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Chiral symmetries are discussed in considerable detail, and their importance and consequences
for the study of elementary particle physics are reviewed. For the study of broken symmetries
we concentrate mainly on meson —nucleon sigma terms, ~~ scattering, and E~3 decays. In addition
to giving a critical and detailed review of most of the "experimental" estimates for pion —nucleon
and kaon —nucleon sigma terms done so far, we also outline the most. common chiral symmetry-
breaking schemes at present, such as (3, 3) + (3, 3), (6, 6) + (6, 6), (8, 8) and (1, 8) + (8, 1)
representations of SU(3) )& SU(3) and possible mixtures of them, and discuss and compare their
predictions with experiment. Nonlinear effective I.agrangians are briefly discussed, and the con-
nection between broken scale invariance and chiral symmetry breaking is outlined, with emphasis
on our present knowledge of meson —nucleon sigma terms.
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(Weinberg, 1966a, 1968a; Dashen, 1969, 1971a; Dashen
and Weinstein, 1969a) to be the only rational way in which
one can understand the successful current algebra and
PCAC results. In addition, there appears to be good evidence
from experiment that the weak and electromagnetic cur-
rents of the hadrons indeed genera, te' the algebra of SU(3) X
SU(3). The hypothesis that strong interactions are in-
variant under this bigger chiral group, except for some
small symmetry-breaking piece, clearly provides a beau tiful
connection between the symmetry of hadrons and their
weak and electromagnetic interactions.

All the so-called internal symmetries of hadrons are, in
reality, broken symmetries. In general we believe that the
SU(2) (isospin) group is a very good symmetry of strong
interactions and is only broken by the more or less under-
stood electromagnetic interaction. However, as long as we
are faced with the problems of how to calculate, for instance,
the proton —neutron (and in general any AI = 1) mass
difference or the g —+ 3m decay in this scheme, one cannot
rule out the possibility that there is some small, purely
hadronic, interaction that also breaks isospin L"tadpoles"
(Coleman and Glashow, 1964)$.

I. INTRODUCTION

The concept of approximate symmetries and partially
conserved quantum numbers has occupied an increasingly
central role in particle physics since the fifties (Geli-Mann,
1969). After the discovery (Gell-Mann, 1962; Ne'eman,
1961) of the approximate SU(3) invariance of strong inter-
actions, it became apparent (Cabibbo, 1963) that SU(3)
furnishes a unified basis for describing both the electro-
magnetic and weak interactions. )The genesis of this unified
picture is described in Gell-Mann and Ne'eman (1964).j
More recently, Gell-Mann (1964) suggested that strong
interactions are nearly symmetrical under the bigger chiral
group SU(3) && SU(3), generated by the algebra of vector
and axial-vector currents of the hadrons. This very elegant
interpretation of an approximate SU(3) )& SU(3) sym-
metry of strong interactions has been strongly indicated by
the recent joint successes' of current algebra and partially
conserved axial-vector current (PCAC), and appears

* Present address.
' See, for example, Adler and Dashen (1968), and Renner (1968}.

A far-reaching classification of hadrons became possible
by introducing (Gell-Mann, 1962;. Ne'eman, 1961; Gell-
Mann and Ne'eman, 1964) the unitary symmetry scheme
SU(3) . Exact SU(3) symmetry means multiplets of
particles degenerate in mass, the pseudoscalar meson and
baryon octets for example. Thus, in the real world, SU(3)
must be broken to the extent required to obtain the experi-
mentally observed mass spectrum. Although we do not
know, on a fundamental level, the source of the symmetry
breaking, we do have a very good phenomenology for
5U(3) breaking insofar as we know the group theoretical
transformation property of the violation. There is good
evidence that the part of the strong Hamiltonian which
breaks SU(3) transforms like the eighth component of an
octet representation of SU(3). Although the size of the
symmetry violation is considerable (typically of the order of
20%), to first order in symmetry breaking the result is the
marvellous Gell-Mann —Okubo mass formula ( Gell-Mann
and Ne'eman, 1964) .

~ See, for example, Adler and Dashen (1968), and Marshak,
Riazuddin, and Ryan (1969).
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546 E. Reya: Chiral symmetry breaking

On the other hand, exact SU(3) X SU(3) symmetry
does not mean SU(3) X 5U(3) multiplets of particles.
Rather, the exact SU(3) X SU(3) symmetry limit would
imply (Dashen, 1969, 1971a; Weinstein, 1971a) the
existence of SU(3) rnultiplets of particles degenerate in
mass (baryons, vector mesons, etc. ) and eight massless
pseudoscalar mesons ( Goldstone bosons), ~, K and
The consequences of this symmetry are, of course, more than
just the presence of massless pseudoscalar mesons. The
symmetry also tells us that these mesons satisfy low-energy
theorems (Adler and Dashen, 1968; Renner, 1968; Wein-
berg, 1966a, 1968a; Dashen and Weinstein, 1969a) which
lead to predictions such as generalized (Nieh, 1968; Dashen
and Weinstein, 1969b) Goldberger —Treiman relations
(relations between baryon masses, meson —baryon coupling
constants, the weak axial-vector couplings and the meson
decay constants), the Adler —Weisberger sum rule (re-
normalization of the weak axial-vector coupling constant by
strong interactions) and the Callan —Treiman relation
Lwhich relates a certain combination of form factors for
E —+ w + t + i & (t = e, ti) to the E&& decay constants). In
addition, chiral 5U(3) X 5U(3) symmetry does, in fact,
have implications (Dashen, 1969, 1971a) other than soft-
meson theorems.

For the real world chiral symmetry breaking has to
occur in order to generate approximate (not mass de-
generate) SU(3) multiplets of particles and, also, eight low-
mass mesons ~, K, and p which satisfy an approximate
PCAC condition. In this case, the above mentioned low-
energy theorems hold only in an approximate sense (Dashen
and Weinstein, 1969b; Dashen, 1971b) when regarded as
statements about one-shell hadronic processes. Evidently,
there are two sources of information about 5U(3) X SU(3)
breaking. First, the entire mass of a pseudoscalar meson
comes from the symmetry-breaking interaction. From this
we cannot learn very much about the nature of symmetry-
breaking interactions, except, from fitting the mass spec-
trum of pseudoscalar mesons, the magnitude of the free
parameters in the symmetry-violating piece of the strong
Hamiltonian. Secondly, and by far more sensitive to the
symmetry-breaking mechanism, are corrections to low-
energy theorems. These low-energy theorems, which relate
the symmetry-breaking part of the total Hamiltonian to
the scat tering amplitude of zero-mass particles, would
become exact in a limit where the pseudoscalar meson masses
vanish and the axial-vector currents are conserved. Thus,
the soft-meson theorems may be thought of as consequences
of approximate symmetry, which has been especially stressed
by Weinberg (1966a, 1968a) . Most important tests of
theories of chiral symmetry breaking come, therefore, from
low-energy theorems of meson —baryon scattering, since
most of the present experimental data on meson —meson
scattering are by far more controversial and less accurate.
(Whereas accepted current algebra predicts the low-energy
values of the crossing-odd amplitudes, chiral symmetry
breaking predicts the low-energy values of the crossing-
even ones. ) A detailed study of these low-energy theorems,
namely the calculation of the meson —baryon o. terms, i.e.,
the nucleon expectation value of the equal-time (sigma)
commutator of the axial-vector current with its divergence,
provides crucial information about the nature of chiral
symmetry breaking, to what extent chiral symmetry must be
broken, and what symmetry-breaking mechanisms (models)

should be used. In addition, a reliable evaluation of the cr

terms takes on further importance, as it may be useful in
providing an understanding of the mechanism by which
scale invariance is broken (Gell-Mann, 1969; Fritzsch and
Gell-Mann, 1971).

In the past few years various attempts have been made to
determine the magnitude of the cr term from mE scattering
data as well as from the exceedingly more complicated
reaction of kaon —nucleon scat tering. Since low-energy
theorems are valid outside the physical energy region and
for zero-mass mesons, it is certainly not a trivial problem
how to extrapolate off the mass shell and then to physical
situations: Either one has to use one sort or another of o6-
mass-shell extrapolations of various scattering amplitudes,
or the 0- term can be extracted from the measurable on-
mass-shell meson —baryon scattering amplitudes extrapo-
lated to an unphysical point in energy, provided lowest
(first)-order calculations in chiral symmetry breaking are
sufficient. Although the latter method, extrapolating in
energy, is clearly difficult and requires a careful use of
dispersion relations, it is not subject to the host of ambi-
guities inherent in any off-mass-shell extrapolation pro-
cedure. The most common techniques used up to now are,
for example, off-mass-shell dispersion relations, broad-area
subtracted dispersion relations, threshold subtracted fixed-t
dispersion relations, linear expansions of scattering ampli-
tudes making use of Weinberg's smoothness hypothesis
and the Adler consistency conditions (PCAC), the Fubini-
Furlan extrapolation technique applied to pion —nucleus
scattering, and some other methods to be discussed in more
detail later on.

Some of these estimates of the xE 0- term yielded rather
contradictory results and are in violent disagreement (by
about one order of magnitude) with the theoretical predic-
tions of the original (3, 8) + (3, 3) breaking (Gell-Mann,
Oakes, and Renner, 1968; Glashow and Weinberg, 1968)
of chiral SU(3) && SU(3). However, most of the other vrÃ
calculations are roughly, within a factor of two or three, in
agreement with the (3, 8) + (3, 3) symmetry-breaking
scheme. More recently, similar results have been obtained
by using kaon —nucleon scattering data. Although these
estimates favor the (3, 3) + (3, 3) model, a definite
enhancement of the 0. terms, with respect to this model, by
about a factor of two or three, persists. Since the data on
wX-, E+)V-, m~-scattering and E&& decays, for example, are
still not accurate enough to draw definite conclusions, the 0-

terms estimated so far leave the possibility open that the
symmetry-breaking Hamiltonian either requires further
admixtures in addition to the (3, 3) + (3, 3) transforming
part, which transform for instance like (8, 8) or (1, 8) +
(8, 1) representations of SU(3) X SU(3), or has trans-
formation properties other than the (3, 3) + (3, 3)
representation, like, for example the (6, 6) + (0, 6) or
(8, 8) symmetry-breaking scheme. On the basis of "theo-
retical" arguments we shall see later that the latter possi-
bility is at least not favored, although the present experi-
mental situation cannot definitely discriminate between
these different symmetry-breaking schemes.

For the sake of clarity and in an attempt to make this
paper relatively self-contained, we briefly summarize in the
first part of Sec. II the main content of chiral groups and
their unitary subgroups; in the second part we discuss the
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central role o- commutators play in applying these sym-
metries to the real world, namely in the study of approxi-
mate symmetries of the strong interactions, and are mainly
concerned with pseudoscalar meson masses and low-energy
theorems for meson —meson and meson —nucleon scattering.
In Sec. III, we critically review and discuss the various cal-
culations of the mE o- term performed, so far, whereas various
estimates of the kaon —nucleon 0- term are presented in
Sec. IV. In Sec. V we discuss the purely theoretical aspect
of chiral symmetry breaking namely models for the sym-
metry-violating piece of the total Hamiltonian transforming
like (3, 3) + (3, 3), (6, 6) + (6, 6), (8, 8) and (1, 8) +
(8, 1) representations of SU(3) X SU(3) and possible
mixtures of them. In addition we brieRy discuss the more
unified approach of nonlinear effective I.agrangians as
means of treating chiral symmetry breaking, and conclude
this section with some remarks concerning the relation
between broken scale invariance and chiral symmetry.
Finally, our conclusions are summarized in Sec. VI.

~(xp —yp) LV-'(x), Vs'(y)) = if-s. V'(x)~'(x —y),
B(xo —yo) PV.P(x), As'(y)) = if. As/( )8x'(x —y),
&(xo —yo) LA '(x), Aso(y) ) = if,sg V.'(x) P(x —y),

(2. 1)

where the f s, are the SU(3) structure constants. ' The gen-
eralized charges associated with these currents

F (xo) = f d'x V.'(x)

F,s(xp) = f d'x A '(x)
(2.2a)

(2.2b)

generate the Lie algebra of SU(3) X SU(3), namely

PF.(xo), Fs(xo) ) = if.„F,(xo),

LF (xp), Fs'(x,)) = if. F,s'( ),xp

LF.s (xp), Fs'(xp) ) = if.s,F, (xp),

(2.3a)

(2.3b)

(2.3c)

which are assumed valid independently of the extent to
which the symmetry is broken, since the (measurable)
vector and axial-vector octet charges are to be identified
with the unitary generators, even though the strong-
interaction Hamiltonian does not commute with all those
generators. The integrated commutation relations of
Eqs. (2.3) are of course a less restrictive version of Gell-

II. CHIRAL SYMMETRY, LOW-ENERGY
THEOREMS, AND THE SIGMA-COMMUTATOR

A. Chiral symmetry
As discussed in the Introduction, chiral symmetry, by

which we mean SU(3) X SU(3) or its subgroup SU(2) X
SU(2), grew naturally out of the large body of work' on
current algebra and PCAC. In current algebra one assumes
eight SU(3) vector currents V &(x) and eight axial-vector
currents A &(x), with a = 1, ~ ~ ~, 8 and x —= (xp, x), which
satisfy the famous Cell-Mann local equal time commutation
relations (summing over repeated indices):

Mann's hypothesis than Eq. (2.1), since even if total
derivative terms were present on the right-hand side of
Eq. (2.1) in addition to the 8 function terms, Eqs. (2.3)
would still be valid. We refer here to the so-called Schwinger
terms, i.e., terms proportional to the gradient of the three-
dimensional 8 function, which must appear on the right-
hand side of local commutation relations other than the
"time —time" components in Eq. (2.1). Defining the well
known chiral combinations

F.+(xo) = —,'PF. (xo) W F.'"(xo))

the commutation relations (2.3) can be rewritten as

LF +(xp), Fs+(xp)) = if,s,F,+(xo)

LF.+(xp), Fs—
(xp)) = 0

(2.4)

(2.5)

which shows that the F and F "indeed generate the direct
product group 5U(3) X SU(3). /The word "chiral"
(handedness) applies, in particular, to the transforrnations
generated by the axial charges F, since the factor (1 & ps)
implicit in F,+ projects definite helicity states. ) The two
sets of "left-handed" and "right-handed" J -spin operators
F and F +, respectively, are then connected by the
parity operator P for strong interactions:

(2.6)

The electromagnetic and weak currents of hadrons are
supposed to be built out of the sixteen currents V," and
2 ".We will not be particularly interested in this aspect, of
the subject, but let us brieRy comment on it in view of
what we said in the introductory remarks about the fasci-
natirig interrelationships between the strong-interaction
symmetries of hadrons and their weak and electromagnetic
interactions.

a„V.~(x) = 0 fora= 1, 2, 3, 8 (2.7)

The nonstrange vector currents U ~, a = 1, 2, 3 are the
currents of isospin, which means that the charges F for
a = 1, 2, 3 are the generators of the isospin group SU(2),
the oldest and still best of the hadron symmetries realized
by isospin multiplets. Furthermore, the remaining vector
charges F for a = 4, 5, 6, 7, 8 611 out the generators of
SU(3), with Eq. (2.3a) forming the Lie algebra for this
group. In the exact symmetry limit this group is again
realized by multiplets of particles degenerate in mass. Sym-
metry violation (of the order of 20%) accounts (Gell-Mann
and Ne'e man1964) then for the experimentally observed
mass spectrum within a given multiplet, the baryon octet
for example. By now we generally believe that SU(3) is a
orle approximate symmetry of the hadronic Hamiltonian,
not simply a regularity like the regularities associated with,
say, the shell model of nuclei. The fact that the strong inter-
actions do conserve isospin and hypercharge (2Fo/W3
represents the hypercharge operator) implies that Fi, F&,
F3, and F8 are time-independent and that the corresponding
vector currents are conserved (neglecting electromagnetic
and weak interactions) . This is the famous conserved vector
current (CVC) hypothesis, namely

' See, for instance, Adler and Dashen (1968}.
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ness-carrying vector currents V ", a = 4 to 7. The fact that
SU(3) breaking transforms like the eighth member of an
octet representation implies that the divergences 8„V I",

a = 4 to 7, are proportional (Adler and Dashen, 1968)
to the SU(3) symmetry-breaking parameter X, say. There-
fore, whereas Eq. (2.7) holds in the exact symmetry limit
as well as for the (realistic) broken symmetry, the strange-
ness-carrying vector currents are only conserved in the exact
(X = 0) SU(3) symmetry limit. The electromagnetic four
current is constructed from the vector octet as

where BCO is invariant under the full chiral SU(3) X SU(3)
group and ABC' is the symmetry-breaking part. As a purely
formal device for keeping, track of powers of symmetry
breaking, we introduced the "small" scale parameter e.
The total Hamiltonian is then given by H = f d' x3C (xo, x) .
LOf course, this decomposition into a symmetry-conserving
and symmetry-breaking part means nothing until we add to
it the assumption that an expansion about the limit e —+ 0
makes sense, a hypothesis strongly suggested (Dashen and
Weinstein, 1969a; Weinstein, 1971a) by any Lagrangian
field theory. ) Since LF +, Ho) = 0, we get

J, ~ = V3~+ (1/W3) V8~ (2.8)

(a,s long as no confusion occurs the explicit space —time
dependence of currents will be suppressed) . As an illustra-
tion of theoretical predictions resulting from the form
(2.8) of the electromagnetic current, we mention the mag-
netic moments of A and 2 hyperons which can be calcu-
lated from those of the proton and neutron with an un-
certainty of some 20%, characteristic of the strength of
SU(3) violation. The A moment is predicted to be half of
the neutron moment, whereas experimentally pz/p„=
0.37 ~ 0.04.

a„V.&(x) = iLae'(x), F.(x()))

B„A.&(x) = iLeBC'(x), F:"(xo))

(2. 11a)

(2.11b)

as a local generalization (Glashow and Weinberg, 1968)
of j d' xB„V„"= iI H, F,), etc. Furthermore, because of the
experimentally observed ~ —+ f + v& and E —+ f + v& decays
(f = e, p), the single pseudoscalar meson states

I
M (q) )

have to be coupled to the vacuum by the axial-vector cur-
rent, i.e. ,

Including the eight axial-vector charges F ' we finally
arrive at the chiral SU(3) X SU(3) group, generated by
the Lie algebra Eqs. (2.3), with its subgroup SU(2) X
SU(2) generated by the charges Fi,2,3 and Fi,, 3'. This
latter symmetry is expected to be a much better symmetry
than SU(3) X SU(3) or SU(3) itself, which is suggested
but not required by the smallness of the pion mass (see
below). The SU(3) X SU(3) symmetry is different from
SU(3) in that if it were not explicitly broken (by some
more or less understood terms in the total Hamiltonian), it
would be "spontaneously" broken ( Goldstone, 1961;
Goldstone, Salam, and Weinberg, 1962; Weinstein, 1971a).
That is, if we could turn off the SU(3) X SU(3) breaking
piece of the strong interactions, the hadron vacuum would
not be an eigenstate of the F, i.e. , it would not be invariant
(symmetric) under transformations generated by F,',
but still would be invariant under SU(3). This has the
consequence that in the broken-symmetry world one does
not get approximate SU(3) X SU(3) multiplets but rather,
in addition to the SU(3) multiplets, a set of low mass
(m. , E, q) pa, rticles (Goldstone bosons in the exact sym-
metry limit), which satisfy PCAC relations. This somewhat
explains the successes of PCAC and current algebra in
dealing with soft-meson processes. More explicitly, the
PCAC hypothesis can be stated in the form

a„A.~(x) = m.'f.@.(x) (2 9)

BC = 3CO+ ABC', (2. 10)

where the pseudoscalar meson fields are denoted by p, (x),
representing particles of mass m, and the f are the semi-
leptonic E&2 decay constants, i.e. , f and fx are measured in
~ —+ p + v„and E—+ p + v„, respectively.

'
(As usual, the

fields and currents are classified by their third component of
isospin and their hypercharge, i.e., A + = (1/w2) (Ai W
iA,):—A&i~,»~~2 A o = A„Arr+ = A~4~, »~~ etc.). The
total strong-interaction Hamiltonian density can be
written as

(0 I
A "(0)

I
~.(v) ) = iv"f (2. 12)

where qI' is the four momentum of the meson. Taking the
divergence of Eq. (2.12) gives, strictly from translation
invariance, the identity

(0 I &,A."(0) I ~.(q) ) = ~.f. (2.13)

As is well known (Cabibbo, 1963; Gell-Mann, 1964),
another interesting part of the SU(3) X 5U(3) symmetry
is that its generators also form the basis for the hadronic

Since we obviously do not wish to decouple the current, we
have to keep f A 0. From Eqs. (2.11b) and (2.13) it is
now clear that the mechanism by which the symmetry is
broken is also responsible for the masses of the mesons
being nonvanishing: In the exact symmetry limit, e = 0, it
is clear from Eq. (2.11b) that B„A "must vanish and hence,
according to Eq. (2.13), nz must be zero (leaving us with
an octet of massless Goldstone bosons). Thus, only in the
symmetry limit do we have exact conservation of the axial-
vector current, and the actual pseudoscalar masses are a
mea, sure of how badly the symmetry is broken. This then
suggests that the LU = 1, 2 5 = 0 (I = isospin, 5 =
strangeness) pion currents Ai, 2 3& are conserved to a good
approximation, whereas the remaining axial-vector currents
have larger divergences 8„A," corresponding to the larger
masses of K and q mesons, compared to the pion mass.
I
In the usual dispersion-theoretic language, the PCAC

hypothesis in Eq. (2.9) means that all matrix elements of
B„A & obey unsubtracted dispersion relations in the momen-
tum transfer variable, and that these relations are dominated
by the respective meson pole (7r, E, or p) contribution. )
Since we also have exact SU(3) when e = 0, all the f, 's
in Eq. (2.12) are the same in this limit. Thus we expect f
and f» to differ by not more than about 20%, which is
typical of SU(3) breaking. Evidently, this is borne out by
the data.
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weak current, which may be written as

Jw" = (Vy+,2" —Ay+, 2") cosee

+ (Vg~,„"—A4+,g") singe, (2. 14)

&pl A+"(0) I ) = .(v.)L '.-G(k')

+ k~~,G, (k') $u. (q„), (2. 15)

where q„and q„are the four momenta of neutron and proton,
u„' and u„ their Dirac spinors, and k2 = (q„—q )'. From
P decay one knows that G, (0) = gz has the value g& 1.2.
Taking the divergence of Eq. (2.15), we obtain

where 0|.-, the so-called Cabibbo angle, is supposed to be a
universal constant of about 15', taking into account that the
rates for strangeness-changing (described by the 4 & i5
components) semileptonic baryon decays are suppressed
by at least an order of magnitude compared to 'the strange-
ness-conserving processes. (The empirical selection rules
AI = 1 for 65 = 0 semileptonic decays and Dl = —,',
35 = AQ for 65 = &1 decays are guaranteed by the use
of the 1 ~ i2 and 4 ~ i5 components of the currents in J~&,
respectively. ) This assumption that the weak currents and
the isovector part of the electromagnetic current belong to
the same unitary octet, is now believed to hold on the basis
of a number'of very successful predictions. 4 The CVC
hypothesis, then, in turn implies that there are relations
between weak and electromagnetic processes which can be
used to test the soundness of the theory. In particular, the
CVC predictions for 65 = 0 processes are very well
satisfied experimentally, as in for example the absence of
strong renormalization effects for V~~,2~, the relation be-
tween the weak and electromagnetic form factors, or the
branching ratio for the pion p-decay 7r —+7r'+ e + r,
and the 7r —+ p, + v„decay. It is also of great interest to
discuss the (approximate) conservation of Aq+, 2" in the
matrix element for neutron decay e —+ p + e + r, or
neutrino reactions u~ + e ~ t + p (l = e or p) . The
matrix element has the form

number of zero-momentum mesons, just as the ground
state of an isotropic ferromagnet is degenerate for simul-
taneous rotations of all spins; the pseudoscalar mesons would
be analogous to the magnons of ferromagnetism, the two
cases being examples of a general situation first recognized
by Goldstone (1961). The chiral symmetry is broken, of
course, i.e., 8„A & ~ 0, and this corresponds to the pseudo-
scalar mesons' having nonvanishing masses.

There are two good experimental confirmations that
SU(2) X SU(2) is nearly an exact symmetry. One is the
Goldberger —Treiman (GT) relation' which expresses the
ratio g~lf, containing the weak-interaction quantities of
the nucleon and pion, in terms of the pure strong-interaction
quantities M~ and the pion —nucleon coupling constant g:

g~lf. = gl~~.

This relation is obtained by assuming that the left-hand
side of Eq. (2.16) is dominated by the pion pole, using Eq.
(2.13) to calculate this pole term, and then evaluating
Eq. (2.16) at 1P = 0. /Similar generalized GT relations can
be written down (Nieh, 1968; Dashen and Weinstein,
1969b; Gell-Mann, 1969) by taking into account hyperons
and kaons. $ The second relation establishing that SU(2) X
SU(2) is nearly an exact symmetry expresses gz in terms
of the xX scattering amplitudes, again a pure strong-
interaction property, and is called the Adler —Weisberger
sum rule. ' Both relations are very well satisfied.

Although by now it appears that we partly understand, from
a purely phenomenological point of view, how and to what
extent (chiral) symmetries are broken, we do not have any
fundamental idea why the symmetry of hadrons and their
weak and electromagnetic interactions are related by
5U(3) X SU(3). Certainly SU(3) does not need weak
interactions for its existence. The mystery is even further
deepened by the fact that the weak interactions, which
violate essentially every symmetry known, choose, when
coupling to hadrons, a set of approximately conserved
currents.

&p I ~.A1+i2" (o) I ~) = ~L2~~%(k') + k'G2(k') )
X u„(q, )you. (q ) (2.16)

G2(k ) = —2M~Gg(k')/k' (2.17)

M~ being the nucleon mass, so that exact axial-vector
current conservation requires

B. More on meson masses

In order to establish a close relation between the pseudo-
scalar meson masses and the symmetry-breaking Hamil-
tonian density 3C'(x), Eq. (2.10), let us consider the fol-
lowing vacuum expectation value (Dashen, 1969, 1971a)
(no sum over a)

Neither Gq(0) nor the nucleon mass vanish. Hence G2

has a pole at k2 = 0 corresponding to an exchange of a
zero-mass pseudoscalar meson. Thus, exact conservation of
Aj+,2& implies not only the vanishing of the pion mass but
even the very existence of this zero mass particle. One can
therefore speculate that the pion exists as a consequence of
chiral SU(2) X SU(2) symmetry, and that similarly the E
and g mesons exist because of the SU(3) X SU(3) sym-
metry. If these symmetries were strictly valid and the
mesons strictly massless, the vacuum state would be, as
already emphasized, degenerate with states containing any

4 See, for example, Marshak, Riazuddin, and Ryan (1969).
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i d'x &0 I T(B,A„&(x)B„A "(0)) I
0)

= m-'f-'+ (2. 19)

where the first term on the right is the contribution of the
single pseudoscalar meson state and p is the spectral
function of the higher states, e.g. , three-meson, baryon—
antibaryon, etc. Since p is the spectral function of two
divergences, it is clear, by Eq. (2.11b), that it is of order e'

in chiral symmetry breaking. However, the first term on the
right-hand side of Eq. (2.19) is proportional to m 2 and hence



550 E. Reya: Chiia I symmetry breaking

$(27r)'b'(q] + q2
—

qa
—q4) (q4d, qac I

M
I q2b; qia)

= —(qi' —nz ')(qg' —m ') (q3' —ni ')(q4' —nz ')

of order e rather than e'. (This comes about because of a ~z(q4) is defined by
factor ni, ' e ' from the denominator of the meson pole. )
A straightforward current algebra calculation gives

(2.20)

where the so-called sigma commutator (it derives its
name from the o. model, ' where it simply reduces to the
canonical cr field)

&.& (x) —= LJ'.'"(«), Pb'(»), ~~'(x))) (2.21)

arises through the process of moving derivatives outside the
time-ordered product' in Eq. (2.19). By Eq. (2.11b), the
sigma commutator in Eq. (2.21) is nothing else but the
equal-time commutator of the axial-vector current with its
divergence:

(2.22)

The expectation value of this commutator is usually called
the "0. term. " Equation (2.20) is still exact. To get some-
thing useful, we drop the spectral integral which is second
order in e to obtain

X (ni ' f~) 4I d4xi d'x2 d4x3 d4x4

X exp/i(qg x4+ q3. x3 —q, xg —qi. xi))

X (0 I T(a„Ad (x4)B„A,"(x3)BiAg"(x2)a.A:(xi) ) I 0)
= i (2n) 484(qi + qg

—
q3 —q4)

X Ib,~b,qi A + B(t + u) + Cs)

+ b„bbgf A + B(s + u) + Ct)

+ b«b„LA + B(s + t) + Cu) + O(q4) }, (2.24)

ao"' ———(327rm ) '(5A + 8m 'B + 12' 'C)

ao"' = —(32vrm ) '(2A + 8m.'B), (2.25)

where s = (q, + q2)', t = (qi —q3)', and u = (qi —q4)'.
Since in this section, we are only dealing with m —m- scat-
tering, the SU(3) indices a, b, c, and d are just the pion
isovector indices {running over 1, 2, 3) . The second line in
Eq. (2.24) results from the usual Lehmann —Symanzik-
Zimmermann (1955) (LSZ) reduction, whereas the third
line is the well known Weinberg expansion (Weinberg,
1966b) with constant coeflicients A, B, and C. The physical
threshold is at s = 4m, ', t = u = 0, so that the s-wave m—m.

scattering lengths (defined to be proportional to the
5-matrix at threshold) are given by

~.'f.' = —(o
I
L~-'(0), L~.'(0) ~~'(0) )) I

o) + o(")
where the notation ug~l' has been used. Among the con-

(2 23) stants A, B, and C there are two model-independent
relations:

which, via the a. commutator, relates the pseudoscalar
meson masses directly to the symmetry-breaking Hamil-
tonian. According to Eq. (2.23), as outlined already in the
previous section but on a different footing, the eight pseudo-
scalar meson masses vanish iri the exact symmetry limit
e —+0.

A+m'(2B+C) = 0

and

(2.26)

As we shall see later, the meson masses in Eq. (2.23) can
be fit with ABC' belonging to almost any representation of
SU(3) X SU(3). LIn fact, Eq. (2.23) usually fixes the
parameters of the model considered. ) Thus, in order to
check various symmetry-breaking models, i.e., different
forms of 3C', we have to look elsewhere.

C. ~-~ scattering

Soft-pion calculations, based on the SU(2) X SU(2)
algebra, were 6rst performed by Weinberg (1966a, b, 1968a)
and Tomozawa (1966); see also, for instance, Adler and
Dashen (1968). Subsequently, a compa, ct generalization
for SU(3') X SU(3) was given by Dashen and Weinstein
(1969a), and we shall use the general results of these works.
Following Weinberg's (1966b) analysis, the scattering
amplitude for the reaction n. (qi) + mq(q2) —+ 7r, (q3) +

B —C=f (2.27)

A (6 bb, g + 8,bbd, + b«6j.)

= —f ( (0 I Lz.', Lz.', Lz.5, E~,', ae'(0) )))) I o&

+ (dbac) + (chad) + O{e2) }, (2.28)

Equation (2.26) follows from the Adler self-consistency
condition Lwhich states that M in Eq. (2.24) vanishes
when any one of the four pion momenta vanish and the
other three are on the mass shell, i.e., M = 0 when s =
t = u = nt 2), and can be obtained from Eq. (2.24) by
extracting all; derivatives and letting any qj& —+0 in the
resulting expression. Similarly we obtain Eq. (2.27) if we let
q,&, q3& —+0. Finally, taking all the pion momenta to zero,
q, & = q,& = q3& = q4& = 0, Eq. (2.24) yields, using Eq.
(2.11b), the following low-energy theorem:

Rev. Mod. Phys. , Vot. 46, No. 3, JUly 1974



E. Reya: Chiral symmetry breaking 551

with F = F,'(0). Inserting Eqs. (2.26) and (2.27) into kinematic invariants for this process are defined by
(2.25), we get

~ = (q+ p)', t = (q —q')', ~ = (q —p')' (2.33)

a (0) or equivalently, for the sake of convenience, we shall also
use

8~.2
I

2A—
gb m. \ f ).' (2.29)

For a definite isospin channel we can write for simplicity,
according to Eq. (2.28),

v = (p + p') ~ (q + q') /4M~ = (s —I) /4M~

= co + t/4M~,

vs = qq'/2—Mb = (t —q' —q")/4Mb, (2.34)

a = —f.—&o I I:F. , LF.', LF. , CF.', ae'(0) jj7j I o&, where co denotes the total laboratory energy of the incoming
meson. The amplitude for the process (2.32) can be con-

(2.30) tinued off-mass shell by means of the definition

(no sum over n = 1, 2, 3), which we shall use in our future
applications. Again we found, Eq. (2.29), that the 0.

commutator provides a direct connection between the
symmetry-breaking interaction and experimentally measur-
able quantities. The sigma term in Eq. (2.28) involving
four commutators with the J' "s is of course just a gen-
eralization of Eq. (2.21), since by a LSZ reduction we have

Tb. (v, t, q', q")

g(q2 ~ 2) (q~2 p~ 2) (~ 2f )
—l(~ 2f )

—i

X f d'x exp(t'q' x)

(2.35)

&~g I PF,', LFbb, ae') j I
~.&

- &0ILF", LF.', LF.', LF', ~'23jlo&

For completeness let us mention that Eq. (2.29) implies
the famous Weinberg relation (Weinberg, 1966b)

The basic relation for deriving low-energy theorerns is the
so-called generalized Ward —Takahashi identity, which can
be written in the form

f d'x d'y exp(iq'. x) exp( iq y)—
x &p'

I
2'(~,~b"(x)~.~-"(y) ) I p)

2ab'" —5ab"' ——(3/4~) (m„/f~') (2.31)
= f d'x d'y exp(iq' x) exp. (—iq y)

which is model-independent, since only the value of 2 de-
pends on BC'.

In contrast to the meson masses in Eq. (2.23), the m.~
scattering lengths in Eq. (2.29) would provide very sensi-
tive and selective tests for various symmetry-breaking
models, i.e. , various 5U(3) X SU(3) representations under
which BC' transforms, if accurate data for ao( ' were available.
Unfortunately, as we shall see, present experimental results
provide us with only some consistency checks of theoretical
predictIons.

D. Low-energy theorem for Meson-Nucleon
scattering

For practical use, the low-energy theorems for rneson-
nucleon scattering (elastic ~N or K+N for example) are
presently by far more important for testing theories of
(broken) chiral symmetries. This is because present meson—
nucleon scattering data are, compared to the meson —meson
data, less controversial and ambiguous.

x (P'
I Iq.'q T(-4b" (x)~-"(y) )

+ iq„'b (xb —yb) I
Ab&(x), A.'(y) j

—b(xo —yo) I Ab'(x), B,A."(y)j i I p) (2.36)

2'b. (0, 0, 0) o) = fa 'fb '~~+")— (2.37)

where

which can be derived by using standard techniques' of
pulling the derivatives through the time-ordered product.
The first term on the right-hand side of Eq. (2.36) con-
tributes both to the symmetric and antisymmetric part of
the amplitude with respect to the 5U(3) indices a, b,
whereas the second term, the equal-time commutator
known from current algebra (Sec. IIA), is antisymmetric
in u, b and of 6rst order in the meson momentum. The last
term corresponds to the 0- commutator and is cot determined
by Gell-Mann's current algebra. Inserting Eq. (2.36) into
(2.35) and taking the soft-meson limit q„—+ 0, q„' —+ 0, we
obtain the low-energy theorem

Consider the process

M, (q) + N(P) —+ Mb(q') + N(P') (2.32)

0~~" = if d'x B(xo) (p'
I

LAbb(x), B,A."(0)] I p)

= &p'
I I:F '(0) LF-'(o) ~'(0) 07 I p& (2.38)

with four momenta of the particles indicated in parentheses is the so-called meson —nucleon sigma term, and use has
and a, b denoting the SU(3) indices of the mesons. The been made of Eq (2.11b). T. hat o.~~ is symmetric in the

Rev. Mod. Phys. , Vol. 46, No. 3, July 1974



E. Reya: Chiral symmetry breaking

SU(3) indices a, b can easily be seen by writing a Jacobi
identity for the double commutator in Eq. (2.38):

LF~', LF.', ~'jj + E~', LF~', F-'jj
+ LF.', PC', F,'gg = 0

and using the fact that )BC', $F&', F 'Jj = 0 by isospin and
hypercharge conservation. Therefore, a consistent calcula-
tion of tlie 0--terms should make use of the (isospin) even
amplitude T&, + T,b which we shall denote hereafter by
T'+i or T+ (see below). Since we are only interested in
elastic processes, we always will have f = ft, in Eq. (2.37).

Since 0. terms are directly related to the symmetry-
breaking Hamiltonian, Eq. (2.38), it would clearly be a
good thing to know 0~~~ . Since Eq. (2.37) relates the
nucleon expectation value of the sigma commutator to an
off-mass-shell amplitude, objects like 0.~~~ cannot be
measured directly, but can be obtained by extrapolation
from on-shell scattering amplitudes. Going off the mass
shell through a power series expansion in q and q", for
example, which was first proposed by Cheng and Dashen
(1971),

where we have dropped higher-order terms, since 0(e') =
0$(m '/M~')'$ with the nucleon mass M~ representing a
"typical strong-interaction mass. " For the case of ~X scat-
tering, such higher-order correction can be safely neglected,
as actually has been shown (Brown, Pardee, and Peccei,
1971), because of the exceedingly small factor m 4. A result
not to be expected a priori for kaon —nucleon scattering,
where second-order corrections in Eq. (2.44) can be as
large as nzIt4/M~~ Th. us, provided these higher-order terms
in chiral symmetry breaking can be neglected, Eq. (2.44)
offers a unique relation between the symmetry-violating
interaction K' and the on-mass-shell amplitude independent
of any (ambiguous) model-dependent off-mass-shell ex-
trapolationprocedure. In addition, thepoint v = 0, t = 2m '
is clearly outside the physical region. To reach this un-
physical (but on-mass-shell) point v = rz ——0, q' = q'2 =
m ', one has. to use, for instance, fixed-t dispersion relations;

Another equally important method to relate Eq. (2.37) to
experimental observables would be, for example, a linear
expansion of the isospin-even amplitude, by making full
use of Weinberg's smoothness hypothesis (Weinberg,
1966b). This and similar methods will' be discussed in the
following two chapters.

T+(0, 2m, ', m„', m, ')
= T+ (0, 0, 0, 0) + m, '(8/Bq') T+ (0, 0, 0, 0)

+ m '(8/Bq") T+(0 0) 0, 0) + 0(e'), (2.39)

where we assumed a = b, since we will be only interested in
elastic meson —nucleon scat tering. The Adler consistency
conditions (PCAC) (Adler, 1965; Adler and Dashen, 1968)

T+(0, m.', m.2, 0) = T+(0, m.2, 0, m. ') = 0

T+(0 m 2 m 2 0) = T+ (0, 0, 0, 0)

+ m ~(g/g&~)T+(0 P 0 P) +. 0(,2)

T+(0, m, ', 0, nz. ') = T+(0, 0, 0, 0)

+ m '(8/Bq") T+(0, 0, 0, 0)

+ 0(e') (2.41)

which implies

T+(0, 0, 0, 0) = m, '(8/Bq') T—+ (0, 0, 0, 0) + 0 (c')

m2(8/B—q") T+(Q 0, Q, Q) + 0(e')

and together with Eq. (2.39) it follows that

(2.42)

T+ (0 2m ' m.' m ') = —T+ (0, 0, 0, 0) + 0 (e') .

(2.40)

(where we always define the point v = 0, i» = 0 by taking
the limit p& —+0 followed by v —+0 which eliminates the
Born pole terms) can also be expanded into a power series

E &&3.decays

Finally, let us mention another low-energy theorem,
namely the Callan —Treiman —Mathur —Okubo —Pandit rela-
tion for E&3 decays, which reads (Callan and Treiman, 1966;
Mathur, Okubo, and Pandit, 1966)

f+(mlt2) + f (mrt') = f~/f (2 45)

where the semileptonic decay constants f and fz are again
given by Eq. (2.9) and the scalar form factors are defined by

(~'t U, +~(0)
~

K+)

(1/v2)L(P + P-) "f+(~) + (P —P-) "f—(~) j,
(2.46)

with t = (pit —p )'. The similarly defined form factors
for the E' decay must be the same as those in Eq. (2.46),
assuming the validity of the AI =

2 rule. Equation (2.45)
is an interesting relation because it uses PCAC to relate
SU(3) breaking effects (see, for example, Dashen, 1971b).
Since Eq. (2.45) is merely an identity, it cannot be used as a
consistency check on any form of symmetry breaking, i.e., it
does not discriminate between different transformation
properties of BC'. This would not be the case, of course, if
the vacuum were not an SU(3) singlet in the chiral limit,
but this would anyway imply a scalar (z) Goldstone boson;
work along this line has been done, especially in order to
explain the observed value of

Equation (2.37) can then be written as

T+(0, 2m.', m. ', m.') = f, 'o~~ ~,
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(2, 44)

but we wi11 refer to it later. However, corrections to Kq,
(2.45) can be calculated (Dashen and Weinstein, 1969c; Li
and Pagels, 1971a) on a more or less model-independent
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basis. Although the experimental situation in E&3 decays is
still very confused (Chounet, Gaillard, and Gaillard, 1972;
Wojcicki, 1972), the real importance of testing such correc-
tion terms is not that it differentiates between models of
symmetry breaking, but that it is an (essentially) model-
independent test of the idea of expanding in powers of
symmetry breaking. f/~ ——(2i) 'Lexp (2i8/~) —1$. (3.8)

with I'i' = dJ'i/dx, x = cos8, and k and 8 being the c.m.
momentum and scattering angle, respectively. The partial
waves and phase shifts corresponding to total angular
momentum j = l ~ ~i are denoted by f/~ and 8/+, respec-
tively, where

III. CALCULATIONS OF THE irk SIGMA TERM

Before discussing various recent estimates of 0~~, let us

briefly summarize some relevant properties of pion —nucleon
amplitudes.

A. Pion-nucleon amplitudes and dispersion
relations

Of special interest in our discussion will be the values of
scattering amplitudes at various energy points; at physical
threshold, v = m, f = 0, we have

llilifi = ao+)
A;~0

limf2 ——0, (3.9)

where u~+ is the scattering length of the 1th vr2V partial wave
f&~, defined by

Considering the reaction in Eq. (2.32), where M, stands
now for 7r, the T-matrix is conventionally (Moorhouse,
1969) decomposed into

a/~ ——1imf i~/k "+' (3.10)

Tb, ——A/„+ —,'y (q + !l')Bb. (3 1)

where the two invariant amplitudes 2 and B are chosen to
be scalar functions of v, t. To specify the various charge
states, these amplitudes are decomposed into

In addition we will need the value of the amplitudes at
+ re '/4M~, t = 2m ' (always keeping /l' = q" =

r/t '), where we have

cos0 i,=2 .' ——(r/t '+ k')/k'

= —,'[r/„r IA&+& + ~fr/„r $A/ (3 2) and since

and similarly for Bl, , where v- denotes the 2 Q 2 isospin
matrices. With respect to crossing (v —+ —v, t fixed), A'+'
and B( are even functions, whereas A' ' and B(+ are odd.
The amplitudes corresponding to definite isospin I = 1/2,
3/2 are given by

l (2l) !
Pi'(x) —, , x' '

2/(l() 2

we obtain, using Eq. (3.11) in (3.7),

(3.11)

A /+) 1A1/2 + 2A8/2 (3.3)
(l + 1)P (l + 1))

2/+iL(l + 1) i]2

and similarly for B(+), and therefore the amplitudes for
m.+2V scattering are

l (2l) !
lim( f~/k') ~,=2„.' ——Q (ai —a/+) r/t '&'—'&.
/' ~o i=i 2/ l!)2

—g(+) ~ g(—) —B(+) ~ B(—) (3.12)

The T-matrix normalization is chosen such that the differen-
tial cross section in the c.m. system is given by

d~/dn = (M~/4~W) 2 g ~
u(p') Tu(p) ~', (3.5)

1 W+ M~ W —M~—A(v, t) = fiE+ M/i E —M~

where W = (s)'" and g denotes the sum and/or average
over nucleon spins. The invariant amplitudes may be
decomposed into partial-wave amplitudes by ReA&+'(v, t) = —P dv' ImA&+&(v', t)

In practice, only the s- and p-wave scattering lengths will be
of interest; they are the only ones that are experimentally
rather well known and that are the dominant contributions
to Eq. (3.12) .

The fixed momentum transfer (on-mass-shell) dispersion
relations may now be written in the form (Moorhouse, 1969)

4—. ("') =E+M f+E M f-(3 6)

where E' is the total c.m. energy of the nucleon and

1
fi = —Z !/ f/+I'i+i'(x) —f/-&/-i'(x) 3

k i=0 rr+ t /4MN

dv' 1mB&+'(v', t)

(3 7) (3.13)
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where, according to Eq. (2.34), pi& = —m 2/2M&i + t/'4M~
and the pion —nucleon coupling constant in the Born term
is given by g2/42r = 14.6. As we have emphasized in Sec.
IID, the important amplitudes for calculating chiral sym-
metry breaking effects are the isospin-even ones, given by

siderably larger than that in Eq. (3.15). In order to reach
the on mass shell unphysical energy point v = 0, t = 2' 2

of T(+& in Eq. (2.44), where T(+& is defined in Kq. (3.14),
they used a so-called broad-area subtracted dispersion
relation (Adler, 1965) of the form

T(+) (p t) —g(+) + p~(+) (3.14)

where, unless stated otherwise, on-mass-shell amplitudes will
be denoted by T(p, t) = T(p, t, n2 2, 2&2 2) .

B. Estimates of the ~1V sigma term

Soon after the (3, 3) + (8, 3) model (Gell-Mann,
Oakes, and Renner, 1968; Glashow and Weinberg, 1968) of
chiral symmetry breaking was proposed, von Hippel and
Kim (1969, 1970) estimated the 0. terms for elastic 2rX
scattering as well as for several elastic and inelastic K+X
and ~Z reactions, and found excellent agreement with the
predictions of the (3, 3) + (3, 3) symmetry-breaking
scheme. In order to reach the unphysical off-mass-shell
point in Eq. (2.37), they (von Hippel and Kim 1969,
1970) employed an off-mass-shell dispersion relation (which
turns out to be just the I.ow equation in the laboratory
frame) using the Fubini —Furlan extrapolation technique
(Fubini and Furlan, 1968) which relates the current algebra
soft-meson point to the scattering amplitude at threshold.
The result obtained in this way for mX scattering is

2+ (p 2 p2) t&(p 2 p2) 1—P

v1

m~+~/4~@

t'

dp
p'2 2

ImT'+& (p', t)

(p 2 pi2)P(p 2 pi2)1—P

v2
V

dp
1 p v

sinP7r ReT(+'(p', t) + cosP7r ImT(+&(p', t)

(p" —p ') t& (p ' —p") ' t&

f
OO ImT'+'(p', t)

dp
pi2 p2 (pi2 p 2) t&(p12 p 2) 1—&&

g pa (pi —p )~(p —p )' t'
T'+)(p, t) =

M~ pa2 p2 (p12 p)22) &&(p22 pi&2) 1—P

a&(&1
——26 MeV (von Hippel and Kim, 1969, 1970).

{3.15)

Although these authors did not explicitly state an error
estimate, they emphasized that a large statistical and
systematic error should be attached to (3.15), coming
mainly from rescattering corrections. (Typically such errors
have been shown to be about 30%). However, these von
Hippel —Kim calculations have been criticized (Chan and
Meiere 1969; Brown, Pardee, and Peccei, 1971; Kleinert,
Steiner, and Weisz. 1971) for several reasons: Off-mass-
shell dispersion relations although not obviously patho-
logical are certainly not well enough understood to exclude
unexpected sources of error. In addition, the result of von
Hippel and Kim is especially questionable (Brown, Pardee,
and Peccei, 1971), for they work with amplitudes of definite
isospin rather than with isospin-even (Eq. (3.3) 7 ampli-
tudes, which yields inconsistent results as discussed by
Brown, Pardee, and Peccei (1971) and in Sec. IID. Further-
more, since they evaluate their (definite isospin) amplitudes
at threshold rather than at the point v = v~ = 0, such an
analysis incurs (Brown, Pardee, and Peccei, 1971) errors
of order 2&2 2/M~2 and thus does not furnish a reliable
evaluation of the sigma term, because the contribution of
the essentially unknown continuum in the dispersion in-
tegral is of the same order.

Similar calculations ha, ve been performed (Chan and
Meiere, 1969) for the o terms of 2rA and vrZ scattering and
the (3, 8) + (8, 3) predictions confirmed.

More recently, Cheng and Dashen (1971) carried out an
analysis using the completely diferent method outlined in
Eqs. (2.39)—(2.43), and obtained a, value for o&i~ con-

which can be obtained from Eq. (3.13) using the original
amplitude T(+' divided by (p&2 —p")t'(p22 —p")' a. This
denominator introduces a new cut on the real axis from v~

to p2 in the p plane 2&2 + t/4M~ ( pi ( p2 ( ~ and the
discontinuity across this artificial cut is determined by the
imaginary and real parts of T(+). Thus it has the advan-
tageous e8ect of smearing the needed subtraction for T(+~
over a finite segment of the real axis so that the results will
not be very sensitive to errors in the phase shifts at any one
point. Using broad-area subtractions has the additional
advantage in the presence of the three parameters p~, v2

and P 0 ( P ( 1 providing us built-in checks on the
compatibility of the various phase-shift solutions used with
respect to conventionally subtracted dispersion relations.
Diferent values for v~, v2 have been used but the optimal
choice with respect to existing experimental information,
turned out to be pi ——1.52nz, p2 = 2.85m and p variable.
Feeding various xX phase-shift solutions into the right-hand
side of Kq. (3.16), Cheng and Dashen (1971) obtained an
average value of

T(+'(0, 22&2.2) = 1.7m.—' (3.17)

which together with Eq (2.44), . using f = 96 MeV,
yields (Cheng and Dashen, 1971)

0-~pp = 110 MeV (3.18)

in violent disagreement with Eq. (3.15) and, as we shall see
later, also in serious disagreement with the (3, 8) + (8, 3)
model. This calculation has been questioned {Hohler,
Jakob, and Strauss, 19'71; I.iu and Vermaseren, 1973)
because of the claim that Cheng and Dashen (1971) may
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not have selected the most reliable input data in their
analysis.

Very recently, Liu and Vermaseren (1973) have under-
taken the arduous task of recalculating the Cheng —Dashen
estimate using the most recent phase-shift analyses. Doing
a very thorough evaluation of the dispersion integrals in
Eq. (3.16), and choosing the artificial cut in (3.16) to go
from v& = 1.52m to v2 = 2.84m, they obtain an average
value for T&+& (0, 2m ') of (Liu and Vermaseren, 1973)

Cheng —Dashen calculation as far as the mass extrapolation
is concerned. ) In order to calculate the two expansion
parameters a~+ and a2+ one can proceed as follows: Consider
the fixed t -dispersion relation for the (on-mass-shell)
amplitude

C+ (v, t) = A + (v, t) + /4M~~v/(4M~ —t) $8~+ (v, t)

(3.23)

in the forward direction

T&+&(0, 2m.2) = 1.1m.-i or 1.3m (3.19) ReC~+&(v, 0) = A&+&(0, 0)—g2 v2 2V2

+ —P
MN v —V~

depending on whether the CERN 71 (Almehed and Love-
lace, 1972) or CERN 68 phase-shift analysis is used, respec-
tively. Equation (3.19), to be compared with (3.17), then
implies, using Eq. (2.44), (Liu and Vermaseren, 1973)

ONN" = 72 MeV or 85 MeV (3.20)

in contrast to Eq. (3.18). In calculations of this kind, a
reliable error estimate is extremely dificult, but the varia-
tion in the outputs (for diferent P's and vi, v2) gives us
some idea of the uncertainties in the Anal result. This
indicates (Liu and Vermaseren, 1973) that the error lies
around some 30% (similarly for the Cheng —Dashen calcula-
tion). Because of this calculation, and estimates to be dis-
cussed subsequently which use the same off-mass-shell
extrapolation but di6'erent forms of subtracted dispersion
relations, it appears now rather certain that the original
Cheng —Dashen result in Eq. (3.18) should be reduced by
about 30 to 40 MeU.

"dv' ki, '0 &+& (v')fX
v v p

(3.24)

ImC~+&(v, 0) = kz, o&+&

Y.

From Eqs. (3.21) and (3.24) we then obtain

(3.25)

g2 g2 m.4

a,+ — = ReC&+&(v, 0) +
M~

' 4M~' v' —m '/4M~'

2v' dv' kl, '~&+&——P
m v' v'2 —v2

(3.26)

with ki,"= v" —m ' and, according to Eq. (3.4), the ~+P
total cross sections are given by 0'+' = (0 +„+ 0' „)/2.
Equation (3.24) is obtained by inaking one subtraction at
v = 0 in Eq. (3.13), and using the optical theorem of the
form

The second group who cast doubt on the validity of the
Cheng —Dashen estimate was Hohler, Jakob, and Strauss
(1971). These authors, however, used "conventionally"
subtracted forward and forward-derivative dispersion rela-
tions, because the broad-area subtraction technique seemed
to overemphasize the low-energy data points. However,
the reconstruction of the forward-derivative amplitude from
partial-wave series is less convergent. Jakob (1971) later
repeated the same kind of calculation by means of more
recent phase-shift analyses and total-cross-section data. In
brief, this calculation goes as follows. I.et us start with an
expansion of the isospin-even mT amplitude

ai+ —(g'/M~) = ( —1.53 & 0.2)m (3.27)

Although Jakob (1971) used three times more data than in
the previous analysis (Hohler, Jakob, and Strauss, 1971)
in order to calculate the right-hand side of (3.26), the
consistency of the resulting real parts and of Eq. (3.26) for
different v turned out not to be very good /see Fig. 1 of
Hohler, Jakob, and Strauss (1971) and Jakob (1971)j.
This is mainly due to systematic differences between the
phase-shift analyses of different authors. The best average
result obtained is

A'+&(v, t) = ai+ + a2+t + a3+v'+ a4+v't + ~ ~ ~ (3 21) corresponding to an s-wave scattering length value of

T~+& (0, 2m ', m ', m ) = a + —(g /M ) + 2m ~a2+

20 7l r
NN (3.22)

which coincides with the T&+& amplitude considered by
Cheng and Dashen (1971) at the kinematical point of
interest (v = 0, t = 2m ' or vii = 0) up to the constant
g2/M~, stemming from the pseudoscalar Born term From.
the general results of Osypowski (1970), based on Ward
identities applied to three- and four-point functions, one
gets (Hohler, Jakob, and Strauss, 1971; Jakob, 1971)

ao &+& = ( —0.014 & 0.014)m (3.28)

where we have used Eqs. (3.6) and (3.9) to obtain

ReC&+&(m, 0) = 4~$(m + M~)/M~)ao+&+&. (3.29)

The second coeKcient in Eq. (3.22), a2+, can be determined
by a study of the dispersion relation for the derivative of the
amplitude C~+&(v, t) at t = 0. Assuming the usual parame-
trization for the derivative of ImC'+'

8/Bt ImC'+'(cu, t) ~, o
———',b+(cu) ki,o'+', (3.30)where in the last step we again used Eq (2.44). LA. lthough

Hohler Jakob, and Strauss (1971) and Jakob (1971)
started from Ward identities, there is no difference from the where b+(cg) denotes the slope of the diffraction peak, one
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obtains the following relation:

—ReC&+& (co, t) (c=p ——Clc c+& (co, t) ~, p
Bt Bf

dco' (c7/Bt) ImCc+&(co', t) i, p

" dco' (2co' + co) kl, 'o-'+'

27IM~ ~ co (co + cp)

(b.)= ap++
2

with

(3.31)

Jakob (1971)has shown explicitly how such an inconsistency
occurs, if this small low-energy region is too dominating,
by writing a subtracted dispersion relation for C'+' at
t = 2m ' which is related Lsimilarly to Eq. (3.31)j to
Tc+'(0, 2m 2) + (eh+)f and making use of Eq. (3.30) in
the high-energy part, as it was also done by Cheng and
Dashen (1971). Again he obtained (eP+) = 1.13, whereas a
straight-line extrapolation of the dispersively calculated
points from the interval (pl, l p) to the Cheng —Dashen
value of Eq. (3.17) yields a negatiile value for (ep ), which is
of course unphysical /see, for example, Fig. 3 of Jakob
(1971)j.

Similarly to Eq. (3.34), the original estimate of Hohler,
Jakob, and Strauss (1971) yielded a value of (Hohler,
Jakob, and Strauss, 1971)

24) de kl 0
/2

'll CO GO CO

o-~~ = 40 MeV. (3.35)

ap+ = (1.11 W 0.02)m.—', (b+) = 6.1 (GeV/c)

(3.32)

Note that the value for (b+) is consistent with estimates
using only high-energy data, which obviously would not
be the case if only points in the low-energy region are con-
sidered, as has been done in the calculation of Cheng and
Dashen (1971), for example. Inserting Eqs. (3.27) and
(3.32) in Eq. (3.22) yields

T'+'(0, 2m ') = (0.69 & 0.24) m (3.33)

to be compared with Eq. (3.17), which implies (Jakob,
1971)

and the possible energy dependence of b+ taken into account
by an average value (b+). The subscript X denotes the
nucleon Born term. The left-hand side of Eq. (3.31) can be
calculated in the interval m ( co ( co 2 GeV from
phase shifts and total cross sections, whereas l is given by
total-cross-section data alone. Thus, the left-hand side of
Eq. (3.31) can be plotted as a function of l and the parame-
ters ap+ and (b+) are very accurately obtained by a, straight
line fit to be

However, these calculations are not entirely unique, because
of the rather poorly known (Pilkuhn et al. , 1973) s-wave
scattering length ap~'+'. Eliminating al+ —g'/Mlp. from
Eq. (3.22) by using Eq. (3.26) at v = m one obtains
(Hohler, Jakob, and Strauss, 1971)

T'+' (0, 2m. ') = 4lrf(m. + Mlp) /M~]ap~&+&

+ 2m~'a2+ —1.31m (3.36)

where use has been made of Eq. (3.29), and the factor
1.31m is the ~alue of the dispersion integral in Eq. (3.26)
minus the Born term calculated at v = m . Equation
(3.35) corresponds to ap+c+' = —0.025m ' which, how-
ever, is about three times the present world average (Pil-
kuhn et a/ , 1973). S.ince the various phase-shift solutions
for ap+'+' scatter rather widely, the error in Eq. (3.35) could
be as large as about 50%%uo. It is interesting to note that
for cr~~ = 0 Eq. (3.36) implies ap~+l = ( —0.066 &
0.015)m ' which is excluded by the low-energy data
(Pilkuhn et al , 1973) . .

A very similar method has been used recently by Scadron
and Thebaud (1973), using in addition P-wave scattering
lengths for determining a2+ in Eq. (3.22) . In particular they
claim that the right-hand side of Eq. (3.27) should be
changed to ( —'1.40 & 0.15)m ', with the final result
(Scadron and Thebaud, 1973)

o-~~" ——(45 & 16) MeV (3.34) ——(73 & 21) MeV. (3.37)

a value one third as large as the original Cheng —Dashen
estimate, Eq. (3.18), and half as large as the result in Eq.
(3.20) . This discrepancy is due to the fact that the broad-
area dispersion relation strongly overemphasizes the low-
energy region, as has been already noted by Hohler, Jakob,
and Strauss (1971) and Jakob (1971), because the (vl, v2)
interval of Eq. (3.16) covers only a very small low-energy
region close to threshold: l 1(vl) 0.13m ' to fp(vp)
0.48m ' on the l scale. This interval corresponds exactly
to the energy region which was selected by Cheng and
Dashen (1971) to give the best information on the real
parts for the broad-area subtraction method. However, it
is just this energy interval where the real parts of ampli-
tudes from phase-shift analyses must be considered as
doubtful (Hohler, Jakob, and Strauss, 1971; Jakob, 1971).

Again, as in the above calculations, the same ambiguities
are inherent in this estimate coming from the poorly known
s-wave scat tering lengths.

Using Ward identity techniques and linear expansions of
lrX amplitudes, Osypowski (1970'~ obtained a value of
o-~~ 60 MeV consistent with the above estimates.

Shih and Shepard (1972 obtained olplc = —46 & 140
MeV. using the alllplltllcle Ac+l (v = 0, 1 = 2m~ ) ollly.
Since the g term in this calculation happened to he the
difference of two big but nearly equal numbers, the result is
subject to large errors.

An elegant field theoretical method for calculating a.~~
has been proposed by Altarelli, Cabibbo, and Maiani
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(1971a, b), by making full use of the Weinberg smoothness
hypothesis (Weinberg, 1966b) . The outcome of this analysis
is a. relation expressing the o. term in terms of s- and p-wave
scattering lengths, and a well known integral over total 7rX
cross- sections. Consider the isospin-even amplitude defj.ned
by

F (v, t, q', q") = A (+& + vB&+&

g(q') g(q")
)

MN P~2 —P'
(3.38)

F(v, t, q'2 q") = Am„'+ Bt + C(q'+ q") + Dv'

+ R(v, t, q', q' ),2 (3.39)

where E measures the deviations of F from linearity. These
deviations can occur due to the presence of nearby singu-
larities in each of the variables P, t, q', and q". In the t, q',
and q'2 channels, such higher-order effects are of the order
m 4/M~', compared to the first-order terms m '/M~',
and can be safely neglected. The main contribution to E
from s-channel poles comes from the A(1236), and its
contribution is rather small (Altarelli, Cabibbo, and
Maiani, 1971b). We therefore will neglect E in Eq. (3.39)
for the time being, but will come back to it later. Together
with the low-energy theorem in Eq. (2.37), Eq. (3.39)
then yields

where the Born term has been explicitly subtracted so that
P is expected to be a smooth function of all its arguments.
On the mass shell we have g(m ') = g, while the off-mass-
shell behavior of g(q') is completely specified by Eq. (2.9)
in terms of the axial and induced pseudoscalar form factors
of the nucleon in Eq. (2.16) . Taking into account the sym-
metry properties of Ii we can expand Ii, following %ein-
berg's original suggestion (Weinberg, 1966b), around v =
t = q = q" = 0 in the following way. '

definite isospin channel I = 1/2, 3/2 is denoted by a2r,
whereas the p-wave scattering lengths will be denoted by
a»,». Thirdly, at P = t = 0 we have

F(0, 0, m.2, m„2)

= m'(A+2C)
2m 2

= F(m. , 0, m.2, m.2) — F dP

kr, 'o-(+' (v')

p m~

= F(m, 0, m ', m ') —(1.45 ~ 0.02)m (3.43)

where the second step follows by making a subtraction in
(3.13) at v = t = 0 and then taking the resulting expression
for F (v, 0, m ', m ') at v = m . The fourth and last equation
for determining the expansion parameters in Eq. (3.39)
comes from an expansion of F in powers of k2 and cosa
around the physical threshold and comparing the coefFicients
of k' cosg. (The coeKcient in A +' + vB(+' is then related to
a linear combination of s- and p-wave scattering lengths. )
In this way one obtains the sum rule

m2 m g' 2M' m
2B + D + —4m.2

42r Mlr 42r (4Mlr' —m ') '

m ' ai+ 2a3 + (all + a31)
N

3m+ 2 (2 + (a„ + 2a„)
23fN

(3.44)

which is nearly saturated (Altarelli, Cabibbo, and tVIaiani,
1971a) and thus confirms the reliability of using this
equation for determining the parameters in Eq. (3.39).
Solving Eqs. (3.41) to (3.44), A is found to be

o-NN ——— 'm 2A (3.40)

Lhere, A is of course a different quantity than in Eq.
(2.30) g. The next step is to find four equations for the four
low-energy expansion parameters 2, B, C, and D. One
equation is obtained from the Adler consistency condition,
Eq. (2.40), which yields

m a 2a aii 2a31—m'A = 42r 1+ +m'
2MN 3 3

F(0, m. ', m. ', 0) = m. '(A + B + C) = 0. (3.41)

The second condition can be obtained at physical threshold
P = m~q t = 0:

, ~(+) (v')

P Z,

(3.45)

F(m. , 0, m.2, m.2)

= m '(2 + 2C+ D)

m" 1 g
2 m~ 2

= 42r 1 + —', (ai + 2a,)—
iVN m 2 4~N2

(3.42)

where terms proportional to m 4 have been neglected. In-
serting Eq. (3.45) into (3.40) we find the desired expression
for o~~ in terms of s- and p-wave scattering lengths and
a well known integral over total mE cross sections. The only
problem which remains is to estimate the nonlinear con-
tribution F. to Eq. (3.39). This has been done (Altarelli,
Cabibbo, and Maiani, 1971b) on the basis of field theory,
using for the ~EVE vertex an eA'ective Lagrangian of the
form

where use has been made of Eq. (3.29) and the isospin
decomposition Eq. (3.3) . The s-wave scattering length for a Z erg

——(g*/m ) $22v2p8„2r + H.c. (3.46)
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with P~" representing the spin-2 Rarita —Schwinger field,
and P and zr the nucleon and pion fieMs respectively. The
zrlVA coupling g is found (Altarelli, Cabibbo, and Maiani,
1971b) to be g*~ 3.3. With this, the correction term hzz,
which has to be added to the right-hand side of Eq. (3.45),
turns out to be

Dzz ——( —0.47 W 0.05) zfz (3.47)

~~~- = (80 a 30) MeV. (3.48)

which constitutes a 20% correction to Eq. (3.45). Putting
everything together one obtains (Altarelli, Cabibbo, and
Maiani, 197

Very recently precise new data have become available on
the diff erential cross section of low-energy elastic
scattering at laboratory kinetic energies from T&,b ——80
to 300 MeV (Bussey et a/. , 1973). The accuracy and com-
pleteness of these very high-statistics measurements are so
much superior to all the old low-energy xÃ data used so far,
that they make it interesting to recalculate the expansion
coeKcients of the mA invariant a,mplitudes about the point
v = t = 0, as for instance in Eq. (3.21) . In this way, Carter,
Bugg, and Carter (1973), and Nielsen and Oades (1974)
obtained a new value for the ~X sigma term, probably the
most accurate and reliable one to date (Hohler, 1973).
Using the method of Hohler, Jakob, and Strauss (1971)
as described above, Carter, Bugg, and Carter (1973) ob-
tained

As in the previous estimates, this result is critically de-
pendent on the poorly known isospin-even combination of
s-wave scattering lengths ai + 2a3, and Eq. (3.48) repre-
sents somewhat a world average. Since the unknown higher-
order contributions in this calculation represent at most a
10% correction, the estimate in Eq. (3.48) stands on
rather Arm ground. In addition, with respect to t-channel
unitarity corrections, it has been shown ( Geddes and
Graham, 1973) that the expansion (3.39), neglecting R,
holds within one percent. [However, a recent study of
Hohler et al. (1972) which attempts to determine the
expansion coefficients in Eq. (3.39) by a slightly different
method, finds 0.~~ 45 MeV preferable to Eq. (3.48).
This is consistent with Eq. (3.48), but indicates that the
lower limit of the Altarelli —Cabibbo —Maiani estimate should
be favored. ) It is interesting to note that with the present
method one can also estimate the higher-order correction
O(e ) in Eq. (2.43) of the Cheng —Dashen mass extrapola-
tion, which turns out (Altarelli, Cabibbo, and Maiani,
1971b) to be of the order of 10 zm ', i.e. , about 1%. It
should be emphasized that the Altarelli —Cabibbo —Maiani
method obviously can never yield better, i.e. more accurate,
results than methods based entirely on dispersion relations
(for instance, Hohler, Jakob, and Strauss, 1971, 1972). The
reason lies simply in the fact that accurate scattering lengths
are determined from the same dispersion integrals with the
same input as the coeKcients of the expansion (3.39).
Therefore the errors are practically the same.

A more recent similar analysis, taking into account X, p,
6, and o. exchanges, yielded the result (Olsson, Osypowski,
and Turner, 1973)

0.~~" ——(42 & 10) MeV. (3 .49)

It should be noted that these authors use the same low-
energy parameter a&+ as given by Hohler, Jakob, and Strauss
(1972), in addition to the theoretical assumption that
o~~ transforms as a (z, ~z) representation of SU(2) )&
SU(2), thus avoiding the use of the less well-determined
expansion parameter a~+ in Eq. (3.21). Since the value
(3.49) obtained in this way is practically identical with
Eqs. (3.34) and (3.35), this indicat. es that the chiral trans-
formation property of the symmetry breaking Hamiltonian
3C' is the simplest possible. (We shall come back to this
point in Sec. V. ) The other interesting part of this paper
(Olsson et a/. , 1973) is the treatment of 6 and p exchange.

(r~~ = (83 & 12) MeV. (3.50)

More recently this calculation has been seriously questioned
by Nielsen and Oades (1974),mainly because of an incorrect
treatment of d and f waves, which cannot be determined
from phase-shift analyses at low energies. Therefore the
error in Eq. (3.50) is a far too optimistic estimate, and
should be much larger due to these d-, and f wave unc-er-
tainties. Using the same method as Hohler, Jakob, and
Strauss (1972), Nielsen and Oades (1974) calculated the
low-energy expansion parameters of the (on-mass-shell) zrX
invariant amplitudes and found, contrary to what is usually
assumed, that these amplitudes have a nonlinear t de-
pendence, i.e. , terms proportional to t2 cannot be neglected
anymore in an on-shell amplitude Las, for example, in Eq.
(3.21)$. The o.-term turns out to be (Nielsen a,nd Oades,
1974)

a~~ = (66 & 9) MeV. (3.51)

~~~- = (57 w 9) MeV (3.52)

which, at the present time, probably represents the most
accurate and reliable value for the zriV sigma term (Hohler,
1973), Contrary to the calculation of Carter, Bugg, and
Carter (1973), the treatment of Nielsen and Oades (1974)
has the additional advantage of giving a reasonable con-
sistency with the CERN phase shifts at higher energies in the

Although the nonlinear t dependence is a very interesting
and far-reaching result as far as on-mass-shell amplitudes
are concerned, its use for calculating o.~~ in Eq. (3.51)
is obviously inconsistent: On the one hand one has to
neglect q' (or nz ') corrections, which cannot be calculated
exactly, in the off-mass-shell extrapolation given by Eq.
(2.43). On the other hand, zzz

' corrections stemming from
the t' term have been taken into account in the t-cha, nnel
extrapolation in order to derive Eq. (3.51). It is simple to
show, for example, that the t2 contribution will be already
totally compensated for by o ff-shell m 4 corrections
stemming just from deviations of the exact GT relation
(Reya, 1973c). In order to obtain a correct and consistent
result, one has to work in one definite order! Therefore,
since the P contribution to o.~~"" in Eq. (3.51) amounts to
about 9 MeV, the correct Nielsen and Oades estimate should
read (Reya, 1973c)
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dispersion relation for BCt+&)Bt at f = 0. It should be kept in
mind, however, that the value for f7~~ is very sensitive to
small e&ects like d and fwaves at low energies and probably
also to details of electromagnetic (Coulomb) corrections.

Kithin a light-cone approach, using finite mass dispersion
relations and commutation relations of the gluon model as
input for the numerical evaluation, Ng and Vinciarelli
(1971) estimated o-~~" to be approximately 220 MeV.
This calculation, however, appears to be too model-de-
pendent for its result to be considered as being "unique"
and final.

Using entirely different experimental information, Eric-
son and Rho (1971) estimated them%a. term from a study of
w-nuclei interactions in m-mesonic atoms making use of the
Fubini —Furlan o ff-mass-shell extrapolation (Fubini and
Furlan, 1968) . The main advantage of working with nuclei
instead of with vrE scattering lies in the fact that, in contrast
to the very poorly known charge-symmetric mE amplitude
(see above discussion concerning as+'+&), the low-energy

m.-nuclear amplitudes are very well known. Although there
exist no scattering data, they can be extracted from the
energy shifts in x-mesic atoms, which have been measured
with a high precision for a number of elements (Backen-
stoss, 1970). The calculations have been done for several
nuclei (Z = 3 to Z = 12) with the result {Ericson and
Rho, 1971)

(3.53)

under the assumption that the pion —nucleus sigma term
can be written as a coherent sum of m-E o- terms. Again a
20% to 30% uncertainty should be attached to Eq. (3.53).
Similar calculations have been done by Gensini (1971b)
and Hakim (1972a) with a somewhat smaller result than in
Eq. (3.53), in agreement with the original estimate of
von Hippel and Kim (1969, 1970).

There appears to be a systematic difference, by about a
factor of two, between estimates resulting from calculations
using the Fubini —Furlan extrapolation technique (von
Hippel and Kim, 1969, 1970; Ericson and Rho, 1971;
Gensini, 1971a, b; Hakim, 1972a, b) and calculations em-
ploying one or the other off-mass-shell extrapolation jEq.
(2.43) for examplej (Cheng and Dashen, 1971; Hohler,
Jakob, and Strauss, 1971; Osypowski, 1970; Altarelli,
Cabibbo, and Maiani, 1971b; Nielsen and Oades, 1974;
Scadron and. Thebaud, 1973). The question can thus be
raised as to the reasons behind such a systematic disagree-
ment. Hakim {1972c) has looked into this problem and
found that estimates using the Fubini —Furlan extrapolation
are critically dependent on the extrapolation path chosen.
Without deforming this extrapolation path, a value for
o-~~ twice as large as the above-mentioned has been found
(Hakim, 1972c) .

To summarize this section, we state in Table I the "ex-
perimental" estimates for o~~ done so far. At the present
stage of the game we are not able to deduce the exact value
of a~a (this can only be achieved when more accurate
future experiments are available), but, according to Table I
and to what has been said in the preceding discussions, the
magnitude (or range) of o.~rr can be considered to be rather
reliably known: The "world average" of Table l lies around

TABLE I. Estimates of the ~E sigma term, For values where no
error has been stated explicitly, an error typically of some 30% should
be assigned.

Authors 0 ~~ (MeU)

von Hippel and Kim (1969, 1970)
Cheng and Dashen (1971)
Liu and Vermaseren (1973}
Hohler, Jakob, and Strauss (1971)
Jakob (1971)
Scadron and Thebaud (1973)
Osypowski (1970)
Shih and Shepard (1972)
Altarelli, Cabibbo, and Maiani (1971b)
Olsson, Osypowski, and Turner (1973)
Carter, Bugg, and Carter (1973)
Nielsen and Oades (1974)
Ericson and Rho (1971)
Gensini (1971b)
Hakim (1972a)
Hakim (1972c)

26
110

72 to 85
40
45 & 16
73 &21
60

—46 ~ 140
80 & 30
42 ~10
83 ~ 12
66 ~ 9
34
26 ~ 8
22&1
51&9

50 MeV, and it appears improbable that o-~~ exceeds 70
MeU. With some confidence, therefore, it can be concluded
that. o-~~"" lies within the range

30 MeV & o.~~ & 70 MeV (3.54)

IY. CALCULATIONS OF THE KAON-NUCLEON
SIGMA TERM

For the sake of clarity we briefly summarize the main
properties of kaon —nucleon scattering amplitudes, before
going into the details of various calculations of the kaon—
nucleon o- term.

A. Kaon-nucleon amplitudes

For a reaction of the form (2.32) with cV, denoting E+, '

the T-matrix decomposition is the same as in Eq. (3.1),
whereas the isospin-even and isospin-odd amplitudes are
now defined by

A. (v, t) = A+(v, f) +. {va .err) A (v, f) (4. 1)

and similarly B+, where z~ and v~ are the isospin matrices
for the nucleon and kaon, respectively. (A tilde ahvays
refers to the kaon —nucleon system. ) The crossing property

and values as large as the Cheng —Dashen estimate of 110
MeV (or larger) can be rather convincingly excluded.
Probably the most accurate and reliable estimate to date is
given by the corrected Nielsen and Oades (1974) result
(3.52) .

The question remains open, to what extent Eq. (3.54) or
the estimates in Table I are consistent, within model
predictions, with other scattering processes. Kith respect to
the experimental information presently available, the next
most obvious but theoretically exceedingly more complicated
reaction is kaon —nucleon scattering, to which we will now
turn. (In conventional chiral symmetry-breaking models,
as we shall see later, the kaon —nucleon o- term is expected
to be about one order of magnitude larger than o~~ ) .
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A+ = —', (Ao+ 3A'), A = ~(A' —Ao) (4.2)

is the same as for the equivalent xX amplitudes A&+&

and B&+~. In the s cha, nnel, the amplitudes in Eq. (4.1)
are related to the amplitudes for a definite isospin state
I = 0, 1by

with v[[ ——mrs + t/4M~, and

Rv = (g„'/2M~) (» + t[v + M~ —M„)

v = va+ $(tvIg+ m )' —M~']/(2M~,

where 6„= (M„—M~')/2M~ and g„ is the rationalized

scattering are given by pseudoscalar coupling constant for the EyX vertex. For the
KX Born terms they are taken to be (Pilkuhn et al. , 1973)

A~= A+~A (4.3)
gg'/4~ = 5.0 & 1.9, gz'/4' = 1.0 & 1.5

The 1-matrix normalization and partial-wave expansions
of the invariant amplitudes remain the same as in Sec.
IIIA. The amplitudes of interest will again be the combina-
tion

whereas the additional couplings of interest are (Warnock
and Frye, 1965; Kim and von Hippel, 1969; Martin, 1970)

T~(v, t) = A.~+ vB~. (4.4) gr, e'/4~ = 1.2 ~ 0.6, gr, s'/4~ = 0.32 & 0.04,

gg~(ioop& /4m' = 0.55 & 0.10, (4 9)
Using Eqs. (3.6) and (3.9) we find at physical threshold
v= m~, t=0that

T~(mrr, 0) = 4m (1+ mlr/Mv)ap~+, (4 5)

where c~~+ is the scattering length of the lth K+X partial
wave f~++, defined as in Eq. (3.10) . At v = mrr + mrs'/4M~,
t = 2m'', we obtain from Eqs. (3.6) and (3.12) rewritten
for kaons (i.e., a~~ ~ a~~, m ~ mrr),

where for gz a partial width of I'p „g~ ——7.2 ~ 1.1 MeV
has been assumed. It should be noted that the value of
gr, ~ is smaller by a, factor 2-3 than the 5U(3) prediction
(g&,*'/4~ ~ 2.4), as suggested (Martin, 1970) by high-
energy photoproduction of Vi*(1385).

B. Estimates of the kaon-nucleon sigma term

T~ (mrs +- mx'/4M~, 2mlr2)

(l+ 1)22(i+ 1)]'
2l+1((i + 1) []2

Partly because of the complexity of the problem and the
rather incomplete experimental information available, con-
siderably fewer estimates of the kaon —nucleon sigma term
0-~g~~ have been done up until now than in the case of xX
scattering. Calculations using off-mass-shell dispersion
relations and the Fubini —Furlan extrapolation technique
yield (von Hippel and Kim, 1969, 1970; Hakim, 1972b)

l(2l)!+ 4~mrs' P (aE + —a&~+), , mrr"' ".
l=l 2'(l!)' (4.6)

0-g~~~ ~ 170 MeV (4.10)

ReT~(v, t)

= ReT~(vo, t) W (v —vp)

Eyx
v=o~ (»+ ~, ~ ")(»+~v~ v)

P(v —vo) ImT (v', t)
4p

(v' W vo) (v' W v)

P(v —v[[) ImV' (v', t)
dp

(v' W vo) (v' W v)

Finally, the subtracted fixed-t dispersion relations for
%+X scattering may now be written (Martin, 1970) in the
form

and the same critiques raised in Sec. IIIB with respect to
off-mass-shell dispersion relations and the Fubini —Furlan
method apply, in addition to the doubtful use of definite
isospin amplitudes.

Most of the recent calculations based on fixed-t dispersion
relations and isospin-even amplitudes have made use of the
Cheng —Dashen off-mass-shell extrapolation, Eq. (2.43),
applied to kaons. However, as an additional source of
uncertainty, it should be kept in mind that the off-mass-
shell points q' = q" = 0 and the point t = 2m~ are now,
in contrast to vrA scattering, relatively far away from the
physical region. The correction terms neglected in Kq.
(2.44) are now of the order mx'/Mz which may not be
negligible a priori in contrast. to terms like m '/M~', but we
will come back to this point later. Moreover, since 0.~~
itself is expected to be O(mrr'/MpP) this approxima, tion can
introduce an error as large as 30%.

(v —vp) ", ImT~(v', t)P dp'
vr „, (v'W vp) (v' W v)

'

To reach the unphysical (but on-mass-shell) point
(4.7) v = va ——0 in Eq. (2.44) one has to use a fixed-t dispersion

relation. From Eq. (4.'7), using (4.3), we get for v = 0,
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282+

T+(0 2mir2) = ReT+(vo, 2mrr2)

g22 (m2 —M~) '—~0'
2=P g 4MPP d, (A„2 —V02)

2po I' , 1mT+ (v', 2mrr2)
dp

p p 2 p 2

, ImT (v', 2mx2)dv', ,
' . (4.11)

P P Po

The subtraction constant in Eq. (4.11) is given by Eq.
(4.6) using s and -p-wave scattering lengths and similarly
the physical region integral can be calculated (Reya, 1972)
by feeding the various partial waves f&~ into T+(v, 2mrr2).
The evaluation of the last term in Eq. (4.11), the integral
over the unphysical region below the EX threshold repre-
senting the Am. and Zw discontinuities, requires some care.
The I = 0, j. s-wave parts are evaluated using the E-matrix
solution of Martin and Sakitt (1969), continued below the
E1V threshold (by the prescription 1~2

~

k ~; k and 9
being the c.m. momentum and scattering angle in the
kaon —nucleon system), with the result

o~~xx ——(—370 w 110) MeV (4.16)

contributions are coming from s and p waves; the s&~2 and p2)2
contributions are independent of the extrapolation pro-
cedure, whereas the P2~2 term depends only linearly on cos8.
Another possible enhancement in the t-channel extrapolation
could come from (EE) poles. However, we do not have
any experimental evidence (Petersen, 1971) that the
2(700), say, is coupled to the KK channel, giving rise to a
significant contribution at t = 2m@2. The major sources of
uncertainty come from somewhere else. First, the neglected
second-order terms in the mass extrapolation are of order
mrs'/&~4 which could introduce an error as large as 30%.
Secondly, it is the real part of the P2~2 EPscat'tering length
in the isospin I = 1 channel, which experimentally suffers
a sign ambiguity. For calculating the subtraction constant
in Eq. (4.11), we have used a positive value for this scat-
tering length, which is the favored solution of most of the
E1V phase-shift analyses performed up to now (Martin,
1970). However, changing the sign of this scattering length
only decreases the value of 0~~ given in Eq. (4.15); the
importance of this statement will become clear later.

A similar calculation has been done by Thompson (1971)
with the result

Cg

( 1 + i
1c

i
br)' + (i l.

i
cr)2

(4.12)

and the EE and KE s-wave scattering lengths for a definite
isospin channel are given by cr and Ar ——br + 2cr, respec-
tively, whereas the p-wave scattering lengths are denoted by
&r,2J»d Ar, 2J ~r,2J + zc12z res, pectively. The p-wave
unphysical region is assumed to be dominated by the
I'q*(1385) resonance, and here the narrow-width approxima-
tion was used:

to be compared with Eq. (4.15). As just remarked, the
main reason for this discrepancy comes from the poorly
determined EX p-wave scattering length in the I = 1

channel, which enters critically into the evaluation of
subtraction constants.

Using the same Cheng —Dashen off-mass-shell extrapola-
tion and fixed-t dispersion relations, but a different ex-
trapolation method to reach the point p = p~ = 0, Nas-
rallah and Schilcher (1973) found

Im( f&+/k) r, * = —2'2m(Mr, */cV~) b(v —vg, ) (4. 13)
o-g~~~ 160 MeV. (4. 17)

with

gr, ~' (M~ + M' r, ~)' —mx' kJ2

4m 3M M~ P P
T+(v, 0) = „T+(v, 0)

p2 p 2
(4. 18)

The extrapolation to the unphysical energy point has been
done in two steps. For the extrapolation in p an amplitude
of the form

where the c.m. momentum at the I'1* resonance is denoted
by kz. With these input data, Eq. (4.11) yields (Reya,
1972)

7'(0, 2nzx2) = (18.2 ~ 5.5) mK ' (4. 14)

and from Eq. (2.44) we get (Reya, 1972)

o.~~xx = (540 & 160) MeV (4. 15)

using fry = 118MeV. In spite of the extrapolation from g = 0
to t = 2mrr2, Eq. (4.15) shows that the errors in the partial
waves are still kept within tolerable limits when extrapolated
to the unphysical region. Because of this rather long-range
extrapolation one might argue that the above results
strongly depend on the extrapolation procedure used. This
is, however, not the case as one can see from the partial-
wave decomposition in Eq. (3.7): At low energies the main

has been used, which is supposed to minimize the uncer-
tainties arising from the unphysical region contributions by
choosing the parameter p* such that T+ vanishes at the

peaks. A subtracted dispersion relation has then been
used to evaluate T+(0, 0), where the calculation has been
performed for various values of p~ a,ll lying on the physical
cut where Re T+(r*, 0) is known. Having obtained T+(0, 0),
the extrapolation in t to t = 2m&' has been performed by
writing an unsubtracted dispersion relation in p for arbitrary

and saturating it with the A, Z, I'0*, I"1* poles. Of
course, this method suffers the same uncertainties in the q2

and q" extrapolations, but seems to be rather insensitive to
ambiguities stemming from the poorly known scattering
lengths.

Recently, another method has been suggested (Reya,
1973a, b) based on 6eld theoretical techniques and making
full use of Weinberg's smoothness hypothesis, which is
similar to the Altarelli —Cabibbo —Maiani (1971b) calcula-
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tion (see Sec. IIIB) generalized to kaon —nucleon scattering.
In brief, this calculation goes as follows. Since we are in-
terested in the (smooth) behavior of the scattering ampli-
tude in the neighborhood of the Weinberg point p = t =
q

= q' = 0, we first have to construct a smoothly varying
amplitude in this region. In order to do this we must sub-
tract from T+ the A, 5 Born terms and the various non-
smooth contributions of the Avr and Zx discontinuities
below the KA threshold. Taking this into account we
define

F (v, t, q' q") = ReT+ —Tii+ —Tro*+ —Tr, o+ (4. 19)

immaterial as far as our analysis is concerned, in that any
other possible choice of D„„'~2+ leads to a Born term which
differs from ours by a polynomial in external momenta,
which turns out to be entirely negligible and would only
amount to a redefinition of F. The result for TY,*+ is

1 (gr, */M~)' 1 Mio'" =3(,."*) —,.M, '+M, "+''
1 3Ei

X —+ v' —viivii '*
2 MN

where we did not include possible t-channel contributions,
since in this case, as mentioned above, there is no direct
experimental evidence for such effects. The Born terms in
Eq. (4.19) are given by

g„' vs" (vs" + M~ —M, ) M~ —M„W +,=~,z 2M~ (vs") ' —v' Mii + M„

2

4oln 3E ( 2M,) ooI

~N+ vB ' (MN+ Ma)&a+
2M'

(4.20)

where is" = vs + 6„. The unphysical regions in the A"X
channel are dominated by the I = 0 s-wave Vo*(1405)
and by the I = 1 p-wave Vi*(1385). Those two contribu-
tions are assumed to be described by effective Lagrangians
where, in the gradient coupling theory, we have for the
E I'0*% vertex

+&o g&o*k&o*'Y'V'tlat' + H c.

gro &It (&B + MN + Mro+)
TY

MN Yp& 2 p2

Mio + Mr, *

MN —MY, * (4.22)

with gro* ——gro*'(Mro+ —M~)2, which is taken from Eq.
(4.9). The K Vi*E vertex is described by

with Pr, * representing the spin-2 Vo* field, and f and @
are the nucleon and kaon fields, respectively. This Lagran-
gian yields for the isospin-even amplitude the following
expression:

MN 2' i2+ ' ' —.'+ " —Mn —M))2Mi2 MN

(4.25)

where M& denotes the I'&* mass, and gY, * is given by Eq.
(4.9). Besides those two A.or and Zor discontinuities below
the KX threshold, there are two additional three-particle
channels open: the A~x and Z~7t- just below and above
threshold, respectively. However, close to threshold such
final states are strongly suppressed experimentally, and the
measured branching ratios for those decays are small com-
pared to the two-particle final states (Particle Data Group,
1972). It is therefore reasonable to assume that such small
three-body final state contributions (if they are important
at all) are included and well accounted for in our amplitude
F defined in Eq. (4.19). The amplitudes in Eqs. (4.20),
(4.22), and (4.25) vanish at the Weinberg point and fulfill
Adler's PCAC condition, Eq. (2.40), as a, natural conse-
quence of the gradient coupling theory.

Foll.owing steinberg s original suggestion for low-energy
ortV scattering (W'einberg, 1966b), and taking into account
the symmetry properties of F, we can write:

Zr, * ——(gr, */M~) $„$81'@-+ H.c., (4.23)

where P„denotes the spin-2 Rarita —Schwinger field. We
have used the following form for the Vi* (J~ = ~+) propa-
gator:

D p't'+(M P) = (y P + M)/(P' —M')

& I g" + (1/3M) (P.v. —v.P.)
—(2/3M') P.P. —3v.v.j

' See, for example, Nath, Etemadi, and Kimel (1971).
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with g„„=diag(1, —1, —1, —1) . It is well known that the
spin-~ propagator is not unique. 5 This nonuniqueness is

F(v) t, q') q") = Am&' + Bt + C(q' + q") + Dv'

+ R(v, t, q' q") (4.26)

where R measures the deviations of F from linearity, and it
will turn out (Reya, 1973b) that the only nonnegligible
contribution comes mostly from the A'(1520) which lies
closest to the physical threshold. It is difficult, however, to
say anything reliable about possible enhancements in the q2

and q" channels, but compared to the rather dominant
effects of the A'(1520), they should not be of substantial
importance apart from 0 (ns~'/Mao) corrections, which
remain undetermined in all estimates to date. The next
step is to 6nd four equations for the four expansion parame-
ters 4, B, t, and D. Expanding It' in powers of A:2 and
cose around the physical threshold and comparing the
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coeScients of A:2 cos0, we obtain with

1 m~ i m~ BIt'
28 + D + C3+ — (233K 0 mK2 mK2)

4m M~ 4m. M~ BP2

mK2 K, ImT (a', 0)I+=
X 47 M kI

i Bg+ — (mK, 0, mK2, 2i3K2) = X,
2m Bt

(4.27)
&0++0

d(d
cv kI

where where co„= 6„—mK2/2M~ and

i
Ck (Tii, k + TY3,k + TYi*,k ) I

wltll Ty 1 = BTv /I9(k cosO) ~i3 c()33 pq =and

X = (16MPP) —'(2ai + ~o + fbi) + —,'(2C11 + 601 + b11)

+ L2 + g(2YtK/MN) J(2+13 + ll03 + fl13) .

Neglecting the (small) terms proportional to 8, the sum
rule in Eq. (4.27) is nearly saturated (Reya, 1973a)

~ = L(MP+ m )' —MPP —nzK2]/2M~

and the total E+E cross sections are given by the optical
theorem: ImT~(co, 0) = kio-~. Equations (4.27) and (4.29)
through (4.31) now completely determine the amplitude E
in Eq. (4.26), provided we can calculate B. As discussed
above the only important contributions are expected to
come from AX channel resonances. In this case we found
(Reya, 1973b) that the only nonnegligible contribution is
due to the h. '(1520). Its pole term can be calculated using
the effective Lagrangian

(2.89 & 0.18)nz ' = (2.76 W 0.56)333 (4.28) = (Cii /M~) p„'r3$8"g + H.c. (4.33)

confirming the reliable use of Eq. (4.27) for determining the
parameters in Eq. (4.26) . The second equation follows from
PCAC

where g3 is given by Eq. (4.9). The propagator of this
J~ =

2 resonance can easily be related to that of the ~+
exchange in Eq. (4.24):

F(0, 233K2 213K2 0) —
213 2(A + jg + C)

+ R(0, 213K2, mK2, 0)

= 0 (4.29)

D„,3t2 (M, I') = y3D„.@2+(M, I')y3

= D„,3t2+( M, &),— (4.34)

P(mK, 0, mK2, n3K2) = nZK2(A + 2C + D)

+ 8 (mK, 0, mK2, 2i3K2), (4.30)

where the left-hand side is given by Eq. (4.5), using Eq.
(4.3). Finally, the fourth equation is obtained at v = t = 0,
where we have

/Contrary to previous calculations (Martin, 1966), PCAC
for kaons has been found (Reya, 1973b) at least compatible
with experiment, as suggested by generalized Goldberger-
Treiman relations (Nieh, 1968; Dashen and Weinstein,
1969b) .j At the physical threshold we get

where the standard commutation relations for the y matrices
have been used. According to Eq. (4.34), the A'(1520)
contribution can now be obtained from Eq. (4.25) by
making the substitution M~ —+ —M', where M' denotes the
A' mass, and in order to obtain R we have to subtract from
this expression. its linear expansion around the %einberg
point, with the final result

71 (v, t, q2, q")

1 (g~, /M~) 1 Mi3

3 (vs~') ' —v' 4M' M'

AV~V~
2

P(0 0 mK2 mK2) = mK2(A + 2C)

+ E!(0, 0, n3K2, nzK2) . (4.31) 4&~3/ 2jjt/I'

P2

2M'

Using Eqs. (4.20), (4.22), and (4.25), it is straightforward
to calculate F(0, Q) in (4.31), apart from R, once we know
T+(0, 0). This quantity appears as a subtraction constant
in a subtracted forward 'dispersion relation at threshold;
from Eq. (4.7) we get, for v = mK, t = 0,

2M~ Mi3 '
Vii

MiY + M' 2M"

3fg 35~i

T+(0, 0) = ReT+(333K, 0) —mK2

g„2 (Mv —M~) ' —ntK2

y=A, Z 4M' ~v(~v 2i2K )

(4.32)

Mg 2M'+ v2 v2 v 2 P P~2M" M~+- M'

2M" (M' —M~)+ , —M + 33") . (4.33)
M~ M'+ M~)
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TABLE II. Estimates of the kaon —nucleon a term.

Authors

taking into account R in Eq. (4.26), we obtain

—F(0, 0, 0, 0) = F(0, 2m', mrr', mls') + 6 (4.39)

von Hippel and Kim (1969, 1970)
Hakin (1972b)
Thompson (1971)
Kopp, Walsh, and Zerwas (1972)

Reya (1972)
Nasrallah and Schilcher (1973)
Reya (1973a, b)
G-ensini (1973)

170
180 & 30

—370 & 110

345

540 & 160
160
480 & 110

410 +

with

Q = 2R(0 mar' mls' 0) —R(0 2mrr' mls' mls')

which turns out to be small: A~ 10 'm~ '. It therefore
appears that the low-energy theorem is not appreciably
modified if the amplitude is approximated by Eq. (2.43).
The major source of uncertainty of course remains, the
unknown terms 0 (mrr'/M~') .

Solving Eqs. {4.27) and (4.29) through {4.31), the parame-
ter 2 in Eq. (4.26) is found to be

—mr/A. = (1+ mrr/M~)F(0, 0) —(mrr/Mii)

Using entirely di fferent methods, Kopp, Walsh, and
Zerwas (1972) derived an off-mass-shell finite-energy sum
rule for the s-channel isospin-zero 2 amplitude and-found

X F(mar, 0) + 4~mrs'(X —Crr) + R~ (4.36) rJ~&~~ = 34g+~7o MeV (4.40)

with

Rg ——(mar/M~) R(mir, 0) —(1 + mrs/Mii) R(0, 0)

+ 2R(0, mrr' mrr' 0)

—(mrr'/M~) (8R/Bv') (mls, 0, mrr', mls')

—2m''(BR/Bt) (mrr, 0, mrr', mrr2) .

Together with the low-energy theorem Eq. (2.37) a,nd
Eq. (4.26),

o~~~~ = f~'mrr'&, — (4.37)

o.iiiix~ = (480 & 110) MeV. (4.38)

As in the dispersive approaches discussed above, it is very
hard to make a reliable estimate of the lower limit in Eq.
(4.38) due to the possibility mentioned earlier (Martin,
1970) of a negative solution for bi, , in this case, Eq. (4.38)
would read: o.~~ ~ = 480+'„", MeV. A negative result is at
least not favored by our analysis, and we regard a negative
o~~~~ as unlikely in this context. In this respect much work
remains to be done, in that, especially for the p-wave scat-
tering lengths, we are far from having universally accepted
values. The nonsmooth correction R~ in Eq. (4.36),
stemming from the s-channel A.'(1520) resonance, turns out
to be about —0.2m' ' constituting some 5% correction to
the final value of A. . Possible enhancements could come from
t-channel unitarity corrections to Eq. (4.26), and a study
similar to that of Geddes and Graham (1973) would
certainly be of interest. Again, higher-order corrections to
Eq. (2.43) turn out to be negligibly small (as far as s-chan-
nel corrections are concerned'). According to Eq. (2.43),

Eq. (4.36) completely determines oui~~~. Equation (4.37),
therefore, relates the nucleon expectation value of the o-

comrnutator to s- and p-wave scattering lengths and to a
rather well known integral over total E+E cross sections,
where full use has been made of the smoothness hypothesis
for F. From Eqs. (4.36) and (4.37) we finally obtain
(Reya, 1973b)

and, according to these authors, a negative value is at least
not favored in their analysis. Since their calculation has
been done very thoroughly, there appears to be no reason
to doubt the result in Eq. (4.40), provided off-shell finite-
energy sum rules are gra, nted.

In Table II we summarize the results obtained so far.
Within present uncertainties, these estimates are compatible
with each other, except the strongly negative result of
Thompson (1971). Since . two very similar calculations
(Reya, 1972; Nasrallah and Schilcher, 1973) using fixed-t
dispersion relations yielded positive values for o~~~~, in
agreement with other estimates, a negative value for the
kaon —nucleon o- term appears to be more than unlikely.
Although, at the present stage, it is virtually impossible to
state a reliable lower limit for o-~~~~, Table II suggests an
approximate upper limit of

o-~~~~ & 600 MeV, (4.41)

whereas the world average according to Table II lies
around 350 MeV, but we are presently not in the position to
deduce an exact value for o-~~~~. The main point, however,
is that a, value of o.~~~~ as large as 1300 MeU, say, is
definitely excluded. This is a magnitude which, as we shall
see in the next section, would be implied by the large Cheng-
Dashen result (Cheng and Dashen, 1971) for o~~ in the
framework of the (3, 8) + (8, 3) chiral symmetry-breaking
model. Such large o. terms would upset (Altarelli, Cabibbo,
and Maiani, 1971a; Crewther, 1971; Mathur, 1971) our
"conventional" understanding of symmetry-breaking mech-
anisms, which we are going to discuss now.

V. THEORIES OF CHIRAL SYMMETRY
BREAKING

So far, in the last two sections, we have been mainly con-
cerned with the "experimental" aspect of chiral symmetry
by studying how symmetry-breaking effects can be ex-
tracted from presently available scattering data. %'e are
now going to discuss the purely theoretical aspect ot this
problem, namely how to construct models for the symmetry-
breaking Hamiltonian 5C' in Eq. (2.10), that is, to find
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appropriate representations under which 3C' transforms.
The predictions and compatibility of such symmetry-
breaking schemes will be discussed and compared with
experiment.

[P., T,g = —;T,(Z.),;
[F„,W,j = —-', (X.);,W;, (5.1)

where the A. are the eight traceless 3 Q 3 Gell-Mann
matrices (Gell-Mann, 1962; Adler and Dashen, 1968) of
the three-dimensional representation of SU(3). Similarly
to Eq. (5.1) we can write for (3, 3) in SU(3) X SU(3)

[P.+, T,; j = -', (X.*),bT»

LP. , T"j = —p(~-)'b»b

A. The (3, 3)+ (3, 3) model

If, for the time being, we assume that the symmetry-
breaking piece of the total Hamiltonian does not admit.
operators of isospin or hypercharge 2, then the only repre-
sentations allowed for the components of BC' are the (3, 3) +
(3, 3) and (1, 8) + (8, 1) representations of SU(3) X
SU(3). Originally it was shown (Gell-Mann, Oakes, and
Renner, 1968) that (1, 8) + (8, 1) contributions are un-
likely to be large, compared to (3, 3) + (3, 3) breaking
terms, and therefore constitute at most admixtures to other
dominating terms in 3C'. Moreover, we know by now that
a pure (1, 8) + (8, 1) model is ruled by the data. Possible
(1, 8) + (8, 1) admixtures, if they are important at all,
will be discussed at the end of this chapter. [Note that
as long as the strong breaking of SU(3) X SU(3) trans-
forms as a (3, 3) + (3, 3) representation, parity and
strangeness are conserved at a strong level, which is not
true if the explicit breaking transforms as a (1, 8) + (8, 1) .j
We are therefore led naturally (Renner and Sudbery,
1969) to the (3, 3) + (3, 3) model of Gell-Mann, Oakes,
and Renner (1968) and Glashow and Weinberg (1968),
the simplest and most elegant chiral symmetry-breaking
model having just one free (universal) parameter which
fixes the relative scale between SU(3) breaking and SU(3)—
invariant chiral symmetry breaking. Before going into the
details of this model, let us briefly review the construction of
the (3, 3) + (3, 3) representation.

The 3 and 3 representations T, and W, of SU(3) are
dehned by the commutation relations

Pij = Tii + Tj

~v = &(Tv —T~") (5 4)

so that

PP;,P '=P;, ,

PM,;P '= —M;, ,

The SU(3) content can now be made manifest by writing

P,; = (1/W3) up6;, + (1/v2) (X.),,u.
3f,, = (1/&3)vp6, , + (1/v2) (X.),,v . (5.5)

Inverting these relations as

up ——(1/W3) P;, , u = (1/V2) (X.),~P,;
vp ——(1/&3)M, ;, 5, = (1/v2) (X,),,M,;, (5 6)

where the u's and v's are Hermitian scalar and pseudoscalar
operators, respectively, we obtain the well known commuta-
tion relations (Gell-Mann, 1962, 1964; Gell-Mann, Oakes,
and Renner, 1968)

[F., up) = 0, [F., apl = 0

[Faq ub j = &fabcucp [Fa, 'Dbl = &fabc&'cp

[F.', u,j = i( ', )—"m.,-[F,', ~of = i( ', )'"u„—

[F.', ubg = id.b,v—, —i(-', ) '"B.b~p,

[P~, vbj = zd'gb~u~ + z(p) fiobup (5 &)

The commutators involving the F 's in (5.7) obviously
identify u, and vp as SU(3) singlets and Iu, } and tv, } as
SU(3) octets. For (3, 3) + (3, 3) calculations it is cus-
tomary to work directly with the n's and v's since their
commutation relations are simple and the f,b, and d,b,
are well tabulated (Gell-Mann, 1962; Adler and Dashen,
1968). However, as we shall see, for more complicated
higher-dimensional representations, it proves simpler to
work directly in terms of the analogues of the T,;.

From the requirement that 3C' conserve isospin, hyper-
charge, and parity, the most general form for e3C' is

In order to reduce this representation under parity, we
de6ne the two even and odd linear combinations

and for (3, 3) t3C = up + cus (5.8)

[F.+ Wvj = —2(~.)*'W»

[F, , W,,g = —', (X.*),bWg„ (5 3)

where the P,+ are defined in Eq. (2.4). Since T,,t trans-
forms like (3, 3), we can parity double our decomposition
by requiring, as in Eq. (2.6),

which has been suggested by Gell-Mann, Oakes, and
Renner (1968) ( GMOR), and where c is the only parameter
of the model to be determined. Having specified 3C', Eq.
(5.8), we can calculate explicitly every quantity of interest,
by using the commutation relations (5.7). From Eq. (2.23)
we get to first order in b (singlet vacuum)

PT;;P '=T;;

so that T,, is now said to transform under (3, 3) + (3, 3).

Rev. Mod. Phys. , Vol. 46, No. 3, July 1974

m 'f ' = —2p[1+ (c/&2)3&0
I

uo
I »

mx'j~' = ——',[1 —(c/2&2) j(0 f
up

f
0)

m„'f„' = —2[1 —(c/v2) j(0 f
up

f
0). (5.9)
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Since these relations contain only two unknown parameters, and. therefore the irX and ZiV 0. terms in Eq. (2.38) take
there is one relation aplong the three masses, but it is just the form
the Gell-Mann —Okubo mass formula

. mx' ——(3m„'+ m.')/4 (5.10)
= —;(W2+ c) (1V

~

W2ii, + ii8
~

cV}

0-~i' x = 3(w2 —c/2) (1V
~

&2nD / (V3/2)u3 ——,'B8
~

iV).

c = 2V—2$(mx2 —m.')/(2m'' + m.') )
~ —1.25. (5.11)

which is no surprise, since we built octet breaking of
SU(3) into our choice of 3C'. (Since we are working only to
lowest order 3C' we take f = f~ ——f„—= f.) The only really
interesting thing about the meson mass formulae in Eq.
(5.9) is that they determine the parameter of the model
according to

(5.15)

/Note that- using Eq. (2.13) together with (5.14) for the
meson mass spectrum, instead of Eq. (2.23), would yield
the same results as Eq. (5.9), which is to be expected if one
is working in a consistent approximation. ) -The matrix
elements of u in Eq. (5.15) are given by the mass differ-
ences in the SU(3) baryon octet. According to Eq. (2.10),
the baryon masses are given, to lowest order, by

iver~ = m, + (a~ ac'~ a), (5.16)
In the limit m ' —+ 0 we have c = —W2, i.e., exact SU(2) X
SU(2) symmetry, since uo —&2u8 commutes with F, and
Ii ' for a = 1, 2, 3 in Eq. (2.11). Therefore, according to
Eq. (5.11), it is clear that, using Eq. (2.11), B„A & is very
small for a = 1, 2, and 3, implying that SU(2) X SU(2)
is a particularly good symmetry within. the (3, 3) + (3, 3)
breaking scheme.

(a.
~
ii,

~
8,) = iJ.i„I' + d.„D

(a.
~

u,
~

a, } = (5.17)

where M, = (8
~

BC,
~
8} is the (degenerate) average

baryon mass in the SU(3) X SU(3) limit. Using the
Wigner —Eckart theorem

We just have seen, as mentioned earlier, that the meson
mass formula in Eq. (2.23) merely fixes the parameters of a
model, but does not discriminate between different sym-
metry-breaking schemes. In order to proceed let us consider
the axial-vector divergences. For xx scattering, the o.

commutator in Eq. (2.30) can be easily calculated, using
Eqs. (5.8), (5.7), and (5.9):

in Eq. (5.16), we obtain

(X
~
n,

~
X) = (2v3c)-'(2m~+ m, —m, )

(iV
~

n8 j 1V) = (2c) '(2M~ —Mg —Mg). (5.18)

The matrix element (X
~

uo
~
X) is not known, but its magni-

tude is expected to be similar to that of (cV
~

ng
~

cV}. The
reason for this is that SU(3) mass splittings are always of
the same order as the masses of the pseudoscalar meson
octet. This observation suggests that the strength of the two
symmetry-violating terms are comparable. Since np breaks
SU(3) X SU(3) and n8 breaks SU(3) as well as SU(3) X
SU(3), we cannot allow (Ã

~
uo

~
X} to be different by as

much as an order of magnitude, say, from (1V
~

u8
~
X}

and still have the two symmetries broken by a comparable
amount. LThere could be a possible enhancement of
(A

~
ND

~
LV} with respect to (iV

~

n8
~
A}, if 'one assumes

(Altarelli, Cabibbo, and Maiani, 1971a; Crewther, 1971;
Mathur, 1971) uo to be coupled to the Goldstone boson of
a further symmetry, namely scale invariance. However, the
main motivation for a strongly enhanced (lV

~
up

~
cV)

appears to be obsolete by now, since, according to Table I
and to what we have said in Sec. III, values for 0-~~
of about 100 MeV or more are most likely to be ruled out.
We shall come back to this point at the end of Sec. V.j
Therefore, one obtains the following estimates for Eq.
(5.15):

A = —j—'P(2+ &2c)/3$(0i uo
i 0) + O(e')

= iii ~/j~ + 0(g~) (5.12)

which, of course, is the original Weinberg (1966b) result,
since the (3, 3) + (3, 3) representation does not contain
I = 2 components. Inserting Eq. (5.12) into Eq. (2.29)
we get the prediction ap~) ~ O. I6m —' which is quite con-
sistent with the most recent experimental result from
X,4 decays (Beier, 1973; Beier et al. , 1973)

(agio' ), p
——(0.17 a 0.13)m (5.13)

Because of the large experimental uncertainties the con-
clusions are obviously not very restrictive. A similar situa-
tion holds for the I = 2 scattering length, obtained (Peter-
sen, 1971) from applying the Chew —Low extrapolation to
m-X scattering data, where the Weinberg prediction, Eq.
(5.12) into Eq. (2.29) co&'& ~ —0.05m ' is close to the
experimental value. Again, the experimental errors in such
an extrapolation to the pion pole are difficult to ascertain
(Petersen, 1971).

Using the commutation relations (5.7), we obtain the
following expressions for the axial-vector divergences in
Eq. (2.11b):

(5.19a)

(5.19b)

10 to 20 MeV

i

o~~x~
~

100 to 200 MeV.

It should be noted that the estimate of o-~~~~ seems to be
more reliable than in the case of ircV scattering, Eq. (5.19a),
where 0~A- is proportional to (v2 + c) which is very sensi-
tive to slight variations of the negative number c.

a A & = —(1/v3) (v2 + c)v,

8„A.& = —(1/v3) (v2 ——.'c) n.

fora = 1, 2, 3

fora =4, 5, 6, 7

a„A,~ = —(1/v3) (v2 —c) i, —(-') '&'v,
Comparing Eq. (5.19a) with the results of Sec. III and

(5.14) Table I, we find that the (3, 3) + (3, 3) model is, within
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the present experimental uncertainties, consistent with the
"experimental" estimates done so far. The same applies to
o~~xx, Eq. (5.19b), when compared with Table II. That
the xÃ and kaon —nucleon calculations are indeed consistent
with each other can be simply shown by calculating the
nucleon expectation value of no. Taking the average value
for cr~~xx of Table II to be about 350 MeV, Eq. (5.15),
using Eq. (5.18), tells us that (1V

~

uo
~

1V) 400 MeV;
inserting this value into o~~ of Eq. (5.15) gives 0~a
40 MeV, which is roughly the world average of the estimated
xE sigma terms in Table I. In addition, no significant
enhancement of (A'

~
u,

~
X) is found with respect to

(&
~

&s
~

X). A strong enhancement comes about, as just
mentioned above, if eo is coupled to the Goldstone boson of
scale invariance: In this case one expects (Altarelli, Cabibbo,
and Maiani, 1971a; Crewther, 1971; Mathur, 1971)
(2V

~
no

~

A ) 1500 MeV, in clear contradiction to the
above result.

Although the present results for a~~'™and 0~~ favor
within quoted uncertainties the (3, 8) + (3, 3) scheme for
chiral symmetry breaking, most of them yield values some-
what larger than the theoretical estimates, Eq. (5.19), of
the GMOR model. Since those entirely independent calcula-
tions produce slightly enhanced results (by about a factor
of 2) with respect to the conventional (3, 3) + (3, 3)
estimates, it appears that this could be something more than
just an accidental coincidence. Taking these enhancements
literally, this could mean that further admixtures in the
symmetry-breaking Hamiltonian are required in addition
to the (3, 3) + (3, 3) transforming part, or the transforma-
tion property of BC' is entirely different from that suggested
by the GMOR model; these possibilities will be studied
later. Before discussing other alternatives, namely mecha-
nisms producing enhanced (3, 3) + (8, 3) chiral symmetry-
breaking effects, let us look at the connection of 0- terms with
the average mass 3', Eq. (5.16), in a given baryon octet.

Considering the xE 0. term for example, we obtain by
applying the Wigner —Eckart theorem (5.17) to Eq. (5.16)
and 0~~ in (5.15), the following relation:

formation properties of K'. Recently, Renner (1972b)
estimated the meson —nucleon sigma terms using the I.i-
Pagels mechanism (Li and Pagels, 1971a, b; 1972) of cal-
culating (3, 8) + (8, 3) chiral symmetry breaking. In this
model the octet enhancement is achieved by the threshold
dominance of Goldstone-boson-pair states. To be more
explicit, the matrix elements of the scalar operators n,
which vanish in the chiral symmetry limit, are calculated in
terms of the contributions of two low-energy pseudoscalar
Goldstone bosons to dispersion relations in momentum
transfer. The dominance of these contributions is compelling
for those matrix elements which approach the chiral
symmetry limit nonanalytically (Li and Pagels, 1971a)
like e inc. Considering the matrix element (B

~
«8

~
B) X

ui3niiF(t), uii denotes the baryon Dirac spinor, Li and
Pagels (1971b, 1972) introduced dispersion relations for the
form factors of the form

3Eii —Mo ——F(0) = — (df'/t') ImF(t') (5.21)

(PP
i

Tt
i BB) (t')'i',

the lower integration limit in Eq. (5.21) is taken down to
zero and all pseudoscalar meson masses (except for the scale
implied in (0

~
cB8

~
PP)) are set equal to zero. In this way,

Li and Pagels (1971b, 1972) obtained

where, from unitarity, the absorptive part is given by

ImF(t') = (2~)' p 8(gp) (0 I
«8

I ~)(~ I
2"

I
&»

n

(5.22)

and they retain only the two pseudoscalar meson states
(n = PP) over a limited f' range. Pretending to be in the
neighborhood of the chiral symmetry limit, they use results
of chiral symmetry in evaluating the discontinuity in Eq.
(5.22): In particular, by setting (0

~

u8
~
PP) constant and

taking pseudovector Born terms to estimate

M~ 1 1 3
~o = + — 1 — (~~ + ~z)—

&2c 2 &2c 2+ &2c

1300 —130~rg (MeV), (5.20)

for c = —1.25. Using 0~+ " 40 MeV, say, we find that the
(degenerate) average mass of the 2i+ baryon octet is about
Mo 800 MeV. This confirms our physical "intuition" in
that it implies that exact SU(3) symmetry is responsible
for the main portion of the baryon masses in the ~+ octet,
say, whereas the much smaller mass splitting between the —,'+
baryons are generated by (comparatively small) symmetry-
breaking effects. Such a situation has to hold, after all, if the
whole concept of symmetries and their (first-order) breaking
eAects is believed to be correct. From this point of view
(3, 8) + (3, 3) appears to be the only acceptable choice,
in contrast to higher-dimensional representations like the
(6, 6) + (6, 6) or (8, 8), say, as we shall see below.

Taking literally the enhanced 0. terms, with respect to the
conventional GMOR estimates in Eq. (5.19), in Tables I
and II, we will now discuss mechanisms which generate
and explain such enhancements without changing the trans-

(3/10) (F/D) = (F/D)g /$3(F/D)g~' —1j. (5.23)

This previously unknown relation between the baryon octet
mass splitting (F/D) ratio, Eq. (5.17), and the (F/D)~
ratio of the weak axial-vector current to the baryons in
semileptonic hyperon decays, turns out to be in excellent
agreement with experiment: With

F/D = —', (M~ —M-. )/(Mz —Mp),

which follows from Eqs. (5.16) and (5.17), one obtains
from Eq. (5;28) that (F/D)~, 0.45 in agreement with
the data (Marshak, Riazuddin, and Ryan, 1969; Pilkuhn
ef ul. , 1973). Using, in addition, a similar estimate for
(B

~

uo
~
B) = G(t), Renner (1972b) obtained (cV

~

uo
~

1V) =
400 MeV which, by Eq. (5.15), implies

0~~ 40 MeV, 0m' 400 MeV (Renner, 1972b)

(5.24)

and appears to be in excellent average agreement with
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Tables I and II. However, this close agreement could be
accidental, since various uncertainties are contained in the
above estimates: Besides the uncertainty in the ratio of the
SU(3) singlet and octet t-channel cut-off masses (Renner,
1972b), the strict use of chiral symmetry both in evaluating
the discontinuity in Eq. (5.22) and in setting ts ——0 in
(5.21) appears to be a further source of considerable un-
certainty. Nonetheless, this relatively simple example
shows that enhanced 0. terms, especially if they are un-
ambiguously confirmed by more accurate future experi-
ments, do not require the (3, 3) + (8, 3) model to be dis-
carded at all.

Evidently, Eq. (5.11) requires, inserted in the first
equation of (5.14), that SU(2) X SU(2) be regarded as a
much better symmetry than SU(3) X SU(3) or SU(3).
This has been challenged by Gaillard (1969) and by Brandt
and Preparata (1970), who prefer —c « W2 which, by Eq.
(5.15), then also implies large 0. terms. This is the so-called
weak version of PCAC where pion pole dominance is
a priori assumed only for matrix elements of B„A," between.
physical states (and not for all Green's functions involving
B„A &, as in the conventional "strong" PCAC considered so
far), implying SU(3) to be a much better symmetry
than SU(2) X SU(2) . The result —c « v2 is mainly based
on their analyses of E&3 decays. The main assumption is
$(mx') $(0), where P(t) is defined in Eq. (2.47); then a
small value of c is required if the confused experimental
situation (Chounet and Gaillard, 1970; Chounet, Gaillard,
and. Gaillard, 1972; Wojcicki, 1972) is supposed to favor
$ (0) & —0.5. LTogether with Eq. (5.11), the GMOR
model, however, predicts (Gerstein and Schnitzer, 1968;
Deshpande, 1970) $(0) to be close to zero, $(0) ~ —0.1, un-
less one allows the slope X+ of f+(/) in Eq. (2.46) to be as
large as X+ ~ 0.1 which could account for (Weinstein, 1971a,
b) $(0) —0.5. Note that a simple K*(890) pole domi-
nance of f+(/) predicts X+ ——m s/nix*s 0.024.j However,
when the collinear dispersion relations of Banerjee (1970)
are examined, it is difficult to avoid the conclusion that
—c « v2 implies p(mx') ——1 and g(0) » 0; only by
having c —v2 can a value $(0) & —0.5 be obtained. In
addition, it has been pointed out by Weinstein (1971b)
that the calculation of the P parameter of Gaillard (1969)
and Brandt and Preparata (1970) depends upon the in-
troduction of (large) SU(3) violation (by renormaliza, tion
constants of the scalar densities ux and u ) and not upon a
modification of the PCAC hypothesis. We therefore retain
the usual estimate e —1.25, Eq. (5.11), and exclude
"weak PCAC" as a possible explanation for enhanced 0-

terms.

As already mentioned, most of the &&3 experiments done
so far (typically with about 10' K„ss or K»+ decays) yielded
rather contradictory results (Wojcicki, 1972): Whereas
polarization measurements, measuring the p polarization in
A ~ mdiv„, yield values for P between —1 and —2, most of
the Dalitz plot experiments give consistently less negative $
values between —0.5 and —1. The more recent high-
statistics polarization experiment (10' EI.' —+ ~ u+v„events)
of Sandweiss et al. (1973), however, resulted in a much less
negative $ value than stated above, of $(0) —0.5. Most
recently, Donaldson et al. (1973) made a very high-sta-
tistics Dalitz plot experiment (probably the most reliable
one to date) by analyzing about 10s Xi,' —+ m.pv„decays, and
found P(/) to be around —0.1, and to be independent of t;

m +' —m" = mx+' —moos + O(ee') (5.25)

which follows if isospin breaking is of purely electromagnetic
origin. Whereas Eq. (5.25) is obviously in violent disagree-
ment with experiment, its exact analogue for baryon
masses, the Coleman —Glashow sum rule (Coleman and
Glashow, 1961)

(~ ~ ) + ~z— ~z+) (iIII — iM o)

= 0+ O(ee') (5.26)

is, in fact, satisfied very well. On the other hand, we are
faced with the aggravating problem of the p —+ 3' decay,
which, according to a theorem due to Bell and Sutherland
(Sutherland, 1967), cannot proceed through electromagnetic
interactions in the soft pion limit. Even introducing the
corrections for a finite pion mass, the predicted decay rate is
smaller, by at least two orders of magnitude, than the ob-
served one (Sutherland, 1967). On a more fundamental
basis there remains the problem of explaining the empirical
suppression factor for strangeness-changing weak ampli-
tudes, i.e., the Cabibbo angle He in Eq. (2.14) . These prob-
lems can be resolved, in a more or less satisfactory way, by
adding an I = 1, I3 = 0 "field" to the chiral symmetry-
breaking Hamiltonian of the form

= uo + eus + csus, (5.27)

where n& causes a breakdown of isospin symmetry due to
strong interactions (independent of the isospin breaking
induced by the electromagnetic. interaction), and cs is
clearly of the order e'. The original "tadpole" scheme of
Coleman and Glashow (1964) results in a term much like us.
Various attempts based on Eq. (5.27) have been made to
relate the strong symmetry-breaking parameters in Eq.
(5.27) to the Cabibbo angle ec and to the fine structure
constant e'/4~; in other words, symmetry. breakings in the
strong Hamiltonian are determined by weak and electro-
magnetic forces in a self-consistent way. For example,
constraints on these parameters may be obtained from the

similarly they found A.+ ~ 0.03. This is in excellent agree-
ment with current algebra and ("strong") PCAC predictions,
as well as Z*(890) dominance of the vector form factor f+ (t),
leaving the (3, 3) + (8, 3) model unrivalled; therefore, at
the present time, most of the difhculties in understanding
the Dalitz plot data which were raised by Chounet, Gaillard,
and Gaillard (1972) can be fairly convincingly resolved.
Thus, the real discrepancy which must yet be resolved
(hopefully by the current very high-statistics Xs polariza-
tion measurements) is between the Dalitz plot and polariza-
tion experiments.

In closing this section let us remark briefly on possible
connections of strong symmetry violations with weak and
electromagnetic effects ( Gell-Mann, 1969; Cabibbo and
Maiani, 1970b; Gatto, 1970). Various unsolved problems
have led us to believe that isospin is also broken by some
purely hadronic interaction. Among these problems are the
still unexplained AI = 1 mass differences (the p—e mass
difference for instance) using pure electromagnetic inter-
actions, or the SU(3) X SU(3) Dashen sum rule (Dashen,
1969)
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requirement that weak (Gatto, Sartori, and Tonin, 1968)
or weak plus electromagnetic (Cabibbo and Maiani, 1968,
1970a) contributions to the "quark masses" are finite to
first order in perturbation theory. Another scheme has been
proposed by Oakes (1969a) by demanding that the strong-
interaction Hamiltonian for m & 0 be obtained by rotating
the SU(2) X SU(2) invariant (m = 0) Hamiltonian
uq —&2qb8 by an angle 20c; about the 7th axis in SU(3)
space and imposing strangeness conservation on the result.
(This is a natural extension of the fact that the strangeness-
nonconserving weak Cabibbo current Eq. (2.14) can be
thought of as arising from such a rotation of the strangeness-
conserving weak current. ) Thus, 0& is directly related
( Gell-Mann, 1969; Palmer, 1973) to the symmetry-
breaking parameters in Eq. (5.27) or equivalently (Oakes,
1969a) to the pion mass itself. All these approaches yield
values for the "tadpole strength" c3 between c3 —0.02
to —0.06, which is of order e' as it should be. The resulting
predictions for p —+ 37r decays (Oakes, 1969b) are in
reasonable agreement with experiment, and so are the elec-
trornagnetic mass diAerences Lsee, for example, Cabibbo and
Maiani (1970b) and Gatto (1970)). Similar conclusions
have been reached by studying "u3" terms in higher-
dimensional representations of SU(3) X SU(3) ( Genz,
Katz, Ram Mohan, and Tatur, 1972; Dittner, Dondi, and
Eliezer, 1972). It has also been pointed out by Wilson
(1969) that, in the framework of short-distance operator-
product expansions, the u8 term in Eq. (5.27) occurs quite
naturally in order to cancel, divergences in the effective
Lagrangian describing second-order radiative corrections.
Very recently, model-independent tests based on pseudo-
scalar meson ma, ss sum rules have been presented (Cicogna,
Strocchi, and Vergara —Ca, ffarelli, 1972, 1973) for the
presence of the u3 term in the Hamiltonian density, and its
presence has been strongly supported by the experimental
data. It therefore has become conceivable that the chiral
symmetry-breaking Hamil tonian might have the form
(5.27), rather than having a structure as in Eq. (5.8).
Although including a u3 tadpole in the Hamiltonian still
remains an ad hoc assumption, it would clearly provide a
beautiful and desirable interrelation of the strong, weak and
electromagnetic interact. ions. Because of the smallness of
the nq term in Eq. (5.27), such contributions to meson—
nucleon 0- terms are obviously negligible.

B. The (6, 6)+ (6, 6) representation

Another alternative to account for the enhanced 0. terms
is, provided the observed enhancements with respect to the
conventional (3, 3) + (3, 3) predictions can indeed be
taken literally at the present stage, to attribute these larger
eff'ects to I = 2 contributions. In order to have isospin-two
we require at least the 27-dimensional representation of
SU(3). The two smallest SU(3) X SU(3) representations
containing this are (8, 8), having decuplets and a 27-piet,
and (6, 6) + (6, 6), having 27-plets, in addition to the
singlets and octets as in a (3, 3) + (3, 3) representation.
The (6, 6) + (6, 6) representation has been recently sug-
gested by Auvil (1972) and Dittner, Dondi and Eliezer
(1972a) and can be constructed in the same way as the
(3, 3) + (3, 3) representation in the last section, Eqs.
(5.1) through (5.6). The analogues to the even and odd
parity tensors in Eq. (5.4) are now denoted by T b+ and
T,b which obey the following (6, 6) + (6, 6) commutation

+ tiacdbdeTde ) (5.28)

where as usual the a, b, c, ~ ~ ~ indices go from 1 to 8, and

The SU(3) decomposition of T, +binto irreducible parts
Lsimilarly to Eq. (5.5)g is

T.b+ = Tab"(1) + T.b+(8) + Tab+(27) (5.29)

where 1, 8, and 27 denote the dimensions of the SU(3)
representations, and

Tab (1) 8~abTpp

Tab (8) 8dabcdcpqTpq

Tab (27) Tab 8 ~ah Tpp bdabcdcpqTpq (5.30)

We are now in the position to write down the chiral sym-
metry-breaking Hamiltonian which, for the time being,
should transform only as a (6, 6) + (6, 6) representation.
The only parts of T &+ which conserve isospin, hypercharge,
and parity are T88+(1), T88+(8), and T88+(27). Thus

T88 ( 1) + &8T88 (8) + &27T88 (27) (5.31)

where, according to Eq. (5.30), we have

T88'(1) = 8T-+
T88+(8) = —(v3/5) d8„,T„,+

T88+ (27) = T88+ —
8 T„„++ (v3/5) d8„qT„,+. (5.32)

In order to compare this model with experiment, we proceed
in the usual way. First, the meson mass formula (2.23)
fixes the free parameters in Eq. (5.31):Inserting Eq. (5.31)
into Eq. (2.23) and making use of Eq. (5.28), we find
(Dittner, Dondi, and Eliezer, 1972a)

m 'f' = —(1/120) (25 —14q8 + 9qq7) (0
I
T„„+

I 0),
mrr'f' = —(1/120) (2S + 788 —27'E87) (0 I

T„„+
I 0),

m 'f' = —(1/120) (25 + 1488+ 81'E 7) (80
I

T„„+
I 0),

(S.33)
which gives'

20 ( —3m.'+ 2mrr'+ m')
7 (3m ' + 4mir' + m ')

5 (m ' —4m''+ 3m')
9 (3m ' + 4m'' + m ')

&0I T.:Io)/f'= ——:(3 -'+4 -'+ .') (5 .34)

6 It should be emphasized that the determination of e27 from Eq.
(5.33) depends solely on a breakdown of the Gell-Mann —Okubo mass
formula (5.10},i.e., on second-order effects of chiral symmetry breaking.

relations (Auvil, 1972; Dittner, Dondi, and Eliezer, 1972a):

Fa) Tbc j ~fQbdTdc + qfacdTbd

(Fa', Tb,+g = —(d,bdT+d, + d, dTbd+ + OabdcdcTdc+
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= —(25 —14bs + 9es7)
15

+ (5 + 2&s 27bs7)
30

As expected, only a small 27 contribution, b.7 —0.03, is value of Eq. (5.37), we obtain
required to fit the pseudoscalar meson masses, while the
octet part is of the same order of magnitude, es 1.57,
as the singlet part. Thus, to a good approximation, the 27-
piet component of 3C' in Eq. (5.31) can be neglected. Note
that even for b,7 = 0 one can have large (I = 2) 27-piet
contributions to mx scattering lengths and meson-nucleon 0-

terms, say, since terms involving Tss+(1) and Tss+(8)
when computed with F ', generate 27-piet components in
addition to singlets and octets.

A = —(1/120f') (85 —62, + 117 ) (0
I

T„„+
I 0)

(1/35f') (149m ' —48m'' + 18m ')

——Sm.s f2 (5.35)

Having determined the parameters of the model, we now
can compare the predictions with experiment. For vrx scat-
tering, the o- commutator in Eq. (2.30) can be calculated
using Eq. (5.28), (5.31), and (5.34), and to lowest order in e

one obtains

y —38+ (—35 + 34bs —99bsv).
180

(5.39)

The baryon masses are given by Eq. (5.16) which yields
four equations, but now for the five unknowns cVs, o., P, y, 5.
This explains, as we just mentioned, the arbitrariness of the
magnitude of the 0- terms. Nonetheless, one can derive a
relation similar to that in Eq. (5.20) by using Eq. (5.16)
together with Eqs. (5.31) and (5.38) in order to eliminate
the reduced matrix elements u, P, y, and 5 from Eq. (S.39),
with the result

to be compared with the (3, 3) + (3, 3) Weinberg predic-
tion in Eq. (5.12). Using Eq. (2.29) one finds for the ~m.

s-wave scattering lengths

ap(" —0.08m a, (» = —0.14m.-~. (5.36)

Whereas ap(» is consistent with the experimental value
(Petersen, 1971), the prediction for asi i seems to be ruled
out by the most recent experiments, Eq. (5.13) .

The meson —nucleon 0- terms cannot be uniquely deter-
mined since, even if e&7

——0 in Eq. (5.31), we get 27-piet
contributions (Auvil, 1972) by commuting BC' with F ',
which remain arbitrary, i.e., we do not have enough con-
straints to fix (cV

I
Tss+(27)

I X), say, and thus account for a
rather wide range of values of 0. terms. To be more specific,
let us study 0~~ in order to see what in general awaits us.
The Hamiltonian (5.31) with the commutation relations
(5.28) gives (Dittner, Dondi, and Eliezer, 1972a,)

Ms 550 —Sob b (MeV) (5.40)

where use has been made of Eq. (5.34) . Taking, according to
Table I, again an average value of 0~~ 40 MeV, say,
we find that in the symmetry limit the degenerate average
mass of the barvon octet is about Mp 350 MeV. This
implies that within this scheme the major part of the baryon
mass comes from the 5U(3) X 5U(3) breaking, in con-
trast to Eq. (5.20), which makes the usefulness of the
(6, 6) + (6, 6) symmetry-breaking scheme questionable
Lsee also the discussion following Eq. (5.20)$. For larger
values of 0-~~ the situation only becomes worse. Of
course, the same arguments apply to the kaon —nucleon
sigma term o-~~

Because of the somewhat unacceptable consequences of
Eq. (5.40) and because of the disagreement of as+i in Eq.
(5.36) with the latest experimental results, a pure (6, 6) +
(6, 6) chiral symmetry-breaking scheme seems not to be
favored at least.

-', Q LF-', LF ', ABC'jg

= (4/45) (5 —4ss+ 9e,p) Q T,+

+ (1/60) (5+ 2es —27',7) Q T,+.
a=4

(5.37)

C. The (8, 8) representation

The smallest 5U(3) X SU(3) representation containing
isospin-two pieces is the 64-dimensional (8, 8) representa-
tion (Barnes and Isham, 1970; Genz and Katz, 1970, 1972;
Brehm, 1971; Cornwell, Genz, Katz, and Steiner, 1973).
This representation is spanned by 64 operators S~, with
a, b = 1, ~ ~ -, 8, which satisfy the following equal time
commutation relations:

Defining now the reduced matrix elements of the (6, 6) +
(6, 6) tensors T„,+ between octet baryon states by using
the Wigner —Eckart theorem as in Eq. (5.17),

LFap 5bcj = 'b( fabd5dc + facd5bd).
LFa', 5b.) = ~ ( fabd5dc + f.cd 5—bd) (5.41)

{B
I

T +
I Bb) = a5,b6„+ P(6,„6b + 5 5b„) Under parity we have

+ Vduacdcab + i~dpacfcab (5.38) PS (P—' = S~.

and inserting this expression into the nucleon expectation The even and odd parity tensoI's S & and S,&, respectively,
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are defined by

Sab 8 (Sab & Sba)

S,b+ ——8() bS+(1) + d.b, S,+(8) + 1ab858+(27)

S.b ——f.b,s, (8) + S.b (5.42)

and their SU(3) decomposition into irreducible parts may
be written as

butions are of the same order of magnitude, as was to be
expected. It should be emphasized that in the (8, 8) model,
as well as in any higher-dimensional representation of
SU(3) X SU(3) like the (6, 6) + (6, 6) model, the small-
ness of the pion mass does not imply that SU(2) X SU(2)
is a better symmetry than SU(3) X SU(3) or SU(3) . This
can easily be seen by calculating the divergence of the axial-
vector current of the pion. Inserting Eq. (5.44) into Eq.
(2.11b) and using Eqs. (5.41) and (5.42), we obtain

where we have used the same obvious notation as in the last
section. The singlet and even and odd octets in Eq. (5.42)
are given by 1 1 3

2 g1/2 51/S
(5.48)

5+(1) = S~u

5. (8) = 8f".5-

I

s,+(8) = ', d, „—,s„, (5.43a)

(5.43b)

and similarly the even 27-piet

58+(27) = f8„,5„„

83C = Sp + ds8 (5.44)

where fp b is a Clebsch —Gordan coefficient (Brehm, 1971)
with 8 = 1, 2, ~ ~ ~, 27 and symmetric in ab LNote . that the 8
summation in Eq. (5.42) goes from 1 to 27.j The 10- and
10-plets in Eq. (5.42) are contained in S,b which we need
not specify any further, except that f,~S,b = 0 for all
c = 1, ~ ~ -, 8. From the requirement of parity a,nd isospin
conservation, the symmetry-breaking (8 ames-Isham)
Hamiltonian takes the form (Barnes and Isham, 1970)

with x = 1, 2, 3, and where use has been made of the well
known (Macfarlane, Sudbery, and Weisz, 1968) properties
of the structure constants f„b, and d,b, . Equation (5.48)
clearly shows that the smallness of the pion mass only
ensures that the octet contribution to 8„A & is small: For
vanishing pion mass, i.e. , d = —(5/2)'(' in Eq. (5.46),
only the first term in Eq. (5.48) vanishes, whereas the
coefficient of the second one (the contributions from the 10-
and 10-plets) remains finite. Thus, in the (8, 8) model
the smallness of the pion mass is just accidental, insofar as
it is not related to a particularly good subsymmetry. The
same applies to the (6, 6) + (6, 6) representation, where
B„A & has singlet- and 27-parts in addition to the octet
contribution. Itis Oelyin the (3, 3) + (3, 3) model that the
smallness of m implies that SU(2) X 5U(2) is a much
better symmetry than SU(3) X SU(3) or 5U(3) itself:
B„A & in Eq. (5.14) indeed vanishes for c = —v2, i.e.,
m = 0 in Eq. (5.9).

sp ——(1/2v2) 5 s8 ( 8 ) d8absab

where the singlet and octet operators are defined by Together with Eqs. (2.29) and (2.30), it is now straight-
forward to calculate the arm scattering lengths: Equation
(2.30) yields (to lowest order in e)

Note that these operators can be written (Barnes and
Isham, 1970) in the suggestive form of products of SU(3) X
SU(3) vector and axial-vector currents as

S,b = (V —A.)&(Vb+ Ab)„.

9 (10)"'
A = ——1+ d) (pi 2, ip)

2f4 3

~ —12.Sma'/f'

Again, the meson mass formula fixes the free parameter d
of the model: Inserting Eq. (5.44) into Eq. (2.23) and
using the commutation relations (5.41), we find to lowest
order in chiral symmetry breaking

ao+& ~ —0.36m ao~2& —0.25m (5.50)

m 'f' = —8 L1 + (-') '(pdg(0
[ s,

[ O)

fm' i=rp—28L1 —(10) '~8dj(0
(

sp
)
0)

m 'f' = —82 (1 —(—') '+d) (0
t

sp
( 0)

which yields

d = —(10)'~'((mx' —ma') /(2m'' + ma') g

(5.46)

(5.47)

in striking disagreement with experiment LEq. (5.13) and
discussion thereafterj. Note that the (6, 6) + (6, 6)
predictions, Eq. (5.36), are appreciably closer. to the ex-
perirnental data than Eq. (5.50). The main reason for the
(8, 8) model's failure to describe the observed mar data is
that the I = 2 component of the o- commutator turns out to
be too large in an (8, 8) representation. This is the general
result of a thorough analysis of xw scattering by Brehm
(1971), which strongly favors the (3, 8) + (8, 3) model
over the (8, 8) or more complicated representations.

i.e., d ~ —1.4, and we see that the singlet and octet contri-
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known nucleon expectation values of the various multiplet
operators. However, we again can derive a relation as in
(5.40) between the degenerate baryon mass and the qrlV

'0. term, say. Calculating Eq. (2.38) from Eqs. (5.41) and
(5.44) and using an SU(3) decomposition for the baryon
matrix element of S,b+ in Eq. (5.42),

a, gbg = fabcgcl

[F,', gb j = if.b,h„

[F, hbg = if.b,h,

[F ', hbj = ifab.g' (5.53)

by scalar and pseudoscalar operators g„and h, , respectively,
transforming as

(B.
~
S„,"

~
Bb) = n'6~5pq + P'd. b,d, pq

+ &'Y dpqc fcab + ~ fqabl qpq (5.51)

The symmetry-breaking Hamiltonian in this scheme is
given by

we obtain g8
/ (5.54)

Mp —200 —60.~~ (MeV), (5.52) which, by Eq. (5.53), implies that SU(2) X SU(2) is

where we used the four equations coming from Eq. (5.16),
together with Eq. (5.51), in order to eliminate the reduced
matrix elements n', P', y' and 6', ' and d as given in Eq.
(5.47). Note that the 8 sum of the two 27-piet Clebsch-
Gordan coefficients is given by (Macfarlane, Sudbery,
and Weisz, 1968; Prehm, 1971)

t qabt qpq q (~ap~bq + ~aq~bp) Pab~pq bdabcdcpq

With respect to what we said before about the general con-
cept of symmetries and symmetry breaking, Eq. (5.52)
is clearly in much worse shape than its (6, 6) + (6, 6)
analog Eq. (5.40): Using a~bt 40 MeV, Table I, Eq.
(5.52) yieMs Mq —440 MeV. Thus we get a negative ('1)
degenerate baryon mass in the exact symmetry limit, and
hence the symmetry breaking has to compensate for this
negative average mass and generate, in addition, the entire
(physical) baryon mass spectrum —a situation which is
obviously not acceptable. From this point of view (3, 3) +
(3, 3) is the preferable choice, but certainly (6, 6) + (6, 6)
is better than (8, 8).

Since, at the present stage, sigma terms cannot be pre-
dicted uniquely in this model, one could use Eq. (5.51)
and parametrize all the meson —baryon o- in terms of reduced
matrix elements, and fit these free parameters to the avail-
able "experimental" estimates of meson —baryon a. terms.
This has indeed been done ( Genz, Katz, and Steiner, 1972)
and the agreement with estimated sigma terms was found to
be good. Because of the many free parameters and relatively
few estimated meson —baryon o- terms available, such a result
is not very surprising and cannot be seriously used to test a
model.

The (8, 8) model has also been studied in connection with
KE& decays (Genz and Katz, 1972; Ali and Razmi, 1973)
but, although the experimental data are too scarce to draw
definite conclusions, the (8, 8) breaking scheme seems not
to be favored.

To summarize, we can say that present experiments
together with the unphysical implications of the (8, 8)
model rule out a chiral symmetry-breaking Hamiltonian
which has only (8, 8) transformation properties.

D. The (1, 8) + (8, 1) model

For completeness we should also mention the (1, 8) +
(8, 1) representation of SU(3) X SU(3), which is spanned

always conserved since [F, gqg = [F ', gsj = 0 for qr = 1,
2, 3. Originally it was argued by Gell-Mann (1964) and
Gell-Mann, Oakes, and Renner (1968) that the (1, 8) +
(8, 1) representation cannot play a, dominant role in chiral
symmetry-breaking mechanisms, and at most could serve
as a possible admixture in other symmetry-breaking schemes
like the (3, 3) + (3, 3) model. Their arguments were based
on the fact that Eq. (5.54) vanishes in the PCAC ap-
proximation if SU(3) symmetry is applied to single-particle
matrix elements of g, (Gell-Mann, Oakes, and Renner,
1968). This latter assumption might be questionable since
the violation of SU(3) could be as large as that of SU(3) X
SU(3).

However, recent studies of meson —baryon 0- terms have
shown (Gensini, 1971a, b, c; Kleinert, Steiner, and Weisz,
1971) that a pure (1, 8) + (8, 1) breaking can be definitely
ruled out despite the uncertainties of the data. This is not
surprising when we realize that, since SU(2) X SU(2) is
an exact symmetry in a pure (1, 8) + (8, 1) breaking model,
the 0- terms for elastic scattering of pions on any target
vanish identically, i.e. , 0.~~ = O. qg = - ~ ~ = 0. Table I
clearly shows, for example, that o~~" ——Ois in violentdis-
agreement with the data.

So far we have seen that, in addition to a, pure (1, 8) +
(8, 1) breaking, higher-dimensional representations of
SU(3) X SU(3) than the (3, 3) + (3, 3) appear to be
ruled out as a dominant transformation property of the
chiral symmetry-breaking Hamiltonian. Whereas the
(8, 8) model, together with its unphysical implications,
seems to be totally incompatible with experiment, the in-
consistency of the (6, 6) + (6, 6) representation appears
not to be so violent. However, as we shall see later, very
recently it has been shown that any triangular representa-
tion (X, X) + (X, X) with X & 3 is inconsistent with the
present meson —baryon data, if nonlinear effective Lagran-
gians are used with chiral symmetry-breaking components
contained in a single representation. Furthermore we have
seen that octet dominance plays the most important role in
symmetry-breaking Hamiltonians, and small I = 2 com-
ponents might be required, as suggested by enhanced 0-

terms, strongly negative values of the $(0) parameter in
K&3 decays, or xm s-wave scattering lengths appreciably
deviating from the Weinberg prediction. A natural (although
not very elegant) way to account for such effects wouM be to
work more closely to the (3, 3) + (3, 3) GMOR model but
to introduce a (small) breaking of octet dominance. These
are then models where the symmetry-breaking Hamiltonian
has mixed transformation properties and we will turn to their
discussion now.
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up + cus + dpsp + doss& (5.55)

where up and us are the familiar even-parity (3, 3) + (3, 3)
operators, defined in Sec. VA, and the (8, 8) operators s, and
ss are given in Eq. (5.45). As in Eq. (5.44) we did not
include a 27-piet term in Eq. (5.55), even though it occurs
in the decomposition (5.42), simply because the accuracy of
the SU(3) mass formulae implies its coefficient to be small,
as we have seen in the (6, 6) + (6, 6) model. Since we
already calculated the pseudoscalar meson masses for each
model separately, we simply obtain from Eqs. (5.9) and
(5.46)

2 c 3 2 1/2

m f = —— 1+—(OIuoI0) —— do+ — ds
3 W2 2 5

x (oI so
I
o)

2 G 3
(oIu,

I
o) —— d, —

3 2&2 2 (10)"'
x &o

I
so

I o&,

2 G 3 2 1/2

m„'f' = —— 1 ——(0
I
u,

I 0) —— dp — — ds
3 W2 2 5

x (0
I
.. I

0&. (5.56)

E. The (3, 3) + (3, 3) + (8, 8) model

A symmetry-breaking scheme where the Hamiltonian
consists of a dominant (3, 3) + (3, 3) representation in
addition to an (8, 8) admixture has been recently suggested
by Brehm (1971, 1972) and Sirlin and Weinstein (1972).
Such Inixed symmetry-breaking models can explain virtually
all presently available data, in view of the large numbers of
free parameters. In order to see this, let us consider the
following Hamiltonian (Sirlin and Weinstein, 1972)

with p = 2Af'/m '. Note that p = 2 corresponds to the
Weinberg prediction (5.12). From Eq. (5.58a) we see that
in the range

O. sum. -& & a,«) & 0.Sm.-~ for 2 & p & 20, (5.59)

Dp remains less than 0.13, which means that the (8, 8) part
contributes at most about 10%%u&) to the dominating (3, 3) +
(3, 3) component. Hence, by admixing a small amount of
(8, 8) breaking into the GMOR model, one can obtain a
wide range of values for the mx scattering lengths, which are
entirely consistent with the present experimental results
(5.13), and still having SU(2) X SU(2) a much better
symmetry than SU(3) X SU(3). As we have seen above,
this is in contrast to the situation in which one has pure
(8, 8) or (6, 6) + {6, 6) breaking. However, because of
the large number of free parameters, a mixed syrnmetry-
breaking model is rather ambiguous and unconstrained and
therefore can only explain (or fit) experimental results but
not predict them.

Even more ambiguous is the situation for 0. terms; as an
example let us consider the mX sigma term. Again, in order to
constrain the theory, we assume c = —v2 in (5.55) which,
after all, is close to its actual value in Eq. (5.11). Thus, the
(3, 3) + (3, 3) contribution to (T)vt)(, as given by Eq.
(5.15), vanishes; however, this is not true for the (8, 8)
contribution. The terms involving s„and ss in Eq. (5.55)
generate, when commuted with F ', m. = 1, 2, 3, three terms
transforming as s(), s8 and the I = I' = 0 component of
the 27-dimensional representation of SU(3). Inserting the
(8, 8) term dpsp + doss of Eq. (5.55) into Eq. (2.38) and
calculating the double commutator with the help of Eq.
(5.41), we obtain for the singlet and octet contributions to
o-~~ the following expressions:

Since m ', m&2, and m„' satisfy the Gell-Mann —Okubo sum
rule (5.10), Eqs. (5.56) are really two equations in four
unknowns. To find a further equation we could use Eq.
(2.30) and find, according to Eq. (5.55), from (5.12) and
(5.49) the following expression for A:

3 3
( ~~-).;... = -& + „,d) &&l ~ l»

3 9
( ~~-)..„,=

( „,d, + —d,) (X
~

E,
~
N), (5.60)

2 c 9 (10)"'
a = —f-' — s+ —&o~-, ~o)+- d, + d,)3 W2 2 3

x &ols, lo (5.57)

„(oI s,
I o) 1 (1o —,)

(0
I

u()
I 0& 12 (4.6 + 0.19p)

ds (10)'(' (6 —p)
dp 2 (p —10) '

(5.58a)

(5.58b)

Thus, Eqs. (5.56) and (5.57) still provide only three inde-
pendent equations in the four unknowns c, ds/do, (0 I

uo
I
0),

and d, (0 I
sp

I 0), and so, even with ap"' fixed, they are un-
constrained. In order to constrain the theory let us consider
the rather appeahng model where c = —v2, i.e. , the
(3, 3) + (3, 3) part of BC' in Eq. (5.55) leaves SU(2) X
SU(2) exact, and so all of the SU(2) X SU(2) breaking
(finite pion mass) is done by the (8, 8) terms. Solving
Eqs. (5.56) and (5.57) one finds (Sirlin and Weinstein,
1972)

where we used the SU(3) decomposition for S~+ in (5.42)
and the well known properties (Macfarlane, Sudbery, and
Weisz, 1968) of the structure constants f,o, and d o, . Thus,
even neglecting the 27-piet contributions which hopefully
are small, Eq. (5.60) shows that 0)v)v still cannot be un-
ambiguously computed, since the nucleon matrix elements
of so and s8 are unknown. However, an order-of-magnitude
estimate may be obtained if we make the further assumption
that

I
(A'

I
"

I
A'&

I

—
I

(A'
I

~
I

A'&
I

—
I P I

u
I

A'&
I

Il»ng
Eq. (5.18) and

I
d,

I
0.1, we see that a value of (T)v~" in

the range 10 to 100 MeV can be accommodated in this
theory without requiring a large value of (1V I up

I
AT&. LIn

fact, since we use c = —V2, the term (A)
I

up
I

A & is com-
pletely decoupled from this calculation because the (3, 3) +
(3, 3) pa, rt of the Hamiltonian does not contribute to (T)vtv

Hence, even for a xÃ a- term of about 50 MeU one can
maintain the physically very pleasant situation in which
only a small fraction of the average baryon octet mass is
due to SU(3) X SU(3) breaking, i.e., a small (X I

up
I

X&.
Otherwise the familiar Goldberger —Treiman relations fails
(Dashen and Weinstein, 1969b; Dashen, 1971b) to lowest
order in SU(3) X SU(3), but remains good to lowest order
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in SU(2) X SU(2). It is even possible to set dp/dp ——

—(5/2)'~, so that m = 0 to first order in p, Eq. (5.56), and
still obtain an order-of-magnitude estimate for 0-~~ of
about 50—70 MeV.

F. The (3, 8) + (3, 3) + (1, 8) + (8, 1) model

This model, described by a symmetry-breaking Hamil-
tonian of the form

t3C = Bp + cÃ'p + 5pgp~ (5.61)

where gp is defined by Eq. (5.53), was originally suggested
(Arnowitt, Friedman, Nath, and Suitor, 1971 Schilcher,
1971) in connection with %&3 decays in order to account for
large negative values of ((0) defined by Eq. (2.47). The
additional (1, 8) + (8, 1) term 88gp in Eq. (5.61) has the
attractive feature of not contributing to SU(2) X SU(2)
breaking and thus leaves unchanged the steinberg predic-
tions (Weinberg, 1966b) of ~m scattering lengths which, as
we already discussed, are in agreement with recent experi-
mental results. Because of the number of free parameters,
this model is again not fully constrained by the pseudo-
scalar meson masses, and a further constraint can be found
by fitting $(0), say. This parameter then becomes essentially
a function of (Schilcher, 1971) Bp(0

~
gp

~
0)/c(0

~

up
~
0)

and (1 + v2/c), which are related by spectral sum rules
where the spectral functions can be approximately deter-
mined using meson-pole dominance. Despite the presently
confused experimental situation (Chounet, Gaillard, and
Gaillard, 1972; Wojcicki, 1972) which by now appears to
favor a small value (Donaldson et a/. , 1973) for $(0),
this model is still rather controversial (Arnowitt, Friedman,
Nath, and Suitor, 1971; Schilcher, 1971; Khelashvili, 1972)
in explaining the K&3 data —for example the possible strong
violation of an SU(3) -symmetric vacuum and renormaliza-
tion constants. Furthermore, as discussed at the end of

Therefore it becomes clear that a mixed symmetry-
breaking model, as long as it is dominated by (3, 3) +
(3, 3) transformation properties, can account for and
explain all presently available data because of the large
number of free parameters. Considering only elastic xlV
and kaon —nucleon scattering, such models are rather un-
constrained and ambiguous and therefore have practically
no predictive power; it remains doubtful whether more
accurate future elastic scattering experiments will be able
either to confirm or reject them. The same situation holds,
for example, for (6, 6) + (6, 6) admixtures to the GMOR
model. -In fact, - the possibilities for constructing models of
this kind are virtually limitless, provided the (3, 3) + (3, 3)
representation plays the dominant role in the chiral sym-
metry-breaking Hamiltonian.

In general, mixed symmetry models can be constrained by
not limiting oneself to elastic scattering processes only.
For example, as pointed out by Glashow and Weinberg
(1968) and Dashen and Weinstein (1969a, b), if one also
studies the sum rule for the deviations from the generalized
GT relations, the relevant low-energy theorems for mA —+

xwÃ and pion-photoproduction processes, then one can, for
instance, overconstrain the (3, 3) + (3, 3) + (8, 8) model.
At the present experimental stage, however, such additional
constraints (unfortunately) appear to be rather academic.

I

Sec. VA, it is not clear whether an additional contribution to
the (3, 3) + (3, 3) transforming part is indeed required in
order to explain the measured value of $(0).

On the other hand, the methods of Arnowitt, Friedman,
Nath, and Suitor (1971) mere believed to be independent of
the details of symmetry breaking. For example, in this
treatment the meson-mass spectrum is fed in ab initio rather
than related to the form of the symmetry breaking, and
symmetry breaking in the vacuum states does not appear
in the formalism. Various authors accounted for these
problems either by using (Barker, 1972) the Lagrangian
model of Schechter and Ueda (1971) for the scalar and
pseudoscalar mesons to calculate the above effects ex-
plicitly, or by employing the generalized 0. model with and
without massive gauge fields (Uchida and Suzuki, 1973).
Both calculations resulted in the conclusion that a (1, 8) +
(8, 1) symmetry breaking large enough to accommodate the
X&3 data would lead to unacceptable consequences for the
meson mass spectrum, and that the generalized 0- model
gives too smooth an off-shell extrapolation of the ampli-
tudes to fully account for the present experimental values
of X~ and ((0) .

With respect to the enhanced m.A 0- terms of Table I, the
Hamiltonian in Eq. (5.61) is certainly not a, desirable choice,
simply because (1, 8) + (8, 1) conserves SU(2) X SU(2)
and thus the 0- commutator of g~ vanishes, leaving us with the
(3, 3) +- (3, 3) prediction of Eq. (5.19a). However, the
term 68g8 can inhuence the size of 0~~ via the baryon mass
formula, t Eq. (5.16)jmhich we used to estimate (A

~

up
~

1V).
Since we have octet dominance of the (3, 3) + (3, 3) term
in Eq. (5.61), the contribution of 6pgp to nucleon matrix
elements of u is expected to be small. To see this, one can
derive relations between o. ter'ns and 6p. (Note that this
model cannot give a definite prediction for cr&~, say,
since 6p remains unconstrained. ) Making, in order to con-
strain the theory, the assumption that chiral symmetry
breaking does not strongly influence the nucleon mass
(Gell-Mann, 1969), i.e. ,

(lV
~

up + cup + 5pgp
~
X) 0,

and using Eqs. (5.16) and (5.17) together with

(5.62)

one obtains from Eq. (5.15) (Khelashvili, 1972)

0~~ 25 —0.1388D' (MeV),

o~~x~ 180 —2bpD' (MeV) .

This implies that for 0~~ 350 MeV we get cr~~ 36
MeV, which as expected is very similar to a pure (3, 3) +
(3, 3) model where o~~xx 350 MeV implies o~~ 40
MeV.

Although the (3, 3) + (3, 3) + (1, 8) + (8, 1) model
can neither be confirmed nor ruled out by present experi-
mental data, the mixed (3, 3) + (3, 3) + (8, 8) model
appears to be in somewhat better shape, provided mixed
symmetry-breaking schemes are to be used at aH.
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((X, X') + (X, X) )

= —1
2 CO&a&a + dpob&~Kb

3xp 3 '~' 3(2xp+ 3) 3 '~'
X — cs— 08

5x2 2 50 2

where the parameter co describes the strength of a singlet in
an (X, X) representation of SU(3) X SU(3), and cp and cp

denote the relative strengths of the two octets in (X, X) .
t Note, the normalization in Eq. (5.63) is such that in the
(3, 3) + (8, 3) model one recovers c = c,/cp given by Eq.
(5.11).g The octet of pseudoscalar mesons in Eq. (5.63)
is denoted by ~, a = 1, ~ ~ ~, 8, and x2 and x3 are the eigen-
values of the quadratic and cubic Casimir operators:

xp =
p (pi + Qp + Iiipi + 3IIi + 3pp)

xp =
p (pp —pi) L(pi + 2iip) (iip + 2@i)

+ 9(~i+ ap+ 1)j (5.64)

G. Implications from effective Lagrangians

The importance of effective Lagrangians and field
algebras as means of treating chiral symmetry and PCAC
has been widely discussed in the literature. Here, we will

briefly discuss a recent unified approach, proposed by Rosen
and, McDonald (1971) and McDonald and Rosen (1972,
1973), which is based on nonlinear I.agrangians consisting
of SU(3) singlet and octet symmetry-breaking components
of a single representation (X, X) + (X, X) of SU(3) X
SU(3) . These authors have shown how to construct meson—
meson and meson —baryon Lagrangians from pseudoscalar
meson octets transforming nonlinearly under SU(3) X
SU(3), by relating these nonlinear representations to linear
representations (X, X) + (X, X) and where all the sym-
metry breaking occurs in the mass term belonging to
(X, X) + X, X). In this way one obtains a unified dy-
namical description of meson —meson and meson —baryon
scattering, . where the various symmetry-breaking com-
ponents, i.e. , various breaking schemes of the form (X, X)+
(X, X) as considered so far, are closely intertwined and
therefore can be checked against each other on an equal
footing, contrary to what we did previously. To be more
explicit, under the assumption that the symmetry-breaking
meson —meson Lagrangian @br'er'((X, X) + (X, X) )
dominated by singlet and octet contributions, which ensures
that the Gell-Mann —Okubo mass formula will be satisfied,
one obtains for the nonlinear representations of SU(3) X
SU(3) up to second order in the meson fields (Rosen and
McDonald, 1971)

and the two integers (pi, p&) represent the number of quark
and antiquark indices, respectively. The dimension X) of
(X) is

&(~i, ~p) = p(~i+ 1)(up+ 1)(~i+ ~p+ 2) (5.66)

and p1 and p2 can take all positive integer values. Therefore,
in the case of triangular representations pi = 0, the two
octets in (X, X) become proportional (Rosen and
McDonald, 1971), and so we can take cp ——0 in Eq. (5.63).
For example, the lowest-dimensional triangular representa-
tions are then given by

(3, 8) + (3, 3):

(6, 6) + (O, 6):
p] = 1) p, ~ = 0

p] = 2) pi = 0

(10, 10) + (10 ~ 10): Pi = 3) P'& = 0 (5.67)

whereas the self-adjoint (8, 8) representation is described by
pi ——p&

——1. From Eq. (5.63) one can immediately read off
the following relationship between the pseudoscalar meson
masses and co, c8 and cs.

, 6xg c8

5x, &2cp

3(2xg+ 3) cp m~' —m '
= 2

25 &2cp 2m''+ ns ' (5.68)

For triangular and self-adjoint. representations the theory is
fully constrained since cp = 0 and xp ——0 (since pi = p&),
respectively. The Lagrangian in (5.63) can therefore be
tested unambiguously for di fferent chiral symmetry-
breaking representations (X, X) + (X, X) . Using Eq.
(5.63) it is straightforward to calculate the various meson—
meson scattering lengths, and the main conclusions for mm.

scattering lengths are the following: For self-adjoint repre-
sentations one finds for the (8, 8) that. ap&Pi and ap'" are both
negative and of comparable magnitudes; for higher repre-
sentations, (27, 27), (64, 64) etc. , the ratio ap~" /ap'P'

tends to 0.4. These predictions are inconsistent with recent
data, Eq. (5.13) for example, and thus if we always want
ap"& to be positive and much larger than

~
a,"'

~

we must
rule out all symmetry breaking which is described by
(dominant) self-adjoint represents, tions. In the case of
triangular representations, the (3, 3) + (3, 3) predictions
ao() 0.15m ' and ao(') —0.04m„' are in agreement
with experiment, whereas (6, 6) + (6, 6) predicts ap"'
to be much larger than ao(') in magnitude and the disagree-
ment with the data becomes even worse for the higher-
dimensional representations. Although present experimental
results on ~x scattering include large uncertainties, one ob-
tains fairly strong restrictions on the manner of SU(3) X
SU(3) breaking and again we find it has to have (dominant)
(3, 8) + (8, 3) transformation properties.

(X) =—(~i, ~p), (5.65)

' See, for example, Weinberg {1966a, 1968a, b) Dashen and Wein-
stein (1969a), Gasiorowicz and Geffen (1969), Schechter and Ueda
(1971),and Dondi and Kliezer (1973).

where the representation (X') of 5U(3) and its conjugate
(X) is described by

Similarly one can construct meson —baryon Lagrangians
with well defined chiral transformation properties, under
the usual assumption that both the baryon kinetic and
meson —baryon interaction terms are invariant under chiral
transformations, and the symmetry is broken only by mass
terms belonging to an (X, X) representation of SU(3) &&

SU(3). Expanding these terms up to second order in the
meson fields, the symmetry-breaking meson —baryon Lagran-
gian belonging to triangular representations (cp ——0) can
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TABLE III. Predictions for meson —nucleon o. terms from eiIective Lagrangians, according to McDonald and Rosen (1963)

I
Mp (MeV)

II III IV V VI VII VIII IX
940 940 940 645 645 300 300

Expt. (3, 3) + (3, 3) (6, 6) + (6, 6) (10,10)+ (T0, 10) (3, 3) + (g, 3) (6, 6) + (6, 6) (3, 3) + (8, 3) (6, 6) + (8, 6)

o.~~ (MeV) 50

&„„~~(Mev) 350

26

148

—40

250

—126

386 431

20 78

762

89

1786

be written as (McDonald and Rosen, 1972)

—zbrs'((x, X) + (X, x) )

=c 'k% 1 ——m~0 0 Q

2 '/' 3x3+ 4 (Fgf + D~d ) Ifd~b~rrbrl ~

3 5xgf'

3 'f' 3x3+ &8 ++dsbcirbrrc
2 20f'

+ (
—.) War f +D'.d') '4'

l5gg 1 1 X'& . 1
X ~s + ~ rr ~ + dsabdb d7r 7rd.f' 60 10

" 4f'

1+ (-', —2xo) ~ss-,
10 ' (5.69)

csf' = (I/3)"'(Mw —M=-),

csd' = (v3/2) (Mz —Mx), &o+ ~o = s(~z+ ~~).

where%' represents the octet of baryons, and f is our common
meson decay constant, f 96 MeV. The quantities F„are
the usual SU(3) generators which are now, regardless of
current algebra, represented by F =. ~ X satisfying, pf
course, Eq. (2.3a.). Similarly we have D = (2/3) d,b,FbF, .
LNote that the combination F,f' + D d' in Eq. (5.69)
results from constructing baryon —baryon —meson SU(3)
couplings. ) The contributions from the Lagrangian in
(5.69) to the baryon masses, along with the contribution
from the kinetic energy term, which describes the average
octet mass 2IIp are given by

I

Following McDonald arid Rosen (1973), we list the pre-
dictions of Eq. (5.71) in Table III. In column II we state
the present world average of the estimated 0- terms according
to Tables I and II. In columns III, IV, and V of Table III
we list the values of the 0- terms for the three lowest tri-
angular representations, Eq. (5.67), under the assumption
that Mp = 940 MeV. As can be seen, present analyses of mX
data, already exclude the (6, 6) + (6, 6) representation as a
possible alternative to the (3, 3) + (3, 3); matters get
worse as we go to higher representations. In columns VI
and VII we use 0-~~ ——50 MeV as input, which corre-
sponds to Mo 645 MeV. Whereas the (3, 3) + (3, 3)
prediction for o.~~ is in agreement with the data, the
(6, 6) + (6, 6) prediction for the same quantity is clearly
in disagreement with the data. As in the previous case,
matters are not improved in higher representations. In
columns VIII and IX we arbitrarily assumed Mp to be far
from the nucleon mass which, as we have seen in Sec. VB,
corresponds to the (6, 6) + (6, 6) representation, for
example. Although 0-» is not entirely inconsistent with
the data, the kaon —nucleon 0- terms are far too large. In
higher representations they become even larger.

The conclusion is that the present experimental informa-
tion seems to rule out all triangular (and self-adjoint)
representations of SU(3) X SU(3) except the (3, 3) +
(3, 3) as possibilities for describing chiral symmetry
breaking. Of course, a large number of nontriangular
representations have not been considered, and these as well
as mixed symmetry-breaking models have enough free
parameters to fit the present data. Nevertheless, the results,
along with those obtained in the previous sections by
studying each symmetry-breaking scheme separately, sug-
gest that the (3, 3) + (3, 3) representation plays a central
role in breaking chiral symmetries, and higher-dimensional
irreducible representations should only serve as (small)
admixtures, if indeed required, for breaking octet domi-
nance.

(5.70)
H. Scale invariance and chiral symmetry

Thus, apart from one free parameter Mp, say, the theory is
fully constrained. An interesting application of Eq. (5.69)
is to calculate meson —baryon cr terms: Using standard
perturbation theory and the low-energy theorem (2.37),
one obtains (McDonald and Rosen, 1973)

Finally. , let us conclude with some remarks concerning the
intimate relation between broken scale invariance and
broken chiral symmetry, which has been extensively dis-
cussed in the recent literature (Gell-Mann, 1969; Wilson,
1969; Fritzsch and Gell-Mann, 1971). This connection
becomes clear when we observe that (Gell-Mann, 1969)

o.~bi. —(1/50) pr(pg+ 3) (395 —Mo) + 70 (MeV)

o~~~~ (6/25) 1br(pr + 3) (1011 —Mo) + 79.5 (MeV) .

(5.71)

d3x 9„", (5.72)

Since we consider only triangrular representations, we have
ps = 0 according to Eq. (5.67) .

where 8„& is the trace of the energy-momentum tensor 0„„,
and D is the dilation operator of the conformal group. Thus,
in the limit of scale invariance corresponding to a theory free
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from dimensional quantities, we must have 0„&~ 0 in order
to get dD/dxo ——0. The parallel that can now be drawn
between the violation of scale breaking and that of SU(3) X
5U(3) invariance involves the idea that the term u =— ~BC'

in the energy density 80O that violates SU(3) X SU(3)
is a world scalar and so is, by assumption, the term in 6loo

that violates D conservation. It is then most natural to
suppose that the 5U(3) X SU(3) violating term u is
found among the scale-breaking terms (Gell-Mann, 1969;
Wilson, 1969), namely

80O ——Ko+ 8 + u, (5.73)

where 3CO is our usual chiral and scale-invariant Hamil-
tonian with dimension 4, 8 is invariant under 5U(3) X
SU(3) but violates scale invariance and has scale dimension
d~ & 4, and I violates both chiral and scale invariance and,
hopefully, has an unique dimension d„(Renner, 1972a).
From Eq. (5.73) one obtains (Gell-Mann, 1969) the fol-
lowing "virial theorem" for 0„&:

8„& = (4 —dg)8+ (4 —d„)n (5.74)

and, by Eq. (5.72), the interrelationship between broken
scale invariance and chiral symmetry becomes transparent.
In the simplest possible theories 8 is merely a c number,
which implies dq = 0 ( Gell-Mann, 1969; Ellis, Weisz,
and Zumino, 1971). In this case, Eq. (5.74) gives

M~ = (4 —d„) (1V i
uo + cus

i
lV) (5.75)

4&d„&3. (5.76)

where we used (lV
~

8„~
~

1V) = 3II~ and u = uo + cuq, and
the Inatrix element always refers, of course, to the connected
one. In general one expects (Wilson, 1969; Ellis, 1970a)
1 & d & 4; this constraint is necessary (Wilson, 1969)
to make PCAC work when SU(3) X SU(3) is broken (the
lower bound is a consequence of the Kallen —Lehmann
representation). Therefore Eq. (5.75) is incompatible with
(1V

~

No
~
K) M~/2 corresponding to 0.~~ 50 MeV,

and use has been made of Eq. (5.18). The way out of this
paradox (provided 8 is indeed a c-number) has been shown
by Ellis (1970b) in assuming (0

~
uo 8

~
0) & 0, where o.

would be the massless Goldstone boson of exact scale
invariance; for broken scale invariance, i.e. , spontaneously
broken conformal symmetry, this scalar 0- meson, most
plausibly the e(700), dominates the matrix elements of 8„".
The main point is that this does not require (Ellis, 1970b)
strongly enhanced values for ()V

~
uo

~

lV) with respect to
(X

~

us
~

1V). Since 0- terms of about 0~~ 110 MeV are
most likely to be ruled out by now, approaches (Altarelli,
Cabibbo, and Maiani, 1971a; Brown, Pardee, and Peccei,
1971; Crewther, 1971; Mathur, 1971) using (X

~

uo
~

1V)
1500 MeV in order to obtain d„= 3 from Eq. (5.75) are
questionable. Other estimates for the dimension of the chiral
symmetry-breaking energy density, based on low-energy
theorerns (Kleinert and Weisz, 1971) derived from Eq.
(5.74) for (~

~

8„&
~ ~), indicate that (Levin, Okubo, and

Palmer, 1971; Renner and Staunton, 1972; Pennington,
1972; Haan, Nasrallah, and Schilcher, 1974)

These estimates plausibly identify the fT meson with the
e(700). If, in addition, the 5*(980) which strongly couples
to the EE'channel is included for calculating (vr

~

8„&
~
~),

then the lower limit in Eq. (5.76) is to be favored (Renner
and Staunton, 1972; Pennington, 1972). Similarly, using
the Fubini —Furlan mass-dispersion relations and the xiV
s-wave scattering length combination a& + 2a3 as input, one
obtains d„( 3 (O'Donnell and Wong, 1972). It is also
interesting to note that an entirely different determination
of d„, using the experimental information on the forward
differential cross section for high-energy pseudoscalar
meson photoproduction assuming PCAC and conservation
of the scale dimension on the light cone, yields (Chikashige
and In'agaki, 1972) d = 2 in agreement with Eq. (5.76).
However, a previous estimate (Brown, 1971) resulted in
3 & d ( 4, but using o.c/Oz —+ 0 in deep-inelastic electron
scattering makes such a result not very surprising.

It should be emphasized that the assumption that 8 is a c
number has been made mainly in order to prevent un-
controlled parameters from entering the theory and, apart
from being possibly consistent (Ellis, 1970b; Ellis, Weisz,
and Zumino, 1971) with our present knowledge about
SU(3) X 5U(3) breaking, lacks any theoretical justifica-
tion. If, for example, one is not willing to accept the existence
of a Goldstone 0. boson as considered above, then the rela-
tively small value of (lV

~
uo

~
Ã) indicates that the possi-

bility of a c-number scale breaking, but SU(3) X SU(3)
conserving, part of the hadronic energy density should be
ruled out. The case in which 6 is a q number, i.e. , d~ & 0, can
apparently not be disrega. rded (Gell-Mann, 1969; Wilson,
1969; Kleinert and Weisz, 1971). Finally, Eq. (5.74)
implicitly assumes tha, t 5 and I have unique dimensions, an
assumption which is far from obvious (Renner, 1972a).

Vl. CONCLUSIONS

We have described in considerable detail chiral sym-
metries, their importance, and consequences for the study of
elementary particle physics. We concentrated mainly on
meson —nucleon 0. terms, presently the most powerful tools
for studying chiral symmetry violations, and discussed and
developed various methods and techniques to relate these
quantities to actual meson —baryon scattering experiments,
as well as to vrx scattering data. Where necessary, we also
included discussions concerning the consequences of broken
chiral symmetries for E&& decays. Apart from giving a
critical and detailed review of most of the "experimental"
estimates for pion —nucleon and kaon —nucleon sigma terms
done so far, we also outlined in some detail the most com-
mon chiral symmetry-breaking schemes at present and com-
pared their predictions with available experimental data.
Implications from nonlinear effective Lagrangians for
broken chiral symmetries were briefly discussed, and the
connection between scale invariance and chiral symmetry
was outlined, with emphasis on our present knowledge of the
magnitudes of meson —nucleon 0- terms.

By now numerous estimates of the +~V sigma term 0-~~
are available and, viewed as a whole, the results are fairly
compatible with each other, keeping in mind the rather large
experimental uncertainties. The present world average for
cr~~ lies around 50 MeU, and it appears to be rather un-
likely that 0-~& exceeds 70 MeV, say. Values as large as
the Cheng —Dashen estimate of 110 MeV (or larger), which
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originaHy stimulated all the recent reestimates of 0- terms,
can be quite convincingly excluded. This is due to a very
recent recalculation using the same broad-area subtraction
method as Cheng and Dashen did, but different, more
recent, phase-shif t analyses. In addition, much smaller
values than 110 MeV are confirmed by practically all other
calculations carried out to date.

The situation with respect to the exceedingly more com-
plicated kaon —nucleon reactions is not so clear, since con-
siderably fewer estimates for 0-~&~~ have been performed.
The upper limit of 0-~~~~ lies around 600 MeV, whereas the
world average is about 350 MeV. A negative value for the
kaon —nucleon 0- term, as has been claimed in one previous
calculation using fixed-t dispersion relations, appears to be
more than unlikely, since two very similar recent estimates
definitely favor positive values for cr»~, in agreement with
various other calculations employing different methods.
Since, compared to md% scattering, the kaon —nucleon data
are rather poor and experimental results scatter widely, it
would be of interest to estimate o-~~~~ using broad-area
subtracted dispersion relations which provide us with built-
in consistency. checks on the compatibility of the various
phase-shift solutions used.

At the present stage we are certainly not in a position to
deduce exact values for o- terms. What we can deduce with
some reliability, however, is the magnitude of meson—
nucleon sigma terms. The main point is that values of 0-~~
and o-~~~~ as large as 110MeV and 1300 MeV, respectively,
can be excluded; these are values which would upset our
whole "conventional" understanding of symmetries and
symmetry-breaking mechanisms.

Although, within experimental uncertainties, the present
world average for 0-~~" and o-~~~1~ of about 50 and 350 MeV,
respectively, do not entirely disagree with the (3, 3) +
(8, 3) predictions of about 20 and 200 MeV, respectively,
there appears to be a persistent enhancement present.
Taking these enhancements quite literally and assuming, for
the time being, that the chiral symmetry-breaking Hamil-
tonian transforms under a, single representation of 5U(3) X
SU(3), there are only two alternatives left which could
account for this octet enhancement: Either the (3, 3) +
(3, 3) model is wrong and higher-dimensional representa-
tions have to be considered, or one a,ccepts the (3, 8) +
(8, 3) model of Gell-Mann, Oakes, and Renner and at-
tributes the octet breaking to some other enhancement
mechanism. Together with (1, 8) + (8, 1), the higher-
dirnensional (irreducible) triangular and self-adjoint rep-
resentations yield predictions which are inconsistent with
present experimental results. A pure (8, 8) model predicts
mm scattering lengths totally incompatible with the data, ,
whereas the (6, 6) + (6, 6) representation appears to be
in better shape. Although the 0- terms cannot be predicted
uniquely in these models, the degenerate average mass of the
baryon octet, say, turns out to be much smaller than the
nucleon mass itself, taking into a,ccount the present estimates
for meson-nucleon 0- terms. This result is obviously not
acceptable, if our general concept of symmetries and sym-
metry breaking is correct. From this point of view the
(3, 3) + (3, 3) representation is the preferable choice, but
certainly (6, 6) + (6, 6) is better than (8, 8) . Simila, r
conclusions are reached from a study of nonlinear effective
Lagrangians which rule out all triangular and self-a, djoint

representations of SU(3) X SU(3) except the (3, 3) +
(8, 3) as possibilities for describing chiral symmetry
breaking. However, not very much can be said about non-
triangular or reducible representations, since these have
enough free parameters to fit all the present data.

Contrary to previous claims, therefore, one is naturally led
to the conclusion that the (3, 3) + (3, 3) model plays at
least a dominant role in chiral symmetry-breaking mecha-
nisms. In this case, the Li—Pagels mechanism of ca,lculating
(3, 3) + (8, 3) chiral symmetry breaking is a, rather
plausible way to explain the octet enhancement which is
achieved by the threshold dominance of Goldstone-boson-
pair states. Although quantitative calculations are not free
of ambiguities and uncertainties, the qualitative agreement
with the enhanced pion —nucleon and kaon —nucleon 0. terms
1s good.

Another possible way to achieve a breaking of octet
dominance is to include, in addition to the dominant
(3, 3) + (3, 3) component in the symmetry-breaking
Ikamiltonian, (small) contributions of higher-dimensional
representations of 5U(3) X SU(3). This case corresponds
to the so-called mixed symmetry-breaking models. The
(3, 3) + (3, 3) + (8, 8) model, for example, can account
for and explain all presently available data on mx scattering
and meson —nucleon cr terms, because of the large number of
free parameters available. Since models of this kind are
rather unconstrained and ambiguous, and therefore have
practically no predictive power, it remains doubtful whether
more accura, te future elastic scattering experiments will be
able either to confirm or to reject them. The same situation
holds, for example, for {1,8) + (8, 1) and (6, 6) + (6, 6)
admixtures to the GMOR model. In fact, the possibilities
for constructing models of this kind are virtually limitless,
provided the (3, 3) + (3, 3) representation plays the
dominant role in the chiral symmetry-breaking Hamil-
tonian.

The relation between broken scale invariance and broken
chiral symmetry is also intimately related to the magnitude
of a- terms. A pion —nucleon sigma term of about 100 MeV or
more has proven to be consistent with the assumption that
the scale breaking but chiral invariant term 8 in the total
energy density is merely a c number, implying the dimension
of the SU{3) X SU{3) and scale breaking Hamiltonian to
be d = 3. Because such large values for cr~~ are most
likely to be ruled out, a q number 8 term appears to be
favored, unless one assumes a massless Goldstone boson of
exact scale invariance, which is most plausibly identified
with the e(700) in the actual broken world.
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