantization
is based on the same elementary argument used for quan-
tizing I., in an atom: the requirement that the phase be
unchanged modulo 2x in going around one cycle. But in the
present context, the quantum condition is applied over
macroscopic dimensions.

In the special case of a wire thick compared to the pene-
tration depth, v, ~ 0 in the interior. Then Eq. (5) implies
that the Aux 4 itself is quantized in integral multiples of
40, as was shown experimentally by Beaver and Fairbank
(1961) and by Doll and Nabauer (1961).

' F. London, 1950, Superguids, Vol. 1 (J. Wiley, New York), see
footnote on page 152.

2 For a later discussion of Quxoid quantization in connection with
the vortex state of superconductors, and its implications concerning the
angular dependence of the critical held of thin superconducting hlms,
see M. Tinkham, 1963, Phys. Rev. 129, 2413 and M. Tinkham, 1964,
Rev. Mod. Phys. 36, 268.

The explanation of perfect conductivity above utilizes
the special case of a closed superconducting ring. If instead
we consider a superconducting wire fed by normal leads, the
relative phase Ap~~ at the two ends depends on the length
of the wire and on the current through it. But as Josephson
emphasized, since the phase of P evolves as exp( —i2pt/5),
where p is the electrochemical potential of the. paired elec-
trons, the phase difference Ap~~ will evolve according to

d(Apyn) ( d~ = 28Vy2/5 (7)

JV(t) dt = k/2e 2 X 10 "volt-sec

' See, for example, J. H. Van Vleck, 1932, Tkeory of ELectric arId
3Eagnetic Susceptibilities (Oxford University Press, Oxford), p. 91.

so that Ap~~ will be constant if there is no voltage difference
and hence no dissipation. )In the special case of a closed
superconducting ring, the phase change around the ring is
constrained to have the particular constant value zero,
modulo 2vr7. As pointed out by Little (1967) and by Langer
and Ambegaokar (1967) the elementary dissipative event
is a phase slip by 2m at some localized point along the wire,
made possible by having

~
P(x) l

go momentarily to zero at
that point. Such a phase slip requires a voltage pulse V(t)
such that

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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to build Ay~. , and the current, back up to their original
values. Thus, the dc average voltage for constant current
will. be given by (hv/2e), where v is the net number of phase
slip events per second.

F-Fn
T Tc rc

R ~ expL —C(T, —T)'"/T j,

where the constant C is proportional to the cross sectional
area of the wire.

To get this resistance to be large enough to be observed,
experiments have been done on tin whiskers about 1 pm in
diameter: at Cornell by Webb, Warburton, and Lukens
(1970), and at Harvard by Newbower, Heasley, and myself
(1972) . Even-with these whisker samples and using a super-
conductive femtovoltmeter, one must work very near to
T, to see resistance. Some of Xewbower's data are shown
in Fig. 1. Note the expected exponential fall extending over
some six orders of magnitude. (The "foot" at the bottom
appears to be due to contact problems) . At the lowest volt-
age shown, phase slip events are occurring at a rate of only
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I'IG. j.. Comparison of McCumber —Halperin theory (1970) with
experimental data points of Newbower, Beasley, and Tinkham (1972)
for resistance of tin whisker below T, due to thermodynamic Auctua-
tions. The small "foot" is believed due to contact effects.

Well below the critical currentI, (T),phase slips can occur
only by thermally activated fluctuation processes, which
effectively cause a short section of the wire momentarily to
go normal, i.e. , have P(x) ~0. The minimum length in
which such a fluctuation can occur is the GI. coherence
length $(T) ~ (1 —t) '~', where t = T/'T, . The free energy
cost per unit volume is H 2/87r ~ (1 —t) '. Thus, the activa-
tion energy is proportional to (1 —t) +', and the probability
of resistance-producing fluctuations should fall exponentially
as T is reduced below T,. Neglecting the temperature de-
pendence of the attempt frequency (given in the theory of
McCumber and Halperin, 1970), we expect the resistance
to vary as

FIG. 2. Schematic representation of Quctuation effects above and
below T, in the Ginzburg —Landau theory (1950). Solid circles repre-
sent equilibrium values of P, giving minimum free energy; hollow
circles represent typical fluctuations.

100 per sec. Extrapolating down in temperature another
millidegree, the phase slips are expected only once in 1000
years, and in another millidegree once in 10" years. Thus,
in about 3 millidegrees we can trace the full transition from
the normally resistive state above T, to a state showing not
a single bit of dissipation in the age of the universe!

IV. SUPERCONDUCTIVITY ABOVE T,

While speaking of fluctuation eGects, it is appropriate
also to consider the experimental manifestations of the
evanescent droplets of superconducting electrons created
above T, by similar thermal fluctuations. Above T„where
n ) 0, the GL free energy (2) has its minimum for

~ P ~

= 0,
as illustrated in Fig. 2. But, just as below T, fluctuations
could take P from (P) down to zero, allowing a phase slip,
so above T. the thermal energy kT allows fluctuations of P
about zero with (BP)' ~ kT/n ~ kT/(T —T,), taking the
fluctuating volume to be 6xed, for simplicity. Since this
fluctuating P has no long-range phase coherence in space or
time, there is no possibility of macroscopic persistent cur-
rents. Rather the decay time of the fluctuations sets a limit
on the free acceleration time of the superconducting elec-
trons, just as one is set by the scattering time in a normal
conductor. Thus, there is only a finite enchancement of the
conductivity, which tends to diverge as T, is approached
from above. This enhancement was first observed by Glover
(1967) in thin flims, and has since been extensively studied.

In our group we instead probed the spgtMl coherence of
these fluctuations by measuring the enhancement of the
normal Landau diamagnetism above T,. In view of Eq. (6),
this diamagnetism should be proportional to (g )' and to a
mean square radius (r') over which collerence is maintained.
Since the fluctuating droplets of superconducting electrons
have a radius ((T) 10'A, whereas the normal dia-
magnetism corresponds to only an atomic radius, even a
small density of superconducting electrons can produce a
-sizeable increase in z above the normal value. As shown by
H. Schmidt (1968)~ and by A. Schmid (1969), for very
weak fields, GL theory predicts

x = —(~/6) LkT)(T) /C 'j —10 (T,/T T) ' ' (10)—
To detect this tiny susceptibility, Gollub, Beasley, and I

4 A numerical error of a factor of 4 occurs in this calculation.
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FIG. 3. Data of Gollub et al. , (1970,
1973) on diamagnetism of indium above
T, due to thermodynamic fluctuations.
Measurements were made using a SQUID
magnetometer.
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(1969, 1970) used a sensitive SQUID (Superconducting
Quantum Interference Device) magnetometer to measure
the change in magnetic moment with temperature of a
pencil-shaped sample held in the absolutely constant field
of a-superconducting coil carrying a persistent current.

Some typical data on indium are shown in Fig. .3. The
upper part shows results in relatively low fields; M' increases
with II, but less than linearly. The lower part shows higher
held data; here M' decreases as H increases, because the
higher fields are rapidly extinguishing the fluctuations. Note
the discontinuous jump indicated at the left end of the curve
for H = 34.9 Oe. At. this point, 3f jumps by five Order. s of
nzageitnde to the Meissner effect value. But since it is a
first-order transition, there is no divergence anticipating
the jump. As suggested by this figure, a temperature-

dependent 1V' can be observed out to about 2T,. In fact,
with lead, M' could readily be following out to 16 K, the
highest temperature at which the apparatus worked well.
Since there is no chance that any strains or impurities
could give lead such a high T„ it is clear that we are ob-
serving intrinsic effects, not just some sort of inhomogeneity
of the sample.

To compare these results with theory, it was obviously
necessary to generalize the Schmidt —Schmid result PEq.
(10)$ to finite fields. This was done exactly (within the
framework of the GI. theory) by Prange (1970), who found
that 3II'/H'"T should be a universal function of the scaled
temperature difference (T—T,)/H(dH, 2/dT) '. But a suit-
able pIot of the experimental data showed that 3E' fell
further and further below this "universal" prediction as H

Rev. IVlod. Phys. , Vol. 46, No. 4, October 19?4
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J.''IG. 4. Field dependent decrease of fluctuation magnetization at T, below that predicted by Gl. theory. Experimental results of Gollub,
eE al. , (1970, 1973) are compared with the theory of T.ee and Payne (1971) and of Kurkijarvi, Ambegaokar, and Eilenberger (1972).

was increased. The explanation of this failure of the siniple
GL prediction was first suggested qualitatively b~ Patton,
Ambegaokar, and Wilkins (1969), and then worked out
quantitatively by Lee and Payne (1971, 1972), and by
Kurkijarvi, Ambegaokar, and Eilenberger (1972) . Basically,
it is this: The GL theory is based on an expansion in powers

and of
~

(V + i2mA/Co)P ~2. In the regime above
T„~ P ~

itself is small, but the gradient term is not. For
example, in a spherical droplet of radius R, V'P P/R,
whereas in a field H, Af ~RHP. The combination takes
on a minimum value if mE.'IJ. Co, i.e. , the cross section
of the fluctuating volume embraces roughly one quantuni
of Aux. Thus, ' as stronger and stronger fields are applied,
the most favorable fluctuation size shrinks smaller and
smaller, and the one term expansion in derivatives of f
becomes a poorer and poorer approximation.

This argument suggests that there should be I. charac-
teristic field for each material, at which the Auctuations
are squeezed down to a size at which the CiI- expansion
starts seriously to break down. Since this breakdown should
occur for a dimension ((0), which can be thought of as
the size of a Cooper pair, this field should be of the order of
H, i(0) 40/2irP(0). Experimentally, we found that there
was indeed a universal dependence of M'/H' 'T on the two
variables: Prange's scaled temperature, and a scaled field
H/H. , where we defined the scaling field H, as the field a,t
which M' is reduced at T. to half the Prange (or GL) va, lue.

PVhile H, did turn out to be &H,&(0) for alloys, we were
surprised to find H, ~ (1/20)H. &(0) for pure supercon-
ductors. This extremely low scaling field for pure samples is
in fact predicted by the microscopic theory, where it can be
traced back to the effects of nonlocal electrodynamics. f
I'ig. 4 shows the cut through this universal function in the
plane T = T„comparing the experimental data on a wide
variety of materials with the results of the microscopic
theory, as well as with the GL approximation. This com-
parison shows that GL theory becomes a good approxima-
tion (as it should) in very weak fields at T., where the
dimension of the dominant fluctuations is becoming very
large compared to the characteristic length ((0); but in
stronger fields (and also at higher temperatures), where the
fluctuations shrink in size, it is inadequate to make the GL
approximation of retaining only the leading term of a power
series expansion of the true free energy.

V. HIGH-FREQUENCY LIMITATIONS ON
SUPERCONDUCTIVITY

If one is dealing with a time varying current, the velocity
v, of the superconducting electrons PEq. (4a) $ varies in
response to an applied electric field as expected from New-
ton's law

d(m*v, )j dt = e*E.

Rev. Mod. Phys. , Vo}.46, No. 4, October 1974
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in which the scattering rate r ' exceeds &u„r4/n oi,r
l/(ii, so that X Xr. (&ii/l)'", as had been found by Pippard.

2
i i i i i i i 1 i

i
i i;i i i/i i i i

[
i i i i i i i i i

D. Later experiments

The early far infrared experiments on thin films of Glover
and myself were soon superseded by the work in my lab of
Ginsberg (Ginsberg and Tinkharn, 1960), who continued
with thin films, and of Richards (Richards and Tinkharn,
1958, 1960), who worked with bulk samples formed into
nonresonant far infrared cavities. Their use of helium tem-
perature bolometers to replace the room temperature
detectors used in the early work gave enough greater sensi-
tivity to improve the accuracy of the gap determinations,
and to extend the measurement to additional materials.

The measurements were pushed to a new level of quanti-
tative accuracy by Palmer (Palmer and Tinkham, 1968),
who developed a complex apparatus allowing simultaneous
measurement of reAectivity and transmissivity of thin lead
films, as a function of far-infrared frequency. From these
two independent measurements, we could directly compute
the real and imaginary parts of the conductivity at each
frequency, without any auxiliary assumptions. The results
obtained for o.t(cu) were close to those expected from BCS
theory, as is shown by Fig. 6. Note particularly the decrease
in gap frequency and the rise in g~ below the gap due to
thermally excited quasiparticles as T is raised closer to T,
(= 7.2'K). But o2(o~) turned out to be about 25% low. On
the face of it, this seemed impossible, since oi(ro) and irs(ni)

T= 2.0 K

-——-
NAM

———EPS

0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0 .10 20 30
~~CgUENC~ ~ (cm-')

FIG. 7. Measurements of the imaginary part of the normalized
conductivity of three thin lead 6lms I'A, B,C) at 2'K. Curve labeled
BCS is the weak-coupling result, while that labeled Nam includes the
strong-coupling effects.

are related by the Kramers —Kronig relations, and can not be
independently varied. The dilemma was resolved by recog-
nizing that lead is a superconductor with unusually strong
electron —phonon coupling, while the BCS theory is a weak
coupling theory. The oscillator strength missing from the
superAuid response appears instead well above the gap,
spread inconspicuously thinly over the wide frequency region
characteristic of the phonon spectrum of lead. Calculations
of Nam (1967a,b,c), including this effect, gave good agree-
ment with the experimentally observed reduction of o. (or
r4), as is illustrated in Fig. 7.

0
ii ~0 ig a VI. SUPERCONDUCTIVITY ABOVE THE CRITICAL

CURRENT

0

T =4.3

L OQ g
w

~+ ~ ~ ~ ~ ~

~, . ~— As my final topic, I want to return to the simple case of
filamentary or one-dimensional superconductors, and tell
you about some recent developments in our understanding
of exactly how they recover their normal resistance above
the critical current I„ for temperatures far enough below
T, that the fluctuation effects discussed in Sec. III are
negligible. In short, we find that well below T„heating
effects dominate; but near T„quantum effects dominate,
giving rise to the "steps" in the I—V curves reported first by
Webb and Warburton (1968) .

I I

0 )0 20 30 40 50
FREQUENCY &(cITI

The critical current I, of a superconducting wire can be
defined theoretically as the highest current for which a time-
independent, nondissipative, equilibrium solution of the
GL equations exists. Experimentally speaking, I, is the
highest current which can be carried before a voltage
develops, apart from the minute voltage due to thermal
fluctuation effects.FIG. 6. Temperature and frequency dependence of normalized con-

ductivity 0.&/o.s in a thin lead film as measured by Palmer and compared
with BCS theory. The gap frequency was 6tted only for the low tem-
perature limit. Note decrease of gap and increase of o-1/a.~ below the
gap as 'the temperature is increased.

In a thick wire of type I superconductor

I, = caH, /2, (13)

Rev. Mod. Phys. , Vol. 46, No. 4, October 1974
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where u is the radius of the wire; this limit is set by Silsbee s
rule that superconductivity must be destroyed if the mag-
netic field at the surface set up by the current exceeds the
thermodynamic critical field H, . Above this current, the
magnetic pressure at the surface would exceed the condensa-
tion energy per unit volume of the superconducting state,
leading to an instability. As a result of this instability, a,t
I, there is a discontinuous jump to an "intermediate state'
containing both superconductive and resistive regions (F.
London, 1950). The resistance jumps to about half the
normal value, and rises gradually toward the full normal
resistance with further increase in current.

(lTlV) 0 2—

0.1—

k~)
)m

l

0.1

I

0.2

In a thick. wire of ideal (no pinning) type II superconduc-
tor, the same qualitative behavior is expected, with H, ~,

the field for first entry of quantized Aux-carrying vortices,
taking the place of H, in Eq. (13). But instead of a dis-
continuous jump in resistance, the resistance rises continu-
ously between the currents producing surface fields of H, &

and H, o, where H,; is the highest field at which bulk super-
conductivity is possible. On the other hand, if there is
strong pinning, the vortex rings created at the surface can
only contract by a. slow thermally activa. ted Aux creep
process, so the resistance may remain unobservably small
until currents far above caH, ~/'2 are reached.

Because of this diversity of behaviors for the thick wire
case, it is of particular interest to consider thin wires, of
radius small compared to both X and $. Then, because
a(( P, the current density will be uniform over the cross
section, and the magnetic field energies produced by the
current will be negligible compared to the kinetic energy of
the electrons; because a (( $, no significant variation of

~ P ~

can occur transverse to the wire, and the distinction betv een
type I and II materials becomes irrelevant. The classic
realization of this thin one-dimensional superconductor is
the tin whisker, mentioned earlier, but long narrow micro-
bridges cut from a thin film also satisfy the requirements,
and they facilitate variation of experimental parameters. I
shall conclude my talk by summarizing the results to date
of an investigation of the resistive properties of such micro-
bridges, being carried on in my group by W. J. Skocpol.

Because dissipation of energy is inherent in the finite
voltage regime, heating effects are critical in understanding
the observed I—V curves, except very near T,. To see how
this comes about, consider a cycle in which the current is
increased from zero to I.(Tq), Tq being the bath tempera-
ture, above which a voltage develops. If the dissipated
power IV related to this voltage produces enough Joule
hea, t to raise the temperature of part of the sample from
T& to above T„ it will become fully normal and stay normal
even if the current is subsequently reduced below I, (T&);
thus hysteresis appears. Even lesser amounts of heating
will obviously complicate the I—V curves by introducing
temperature gradients. Now, since I,(Tq) o- (T, —Tq)'~',
I'R heating will tend to increase as (T, —Tq)', while the
temperature rise needed to sustain the normal state will
increase only as (T, —Tb). Thus, paradoxically, heating
effects are more serious the further below T, one is operating.
For typical geometries, the crossover to heating domination
occurs roughly 0.1 below T.. Below this crossover, there
will typically be a self-heated normal hotspot (Skocpol,
Beasley, and Tinkham, 1974a,b) in the center of the bridge,

FIG. S. Data of Skocpol on the I—V curve of a superconducting tin
microbridge 4 pm && j.40 pm in size. Voltage tabs shown in inset allow
localized voltage drop measurements.

and superconducting coherence is lost if this expands beyond
an effective coherence length of about 1 pm.

To obtain a regime in which heating effects are small
enough to allow the quantum properties of the supercon-
ducting state to be observed relatively cleanly in our thin-
hlm microbridges, one must operate within about 30 milli-
degrees of T„and at low voltages. In this regime, as one
increases the current from zero, there is a step rise in voltage
at I„ to a value below that corresponding to the fully
normal state. With further increase in current, the voltage
rises linearly, with a differential resistance typically equal
to that which would result if a length 10 pm of the bridge
were normal. With still further increase of current, this step
termina, tes with a jump to a second step, whose differential
resistance is about twice that of the erst. This process con-
tinues until heating gradually takes over, causing an upward
curvature until the bridge becomes fully normal. On de-
creasing the current, a similar structure is seen, but the
downward steps occur at lower currents, indicating some
hysteresis. Some data illustrating these features are shown
in Fig. 8. (In this figure, the full metastable range of each
step has been traced out) . By using the voltage tabs shown
in the inset, Skocpol was able to show that the increment
of voltage associated with each step was localized to just one
segment of the microbridge. These curiously regular steps
were erst seen by Webb and Warburton in their experiments
on fluctuation resistance in whiskers, and they have subse-
quently been reported by many other workers. The piece
wise linearity of the steps is particularly evident in the
extensive data of Meyer and v. Minnigerode LMeyer and
Minnigerode (1972); Meyer (1973)j on pure tin whiskers,
where heating effects are minimized by the good thermal
conductivity of the pure tin, and because the sharp intrinsic
transitions allow working very close to T,.

The interpretation we have developed (Skocpol, Beasley,
and Tinkham, 1974a,b,c) of these steps is that each one
corresponds to the establishment of a localized "phase-slip
center, " depicted schematically in Fig. 9. In the "core"
region of the center, the order parameter P executes a
relaxation oscillation, the phase slipping by 2v™ in each
cycle when

i P i drops to zero. Such an oscillatory cycle was
proposed for short weak links by Notarys and Mercereau
(1971), and discussed in more detail for that case by
Rieger, Scalapino, and Mercereau (1971, 1972). The fre-
quency of the oscillation is given by the Josephson relation
p =- 2eV/h, V being the voltage across a single center. This
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(o)

non-equilibrium
quasi particles

LN~&IAN&~l

order parameter
osciIIation

to probe the relation of our model to conventional time-
dependent CI, theory, which has only been justi6ed theo-
retically ( Gor'kov and Eliashberg, 1968a,b; Eliashberg,
1968, 1969) in the restricted case of gapless superconduc-
tivity, and which is incapable of accounting for a tempera-
ture-independent length such as A. But for the present,
many questions concerning time. dependent, nonequilibrium
superconductivity remain open, and the subjects of active
research.
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