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We review the methods which have been developed over the past several years to determine the
behavior of solids whose properties vary randomly at the microscopic level, with principal atten-
tion .to systems having composition variation on a well-defined structure (random "alloys", ).
We begin with a survey of the various elementary excitations and put the dymanics of electrons,
phonons, magnons, and excitons into one common descriptive Harniltonian; we then review the
use of double-time thermodynamic Green's functions to determine the experimental properties
of systems. Next we discuss these aspects of the problem which derive from the statistical specifica-
tion of the microscopic parameters; we examine what information can and cannot be obtained from
averaged Green's functions. The central portion of the review concerns methods for calculating the
averaged Green s function to successively better approximation, including various self-consistent
methods, and higher-order cluster effects. The last part of the review presents a comparison of
theory with the experimental results of a variety of properties —optical, electronic, magnetic, and
neutron scattering. An epilogue calls attention to the similarity between these problems and those
of other fields where random material heterogeneity has played an essential role.
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I ~ PREAMBLE
484
486 The subject of randomness in physics is probably familiar
486 to most physicists only in the form of statistical mechanics,

or in applications of the Boltzmann and "master" equations.
Yet much of the world we live in, particularly the materials
we deal with, does not have the simplicity and regularity

491 found in physical systems which have received most of our
attention. If one consults recent reviews of related 6elds
LBeran, 1968, 1971; Frisch, 1968$ one begins to realize the

500 tremendous range of real situations in which randomness is a
504 central aspect of the problem.
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466 Elliott, Krumhansl, and Leath: Randomly disordered crystals

For example, in geophysics the material properties of
randomly polycrystalline rock, its pore and fissure struc-
ture, and elastic waves and transport in such media are all
essential-to the interpretation of geological situations. The
motion of the sea, both underwater and surface, including
sound propagation with turbulence or random density
fluctuations, present similar analytical problems. And it
goes on—atmosphere and ionosphere, astrophysical prob-
lems (going back to attempts to understand twinkling of
stars), radiowave propagation, communication theory,
neutron di6usion, partial coherence in modern optics. All of
these have in common the problem of describing the dy-
namics of some field or particle motions in the presence of
random irregularities in the parameters of the system. We
will return to these similarities in the last section of this
paper.

The study of matter which is random in either composition
or structure had for years received considerably less atten-
tion by physicists than better definable crystalline materials
for good reason. The definite structure of the latter allowed
both considerable theoretical progress and dependable com-
parison of experiments between various workers, both of
which are essential to good scientific progress. Nonetheless,
results were obtained in some heterogeneous situations.
Einstein (1906) concerned himself with the dielectric and
optical properties of a suspension of small particles in a
liquid. Rayleigh (1892) addressed the question of the
average permitivity of a heterogeneous medium.

While those studies were primarily concerned- with static
response, progress was made on wave propagation (see
J.B.Keller and F. C. Karal, Jr. (1964, 1966)g. Of particular
lmpor tance to the developments which are the principal
subject of the present review, Foldy (1945) showed how the
effective index of a medium could be related to the averaged
forward scattering amplitudes in a heterogeneous medium;
this was primarily a strong scattering "low concentration"
theory, and it was not self-consistent. Lax (1951, 1952)
extended the theory by introducing an effective medium in
which scattering fluctuations were imbedded, and whose
parameters were determined by averaging similar to Foldy,
but now this gave an implicit equation to determine self-
consistently the effective index. In essence this is the philoso-

phy, transposed to the context of alloys and random
crystals, which has become known as "self-consistent" or
"coherent potential approximation. "

During the last decade the subject has evolved rapidly,
and both theoretical and experimental interest in materials
with randomness in their properties has increased sub-
stantially. The reasons are several. With regard to alloys,
progress in metallurgical science, as well as in the physics of
dilute magnetic and nonmagnetic alloys, led to the need for
more realistic descriptions than rigid band or virtual
crystal models. With regard to semiconductors, both com-
pound (crystalline) semiconductors and amorphous semi-
conductors began to receive considerable attention as
possibly presenting parametric Qexibility, or even funda-
mentally new phenomena, for electronic applications.

At the same time, on the theoretical side, three principal
developments drew the attention of theoretical physicists.
First, the developments of sophisticated perturbation tech-
nique in many-body theory —particularly in the use of

Green's functions —which has made it possible to avoid the
cumbersome differential equation description of Schrodinger
waves in a random medium, as well as to calculate needed
experimental quantities directly. Second, the development
of computers capable of determining information about
reasonably large models of random systems. Third, new
e6orts toward understanding the topology and structure of
random networks, both by physical model construction and
by computer simulation. Many more physicists have now
become involved in the study of random systems, and both
experimental and theoretical progress has been made.

For the traditional methodology of solid state physics,
and in the interpretation of experiments, the loss of lattice
periodicity is a disaster. The methods . of group theory,
which one relies on because of translational symmetry, are
no longer applicable, so the states are not simply charac-
terized by a wave vector k; of course, it follows that "k-selec-
tion rules" also are lost. A point of some concern is the con-
tinued use of traditional band theory results in the interpre-
tation of experiments on random systems, in spite of their
self-evident inapplicability.

As we see it at the present time, there are three main
sub-areas with definite concepts being developed and tested:
direct computer modeling and experiments; theoretical and
experimental work on random alloys and related systems;
and theory and experiment for amorphous semiconductors.
That order of listing is also, in our view, indicative of the
degree of maturity of definite results and critical comparison
with experiment —which bring us to the setting and purpose
of the present review article.

Dean (1971) has presented an extensive review of the
numerical studies of disordered systems. Mott and Davis
(1971) and N. Mott, M. H. Cohen, P. W. Anderson, H.
Fritzscge, and D. J. Thouless (J. Tauc, 1972), to mention
a few, have stimulated considerable discussion (in various
conference proceedings particularly) of amorphous semi-
conductors. However, there exists no comparable review of
theory and experiment for random alloys and related
systems; we believe that this subject has reached con-
siderable definiteness in its development, so it is the aim of
this paper to review it. There is one other recent review by
Bell (1972) which lies somewhat between ours and Dean' s,
but we devote considerably more attention to formal
methods and their relation to experiment. The plan of our
review is as follows:

Section II has as its purpose the in.troduction of model
Hamiltonians which show that to good approximation elec-
tron, phonon, magnon, and exciton problems reduce to the
same formulation. In preparing this review we have noticed
considerable duplication in the timing and content of ideas
put forth by specialists in these particular topics, and hope
by our presentation to supply the reader with a basis for
comparing the literature of random systems no matter what
the context. Having done this, we review the thermodynamic
Green's function method for treating the dynamics of such
systems, and relate it to desired experimental quantities.
Illustrations of the method are given .for simple defect
problems.

Finally, in Sec. II, we address the general features which

may be expected from randomness on the dynamics of
systems. The numerical studies reviewed by Dean (1971)
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and Bell (1972), showed that the spectrum of ~andom sys-
tems usually has two characteristically different regions-
one continuous with primarily extended states, the other
being "spiky" with localized states, frequently identifiable
with clusters of defects. A main point of our discussion is the
way in which configuration (or "ensemble" ), averaging
relates to the nature of the states, and particularly to those
theoretical quantities which are typically measured experi-
mentally.

Proceeding to Sec. III, which surveys approximation
methods in various formal calculations to date, we show how
both the equations of motion of the Green's functions and
statistical considerations must be combined in a single
expression, in order to incorporate both dynamics and
structure in the physics of such systems. This is, of course,
the essence of the formidable difficulty which theories of the
dynamics of random systems must face.

Instead, one must explicitly introduce statistical con-
sideration. In the general case the quantities desired are
nonlinear functionals of the random parameters of the
system (Frisch, 1968; Beran, 1968, 1971). No general
methods exist for determining the stochastic properties of
such systems; however, it is possible to compute low-order
averages and correlation functions —which primarily are
what is needed by the physicist.

II. INTRODUCTION

A. Model Hamiltonians

All types of excitation in disordered crystals may be dis-
cussed by the same theoretical methods. In this section we
discuss Hamiltonians (and the equations of motion) for the
specific types of excitation which are most commonly studied
in solid state physics: electrons, phonons, excitons, and
magnons. By a suitable change of notation it is shown that
all these problems may be made formally identical, and a
universal notation is developed which can be used through-
out the paper and specialized to specific situations as
required. In the literature, workers interested in one
application have often ignored the parallel work in related
fields, although the formal similarities have been stressed
by a number of authors Le.g. , Anderson (1967), Matsuda
(1966), Onodera and Toyozawa (1968), Maradudin
(1966), Aiyer et al. (1969)g.

Since most of the paper will be considering alloys with
substitutional disorder, we shall confine our attention to the
Hamiltonians appropriate to this case. In Sec. IV a brief
discussion of structural (glass-like) disorder is given.

1. Eermions-electrons

A variety of methods have been developed for different
applications. Some are algebraic "decoupling" approxima-
tions, while others make use of diagrammatic organization of
perturbations and the statistics of series expansion; localized
and band (Bloch) states have been used. In Sec. III we have
brought together, in a comparative discussion, both formal
methods and model computations based upon them, using
examples from electron, phonon, exciton, and magnon
applications. I ow concentrations of simple defects may be
discussed quite satisfactorily. However, extended defects,
clusters, short-range order, and amorphous structure are
much more difficult to treat, although progress is being
made rapidly; we summarize what we know at this writing.

Be() ——Q E;(k) a;+ (k) a, (k), (2 1)

with a suitable choice of origin. The energy of the ( j, k)
excitation is E,(k). The a s satisfy the usual anticommuta-
tion relations for fermions (e.g. , electrons),

In a perfect crystal, the translational symmetry ensures
that any excitation is specified by a wave vector k which lies
inside the first Brillouin zone, and a band, or branch j. If
a;+(k) and u, (k) are the usual creation and destruction
operators, the Hamiltonian may be written

Finally, in Sec. IV we compare model methods and com-
putations with experiment, including systems of electrons,
phonons, magnons, and excitons. We show that by now it is
indeed possible to take parameters determinable by measure-
ment or inferred from perfect crystal data, put them into
various theoretical models, and predict both semiquantita-
tively and phenomenologically the behavior found experi-
mentally in various random systems.

We are limited still in our understanding of a few problem
areas, particularly transport e6ects in semiconducting
amorphous materials, which as noted earlier we consider to
be outside of the scope of the present review. On the other
hand, in the matter of random alloys and many related
topics the ability to relate parameters, structure, and
properties has been. developed to a degree well worth re-
porting to physicists.

We conclude this introductory section with an apology
to the authors of much recent work which we have not been
able to cite here, but as a practical matter we had to limit
our review to material published up until early 1973.
Beyond that date we have only been able to include a few
references.

La, (k), a,'+(k')g~ = 6;,'6(k —k'). (2.2)

~o = Z E (i)&+(i)~ (~)

+ Q W ~ (i, l') a +(/) a (l'), (2.3)

where W(l, l') depends only on LR(l) —R(l')g and not
explicitly on the positions separately, while E (l) is inde-

The Hamiltonian can be transformed into the site repre-
sentation by defining operators which create excitations
centered on particular unit cells in the crystal. In the elec-
tron case this is the well-known transformation to Wannier
functions. If we can, for physical reasons, confine our
attention to b branches, we shall need b separate local func-
tions at each site. In the electron case it is always an ap-
proximation to restrict b since the number of bands is, in

principle, infinite. Nevertheless it usually is a good approxi-
mation to consider a few, or even only one band. If n specifies
the b functions, and l specifies the unit cell at lattice position
R(1), 3Co can be written
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pendent of L. The Heisenberg equations of motion give

iA —u. (l, t) = Pa. (l, t), Se7 = E.(l)u. (l, t)
8

R

+ Q W (/, t')u (1', t). (2.4)

If this is Fourier analyzed, the eigenvalues E, (k) are the
solutions of the secular equation

(2.5)

where W ~ (k) = P g W '(t, L') exp i ik LR (l) —R (t') P i

and E = AM.

In the presence of imperfections the excitations are no
longer specified by k, and terms like

Z V '(k, k') u+(k) u'(k')
jjt,kk~

(2 6)

V (l, t') = (E (l) —E ')6 5(l, l')

+ LW ~ (t, l') —W '(t, t') j. (2.7)

In some systems it is a good approximation to consider
only a single band, . and this case will be studied in most
detail since the algebra is simple and the methods may be
followed more directly. We may also take the origin arbi-
trarily and it is therefore often chosen to assist in the calcu-
lations, for example to improve the convergence of the
perturbation theory. In this single band case the suffices are
dropped and-

must be added to Eq. (2.1) . In this paper we are concerned
with defects which cause a local change in the crystal. This
is most conveniently dealt with in the site representation of
Eq. (2.3) . 8 (t) and W (/, l') are changed in the vicinity
of a defect from their perfect values. We denote this by

When this is transformed into the site representation 3C takes
the simple form (2.3) only if the u„+(t) etc. have been
defined to create local excitations from the true ground state
of the system. If the u are not so chosen, terms in u (t) u~(t')
and u +(t) up+(l') will occur in 3CO. In these circumstances a
Bogoliubov transformation is required, and the secular
equation like Eq. (2.5) giving the characteristic excita, tion
energies is always an equation in E'.

The effect of an impurity is again to introduce terms like
Eq. (2.6) . Now that particle number need not be conserved

in the fermion case, terms in u,+(k) u, +(k') and
u, (k)u, (k') can also occur. This means that the ground
state of the system and the zero-point energy is changed by
the addition of the defects. The Hamiltonian must be
diagonalized by a Sogoliubov transformation in this case
and the secular equation (2.5) is quadratic in E.

8. Excitons

There is one physical situation —that of excitons —where
the above complications are immaterial. The ground state of
the system corresponds to full bands, with the electrons in
closed valence shells. The singlet excited states correspond.
to a transfer of an electron to the conduction band leaving
behind a hole with the same spin. In the lowest excited states
these electron —hole pairs are bound together. In the simplest
model —the 'Frenkel. ' exciton —this binding is close, and the
electron and hole are effectively bound at the same site. This
excited atom behaves as a boson. The u +(t) is therefore
defined as the operator which creates an excitation of type o|.

at atom l. The exciton moves across the crystal because of
overlap with adjacent atoms. The excitation energies are
normally large, so relatively few excitons are usually excited
except in special circumstances. In this case the Hamil-
tonian takes exactly the form (2.3) except the u's are now
boson operators. The E are here the excitation energies and
W ~ (t, t ) the hopping integrals. The effects of impurities
can be described by Eq. (2.7) .

V(t, l') = (E(l) —Z')6(l, t') + AW(l, /'). (2.8)
The most important application to disordered systems

was given by Onodera and Toyozawa (1968) in a description
of optical absorption by excitons in mixed. alkali halides.

Often the first term in Eq. (2.8) is the most important, and
this greatly simplifies the theory. If we neglect AW(t, t')
the defects described by Eq. (2.8) do not overlap; V is
simply determined by whether site l has a defect or host
atom on it. Physically this means that the impurity atom
has a different core potential but essentially the same
valence electron distribution. This is satisfactory in some
real situations, but not by any means in all.

4. Phonons

For lattice vibrations in disordered systems it is con-
venient to work with momentum and displacement opera-
tors p and 'u rather than the u' s. The Hamiltonian is given
most naturally in a site representation

Z. Bosons

t u'(k), u~'+(k') j = ~t~'~(k —k').

Rev. Mod. Phys. , Vol. 46, No. 3, July 1974

(2.9)

In discussing the vibrational excitation of solid helium,
and for excitons, we deal with bosons. The fundamental
Hamiltonian for the perfect crystal can. still be written in
the form (2.1) although the total energy will contain a con-
tribution from the zero-point energy. The u,+(k) now
satisfy commutation relations

P-(t)'
2M (t)

+ -', Q C (t, l')N (t)u ~ (l'). (2. 10)

As. before, t specifies the unit cell at R (t) and here a specifies
one of the 3v Cartesian coordinates of the v atoms in the
cell. In the perfect lattice M (l) is independent of / and
depends only on atom type, while C is a function only of
LR(l) —R(l') g.
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The Heisenberg equations of motion are systems of interest can be described in terms of an inter-
action between the spins of the form

8i5 —e (l, t) = (I, (l, t), aej = M (l)—'p (l, t) (2.11a)

8
iA —p. (l, t) = Lp. (l, t), aej

BC = Q I(l, l') S.(l) S,(l') + J (l, l')

&& LS.(l) 5, (l') + 5„(l)5„(l')g, (2.19)

= —Q c (l, l')N. (l', t), (2.11b)

so that

(2.12)

These equations are, of course, the same as would have been
' obtained classically, since the system is harmonic (Messiah,
1962).

In the perfect crystal the characteristic frequencies and
normal modes may be readily obtained because of the trans-
lational symmetry. Transforming to k representation, the
matrix reduces to 3v tC 3v blocks. The normal modes are
found in the form

When Fourier transformed, this expression becomes

Q LM (l)5 5(l, l')co' —C (l, l')gu ~ (l') = 0. (2.13)
a/gf iA = 2 g P(l, l') S (l) S,(l')

85 (l)
Bf

—J(l, l')5 (l') 5,(l) j. (2.20)

The equations may be linearized by replacing S,(l) by its
appropriate equilibrium value {5,(l) ).

For a simple homogeneous ferromagnet we denote

where we have labelled magnetic atoms, rather than cells
by/. If J = 0 we have the Ising model, if I = J we have the
Heisenberg model. For l = l' both I and J will vanish.
Some systems require further terms in the Hamiltonian for a
realistic description. Assuming that spins order along the z
direction, the excitations are described through the equations
of motion of the operators S+ = 5, ~ iS„which increase
or decrease the spin component along the z directions; we
find

The Fourier transform
@;(k) = g o (k) expPiq R(l) jm. (l) (M jX)'t'. (2.14)

a, l

With impurities we write

M (l) =M' —b,M (l) =M'(1 —c (l)),
4 .(l, l') = I '(l —l') + b,4 (l, l').

(2.16a)

(2.16b)

X '" Q expfik R(l) jS (l) = 5 (k)

satisfies the equation

a)5 (k) = (2S Q I(l, l') —J(l, l')

(2.22)

Equation (2.13) now reads )& expIik. LR(l) —R(l') jI)5 (k), (2.23)

Q LM 'oP5 .6(l, l') —4 .'(l, l')

—V (l, l')gu ~ (l') = 0,

and the quantity multiplying S (k) is ~(k), the excitation
frequency of the spin wave. In terms of the Fourier trans-

(2 17) form of I and J in this periodic crystal case

where ~(k) = 25LI(0) —J(k) j. (2.24)

V .(l, l') = M 'oP~ (l)b 8(l, l') + AC ~ (l, l'). (2.18)

Y plays the same role in these equations as does that defined
by Eq. (2.7) in Eq. (2.5). We shall utilize this fact to
establish a common notation below.

For simple mass defects, when changes in force constants
are neglected, Y is diagonal in the site representation. In a
crystal with one atom per cell, the n index may be dropped
from M and Eq. (2.18) . Many of the more detailed calcula-
tions reported here have been done for this simplified case.
Fortunately in many crystals mass changes are larger than
corresponding force constant changes.

S. Magnons

5-(l) = (25(l))'" +(l), 5+(l) = L25(l) j'" (l),
(2.25)

S,(l) = 5(l) —u+(l)a(l).

The Hamiltonian may then be written

se = —Q I 25(P) I(/, l') a+(l) u(l) + 2t 5(l) 5(l') j'"

X J(l, i')a+(i)a(l') I (2.26)

It is possible to define a set of creation and destruction
operators with approximate boson properties to describe this
system. We write

The excitations in ordered magnetic materials are spin
waves or magnons /for a review see Keffer (1966)J. Most in the same general form as Eq. (2.3).
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If a defect is introduced, 5(t), I(t, t'), and J(l, t') will all
change. The change V as defined in Eq. (2.7) is here

I'(t, I') = 2(~(t) ~(t')3'"~(t, t')

—2SJO(l, t') for t N t' (2.27a)

and

I'(t, t) = Z L~(t')1(E, t') —~1o(t t')3. (2.27b)

In this case no simple physical defect corresponds to a
purely diagonal change. Furthermore, if the sign of I and J
change, the ground state will change, since the defect spin
will prefer to orient itself antiparallel to the host spins.
This situation requires a redefinition of the a operators. If
the ground state remains ferromagnetic, however, the
system may be treated in a similar way to the electron and
phonon systems already described.

I

crystal, to examine experimentally a particular normal
mode. It is possible, for example by optical absorption, to
examine all the crystal modes at a particular frequency. It
is also possible, by inelastic neutron scattering, to examine
the k-component content of these modes. In the perfect
crystal this leads to the properties of specific modes because
k is a good quantum number in a periodic system. But in the
imperfect crystal all modes are sampled by this technique.

There are two types of common observational methods:
responses to macroscopic external fields, such as mechanical
forces or electromagnetic fields, and inelastic scattering cross
sections with such scatterers as neutrons, electrons, and
pho tons. These properties are in fact closely related,
and all depend on correlation functions between appropriate
operators. A well-defined formalism which leads directly to
these quantities without the necessity of a complete normal
mode solution is that of thermodynamic Green's functions,
which we now review.

ions can be found in the
review by Zubarev (1960) . Their application to lattice
vibrations in defect lattices has been discussed, for example,
by Elliott and Taylor (1967). The application to defect
magnetic (spin-wave) systems has been discussed by, for
example, Wolfram and Callaway (1963) and Izyumov
(1966).

(2.28)

Substituting in Eq. (2.20) gives two equations for different
l depending on the sublattice. As a result the characteristic
frequencies are given by

For an antiferromagnet the situation is slightly more 1. Double-time Green's functions
complicated. In the simplest case there @re two types of
magnetic spin where Complete details of Green's funct

~'(k) = (2~)'p(o)' —~(k)'3. (z.z9)

B. Green's functions

In the presence of impurities with the same antiferromag-
netic order the excitations are still given by equations like
(2.20) with appropriate changes in (5,(l) ), I, and J.

These functions contain, at least as regards the experi-
mental variables which enter their definition: (i) information
on the dynamics of these variables, (ii) the density of the
excitation states of the system, and (iii) the information
needed to compute correlation functions, and therefore
scattering and response properties of the system.

Several kinds of Green's functions are used in general
applications: causal, retarded, and advanced:

In the last section it was shown that the problem of
determining the excitation spectra in disordered crystals
was essentially the same for several types of excitation.
Within the approximations adopted the excitations are
noninteracting, and it is only necessary to determine the
spatial form and energy of each excitation. In the vibra-
tional case this is the same as saying that we have used the
harmonic approximation and that we now must determine
the normal modes. This could be done in principle by
6nding the eigenvalues and eigenvectors of the set of linear
equations (2.4) or (2.13). In a general imperfect crystal,
without translational symmetry, this is an impossible task.
Much important information has been obtained by a direct
numerical attack on the secular determinant for a finite
sample of crystal, but computerized models have been
reviewed elsewhere (Dean, 1971), so that we shall only
refer to those approaches for comparison with the analytic
methods used here. In addition, special techniques have
been developed for the one-dimensional crystal, notably
the 'transfer matrix' method of Hori (1968); however, this
method fails in three dimensions.

G, = (2~/iA') (T,A (t) a(t') ) —= ((A (t); a(t') ) )„
G = (zir/i6)8(t —t') (LA(t), B(t') j„)

G = (—2~/iA) S(t' —t) ($A (t), B(t') )„)

(2.30)

r»(t, t') = (A(t)a(t')). (2 31)

where g = +1(—1) for bosons (fermions) is conventional
and where T is the time ordering operator referring to
ordinary commutation or anticommutation, 9 is the unit
step function, and averages are both quantum mechanical
and thermal, over an equilibrium distribution. For the
most part the retarded function is used in applications.

The Green's functions are closely related to the correla-
tion functions

GR = (27r/iA')8(t —t') PPAB(t, t') —grBA(t'& t) j, (2.32)

Although numerical studies have been very useful, the
essential requirement of a theory is that it explain the H fo xampl

experimental facts, and we therefore need to predict various
crystal properties. It is seldom possible, in an imperfect
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from which it may be expected that the Fourier transforms
of G and 5 are related. In fact, most calculations are done on

G (&) = (2 ) ' f G~(~ —~')

A correlation function is defined:

r~s ——(A (t)B(0) )

d~ exp(A'~/kiiT) J(cv) exp( —i~t), (2.37a)

X exp[iE(t —t')/ii] d(t —t'). (2.33)
and thus, from Eq. (2.35)

Since only (t —t') appears in these expressions, we can set
t' = 0 without loss of generality. For real A" we replace E by
E + is for convergence.

It is not appropriate in this review to repeat all of the
formal detail which is covered by Zubarev and others.
Rather, we state the main results which can be found if the
Green's functions are expressed in appropriate manner, and
then we indicate how the Green's functions are usually cal-
culated.

F~ii((u) = —(ii/~) exp (Ace/ksT)

X [exp(6~/k~T) —g]-' Im[G~(A~) g.

(2.37b)

There are also relations between this and other correlation
functions. In particular

V~& = (B(t)A(0)) = A'Double-time Green's functions may be expressed in a
"spectral representation. " Given a complete set of states,
determined by the Hamiltonian, we may formally write In general also

d&v exp(i~t) J(cv). (2.37c)

((A; B, E))~ = ((B;A, —E&&~.dM
[exp(A~/ki)T) —qjJ(~) E AM+ ZE

(2.38)

where the spectral density is

J(~) = 0 ' Z exp( —E./k T) (~
I

A
I t )( I

B
I ~) (A(t) ) = (A)0 ——x~i)((v) exp( iut +—yt),

(2 34b) where the generalized susceptibility Xzi) (co) is

V,P

X 6 (E, —E„—ii~) .

The response of observable A (t) to applied force
(2.34a) B exp( —iut + pt) (lim& = 0+) is also simply related to

the Green's function through the formula

Here A and B are Schrodinger operators, Q is the (grand)
partition function, p, and v label the exact eigenstates of the
system. 1f the imaginary part of E is positive, we define
G(E) = G~(E); if negative, we define G(E) = G~(E).
There is then the relation

J((u) = (2') 'i[exp(6cu/ksT) —gg '

xgi) (cu) = —G~(A, B; E = Ace)

= —G(A, B; E = A'(v + ie) . (2.39)

The major experimental quantities can be determined if
the Green's functions can be found from the equations of
motion which we therefore proceed to discuss.

X lim [G (Ace + ie) —G (A;&u —ie) $ 2. Equations of motion of the Green's functions

= —(~)—'[exp (5(v/kii T) —qg
—' 1m[a (A'(u) g. The quantities entering the definition of the Gree~'s

functions are Heisenberg operators. Thus differentiation
(2.35) of the defining equation with respect to t yields

1 " ImG~(E')
ReG~ ———,dE'

E —A"' (2.36a)

In these equations the energy zero is to be taken as the
chemical potential; for magnons and phonons this is zero,
but for fermions it is the Fermi energy. From the analytic
form (2.34) it is clear that Giii»(E) is analytic in the upper
(lower) half complex E plane, a,nd thus that the real and
imaginary . parts of Gz(z) are related by the Kramers-
Kronig relations,

iA'(8/R) ((A (t); B(0)))
= 27rtI(t) ([A (t), B(0)g„&

+ (([A(t), ~«) j;B(0))& (2.40)

The double-time Green s function on the right-hand side is
in general different, and usually of higher order than the
initial one. This leads to a chain of coupled equations; in
general these cannot be solved exactly, but are decoupled in
some wtay in practical approximations.

ImG~(E) = (2.36b)

However, for the harmonic lattice Hamiltonian and for
the model Hamiltonians of Sec. IB for electron, exciton, and
spin-wave excitations, the chain of equations terminates
exactly. The simplest example is obtained from the Green's
function

With these formal relations, several experimental quantities
may be found. (( .(t, t); .,+(t', 0) )) = G, (t, t', t). (2.41)
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The causal, retarded, and advanced Green's function are
chosen by inserting the appropriate complex energy in their
Fourier transform. Using Eq. (2.4) for the derivative of a
in Eq. (2.40) gives

we find

M (/) (8'/8/2) G .(/, l', t)

= —2mb(t) 8ii 6 ~ —P C.."(l, l")

X G.".(t", l', /) . (2.48)

= 2 &(/) (L -(/), -+(/ ) 3.) + &-(/) G- (/ / /)

+ P W..-(/, /")G.".(/", l', t). (2.42)

The Fourier transform to frequency, Eq. (2.33), gives

M (/)(u'G (l, /'; &u)

8(/, /') + Q 4' "(/, l")
Since the appropriate commutation in the first term is
unity, transforming to frequency space gives /i 5(/, l')
for this term. The equation is now a matrix equation which
can be written for G ~ (l, l', E) defined by Eq. (2.33) Condensed to matrix form this is written

{2.49)

G(E) = (El —$C)

where K is the matrix of the numbers in Eq. (2.3).

(2.43) Lhhco' —ejG((u) = 1,

where 1 is the unit matrix.

(2.50)

If the eigenstates s are known (and are created by a,+) G
can be diagonalized by the transformation to this representa-
tion

The transformation to normal modes will also diagonalize
this matrix. In the case of the perfect crystal the result is

((a„a,+, E» = /i„/(E —Z,). (2.44) = 6,,'B(k —k')
t

cv' —(vP(k) 7
—'. (2.51)

iA(8/Bt) ((n (l, t); n ~ (l, 0) ))

= 2~&(/) (Lu. (/), n. . (/') g&

+ ((Lu (l, t), 3C);u (l', 0)))
= 0+ iA((p (l, t)/M (l); u„(l', 0))). (2.45)

This contains a diferent Green s function, so, proceeding
to the next equation,

&(~/~/)((P (/ /)/M (/) (/ 0)))
= 2 ~(/) (LP-(/)/M-(/); - (/')3&

+ ((LP (l, t) /M (l), Beg; ~ (l', 0) ))

In the perfect crystal, defined by Eq. (2.1), the states s
are known and specified by jk. In the imperfect crystal they
are not known.

For the case of lattice vibrations, using the Hamiltonian
(2.10) and equations of motion (2.11) and (2.40) gives

In the spin-wave case the Green's function of interest- is
((5 (l, t), 5~(/', 0))). Using the Hamiltonian (2.19) and
the equation of motion (2.20), Eq. (2.40) becomes more
complicated:

iA'((5 (l, /); 5+ (l', 0) ))
= 4mB(/)5(/, /') (5,(/) )

+ 2 P I(l, /") ((5 (l, /) 5,(l", /); S+(t', 0) ))

+ 2 Q J(/, /") ((S (l", t) S,(l, t); S (l', 0) )).

(2.52)

This can again be linearized by decoupling out the S,(l, t)
and replacing it by its equilibrium value. In the imperfect
crystal we see that the inhomogeneous term will not give a
unit, matrix unless aH the (S,(l) ) are equal. This leads to
difhculty in the subsequent analysis. It is therefore usual to
transform to variables like the a defined by Eq. (2.25). We
write

—27nA
5(t) 5„6ii

M l

G(/, /', /)
—= ((5-(/, /) 5+(/', o) ) &/2LS(/) 5(/') j"'
= ((a+(l, t); a(l', /) )). (2.53)

X ((u "(l",t); u {l', 0) )).

De6ning

(2.46)

In the ferromagnet, therefore, on transforming to frequency
space Eq. (2.52) becomes

EG(/, l', E) = 5(/, l') + + 25(/")I(/, l")G(l, /', E)

+ g 2LS(/") S(l)O'"J(l /") G(/", l', E) .

G ~ (/, l'; t) = ((u (l, t), u (l', 0) )),
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This is formally the same as Eq. (2.42) and has a solution
like Eq. (2.43) with appropriate definitions.

(2.37) . This Green. s function is related to the G defined in
Eq. (2.41) by Eq. (2.38). The average energy is therefore
(with respect to the chemical potential p)

C. Experimental quantities

1. Density of states

(E —p) Im[TrG(E) ](K} =m —' dE
exp[(E —&)/k&T3 + 1

' (2.59a)

A basic property of an excitation spectrum is its density of
states per unit energy range p(E) . This can be determined
from the Green's function (Zubarev, 1960); from Eq.
(2.44) we see that the poles of ((a; a+, E})occur at the
characteristic energies. Defining the sum over all states s as
the trace of 6 C„(T) = —;n'p(p) k~'T = yT (2.59b)

while specific heat is obtained by differentiating. Using the
properties of the Fermi distribution, it is given approxi-
mately at low T by

—~ ' Im [Tr((a, ; u,+, E))g which is proportional to the density of states at the Fermi
level ~ The paramagnetic Pauli spin susceptibility is also an
important quantity in metals:

(2.55) (2.59c)

In the imperfect crystal the A", are not known, but since
Eq. (2.55) is a trace it may be evaluated in any representa-
tion. In particular, using the site representation for the
trace l = 3'

In the vibrational case (BC) involves averages which can be
obtained from ((u, I)) and ((p, p)). The latter is governed
by an equation similar to Eq. (2.46),

(2.60a)

p(E) = —m
—' Im Q ((a (l); a+(l), E)). (2.56)

Using Eqs. (2.58) and (2.38) this formula gives a formal
matrix result

For the phonon case the displacement Green's function 6
defined by Eq. (2.47) will not give the density of states
directly whenever the mass varies from site to site. In the
perfect lattice case the transformation (2.14) must be
applied before a simple form like Eq. (2.51) is obtained. It
is the "mass-weighted" displacement Green's function
which gives the density of states in the general case, namely

~—' Im ITr[M~(l)'"((u (l); u (l'), (u + ie})M (l')'"ceja

= g p(a) —co,) + 6((u + cu, )) = p(cv) + p( —co) .

Thus the mean kinetic energy which can be obtained. from
~i ((p, p}}hA ' is the same as the mean potential energy from
~C ((u, u}) as expected from equipartition. Using Eqs.
(2.36) and (2.37) and differentiating with respect to T
gives the specific heat

"d~h~' exp(A~/kiiT)
kIiT' [exp(Aced/kiiT) —1]'

(2.57) X ImlTr(AA G) }. (2 .60c)

By writing Eq. (2.46) in matrix form we can also find that The ((u, u)} Green's function may also be used to calculate
the mean-square atomic displacement as required in the

i~((p; ~)}= ] + @G(~) = AA~2(AA~2 @)—& (2 58) Debye —Wailer factor, and so on.

Therefore, using Eq. (2.50), the trace of the Green's func-
tion i((p, u)) is the same as the mass-weighted G used in
Eq. (2.57), and will give the density of states p(co) = p( —cu)

in the harmonic oscillator case.

Similarly, the spin-wave density of states may be con-
structed from the trace of G(l, l', E) defined from Eq.
(2.53).

2. Thermal properties

The ordinary thermal properties of these systems involve
correlation functions. The internal energy (BC) of the
system described by Eq. (2.3) requires a knowledge of
(a+(l)a (l')) which may be determined from ((a+(l);
a (l ), E)) using the prescription given in Eqs. (2.36) and

In the spin-wave problem, the simple decoupling pro-
cedure employed in Eq. (2.21) is only valid at T = 0 so the
calculation of thermal averages from the Green's function
are not straightforward. We shall confine our attention
hereto T =OK.

Inelastic neutron scattering experiments give the most
detailed information about the spectra of phonons and
magnons. Sjolander (1964) has given a detailed discussion of
the interaction between phonons, and all sorts of radiation,
while I.ovesey and Marshall (1966, 1971) have reviewed the
interaction between neutrons and condensed matter. We
therefore give only the essential formulas here. The inter-
action between a nucleus at x (l) and a neutron can be
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described by a Fermi pseudopotential,

27rA2
SC;„g ——Q b (l)bLr —x (l) j,

The correlation functions in Eqs. (2.66) and (2.68) can be
obtained from weighted sums of G ~ (l, l', E) defined by
Eqs. (2.47) and (2.49). Using Eqs. (2.37b) and (2.66) one
finds

where b (l) is the scattering length. It depends on the
nuclear species and in general also on the nuclear spin.

If a neutron is scattered from state k to state k' with
energy change

d'0- 1 k'
B (l) B (l') e (E)

deed& 7l k I jItl

X Im((q u (l); q u ~ (l'), E))&

X exp{iq LR(l) —R(l') g}, (2.69)

E = (k2/2M~) (k' —k") (2.62) where

and wave-vector change n(E) = Lexp(E/kiiT) —1] ' (2.70)

q=k —k'+Q, (2.63)

where Q is a reciprocal lattice vector, the differential cross
section per unit energy range consists of two parts (Van
Hove, 1954) . The coherent cross section from the average of
b over nuclear spin states b' is

is the usual Bose—Einstein factor. Thus if E is positive the
cross section corresponds to phonon destruction and is
proportional to the number of phonons present in equilib-
rium. G in Eq. (2.49) is an even function of E, so the con-
tribution to ImG( E) is o—pposite in sign. That is, there is a
similar contribution at (—E) corresponding to phonon
creation proportional to

d'0' 1 k'

dQdE 2~A' k
dt exp(iEt/A) —rt( —E) = Li —exp( —E/kiiT) j ' = N(E) + 1.

X (b '(l) exp{ iq x.(l, t)$

X b '(l') exp{ —iq x.. (l', 0)$). (2.64)

It is therefore directly related to the frequency transform of
a thermally averaged, time-dependent correlation function.
In most solids the actual nuclear position is always close to
the equilibrium position, and we can therefore write x in
terms of the displacement u as

(2.71)

In the perfect crystal the 8 (l) are the same in each cell
and the q transform gives a cross section proportional to the
Green's function (2.51) . The imaginary part is then a delta
function, bl cu' —~P(q) $, so that cv, (q) can be determined
directly. In the imperfect crystal, of course, q is not a good
quantum number, and in principle the cross section will be
continuous in frequency.

x (l) = R.(l) + u. (l). (2.65) Neutron scattering can also be observed from spin waves.
Here the cross section is

Expanding the expression in Eq. (2.64) gives in the first
nonvanishing order the (u, u) correlation. A more complete
treatment shows that the effective scattering lengths should
be modified by the Debye —Wailer factor so that

d'0- g' —Q exp {iq LR (l) —R (l') j}dQdE 2xA k ) )r

d'cT 1 k'
dt exp (iEt/A')

dQdE 2~A k

X P ~.(l)~.. (l')

X (I q u. (l, t) )Lq u. (l', 0)g)
X exp {iq I

R (l) —R (l') j},

where for harmonic systems

&-(1) = b '(l) p{ —-'(I:q -(l)7)}

(2.66)

(2 .67)

X dt exp (iEt/A')

X (S (t, t)S (l', 0) + S (l, t)S (l', 0))

X f(l)f(l'), (2.72)

where f(l) is the form factor of the magnetic moment
distribution on atom l and g = (1.9e'/mc') is a scattering
length which is a measure of the electron —neutron interac-
tion. The correlation function involved is again directly
related to a weighted sum of G's defined by Eq. (2.53).

The predominant interaction between lattice vibrations
and an electromagnetic field is of the electric dipole type:1 k'

dt exp(iEt/A) Q P '(l)
2+@k nldodE

The incoherent cross section involves correlations only in 4. Optical properties —vibrational
the motion of individual atoms,

X (Lq u (l, t) j{q. u (l, 0)j), (2.6S)
3C; i ——Q e (l) u (l) ~ 8 exp(icot), (2.73)

~he~e P contains the incoherent scattering length and the
Debye —Wailer factor as in Eq. (2.67).

where e (l) is the effective charge of the (n, l) atom and is
assumed to include the eRects of atomic polarizability. In
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this model the polarization of the medium is

I' = &Q e (l)u (l) &.

where in the phonon problem [see, for example, Flicker and
Leath (1973)j the energy current density operator, using

(2.74) Eq. (2.10), is

From Eq. (2.39) the polarizability is

x( ) = — & e-(l) e- (l') ((u-(l); u- (l'), » (2 75)

J„=-,'Q [R(l) —R(l') j„C„,(l, l')

X u~(l') p, (l)/M„(l)
2„" (l, l') u (l') p„(l)/3f„(l). (2.79b)

The absorption coefficient for infrared radiation is

ae = 41r~ Imx(co)/c', (2.76)

where c' is the velocity of light in the medium. As in the
neutron scattering case it is simply related to a weighted
sum over (&u, u)&; however, the wave vector of light is so
small that only the q 0 response is determined. In the
perfect crystal where e is the same in each cell, Eq. (2.76)
contains 6[co —co;(0)j using Eq. (2.51).

These correlation functions are related to two-particle
Green's functions (2.37b) involving four a operators [or u
and p operators). For the harmonic Hamiltonians we are
using, such two-particle Green's functions can always be
decoupled exactly into sums of products of two one-particle
functions. This becomes clear if we assume that the trans-
formation which diagonalizes G in Eq. (2.44) is known;
then since these normal modes cannot interact with each
other,

Raman scattering by phonons is formally very similar to
the neutron scattering problem except that the photons
have q ~ 0. Defining an eRective Raman polarizability
for an (a, l) atom as C (l)u (l), the Raman cross section is
proportional to

«~.'(t) a"(t); ~.'(0) ~.(o) ))
=

& .'(t) .(o))(& "(t); .'(o))&
+ & "+(o) "(t)&(& '(t); .(o))). (2.80)

C (l) C„.(l') e(E)

X Im&(u (l) .u ~ (l'), E))g. (2.77)

S. Transport properties

The transport properties of the systems under considera-
tion can also be written in the Green's function formalism.
'The Kubo (1957) formula for the electrical conductivity is

co

0.„,(cv) = llm — dt exp( —i~t) exp( 1')—
„p+ U

In general C depends on the direction of the photons and the
polarization (Barker and Loudon, 1972) .

Using this result and manipulating the formula (2.78) in
the spectral representation to eliminate the integral over X

gives, for the dc electrical conductivity,

e2
0.„,(0) =, Q [R(l) —R(l') j„W(l, l')

m.A2VkggT i,ii,„„i
X [R(rt) —R(e') j„W(n, n')

de exp[(e —u)/keT j
[exp((e —p)/keT) + 1j'

X ImG(l, n, e) ImG(i', m', e). (2.81)

The ac electrical conductivity o.(~) can be put in another
form [see Velicky and Levin (1970)j which is convenient
for studying its high-frequency behavior,

X dX &J„(0)J„(t+ iAX) &, (2.78a)
~„,(u)) =

QO

AmcuV exp[(e t1)/keTj + 1

where J is the charge current density operator and P =
(keT) '. For the Hamiltonian (2.3), J takes the form

J = ie /A Z [R(l) —R(l') j„W(l, i') a+(i') 11(i)

= Z &(i i').a+(i')a(l). (2.78b)

For the thermal conductivity, the Kubo formula takes a
similar form [see, for example, Mori et al. (1962)j,

X TrIImG(e —irt)e'(M ')„,

+ 8„ImG(e —i1t)8„
X [G(e+ Ace+ ig) +G(e —A'~ —i') j},

(2.82)

where (1M' ') is the effective mass tensor, which in k repre-
sentation takes the form A '8'e (k) /ctk„Bk„The h.igh-
frequency Drude behavior of this formula for metals has
been discussed by Velickv and &Levin (1970).

1
Kpp (M ) = 11m

„p+ VT
dt exp( icA) exp—(—qt)

dX &JP(0)J,s(t + 'AX) &, (2.79a)
&..(0) =

—2A'
'

cu' exp (Aa&/ke T)
dM

[exp (Ace/ke T) —1j'
X Tr[A„ ImG(cv) A„G(cg) j. (2 .83)

In the case of phonons, the dc lattice thermal conductivity
becomes [see, for example, Flicker and Leath (1973)j
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6. Optical Properties —electronic

In addition to the dc conductivity, various experiments
involving the interaction of light with metal and semi-
conductor alloys are also directly related to two-particle
Green's functions. The interaction Hamiltonian between
the electrons and the light has the form

We may devise an approximate theory when impurities are
present for the case when the n band is full and the P band
empty. The unperturbed crystal has a joint band with
energy

E(k) = Ep(k) —E (k)
= E(l) —P W(i, l')

D p(l, l')a (l)ap+(l') exp(ia&t),
aP; ZZt'

(2.84)
X exp i ik LR (l) —R (l') j I (2.90)

where D p(l, l') is the matrix element of j ~ A between
Wannier functions of bands n and P, sites l and l'; j and A
are the electron current and vector potential, respectively.

Transitions within a band are related to the conductivity
described by Eq. (2.78); optical absorption involves inter-
band transitions n W P. The sum over all sites in Eq.
(2.84) arises because the light waves have k 0 and inter-
act nearly in phase with all sites. In a perfect lattice where D
will depend only on R(l) —R(l') and not explicitly on l,
Eq. (2.84) may be written

and an appropriate E(l) and W(l, l') may be defined as in
Eq. (2.3) . If the perturbation V is different in each band we
define

I'(l) = l'- (l) —I'pp(l) (2.91)

x-p( ) = 'D-p(l)'ZG(l, l;E). (2.92)

Then if G is the Green s function for this new effective band,

P P D p(k) a (k) up+(k) exp(i~t),
k aP

(2.85)

x p((u) = —2iroP Q D p(l, l')D p(e, m')
ZZ~. nn~

X ((a (l) ap+(l'); a +(n) ap(e'), E))~. (2.86)

Using the relation (2.81), transformed to u&, gives

x- ( ) = ' Z D- (l, l') D- (~, ')

CO dE'
PImG (l, rs; E')

exp E' kIiT) + 1

X Gpp(l', ~'; E —E') —G (l, e, E —E')

and transitions conserve k values. In the imperfect case
D(l, l') will depend on whether the sites are defects or not,
and a weighted sum will develop as in -the other properties
discussed above. The polarizability, from which the other
properties may be calculated, is given by an expression
like (2.75). For a particular pair of bands

If one band is partly full it is difficult to use this approxima-
tion, since it is not possible to translate the Fermi func-
tion in one band in a simple manner. Finally we note the
neglect of any correlation effects between the two G's
which appear in Eq. (2.87) and all many-body and exciton
effects in the above.

For the case of x-ray spectra where one of the bands a is a
tightly bound band of inner shell electrons it is a good
approximation to neglect the variation E (k). Then G in
Eq. (2.92) is just that of the cond. uction band.

In photoelectric experiments (Spicer, 1972) the emission
current depends not only on the absorption process but also
on the probability of emission. It is commonly assumed,
without much justification, that the k conservation breaks
down. In that case the electrons are assumed to be excited
and emitted at the same point in space so that l = e in
Eq. (2.87) and the emission probability is then

5 p(&u) ~ D' dE'f(E') ImG (l, l; E')

X ImGpp(l', n', E') j. (2.87)
X ImGpp(l, l'E —E'), (2.93)

The Fermi distribution function appears in order to
ensure the occupation of one of the states involved in the
transition. For a perfect crystal this reduces to

i.e. , is proportional to the joint density of states
j' dE' p-(E') ~p(E —E').

f(E-(&) (D- p(&) )'
g E+ E (k) —Ep(k) + iE

D. Systems with few defects
(2.88)

1. Standard manipulations

Several simplifications are commonly made in applying
Eq. (2.88). One is to assume that the intraband matrix
element D of Eq. (2.84) vanishes between sites Li.e. , that
D(l, l') = 0 unless l = P$; this makes D p(k) = D p

independent of k. The perfect lattice result is now propor-
tional to the joint density of states of the two bands,

y p" (a)) = (u' Q f(E (0) )8)E+ E (k) —Ep(k) jD p'.

The Green's functions which were defined in Sec. IIB
were written in a shorthand matrix form as in Eqs. (2.43)
and (2.50). If we know the properties of the perfect lattice
as given by Eqs. (2.44) and (2.51) we may write the result
for a general lattice in terms of the known result in the
perfect case, denoted by P. Then G differs from P by the
inclusion of an extra matrix V as defined in Eqs. (2.8) and
(2.18). These quantities are related by the forrnal solution

(2.89) G = (1 —PV) 'P. (2.94)
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This equation can be rearranged in various ways. For
example,

~O
+

P P P
+ + ~ ~ ~ ~ ~

P P P

G = P + PTP (2.95) FIG. 1. The diagrams occurring in the expansion (2.98) of 6 for
the case of a crystal with a single defect.

defines the T-matrix

T = V(l —PV)

Alternatively, there is a Dyson equation,

(2.96)

in a single-band model. Then, from Eq. (2.96)

T(l, l') = 6/[1 —b,P(0)]6(l, 0)6(l, l')

which has poles whenever

(2.99)

G = P+ PVG. (2.97) 1 —AP(0) = 0 (2.100)

Any of these expressions may be readily expanded so that is satisfied, where

G = P + PVP + PVPVP + (2.98) P(0) = P(l= 0, l'= 0;E)

giving a form of perturbation expansion about the perfect
lattice. P represents the excitation propagating in the perfect
crystal, V the scattering by the defects. Thus successive
terms give the efIect of multiple scattering. The various
methods of approximate calculation of G correspond to
summations over certain sets of terms in this perturbation
expansion. Of course Eq. (2.98) is only meaningful if the
series converges, which is usually not easily demonstrated.

2. Single defects

= g—'P [E —E(k)] '. (2.101)

This exact solution expressed in a diagrammatic notation
corresponds to summing in G, the diagrams shown in Fig.
(1) where the single horizontal line represents the perfect
lattice propagator P and the dashed lines represent the
scattering 0 by the impurity.

There is a local mode solution if 6 is very much larger
than the bandwidth. For E well outside the band this
reduces to

The problem of a lattice containing a single defect has
been solved exactly in many instances where V is a matrix of
limited size or range; experiments on crystals containing
only a low concentration of such defects can be interpreted
in terms of those results. An exhaustive review has been
given by Maradudin (1966) . We outline the solution for a,

single defect, since we may discuss the systems with a
high defect concentration in terms of the single-defect
results.

The simplest starting point is Eq. (2.95). The T-matrix
(2.96) has the same smaH number of nonzero elements as V
(these are a fraction of order 1V ' of the whole, where X is
the number of atoms) . The excitation energies are given by
the poles of G. These will generally be shifted from the
poles of P by an amount of O(X ') [see, for example,
Lifshitz (1956, 1964)], except that a few entirely new poles
are possible from T. Such new states must be isolated in
energy away from the bands of the perfect crystal, and
represent localized states. Even though the band modes are
modified by the presence of V to O(1/1V), this modification
will be largely confined to the region of the crystal where V
is nonzero, i.e., there will be large relative changes in the
states in a region of the size (1/X) th of the crystal. These
changes may be particularly large in certain narrow fre-
quency ranges —an effect analagous to a resonance in
scattering theory —when the frequency matches some
characteristic frequency of the defect.

a. Single site perturbations-

P (0) —1/[E —Eo), (2. 102)

and thus the condition (2.100) is satisfied when

E~Es+ g (2. 103)

ImG(0, 0, E) = 7'(E —Er.) [P(EI.)/(d/dE) AP(Er.)]
(2.104)

(this is not a trace summed over l).
For E inside the band P(0) has both a real and an

imaginary part. If the density of states is ps(E), we can
write the real and imaginary parts according to

P(0) = (P, + i7rpp(E) = P~(0) + iPr(0),ps(E, ') d(E')

(2. 105)

where (P indicates the principal part of the integral. The
value of G(l = 0, l' = 0, E) is from Eqs. (2.95) and
(2.99) just the scalar quantity

In this case, the local mode is at the impurity-site energy.
As 6 becomes comparable with the bandwidth we need the
full solution of Eq. (2.99), and for small enough 6 no local
mode will appear. The "excitation density" of the local
mode at l = 0 may be assessed by using Eqs. (2.95) and
(2.99) to give

These ideas can be clarified by considering a simple case.
Suppose V contains only one diagonal element 6 at l = 0, P (0) /[1 —hP (0)]. (2. 106)
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CD

o I 5—

C)

I.O—

2 && 2 matrix, as is T. Specifying the sites by 1 and 2 we
define

(2.111)

The poles of T, as given by Eq. (2.96), occur at the zeros of
the determinant of

~

1 —PV ~, i.e. , when

cD 0.5—

I

3 0
3

0.5 I.O

In particular

FIG. 2. The local mode frequency (~L,/M~ = 1) and fraction of the
mode on the defect site M'Px(0) g', versus e & 0 for light masses in
the three-dimensional Debye model Lafter Dawber and Elliott (1963)g.

1 —[A(1) + ~(2) jP(0) —2AP(1, 2)

+ [~('»(2) —~'~[P(0)' —P(' 2)'~

(2. 112)

This model allows the treatment of a number of cases. In
particular it is a basic model problem in the treatment of
crystals which have bond changes. For example, in the
treatment of Blackman et at. (1971),electron energy bands
are considered when the transfer integrals W of Eq. (2.3)
are changed at random. This corresponds to putting

ImG(0, 0, E)
= zrps(E)/I [1 —6 ReP(0) ]s + [Azrps(E) ]s}.

A(1) = d(2) = 0 (2.113)

(2. 107)

The response at the defect site is like that of the host lattice
[the density of states ps(E) $ multiplied by the factor in the
denominator. This may have a resonant form centered at
the solution of

A(1) = A(2) = —A (2. 114)

so that Eq. (2.112) becomes

in Eq. (2.111).If a force constant is changed in the vibra-
tional problem or an exchange coupling in- the magnetic
problem, then

[1 —6 Re}P(0)}]= 0, (2. 108)

with a width determined by ImP(0).
For a mass defect Eq. (2.16a) gives

(2. 109)

In a cubic crystal with one atom per unit cell, symmetry
gives the same result for each coordinate direction o. . In
this case

1 —2h.[P(1, 2) —P(0)] = 0. (2. 115)

Nevertheless this single bond change is sometimes used as
a simple model.

Changes in force constants (and exchange constants) are
usually strongly correlated between the sites. For example,
the introduction of a defect atom may change the interac-
tion with all the neighbors, and these effects will interfere
as discussed below.

"d(u' ps (cu') zzr+ po~
M M 2 to

(2. 110)

A local mode will occur if the defect atom is sufhciently
light, i.e., e ) 0. Since M(t) is always positive, we always
have e ( 1. For a heavy defect e & 0 there may be a reso-
nance. These effects are demonstrated in Figs. 2 and 3,
from the work of Dawber and Elliott (1963). Figure 2

shows the local mode frequency for a light mass in the Deby e
model together with the factor in Eq. (2.104) for G(0)
which determines the fraction of the local mode on the
defect site. Figure 3 gives the factor in Eq. (2.107) for the
same model, clearly showing resonance for e & 0 which
shifts to lower frequencies and sharpens as the defect mass
increases.

N

C)

b. Tzoo site pertzzrbatiorzs- , (d/GUM

I'IG. 3. The fraction of the mode of frequency co on the heavy atomIf the Perturbation involves two sites the algebra. is
(~ ~ 0) defect site versu, ~/„~ for the Debye ~odel l-after Dawber

shghtly more complicated. The nonzero part of V is now a and Flliott (1963)g.
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c. Extended defects

We consider only one example of this, where a defect
atom is coupled only to its nearest neighbors. A case dis-
cussed in some detail in the literature is that of a simple
cubic Heisenberg ferromagnet (Wolfram and. Callaway,
1963; Izyumov, 1966; subsequent work has been done by
Walker, Chambers, Hone, and Callen (1972). Using Eq.
(2.27) V becomes a 7 &( 7 matrix arising from the defect
and its six neighbors,

p 0 0 0 0 0

5.0—

t20 0)

0.2 0.3 0.4 0.5 0.6

,0,0)

(2,0,0}
(m, m, m)

0.7

0 p 0 0 0 FIG. 4. The local mode frequencies for a pair {i,j) of light defects
in a model simple-cubic crystal at separations r;; = (1, 0, 0), (2, 0, 0),0, (2.116) and (~, ~, ~) versus «(Takeno, 1962).

0 0 0 p 0 0

0 0 0 0 p 0

o o o o 0 pJ

where

~ = 6L(J'/J) —ij, p = (J'S'/JS) —1,

~ = P'(S')'"/J(S)'"l —1.

2JSp/ (1 —2JSpP, ), f roi= p, d, (2.117)

where

P„= P(0) —P(25)

Because of the cubic symmetry V can be simplified by a
transformation to symmetrized coordinates as discussed in
Appendix C. For this simple cubic case the 7 )& 7 reduces to
one 2 && 2 matrix of I'& (s-like) symmetry, three equal
diagonal elements of I'& (P-like) symmetry, and two of
I's (d-like) symmetry. The matrix of P(t, t') connecting
sites of the cluster, and the T matrix also symmetrize in the
same way. For the last two cases

where P, = P(0) + P(25) + 4P(5 + 5'). Thus the inter-
ference between the six changed bonds, symmetrically
placed, gives a quite different t-matrix than that derived in
Eq. (2.115) for single bond changes.

The vibrational case for an extended defect is always more
complicated because of the three degrees of freedom on each
site. For example in this simple cubic case a 21 )& 21 matrix
results, although this too can be greatly simplified using the
point symmetry. This situation has been considered in
detail by a number of workers (e.g. , Lakatos and Krum-
hansl, 1969; Yussouf and Mahanty, 1965, 1966, 1967),
but since it has not been generalized to the case of many
defects we shall not reproduce the results here.

The single impurity result is also of importance in the
electronic case, as is discussed in Sec. IIIC2, where it is
used to insure the correct dilute limit.

3. Defect Pairs

Two defects with site-diagonal perturbations will inter-
fere to produce changes in the single-defect modes. Two
such defects can be described by Eq. (2.111) with 6 = 0.
The poles of Eq. (2.112) are shifted from the single-defect
positions given by 1 —A(1)P(0) = 0. If the defects are
identical they have two degenerate modes which are split
as Eq. (2.112) becomes

and 1 —QP(0) ~ AP(1, 2) = 0, (2.120)

Pg ——P (0) + P (25) —2P (5 + 5') .

e

V, = 2JS!
k —v(6)'"

—v(6) "')
!)

(2.118)

Here 5, 5' are the vectors to the nearest-neighbor sites
5 = a(1, 0, 0); 5' = a(0, 1, 0), etc. For the s-like part

and the splitting depends on the size of P(1, 2). Again for
well localized modes the splitting will be small. A calculation
of the pair modes frequencies for. high-frequency phonons
in a simple cubic crystal was made, for example, by Takeno
(1962). The frequencies of the impurity modes are shown
in Fig. 4 versus 6 for single defects and for pairs of defects
that are separated by the vectors a(1, 0, 0) and a(2, 0, 0)
in the crystal.

( p(0) 6"'P (5))
)

(2. 119)
t = S/! 1 —SP(0)g. (2.121)

It is convenient to define here the two-defect T-matrix
T~'& in terms of the single-defect t-matrix.
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6t2)

+ ~ ~ ~

(1958, 1970) . This property is not reflected in the
configuration-averaged density of states as Thouless (1970)
has explicitly demonstrated. Recognizing that it is not the
whole story, for the moment we consider what is known
about the total density of states by way of exact results.

l. Exact results

/ / I

+ / g + / I X +, ~ ~ ~

(b)
FIG. 5. (a) The diagrams occurring in the expansion (2.98) of G
for the case of a crystal with two defects; (b) the scattering terms in
the single-site t matrix (vertical solid line).

Manipulation of the 2 )& 2 matrix in terms of Pauli spin
matrices o for convenience of representation gives:

The history of the theory of disordered systems has been
singular in its dearth of exact solutions and precise general
principles. Only highly idealized models have been solved
exactly; nonetheless exact results on simple systems are
invaluable, both iri guiding physically motivated approxima-
tions and in disclosing unusual and unexpected features
unique to diso rdered systems. An extensive review of
numerical calculations has been given by Dean (1972),
whose work, as mentioned in the introduction, complements
ours.

T&» = a&/[& —aP&»]-' = n/[& —u (i, j)~']-i

t
[l + tP(i, j)o.*]. (2. 122)

This calculation corresponds, in the diagrammatic notation
defined above, to summing the diagrams corresponding to
all scattering by the pair of defects as shown in Fig. 5(a),
where the solid vertical line is the t-matrix for scattering by
a single site as shown in Fig. 5(b) .

E. General features of properties of disordered
systems

For a crystat. with many impurities the full solution of the
problem clearly becomes intractable and approximations
must be made. A forrnal solution involves a study of the
T-matrix (2.96) for m defects. For a concentration c of
defects in the crystal of X atoms this is a square matrix of
dimension clV, involving many P(l, l ). Before proceeding
to review the approximate methods currently in use we shall
discuss a few general features of the system.

In the study of the single-defect problem it was shown that
a single defect caused small modifications of most perfect
crystal states, but introduced the possibility of isolated
localized states. A pair of defects modifies the band states
more, and, if the defects were of the type which give local
states, two such states now appear on either side of that
energy. The further addition of defects will continue this
process of splitting impurity levels. Modification of the
band will increase, and generally be particularly marked near
resonances of the defects, which then produce the largest
effects. The local modes for distant pairs and clusters will
accumulate densely around the single-defect energy and give
rise to an "impurity band. "These features are seen promi-
nently in computer studies.

While the total density of states is indicative of some
properties, we recall that we often need suitably weighted
densities of states. Transport properties on the other hand
are given by two-particle Green's functions; here an essen-
tial question is whether the states involved can carry a cur-
rent. These properties are related to the important question
of state localization, as raised, for example, by Anderson

The first exact analytical solution of the excitations of a
disordered system was given by Dyson (1953), who con-
sidered a one-dimensional chain and found an integral
equation for the density of states, for the case of a con-
tinuous distribution of masses and force constants. Un-
fortunately, the form of his result is such that it has not
been of much practical use. Schmidt (1957) developed a
method based on transfer matrices (limited to one dimen-
sion) and was able to derive results equivalent to Dyson's,
but easier to apply; he also derived results for the spec-
trum of a, two-component system, and Agacy (1964)
solved the appropriate functional equation exactly. Dean
(1960) had previously obtained machine calculations for
this case in very good agreement with Agacy's results.
Again in the two-component disordered chain, Borland
(1964) showed that at certain special frequencies, and for
a mass ratio greater than 2.0, it was possible to find the
integrated density of states exactly, again in good agree-
ment with computations by Dean.

One other aspect of the spectra of disordered systems,
which is seen most strongly in one dimension and has been
derived from the transfer-matrix technique, has recently
been reviewed by Hori (1968). Given certain conditions, it
may be shown that there are gaps in the spectrum; this was
demonstrated exactly in one dimension. It is unlikely that
this behavior is general in three dimensions, but it may
appear in special models. In his review Hori discusses his
work with Matsuda and Fukushima on higher-dimensional
systems, but the phase operator, which is a simple concept
along a chain (ordered or disordered), must now become a
tensor (matrix), and manipulation and integration become
quite unmanageable in general. One other result for chains
was obtained by Rosenstock and Mc Gill (1962), who show
that eigenfrequencies and eigenfunctions may be ordered so
that the Kth mode has precisely K —1 nodes.

One property of the disordered alloy on which there are
exact theorems is the bounding limits of the spectrum of
disordered systems (Saxon and Hunter, 1949; Luttinger,
1951; Lifshitz, 1964; Taylor, 1966, 1967; Velicky, Kirk-
patrick, and Ehrenreich, 1968; Thouless, 1970). The result
is that in a two-component, randomly occupied, regular
lattice the gap between bands (if it exists) and the upper
and lower spectral limits are determined by the common gap
and band regions, respectively, of the two hmiting crystal-
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line species. (The results are valid only in the "model
sense" in that, taking the electronic structure of a disordered
alloy as an example, charge transfer and change of basis
functions are not accounted for—which surely is a simplihca-
tion of what happens in a, real disordered alloy. ) The argu-
ments given by Lifshitz, Thouless, and Taylor are not
restricted to one dimension.

We now turn to another successful approach to "exact
results, " computer modeling. Since Dean (1972) has re-
vi.ewed this aspect of the subject extensively, we need only
present the main features. The earliest computer experi-
ments concerned electronic spectra of one-dimensional ran-
dorn chains by Landauer and Helland (1954), and were
followed by Lax and Phillips (1958) and Frisch and Lloyd
(1960). These provided information about the spectra and
wave functions; they supported the Saxon —Hunter theorem
and stimulated subsequent work on "tail-states. "

The kind of calculations begun by Dean in 1959, and
carried out on a much larger scale since, exhibit clear indica-
tions of two important new features in the spectra and modes
of disordered systems. Although done for lattice vibrations
it should be clear from our discussion of model Hamil-
tonians in Sec. IIA above that the results may be applied to
electronic spectra. The feature in question is seen by refer-
ence to Fig. 6 from the work of Dean (1960), and in three
dimensions by Payton and Visscher (1967, 1968), as shown
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in Fig. 7. The important feature referred to is that the
character of the spectral density in the region outside of the
main host band is extremely irregular (spiked) in character.
As the concentration of defects is increased, this behavior
persists until a critical concentration is reached (which
never really happens in one-dimensional systems), at
which point the structure smooths out to a form very similar
to the in-band structure. Wave functions going with the
spiky spectrum are spatially localized, in contrast to the in-
band modes which, though irregular in amplitude, extend
through the crystal. When Dean first obtained his results it
was thought that they were a result of statistical fluctuations
due to finite lattice size; it has long since become clear that in
fact he was the first to show "experimentally" that localiza-
tion of states and jagged spectral character are a new and
general feature of disordered systems, which at this writing
have only very recently been approximately reproduced (see
Sec. IIIC1) by formal analytical models or methods.

The computer calculations have, then, served as a basis
for comparing formal approximate theories an& experi-
ment, as well as having been useful in pointing out the
unique features of the exact results.

!3
4) /CU

I'IG. 6. The phonon density of states p(co') versus co'jr'~ for dis-
ordered linear chains of atoms of mass M~ and M~ ——MA/3 for con-
centrations c of 8 atoms of 10%, 26%, 50% i after Dean (1961)j.

2. Configuration averaging

The experimental quantities discussed in Sec. IIC have an
essential common feature —they all involve a sum over all
sites in a macroscopic sample. For example, the neutron
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scattering cross section (2.69) is simply related to

g [g G(l, l + 5) ) exp(ik 5),
l

(2.123)
I

([a/av(r'))G(r, r; E~ i.)) I

—expL —
I
r —r' I/f(E) ) (2. 126b)

Transport properties can be obtained by a configuration
average of the two-particle Green's function. If the sample
were too small, fluctuations due to different configurations
would be important, since the sum over sites would not be
large enough to ensure that representative configurations
were present. The experimenter would see this as a random
sample dependence of the measured quantity.

The local density of states is sometimes important for
conceptual reasons even though inaccessible to most experi-
ments; we define it at site l as

p(l, E) = —2 Im((a(l); a+(I), E)), (2.124a)

so that p(E) in Eq. (2.56) is

p(E) = X 'Q p(/, E). (2. 124b)

We assumed above that such a quantity was local in that
it depended only on the environment of l. Butler and Kohn
(1970) have recently discussed the question of how local
such a quantity is in a weakly scattering disordered system.

They considered the effect of a small perturbation v,
localized at point r', on the diagonal one-electron Green's
function G(r, r, E) at a general point r. The quantity
actually found was the configuration-averaged quantity

([B/R (r') )G(r, r; E + i~) )

where we have written / for U(l) to condense the notation.
The local property G(l, f + 5) will depend on the local con-
ditions around l and I + 5, which will diRer from point to
point across the crystal. But the sum will sample all possible
local environments and hence is the same as that which
would be calculated by fixing l and 5 but taking a configura-
tion average over possible configurations of arbitrary but
finite size. Lifshitz (1964) pointed out that such extensive
properties involving a sum over all sites were effectively
"self-averaging. " In an actual scattering experiment this
sample average is not quite as simple as a sum over all sites
directly, but is more like a "Monte Carlo" evaluation of the
sum, as the neutrons -or whatever the scattered particles
may be—randomly sample different portions of the sys-
tem.

Thus a scattering potential at r' has negligible effect on
G(r, r, E) and the local density of states at point r, if

I

r —r'
I
» l(E). A brief argument was also given to show

that there was also a negligible eRect if
I
r —r'

I
» A, ,

where

A, = A/(2mkiiT) "' (2. 127)

I G(r, r'; E+ iI')
I

& (lo/a)"'M

X exp( —
I
r —r' I/2X, ), (2. 128a)

where a is the spacing of atoms, and M is the lesser of
G(r, r, E+ iI') and G(r', r'; E+ iF) while

~, & aMaxI1+ [C(n, n —I)/I')'l, (2.128b)

with MaxlX„l being the maximum element in the set
lX„l, for all sites n, . But if there is some perturbation
V(n, n') the change in G is given by

is the thermal wavelength. In either case one can argue that
the local density of states does not depend upon the
configuration of atoms or defects outside of some radius p
which must be much less than the size R of the experimental
sample if the sample average is to be a configuration aver-
age. Although their argument strictly applied only in the
weak scattering limit, equivalent arguments probably exist
in the general case.

Even when all mean free paths are essentially infinite, the
effects of atoms at very large distances should be unob-
servable; the arguments proceed like those made for ne-
glecting surface effects on the bulk properties of crystals for
any other than microcrystals. Any experiment measuring
density of states has finite energy resolution, and this
coarse graining wipes out the structure in energy spectra
due to impurities at large distances. Matsuda (1964)
discussed the problem for a harmonic linear chain with
nearest-neighbor forces and arbitrary disorder; the method
was strictly one-dimensional, using transfer matrices.
Denoting the coarse graining due to experimental resolution
by a width F, the final result was the rigorous inequality

= (G(r, r'; E+ iE) G(r', r; E+ ie) ). 0. (2.125) EG(l, i') = G'(i, i') —G(l, l')

= P G(l, n) av (n, n') G'(n', i'), (2. 129)

(G(r, r'; E+ ie) )„0

exp[i(E)'t'
I
r —r' I)4~Ir —r'I

x exp[ —
I
r —r' I/»(E)) (2.126a)

So, for weak scattering, from Eq. (2.126) it can be shown

But for a system containing weak, random potentials the
spatial behavior of the Green's function can be related to
the mean free path /(E),

n, nl

which follows immediately from the equations of motion.
Clearly, for AV (n, n') to produce any significant change in
G(l, l'), then n and n' must be within Xo of f and i', respec-
tively. Thus a crystal of size L » 80 contains an ensemble of
smaller crystals such that the sample average of the Green's
function G(l, l') is eRectively the same as the configuration
average. For an infinite crystal, I —+ ~ the configuration
average is exact. To date no such theorem has been proven
for higher-dim. ensional disordered systems. However, a
theorem of this sort seems a likely conjecture (provided
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(G) = v—' f d'r (GLc(r)]), (2. 130)

the interactions are of finite range), since it is true for trans-
lationally invariant systems, as follows easily by the usual
arguments (Roster, 1954) by putting in a complex energy.

The above arguments, as stated, refer directly only to
homogeneously disordered crystals, e.g. , those with no
concentration gradients. It there exists, say, a position-
dependent concentration c(r) of impurities, the sample
average G could be found via an ensemble average providing
this constraint were put into the theory. This can be done
either directly in the expansion, where terms coming from
the region of r, will, on the average, be weighted with c(r,),
or indirectly by Lagrange multiplier techniques. On the
other hand, an experimentalist with data on a sample with a
concentration gradient might want to compare his results
to those predicted by the simple theories. The sample
average can be related to the configuration-averaged
(G(c) ) at uniform concentration by

G= P+ UPG' (2. 135)

where V is now simply a number, and the restriction that V
only contribute at defect sites has been transferred to 6
Comparing this with the Dyson equation for (G) (2.133)
and averaging over configurations of atoms gives the exact
relationship

In general Z depends on k and E, but in some approxima-
tions, particularly those arising from impurities with site-
diagonal perturbations, the dependence on k may be
negligible.

We may also obtain forms for certain useful conditionally
averaged Green's functions from the self-energy matrix X.
Thus in the equation of motion of the Green's function,
Eq. (2.97), the G(i, j) on the right-hand side is preceded
by a V, and hence contributes only to the sum if its first
index i is a defect site. Defining a conditional Green's
function Gd(l, l') which equals G(l, l') if l is a defect site,
and vanishes otherwise, we can rewrite Eq. (2.97) to obtain'

where V is the volume of the sample, providing that the
effective range P, o, the mean free path l(E), or the thermal
wavelength A, is small compared to the distance over which
the concentration varies appreciably.

Finally, given that one desires to calculate (G), there are
still computational problems remaining, as will be discussed
below, in evaluating the individual terms in the expansion of
(G) representing scattering by various order clusters of
impurities. One is forced either to truncate the series some-
how, or to perform a random-phase approximation which
electively treats terms involving large clusters of atoms as
products of terms involving smaller clusters of atoms. The
validity of these approximations is clearly related to the
effective range Xo, the mean free path l(E), or the thermal
wavelength A& in that one makes negligible error in elimi-
nating terms corresponding to clusters of atoms larger in
size than Xo, l(E), or A, .

(Gd) = V 'x(G). (2. 136)

For G"(i, j), which has a host site i as its first index,

&G") = &G) —(G") = (1 —V 'x) &G) (2.137)

G = P+ PVP+ PVGVP, (2. 138)

or

since each site must be either a host or defect site. A similar
relation can be written for a double-conditional Green's
function. G""(i,j) which equals G(i, j) if both sites i and j
are defect sites, and is zero otherwise. The relation for G"",
obtained by iterating Eq. (2.97) just once, keeping G in the
interior. , is

3. Notation for average Green's functions

For a homogeneously random system the configurational
average of G, denoted by (G), depends only on the relative
position of the two sites,

G = P + PVP + V'PGd"P,

which gives

(Gdd) = V-2x(G)x+ V-'(x —cV1),

&G'") = &G') —(G"')

(2. 139)

(2. 140)

(G(5) ) = .V 'g G(l, l+ 5).
l

(2. 131) = —( V-'X —1) (G)X V—' —V-'(X —cV1 ),
(2.141)

Hence (G) has average translational symmetry like P, and
its Fourier transform is

(Gh.L) (Gh) (Ghd)

(G(k) ) = iV ' g (G(5) ) exp(ik 5). (2.132)

= (V-'x —1) (G)(V-ix —1) + V-~(x —cV1)

(2.142)

(G) = P+ Px(G), (2. 133)

Ily suitably collecting terms and averaging Ecl (2 95) we These functions are the conditional averages of G suitably
may write weighted, e.g. , —G"" is weighted by (1 —c)', G"d by

c(1 —c), G" by c, etc. When i = j on the diagonal, these
Green's functions must satisfy special consistency relations

G"'(l, l) = G""(l l) = 0 (2.143)
where X may be called the self-energy. Using Eq. (2.44)
for P, since site 1 cannot be both host and defect. Also, clearly,

(G(k) ) = CE —E(k) —x(k, E) j-' (2.134) G"(l, l) = G""(l, l) (2.144a)
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4. Localization

G"(l, l) = G""(l, l) . (2. 144b)

Still another kind of averaging appears in the transport
coefFicients in a random alloy, which can most generally be
calculated by means of a Kubo formula (2.78). This re-
quires calculation of the two-particle Green's function
(Uelicky, 1969; Leath, 1970; Brouers and Uedyayev, 1972) .
For our case of a one-particle Hamiltonian (quadratic in
annihilation and creation operators) the two-particle t reen's
function factors simplify into the product

G"'(l, m; m, p) = G(l, n) G(m, p), (2. 145)

or

G&2) = 6+G. (2. 146)

(G*G) =.P*P+ P(V)P +P+ P +P(V&P

+ P(VP *PV)P+ ~ ~ ~ . (2. 147)

As is discussed, for example, by Leath (1970), there are
self-energy corrections to the G on the left and on the right
and also irreducible vertex parts which connect the two 6's.
The sum of all irreducible vertex parts, the four-point
vertex function A, can be related to (G~") by a Bethe-
Salpeter equation,

(2. 148)

In order to satisfy the usual conservation laws in self-
consistent field calculations there is a Ward identity which
relates the vertex function A. to the self-energy. A simple
derivation of this result follows from the work of Baym
(1962), as discussed by Leath (1970) . This formula is

SZ(l, ~) SZ(m, p)
B(G(l, e) )

' (2. 149)

which, for the case of a site-diagonal self-energy gives the
completely diagonal result

A = BZ/B(G(0) ). (2. 150)

So the second equality in Eq. (2.149) is trivially satisfied.
This will not be the case when Z is nonlocal by the inclusion
of pair or cluster scattering, or when the defect is extended,
and in these cases one must also be sure that 2 can be ob-
tained from a certain sum of free energy diagrams as
described by Baym (1962), in order for both equalities in
Eq. (2.149) to be satisfied.

The configuration-averaged two-particle Green's function,
however, is the average of the product (G *G) and not the
product of the averages (G) (G), and this introduces
diagrammatically irreducible four-point vertex parts.

We proceed first to iterate the average of Eq. (2.145) in
powers of V to obtain

G(l, l, E) = PE —F(l) —6(l, E)j—', (2. 151)

where E(l) is the single-site energy in Eq. (2.3), and where

Although the averaged single-particle Green's functions
give information about densities of states, they do not con-
tain information about the localization or current carrying
properties of the states Lsee, for example, Thouless (1970)j.
In order . to learn about the degree of localization one
must study either averaged two-particle Green's functions
(which give mean square single-particle properties) or the
probability distribution of the single-particle properties
(Anderson, 1958). There seems now to be general agree-
ment on which quantities measure localization and, in
particular, that the average single-particle properties do not
measure localization, although this has not always been
agreed upon /see Lloyd (1969), Ziman (1969), Brouers
(1970)$. Thouless (1972b) has listed six criteria, some of
which are equivalent, for localization of eigenstate s.

(1) Uanishing of the imaginary part of the locator self-
energy, except on a set of measure zero (Anderson's cri-
terion, see below) .

(2) A vanishing dc conductivity (for a static lattice)
and an ac conductivity of order &u' (Halperin, 1967; Mott,
1967).

(3) A finite value of f ~
P, (r) ~4 d'r (Thouless, 1970).

(4) A discrete (but dense) spectral density
f ~

P, (r) I'b(E —E) '~»
for any point r.

(5) A finite value of f ~

r —R, ~'~ P, (r) ~' d'r, for some
value of R, .

(6) The energy levels are shifted by an amount of order
exp (—.V"') rather than of order .V ', upon a general change
of boundary conditions, for a, sample of X atoms (Edwards
and Thouless, 1972) .

In the case of a single defect (Sec. IID2) certain states
may be localized if the scattering strength 6 is sufficiently
large compared to the host bandwidth 8 . Are there localized
states, however, when there is a finite concentration of such
defects? The answer is not trivially obvious, and there has
been a good deal of controversy on this issue in the past,
although there now seems to be general agreement that in
three dimensions either localized or extended states can
exist, depending upon the ratio 6/W. The details of just
what values of 5/W and at just what energies there are
localized states has beeri a matter for considerable discussion.

In random one-dimensional lattices all states are localized
in this sense (Borland, 1963; Mott, 1968; Hirota, 1973),
and the resistivity increases exponentially with the number
of impurities (Erdos, 1965; Landauer, 1970).

The question of localization was first raised by Anderson
(1958) with regard to spin diffusion in random crystals. It
is beyond the scope of this work to discuss localization to
any great extent, since the subject is still rapidly developing.
For enlightening commentary on the points raised here the
reader is referred to Thouless (1970) or the book by Mott
and Davis (1971).

We note briefly that Anderson (1958) studied the Green's
function in the locator expansion Las named by Ziman
(1969)), where the Green's function is written
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6(/, E) is the (complex) single-site self-energy. The single-
particle correlation function (not averaged over configura-
tions),

disorder leads to a site-diagonal self-energy Z(E) in the
configuration average of G in Eq. (2.134), the condition
L(E,) = 1 can be replaced by the simple condition

(a(/, t) a+(/, 0) )z f(E) = ,'W/—LE —Z(E) j = 1, (2. 156a)

dE exp( —iEt/6)
Im

Lexp(E/kiiT) + rt)PE —E(/) —6(/, E)) '

(2. 152)

gives, as t —+ ~, information about localization. If 6 is real
the correlation function simply oscillates, but if 6 is complex
it damps out with time. Thus b, (/, E+ ig) s reality is a
condition Lcondition (1), above j for localization. The
averaging over configurations throws out the crucial phase
information in 6, so Anderson considered instead the most
probable A. His technique was to examine convergence of the
expansion for real A. Anderson found that the critical value
of 4/W for localization is 6ve or ten times larger than a
recent crude argument (Herbert and Jones, 1971; Eco-
nomou and Cohen, 1972; Economou et al. , 1970, 1971,
1972) would suggest. He showed that the Lth order term in
the perturbation series contained a number of paths of
order Ez (where E is a number somewhat less than the
coordination number s) . A crude estimate of this order of
magnitude for a typical term of order E~ in the expansion
gives

(EW) z(2e/6) ~ ', (2. 153)

so that the crude estimate (Herbert and Jones, 1971; Eco-
nomou and Cohen, 1972) ~ould give convergence, and hence
localization, for

6/W ) 2eE. (2.154)

I.(E) W exp/ —(log
l
E —E, ~)j, (2.155)

where the average is over the probability distribution of the
E(/). They further show that under the condition that the

Anderson, however, assumed statistical independence of
the E~ terms and showed that the probability distribution
function had a sufficiently long tail that the sum of the E~
terms was dominated by the largest term, which effectively
put a factor in(h/W) on the right side of (2.154), thereby
increasing the critical value of 6/W by a factor of 5 to 10.
Herbert and Jones, and Economou and Cohen, on the other
hand, argued that statistical independence was impossible
and that very strong correlation was more likely, so that the
crude estimate was better. There is still doubt as to the
correct value, although recent numerical studies on two-
dimensional systems (Khor and Smith, 1959; and Edwards
and Thouless, 1972) seem to be in better agreement with the
crude estimate, which gives localization more easily.

Economou and Cohen (1972) have developed an ap-
proximate theory of the critical energies E, which divide the
localized from the conducting states. They define a localiza-
tion function L(E) such that L(E) ~~ 1 indica, tes extended
(localized) states at E and L(E,) = 1. This function, like 6,
is determined by approximate summation of a series. They
find

when E is measured from the center of the unperturbed
band. For the phonon problem the equivalent function is
given in terms of t/t/'

f(~') = ~'/E~' —~( ') j (2. 156b)

where t/V' is the bandwidth in u2

These results are capable of a simple physical interpreta-
tion —-in the perfect lattice limit they lead to extended
states in the band and localized states outside, and in the
general case give the same criterion in terms of the re-
normalized energy in the effective medium, E —Z (E) .

Subsequently Bishop (1973) examined this criterion
using the best available form for Z(E) obtained from the
coherent potential approximation (see Sec. IIIA2) and
found that it gave a very reasonable description with
localized states in the band tails and extended states in the
center of the band. In the case of severe disorder all the
states became localized. More recently Abou-Chacra et al.
(1973, 1974) have developed a self-consistent localization
criterion which is exact on a Cayley tree. This gives quali-
tatively similar behavior to Bishop's evaluation of the
Economou —Cohen criterion but it is different in some im-
portant respects. The differences are large for the Lloyd
model (see Appendix B) where the distribution of E(/) is
Lorentzian. For a, rectangular distribution of E(/) of half-
width r the results are fairly similar; the localization edge
E, lies fairly close to the band edge of I' ( 1.5W (approx. )
but then moves rapidly towards the band center to give
completely localized states of I' ) 2W (approx. ) .

The "Economou —Cohen localization criterion" as given
in Eqs. (2.156) is clearly a way of estimating whether
localization exists from the averaged one-particle Green's
function. However; from the discussion of Thouless (1972)
there would seem to be no such criterion. The answer must
be that Eq. (2.156) is not a, criterion or condition for localiza-
tion in the same sense that, say, the vanishing of the con-
ductivity is, but that it is an estimate of whether localization
is likely. Often, in other contexts, similar estimation methods
are used. For example, a neutron scatterer couM see whether
a particular phonon or magnon peak position mA, , in his
inelastic data, was roughly independent of k as would be
expected for a localized state.

The existence of a definite mobility edge E, where the
states change character was only conjectured by Mott
(1970) and by Cohen, Fritzche, and Ovshinsky (1969)
on the basis of Anderson's ideas Lsee also Thouless (1972b) g.
The physical properties associated with these edges are still
under discussion. Edwards and Thouless (1972) have shown
that the average density of states is analytic across such an
edge. Mott (1972) has argued that the conductivity
should drop abruptly to zero at the mobility edge, essen-
tially because the mean free path can be no less than an
interatomic spacing. On the other hand, Thouless (1972)
feels that the many-body aspects of the problem can,

Rev. Mod. Phys. , Vol. 46, No. 3, July 1974



Elliott, Krurnhansl, and Leath: Randomly disordered crystals

th~ough the phase of the wave function, conspire to produce
a conductivity which is even lower than one would get if
the mean free path were an interatomic distance. He sees,
perhaps, something more like the conductivity in a classical
percolation problem, which vanishes at the critical percola-
tion but not abruptly. %e have not intended that this topic,
being outside the main scope of our paper, should be covered
extensively here; we suggest that the reader consult the
references for a complete discussion.

III. METHODS OF APPROXIMATION FOR (G)

A. Single-site approximations for (G)—formal
methods

The perturbation expansion of the configuration-averaged
Green's function is obtained formally by averaging, term
by term, the expansion (2.98), which gives

(G(l, l') ) = P(l, l') + P P(l, m) (V(m) )P(m, l')

and van Hove critical points, but the second term varies like

g P(l, m; P)P(m, l'; E) f(k; l, l')

(& —&~)' ' (3.3)

which diverges at the critical points. (For a discussion of
such divergences, see Lifshitz (1956) and Lifshitz and
Stepanova (1956).7 The higher powers in V which were
truncated in Eq. (3.2) diverge even more strongly, so that
the perturbation expansion for the density of states seriously
fails to converge near the band edges and critical points,
and any truncation procedure will be plagued by this
divergence. A common resolution of this difficulty is to
approximately decouple, thus renormalizing away the
divergence. Af ter such a rearrangement the series can
hopefully be rewritten in the form of a Dyson equation
(2.133), and the self-energy Z should now be free of di-
vergences. In the following we review calculations of 2 in
various approximation schemes.

For small perturbations U, one can simply decouple by a
random phase approximation

+ g P(l, m) (V(m)P(m, e) V(n) )

X P(e, l) + (3.1)

&V(1) V(2) "V(~)):—&V(1))(V(2)).. (V(~)),

(3.4)

where, again, ( ~ ~ ) denotes the ensemble or configuration
average. Unless otherwise specified we now consider the
case of random occupancy of a structurally well-defined
lattice. The unperturbed propagators I' can be removed
from the average since they are independent of the loca-
tion of impurities, leaving only an average product
(V(1) V(2) ~ ~ ~ V(n) ) in each term. This average product in
a homogeneously disordered sample (no concentration
gradients, as will be assumed throughout this paper) will
depend, in general, upon the distances between the sites
1, 2, ~ ~ e. For statistically independent site occupation
probabilities the value of the product depends only upon
whether some of the defect sites 1, 2, ~ ~ ~, e coincide. The
problem that arises in evaluating Eq. (3.1) is not one of
evaluating any particular term, but a kinematic one of
keeping track of the sites connected by the propagators
associated with (V(1) V(2) ~ ~ V(m) ), and with then
summing the resulting series. Let us consider first the case of
very small perturbations, U(m) « 1, for all m. In this case,
one might try viewing Eq. (3.1) as a series expansion in
powers of U which couM, be truncated after some 6nite
number of terms. For example, for extremely small V(m),
one might write

which in a random alloy neglects the coincidences of the
sites 1, 2, ~ ~ ~ , e.

This approximation gives

(3.5)

The Green's function looks like that for a perfect crystal
with a simple shift (V). This approximation has become
known as the virtual crystal approximation (VCA) which,
since it is convergent at the band edges and is exact for small
U, has been fairly successful in those cases of small per-
turbation (the rigid band limit) where the perturbed wave
functions are quite extended in space so that each particle
sees nearly the average perturbation (Nordheim, 1931;
Muto, 1938; Parmenter, 1955). The virtual crystal approxi-
mation forms the crudest interpolation formula over the
entire concentration range by simply scaling the position of
the energy bands linearly with the concentration of each
species.

In terms of the self-energy 2, the virtual crystal approxi-
mation represents the lowest-order contribution,

(G(l, l'; P) ) = P(l, l'; E) + Q P(l, m; E) ~r = (V). (3.6)

X (V(m))P(m, l'; Z) + ~ ~ ~

= P (l, l', E) + (V) Q P (l, m; P)

X P(m, l';P) + ~ ~ ~, (3.2)

where (V) = (V(m) ) is independent of site m. The first
term P(l, l'; E) is finite for three-dimensional systems but
has discontinuous slopes at the unperturbed band edges

2= cA. (3.7)

Since this approximation to 2 is real, the lifetime of the k
states is infinite; and since it is independent of k, X is a
diagonal, local matrix. Some numerical results of calculations
within the virtual crystal approximation are discussed in
Sec. IV.

If a fraction c of the sites are occupied by impurity atoms
with potential 6, then
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I. T Matrix decoujling schemes site decoupling approximation

When a few V(m) are large, however, localized states can
appear and the virtual crystal approximation must fail.
V(m) must be renormalized by summing more terms
properly. If the concentrations of one species, say, 8 is
low enough and V~ is large, one can sum the Born series at
each site to obtain individual 3-matrices. If the concentra-
tion of B atoms is small enough, the intersite scattering by
clusters can be ignored as improbable. The single-site
t-matrix method was developed by Watson (1956, 1957),
J. Korringa (1958), Beeby and Edwards (1963), and
Beeby (1964a, b), and extended by Aiyer et al. (1969).
One re-sums directly from Eq. (3.1) by collecting together
those terms involving repeated scattering by the same site,
to obtain

G'= P+ PE«)(i —P'«)) 'lP (3.13)

This shows that (t)(1 —P'(t)) ' is the approximation for
the T-matrix of the system LEq. (2.95)7. Thus the self-
energy which is related to T by

X = T('I + PT) (3.14)

becomes

~"' = &t)/(1+ «)P(o) j, (3.15)

where P (0) is the host-lattice Green's function. Using
(t) = ct with Eq. (2.99), we write this in the form

= P(l, l') + g P(l, m) (t(m) )P(m, l')
~' = c~/LI —(1 —~) ~P(0) j- (3.16)

+ P'P(t, m) (t(m)P(m, n)t(n) )P(n, l')
m)7l

+ p' P(l, m) (t(m)P(m, n)t(n)P(n, p)t(p) )
7Ajgl

X P(p, l') + ~ ~ ~, (3 8)

This single-site self-energy, erst derived by Elliott and
Taylor (1967), has also become known as the average
t-matrix approximation (ATA), although the more com-
rnon usage of ATA uses the virtual crystal propagator for I'.
This self-energy is local and complex, and has a pole near to
the pole of t which gives the single-impurity state energy.
Thus, from the form of the Green's function

where the prime on the sum means that further successive
scatterings at the same site are restricted, although return
may occur after any intermediate scattering at other sites.
Here t(m) has the value defined in Eq. (2.99), where
6 = Uz —V&. Again, in calculating (G) and Z we may not
simply truncate Eq. (3.8) after the second term, due to the
divergence at the band edges and critical points. Occa-
sionally truncation at the first term is used when thermody-
namic quantities or other integrals of (G(e) ) over energy are
desired which are not so sensitive to the details at critical
points, i.e., the so-called isolated impurity approximation.

To assist in the evaluation of this decoupling scheme, we
formally rewrite Eq. (3.8) in matrix notation

G'(E) = [E —Ho —Z'(E)] ', (3.17)

we see that the energy levels are shifted by an amount
Re[2'(E) } and broadened by a width ImIZ'(E) I, which
can be large near the impurity state energies. As Eq. (3.16)
stands, with the P(0) as the A-atom lattice Green's func-
tion, this formula and the resulting Green's function is not
symmetric in the A- and 8-atom types as was the virtual
crystal approximation, and so cannot be used as an inter-
polation formula. Symmetry can be easily restored, however,
by letting the unperturbed propagator P in Eq. (3.1)
become that for the virtual crystal o,. Then the perturbation
is no longer V(m) in Eq. (3.1) but P(m) = V(m) —(V)
so that Eq. (3.15) becomes simply

(G) = P+ P(t)P+ P(tP't)P+ P(tP'tP't)P+ ~ ., (3.9)

where

&'= (t)/L1+ G. (o) «)j,

where

(3.18)

P'(n, m) = P(n, m) —P(0)5„

where

(3.10)
(t) = (V. —&V))

1 —(V~ —&V))G (0) 1 —(Vs —(V))G.(o)

(3.19)
= t(n)~(n)S. , (3.11)

(t(1)t(2) ~ ~ t(n) ) —(t (1) ) (t(2) ) ~ ~ (t(n) ), (3.12)

which, in this case of a random alloy, is a better approxima-
tion than the decouphng in Eq. (3.2) because adjacent
sites are restricted from coinciding. Thus we find the single-

and rt(n) = 1(0) on B(A)-atom sites. The internal propa-
gator I" has zero diagonal element in order to remove the
restriction on the sums in Eq. (3.8). We then decouple
here, as above, by a random phase approximation,

This formula is now symmetric in A- and B-atom types and
provides a useful interpolation formula (Leath and Good-
man, 1969) over the entire concentration range except at
the unperturbed band edges and at special frequencies cor-
responding to pairs and higher clusters. It is the commonly
used form of the average t-matrix approximation (ATA).
Detailed numerical results on Eqs. (3.16) and (3.19) are
discussed in Secs. IIIB and IV. They are rederived using dia-
gram techniques in Sec. IIIA3. The above decoupling pro-
cedure can also be used after further rearrangement of
Eq. (3.1) to treat pairs and higher clusters of impurities
(Sec. IIIC1) .

Rev. Mod. Phys. , Vol. 46, No. 3, July 1974



488 Elliott, Krumhansl, and Leath: Randomly disordered crystals

2. The self-consistent field of coherent potential
method (CPA)

The first attempt to do the single-site scattering problem
with a self-consistent field was by Davies and Langer (1963)
and Klauder (1961),who simply substituted the full Green's
function (G) as the internal propagator in the single-site t
matrix of Eq. (2.99). Their formula was thus

ZnL' = cb/[1 —&G(0) ]. (3.20)

Go = P + PXGo. (3.21)

However, the true Green's function G must satisfy its
Dyson equation (2.97). Solving Eq. (3.21) for P and sub-
stituting into Eq. (2.97) eliminates P and gives the modified
Dyson equation

G = Gp + Gp(Y —X)G. (3.22a)

The scattering perturbation now takes on the value (6 —2)
at impurity states and (—2) at host sites. Now one finds
the average single-site t-matrix, with internal propagator
Gp(0) instead of P(0) and requires that it be zero:

(1 —c) ( —X)
1+ ZGo(0)

c(A —Z) = 0. (3.22b)
1 —(b, —.Z) Gp(0)

Multiplying through the equation by [1 —(6 —Z)Gp(0)]
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The absence of (1 —c) fa,ctor in the denominator as com-
pared to Eq. (3.16) does not make a, qualitative difference.
Davies and Langer were able to solve this equation analyti-
cally for the Dyson equation (2.33) of an isotopically dis-
ordered, linear chain of atoms with nearest-neighbor
forces. In the case when high-frequency localized states
were present, the result was an extremely broad and
structureless impurity band, which extended beyond the
rigorously known upper bounds on the frequency spectrum.
On the other hand, the host band edge moved slightly to
lower frequency as states were pulled into the impurity
band, as one would expect physically. Nevertheless, the
numerical results were clearly unphysical, and quite unlike
the high-frequency structure of Dean's calculations. These
numerical results are discussed again below in Sec. IIIB.

An enormously improved. result emerged from the essen-
tially simultaneous calculations of Taylor (1967), who
called the method "self-consistent, " and of Soven (1967),
who called the method "the coherent potential method"
in the phonon and electron problems, respectively. They
introduced a method based on n1ultiple-scattering theory
[see Lax (1951)],and also made use of the physical ideas
expressed by Anderson and McMillan (1967). A recent
review of the coherent potential method has been given
by Yonezawa and Morigaki (1973). In this method one
views the impurities as in1bedded in an effective medium
whose propagator Go has a self-energy adjusted so that the t

matrix for scattering oR of a single impurity in this medium
is zero on the average.

Specifically, one assumes an effective medium Green's
function Go,

and collecting terms, one Ands the implicit equation

Z = cA/ I 1 —(1 —c) b,Gp (0) /[1 + ZGp (0)]I, (3.23)

which can also be written

~ = ~/[1 —(~ —~)G.(0)]. (3.24)

The physical reasoning here follows closely that of
Anderson and McMillan (1967) . If we could calculate
explicitly the average T-matrix (T) for the entire scattering
by all the sites in the medium we must get zero or

(T)medium =. 0 (3.25)

One of the most interesting and useful points about the
coherent potential approximation (CPA) is its invariance
with respect to the choice of host lattice and its correct
limiting value in the perfect crystal and split band (or
atomic) limits. That the CPA is invariant with respect to in-
terchange of host A and impurity B was pointed out by
Taylor (1967). This invariance extends even beyond his
original argument. I.et us consider for a moment the per-
turbation expansion about any medium (translationally in-
variant) with propagator P~ with energy P~ on each site.
Then the Dyson equation for this expression is

Gp ——Pv + P.MX,irGo (3.26)

The perturbations now will be ( V; —Vpr) instead of
(V, —V&) as above, and the Dyson equation (3.26)

relating Z~ to Go gives the relationship
( Vir —V~) as the relationship between this new self-
energy and that above. The CPA equation, analogous to
Eq. (3.22) for'the self-energy in this medium, will be

(t) = (1 —c) [(V& —Vw) —&,v]
1 —[(UA —Uir) —Z pr]Go (0)

+ c[(Vii —U,ir) —&pr]
1 —[(Va —Vpi ) —Z pr]Go (o)

(3.27)

Upon making the substitution Z pr
——Z —( VM VQ),

we find this is exactly Eq. (3.22b), so that Gp(0) is invariant
with respect to the choice of unperturbed lattice, or to the
value of V,~. This invariance means, in particular, that the
coherent potential approximation is exact at either limit of
the concentration, so it is useful as an interpolation formula.
Furthermore, it means that the &PA can be considered
as an expansion about the virtual crystal [since one could

since the medium is to represent the true system. However,
we do not know how to calculate the entire T-matrix for the
system, so that we approximate here by setting (t(i) ) = 0
in Eq. (3.22b), knowing full well that the scattering we are
neglecting is that by pairs and higher clusters.

This formula, derived by Taylor and by Soven, has been
rederived by a great variety of quite different techniques
(Onodera, and Toyozawa, 1968; Leath, 1968; Yonezawa,
1968; and Aiyer et at. , 1969). Several illuminating calcula-
tions of the effects of this approximation have been made by
Velicky et at (1968) . C. alculations as such are discussed in
Sec. IIIB.
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c(1 —c) ~'G(0)/L1+ ~or(E) G(o) j~-(E) =
1 —(1 —2c) bG(0) jL1 + ZoT (E)G(0) j

(3.28)

Since Zof (E) is generally related to the self-energy Z of the
expansion about the A lattice by the formula

Zor(E) = Z —((V) —V~) = Z —cA, (3.29)

one sees immediately that Eq. (3.28) is indeed the same as
the CPA equation (3.23).

Furthermore, the CPA always yields a properly analytic
Green's function {Miiller —Hartmann, 1973).

Finally, comparing. the CPA self-energy (3.24) with the
self-consistent calculation (3.20) of Davies and Langer
(1963), it becomes apparent that the difference arises
because CPA substitutes (6 —2) G for AG in the single-
site t-matrix. But, by Eq. (2.137) we see that

(V —X)G = VG", (3.30)

so that the CPA substitutes G" rather than the full G into
these scatterings. The difference between these propagators
is that G"(i,j ) has a host site as its first index. Therefore
the diagonal element G"(0) has no scattering off of the
explicit site of the t-matrix into which it is inserted. That is,
between scattering off of site i, in t, , one inserts self-con-
sistently all scatterings off of the rest of the medium ex-
clndirfg the site i (which would constitute a double counting) .
The numerical difference between the two approaches is
substantial.

choose Vsr ——(V( j) )g and thus that it is at least as good
as the virtual crystal approximation at all concentrations. A
comparison of virtual crystal, ATA, and CPA has been
made by Schwartz, Brouers, Vedyayev, and Ehrenreich
(1971).

Secondly, the CPA is exact in the atomic or split-band
limit when the interatomic hopping is very weak. In fact
it was this property which led to the CPA in the calculation
of Onodera and Toyozawa (1968) in the excitonic problem
/see also Kirkpatrick, Velicky, and Ehrenreich (1970)j.
They began with the virtual crystal approximation V~ =
(V), and looked for the diagonal self-energy Z(~) which
gave the correct atomic limit. Their result was

«) ~
I
I

P P (d)
~ ~ ~
I I
I I
I I

(g)
I10'+ / I

«&t t&»
I

(e)
~ ~
I y I

+ ' ' ' +
(h) ~

+ 4 +

/

(~)
~ ~

FIG. g. The diagrams s,ppearing in the expansion (3.32) of (G).

V, = Vrt(i), (3.31)

where tt an indicator function is 0 (or 1) at A (or B) sites.,
respectively, so that Eq. (3.1) can be rewritten as

expansion. In this theory Langer recognized that a poly-
nomial cumulant coefficient P„(c) was associated with each
diagram part, and evaluated the linear c and quadratic c'
terms in P„(c). Parallel diagrammatic formalisms were
developed independently at about the same time by Klauder
(1961) and by Matsubara and Toyozawa (1961). This
early formalism was extended and completed for the lattice
vibrational problem by Leath and Goodman (1966, 1968),
who found a closed form for P„(c), and by Yonezawa and
Matsubara (1966, 1967, 1968), who found a generating
function for P„(c). These authors, however, discovered a
serious lack of convergence of the expansion at special
energies, extending to infinity, where spurious poles cropped
up in the self-energy due to an overcorrection inherent in
partial summations which used cluster expansions, as is
discussed in Appendix A.

Meanwhile, the formula found by Elliott and Taylor
(1967) for the single-site self-energy, which by inspection of
the diagrams was accurate to all orders in concentration,
eliminated the overcorrection inherent in the cluster expan-
sion, and thus was free of the spurious poles. Recently Aiyer
et al. (1969), corrected by Nickel and Krumhansl (1971)
and Leath (1972), have found a self-consistent method for
extending this kind of multiple-occupancy correction to
arbitrary classes of diagrams.

We shall use this method to obtain the CPA equations as a
self-consistent scattering problem, but shall begin our
description by a rederivation of the formulas obtained by the
t-matrix decoupling schemes of the previous section. For
the binary alloy with the A-atom host lattice, the perturba-
tion V(nr) as in Eq. (2.99) is b, at defect sites and zero at
host sites, which is expressed formally by

O'. Diagram techniques

Since the introduction by Edwards, in 1958, of diagram-
matic notation for classifying and collecting the terms in the
perturbation expansion of the electronic properties of liquid
metals and alloys, many authors have extensively used such
diagrams to help study many of the properties of disordered
systems, and they have been useful in seeing physically what
sort of scatterings are important. A large impetus to the use
of this method was given by Langer (1960, 1961a, b),
who developed a many-body theory for. impurity resistance
in metals and first applied the technique to the vibrational
properties of a disordered lattice. Langer's technique
correctly finds the coefficients of a series expansion of (G)
in powers of c by making an Ursell —Mayer type cluster

(G(l, l') ) = P(l, l') + 6 Q P(l, nz) (rt(m) )P(m, l')

+ LV Q P (l, m) (tt (m) P(nz, n) rt(n, ) )

X P(n, l') + ~ ~ ~ . (3.32)

Ke represent this equation diagrammatically in Fig. 8,
where (G) is represented by a double horizontal line. The
diagram rules for a single defect were given in Sec. IID2;
now each interaction point is weighted by the concentration
c, its probability of being a defect site.

The bare contribution of each diagram is given by the
product of its irreducible parts (any part of a diagram which

Rev. Mod. Phys. , Vol. 46, No. 3, July1974
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The multiple-occupancy corrections are shown in the second
and higher columns. The corrections in the eth column
(n & 2) can be summed vertically, since each such correc-
tion diagram has n irreducible parts, to obtain
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since the full contribution of these diagrams must be in-
cluded. Thus 2', the full, single-site self-energy, given by the
sum of all the columns, is

X = ct —Z P{o)X —Z P(o)Z P(o)X -Z P(o)X P(o)z P(Q)X —---

cannot be severed into two bits by cutting a single, internal
P line) . The full contribution of each irreducible part is ob-
tained by subtracting from the bare contribution the full
contribution of each diagram that can be obtained by break-
ing lines away from the interaction points in the irreducible
part, providing that the resulting diagram is one found ex-
plicitly elsewhere in the partial summation one is performing
[See Aiyer et al. (1969).]Finally, the diagrams are summed
over all internal-site indices and summed to obtain (G).

As an example of this kind of rearrangement we consider
the 6 term in the perturbation series (3.32) which is pro-
portioned to (z&,&q~,&). For a, random binary alloy, we have

(it, ,,g„,) = c'+ (c —c')8,, (3.33)

The c' term gives the diagram in Fig. Sb; the second term,
proportional to B... gives the diagram in Fig. 8(c). The
(c —c') factor in the la, tter term comes from the bare con-
tribution c minus that from the diagram with the interac-
tion lines broken apart [Fig. 8(b)]. This expansion differs
from the usual cluster expansions only by the inclusion of
the phrase underlined above which, though obviously
empty if all diagrams are summed, makes considerable
difference for the usual partial summations.

Fortunately, as is well known in principle, we can reduce
the diagram summing problem to one of including only
irreducible parts to obtain the self-energy X which is
related to (G) by the Dyson equation (2.133).The simplest
irreducible part is Fig. 8(a), which gives

r..= c~= (V), (3.34)

the virtual crystal approximation of Eq. (3.6). It is the
lowest-order contribution in 6, as might have been expected.

The terms linear in c can be summed to find the single-site
t-matrix approximation; these bare. diagrams are shown in
the 6rst column of Fig. 9. They add to the single-particle
t-matrix simply related to that in Eq. (2.99) . A sum of these
gives the bare self-energy

Zb„,' = ct = cA/[1 —AP(0)].
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(3.35)

FIG. 9. The self-energy diagrams and multiple-occupancy correc-
tions appearing in the single-site approximation (ATA) . The first
column contains the bare single-site diagrams which sum 'to ct, the
higher nth column contains those multiple-occupancy correction
diagrams with n irreducible parts whose sum is given at the bottom of
the column.

~' = (t)/[1+ P. (o) (t)] (3.39)

where Pir(0) is the effective host lattice propagator, and
(t) is the average single-site t-matrix. If the host lattice is
chosen to be the virtual crystal, i.e., P~ = (V), and
P~(0) = G, (0), then Eq. (3.30) gives the sa,me result as
that of Lea.th and Goodman (1969), as expressed in Eqs.
(3.18) and (3.19) above, which is the ATA and is symmetric
with respect to A and 8 atoms and constitutes an inter-
polation formula over the concentration range.

Next, the coherent potential approximation is obtained by
summing the same single-site diagrams but with the full
Green's function (G) inserted self-consistently into the
internal lines (Leath, 1968). These dia, grams, looked at in
terms of the unperturbed propagator P, correspond to all
nested, single-site diagrams, i.e., between basic scatterings of
off a single site the propagator is scattered off all other sites
and in these scatterings the same propagator is inserted.

2' = ct —2'P (0) Z' —Z'P (0) 2'P (0) 2' —~ ~ - (3.37)

a self-consistent relation for 2', with the trivial solution

2' = ct/[1 + ctP(0) ] = cb/[1 —(1 —c) AP(0)],
(3.38)

which agrees with that previously derived by the algebraic
decoupling procedure in Eq. (3.16) above. The expression
(3.38), first derived diagrammatically by Elliott and
Taylor (1967), differs from that derived earlier by Langer
(1961b) by the factor (1 —c) in the denominator. Langer's
formula was that for Zb„,' of Eq. (3.35), which represents
the uncorrected linear c contribution to 2'. Clearly the two
formulas agree for small enough concentration. The differ-
ences are mainly three: first, exact sum rules for integrated
optical absorption coefficients and neutron scattering in the
phonon problem are obeyed precisely by the corrected
formula (Elliott and Taylor, 1967), but are satisfied only
to lowest order in concentration using the uncorrected
version; second, when an impurity band is predicted the un-
corrected version does not place it symmetrically about the
local state energy as expected; third, the ('1 —c) tends to
cut out the resonant denominator in Eq. (3.38) as concen-
tration increases, so that the theory tends to the virtual
crystal approximation as concentration increases, rather
than keeping the impurity band.

'\

Clearly, this single-site t-matrix approximation (or
average t-matrix approximation) can also be made using an
arbitrary unperturbed host lattice (with diagonal energies
Z~ on each site). This diagrammatic procedure leads im-
mediately to the obvious generalization of Eq. (3.38):
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An example of a double-nested diagram is shown in Fig.
Io. The sum of all the diagrams in the self-energy, shown in
the erst column of Fig. 11, is just

~ ~
I I—I

(3.40)cr = cA/$1 —AG(0)),
O
I 1%+II ~ ~ ~ ~ ~ ~ O

I I I
I I

which is the self-energy LEq. (3.20) 7 of Davies and Langer.
These bare diagrams are easily corrected for multiple
counting using the technique of Aiyer et al (19.69) by sub-
tracting those diagrams in the second and higher columns
of Fig. 11 (Leath, 1968) . The result for the second column is

0
IIl&+ Il I a

IOL
~ ~ O ~

nl
II i Ii'I I

~)
I I I Il

OOOO
I I I

I I I
I I I

,O
IOOi

I I I q
'Ol —IOl

I ~I, I Il, II l

~ OOIl
( ll.

(3.41)

where 2 is treated as a functional of its internal propagator,
and

FIG. 11. The bare single-site, self-consistent, self-energy diagrams
included in the coherent potential approximation (column 1) and their
multiple-occupancy corrections (higher columns) after Leath {1968)j.

v = (G(0) &/L1 —~b 7&G(o) &7 (3.42)
malism has been extended by Matsubara and Kaneyoshi
(1966) and more recently by Leath (1970) and Matsubara
(1970). The technique is to start with localized atomic
states (Einstein oscillators) and expand in powers of the
interatomic hopping Vf, the second term of the Hamiltonian
(2.3). It was hoped that by starting with purely localized
states and then turning on the interatomic hopping, it might
be possible to study the Anderson transition to conducting
states. This approach begins by rewriting the equation of
motion (2.43) /or the equivalents in the phonon or spin-
wave problems, Eqs. (2.50) or (2.54) ) in the form

The third and higher columns are similarly evaluated to ob-
tain for the sum of all columns, and hence for Z,

~L(G(0) &7 = "+~L&G(0) &) —. ~L~)

which has the immediate solution

cA

1 —(1 —c) ~(G(0) )1+ cr(G(0) )

[E —E(l) )G(l, l'; E)cA

1 —(1 —c) a~/L1 ~ ~ZL~))
(3 44) = &zz + Q W(l, l")G(l", l', E), (3.47)

v &G(0) ) (3.45)
(3.48)G= g+gWG,

to obtain
where, in this "site-representation, "

1 —(1 — ) ~&G(o) &/L1+ ~&G(o) )7
' (3.46)

g(n, m; E) = LE —E(n)) ztz„= g(n)ti„ (3.49)
which is precisely the coherent potential approximation of
Eq. (3.23). is the Green's function for the localized states and takes on

the values (E —E~) ' and (E —Ezz) ' on A- and B-atom
sites, respectively, and where W(n —m) represents inter-
atomic hopping. In the locator expansion technique one
then expands Eq. (3.48) in powers of W, and averages,
term by term, over all configurations of the atomic species
to obtain the formal result

To summarize this section, it has been found possible by
diagrammatic techniques to obtain all results otherwise
found from intuitive or decoupling approximations—
thereby exhibiting just what the nature of the approximation
1s.

(G(n, m) ) = (g(n) &zz„+ (g(n) W(n —m)g(m) )
+ & g(n) W(n —l)g(l) W(l —m)g(m) )

4. The locator exjansion

A quite different, but as it turns out (for the CPA)
equivalent, approach for the configurationally averaged
Green's function was developed by Matsubara and Toyo-
zawa (1961). Their use of this expansion seems obviously
inspired by the earlier work of Anderson (1958). The for-

(3.50)~ ~ ~

Now it is the g(n) which depend upon the configuration of
the species. We can represent the terms in Eq. (3.50) by
topologically the same diagrams as in the previous section,
but with no external lines, as shown, for example, in Fig. I2.
The transport from site to site (the solid line) is no longer by
the propagator 9, which is local, but is by the interaction

FIG. 10. An example of a double-nested
diagram included in the coherent potential
approximation.

/~ ~

IIoo) X
I ))XI I I
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But since we want ZL(G(0) )7, we niake the substitution
which can be written in matrix notation as
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(a)

G — I &g& +

(b)
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I I

/

(c)

/ IL

I

The relationship between the exact locator o and self-
energy X, according to Eqs. (2.133) and (3.56), is

+
r I r I I a

(g)

I I I+ I lh + ~ ~ ~
r I

a ' = (E —'E~)1 —X,

so that if X is site-diagonal so also will be o.

(3.57)

I'IG. 12. The diagrams appearing in the locator expansion (3.50) of
(G ).

W(n. —m) which in this role is called, the interactor, as
suggested. by Ziman (1969). The upright dashed line cor-
responds here to the localized-site Green's function g.
Upon averaging, the rules become only slightly more com-
plicated than before; a cluster of r localized-site 9 lines at the
same site [as in Figs. 12(c), (g)] have the bare value
((g„)"). For example, the diagrams in Figs. 12(a) and
12(f) have the values

(3.51)

The multiple-counting corrections appear here just as they
did in the self-energy expansion. Matsubara and Kaneyoshi
(1966) considered the multiple-counting corrections and
chose the full cumulant expansion technique, which, as
noted earlier, led to spurious divergences. Therefore the
multiple-occupancy corrections are again made self-
consistently, using the diagram technique developed by
Aiyer et al. (1969) as discussed in the previous section.

The single-site locator, which we evaluate here for
illustration, consists of diagrams shown in the first column
of Fig. 11 (in the calculation of the CPA) with the same
multiple-occupancy corrections shown in the higher columns.
The double internal interactor line here we denote as U,
the fully renormalized interactor,

Z (g(~)')(g(~) )lf'(& —~)'
U = W + W(G)W. (3.58)

(1 —c) c (1 —c)
(B —Z»j' (8 —R )')(o —B»

)& Q S'(e —m)'
m

(3.52)

Then we And for the bare value of the locator from the first
column of I'ig. 11,

f(m)
&

—rj(o)r(»))

Actually, no diagrams like Fig. 12(c) with a, diagonal inter-
actor appear, since 1/V(m —m) = 0 for m = m, but we can
include them formally to make the calculation parallel to
that in the previous section even if their contribution is zero.
Even for a perfect A-atom crystal, an infinite series must be
summed, but in this case Eq. (3.50) is simply the geometric
series

1 1 1
G = W+

(E —E~) (E —E~) ' (E —E~) '

(3.53)

which gives immediately the standard result

(1 —c)g~

1 —U(0) gp,

&ga

1 —U(0) a
(3.59)

where g~
——(E —E/, ) ' which is analogous to Eq. (3.40).

The sum of all columns gives, in analogy to Eq. (3.43),
the fully corrected 0.,

~ =.W(o)7 = ( g(e)
1 —U(0) g(m)

)+-(U(o)7

1 —~[@]U(0) ' (3.60)

where rt)(0) = U(0)/(1 —(r[@]Uo). The solution of this
equation is

G = [E( Eg) 1 —W] '. — (3.54)
g(n)

&
—o'(o)r(»)/D+ &(o)7)

(G) = a + aW(G), (3.55)

so that

By Fourier transforming to k representation, the usual
band energies appear.

We can clearly dehne an irreducible part as we did before;
the sum of all irreducible parts a' is called the locator (after
Ziman, 1969), which represents the renormalization of the
localized-state Green's function g. The pseudo-Dyson
equation satisfied by o is r(~)

&
—(r(») — 7rJ(o) ) (3.62)

Then, according to Eqs. (3.55) and (3.58), we can make the
substitution

U(0) g(e)
rr(o) i —o(o)r(»)/(r+ v(o)7)

(3.61)

which can easily be written in the form

(G) = a/(1 —Wa) = (a ' —W) (3.56) U(o) = '(G(o))— (3.63)
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We also substitute for 0 from Eq. (3.57) and identify demonstrated a derivation of the CPA equations using the
V(e) = E(n) —E~ to find that Eq. (3.62) becomes consistency equation from Eq. (2.137) that

«) = «")+ «"), (3.68)

which can be manipulated into the form

v(~)
1 —PV(e) —»(G(0) )) (3.65)

plus knowledge obtained from the locator expansion. Their
method can be generalized to include some of the important
effects of pairs and larger clusters. The technique is as
follows: From the locator expansion, as developed by
Anderson (1958), the site-diagonal Green's function G(l, l)
can be written exactly as

This formula is equivalent to Eq. (3.24), the CPA equa-
tion for the self-energy. G(l, l) = PE —E(l) —A(l)g —', (3.69)

This establishes that the expansion in localized states
agrees with the expansion in band states for the CPA treat-
ment of single-site scattering (where topologically the same
diagrams are included in each method). The generalization
of this simple. theorem to pair and cluster scattering gives
surprising results as is discussed in Sec. IIIC1 below. This

-equivalence does not hold for just any class of diagrams;
the multiple-counting corrections and self-consistency
are essential. Perhaps one might have guessed the result
earlier from the work of Onodera and Toyozawa (1968),
who showed that single-site CPA reduced to either atomic
or virtual crystal expressions in the appropriate limits.

In Sec. IIID below we briefly outline the calculation of
two-particle Green's functions where it has been shown that
the two approaches always agree if the one-particle Green's
functions agree and if the Ward identity is satisfied.

Finally, the proof given here in Eqs. (3.61) to (3.65) is
clearly not dependent upon the binary alloy model calcula-
tioris, but would hold for any disordered system, including
glasses. This point has been made by Matsubara (1970) .

S. Other approaches to the CPA

where b, (l) is a renormalization of the site energy E(l) at
site 1 and consists of the terms

, W(l —e)'
E —E(n)

+Z', W(l —e) W(e —m) W(m —l)
PE —E(m) 7[E —E(m) g

(3.70)

where the summations are restricted not to return to the
original site l. This site self-energy A(l) is then a term in-
volving yll hops leaving from / and back to site / with no
intermediate returns to l; thus, for example, A(l) is inde-
pendent of E(l) in this model. Butler and Brouers then
average G(l, l) over the occupation of site l to obtain

(G(l l) ) = (G'(l l) ) + (G (l l) )

(1 c)
E —E~ —b, (l)

There have been two derivations of the single-site CPA
equation using the basic proper ties of G" and G". The
earliest was by Aiyer et al (1969), wh. o noted that diagonal
elements of (Gd") and (G") are identical in site representa-
tion. From Eqs. (2.136) and (2.140) this gives the matrix
equation whose diagonal elements are

which is exact. They then assume that A(l) is the same for
each site, i.e., each site / is sitting in the same medium
as specified by A(l) = A. Then, equating this (G(0) ) to
the one for a medium with the coherent potential Z on each
site, they obtain

(V '&(G)) o = (V 'X(G)X)„+ (U—'LX —cVlj)„.
(3.66)

(1 —c)
E —E~ —6 E —EB —6

(3.72)

If, in addition, one requires that X be site-diagonal, i.e., a from which g can be eliminated, with the result
constant matrix, then the diagonal elements of Eq. (3.66)
satisfy C

AZ(G(0) ) = Z'(G(0) ) + Z —cA, (3.67)
(3.73a)

which has the CPA equation (3.24) as its immediate solu-
tion. Likewise, either of the other similar equations,
(G""(0)) = (G"(0) ) or (G""(0)) = (G" (0) ) = 0, can be
used to derive the same result. Thus, the C'PA self-energy
is the only single-site diagonal self-energy which is consistent
with these requirements of the host- and defect-sites Green's
fu

1 —(Es —Z) (G(0) )
'

(3.73)
nctions.

which is precisely Eq. (3.64) and gives the usual CPA
Recently Butler (1972) and Brouers et al. (1973a) have equations. This technique has been generalized by both
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Brouers et al. (1972) and by Butler (1972) to study larger
clusters as is discussed in Sec. IIIC1 below.

FIG. 13. The phonon density of states Io(~) versus co/co~ in the average
t-matrix approximation (with the host lattice as the unperturbed lattice)
for (a) 3'P& In in Pb (~ = 0.446) solid line is theory, dashed line is experi-
ment (Rowell et al. , 1965) and dotted line is experiment {McMillan
and Rowell, 1965) for pure Pb; (b} theoretical curves for 3'P& Au in Cu
(dotted line), 10% Au in Cu (solid line), pure Cu Ldashed line (Sinha,
1966)g r

after Elliott and Taylor (1967)g.

That is, the average Green's function (G(E)) for the dis-
ordered system is given by that of the unperturbed perfect
lattice P(s) evaluated at the complex points = E —2'(E).
For a linear chain this analytic continuation is trivial, since
the analytic form of P(s) is known exactly. For higher-
dirnensional systems, the analytic form of P(s) is not
generally known, although its numerical value on the real E
axis is known either from a model calculation of the density
of states or directly from experiment. Using Hilbert trans-
forms LEq. (2.36)j to relate the real part at one complex
point s to the imaginary part at some other s', one can
numerically continue P(s) into the complex plane quite
simply, on a computer. A review of such calculations in the
very dilute limit for the phonon problem is given by
Maradudin (1966). We give only one example from the
phonon calculations of Elliott and Taylor (1967) in Fig. 13,
which shows two distinct cases. In Fig. 13(a) is shown their
calculation within the simplest average t matrix approxima-
tion (assuming only isotopic defects) for 3% In in Pb which
is compared with the superconducting tunneling experiments
of Rowell et al. (1965). The only numerical input into the
calculation was the phonon spectrum of pure Pb taken from
a similar experiment and the known mass ratio of Pb to In.
At this mass ratio there is predicted a high-frequency band of
localized vibrational states about the lighter In atoms
which is seen unresolved in the experiment. In Fig. 13(b)
the same calculation is made for 3% and 10% Au in Cu to
demonstrate the appearance of low-frequency in-band
resonant modes about the heavy Au atoms. As the con-
centration increases, this theory simply lets the impurity

Finally, there is the continued fraction technique of
Matsubara and Yonezawa (1967), who showed from the
full cumulant expansion (Appendix A) that the infinite
series resulting for the single-site t-matrix could be put into
the form of a continued fraction. This continued fraction, if
evaluated exactly, would have contained the spurious poles
discussed in Appendix A. However, they were able to ap-
proximate the continued fraction in a way giving the
coherent potential approximation, and in fact a systematic
analysis by Yonezawa (1968) demonstrated diagrammati-
cally that the effect of this approximation was just to re-
move the unwanted multiple-occupancy corrections, as in
the ordinary diagram technique.

B. Single-site approximations for (G)—model
calculations

In this section we evaluate the usefulness of the various
single-site formal approximations to the density. of states
and to (G (k, o~) ) by comps, ring them with numerical
results of some model calculations for the phonon, electron,
and exciton problems. The similar features of these various
problems becomes much clearer in the graphical comparison
of the results.

0.06-

E 0.04-
3

0.02-

0

0.02

0

i I

Og
~~~rn

0.8 I.O

For the dilute, strong-scattering alloy where the isolated
impurities are capable of producing localized out-of-band or
resonant in-band states, the average t matrix approximation
LEqs. (3.16) and (3.38)j is a good approximation (Sec.
IIIA1) . Since the self-energy Z is site-diagonal )Eq. (3.16)g
then, by Eq. (3.17), the Green's function is given by

0.04

I.O0

(G'(&)) = PL& —~'(&)0

FIG. 14. Typical phonon frequency shifts and widths in the ATA
for in-band resonant modes, for 10'P& Au in Cu (after Elliott and Taylor

(3.74)
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FIG. 15. The phonon density of states p(co2) versus co2/co~ for disordered linear chains in the ATA with the virtual crystal as the unperturbed
crystal (solid line) and the machine calculations (histogram) of Dean (1961) for Mn = 3EA/2 at four concentrations c of 8 atoms i after Leath
and Goodman (1969)g.

band broaden, merge with the host band, and finally melt
away. At high concentrations it is no better than the virtual
crystal approximation. The effect of the (1 —c) factor in
the denominator of Eq. (3.16) is to make the impurity
band broaden more or less symmetrically about the isolated
defect-mode frequency, in contrast to the earlier formulae

without this factor (Langer, 1961b; Takeno, 1962; and
Maradudin, 1963), which broaden on one side only.

The self-energy Z'(E) has both large real and imaginary
parts near in-band resonant modes which represent large
shifts and widths, respectively, of the corresponding perfect
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FIG. 16. The phonon den-
sity of states p(co') versus
~2/m+ for disordered simple
cubic lattices in the ATA
with the virtual crystal as
the unperturbed crystal
(solid line) and the machine
calculations (histogram) of
Payton and Visecher (1967)
for Mn = Ma/3 at four
concentrations c of 8 atoms
l after Leath and Goodman
(1969)j.
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crystal states. The appropriate shifts and widths from the
phonon calculation of Elliott and Taylor (1967) are shown
in Fig. 14. These curves agree qualitatively with results
seen in some similar cases from inelastic neutron scattering,
although force constants changes generally produce con-
siderable extra e6ects and must be included in the model.

One can substantially improve the behavior of the average

Rev. Mod. Phys. , Voi. 46, No. 3, July j.974

matrix approximation (at least in three-dimensional
systems) by taking the virtual crystal as the perfect host
crystal, as in formula (3.18) above. This approximation
was developed for the phonon problem by Leath and Good-
man (1969) and has recently been taken over to the elec-
tronic case by Schwartz ef al. (1971). Results from the
phonon problem, taken from the work of Leath and Good-
man (1969), are shown (sohd lines) in Figs. 15 and 16 for a
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linear chain of atoms and for a simple cubic lattice, respec-
tively, with only nearest-neighbor forces in each case. The
various samples taken span the entire concentration
range. They show graphically how this average (f)-matrix
approximation correctly produces a band of high-frequency
localized states at low concentrations of the lighter atoms',
how this impurity band merges with the host band at inter-
mediate concentrations, and how a resonant impurity band
is pulled out at low frequencies when the concentration of
heavier atoms become small.

The calculations are to be compared with the computer
experiments of Dean (1961) for the linear chain and those of
Payton and Visscher (1967) for the simple cubic lattice,
which have been discussed in Sec. IIE1 above. For the linear
chain, the comparison is good only at the extremes of
concentration, since fluctuations in concentration play a
dominant role in the spiky high-frequency structure. This
structure is due to modes localized about various clusters of
A and 8 atoms and will only be produced in higher orders in
perturbation theory when the scattering by such clusters is
included.

In the three-dimensional example, the agreement is sub-
stantially better with, perhaps, surprisingly good agree-
ment even at 50% concentration. Thus must be because a
site in the three-dimensional system has a larger number of
nearest neighbors and more nearly sees an average, and
fluctuations are less important.

The weakest point of the formal approximation, as is
obvious from Fig. 16, is its failure to correctly reproduce the
band edges, This failure is due to the overly simple analytic
properties of the self-energy, which has the analytic behavior
of the host-lattice Green's function plus a simple pole. This
pole is positioned so that E —Z'(E) sweeps through the
energy region of the host band to produce the impurity
band in the right place, but is unable to move the unper-
turbed band edge from its value in the host crystal. To shift
the band edges with concentration, a self-consistent field
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FIG. 18. Comparison between the ATA (dashed line) and CPA (solid
line) densities of states for the cases where resonant, in-band states
and loca1ized states exist, respectively Lafter Taylor (1967)j.

is required, where the self-energy and Green's function have
similar analytic behavior.

We proceed to the single-site, self-consistent approxima-
tion, i.e. , CPA LEqs. (3.23), (3.24), or (3.46)g. We begin
by comparing the CPA with the early self-consistent field
approximation of Davies and Langer (1963). Figure 17
shows the calculation of the CPA by Taylor (1967) (solid
line) for a linear chain, compared with Davies and Langer's
calculation (dashed line) . The high-frequency impurity
band is compressed in the CPA. This compression is essen-
tial because the extended impurity band of Davies and
I-anger for some values of c and E extended beyond the
maximum frequency of the purely light atom lattice; this is
forbidden by the Saxon —Hutner localization theorem
(Thouless, 1970).The CPA is compared Lalso from Taylor
(1967)j with the average t-matrix approximation in Fig.
18 in the dilute, strong scattering limit. The impurity band
is broader in the CPA and the band edges are shifted. The
comparison Ltaken from Taylor (1967)j in Figs. 19 and 20
of the CPA (solid line) with computer experiments (histo-
grarns) from the same work as in Figs. 15 and 16 above show
the effect of the CPA.

0-
0

X2

FIG. 17. The phonon density of states p(co') versus x' = ~'/co~' for
a disordered linear chain with M~ ——MA/3 and c = 0.1.A comparison
of the CPA (solid line) with the self-consistent formula witout multi-
ple-occupancy corrections from Davies and Langer (1963) i after
Taylor (1967)g.

The agreement with the computer experiments for the
linear chain, Fig. 19, is not good. In the dilute limit the CPA
fails to reproduce the sharp band of states due to isolated
light atoms as satisfactorily as the average t-matrix ap-
proximation, but instead it gives a smooth impurity band
which represents a mean of all the impurity cluster bands.
In Fig. 20 for three dimensions, by contrast, the CPA
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2 (L, ) 4 2r3, . c ~0.10
tions are not fundamental to CPA (which is essentially exact
at low frequencies); but were due to Taylor's numerical
procedure. In order to reproduce the high-frequency struc-
ture that occurs for concentrations below co properly, the
scattering by pairs and larger clusters must be included.
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FIG. 19. The phonon density of states p(cos) versus a = sP/u&sr' for
disordered linear chains with Mn = M~/3 at three concentrations c
of 8 atoms. A comparison between the CPA (solid line) and the
machine calculations of Dean, 1961 (histogram) Lafter Taylor (1967)j.

This critical concentration co is related to the so-called,
percolation limit. In a randomly occupied lattice, atoms of
one type will occur in clusters in which they are nearest
neighbors of each other. At very low c the most likely
configuration is an isolated atom, but as c increases the
average cluster size increases. This size diverges at c = co

when an infinite cluster spanning the whole crystal is formed.
There are still some small isolated clusters at t,

- & co but the
number diminishes rapidly with c. )For a recent review of
this theory see Shante and Kirkpatrick (1971), Kirk-
patrick (1973) and the brief discussion below in Sec. IVE.g
In the impurity band, isolated atoms have localized states
and these have a small residual interaction over large
distances. However P(0, l) falls off rapidly with distance
in this energy range so the main interactions between
localized states occur for nearest-neighbor defects, and hence
the structure is largely determined by the occurance of
isolated clusters at neighboring atoms. Once the infinite
cluster is formed at c & co this structure is largely broadened
away. No structure occurs for small concentrations of heavy
atoms since they produce a broad resonance and not strongly
localized states.

The CPA density of states integrated over the impurity
band, when it is split away from the host band, gives c, the
appropriate weight for the sum of all impurity modes. The
energy width of the impurity band is proportional to c'~

(Taylor, 1967).

works miraculously well at all concentrations (or at least
at all concentrations of light atoms above a critical con-
centration co ~ 0.28 in the simple cubic lattice, where the
high-frequency structure disappears). Even the band edges
are nearly right, although the CPA, missing band-tailing
effects, tends to produce split bands a little too, easily. The
divergence difFiculty seen at low frequencies in these calcula-

The analytic properties of the single-site CPA result are
that (Gopz) is analytic everywhere except for branch cuts
on the real axis corresponding to the host and impurity
bands. There is a pole in Zop~(u&) on the real axis in the
gap between the host and impurity bands for sufFiciently
split bands Lsee Velickv et al. (1968)j, but this merely
produces a zero in ReG(cv) at this point. The disappearance

5
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FIG. 20. The phonon density of states p(cu')
versus ~'/ra+ for disordered simple cubic lattices
vrith M~ = 3M', at four concentrations c of 8
atoms. A comparison between the CPA (solid
line) and the machine calculations of Payton
and Visscher (1967) i after Taylor (1967)g.
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in the CPA of the Van Hove singularities of the perfect
crystal with the addition of disorder has been discussed by
Halpern (1972).

In the electronic problem very illustrative calculations of
Soven's CPA formulas were carried out by Velicky ef al.
(1968), and by Schwartz et al. (1971). In Fig. .21 from
Schwartz et a/. we show their comparison of the effect of the
average f-matrix approximation LEqs. (3.15) or (3.39)j
and the coherent potential approximation LEqs. (3.24) or
(3.46) j at a concentration c = 0.15 for a variety of scat-
tering strengths 6 = b/W. The calculations are made for the
simple model unperturbed density of states Lof Hubbard
(1964)g

(2/W ) (Ws —Es) '~s
f
E

f
& W

0
(3.75)

I

-3 -2
I I I

0 1 2 3

ENERG&/HALF 8ANDNIDTM

FIG. 22. The exact and CPA limits of the model electronic spectrum
for a binary alloy versus 6 = 6/W. The CPA limits are more restric-
tive, always producing split bands before the exact splitting. The
black profile is the CPA density of states Lafter Velickg (1969)g.

The virtual crystal approximation always produces a

x =O. I5
8 = o.4o

mp(E)

--2
ATA

—--—CPA

exact band gaps (Fig. 22) was given by Velicky (1969).
The gap appears too readily in the CPA because it does not
include band-tailing effects. A discussion of these effects
for a square distribution of site energies (Anderson's model)
has been given by Brouers (1971).

(b)
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~ harp(E)
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mp(E)

2--
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----CPA

0 I

ENERGY/HALF BANDWIDTH

We have chosen here to illustrate the CPA primarily
with the relatively simple mass defect phonon case. An
extensive comparison of ATA and CPA model calculations
has been carried out by Schwartz ef al. (1971),including two
band models for transition metals.

It is interesting to observe within the CPA the shape of
the density of states for various k values; several such cal-
culations have been performed. First, Onodera and Toyo-
zawa (1968) demonstrated clearly that both the single-
band behavior and split-band behavior were general fea-
tures of the CPA in their calculation of (G(k = 0, E) )
for the excitonic optical absorption spectrum in mixed
crystals. Some of their results are shown in Figs. 23 and 24.
In Fig. 23 is shown the density of states, the imaginary

I

-2

/
I

I ) I

-I 0 I 2
ENERGY/HALF BANDWIDTH

FIG. 21. A comparison of the model electronic density of states as
calculated in the ATA and CPA approximations. The concentrations
are x and 1 —x. The site energy diGerence determines
L(»" —en)/Wj in units of the bandwidth W I after Schwartz et af.
(1971)g.

-0.4 0 04

&/T =2.0

0.8
/p--~

single band which is a uniformly stretched version of the
unperturbed density of states and gives the mean energy
correctly. The coherent potential approximation shows
nicely the splitting of the bands into host and impurity
bands at about 6 = 1.0.The average t-matrix approximation
keeps the host and impurity bands split for much too low
values of 6, but produces the sharp spike for the band of
states corresponding to the isolated defects quite well.

Although the CPA nicely and smoothly moves from the
single-band to the split-band regime at 6, 1, the exact
value for splitting from the Saxon —Hunter localization
theorem Lsee Thouless (1970)g is at 5 = 2, when there are
no states from either perfect A- or 8-atom crystal at E = 0.
A general comparison of the band gaps of the CPA with the

0.4

0.2

~ ~ ~ ~i ~,~ ~ ~I

~A ~B

FIG. 23. The density of states (dashed line), imaginary part of the
self-energy fmLZ (Z) g (dot-dash line), and the optical absorption
spectrum Im(G(k = 0, E)) (solid line) in the CPA, for c = 0.5, and
5 = 6/W = 2.0, 0.8, 0.4, and 0.2, respectively [after Onodera and
Toyozawa (1968)].
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&/T =0.2 1. Pairs and clusters
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cstisI s (R)
Z"&(R, o&) = cti+

1 —tiPs(R) ' (3.76)

The first attempt to calculate the irreducible scattering of
pairs of defects was by I.anger (1961b), who found, in the
2 X 2 notation of Eq. (2.122), the bare scattering by pairs
of defects separated by a distance R = R...

50:50
I

/
/

i'

where

Ps(R„,) = I'(i,j)cr* (3.77)

25:75
/ The actual formula written by Langer for the total self-

energy in k representation is obtained by separating Z( )

into diagonal and off-diagonal elements, which are defined by

(a} (b)

FIG. 24, The density of states (dashed line), imaginary part of the
self-energy Im(p(E) j (dot-dash line), and the optical absorption
spectrum Im(G(k = 0, E) ) (solid line) in the CPA, for (a) e = ti/W =
0.8 (two-mode behavior), and (b) 8 = 0.2 (one-mode behavior), for
c = 0.2, 0.5, and 0.75 Lafter Onodera and Toyozawa (1968)j.

part of the self-energy, and the optical absorption spectrum
versus energy for c = 0.5 and for several values of tI = 6/W,
while the unperturbed density of states was just that of
Eq. (3.67) above. One notes immediately how the tz = 0
response shifts from one-mode to two-mode behavior as the
bands split. In Fig. 24 the concentration dependence is
given. In the split-band limit (a) there are two optical peaks
whose weight is proportional to the concentrations of the
two species; and in the weak scattering limit (b) the single
peak shifts linearly with concentration, as would be pre-
dicted by the virtual crystal approximation. Similar features
occur in the optical absorption by defect phonon states in
mixed crystals, except that there are many polarization
branches and optical and acoustic modes to make the pic-
ture somewhat more cloudy.

(Z "&'(R) Z&'&" (R))
!

5&'& (R)
I g(2&n (R) gi2&d (R ))

(3.78)

and writing

Z"&(lr., o&) = Q IZ"&d(R) + expt ik RgZ"&"(R) }.

(3.79)

The first attempts to include multiple-counting correc-
tions into this pair formula were by Yonezawa and Mat-
subara (1966) and by I eath and Goodman (1968), who
used the full cumulants P„(c) (Appendix A). The two
formulae are the same that of Matsubara and Yonezawa

The poles of this self-energy are at the zeroes of Eq. (2.120),
which are at the defect-pair state frequencies. The theory
will produce, at low concentration, narrow impurity bands
corresponding to the isolated defect states and to the
bonding and antibonding pair states. Unfortunately no
numerical evaluation of this formula exists in the literature.

In the electronic problem, Soven (1969) gave a useful
plot of the energies and widths versus k within the CPA,
which we show in Fig. 25. He defines the energy differ-
ence between the half-maxima in (G(k, E) ) versus E as the
width for the value k. The model host density of states
again is that in Eq. (3.67). The curve is broadest at the
center where the gap is about to appear in the density of
states.

Finally, for completeness, we show plots, Fig. 26, of
(G"(E) ) and (G"(8) ) as in Eq. (2.136) and (2.137) versus
energy taken from the calculations of Velicky et at. (1968) .
This calculation demonstrates quite directly how, in the
split-band limit, the two subbands are associated almost
entirely with states localized on each species of atom.

E/Wo

)
~'/

C. Extensions for (G)

So far we have discussed diagonal, substitutional dis-
order with only single-site scattering included self-con-
sistently. There have been several extensions to pair and
cluster scattering, to off-diagonal disorder, and to struc-
tural disorder, with some limited success.

I
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,4
I I I

.S .6 .7

ak /7T
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.9 1.0

FIG. 25. Locus of the maximum of the CPA spectral density ImGI, (cv)
versus Pk, k, kj for c = 0.4, and 8 = 6/W = 1. The boundaries of the
shaded region define the half-height position of the spectral peak. The
dotted line is E(k) for the virtual crystal approximation Lafter Soven
(1969)g.
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I'IG. 27. The left and right sides of the square represent the two
extremes of concentration (the dilute limits); the top and bottom sides
correspond to the atomic (split band) limit and the weak scattering
(virtual crystal) limit, respectively. The ordinary CPA is a perturba-
tion theory in an expansion about each of these limits (the shaded
regions) i after Leath (1973)g.

Z'@(R, (v) = ctt/ 1+ ctiP(0)

c(1 —c) tPP, (R)'
1 —(1 —c) ttPs (R)

(3.80)

which is to be compared with Eq. (3.68), the bare formula
(of course, neither formula is self-consistent). This ATA
result with appropriate multiple-occupancy corrections
should have the property that the impurity bands are
centered at proper frequencies. Again, no numerical calcula-
tions exist in the literature, although the formula should be
appropriate for studying pair modes at low concentration
( 10'P~) of defects.

The primary interest in pair and cluster scattering to
date has been in trying to find a generalization of the
coherent potential approximation, a kind of Bethe —Peierls
approximation, which is useful at all concentrations and
scattering strengths. This requires cluster scattering in a
self-consistent medium. Let us recall the range of validity
of the ordinary CPA. Clearly it is useful at very low con-
centrations and at very small scattering strengths V/W,

- since lt can be viewed Rs Q, Ienormalized pcI turbatlon
theory about these limits. But Taylor (1967) showed that
the CPA was symmetric in the two atom types so that it is
also useful for very high concentrations or very small values
of (1 —c), the concentration of host atoms. Finally, Leath
(1970) showed that the CPA was also obtainable from per-
turbation theory, and thus useful, in the extreme split band
limit where IV/V is very small. Therefore the CPA is useful
at'each extreme of concentration and scattering strength,

is a very dificult integral formula and has never been
studied fully, although from the work of Leath and Good-
man it is clearly an integral representation of a generalized
hypergeometric function. The full cumulant method, as
in the single-site case, has generally been abandoned because
it introduces spurious poles.

The 6rst pair formula with multiple-counting corrections
or corrected cumulants was produced by Aiyer et al. (1969).
This formula (the extension of the average t-matrix ap-
proximation to pairs of defects) was derived both by a,

t-matrix decoupling scheme, like that in Sec. IIIA1 above,
and by a diagrammatic summation (as in Sec. IIIA3).
The result was

as shown in Fig. 27, and forms an analytic interpolation
formula in the interior between these limits. As such, the
CPA succeeded far beyond what one would expect of a
perturbation theory. Nevertheless, the CPA has other non-
physical features such as a k-independent self-energy and an
impurity band with no structure. Thus generalizations of
the CPA were sought with the hope of maintaining the
symmetries of the CPA while improving the k dependence
of the self-energy and the impurity band structure. Aiyer
et al. (1969) attempted a self-consistent pair calculation.
However, it was discovered by Nickel and Krumhansl
(1971) that a simple error had been made in the evaluation
of the pair formula. %hen this is corrected the result can be
written in the form

V~ —Z2
(t, ) = =0.

1s —( Vs —~s) Gs
(3.81)

This is a two-site generalization of CPA, where now Z~

is a 2 &( 2 matrix as in Eq. (3:70), and where Vs and Gs
are the 2 && 2(i, j) subspace of the full V and G matrices:

(V ~ l
(0 V,)

(3.82a)

(3.82b)

Leath (1972) showed that this result corresponded to the
self-energy formula

Z&'&(R) ~) = crt/ 1+ cr, I'(0)

c (1 —c) rt'I's (R) '
1 —(1 —c) rti's(R)

(3.83)

which is just the direct perturbation theory pair formula
(3.80) with the unperturbed propagator replaced every-
where by a self-consistently determined propagator I'. The r
propagators, as in Eq. (3.23), are a 2 X 2 version of
G/(1 + ZG) with all intermediate scattering by the sites i
and j in the t-matrix pair removed. This result could also
have been obtained from the t-matrix decoupling method.

There is, however, a subtle difference between the
diagrammatic and the CPA methods. Namely, the CPA, a
rather more physical or intuitive approach, would lead one
to use the full self-energy or coherent potential (with all
possible internal scattering) in Eq. (3.81) for Zs, but the
diagrammatic method quite unambiguously shows that Z2

contains only the pair diagrams for scattering by that
particular pair of sites (i, j).

Finally, numerical calculations have been carried out on
this corrected formula (3.81) by Butler and Nickel (1973),
with disturbing results. Although useable at small scat-
tering strengths V/W, in the strong scattering regime
(where pair modes are important) the formula developed
serious nonanalyticities (branch points) off the real axis in
the complex energy plane and on the physical Riernann
sheet (see Fig. 28). The formula is apparently not suitable
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(1 —(V —Z„)G ) (3.84)

The nonanalyticity seems also to disappear when the
cluster diagonality is imposed. At least Butler (1973) has
found this true for one-dimensional systems. That is, the
forcing of the weak scattering perturbation theory to have
the correct split-band limit apparently maintains the proper
analyticity in that regime. Furthermore, if Z is cluster-
diagonal the subtle difference (mentioned above) between
the diagrammatic and the CPA approaches clearly dis-
appears, since the diRerence was due only to the oR-diagonal
contributions.

Ducastelle (1972) not only showed that the formula of
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in the strong scattering or split-band regime. It should be
pointed out that non-analyticities had previously been
reported in. a somewhat similar calculation by Capek (1971).

In 1971,Ducastelle demonstrated that indeed the formula
as calculated by Butler and Nickel does not reduce to the
proper value in the split-band limit. Recently Leath (1973)
has shown that it is possible to maintain this CPA formula
(3.81) and obtain the correct split band limit if and only
if the self-energy is cluster-diagonal, as in a model Tsukada
(1968, 1972) had used earlier. In this CPA calculation the
full self-energy, limited on its external indices to the pair of
sites (i, j), is put into Eq. (3.81) and cluster diagonality in
this sense requires that the full self-energy Z does not have
any nonzero oR-diagonal elements connecting either site i
or j to the other sites in the system. The proof applies
generally to clusters of arbitrary size, with the CPA formula
Lsee Nickel and Krumhansl (1971)j

Nickel and Krumhansl (1971) did not have the appropriate
split-band limit, but also identified the diagrams where ex-
pansions in localized states and in. Bloch states first began to
disagree for the higher-order CPA. Although he was unable
to hnd a resolution of the difference, his paper was instru-
mental in pinpointing the

difhculty

with the various
generalizations of the CPA.

A separate approach in the literature was the multiple
scattering technique of Cyrot-I ackmann and Ducastelle
(1971), who set to zero not the average Is )& I t„-matrix,
but the sum of such average f-matrices over all n-cluster
scatterings which began on the same site. Not only is this
computationally intractable, but, as originally stated,
Ducastelle (1972) also found that the formula was wrong in
the extreme split-band limit. Nevertheless, if Z is cluster-
diagonal these diRerences completely disappear an, d their
formula merges with the CPA.

Another cluster approach of some complexity has been
introduced by Freed and Cohen (1972) . They rediscovered
the technique that Taylor (1967) had used for deriving the
CPA for phonons and the suggestions made in that paper for
generalizations to clusters. Thereafter they make several
complicated approximations, which seem to contain diK-
culties, since the results are not correct even to lowest ap-
propriate orders in concentration (Ducastelle, 1972) .

A very simple cluster theory has been studied recently by
several groups (Butler, 1972; Capek, 1972; Tsukada, 1972;
Brouers et ut. , 1973a), which has been discussed in Sec.
IIIA5 above. They calculate the average t-matrix for
scattering by a cluster in a medium Las in Eq. (3.84)j
with a diagonal coherent potential but, in contrast to Eq.
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(3.84), they set not the entire average t-matrix to zero, but
only the diagonal element on a single site in the center of the
cluster. This may be carried out in a manner similar to that
in Sec. IIIA5 by insisting that (G(l, l) ) at the center of the
cluster be the average of the cluster over all occupations of
site L and its nearest neighbors. Numerical calculation is
easy since Z is diagonal, and reasonable results were ob-
tained for weak scattering LV/W 0.5, see Butler (1972)
or Brouers et al. (1972)$. Unfortunately, Capek (1972)
and Butler and Nickel (1973) found that this method also
suffers from nonanalytic behavior of a very similar sort to
that in Fig. 28(a) when the band splitting is taken too large
( V/W 1.0) .

Butler (1973) has recently reviewed interest in this
numerically appealing approach, however, by noting that all
the nonanalyticities disappear when, instead of the central
site of the cluster, the boundary site of the cluster is chosen
for the effective medium equations. He further was able to
show in one dimension that this boundary site condition
was precisely the full CPA with cluster-diagonal self-energy
as discussed above. His results are shown in Fig. 28(b) for
the difficult energy region beyond the edge of the host band
and are compared with the exact computer results. As his
cluster size increases from one to seven, the spiked structure
of the exact result (like that in Dean's calculation) is clearly
reproduced. Thus, it now seems, if one is interested in ap-
proximately reproducing the highly structural density of
states found by Dean so long ago, the CPA is now up to that
task.

Very recently, Mills (1974) has explicitly demonstrated
a condition for the proper analyticity of the average Green's
function as given by a partial summation of diagrams, with
translational symmetry assumed. His criterion is for a
certain left —right symmetry in the sum of self-energy graphs
which is satisfied by the ordinary CPA but not by the pair
formula of Butler and Nickel (1973). He suggested a "pair"
formula consisting of all graphs that could be drawn on a
Cayley tree (i.e., those without closed loops of three or
more sites) but did not carry out the calculation. Perhaps
his suggested calculation would be equivalent to that
recently performed by Abou-Chacra et al. (1973).

Finally, we note the self-consistent pair calculation of
Schwartz and Siggia (1972). They apply functional deriva-
tive techniques which reproduce the full cumulant coe%.—
cients P„(c) for each diagram. Then they consider each
term in the perturbation expansion in powers of s ', where s
is the number of nearest neighbors. They first sum all
zeroth-order diagrams in the expansion (i.e. , all site-
diagonal diagrams plus all other diagrams for the case when
all the sites coincide); this summation reproduces the
single-site CPA. The result could have been expected
since, diagrammatically, the CPA is just the sum of site-
diagonal diagrams with the corrected cumulants Q„(c).
They were also able to show that there were no contribu-
tions to the resulting perturbation expansion of order s '
so that the CPA was exact to order s . Then they proceeded
to include all diagrams of order s ' and s ', which meant pair
diagrams and which also would then be correct to order c2.
In this order, however, they were unable to carry through
the equations exactly Lwhich presumably would have re-
produced the CPA2 formulas of Nickel and Krumhansl

(1971)j and approximated P„(c) according to

P„(c) c(1 —c) (1 —2c)" ' m&3 (3.85)

in order to carry through the calculation; the motivation
behind the approximation is not clear except that it is
appropriately symmetric in the two atom types I i.e. , in c
and (1 —c) j. In any event the approximation (3.85)
clearly removes any spurious poles from the self-energy
and, in fact, produced pair state bands in the split-band
regime, although no comparisons with exact calculations
were made. Considerable discussion of this result appears in
a later paper by Schwartz and Ehrenreich (1972b) .

Since the calculations of Butler (1973), it now seems that
the cluster-diagonal CPA is clearly the most satisfactory
theory to date for producing the general features of the
density of states (with the exclusion of impurity band
tails, which must require contributions from clusters of
arbitrary size). Nevertheless, the theory is in a rather un-
satisfactory state, in spite of the progress, because the
cluster-diagonal CPA and the equivalent boundary-site
effective medium theory are inconsistent with the transla-
tional invariance of (G). That is, both of these theories give
improper behavior for the spatial dependence of {G(e,m) )
although {G(e,~) ) gives a good density of states. In a
sense, the perturbation theory has broken down because the
assumption of a translationally invariant (G) or X is in-
consistent with selecting only finite sized clusters. It would
seem that, to remove these difhculties, one must sum the
contribution from clusters of all sizes.

The outstanding test for any analytic theory of clusters is
that it reproduces the essentially exact computer results
)like those of Dean (1961) or Payton and Visscher (1967)j.
Most of the recent work on the electronic problem has been
for simple models appropriate to the electronic problem, and
therefore has ignored these exact calculations of phonon
spectra. Authors would be well advised to simply evaluate
their approximations for a common set of parameters where
exact computer results exist (like those of the simple phonon
problem) to test the usefulness of their formulas. It was just
these sorts of test which put the CPA on a firmer footing,
and it will be similar tests versus exact results which will
make or break any generalization.

2. Extended defects (og-diagonal disorder)

+dilute {tE)~ (3.86)

Since t~ is no longer diagonal in site representation, (t~(lt) )

The attempted generalizations, in the literature, of the
perturbation theory to extended defects or off-diagonal
disorder have been mostly unsuccessful. A rather common
misfortune has been the failure to agree with known formulae
in the dilute (low concentration) limit. Therefore we begin
with a discussion of that dilute limit.

In the extreme dilute limit all overlap effects between
defects can be neglected. If one can calculate the t-matrix i~
for scattering by a single defect. at site L in an otherwise
perfect crystal, as outlined in Sec. IID above, then one can
write, for the self-energy
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will vary with k. In order to discuss this k dependence, we
shall consider, for definiteness, the case of a single defect at
the origin in a simple cubic lattice, where the perturbation
V (l, l ) in the vicinity of the defect is given, for example, by
Eq. (2.116).

U(0, 0) = e, V(0, 1) = —y, and V(1, 1) = p,

(3.87)

~(6) i/2

—v(6)'")
!

)

V„=p 0 1 0

(0 0 1)

0)

EO 1)
(3.88)

as in Eq. (2.118), so that, according to Appendix C, the
Fourier components (U(k) ) are

(U(k)) = g (V(l, l')) exp[ik $R(l) —R(l')7i (3.89a)

where the site 1 is a nearest neighbor to the defect at the
origin. Using the symmetry transformation discussed in
Appendix C, this matrix can be block-diagonalized into s-,
p-, and d-wave parts

For higher concentrations, overlap and multiple-occupancy
effects enter, and Eq. (3.92) is generally no longer accurate.

An example of a correct treatment of the dilute limit with
such off-diagonal disorder is the calculation of Izyumov
(1966) in the case of disordered Heisenberg ferromagnets.

In the case of electrons in metals, the perturbing atomic
potentials V(l, l') must often be chosen self-consistently to
satisfy the Friedel sum rule, as has been pointed out by Daw-
ber and Turner (1966) and emphasized more recently by
Stern (1971). To date, it seems that no CPA calculation
exists for electrons in metals which also gives the correct
dilute limit. As Dawber and Turner, and Stern have pointed
out, the diagonal-disorder model contains, necessarily, only
s-wave scattering by each defect, and hence has only a single
phase shift to satisfy the sum rule; thus it is satisfied (if at
all) only for very special values of the scattering parameters
and Fermi energy. However, although the o ff-diagonal
disorder is necessary for proper screening, it is cle3r'from
Eqs. (3.88)—(3.92) that the mere existence of some off-
diagonal disorder (y W 0) is not sufFicient for p- and d-wave
scattering by a defect to occur. Rather it is clearly required
that the perturbing potential on the neighboring sites also be
nonzero. For example, p A 0 is sufhcient. Thus the standard
model of o6-diagonal disorder which has been in common
use in various generalizations of the CPA for the electronic
problem (Shiba, 1971; Foo et al. , 1971; Blackman et aL,
1971a, b; Brouers, 1972; Brouers and Van der Rest, 1972;
Brouers et al. , 1973b; Schwartz et al. , 1973), namely,

(V(k) ) = cLV, (k) + U, (k) + Va(k)7, (3.89b)
V(l, l) = V~ or Vii

V(l, l+6) = Vxx, or Vp, B, (3.93)

where

V, (k) = e —12yyg+ 6pyg',

V~(k) = p(1 —7»)

Va(k) = (3/2) p(1+ y2g —2yk'). (3.89c)

The sum of all scatterings by the perturbation about a
single defect at site l, of course, gives

ti ——Vi/(1 —ViP(), (3.90)

V,
1 —V,P, '

V„
1 —V„P„'

Vg
td =

1 —Vga '

(3.91)

as given by Eqs. (2.117) and (2.118).The k components of
the average II-matrix are then calculated, with the result
that in the dilute limit

where P~ is the 7 &( 7 matrix representing the host lattice
Green's function about site /, which can also be block-
diagonalized into s-, p-, and d-wave parts by the same sym-
metry transformation. Therefore t& can be broken into the
orthogonal s-, p-, and d wave parts-

depending upon occupancy of sites l and l + 5 by A and B
atoms, clearly fails to produce more than simply s-wave
scattering and hence also does not allow enough flexibility
to include the effect of self-consistent screening. In an argu-
ment related to the one given here, Rudnick and Stern
(1973) have come to a similar conclusion. An adequate
model should at least allow p to be nonzero in Eq. (3.87)
(even though that leads to some mathematical complications
at high concentrations), so that the charge around a defect
site can be adjusted self-consistently. Rudnick and Stern
(1973) have recently, in fact, proposed that if p W 0,
then it is adequate to allow y = 0 (no disorder in the inter-
atomic hopping) for the purposes of self-consistent screen-
ing. Within this model they show that such screening effects
are quantitatively important. Finally, the discussion here
has been only for a single cubic lattice, but the results are
clearly true for any crystal structure since p, d, and higher
angular momentum wave functions do not overlap the origin
(Bass and Leath, 1974) .

Since no further progress has been made, to date, on such
self-consistently chosen atomic poteritials, we turn now to
those off-diagonal approaches and models for ferromagnets
which have at least begun to handle overlap and multiple-
occupancy problems correctly at high concentration. The
calculations of this sort where progress has been made are
the two special cases of additive and separable perturbations,
and the binary alloy problem with random values for the
two site energies and the nearest-neighbor hopping elements.

~.'i-"(k) = ck(t. (k) ) + (t.(k) ) + («(k) )7.
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(3.92) In the erst model, that of additive perturbations, one
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assumes that the perturbation V„(l, l') due to a defect
located at site e is additive with that due to all other defects,

Be = 3Cs+ Q Q V (l, l')ui+ai',
n E, l&

(3.94)

where the sum g„ is over all defect sites. This general
model was suggested by Takeno (1968), who essentially
showed that the CPA calculation for this model goes through
as in the case of only diagonal disorder except that the CPA
equations (3.22) are now matrix equa, tions with matrices of
dimension equal to the number of sites, about site e,
which are perturbed by the presence of a defect at site n. A
special case has been considered by Schwartz et al. (1973),
who assume p = 0 and a special relation

potential like Eq. (3.96) with r = 0 and constructed a low c
expansion. Their model when put into a CPA calculation
(Harris ef al. , 1974) gives results quite similar to those in
Fig. 29, but with a very weak spurious resonance in the
middle of the energy band.

Tahir-Kheli (1972) has proposed another model of a
dilute magnet in which bonds are removed between pairs of
sites at random. The perturbing potential again is additive
and is given by Eq. (2.114) with A = —2JS. His method is
equivalent to the CPA and gives, for the spin-wave Green's
functions (2.53) a simple form,

G(k, E) =
I E —[2JS —2'(E) j

VAB (]/2) (VAA + VBB) (3.95)
X Q L1 —exp(ik 5)]}—', (3.97)

1 —1 0 0 0 0 0

between hopping elements.

The only physical case known to the authors where the
off-diagonal perturbations are rigorously additive is that of
dilute magnets. The Heisenberg ferromagnet with nearest-
neighbor interactions has recently been studied by Elliott
and Pepper (1973) and in great detail by Harris et al.
(1974), using the CPA. In this specia, l case c = 6p =
6p = —6 in the perturbation (2.116) corresponds
to the removal of a single magnetic site from the simple
cubic lattice. In this case, V is singular which indicates
that the system still has the zero energy excitation cor-
responding to the uniform rotation of all the spins. The
perturbation is strictly additive if one neglects the incorrect
exchange integral thus introduced between neighboring
magnetic vacancies. To remove this inaccuracy, as well as
the mode associated with excitations on the defect site itself,
Harris et al. (1974) have recently suggested the non-
Hermitian perturbation

where the self-energy Z' depends only on E. At low corlcen-
trations, 2' has a spurious resonance at low E related to that
given by Eq. (2.114) (Elliott and Pepper, 1973). In addi-
tion, he finds that in the limit E—+ 0, Z' ~ 2JScz/(s —2),
where s is the number of nearest neighbors 5, and c the
concentration of missing bonds. Thus the spin-wave
stiffness D in the limit of low kLE(k) = Dk'j. varies linearly
with c at all concentrations. If the concentration of bonds is
interpreted as the concentration of magnetic sites, the spin-
wave curve is in good agreement with the computer calcula-
tions of Kirkpatrick (1973), although this does not seem
to be a valid theoretical procedure. Clearly this bond model
gives the wrong dilute limit, since it neglects the correla-
tions between the bonds removed around a missing magnetic
site. Nevertheless, the approximation appears to be quanti-
tatively fair at higher concentrations where all CPA treat-
ments have difficulties.

The most successful approach using additive perturba-
tions in the electronic problem is by Soven (1970). He con-
siders a system of muon-tin potentials which are zero
everywhere except within a radius R of each site, where they
take on the values VA(r) and VB(r), depending upon the

0 —1 0 0 0 0.8— Pade

t/, = A 1 0 0 0 0

1 0 0 0 —1 0 0 0.6

1 0 0 0 0 —1 0

O O O O O —Ij
(3.96)

3
~ 0.4

CD

E

where the limit is taken in the calculation as r —+ ~. This
hard core, on the defect site and in hopping from the defect
site, rigorously removes all spin excitations-from the defect
site, makes the additivity of the perturbation rigorous, and
guarantees the absence of a gap in the spin-wave spectrum
by preserving the singular nature of. the perturbation. The
non-Hermiticity does not lead to serious problems. Their
calculated results for ImG(k, oi) at c = 0.3 nonmagnetic
sites are shown in Fig. 29 and compared with the results
obtained from a Pade approximant approach by Nickel
(1974) . Edwards and Jones (1971) proposed a model

0.2

0
0 0.25 0.50 0.75

FIG. 29. The spectral density Im (G&(a&) ) versus a&/cosr of spin waves
in a dilute, simple cubic Heisenberg ferromagnet for 30'P& missing
magnetic sites and k = ~/a(1/2, 1/2, 1/2) as calculated by Pade ap-
proximants on a moment expansion (solid line, from Nickel, 1973}and
within the CPA (dashed line) with r ~ ~ in Eq. (3.96) i after Harris
et af. (1974)g.
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occupation of the particular site by an A or ato
~. 8 atom. Clearly

~ ~

the erturbations are additive.

G(r, r') = Q YL(r)GLLYL. (r'), for
f
r

l

=
l

r'
l

= R,

(3.98a)

p

Soven 6rst notes t a e rh t th Green's function for this system
G r r') can be decomposed into partial waves

I.S—
X

th
LLI

I.O—
V)

e I' ~~r~& are the real spherical harmonics of angular

(1967) notes that the local density of states on an -atom
site is given by

I-
CO
X
4J

0.5—
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I
I

I
al

n (p~(E) ) = —R' Im Q (GLL)j,dyL, ~/dE)
L

(3.98b)

~ ~

is the angular momentum decomposition

q~E~ is the logarithmic derivative at energy+LA( g» e Og
ular momentum I,, of theR of the regular solutions, of angular m

lvin the mufhn-tin potentiaSchrodinger equation invo ving
V (r). His expansion was not in terterms of the p ysica
VA r, however, but in terms of a very p
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ENERGY
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O
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where WL,~(E) waschosento give V~ (r, r, p'~r r'~ the samephase
shifts as VA~ry. en e wV j y Th n he was able to show that the physical
density of states (p(E) ) was given by

vr(p(E) ) = ImlTr(G')
—.~' Z L(1 —c) (GLL )~(dIVL, A!dE)

L

+ c(GLL')s (dWL, sldE) ]l, (3.99)

w ere G' is the Green's function for the system s with the
s e m —

' ' d U 'at thesites where theshell muffin-tin potentials UA an~ ~ a e
real system had potentials U& a &,

'
. hand UB, respectively. The
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method to this simpler model with the she mu n-
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'

ll th CPA equations reduce a ter
~ ~th angular momentum representations

to matrix equations coupling the various channels, o
scattering by a single site.

Numerical calculations were performed only for a very
sim le model consisting of s-wave scattering on y. T e
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'
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0 5.-

the ordinary CPA locator technique (Sec. IIIA4) except
that the unperturbed locator g(e) = Le —e(ri) j ' is
replaced throughout by the weighted locator

g'(n) = n(n)/$e —e(ri)]. (3.102)

—l.0 O.O I.O 2.0 3.0 4.0 5.0 6.0

t7.9%&,

5.0 6

78o

,Bo.s

Clearly this result reduces to that of the ordinary CPA for
the case of diagonal disorder, since in that case n(e) is
independent of rs. Typical density of states curves obtained
by Shiba (1971),the case of bandwidths of the pure A and B
materials differing by a factor of four, are shown in Fig. 31
for the entire concentration range of the two species.

This simple theory, based on the locator expansion, clearly
reduces to the ordinary CPA in the case of only diagonal dis-
order, and gives qualitatively useful answers at all con-
centrations. The correct dilute limit is surprisingly obtained
even when there is off-diagonal disorder, in contrast to the
claim of Schwartz ef aL (1973).

This correctness of the dilute limit of the theory is dis-
cussed by Bass and Leath (1974). The adaptations of the
theory by Brouers (1972), Brouers and Van der Rest
(1972), and Brouers et al. (1973b) fail to give Z (k) properly
in the dilute limit because they assume incorrectly that Z is
of the general form

FIG. 31. Typical CPA densities of states p(cu) versus ~ for random
hopping integrals of the separable form l Eq. (3.100) j; the bandwidth
of the pure B material is 4 times that of pure A material Lafter Shiba
(1971)).

Z = Zi(E) g ~

rc)(e
~
+ Zs(E) g'

~
&l)(m ~, (3.103)

V(i, j) = n(i) Wn( j), (3.100)

where n(i) takes on the va, lues n~ and nn depending upon
the occupation of site i by an A or 8 atom, respectively.
With this separable perturbation one can see that the
locator expansion (3.50) becomes especially simple,

+ W W
n (l) n (m) n (r&s)

e —e(l) e —e(e) e —e(m)

~ ~ ~ (3.101)

The rest of the calculation then proceeds precisely as that for
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dilute and weak scattering limits. It now remains to be seen
whether these results can be improved by allowing V~~s& (r)
to vary self-consistently with the occupation of the neigh-
boring sites in order to include screening effects.

The second, successful, special model is the model of the
separable perturbation introduced by Shiba, (1971) into the
electronic problem. Although his model also does not
generally allow for self-consistent screening, the concept of a
separable perturbation is sufFiciently useful to deserve
review. His model, which has since been incorrectly adopted
by other authors (Brouers, 1972; Brouers and Van der Rest,
1972; and Brouers et a/ , 1973b), is. that the diagonal site
energies take on the two values e~ or ~B and that the off-
diagonal interatomic hopping elements V~~, V~8, and V~~
between nearest-neighbor atoms are given by the separable
form

(VAA VAB)

(Vn~ V»)
(3.104)

Clearly, for an rs component alloy, the theory becomes an
e )& v matrix theory. They produce a great many interesting
density-of-states curves which qualitatively are very much
like those of Fig. 31. For the case of a separable Hamil-
tonian this result reduces to that of Shiba (1971), as is
discussed by Blackman (1973). Again it is important to
note that this theory is correct in general in the dilute limit
(in contrast to the statement of Schwartz ef al. , 1973), as
has also been discussed by Bass and Leath (1974).

A very interesting and unique approach to the problems of
o ff-diagonal disorder has been found in the spin-wave
problem in disordered Heisenberg antiferromagnets by
Buyers ef al. (1972, 1973), although it is difficult to analyze
the size of their omitted terms. For a given concentration of
A and 8 magnetic atoms they calculated the fractions of A
and 8 atoms surrounded by each possible configuration of
nearest neighbors, and hence found the fraction with each
possible value (out of e possible values) of the exchange field
on a site. They did a CPA calculation on the diagonal part
of the disorder by assuming an e-component system and
Anally scaled the off-diagonal part so that no gap was pro-
duced in the spin-wave spectrum. The numerical results

which in the dilute limit neglects the y(k)' term in (t, (k) )
in Eq. (3.92) (see Appendix C).

For the case of a binary alloy, Blackman ef al. (1973)
have shown that the locator CPA method can be carried out
for the Hamiltonian (3.92) discussed above, in general
without the separability or additivity, by going to a 2 )& 2
matrix notation,
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gave quite good agreement with dispersion waves obtained
from neutron scattering experiments. Clearly, this technique
also will not give the proper dilute limit since the correla-
tions about a single site are not properly included. This
calculation is discussed further in Sec. IVC below.

Another example from the literature is that of Foo et al.
(1971), who have included the off-diagonal disorder not in
the single-site scattering, but only between the two-sites-in-
a-pair scattering calculation. Clearly this calculation also
does not have the correct dilute limit because the self-
energy is of the form (3.103), which does not properly
handle the coherent scattering by the changed hopping
around a defect site.

There remains much work to be done in the field of off-
diagonal disorder if a qualitative understanding of experi-
ments in disordered systems is to be achieved. An ap-
propriate theory must be correct in the dilute, weak scat-
tering, and strong scattering limits and include the partial-
wave scatterings in such a way that screening processes can
be included self-consistently.

Z. Systems with short-range order

The discussion so far has been concerned exclusively with
systems which have long-range structural order, but where
the impurities are distributed at random over the lattice
sites. There are many important situations where the
scattering centers are not distributed at random, but in a
way which shows short-range order. It is natural to consider
whether the methods which have proved successful for the
completely random case can be generalized to deal with this
situation. The problem is in fact much more complicated,
and only limited progress has so far been possible.

Short-range order systems can be divided into two types.
The first is a straightforward extension of the case already
treated —impurities placed substitutionally on a definite
lattice but with correlated position. CuAu alloys are a
well-known example of a metal showing appreciable short-
range order. We shall treat this situation first because it is a
straightforward generalization of the random case already
treated.

based on (successively more sophisticated) truncation pro-
cedures of a hierarchy of equations obtained in a multiple
scattering theory as developed by Lax (1951, 1952),
Edwards (1962), Beeby and Edwards (1962), Beeby
(1964a, b). In the present context various authors have
tried to generalize by including short-range order at various
stages in the process. As a result there are a variety of equa-
tions available, but it is by no means clear in some cases
which approximation is the more valid.

c"n„(1,2, g), (3.105)

where (n„—1) is the correction to purely random site
occupancy. The various decoupling schemes and the
cumulant expansion discussed in Appendix A provide a way
in which the interference part of the cluster scattering is
separated from that due to e single sites and smaller clusters.

Even the simplest t-matrix decoupling scheme includes
some correlation, in that cx = 0 when 1 = 2 or 2 = 3 etc.
as given in Eq. (3.10). For pairs of sites in an alloy it is
convenient to define a "hole" distribution function
p (e, m) = a (n, m) —. 1. For purely random, but single,
occupancy of sites p2 ———B.„.This "hole" distribution
function is similar to that occuring in the description of
liquids (Egelstaff, 1967), i.e. , g(R, R') = g(R, R')—
p(R'), where g(E, E') is the pair distribution function
which vanishes when R = E'. Here P —= g, and n = g.

In the single-site CPA method it was shown that in
multiple scattering at a defect one must correct the total
propagator P (or G) by some modified propagator which
involves the rest of the medium. The simplest way to
approximate this is to make the replacement

a. Alloys with short-rarIge order

As stressed in the treatment of the random case in Sec.
IIIA1 and the extensions in IIIC1, a full treatment of the
alloy would include a discussion of the scattering of all
defect clusters. The probability of finding a cluster of e
atoms at sites 1, 2, ~ ~ ~, e in the random case is propor-
tional to c". If there is short-range order, it will be given by

More generally, there are amorphous solids, glasses, and
liquids where there is no long-range order at all, but short-
range order is present, and indeed can frequently be deter-
mined experimentally. There is no obvious unperturbed
basis system from which to start a theory of these materials,
so that it is not immediately obvious how they can be
related to the earlier description. One exception to this is
the case of electrons in liquid metals, where the free electron
approximation can be used as a starting point Lsee for
example Ziman (1966)). As a result there has been some
advance in the theory of liquid metals as discussed below.
However, in either case the essential feature of short-range
order leads to conceptually similar modifications of the
methods discussed in Sec. IIIA. The relationship between
the alloy and the liquid case has been discussed in detail by
Schwartz and Ehrenreich (1971) and Schwartz (1973).
We shall only summarize some aspects of this work in the
present review.

The best approximation for the random case, the CPA
described in Sec. IIIA, was obtained in a variety of ways

P —+P' = (1+ P)P (3.106)

which for the tota, lly random case is simply Eq. (3.10).
Using this more generally for short-range order, with the
random phase approximation (3.12) leads to the generaliza-
tion of Eq. (3.15),

~(k) = «&/L1 —(~&(P'(k) &~-), (3.107)

where

(PP(k) &~ = gP(e, m) P(e, nz) expifk LR(n) —.R(m))I

= Q p(k —k')P(k'). (3.108)

Since P appears in this approximation, the result is not self-
consistent. This form for X was first derived by Gyorffy
(1970), although the first-order terms at low c had been
considered by Hartmann (1968). Gyorffy went on to im-
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prove this approximation by including self-consistency,
and his method has been subsequently elucidated in a
paper of Korringa and Mills (1972). They suggested re-
placing P in Z and t by the full propagator G. However, as
Schwartz (1973) has stressed, this does not reduce to the
CPA in the random limit and leads, like Eq. (3.20), to
some unsatisfactory features.

Schwartz and Ehrenreich (1971) proposed another
generalization which does reduce to the CPA. This replaces
(/)P by ZG and writes t a's a function of F as used in Eqs.
{3.44) and (3.23}.The resulting expression is

&(k) Li —(PG(k) ) -) = «(P) = U+ U Z &(q) G(q)

consistently. The pair effects are then given as

Zg(R) = Zo+ Z(PGO(R) [1+P~(R)]/[1 —Z0GO(R)g.

(3.113)

This does appear to give results which are physically reason-
able.

When the defects take up positions with some incomplete
long-range order, the CPA may also be used to predict the
excitation spectrum. This problem has been considered by
Foo and Amar (1970), Towers (1973), and Plischke and
Mattis (1971).

(3.109)

Other generalizations of Eq. '(3.109) have been given by
Takeno (1971) and Towers (1971).They suggest that an
appropriate expression may be obtained by substituting the
usual CPA value of Z0 for the single-site scattering and
writing

Z(k) = Zo/[1 —ZOP2'G(k) g, (3.110)

(3.111)

Elliott and Leath (unpublished) have made a similar can-
jecture using Nickel and Krumhansl's form of the pair
Z&'~ given by Eq. (3.83) . This can be manipulated into the
form

Z2(R)/[1 —Z2(R) Ggj

= .~+ "~'(1')P(R) [1+P {R)3/[1 —&(P) P(R) j
(3.112)

where P2'(e, nz) = 6„, + P, le, m). Towers has also sug-
gested a slightly different formula, but which also reduces to
CPA is P' —+ 0. He has made some calculations in the linear
chain with this approximation.

None of these generalizations is 'correct, ' and it '

is
difficult to find a criterion for their relative applicability.
Schwartz (1973}has shown that the moments given by Eq.
(3.109) are correct to higher order than those given by the
Gyorffy formula.

An alternative approach is via the cluster approximations
discussed in Sec. IIIC1. If a correct procedure is found for
dealing with clusters, it should be straightforward to intro-
duce short-range order by including the appropriate n„
for each cluster. Unfortunately, as we have seen, no com-
pletely satisfactory self-consistent cluster theory yet exists.
Several authors have suggested generalizing the approxi-
rnate cluster theories discussed above. Cyrot-Lackmann
and Cyrot (1972) suggest that the pair CPA result (3.73)
could be modified to read

b Liquid metals

The theory of liquid metals can be developed in a manner
parallel to the alloy theory just discussed [see Schwartz
and Ehrenreich (1971); Schwartz (1973)j, as has already
been indicated.

The input ingredients in the theory are the distribution of
the scatterers (ion cores), the effective potential for scat-
tering-of the electrons, and the choice of unperturbed Harnil-
tonian and basis. The usual density operator for the scat-
ters is p(R) = g, n, = P, B(R —R,) . As to potential,
Ziman has shown that the "muAin-tin" potential facilitates
calculation of a number of properties; for the ith scatterer
v(r —R,) then is taken to be spherically symmetric and
to vanish for

~

r —R,
~

) E where R is a, screening
length. It is also not unreasonable to require that the scat-
terers (potentials) do not overlap. The unperturbed Hamil-
tonian is usually taken to be that for free electrons BC0 =
P'/2nz, although this choice may lead to formal difhculties in
calculating energy moments of the density of states unless
some upper cutoff factor is introduced. In principle, this
problem can then be followed through, considering BC =
BCO + U with U = g, v(r —R,), in a manner similar
to that for the alloy problem [Eq. (3.113)j, except that
now the R; are randomly distributed continuous variables.
$n developing the multiple scattering description it has
been noted that there is a natural order of approxima-
tion involving single sites, pairs of sites, and e clusters
generally; but beyond the various single-site approximations
it has not yet been possible to obtain a clearly best ap-
proximation —the same is true in the case of liquids.

There is one important difference from the alloy which
will become apparent in the results to be quoted, namely,
the lattice in the random alloy is replaced in the liquid by
pair and higher density distribution functions, which do
include a specification of short-range order. [The recent
note by Korringa and Mills (1972) is informative in com-
paring with the alloy methodology. g

When the terms of various order in the multiple scattering
series are configurationally averaged, the weighting de-
pends on the distributions of scatterers. Thus the average of
the site distribution function (e, ) = I n(R) dR is just the
analog of the impurity concentration c in the alloy case. The
distribution of pairs of atoms is

and P = G~/(1+ Z~G2). Tawers (1973) has also used this
formula to make some calculations in the one-dimensional
case. However, only the single-site terms are treated self-

(e,n, ) = c'n2(R, —R;) + &6(R' —R ), (3.114)

where n2 is the analogue of o. defined in Eq. {3.105). At
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large (R, —R,), n2 ~ 1 as in the random case. The
residual pair scattering is proportional to

pp(R, —R,) = ag(R, —R,) —1. (3 .115)

Z(r —r') = c f 0(r —r' —R, ) dR;. (3.116)

The ATA equation (3.16) can be written Lwith propagator
P(R, —R, )j

a, = t, + ct, f P(R; —R, )P (R, —R,) 0, dR; . (3.117)

where t, is the t-matrix for the potential v (r) centered at R;,

t(r, r') = ~(r)B(r —r') + ~(r)

&& f I' (r —r") t (r", r') dr". (3.118)

%hen Fourier transformed, they approximate o-, by
for P « 1, to obtain

&(k) = c(t(k, k) + c f t(k, k') (E —A2k'2/2m)

X t(k', k)P)(k', k) dk'j. (3.119)

This is essentially Gyorffy's result, which can be made self-
consistent by inserting Z(k) into the propagator.

Ehrenreich and Schwartz's result includes further terms in
the interaction. For v(r) = vB(r) so that the Fourier trans-
forms of t are independent of k and k' they give

Z(k) = cn+ v f Z(q)G(q) dq

+ ~(k) f p (k —q)~(q)G(q) dq (3.120)

which is similar to Eq. (3.109). Roth (1973) has compared
various methods from alloys in the context of liquid metals
and amorphous systems. Part of this work. is simply another
demonstration that ATA, CPA. , and the like can be carried
out in either locator or Bloch basis, as discussed in Sec.
IIIA4, and various authors referred to there. However, the
work also includes consideration of a nonorthogonal basis
set, and particularly for the liquid discusses the details in
averaging the particle distribution function in the evalua-
tion of various moments of the spectrum. Calculations of
densities of states were made to compare ATA and CPA (in
our terminology) approximations, for both a purely random
liquid and for a Percus —Yevick model of a hard sphere
liquid. It is concluded that the non-self-consistent ap-
proximations are inadequate, and that including non-
orthogonality has an important effect on results.

n2 is the usual pair distribution function, which may be
determined by x-ray or'neutron scattering; indeed for a
uniform liquid P = (g/po), where g is the "hole" pair func-
tion. Higher-order correlations, n3 etc. , in liquids cannot be
determined'directly from experiment. It is usual to resort
to some approximation such as the Kirkwood superposition
approximation (Egelstaff, 1967) to express n3 etc. in terms
Of Ao.

Schwartz and Ehrenreich (1971) discuss the various
single-site approximations in terms of a coordinate de-
pendent self-energy o., = &r(r —r' —R,) so that

Realistic calculations are dificult, not only because of the
short-range order, but because it is necessary to obtain an
adequate treatment of the t-matrix to represent atomic
scattering of free electrons. Ziman (1966) looks at the
complex values of k which gives poles in the t-matrix at a
given E using muon-tin potentials. The real and imaginary
part of this k~ then gives the width and shift of the excita-
tion for weak scattering. Anderson and MacMillan (1967)
give a self-consistent version of the theory using the CPA
idea of finding an e ffective potential which gives the
correct average scattering. They applied the method to
liquid Fe. Schwartz and Ehrenreich (1971) use their im-
proved self-consistent theory to calculate the electronic
states of liquid Cu.

4. Amorjhous systems

In an amorphous material, as in a static model of a
liquid, the structural disorder is fundamental —no basis
lattice exists. It is not obvious how to apply the methods
discussed so far, but some progress has been made.

One might say that in the binary alloy we have discussed
there is one limiting case of disorder definite structure,
but random physical parameters in the governing Hamil-
tonian (due to composition randomness) . The other limiting
case seems to be closely approximated by amorphous Si
and Ge, whose structure is such that short-range coordina-
tion is tetrahedral, with nearly constant nearest-neighbor
bond length and interaction energy, but the extended atomic
network is random (Polk, 1971).

Thorpe et al. (1971, 1973) have examined the properties
deriving from the totally topological disorder of a simple
valence band model Hamiltonian for Si and Ge, in which
only nearest-neighbor interactions occur without variation
in magnitude, in a, tight binding representation. The objec-
tive was to try to isolate the effect of topological disorder
alone. The energy spectrum and wave functions for limiting
states may be obtained. The methods used do not make
explicit contact with the main techniques which we are dis-
cussing, so we only summarize the results. The formulation
is similar to the "locator" representation of Section IIIA4;
a one-electron Green's function is written at each site in
tight binding representation. The overlap with nearest
neighbors leads to a perturbation series, which when repre-
sented diagrammatically shows explicitly how various
paths in the topologically disordered network determine the
renormalization, and the single-site self-energy. In the actual
case the calculation is complicated by the need to use a two-
band Hamiltonian; but thanks to a theorem which %eaire
(1971) proved, it was possible to reduce the problem to a
single orbital at each site, from which the actual energy
spectrum could be generated.

The two main features of the analysis were the use of
theorems on the eigenstates of infinite materials to bound
the spectrum, and diagrammatic methods to relate the
renormalization to the amorphous structure. Calculations
were done for various "lattices": Diamond, Bethe lattice,
Husirni Cacti. These studies demonstrated that various
properties of the density of states are independent of
details of structure, provided that each atom is tetrahedrally
coordinated with the same overlaps; the density of states,
existence of gaps, and the bounds on the energy spectrum
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are alike for crystalline and structurally disordered systems.
In particular, gaps remain in the energy spectrum, and tail
states are not found in this model. Other proofs have been
given (Schwartz and Ehrenreich, 1972a,, b) . Of course,
tail states will appear and gaps will be partially filled if there
is disorder in the overlaps due to bond bending, which was
not included in these models.

Kramer (1970) had developed a theory for nearly free
electrons in an amorphous semiconductor based on a
pseudopotential approach. He used a Gaussian distribution
function about the usual lattice sites to give a particle cor-
relation function with quasi-crystalline order (Kramer,
1971). The self-energy is taken only to first order in V,
which is essentially nondiagonal, but a many-band formalism
is adopted and a matrix G„„(k) is evaluated, for bands e
and e' connected by the pseudopotential. The method has
been used to calculate densities of states in amorphous
ill —V semiconductors (Kramer et a/. , 1971).

In contrast to this detailed study of the spectrum, other
studies of the dynamics of amorphous disordered systems
have addressed the configuration-averaged response func-
tion. Hubbard and Beeby (1969) and Takeno and Goda
(1971) have essentia. lly adopted liquid theories to obtain (up
to pair distributions, but not higher-order) approximate
expressions for electron energy spectra

nor a well-defined Brillouin zone, if the sites 1 do not lie on a
periodic lattice. Therefore, Wu and Taylor define an addi-
tional quantity R such that

(1 + R) S ' = A (3.125)

from which R is found to be

Rgg = {X 'g exp[i'(k —k') 1]}—Bgg. . (3.126)

It is simply related to the structure factor of the solid. They
then write the equation for the Green's function in the form

G = Gp+ Gp(V+ W)G, (3.127)

where G, = s '1 (or F ') and G = S 'GS.

Here

Vgk = @A~V 'Q f dLg(L)
i

X exp(ik L) V(1, 1 —L), (3.128)

with g(L) the pair correlation function and V(l, 1') the
potential energy, and

E(k) = Ep + f W(R)np(R) exp(ik R) dR

or phonons

(3.121)
Wpg ——(1/X)Q{ (1 + R) gg,

k"

X exp[i(k" —k') 1]U& (1) }
with

(3.129)

1
Mtp(. g'(k) = —, dR op(R)

X [1 —exp (ik R) ](k.V) ' V (R)
1

Mpptrans (k) = dR et'p(R)

X [1 —exp(ik R)](k x V)'V(R),

(3.122)
I

wher'e n, (R, 0) is the pair distribution function and 1V or V
are interaction energies. Clearly these are low-order ap-
proximations,

'

being neither self-consistent nor allowing for
higher-order structural randomness as appears in models for
amorphous germanium, e.g. , five- versus six-membered
rings. However, Takeno and Goda apply the method to
liquid argon, and Takeno (1971) suggests that this ap-
proach can be generalized to give a CPA-like description.

The work on amorphous materials which is most closely
related to the random alloy methods is that of Taylor and
Wu (1970), Dy and Wu (1971), and Wang, Dy, and Wu
(1973). They first develop a transformation of basis from
the structurally disordered lattice so that most of the
methods for cellular disorder can be carried over, as fol-
lows. Starting with a standard Hamiltonian in site represen-
tation they observe that the usual t'ransforrnation to k
representation, whose k, 1 element is

U~ (1) = —Vkk4~ + QV(1) 1 —L)
L

X exp(ik' L). (3.130)

It will be recognized that Vkk, which is diagonal in k, is just
the ave'rage spectrum determined from the short-range
order (of pairs), so that V may be included in a new
starting Green's function G&It, , whence the new Dyson
equation

G = GsR+ GsalVG (3.131)

involves only the "structural disorder correction" W. Dy
and Wu (1971) then apply the CPA method to this equation
in a straightforward manner.

It is not altogether clear how to regard the method. Of
course, mathematically speaking, it is necessary to have a
proper inverse S ' in order to make unitary transformations
consistently. On the other hand, one can only argue for a k
basis to index the eigenstates in the long wave limit for a
homogeneously random amorphous solid; at short wave-
lengths, or if details of connectivity or localization in rings
or bonds play an essential role, it is hard to see why one
should attempt to use such a basis. Beyond that, however, it
can be said that for optical or neutron scattering experi-
ments a k basis is just what is probed by the measurements,
so one would want to calculate it anyhow.

Sg(l) = cV '~'exp( —ik 1),

will not have the simple inverse

Ag(1) = 2V '~'exp(ik 1)

(3.123)

(3.124)

In practice, as demonstrated in computations by these
authors on various examples of amorphous systems, the
factor (1+ R)~~ ' seems to provide an automatic cutoff
in k space. For a one-dimensional example, Wang, Dy,
and Wu (1973) found good agreement of their results with
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exact calculations based on the node counting method. The
practicality in three dimensions remains to be demon-
strated. See Fig. 32.

In closing this section, we comment that as in the case of
alloys all of the above methods are well suited to finding the
spectral and correlation function in regions where the
perturbation theory does not break. down. The details near
band edges (tail states), bound states of clusters, and ques-
tions of localization remain beyond the scope of these
methods. But for a variety of optical, thermal, and electrical
properties, good descriptions are possible using configura-
tion-averaged Green's functions.

S. The ~ubbard model

In a classic series of papers, Hubbard (1963, 1964)
made one of the earliest applications of many-electron
theory to the metal —nonmetal transition. Our purpose in
commenting on the Hubbard model is to call attention to the
fact, noted by Velicky et al. (1968), that Hubbard developed
the CPA method in the course of that work, which has often
gone unnoticed by many workers on the random alloy
problem.

Perhaps a few more details may be of interest. The
earliest Hubbard work led to the expression for the spin
Green's function

1 1
G(k, E) =-

27r Fo'(E) —LE(k) —Eoj
(3.133)

energy, ' and the many-body correlation energy is measured
by I, taken to be local in the sense of depending only on
interactions of two electrons on the same site. This inter-
action is spin dependent, and the probabilities that site does
or does not have a "—0-" spin present are n;, and
( 1 —n. . .), respectively.

The analogy with the random alloy is then as follows: The
Hamiltonian describes propagation of an electron with spin o-

as though it were moving in an alloy consisting of two
species, in concentrations e:1 —n for which the binding
energies are Ep + I and Ep, respectively. The analogy would
be exact if indeed the e; were fixed during the motion of
the e;, . This is not literally so, but the motion found by
neglecting resonant energy transfer between opposite spins
gives the leading behavior, and was treated by self-consistent
single-site multiple scattering, that is by CPA, though not
called that in Hubbard's work.

Using a model Hamiltonian which included a spin-
dependent correlation energy, he developed a Green's
description which was good in the opposite limits of strongly
and of weakly interacting electrons. In site representation
the Hubbard Hamiltonian is.

where

Fo (E) E —Ep L' —(Li'p + I) (3.134)

K= Eppes, , +QW, ,c, , +c, , +IPSE...m, , , (3.132)
2, 0' 22 2, 0

W, , = lV ' Q (E(k) —Ep) expLik (R, —R, ) $.
Here 0- is the spin index; i, j are lattice sites; Eo is a site
binding energy for one electron; W, , is the inter-site hopping

50

(o)

30—
N(E)

20—

IO—

(3.135)

It is easy to see that LFp (E)$
' is just the lowest virtual

crystal approximation to the locator representation, Sec.
IIIA4, with the interactor being 8',

,, and the whole expres-
sion then transformed to k space. In his third paper Hubbard
noted several inadequacies of this approximation, among
them that the poles of G (k, E) occurred at purely real E,
so that the quasiparticle states were not damped. He there-
fore, considered scattering by the spin fluctuations specifi-
cally (in Sec. 4 of Hubbard III). Using the Zubarev nota-
tion

0

50

40—

0
E {10 (wI )

(3.136)

and projection operators e, ,,+ = e, ,„n,,, = (1 —m„,,),
the equation of motion for one type of Green's function is

30—
N(E)

20—

IO—

~ ~

-8 0
E (IO lwl)

E((n, , c,„c,+))~

1= n . —h;, + g W;, ((c,.; c;.+)))2x

+ e ((n. . .c;„c,+))~

+ g W,p((e, . —n . )c~., c,.+))
FIG. 32. Integrated density of states versus E calculated by the
Dy—Wu method (solid line) and the node counting method (dots) for
308-function potentials with A = 10 and (a) ~ = 0.05 and (b) & = 0,1.
The arrows indicate the band edges for the perfectly ordered system
Lafter Wang, Dy, and Wu (1973)7.

+ "resonance broadening terms". (3.137)

The scattering by spin fluctuations from the average e
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514 Elliott, Krumhansl, and Leath: Randomly disordered crystals

to the difference in electron binding energy (spin-dependent)
from site to site. In the former case one has broad over-
lapping bands, in the latter split bands which can lead to
insulators with the appropriate number of electrons present.
In 1969, Falicov and Kimball proposed that the metal—
nonmetal transition could be described by a self-consistent
method, if electron correlations are included in a mean field
manner. Subsequently, Plischke (1972) and Goncalves
DaSilva and Falicov (1972) extended the method using the
CPA, as follows:

appears in the term containing (n, —e . ), being the
ith site fIuctuation from the average e . This is just the
binary alloy problem. We need not repeat the details; it
sufFices to say that Hubbard proceeded to solve this scat-
tering problem by the CPA method; the detailed correspond-
ence to more recent work is given by Velicky et al. (1968).
The equivalence is rather apparent, in the same spirit that
single-site CPA may be obtained from the bare propagator
by insertion of a self-energy, plus an auxiliary condition
(on the t-matrix) which determines this self-energy. Thus,
Hubbard's CPA result is that

G(k, E) =—
2~ F; (E) —(E(k) —Eo)

A.ssume two sets of levels, (a) localized nonconducting,
(b) a conduction band separated by a gap 6 from (a) and

(3.138) having width W. The Hamiltonian is of the form

as before, but now F. (E) is
BC = Q [E,(k) + 5+ -', W)ck.+cg. + E„Qb;.+b;.

k, rr 2, 0'

—G Q b,.+c,.+c,.b...
i,o,ot

(3.141)

where

E —(e.+e + e .—e+) —D.'(E)
[E —e —n .+Q.'(E) ][E—e —e .—Q.'(E) ]—e .+n .-[Q.'(E) ]'

(3.139)

where the operators ck refer to band states, and b, to holes
in the localized states, and G is the electron —hole interaction
strength.

In mean field approximation, replace the operator-
Z b, +b, by eT, where mT is the fraction of ionized non-
conducting states at temperature T. Then the spectrum of
the band states is simply given by the poles of [E,(k) +
6+ 2W —Ger] ', i.e. , dependent on er.

Q,'(E) = F; (E) —[2m.G,„(E)] ' (3.140)

9. CPA as an intermediate step in miscellaneous
calculations: metal-nonmetal transitions,
amorphous magnetism

In closing this section, we give two examples of how the
CPA frequently is useful as an intermediate step in other
calculations —particularly for interpolating over ranges of
composition or degrees of disorder. Both the metal —non-
metal transition and amorphous ferromagnetism have a
large and evolving literature, from which we have selected
two examples to show how the averaging methods for ran-
dom alloys may be employed.

The earliest substantial formal studies of the metal—
nonmetal transition using modern methods began with
Hubbard in the work just discussed. As in the case of
alloys he found two regimes of behavior, depending on
whether the overlap term 8';, is large or small compared

Here e+ ——E, + I, e = I, and G,; (E) is obtained by
Fourier transforming G (k, E). With the simple changes to
our notation F, (E) —= E —Z(E), and G,„(E) = G(0),
and other obvious equivalents, these equations become com-
pletely equivalent to our Eqs. (3.24) and (3.27). From the
physics viewpoint it should also be noted that Hubbard
found both amalgamated and split-band regimes, as has been
developed in detail by Velicky et al. (1968).

Recently Cyrot (1972), also noting that the Hubbard
scattering correction is equivalent to CPA, went on to study
the resonant broadening correction by adapting functional
integral methods which are well adapted to handle Auctua-
tions from the CPA averages. Other related recent works are
those of Fukuyarna and Ehrenreich (1973) and Gobsch
and Weller (1973).

The question of metal vs nonmetal then follows from the
thermodynamically consistently calculated eT

RT —2 «~ po(~) m(~) (3.142)

while at the same time

nT
n(cu) = expP(co + 6+ ~W —Ger) + 1

2(1 —~,)
(3.143)

mr ——
1 «co p[cu, Z(co) ep) )e(co), (3 144)

where p(u&) = —m
' Im[TrGq(co, er)).

leading to an implicit equation for eT, if eT = 0, insulator,
and vice versa.

The nature of the solutions depends on (b/W) and on
temperature. Both smooth and first-order transitions from
insulating to metallic states have been found by this method.

Now it is apparent that the mean field approximation
made above is the simplest virtual crystal approximation to
the spectrum. Noting that fact, it is immediately suggested
that an improvement would result by regarding b, +b,
as a c number with values 1 or 0, varying randomly from site
to site with probability mT and 1 —eT, respectively.

This becomes the site-diagonal random alloy problem, to
which CPA is applied directly. The states now have energies
E.(k) + &+ ~W+ Z(m&E), where the self-energy Z is
determined by the CPA condition. Finally, there must be
thermodynamic consistency,
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where p, is th e chemical potential and

B(l, f') = R (l) —R(l')gW l /' (3.148)
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l rtti&
I . ~ I I I I

The quantity to be calculated is

FIG. 34. A typical diagram included in
the decoupling scheme of Eq. (3.152).

But this quantity is zero in any crystal with inversion sym-
rnetry, since then G' and G'* are even under inversion and B
is, by definition (3.149), odd. Thus all of the CPA vertex
contributions vanish in the electrical conductivity, and the
only remaining part of Eq. (3.150) is the factorized average
Tr[B (G (ia) )B(G (&a) )j.' Therefore the average conduc-
tivity (3.147) becoines

Tr(B ImG(E) B ImG(E) )
= 1/4i Tr(B(G(E) —G~(E) B(G(E) —G*(E)) ) ),

(3.149)

Tr(BG(E) BG*(E)). (3.150)

where G*(E) is the complex conjugate or advanced Green's
function. This requires averages of two Green's functions,
such as

22re2 " dE eXp[(E —p)/k~T)
(a) =

5UkIiT {exp[(E—p)/k~Tg + 1}2

&( Tr[B(ImG(E) )B(ImG(E) )j.
Using the relation

exp[(E —p. ) /kIi Tj Bf(E)
{exp[(E—p)/k~Tg+ 1}' BE

(3.155)

(3.156)

These average quantities are calculated by inserting into
Eq. (3.150) an expansion [like (3.9) g of G in terms of G'
and the single-particle t-matrices

Tr(BGBG)
= Q (8 (l, 2i) [G'(22, 22') + Q G'(22, 1}tiG'(1, m)

+ P G'(22, 1)tiG'(1, 2) l2G'(2, m) + ~ ~ ~ jB(nz, P)
1+2

)& [G'(p, l) + Q G'(p, 1') li.G'(1', l)

+ Q G'(n , 1')l;G', (1', 2')l G'(2', l) + ~ ~ .g),
1&2

(3.151)

where f(E) is the Fermi function, together with the defini-
tion in Sec. IIID2, we get

2e% " df-
(a) = dE P v(k)2[1m(G(k, E) ))2,

mV BE

(3.157)

where 2(k) is the group velocity of the electron of wave
vector k. This formula was evaluated numerically by
Velicky (1969) for the simple model of elliptic bands dis-
cussed in Sec. IIIB above. His calculation was at T = 0
where the only contribution to the integral is at the Fermi
level E = p, . In addition, one unnecessary approximation
was made that

(3.158)Q 2 (k) 26[E —e(k) $ (1 —E') '",where Ga is the effective medium propagator of Eq. (3.21)
and where, in the CPA, the average value of a single (t)
is zero. Thus, in the same spirit, and consistent with the
Ward identity (2.150), only terms with an even number of
l's survive the average and then only the average (t„2)
is kept, so that the averages in Eq. (3.151) decouple pair-
wise in a nested fashion:

which eliminates the necessity for having to do the k sum
and yet still gives the correct behavior at the band edge.
His results for a shown in Fig. (36), are for c = 0.1 and for
values of 6 = V/W = 0.005, 0.5, and 2.0, and are plotted
versus the occupied fraction of the host band. For small 6,
the Nordheim rule, as discussed below, is valid aud the
curve is symmetric. For the intermediate 8 = 0.5, the curve
becomes assymmetric, indicating the reduced mobility of
the strongly scattered states at the Fermi level when more
than 90%%uc of the band is filled. In the split-band regime,
6 = 2, the conductivity drops by two orders of magnitude
when the band is 90% filled. In this situation, however, we
expect truly localized states at the Fermi energy and hence
(a) —= 0, which indicates that the CPA cannot be trusted in
this region.

(tit2t2 ~ ~ ~ l 2t„ il„)

= (li(l2(l2( )l--2)l--i)l-)

(ln ) ~in~2, n—1~3' ,2' ' ' ~, — (3.152)

A typical decoupling of this sort corresponds, in Eq.
(3.151), to the diagram shown in Fig. 34, where the solid
interaction lines represent single-particle t s. This decoupling
is equivalent to having summed the irreducible vertex part
shown in Fig. 35 and corresponds to a v'ertex funct'

~CPA ( V

+CPA�)

1 —( V —2ZCPA) Go

~~CPA
~CPA

66p

ion
x I x lr~cpp = ~ + ~ + p + ~ + ~ +

(3.153)
FIG;. 35. The single-site, self-consistent (CPA) irreducible vertex
part as calculated in Eq. (3.153).

(-') Z G'( ) ( )G'*( (3.154}

When this decoupling is performed throughout Eq. (3.151)
there is lef t in the middle average term a quantity of the form ' The contributions of the vertex corrections to the conductivity

will quite generally vanish in any theory containing only s-wave scat-
tering. For example, even with oG-diagonal perturbations of the sort
described in Eq. (3.93) there will be no vertex contributions to the
conductivity.
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The reduction of this formula to the usual linearized
Boltzmann equation result was discussed in some detail
by Velicky (1969). We shall not repeat his arguments here,
but merely show how the familiar conductivity formulas are
reproduced in the limit of weak scattering.

First, we rewrite the k sum in Eq. (3.157) as

Q v(k)'$ImG(k e) j'

00 2

p(E') dE' v'(E')

IOO

~W

60-

50-

I IO-
Cl

(p
Vl

b

I I I

DISORDERED CHAIN HEAT
CONDUCTIVITY VERSUS LIGHT
ATOM CONC E N TRATION

o MASS RATIO = 3~2 HARMONIC
IVIASS RATIO = 3:I HARMONIC

~ MASS RATIO= 3:I ANHARMONIC

(3.159)

where p(E') is the density of states, A(E) and P(E) are
the k-independent values of the real and imaginary parts of
Z(E) in the CPA, and spherical energy bands have been
assumed so that ~ can be written as a function only of E
(otherwise a more complicated, weighted d.ensity of states
must be defined) . As 6 and P go to zero, the most divergent
part of Eq. (3.159) is

i ~le T~
0 0.2 0.4 0.6 0.8

C
I.O

FIG. 37. Lattice thermal conductivity ~ for disordered binary linear
chains of atoms versus concentration of the tvro species as obtained by
a computer experiment. The error bars are estimates of the accuracy
of reading the thermal gradients )after Payton et al {1967).7.

2' p(E) v'(E) /r (E) .
by the later calculation of the third- and fourth-order terms

(3.160) in the scattering potential by Verboven (1960) and Moore
(1967), respectively.

Thus Eq. (3.157) becomes, a,t T = 0,

4e% p(Ep) v'(Ep)
V r(E.) (3.161)

U in addition 8 = V/8' is small, then & = ImZ(e) is
given by the optical theorem or by expanding Eq. (3.16)
to lowest order in V. The result is

P(E) = c(1 —c) V' ImP(E) + O(U'). (3.162)

(o) = ne'r(E~)/m*, (3.163)

where m is the electron density and m* is the electronic
effective mass.

It should be pointed out that the development of these
formulas in the literature relied heavily on the early work of
Edwards (1958, 1959) in the weak scattering limit, and
Langer (1960) in the dilute (low c) limit, and was followed

CT' 3- c=o. l

(V/Vl) =0.5

(v/ w) = 2~0
K

I

(v/w) =0.005
i i i i i f

0.2 0.4; 0,6 0.8 l.o
OCCUPIED FRACTION OF BAND

FIG. 36. The CPA dc electrical
conductivity versus the occupied
fraction of the energy band as given
by Eqs. (3.157) and (3,158) for
c = 0.1 and 8 = 6/W = 2, 0.5, and
0.005 I after Velicky (1969)].

This result is symmetric about c = 0.5 and leads immedi-
ately, via Eq. (3.161), to a conductivity which is symmetric
about c = 0.5. This is Nordheim's rule, which was first
derived from a Boltzmann equation approach (Nordheirn,
1931).

For free electrons, Eq. (3.161) reduces still further upon
substituting for the group velocity and the density of states
at the Fermi level to

The calculation of the contribution to the lattice thermal
conductivity in mixed crystals due to impurity or disorder
scattering follows quite closely that for the electrical con-
ductivity above. In addition, there exist computer experi-
ments for simple models, so that a detailed evaluation is
possible. We begin with a discussion of the computer experi-
ments.

In 1967, Payton et aI. reported the results of computer
experiments to measure the lattice thermal conductivity
in harmonic one- and two-dimensional systems. Their one-
dimensional experiment was performed for a classical,
harmonic linear chain of 100 atoms with only nearest-
neighbor forces. They assumed each end of the chain was
free of constraint but was struck at random by a Maxwellian
distribution of particles at different temperatures. Then the
classical equations of motion were followed, and after a
steady state was reached the local temperature was meas-
ured along the chain, as well as the heat Gow through each
end. They used the resulting bulk internal temperature
gradient, which turned out to be considerably less than the
applied temperature gradient due to a large surface resist-
ance, to calculate the thermal conductivity. Their results
are shown in Fig. 37 at all concentrations for harmonic
chains of mass ratio 3:1 and 3:2. Also shown in Fig. 37
are their results for an anharmonic linear chain of mass
ratio 3:1. Surprisingly they found that the thermal con-
ductivity went up as the anharmonicity was added, a gross
violation of Mattheisen s rule. Since clearly localized modes
are present, this is presumably due to a transport mecha-
nism whereby phonons hop from localized state to localized
state via intermediate decay into two band state phonons,
but no analytic theory has given a detailed explanation to
date.

The CPA evaluation (Flicker and Leath, 1973) of Eq.
(2.83) follows quite parallel to that for the electrical con-
ductivity. The vertex corrections again vanish for crystals
with inversion symmetry when only mass defect scattering
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less (Fig. 39) . In this three-dimensional case they also con-
sidered the additions of a phonon —phonon-like scattering
term, via an assumed Mattheisen's rule, to the impurity
scattering. The resulting, reduced value of (~), shown also
in Fig. 39, illustrates that the effect of this anharmonic
contribution is to flatten and make more symmetric the

~ c curve.

I

0.4 0.6 0.8 I.O
B

It is useful at this point to also verify that the formulae
developed here reduce to that previously derived by
many authors using a Boltzmann equation approach. We
begin by evaluating the trace in the integrand of Eq.
(3.164) in the normal mode representation of the perfect
lattice, where it becomes

FIG. 38. Lattice thermal condctivity I(: versus concentration for
disordered binary linear chains. A comparison of the CPA results
(solid line) with the computer experiments of Payton et a1. (1967) as in
Fig. 38 (dashed line). The CPA formula has been divided by 10.8 for
this comparison i after Flicker and Leath (1973)].

Q A (k, j)'(ImG(k, j) )'

= Q o~, (k) v,'(k)

is included and no off-diagonal diagrams are included in
Z(~). Thus one finds that Eq. (2.83) reduces to

2 /j2 00

(~) =
x Vkgg T2

&v' exp (5oI/kii T)
dM

[exp (fin/k~T) —1g'

X Tr[A (ImG(u&) )A (ImG(o~) )g, (3.164)

where V is the volume of the sample. This formula was
studied by Flicker and Leath (1973) who noted an infrared
divergence, so that (a) as given by Sec. IIID14 is infinite.
This arises because A(k) is proportional to v(k) and v(k)
goes to the speed of sound as k ~ 0, rather than vanishing.
The result is that the integrand of Eq. (3.164) diverges as
o~

' for small o~ so that (k) diverges linearly with 2V (the
number of atoms in the chain) for large X. This divergence
does not occur in the electronic problem, since the low energy
electrons move slowly. The low-frequency phonons have a
mean free path which diverges at low k and yet they move at
the speed of sound, so that they do not come into thermal
equilibrium with each other unless there are scattering
mechanisms which allow them. to dissipate energy into other
modes.

ImZ ((v) 2

X Pf (~n' —o~ (k) —ReZ(~n) j' + [ImZ((u) $s

(3.165)

Mo5P cn,' exp}ho~, (k)/kiiT}[v, (k) $'

VT k; {exp[So~,(k)/kiiT) —1}'[Im&((v)j '

(3.166)

which can be written in the form

1
a — Q Cph[oi, '(k) )&g'(k)

~
m, (k) i' cos'e, (3.167)

where

Cni, (~) = Po~s exp (fico/kii T) / l kii T'[exp(h~/kii T) —1)s}

Upon interchanging the order of the resulting k summation
and o~ integration in Eq. (3.164) the o~ integral can be done by
contour integration in the weak scattering limit [ReZ(o~)
and ImZ(cu) small compared to 3IoiP(k) at resonancej.
In this limit the dominant residue gives, for Eq. (3.164),

The addition of another scattering mechanism such as
boundary scattering or anharmonic phonon —phonon scat-
tering removes this divergence so that the effect of disorder
can be calculated. The approach developed by Woll (1965),
in the dilute limit, is to cut off the integral [Eq. (3.161)g
at co;„ the lowest-frequency phonon allowed in a finite
crystal of size X. This procedure can only be approximate,
since in. a finite crystal the discrete nature of all the mode
frequencies should be included. The CPA results using this
approximation (Flicker and Leath, 1973) are shown in
Fig. 38 in comparison with the harmonic chain results of
Payton et al. (1967), discussed above. Numerically, the
overall magnitude is off by a factor of about 10 (which
depends upon the exact boundary conditions), but the
concentration dependence is quite good. In particular, the
assymmetry about c = 0.5, due to the effective scattering
by low-frequency resonant phonon modes about isolated
heavy atoms, is quite well reproduced.

Similar results were obtained by Flicker and Leath (1973)
for a simple cubic lattice, although the assymmetry is a bit

is the specific heat contribution of a phonon of frequency cv,

4- (

35
2-

NIT
RELAXATION T' ((d)

I

0
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0.2 0.4
C

0.6 0.8 I.O
B

FIG. 39. (a) The CPA thermal conductivity of a 100 )& 100 Q 100
atom harmonic fcc lattice versus concentration; (b) the same theory
but with an added umklapp scattering term in the self-energy /after
Flicker and Leath (1973)g.
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anti if the relaxation time r~, for phonon (k, j) is identified as 1. Energy bands

r;(k) = M(0, (k)/IImZpt0, (k) gI. (3.168)

IV. COMPARISON WITH EXPERIMENT

A. Electrons

In addition to the model calculations described in Secs.
IIIB, and C there, have been a number of attempts to derive
the electron energy levels in alloys using realistic band struc-
tures, and to compare the results with experiment.

2.7
i
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FIG. 40. The variation of energy gap in GaAs1 P . The abrupt
change is due to a crossing of the conduction bands. At the As rich
end the lowest conduction band is at the point j. which at the P rich
end it is at A. Each band moves linearly in the VCA. The points are
the results of optical experiments. )after Long (1966)j.

This result (3.167) is identical with the usual result derived
by kinetic theory or via the Boltzmann equation (Car-
ruthers, 1961).

With regard to the divergence of (x) for large 1V, it should
be pointed out that some analytic progress has been Inade
on the exact form of (x) for linear chains. In particular,
Casher and Liebowitz (1971) have proven that, for dis-
ordered harmonic linear chains, the thermal conductivity ~

diverges as E with probability one if the spectral density
p(00) has an absolutely continuous part as a function of c0.

Matsuda and Ishii (1971) had previously shown (using a
transfer matrix technique) that x diverges as x'" for binary,
mass-disordered linear chains and this led Casher and
I iebowitz to conclude that the spectral density in this case
has no absolutely continuous part. Apparently also Lsee
Visscher (1971)j the form of the divergence depends
strongly on the form of the boundary conditions at the ends
of the chain. Finally, there remains the problem of funda-
rnental divergences in the cluster expansion (Langer and
Neal, 1966) arising from higher-order terms which are well
known in the general theory of virial expansions of transport
coefficients in statistical mechanics. Clearly much work
remains to be done on transport coefficient in highly dis-
ordered systems.

The virtua, l crystal approximation is widely used in
interpreting band structures of mixed crystals. It is fairly
satisfactory for s and p bands in simple metals and in semi-
conductors like alloys of Si—Ge or of III—V compound
(Herman. ef al. 1957; Long, 1966). The predicted linear
shift of the bands with concentration is often borne out by
optical experiments. The width of the k states is usually
small, indicating that changes in potential are small com-
pared to bandwidths. See Fig. 40.

Stroud and Ehrenreich (1970) examined the application
of the CPA method to Ge—Si alloys, using pseudopotentials
and projecting out core states. To place it in context of a
diagonal disorder potential they took. the local potential
difference

3L( Ulll + U220 + U311) si

( Ulll + U220 + U311)Gej) (4.1)

where the subscripts refer to reciprocal lattice points. Using
parameters obtained by Brust (1964) to fit the perfect
materials, 6 is found to be 0.023 Ry. The relative changes
vary with band, but are less than 0.1 Ry, and the broadening
is only 0.01 Ry. Since typical bandwidths are 0.5 Ry it is
not surprising that the CPA and VCA descriptions differ
little overall. The virtual crystal and CPA are compared in
Fig. 41 for an Sip»Gep 6g alloy.

A substantial series of applications to transition metal
alloys have developed following the work of Soven, par-
ticularly by Velicky ef al. (1968, 1970), who established a
useful model Hamiltonian to discuss Cu —Ni alloys, for
example, and also derived theorems on the moments of the
energy spectrum, and bounds for certain models. A more
complete treatment has been given for the Cu—Xi system by
Stocks et al. (1971), who calculated density of states and
electronic specific heat. In all cases one is dealing with a
"two-band" system and II = II„+II,& + II«where the s
and d subscripts have obvious meaning, ' the s band is wide,
while the d band is narrow, or even assumed to have zero
width for some purposes. Assuming a site-diagonal energy
difference for d states 6""(Cu—Ni) = —0.134 Ry, but the
same s parameters for Cu and Xi, it was possible to carry
through the CPA. With the assumed 6, the resulting density
of states is not quite separated into two peaks Lrather like
the model calculations in Figs. 21 and 22 with 6 slightly less
than 1.0j. The density of Cu and Ni states, defined by
G"(0) or G"(0) in Sec. IE3, show two peaks separated
by about 0.2 Ry LFig. (42) g. Comparison has been. made to
the optical density of states from photoemission data (Seib
and Spicer, 1970; Eastman and Krolikowski, 1968) by
making simple assumptions about the photoemission
process (see Sec. IIC6) . Considering experimental and model
potential uncertainties, the agreement is satisfactory. In
addition, comparison may be made to soft x-ray data
(Farineau and Morland, 1938; Freedman and Beeman,
1940; Azaroff and Das, 1964; Kunz and Cudat, 1972),
where a weighted average of the Green's function is required
(Sec. IIC6) which was not studied; but Stocks et aL (1971)
conclude that the gross features agree with the CPA calcula-
tions.
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FIG. 41. The energy bands of Sip. 37Gep. 63 as cal-
culated by Stroud and Ehrenreich (1970) using the
CPA. The width of the lines (given by IMZ) is small
compared to the bandwidths.
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A similar CPA calculation has been performed for the d
bands in AuAg alloys by Levin and Ehrenreich (1971),and
compared with the ATA by Schwartz et al. (1971). The
CPA was used oh a, diagonal d-band energy 6""(Au—Ag) ~
1.6 eV. Thus the Green's function takes the form

(G„ G„)
G(k, E) =!

l,G.-, G„j

(E —E,(k)
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ENERGY BELOW EF (rydbergs)

(a)

45

where E, (k) is the s-band energy and & is the s—d hybridiza-
tion matrix element which is assumed independent of k.
Both are taken in the virtual crystal approximation. The
CPA equation is

I
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I IG. 42. Density of states in Cup19Nip. 31 and Cup. 62Nip. 38 as cal-
culated by Stocks et, ul. (1971). The weighted densities of states
associated with each constituent are also shown. The results are com-
pared with the photoemitted electron distribution measured by Seib
and Spicer (1970).

Z, = ca/L1 —(a —r„)G„,(O) j.
The resulting doubly peaked density of states agrees well
with optical absorption (Beaglehole and Erlbach 1970).
Schwartz et aL (1971) made a critical comparison between
ATA and CPA for this case and show that there is little
quantitative difference.

Z. SPecigc heat

A considerable number of experimental results are avail-
able on the low-temperature specific heat p of alloys, par-
ticularly its variation with concentration. Since p depends
only on p(E&) (except for many electron effects), it is a
property which is not sensitive to the full details of the band
structure as discussed above. For this reason even the VCA
may be satisfactory. This is useful in systems like Ag Pd
alloys since Ag and Pd are adjacent in the periodic table.
However, even here d-band eRects become important as the
Pd concentration increases. A detailed discussion has been
given by Lee and Lewis (1969).
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On the other hand, when the constituents are quite dis-
similar, particularly in valence, the scattering potential is
large and the VCA fails. Dawber and Turner (1966) have
given a low concentration theory of the effect using Z(') =
ct, where t is the single defect t-matrix. They show that to
first order in c the change in density of states is (P as
defined in Sec. IID)

Dp = ImLZ&'&((3P/BL') I.

If a phase shift z is defined by

(4. 4)

then

a~p(E)
~1 —~P(0)

~

' (4 5)

C . 8p . BI'g
sin2g —2 sin'q . (4.6)

2p(Ep ) 8Ep BEp

If only a diagonal change is assumed in V, only the s-wave
phase shift is affected, and the Friedel sum rule (to ac-
comodate one electron) requires sing = 1 whence 1—
APB(E~) = 0 and a resonance right at E~ is always re-
quired. To get around, this they propose use of an effective
charge Z', to be screened by the s-wave charge density, so
that p = xZ'. By suitable choice of Z' they can account for
specific heat y observed.

This difhculty with charge conservation and the Friedel
sum rule has been discussed more recently by Stern (1971),
who shows that this problem is unavoidable with the choice
of zero range scattering forces. A more physical description
of the alloy requires extended, or "off-diagonal" potentials;
even so, charge conservation is a real issue, which must be
attended to by adjustment of the potential parameters, as
was discussed in more detail in Sec. IIIC2. Clark and
Dawber (1972) have also proposed a pseudopotential
model for dealing with alloys whose constituents have
different bandwidths.

The CPA calculation of Stocks et al. (1971) for Cu —Ni
alloys discussed above was used to compute the electronic
specific heat from the density of states at the Fermi level.

Comparison with experiment is shown in Fig. 43; the struc-
ture appearing in the experimental curve is probably due to
the fact that the alloys become ferromagnetic for Cu concen-
trations less than 56%%uq.

3'. Magnetic suscePtibility

Bc = Q E(l)a.+(l)a.(l) + Q W(l, /')a+(l)a. (l')

+ Q I(l) n~(l) n~(J) (4 7)

for a single band with two spin orientations. The last term
is taken to give an effective field, and the effective site
energy

E~(l) = E(l) & PH + I(l)n~(l) (4 g)

which depends on the number of electrons at this site—to
be determined self-consistently. For low T

n~(l) = p~(l, E) dE (4 9)

The Pauli spin susceptibility is, in a simple model, also
proportional to the density of states at E&. In static experi-
ments it is often difficult to separate this contribution from
the diamagnetic component. The knight shift measures the s
component of electron spin moment at the nucleus and
hence a weighted susceptibility at particular atomic sites,
proportional to p, "(Ep) or p, '(E~) . It is this s-electron
density at the nucleus which is studied in the resonance
experiment. Some discussion of this matter is given by
Blackman and Elliott (1970), using simple band models.
There is little experimental work or comparison with theory
to da, te I for a review see Brain (1967), p. 211j.

Recently there has been a considerable amount of work on
the magnetic susceptibility of transition metal alloys where
exchange enhancement is important and the simple Pauli
idea is inappropriate (Levin et al. , 1972; Harris and Zucker-
man, 1972; and Hasegawa and Kanemori, 1970). All these
authors use the Hubbard model (see Sec. IIIC5) where the
effective Hamiltonian is

12

"""»""
&LILKLW~

and again p~(l) is defined by a trace of an appropriately
projected Green's function PEq. (2.56)$. Fixing the total
number of electrons determines Ep.

In the CPA e is calculated from the weighted average
density of states appropriate to the atom involved. Thus
E(l), I(l), and n(l) will depend on the type of occupation of
site l. In the paramagnetic state the static spin susceptibility
is

y = Lim —
l n~. (H) —n .(H) j

H~O
(4, 10)

and for a binary alloy x = czA + (1 —c)&B. After con-
siderable manipulation the CPA yields

0
0 10 20 30 40 50 60 70 80 90 lOO

CONCENTRATION (otomic' L Cu)

I'IG. 43. The low '1 specific' heat g in Cu —Ni alloys. The shaded
area gives the range of results predicted by Stocks et al. (1971) using
the CPA. The experimental curve is by Dixon et ul. (1968).

pA (E~) ( 1 + IBfBB) pB (E~) IBfAB
A 2 2

(1 + IAfAA)(1 + IBfBB) IAIBfABfBA

(4.11)
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culated by Levin, Bass and Bennemann (1972)
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and a similar expression for xs; here f" = cjoy, '/cjE, ( j).
These equations, together with charge conservation, may be
solved self-consistently in the limit H —+ 0. Note that
exchange enhancement now appears in such a way as to
involve the parameters of both atoms. Both the weak scat-
tering limit and the dilute alloy case are discussed by Levin
et aL. , and the expressions reduced somewhat. In particular,
the condition (for dilute alloys) for the formation of local
magnetic moments reduces to (1+ I"f~"") = 0, the zero
subscript referring to the host. The theory, with computa-
tions, was applied by Levin et al. (1972) to several Ni, Rh,
and Pd alloys, giving satisfactory agreement with the con.'-
centration dependence of x (Fig. 44) . Despite the fact that s
electrons were neglected and only a simplified d-band model
was used, it appears that the relative electron density, and
therefore exchange enhancement, is well estimated by
CPA. Several extensions to ferromagnetic systems have
also been made. Hasegawa and Kanemori (1972) have cal-
culated magnetic moments in Fe and Ni alloys (Fig. 45).

Apparently the alloy Green's function methods are a useful
basis for computing magnetic properties of random alloys.

4. Resisfiv~ty

As discussed in Sec. IICS, the electrical conductivity of a
metal is related to the two-particle Green's function,
although, if many-body eAects are neglected, it can be
reduced $Eq. (2.82) ) to the product of single-particle G's.
In Sec. IIID the application of the CPA to the average of
this product is discussed. It was shown that under certain
further approximations the expression for a- can be reduced
to the familiar expression of kinetic theory o. = (Xe'r/cV*)
where ~, the relaxation time, is related to 'the width of
G(k, E) for states with E(k) = EF.

The results expected on this model were set out by Nord-
heim in 1931 Lsee Mott and Jones (1958)j. If b. is small, the
VCA gives a shift of the energy levels by ch. The Quctua-
tions around this mean give, in Born approximation,

Fe) „Cr„ 1/r = (2m/6) c(1 —c) b, p(EF) (4.12)

and a resistivity proportional to c(1 —c). This gives a
satisfactory description of the residual resistivity of alloys
like Au~, Cg, . %hen 6 is larger, the ATA gives a reasonable
approximation. In this case,

t

X 0.8 0.6 0.4 g 0.2
0 6/r = Im(t) = Im/c(1 —c) DING "/(1 —DG") $ (4. 13)

Cr

FIG. 45. The magnetic moments in Fe—Cr alloys as calculated from
a model density of states using the CPA compared with experimental
results on the average moments, and on the constituent moments
determined by neutron diffraction i after Hasegawa and Kanemori
(1972)g. 5/r = -', ac(1 —c) sing. (4.14)

using Eq. (3.19), where G" is the Green's function in the
virtual crystal. Equation (4.12) is obtained for this by
neglecting the denominator. Dawber and Turner (1966)
have used this expression in a low c theory when G" = G".
Using the phase shift defined in Eq. (4.5)
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The results of this theory suffer from the difficulty described
in the last section, arising from the fact that the diagonal
form of V gives only one phase shift which should be chosen
according to the Friedel sum rule to be n./2.

The most complete theory of -the conductivity of alloys
has been given by Brouers and Vedyayev (1972), using the
s—d band model for transition metal'alloys introduced by
Ehrenreich and Levin and discussed above. Only weak scat-
tering is introduced into the s band, but the large self-
energy in the d band is calculated by the CPA. This gives a
large contribution to the resistivity through the s—d mixing,
and the resulting total p depends strongly on the amount of
d-mixing which occurs in states with E E~. This can
result in large deviations from Nordheim s rule (Fig. 46).

The special case of the resistivity of ferromagnetic transi-
tion metal alloys has recently been considered by Harris and
Zuckerman (1972), who used the ATA and applied their
results to Pd—Ni alloys, and by Brouers et al. (1973c), who
used the CPA and applied the theory to Cu—Xi alloys.
Both used the Hubbard Hamiltonian (4.7). This theory
involves the self-consistent calculation of G, and Gd for
spin-up and spin-down bands. This gives rise to a spon-
taneous anisotropy of the resistance relative to the mag-
netization direction.

2. Inelastic neutron scattering

As discussed in Sec. IIC3, inelastic neutron scattering
consists of a coherent and incoherent part, because of the
isotopic and spin dependence of the nuclear scattering. Each
cross section LEqs. (2.68) and (2.69)j depends on the
averaged and weighted Green's functions defined in Sec.
IIE3. Specifically, the incoherent part depends on the
Green's function at a single site,

do 1E= ——Q P "'q ' Im (G..""(0, 0, E) ),
dOdA x' E (4.15)

because of the complexity of the calculations, detailed com-
parison between theory and experiment on the basis of
realistic models has not been extensive. There are always
several branches to a phonon spectrum, and force-constant
changes are often important. Nevertheless model calcula-
tions have been mainly on mass changes and fairly simple
phonon spectra have been compared quite successfully in
some cases. The most detailed information about phonons
comes from inelastic neutron scattering, but relatively few
experiments have yet been performed. Much more attention
has been given to the optical properties of mixed ionic
crystals, and there are some results on thermal properties.

In addition to the resistivity caused by static defects,
some consideration has been given to the effect of them on
dynamics. Kagan et u/. have considered the way in which
phonon (1966) and magnon (1968) scattering of electrons
is affected by the change in the excitation spectrum of these
quasiparticles. This is entirely a low c theory and shows that
a strong resonance in the spectrum at low energies can give
an anomalous temperature dependence to the resistivity.

where A defines the atomic species at site ~. For a binary
alloy A will be host' h or defect d, so that the result can be
written in terms of the unweighted average G by using Eqs.
(2.136) and (2.137) . The sum becomes

V 'LP" (V —2) + P"'Zj Im(G(0 0 E) ).

The coherent cross section (2.69) becomes

B. Phonons

Phonons are the form of elementary excitation which have
been most extensively studied in mixed crystals. However,

(P(J 1 K'
B "B "'q

q ~ Im(G ""'(q, E) )(3QdE m E ~~i ~~a

(4.17)

0.9

which depends on weighted averages of G(q, E). For the
binary case this can be written using Eqs. (2.140)—(2.142)
as

oe Im)B" —(B"—B")(Z/ V) $'(G(q E) )

+ (B"—B")'(Z —cV) /U'. (4. 18)

~0.&

=a.4
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The last term comes from the correction terms in Eqs.
(2.140)—(2.142), which arise from the different weighting of
the (G(0, 0, E) ) terms. It can be regarded in some sense as
an incoherent component arising from the random distribu-
tion of coherent scat terings. The first factor gives the co-
herent scattering with an effective scattering length
(B' —(B' —B~)Z/Vj. However this divison is somewhat
arbitrary. If we use the CPA approximation for Z and
(G), Eq. (4.18) can also be written, after some manipula-
tion, as

PB" —(B"—B")/VP(q E) g' Im(G(q, Z) )
FIG. 46. The residual electrical resistivity of an alloy calculated by
Brouers and Vedyayev (1972) using the s-d hydridization model and
the CPA. The asymmetry is caused by an increase in the s-d mixing
at the Fermi level. The Nordheim theory would give a symmetric
parabolic curve.

with a different effective scattering length and no extra
term. For a complex crystal with several phonon branches j,
and eigenvectors 0;.(q) as defined by Eq. (2.14), the general
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detail is Cri W by Mackintosh and Moiler (1968) and
Cunningham et ul. (1970). This also shows a well-defined
resonant effect on the shifts and widths, and the detailed
form does not agree precisely with the prediction of the mass
defect in the ATA. Cohen and Gilat (1972) have shown that
this is due to force-constant changes and have proposed a
simplified theory to include these effects.

Another class of experiments involves low concentrations
of light mass defects where a sharp impurity band is to be
expected. The most detailed experiments to date are on
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FIG. 47. (a) The frequency shift in Cu0. »Au0 0& along the (110)
direction as measured by Svensson and Kamitakahara (1971) com-
pared with the theory of Bruno and Taylor (1971) using the ATA.
The difference from Fig. 14 is mainly due to a shift due to lattice
dilation using the Gruneisen constant. Force-constant changes are
also included. (b) The mode width in the (100) direction for the
same alloy. The full line is due to mass change only (as in Fig. 14),
the dashed curve includes force-constant changes.

expansion is

Z l:v ~'(II)hl:v' '(q.)3
n, Pj

)& $8' —(B"—8')/VP, (q E) j' Im(G, (tl, P) ).

(4. 19a)

8
v' (q)(THz)

(a)
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; C4LCULATED ----
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Experimental observations have been mainly concerned
with the coherent cross section which contains the most
information. There have been two extensive investigations
of the effect on a relatively small concentration of heavy
defects in a simple crystal of light atoms, where a well-
dehned low-frequency resonance is expected. The first is on
Cui Au„x ( 10'Po by Svensson and Kamitakahara (1971)
i
see also Svensson et al (1965, 1969)j. . The shift and width

of the phonons are predicted by Elliott and Taylor (1967)
using the ATA to show a well-defined resonance (see Fig.
14) . The experimentally observed resonance is much broader
and depends in detail on the direction of k (Fig. 47) . This in-
dicates that force-constant changes are important, and
recently Bruno and Taylor (1971) have made a detailed
analysis of this by extending the theory of Lakatos and
Krumhansl (1969).They conclude that anharmonic effects
arising from lattice dilation are also important in inducing
shifts. The eRect of short-range order, as discussed by
Hartmann (1968), is not important.

The other system of this type which has been studied in
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FIG. 48. (a) The peak frequency of the impurity band in Ge0, »Si0.09

as a function of q i after Wakabayashi et at. (1971)g. (b) The intensity
of impurity band scattering in Cu& Ai as a function of q /after
Nicklow et al. (1968)j.
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Cu& Al at x & 10% by Nicklow et al. (1968) and Ge&,Si,
by Wakabayashi, Nicklow, and Smith (1971).They com-
pare the scattering with the prediction of the ATA. They
show that in the Si—Ge case there is an apparent dispersion
in the impurity band which is predicted by the pole of
Eq. (3.17) in this region using Eq. (3.16) for Z where
6 = 3fav' from Eq. (2.18) and

&(0) = —Z dq

M, co' —&u,
2 (q)

from Eq. (2.51). If co~ is the isolated localized mode fre-
quency given by Eq. (2.100), the dispersion is

6cug(q) = c 1—
Mp M '(q)

—Ehl P (0) CV)

(4 2o)

The results of this approximation are compared with ex-
periment in Fig. 48. The intensity of the impurity band scat-
tering also depends strongly on q, as was observed in the
CuAl case. From Eq. (4.19) we see that this is proportional
to

cUP 4)j (q)
(&a —A) '

(4.21)

and the strong variation of the first term is reflected in
the results shown in Fig. 48. The shift of the band modes
was also studied in their experiments. Experiments on in-
coherent scattering of dilute vanadium alloys have been
reported by Mozer (1968). He has found structure in the
impurity band of Be Vq at x = 3% which is expected in
the ATA. He also obtained information on the density of
modes in Cr,V~, x = 25%, where the mass difference is
very small e ~ 0.04.

There have also been measurements on various metal
alloys, notably NbMo (Woods and Powell, 1965), Bl—Pb—Tl
(Ng and Brockhouse, 1967; Brockhouse and Roy, 1970)
TaNb (Als-Nielsen, 1968) . Here the difference in masses is
small but the force constants change considerably as the
Fermi surface changes with valence. In particular, the Kohn
anomalies move. Since these are all long-range effects, an
average force constant and hence the VCA is a good ap-
proximation, and this has been used to interpret the data.
More recently Kamitakahara and Brockhouse (1972) have
reported a detailed study of Ni Pd~ x = 55%. The mass
defect is fairly large e ~ 0.81, and a detailed analysis of the
dispersion curves shows that the larger near-neighbor force
constants change very little between Ni and Pd, although
there are large relative changes in the smaller distant-
neighbor force constants. The results were compared with a
CPA calculation. The predicted widths are similar to those
observed, but some of the structure is different. The cor-
responding shifts are not reported, but the results observed
agree closely with VCA with average mass.

Experiments have also been performed by Cowley and
Buyers (1968) on Xq Rb Br x = 22% and 45%. The
resulting spectra are found to be broad, and no detailed

investigation has been attempted. In view of the interest in
the optical properties of mixed alkali halides discussed
below, a more detailed study of such systems by neutron
scattering would be an important next step in the under-
standing of mixed crystals.

Z. Optical properties

A great deal of experimental information has been col-
lected on the optical properties of mixed crystals, par-
ticularly alkali halides, alkaline earth Huorides, III—V and
II—VI compounds. Much of this inform ation has been
reviewed by Chang and Mitra (1971). Further details can
be found in the recent article of Harada and Narita (1971)
and the forthcoming review of Barker and Sievers. It is
therefore unnecessary to repeat a catalog of results and
references here. We shall mainly concern ourselves with a
general outline of the results with specific examples and a
discussion of the theoretical interpretation.

In Sec. IIC4 it was pointed out that the optical properties
of a medium are largely determined by the polarizability,
which is related to a weighted displacement Green's
function by Eq. (2.75) . In a simple ionic crystal this has a
real part 1/DIP~' —cv02(0)g arising from the k = 0 optic
mode. As a result, the dielectric constant e = 1 + 47rx
becomes negative over a frequency region co~ ( u & col.
where the longitudinal and transverse mode frequencies are
related by the LST relation (Born and Huang, 1954)

~r.'/~~' = ~(0)/~( ~ ). (4.22)

In the imperfect lattice z has a real and an imaginary part,
but the properties of the system will still be determined by
the frequency regions where Re+ is large and negative. The
simplest experiments usually measure the reAectivity which
is largest in these regions. Detailed analysis of the results to
obtain e~ and e~ is often difficult, and most interpretation
rests on the assumption of one or more I.orentzian oscil-
lators. This leads to a crude classification of the spectra of
mixed crystals into those which show only one reQectivity
or absorption peak and those which show two, for a given
active optical branch of the pure crystal. In Fig. 49 we show
typical results for KClBr, a good example of a one-mode
system, and for GaAsP, a good example of a two-mode
system.

There has been a great deal of discussion in the literature
about the criteria for these two types of behavior. The most
important necessary condition for two-mode behavior to
occur at a low concentration x of some element is that there
be a local mode at the isolated defect (Chang and Mitra,
1968; Brodsky et al. , 1970) . On a mass criterion this requires
that the substituted element be lighter than the host which
is replaced. At the other end of the substitution range x 1,
there will then be a small concentration of heavy defects.
These will tend to produce a response below the optic branch,
but unless this is well separated from the acoustic branches
it will only give a resonance in the acoustic band and not a
localized gap mode. The detailed criteria for the existence of
localized and gap modes depend on the actual spectrum, and
in this respect t'he linear chain models commonly used may be
misleading. It is always easier to satisfy the criteria for
localized modes in one dimension than in three. Moreover
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i
after

Verleur and Barker (1966)g.

these models fail to account for the full width of the phonon
branches; in particular, they neglect the width of the optic
branch arising from the splitting of col, from ~z by the elec-
trical forces. Some attempt to include this width has been
made by Fertel and Perry (1969), Harada and Narita
(1971), and others. The former suggested that for two-
mode behavior the reststrahl bands of the two constituted
crystals must not overlap. This is too strong a condition,
but certainly if the overlap is large, one-mode behavior is
always found. In this situation the perturbation introduced
by mixing is small and the VCA is an adequate description.

For the case of large perturbations, none of these theories
attempts to deal with the large concentration case in any
detail. Attempts in this direction have been confined to
special models which are not physically realistic. For
exa,mple, Verleur and Barker (1966) calculate the spectra
from hnite clusters of atoms. Other authors have assumed a

regular atomic arrangement in the random crystal, and some
detailed comparison has been done with a theory (Chen
et al. , 1966; Chang and Mitra, 1968) which determines
k = 0 optical modes by assuming that all atoms of a given
type oscillate in phase.

It is surprising that. comparatively little detailed theo-
. retical work has been done using Green's function tech-
niques, which have proved so valuable elsewhere in this field.
Important exceptions to this are found in the work of
Pershan and Lacina. (1970) and Beserman and Balkanski
(1970), who essentially used the ATA on Car, Sr F2 and
CdS& Se, respectively. An early attempt at this type of
calculation was made by Elliott and Taylor (1964) for
LiHt, D, . The CPA was used by Taylor (1967) in his
original paper to study the vibrations of Ge—Si alloys, but
there is no comparable work on ionic crystals. This is
probably due to the fact that such calculations are harder in
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a diatomic crystal with important electric forces, and
because it is known from local mode studies that force-
constant changes are important for defects in alkali halides,
although less so in III—V and II—VI compounds. Neverthe-
less we feel that such calculations could and should now be
undertaken to confront the mass of experimental data.
Very recently Taylor (unpublished) has applied the CPA
to calculate the reflectance in a one-mode system KBr& Cl
and a two-mode system K&,Rb,I (Fig. 50).

The general, features of one- and two-mode spectra are
predicated by the CPA calculations of Onodera and Toyo-
zawa (1968). Using a parabolic density of states they show
that k = 0 response has two sharp peaks in the split-band
limit, but only one peak if the bands are not split (cf. Figs.
23 and 24) . We can use their theory to give a crude criterion
for two-mode behavior in a crystal with constituents
AB~ 8 '. To do this we neglect the acoustic branches and
assume a parabolic density of states in E = ~' for the optic
branch. Thus the model will work best if the mass difference
between the constant constitutent A and the mean mass of
the mixed constituents 8, 8' is large. The center of the host
crystal band is determined by a characteristic force con-
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TABLE I. One- and two-mode behavior of mixed ionic crystals.
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We assume that the extrema of the band are co~' and ~I.' so
that the width is dominated by the electrical forces. Because
of the LST relation (4.22), the width W is given by

I
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The condition for a localized mode at small x can be found
to be
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FIG. 50. Calculated reAectivities using the CPA by Taylor (un-
published) for KCl Br~ and K~ Rb I. Full linex = 0.25, dotted line
x = 0;50, dashed line x = 0.75. The lower (upper) arrows indicated
~To»d ~l,o for x = 0(1).
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1 —— )—

p' 2 «(0) + «(~) (4.25)

At x I the condition has p and p' reversed. For the two
bands to be separated over the whole concentration range,
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the CPA calculations require a stronger condition

e(o) —e(~)
e(o) + e(") (4.26)

This is tested in Table I. We see that it accounts reasonably
well for the observed behavior. In the strongly ionic alkali
halides the reststrahl bands are strong and the condition is
harder to satisfy than in the III—V compounds, which are
weakly ionic. The only serious discrepancy is GaAsSb,
but this is just the situation where the gap is known to be
small (Mo, M~, ) and the Sb will give an acoustic reso-
nance rather than a gap mode.

This model is extremely crude, but no more crude than
those employed by other workers in the field. In particular,
it neglects force-constant changes and the effect of the
acoustic branches. It does, however, include the random
structure in the best available way by using the CPA. Its
comparative success strengthens our view that more realistic
CPA calculations would be worthwhile.

There are infrared experiments on other crystals which
are more complex than the binary compounds above and
may have several optically active branches. Some of these
may show one-mode and others two-mode behavior within
the same crystal, as for example in KMg& Ni F4 (Barker
et al. , 1968) . A more extensive discussion is to be found in the
review article of Barker and Sievers (to be published) .

The optical absorption by Ge Si& alloys has also been
studied by Braunstein (1963) and by Cosand and Spitzer
(1971). In this case there is no optically active mode in the
pure crystal, and the weak absorption process depends on
the atomic polarizability. This process has been studied
using a detailed shell model in the case of small concentra-

tions of impurities in rare gas crystals (Elliott and Hart-
rnann, 1967; Martin, 1967). Keeler and .Batchelder (1972)
have recently observed far infrared absorption due to Kr
and Ne in A. In the mixed crystal the optical absorption will
be proportional to an expression like (4.18), where B is
now the effective induced charge; that is, we are interested
in the response to an effectively uniform field, appropriate
to the uniform mode

(G(k, E)) = 1/(M~'+ Z). (4.27)

The absorption coeKcient is given by

(B"—' B")'Zr/$(M&u'+ Z~)'+ ZPj. (4.28)

At low c it is equivalent to the result of Elliott and Hart-
mann, who also suggested that 8, which depends on the
relative neighbor displacements, would be roughly propor-
tional to oP. No detailed comparison between theory and

experiment has been made except at low c, although
Taylor (1967) did calculate some aspects of the phonon
spectra of Si—Ge using the CPA.

Raman scattering has also been observed from a variety of
mixed crystals. These results have also been reviewed by
Chang and Mitra and by Barker and Sievers. In mixed
crystals where the pure components have Raman-active
optical modes, the spectrum usually consists of a few rela-
tively narrow lines. Si and Ge have a single active mode, and
the alloys show two lines corresponding to the split-band
case (Feldman et al. , 1966) . In the III—V and II—VI com-
pounds both the I-O and TO k = 0 phonons are active, so
that there are two lines in the pure crystal spectra. In
mixed crystals like ZnSj Se which show split-band
behavior four lines are observed (see Fig. 51) (Chang and
Mitra, 1968) .
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The theoretical form of the Raman cross section LEq.
(2.77)j depends on a weighted average of Im(G(k, E) )
similar to the neutron cross section LEq. (4.18)j except that
k~ 0, and B is replaced by the Raman polarizability C
defined in Eq. (2.77) . There have been no detailed attempts
to calculate the appropriate average in any realistic case.

In the alkali halides the optical phonons are not Raman-
active and there is no first-order Raman spectrum. In the
mixed crystals, however, a broad spectrum is expected, and
this has recently been observed by Nair and Walker (1971)
in KCl» Br,. The peaks in the spectrum are correlated with
peaks in the density of states and resonant modes. The
theoretical expression for the cross section is similar to Eq.
(4.28) with appropriate Raman polarizabilities.

8. Other exPeriments

gD(x) —2 (1 x)SD(1)—2 + x'9D(0) —2 (4.29)

A similar situation holds in the case of thermal conduc-
tivity experiments. There has been a great deal of work on
systems containing small concentrations of defects with
low-lying resonances which give an anomaly at low T /see
for example Pohl (1968)g, but nothing on high-concen-
tration mixed systems.

The thermal properties of crystals which arise through the
lattice vibrations reflect to some extent the spectrum of
excitations. However, because they always involve an
average over part of the spectrum, they are less sensitive
than optical and neutron measurements. I.ow-lying reso-
nance modes arising from small impurity concentrations
can have a marked effect on the low-T specific heat, as was
predicted by Kagan and Iosilveski (1965) and I.ehmann
and DeWames (1963). A recent example of this effect is
seen in the work of Hartmann et a/. (1970) on Al~ Au, .
The only work on high-concentration mixed crystals is that
of Karlsson (1970), who measured K~,T1 Cl, x ( 5%%uo and
KCl» Br, over the whole range of x. He finds that the
Debye temperature of the mixed crystal is that expected
from averaging the inverse square frequency

is the difference in atomic excitation energies. At low con-
centrations, localized excitons will occur if 6 is sufficiently
large compared to the exciton bandwidth. In the Frenkel
case this may be relatively small.

In semiconductors excitons are better described by the
Wannier model (Knox, 1966), and are large entities covering
several atoms. The energy states consist of several over-
lapping exciton bands with relatively weak binding energy,
and the simple models discussed in this review are not
applicable. Although localized excitons occur at very low
defect concentrations, exciton effects are normally not dis-
tinguishable at higher concentrations.

After preliminary work by Mahr (1961), the Japanese
school has had a monopoly on the study of excitons in mixed
ionic crystals. This work has been influenced by the CPA
calculation of Onodera and Toyozawa (1968), and largely
interpreted in these terms. The salient feature of the optical
absorption is that it shows one- or two-band behavior like
the optical phonons discussed in Sec. IVB2. In general,
mixtures of alkali ions in alkali halides lead to one-mode
behavior. This is well demonstrated in K Rb» Cl, K-
Na~ Cl (Nakai et a/. , 1965), K~Rb~, I (Nakamura, 1967),
K Rb'~, 1 (Nakamura and Nakai, 1967). The peaks shift
smoothly by 6 0.1 eV across the series (see Fig. 51).
The small value of 6 is due to the fact that the exciton is
largely confined to the halogen. Mixed crystals which vary
the halide show a tendency toward two-mode behavior, for
example, KC1,Br, , (Murata and Nakai, 1967) and
KC1 I~, (Nagasawa et a/. , 1968), where 3, 1 eV.

Other systems which have been studied include Ar» Xe,
(Nagasawa et a/. , 1972) which shows one-mode behavior
though the shift suggests 6 1 eV, which must indicate a
relatively broad exciton bandwidth. The mixed crystals
CuCl Br» have more extensive excitons which are not
well described by the Frenkel model. The system shows one-
mode behavior (Goto et a/. , 1968, 1970) and the line is so
sharp, even at intermediate x, that Zeeman studies have
been performed (Mabuchi et a/. , 1971). Sen (1973) has
recently proposed that the CPA can be used to understand
these results.

Some very interesting experiments have been carried out
on organic crystals with hydrogenous components following
the work of Sheka (1961), on naphthalenes, and Broude
and Rashba (1962) on benzenes. In this situation deutera-
tion of the molecule changes the zero-point energy. Although
this is relatively small Pin naphthalene with 8 protons
(h, ), 4 protons and 4 deuterons (d4), or 8 deutemns
(d8); E(h8) —E(d4) 50cm ', E(hs) —E(d8) 115cm 'j
the exciton bandwidth is also small 10(j cm '. The most
detailed results of Robinson and Hong (1971) show two-
band behavior in the hs—d8 mixtures and one-band be-
havior in the hs —d4 mixtures (Fig. 52) .

One other type of experiment has given important in-
formation about the phonon spectra of mixed crystals.
Superconducting tunneling can be used to give the density
of states weighted by some unknown (but slowly varying)
coupling constant. The most studied system is Pb» In
at low x by Rowell et a/. (1965) Lsee Fig. 13j and large x by
Adler et a/. (1966).

C. Excitons

As pointed out in Sec. IIA4, Frenkel excitons provide
another example of elementary excitations which can be
studied in a disordered lattice. In the extremely tightly
bound case, where the exciton is well described as an ex-
cited atom, the disordered system can be simply described
as one of diagonal disorder. Here

Broude and Rashba gave a simplified theory, but more
recently Dubrovskii and Konobeev (1970) suggested the
use of the CPA for this system. Detailed applications of the
CPA have now been made by Robinson and Hong (1970)
and especially Kopleman and Hong (1971).The latter give
an extensive analysis of the CPA and compare the results

5(/) = E~(/) —Es(/) (4.30) with moment calculations and computer model calculations.
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D. Magnons

Although, in some ways, magnons are a more esoteric
elementary excitation than electrons or phonons, they
promise to be very convenient systems for comparing theory
and experiment. The main reason is that in a simple magnet
there is only one branch to the magnon spectrum and that in
insulators the exchange interactions are short range. By
making detailed measurements on the pure materials these
exchange interactions may be determined so that there are
no unknown parameters in the random crystal. On the
other hand, as discussed in Secs. IIA5 and IIIC2, the
modification of the exchange interaction always gives an
extended defect matrix V. In addition, the simplest systems
with short-range interactions are usually antiferromagnets.
Metallic ferromagnets normally show a long-range inter-
action via conduction electron polarization. Some aspects
of their properties have been considered in Sec. IUA3.

Zn, Fs by Mitlehner et at. (1971) at low x, and Buchanan
et al. (1972) over a, wide range of x. Similar experiments
have been performed by Parisot et al. (1971) on low con-
centrations c ( 2%%uo Ni in RbMnF, and KMnFs. They
examined the localized modes which broadened rapidly as c
was increased.

A comparison between theory and experiment requires an
extension of the theory to a two-sublattice antiferromagnet.
There are two atoms per unit cell, so it is necessary to extend
the definition LEq. (2.53) g by specifying the sublattice of
the sites.

G i'(l, /', E) = (—1)'+"

X ((& .(&), 5'+'(~') ))!2P'(~)~(~') 7", (4.31)

where n = 1, 2 for the up (down) sublattice. In the perfect
crystal this gives

1. Inelastic neutron scattering

The most detailed experimental observations come from
inelastic neutron scattering measurements, although some
optical work has also been done. Until recently most of this
was directed towards the observation of local modes and
resonances induced by low concentrations of defects. This
work has recently been extensively reviewed by Cowley
and Buyers (1972) and we shall not repeat it here. The
systems studied in detail are KMnF3 with Co, Xi, and Zn
impurities and MnF2 with Fe, Co, Ni, and Zn. Relatively
little has been done on more concentrated samples, but
recent studies by neutron scattering on Mn1 Co F2 and
KMni Co Fs (Buyers et a/. , 1971) and on Mnt, Zn, F&

(Coombs et a/. , 1973), represent a fairly complete study of a
relatively simple system. In addition, Enders et al. (1973)
have studied the antiferromagnetic resonance in Mn~
Co F2 and Mn1 Fe F2. In Raman scattering it turns out
that two-magnon processes are comparatively strong.
Electively a weighted density of magnon states is measured
in this type of experiment. This has been studied in Mn&, —

P »(k E)
P(k, E) =!

(P"(k, E) P"(k E))
PE —2sI (0)

—2sJ(k)

2sJ(k)
!

E+ 2sI(1))
(4.32)

G = P+PxG

X takes the form

(4 33)

(4 34)

with poles at the energies given by Eq. (2.29) . Since inter-
change of the sublattices leads to reversal of all the spins, it
is equivalent to time reversal. This gives some simpli6ca-
tion to the Green s function in the general case. Writing,
for a given k,
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a(k, E) + i~r (k, E)

2. Dilute antiferromagnet

At low defect concentrations Z(l, l') = ct(l, l') where the
t-matrix is, say, a 7 && 7 matrix in real space, as in Eqs.
(2.116)—(2.118). For that situation P, t" and the diagonal
parts of t' contribute to Z~. Detailed calculations have been
made for the antiferromagnet by Tonegawa (1968), Shiles
and Hone (1970), and particularly Lovesey (1968). The
poles of t give the local modes, while in the band Z gives
rise to a shift and width to the response, given by

as required by the Goldstone theorem. Results for the line
shapes in Mnp 3Co{).7F2 and the dispersion in KMno. »Coo.»F3
are compared with experiment in Figs. 54 and 55. A similar
theory for Mn&, Zn, F2 also requires the addition of large w-

as in Eq. (3.96) to prevent the appearance of a spurious
low-frequency resonance. Results for some line shapes in
Mno. 78Zno. 2gF2 are shown in Fig. 56. In addition, the results
of this approximation are compared with the low c theory in
Fig. 53.

The success of this approximate theory is in large part due
to the fact that the Ising interactions are treated properly
and clustering effects included. In an antiferromagnet the
Ising part of the interaction dominates the excitation
spectrum. In the pure crystal the density of states has a
sharp divergence at E = 2I(0) 5. For this reason localized
states and resonances are predicted quite accurately using

nl the Ising terms. Some attempts have also been made to
~ ~ 0

lconsider the impure antiferromagnets by considering on y
isolated changed bonds (Tahir-Kheli, 1972; Parkinson,
1973). In the dilute case this appears to give a different line
shape (Elliott and Pepper, 1973) which agrees less well with
experiment.

The question of localization of spin waves has been con-
sidered recently by Economou (1972), using the theory of
Cohen and Economou (1972), and by Lyo (1972), who
extended Anderson's (1958) theory. Since the experiments
are all concerned with single-particle Green's functions,
there is no direct evidence to compare with the predictions.

All these results have been considered effectively at
= II(0) [Zr(k, E) + Zg(k, E)g—

+ ELZr(k, E) —Zr(k, E)j-
+ J(k) t Z, (k, E) + Z (k, —E) jI/2E(k) (4.35)

V (r) = &2r(I' S' —IS),

while a defect atom with r defect neighbors has

& VD(r) = 2s(I'5 —IS) + 2r(I"5' —I'5)

(4.36a)

(4.36b)

evaluated at E = E(k). Such a calculation has been com-
~i' Zn Fpared with neutron scattering experiments in Mn], Zn

x = 0.05 by Svensson et al (1969), a.s shown in Fig. 53.
Similar results on Mn&, Co,Fs (x = 0.05) by Buyers et al.
(1968) and KCor, Mn, Fs (x = 0.05) are discussed in
Cowley and Buyers (1972).

The CPA for high concentrations of these extended defects
has not yet been performed. However Buyers et al. (1972,
1973) have proposed an approximate theory where only the
site-diagonal parts of the perturbation are treated by the
CPA, These are taken to depend on the neighboring atoms
so that for a host ion with r defect neighbors

8—
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Zs(k, E) = Zr (k, E) Q exp (ik. 5), (4.37)

which assures that cc(k) —+ 0 as k —+ 0 in the isotropic case,
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I I I I I

3QO IO 2-0
FREQUENCY C THz )

FIG. 54. Neutron scattering line shapes measured by Buyers et el.
($971) in Mnp 3Cop 7' compared with the CPA theory of Buyers
g] gt,

'

($9/2)
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T = O'K. At finite T it is necessary to make further ap-
proximations to study the spin-wave spectrum theoretically,
and this has only been done in the low-concentration limit
(Cowley and Buyers, 1972). One exception is the work. of
Foo and Wu (1972) . They used the CPA for isolated bonds,
as discussed in Sec. III2, and used the random phase ap-
proximation to 'determine the transition temperature T,.
They compare the theory with experiments on GdX& 0
by Gambino et al. (1970) .

E. Percolation and conduction

—IOO

— l00

4 ~
4

4 -0
680/o Zn

(o, o,o.s)

I I I I I

75% Zn
4

(o,o,o.5)
FIG. 56. Neutron scattering by
short wavelength magnons in
Mn1 Zn F2 measured by
Coombs et a3. (to be published)
near the critical concentration.
The solid lines are the CPA
predictions of Buyers et al.
(1973) showing a broad response
which does not change very much
with concentration.

If one continues to remove resistors from an infinite net-
work, at some concentration (fraction) eo of removed
resistors the conduction across the network ceases as the
last connecting path across the network is broken. Such
critical percolation concentrations or percolation thresholds
were first studied by Broadbent and Hammersley (1957)
t and Hammersley (1957)j, who introduced lattice models
for Quid Qow through a random medium and showed that no
Quid will Qow below the critical percolation concentration
of the active medium. They also introduced the idea of the
percolation probability I'(c) which is the probability that
any active region of the medium is contained in an infinite
cluster of active material and hence available for conduction.
There are a number of good reviews on the subject Lfor
example, Frisch and Hammersley (1963); Fisher (1964);
Shante and Kirkpatrick (1971); Essam (1973); and Kirk-
patrick (1973a)j. Recently a number of experiments and

computer experiments have been reported on random net-
works Pe.g. , Last and Thouless (1971);Kirkpatrick (1971)
and (1973b); Adler et al. (1973); and Watson and Leath
(1974)7.

A major interest in this field has been in the suggestion
(Miller and Abrahams, 1960) that the problem of hopping
conduction in doped semiconductors is closely related to
conduction through a resistor network and hence to the
percolation problem. Similar suggestions have been made
(see the review by Shante and Kirkpatrick, 1971) that
percolation effects play an important role in metal —semi-
conductor transitions and in conductivity in certain
amorphous materials.

In the critical region about the percolation threshold
where the Quctuations in the size of the clusters are large
compared to the size of the clusters, such properties as the
percolation probability, the conductivity, and the mean

0 I I I I I

0.4 0, 8 l.2
FREQUENCY (THz)

cluster size apparently exhibit power law behavior (e —cz) r

about the critical percolation concentration c„.Presumably
a .scaling or renormalization group argument would be
necessary to analytically obtain exponents.

However, outside of the critical region one can obtain
remarkably accurate analytic calculations of 0- using a
classical theory of conduction through mixtures known
today as effective medium theory Lsee Bruggeman (1935),
Landauer (1952), Brown (1956), Kerner (1956), Krum
hansl (1973), Kirkpatrick (1973a)g. The effective medium
theory is entirely equivalent to the coherent potential
approximation, as has been discussed formally in detail
by Kirkpatrick (1973a) .

We shall limit our discussion of effective medium theory
here, for simplicity, to that of simple bond and site percola-
tion problems on a simple square resistor network to
illustrate its usefulness and its similarity to the coherent
potential approximation.

/

Let us consider first the bond problem Lsee Kirkpatrick
(1973a,) g where we shall try to evaluate the conductivity of
a simple square lattice ulled with resistors of resistance R~
and R&, randomly placed. We imagine first a perfect square
lattice of resistors of magnitude R with an external voltage
applied across the sample inducing current Io through each
resistor along one of the principal axes. When a single resis-
tor R, directed along the direction of this current Io,
is replaced by either physical resistance R& or Rp there will
be an additional voltage AV~ or AV~ appearing across that
bond. The magnitude of this extra voltage can easily be
seen to be

EXCITATIONS

I N KC00 7 I Mnp. 29 F
A V~ is

——IOR L1 —2R /(R~ + Ra p) g. (4.38)

The effective medium theory approach is to require
(AV) = 0 or

4
Cf
LaJ
Ch

2-

FIG. 55. The dispersion curves for
the peak response in the neutron
scattering experiments of Buyers
et al. (1971) on KCo0, »Mn0 29F3
compared to the CPA calculations
( after Buyers et at. (1972)g.

(1 —e) 6V~ + cd Vis ——0,

which gives

R~s + (1 —2c) (RB —R~) R —RaRB —0.

(4.39a)

(4.39b)

In the limit, R~ —+ ~, the solution of this equation is
0 I I

0 0.I 0.2
REDUCED VAvE vECTOR r R~ = R„(1—2c) (4.40a)
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FIG. 57. (a) The conductivity of a simple-
square lattice of randomly placed resistors of
value AA and R@ vs the fraction (1 —c) of
resistors Rp„as determined by the effective
medium theory (solid line) of Eq. (4.39) and
by monte carlo computer experiments on a
25 && 30 resistor sample (data points), from
Kirkpatrick (1971); (b) A similar plot for the
conductivity of a disordered simple-cubic
lattice, also from Kirkpatrick (1971).

or
(a)

(I-c.) (I-c, ) (I-c)

require

o(c) = o~(1 —2c), (4.40b) (1 —b) b.Vb, g~ + bhVb, Dye ——0, (4.43)

where o.(c) is the conductivity of the disordered network as
approximated bv the effective medium, and where 0-~ =
o-(0) .The solution of this equation for the simple square net-
work and the analogous equation for a simple cubic lattice
were carried out by Kirkpatrick (1971) and are shown in
Fig. 57, where they have been compared to computer experi-
ments carried out on hnite samples. The agreement is
excellent except within the critical region about co for the
case Rz/RB ——0 where fluctuations play a dominant role.
The effective medium theory as presented here always
gives a straight line versus concentration

(1 —b) = (1 —x)' (4.44)

since a bond is changed if the site on either end is changed.
For the case E& —+ ~, this theory always gives

where b, the concentration of removed bonds, is the proba-
bil.ity that the site on either end of the bond is a 8 site and
hence that AVb d takes on the value AVb„d . But there is
an exact relationship between the fraction of altered bonds
and the fraction of altered sites in any such in6nite lattice,
namely,

o (c) = o (0) (1 —nc), (4.41) o(x) = o(0)(1 —2ax + crx'), (4.45)

as R~ —+ ~, where n is a constant that can be determined
from the low concentration behavior. Clearly the effective
medium theory is like the coherent potential approximation,
with R filling the role of the coherent potential and (AV)
replacing (t). In fact, the relationship can be made formally
analogous by construction of a Green's function theory for
o.(c) Lsee Kirkpatrick (1973a)j.

l.o

0.8

The effective medium theory can also be extended to the
site percolation problem with equal success, if care is taken,
as has recently been shown by Watson and Leath (1974) .
In the site percolation problem bonds are not removed
randomly, but rather sites (nodes) are chosen randomly
and all bonds connecting that site to the lattice are then
removed at once.

A naive application of effective medium theory to
this problem would be to calculate AV~ ~ across the entire
cluster of bonds (each of value R~ or Rs) about a particular
A or 8 site imbedded in an effective medium, and require

O.S

C)

04b

b

0.2

(1 —x) AV~ + xb, Vs ——0, (4.42) 0
0 O. I 0.2 0.5 0.4 x

where x is the concentration of 8 sites. This, however, as
Rs —& ro, always gives a straight hne for o(x) versus x
which does not agree with experiment t see Kirkpatrick
(1973a)j. The method of Watson and Leath (1974), how-
ever, which does work, is to calculate the extra voltage
AVb, q~ induced across a s&zgle bond in the cluster and to

x (fraction of sites removed)
FIG. 58. The conductivity of a simple-square lattice of resistors vs.
fraction x of randomly removed sites (or nodes} as determined directly
by experiment on a 137 X 137 mesh (data points) and by the effective
medium theory (solid line) of Eq. (4.44). A plot of the same theory
(Eq. 4.43) and the same experimental data vs fraction of removed
bonds {inset}, from Watson and Leath {1974).
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where o; is determined from the low concentration behavior.
As an example, the results for a simple square lattice, where
a = 7r/2, were compared with experiment by Watson and
Leath (1974) and are showed in Fig. 58. The results are in
excellent agreement (the slight disagreement apparent at
x 0.2—0.3 can be explained by the 6nite size of the experi-
mental sample) .

V. EPILOGUE

As this review is being completed there are numerous new
pieces of work appearing almost daily in which the methods
we have reviewed are being applied. It is satisfying to
see that there now are available to physicists methods
for systematically describing many properties of random
materials, proceeding from plausible model Hamiltonian
descriptions. Substantial improvements on virtual crystal
approximations have been made for realistic random alloy
models, and comparison can be made with experiments. So
-it is not necessary to try to patch up descriptions based on
conventional band theory, and we hope that such attempts
will be forgotten; even experimentalists need not 6nd
Green's function methods to be impractical. Indeed, with
loss of lattice periodicity and symmetry there is as yet no
other honest analytical choice so generally applicable.

The applications are not restricted to the electronic and
lattice-dynamic properties we have concentrated on here;
parallel concepts have developed in other fields (Krum-
hansl, 1973).

It is frequently possible to divide the physical problem
in a random system into two parts —an average behavior,
plus the fluctuations from it. An exact treatment must keep
both, and when the latter becomes comparable to the former
the separation is meaningless. Fortunately, there are many
situations in which the separation is both useful and
meaningful. In this case the "self-consistent local field
theory" is quite useful for describing the average field;
however, to complete sum rules (energy conservation,
for example) the fluctuations must be included in principle.

Many field theories have usually been invented as needed
for the application at hand. The essence of the standard
problem is simply stated. The field (electromagnetic,
elastic, Schrodinger, etc.), denoted by u, obeys a linear
equations of motion characterized by an operator L,,
which in turn is parameterized by specification of the
properties of the medium. In a homogeneous medium, I
depends only on a few parameters, awhile in a random
medium these parameters (conductivity, potential, index)
vary from place to place according to some probability
distribution; for brevity we denote the random parameter
as e in L(e) . The equation of motion is

(5.2)

in the absence of free charges. The field u —+ E(r)L~ & e(r). If an applied charge p(r) is imposed, then it
is useful in solving the problem to have the Green's function
G = $V.e(r) j ' which satisfies IG = 5(r —r'). Indeed, a
systematic method for solving may now be based on writing
L = (L) + Li ——Lo+ Li, whence the operator relation
holds that

G = Go + GOLiG. (5.3)

There is also an exact scattering representation for fields

E = Eo —GLiEO = Eo + E,,-«, (5.4)

where Eo is any field which satisfies (L)ED = 0. Equation
(5.4) can be used to define an e*. In the example at hand
Ij = @ within the spheres, e~ in the host; thus I-~ =
Z, (@—ei) V, i running over spheres.

The specific practical problem for a dielectric is to compute
the average dielectric function for some direction, say x:
e„*= L(eE )/(E, )g. Here, the averaging is volume aver-
aging, i.e., the (k, co) = (0, 0) limit.

The basic scattering problem is to compute the scat-
tering around a sphere in the presence of some local field.
It is tedious but not difhcult to solve this problem using a
Green's function 60, on the other hand, the exact fields
around a single sphere or ellipsoid can easily be calculated
using spherical harmonics:

+x0

C= 1 + —(1 —3 cos'8), outside a sphere.
2&i + &g 'f

= 1+,inside a sphere.
2E'] + tg

theory" as the best low-order local approximation to a
resummed perturbation series; it also can be obtained by
choosing a local 6eld such that scattering vanishes to first
order in the "concentration" of defects, i.e., all repeated
scatterings by I-j at a particular position. One may then
compute an average e~, as abo~e, to obtain an effective
Inedium parameter. All this is similar to ATA and CPA.

Neither time nor space allow a detailed comparison of
applications to be made here, but we may illustrate by the
calculation of the dielectric constant of a composite medium
consisting of nonoverlapping, randomly located small
spheres of dielectric e2 imbedded in ~i. The "equation of
motion" is

L(e)u = 0. (5.1)
= 1+ (K..«/Lo. ). (5.5)

The operator I- may also depend on other important param-
eters which are not random (e.g. , E in H E for Schrodinger—
waves, cv' in acoustic and electromagnetic waves). The
essence of the averaging methods is to define L = (I.) + L,i,
and attempt to calculate (u) or other quantities such as
(eu), and from them effective parameters c* = L(eu)/(u) j.
This may be done in various approximations, self-consistent
or not. It is feasible to obtain the "self-consistent local field

(&) +A@L(&i @)/(2&i + &~)j
1+fiL(~i —")/(2~i+ ~)3

(5.6)

This expression is not self-consistent, since the field incident

If a volume average of (eE,)/(E, ) is taken, assuming spheres
to scatter independently, and f~ is the volume fraction
occupied by e2, the integrations yield

Rev. Mod. Phys. , Vol. 46, No. 3, July 1974



536 Elliott, Krumbansl, and Leatb: Randomly disordered crysta Is

on the spheres was assumed to be Eo in a medium of ~

For the moment, however, expanding Eq. (5.6) to lowest
order of e2 —e&, which would apply to small dielectric
Quctuations, one obtains an expression obtained by various
other means (W. F. Brown, 1955; L. D. Landau and E. M.
Lifshitz, 1960)

2

3 «)

; 2+ («,/«, *)

On the other hand, taking volume average x components
only, the scattering problem (neglecting interparticle
scatterings) in an. effective medium «„*looks like:

«.) = (4.)+lZ ". f')(&..)+2«*+ «,
(5.9)

If we impose the condition that the first-order scattering
shall vanish on the average, we obtain

(5.10)

A study of the methods shows that Eq. (5.6) is equivalent to
the "average T matrix approximation, ATA, " used in ran-
dom alloys, while Eq. (5.7) is a low-order correction to the
virtual crystal approximation.

In order to make the method totally symmetric in e& and
~2, as well as self-consistent, we take the medium to be
describable by an average e* and then when in medium 1
scatter by («~ —«*), when in. 2 by («~ —«*). With the
assumptions of statistical independence and volume
averaging one obtains the implicit equation for «(after
much algebra):

neering, continuum mechanics, and ceramics, to mention a
few. Here again the "self-consistent" method developed,
with original contributions to the subject by Budiansky
(1970), by Hill (1967), and by Kroner (1967); indeed the
similarity of Kroner's formalism to that developed for
studying electronic properties of alloys is remarkable.

One should, of course, recognize that the elastic fields
are tensor quantities, so the problem is considerably more
complicated than that of Schrodinger scalar waves in
random systems, and thus the idealizations of the self-
consistent method In ay be more serious. Nonetheless,
Thomsen (1972) has recently applied Kroner's method to
the elasticity of polycrystals and rocks, with some success in
comparison with experiment.

It might also be mentioned in passing that an entirely
different approach to the properties of heterogeneous
materials uses variational methods (Hashin, 1964; Beran,
1968) to set bounds on effective parameters; to the extent
that we have checked several cases, the self-consistent
results fall between the expected upper and lower bounds
(e.g. , («) vs (« ') ' for «* in the case of dielectrics).

While the essence of ATA or CPA approximations ap-
peared in these studies, to our knowledge the systematic
and diagrammatic analysis which we have reviewed for
alloys has not been carried over, and could usefully serve in
estimating the limitations of the approximations.

Finally, we repeat one important disclaimer —there are
special questions of localization, dynamics of clusters, trans-
port, and special spectral structure whose description
lies beyond the methods which we have reviewed. Why this
is so is now pretty well documented; when these special
problems are solved, it may be said that over-all description
of the physics of random systems will be nearly as complete
as tha, t for crystalline matter.
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APPENDIX A. CUMULANT EXPANSIONS

The cluster expansion described above in Sec. IIIA3 is
not the usual Ursell —Mayer cluster expansion, involving the
cumulants of the random variable q, , but is rather a self-
consistent partial cumulant technique as has been ernpha-
sized by Yonezawa (1968). The difference in the analytic
properties produced is substantial, due to spurious features
that occur inherently in the cumulant expansion which are
removed by the self-consistent technique. Nevertheless, the
problem of a binary alloy presents a simple enough form for
the cumulant coefficients that they can be found in closed
form and summed, for certain classes of diagrams, to all
orders. This infinite summa, tion of cumulant coeKcients
has been done in no other problem to our knowledge, and its
accomplishment here has pointed out the serious divergence
difficulties which can arise in cumulant expansions.
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The cumulant expansion technique has been carried out
by Yonezawa and Matsubara (1966a, b) for the electronic
problem, by Leath and Goodman (1966, 1968) for the
phonon problem, and by Matsubara and Kaneyoshi (1966)
for the localized state expansion of the electronic problem.
Basically, Matsubara and his co-workers have used a
generating function for the cumulants, whereas I-eath and
Goodman found a closed form for the cumulant coeNcients.

P3(c) = c —3c (1 —c) —c = c —3c + 2cz. (A1)

However, the contribution from the method described by
Fig. 9 would give the coefficient

c —2c'(1 —c) —c' = c —2c'+ c' = c(1 —c)' (A2)

to this diagram. This difference, Fig. 59(d), and other such
correctio'n diagrams lead to the spurious behavior.

The essential difference between the cumulant expansion
and the self-consistent diagram rules of Sec. IIIA is that
in the cumulant expansion each interaction point receives a
coefficient P„(c) which is obtained by subtracting from c the
coe%cient of all diagrams that can be gotten by breaking the
interaction lines away from the interaction point regardless
of whether the resulting diagrams are included in the partzcular
approximation that zs being made at the time For e.xample,
let us consider the third-order diagram shown in Fig. 59(a) .
The multiple-occupancy corrections which are included in
the cumulant expansion to this diagram are shown in Figs.
59(b), (c), (d), (e), whereas Fig. 59(d) is not included via
the self-consistent method when only single-site irreducible
parts are summed (as one can see from the third row of
Fig. 9). Thus, we find

This closed form is useful for any random occupancy
variable which takes on only two values, as in a binary
alloy, or a spin-2 system.

The sum of the single-site self-energy diagrams shown in
column 1 of Fig. 9 is then easily performed via the well
known sum rules for Stirling numbers. (These sum rules can
be found, for example, in the National Bureau of Standards,
Handbook of MathematicaL Functions, edited by Abramowitz
and Stegun, 1964.) The result is

(A5)

mhich becomes

cV
~'(e) = zFil1, 1, 2 —[VPO(e) ) '; cl, (A6)

1 —VPO(c)

where 2F& is the hypergeometric function which has poles at
all nonpositive integral values of its third argument, i.e.,
at [1 —nVP(e) j = 0 for n = 2, 3, 4, ~ ~ ~ . These poles
would correspond to 2, 3, 4, - - ~ perturbations V located on
one site, i.e., "multiple-occupancy" of a single site. They are
completely spurious and represent the overcorrection in-
herent in this cumulant expansion method.

The results of Matsubara and Yonezawa (1966) and of
Matsubara and Kaneyoshi (1966) for the localized state
expansion may appear to be diferent but they are identical.

The essential ingredient discovered by Matsubara and
Yonezawa (1966a) is the generating function for the P„(c),
which follows directly from the definition of cumulant
coefficients. The cumulants of a single random variable X are
defined by

Leath and Goodman (1966) gave an elaborate inductive
argument for the closed form of P„(c) for all n and subse-
quently (1968) rederived this form directly. They proved
that P„(c) was of the form

" n"P„(X)
(exp(nX) ) =—exp

n=1 8 0

In our case, (X") = (zt, "& = c, so that

(A7)

P„(c) = g (—1) '(nz —1)!cmg(n, rn),
m=1

(A3)
A A

(exp(nX) ) = 1+nc+ —c+ —c+ ~ ~ ~

3f (AS)

" n"P„(c)
g(n; c) = Q = ln(1 —c+ ce )

d"[g(n; c) )
(dn)" =o

P (c) = (zt'& = c

P() = (")—('&'=
Pz(c) = &n"& —3&~'&(~ ) + 2(~'&' = c —3c'+ 2".

Then, we find for Eq. (A5) that

Z'(e) = V dt exp( —t) [Pi(c) + P, (c) ( VPot)

where S(n, rn) is a Stirling number of the second kind and
represents the number of ways of partitioning a set of ~z

objects into m nonempty subsets. In terms of the random
variable p; which may be chosen to denote site occupancy by
a 8 atom, the cumulants or semi-invariants P„,(c) are from which if follows fhaf
given by

(A9)

(A10)

C-C C
2 2

II it II + (VPt) +Pz c
(A11)

(a) (b) (c) (d) (e)

FIG. 59. (a) A third-order diagram and the correction diagrams
(b)—(e) whose vertex conRuence determines E~(c).

Z'(e) = V
&[g(VP,t;.)j

d ( VPot)
(A12)
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Z'(e) = V
exp( —t) c exp(VPot)

dt
1 —c+ c exp(VPot)

' (A13)

APPENDIX B. LLOYD'S EXACTLY
SOLVABLE MODEL

In 1969, Lloyd demonstrated a model of disorder which
allows for an exact solution of the configuration-averaged
one-particle Green's function. His model is such that the
site-diagonal perturbations V(n) at each site are statistically
independent,

which is an integral representation of the hypergeometric
function in Eq. (A6) and thus also contains the spurious
poles.

Matsubara and Yonezawa (1966b) and Leath and Good-
man (1968) have also extended this work to include scat-
tering by pairs of defects. Leath and Goodman (1968)
showed that the pair self-energy so calculated not only con-
tained terms with the spurious poles in the single-site self-
energy corresponding to more than two defects on the same
site, but also produced a new, infinite set of spurious poles
corresponding to the multiple occupancy of pairs of sites by
any number of defects.

It would seem that the lesson to be learned from these
calculations is that one must be very careful in making a
cumulant expansion approximation, especially when one is
trying to renormalize divergences, because the cumulant
expansion can inherently produce spurious new divergences
which are echoes of the physical divergences.

where G„(E; . ~ 0 ~ ~ ~ ) differs from G„(E; ~ ~ ~ V(r) . )
only in that the perturbation on site r is different. In this
form, the integral on dU(r) in (83) can be performed
exactly. This integral is

00«-) =
27k Z Qo

1
d V(r)

v(r) —ir
1

v(.) + ir
x G. (E, "v(.)"~ ). (85)

The only U(r) dependence in Eq. (84) is in the last term,
so that one need only evaluate the integral

00 1
d V(r)2' „V(r) —i I'

1

v(r) + ir

X
U(r)

1 —V(r)G„„(E,0)
' (86)

(t(r) ) = —ir/(1+ i I G„„(E,0) 7

for the integral (86). Thus formula (85) becomes

But G,., is the retarded Green's function in our formalism
and has a small negative imaginary part. Thus V(r)/
(1 —V(r) G„„)as a complex function of V(r) has a pole in
the upper half-plane. Therefore we evaluate (86) by
closing the contour about the lower half-plane. This closing
of the contour gives no additional contribution, since the
Lorentzian vanishes at infinity. Thus the integral along the
real axis has its only contribution from the residue of the
pole at V(r) = iI' which —gives

6'(Iv(~) I) = II&(v(~)), (8 1) G„„(E,—'r). (88)

where the individual V(e) are distributed according to the Likewise, the remaining 10" integrals in (83) are trivially
Lorentzian probability distribution done with the result

1 F
6(V) =-

sr V2 + r2
1 1

2+i V —i F
1

(82) (G„(E))= G„„(E, ir, ir .) = G—„—(E+'r, O)

(E+ ir) (89)
where F is the width of the Lorentzian distribution centered
at V = 0. (It is trivial to center the distribution at any
other value. ) By the configurational ensemble average of
(G) Lloyd means

(G-(E) ) = I I G-(E)~.~p(v(r) ) dv(r) (83)

G„(E, V(.) ) = G. (E, V(.) = O) + G,„(E,O)

We shall see below that this coincides with the definition
used above of the configuration average. The trick per-
formed by Lloyd at this point is to use the properties of the
Lorentzian distribution to evaluate the multiple (about
10 '-fold) integral (83) exactly.

From the solution (2.99) above for the case of a single
impurity, we note that the one-particle Green's function
G„(E, V(1) V(2) ~ ), where V(r) is the value of the
perturbations on site r, can be written in the form

which is the perfect crystal Green's function in which each
state is coarse-grained or smeared with a resolution width F.
This model very neatly shows the coarse-graining effect of
the configuration-averaging process.

It is interesting to note what happens if one uses Lloyd' s
method of averaging (Eq. (83)7 on the binary alloy where
the distribution function is

6'(V(r) ) = (1 —c) 6(V(r) —V&) + c5(U(r) —Vi~).

(810)

The average (G„(E)),. on U(r) becomes simply

(G-(E)). = (1 —c)G-(E, U(1), U(2), .V~ )
+ cG„(E,V(1), V(2), ~ ~ ~ Vs ~ ~ ), (811)

V(r)
X G„,(E, 0), (84) where V~ and V~ appear in the rth position. Likewise, the

1 —VrG„„EOFP ) remaining 10" integrals can be done again with the final
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result

(G„(E))= (1 —c)~G (E, V~, Vz .)
+ c(1 —c)~ 'G„—(E, Vg, Vg, ~ ~ ~ Vii, ~ ~ ~ )

+ . . + C~G-(E, Vs, V~. . ), (812)

where the first term contains the Green's function for the'

perfect A-atom lattice (of E sites), the second term sums
over 2V possible positions of a single 8 atom in the A-atom
lattice, the third term sums over all possible configurations
of two 8 atoms, etc. For large X the central limit theorem
clearly applies, and essentially the term with the actual
concentration of 8 atoms dominates, namely, the term

(G (E) ) ~ ccA. (1 c) {1

X QG (E, E~, E~, . EI3, Es. . )

(813)

But in the limit of large E we find, using Stirling s formula,

all have the following form:

(A00 A01 A01 A01 A01 A01 A01

A01 A11 A12 A13 A13 A13 A13

A01 A12 A11 A13 A13 A12 A13

A = A01 A13 A13 A11 A12 A13 A13

A01 A13 A13 A12 A11 A13 A13

Apl A13 A12 A13 A13 A11 A12

lA01 A13 A13 A13 A13 A 12 A11J

where 0 signifies the central atom and 1 a neighbor; A12 is
the element between a pair of opposite neighbors, and A13
between nearest neighbors on the first coordination sphere.

Any matrix like A may be block-diagonalized by a uni-
tary transformation 8:

cciv ( (814)

which is the inverse of the binomial coeS.cient giving the
number of terms in the sum (813). Therefore Lloyd' s
method, as applied to the binary alloy, clearly establishes
the formal equivalence of integrating over the distribution
of V(n) at each site and using ensemble configuration
averaging which has more generally been in use. Jt also
justifies the use of the grand ensemble average (exact con-
servation of the numbers of atoms of each species is
not necessary) in disordered systems. Unfortunately
Lloyd's method gives nothing more than this identity for the
binary alloy, in mo, rked contrast to the case of the Lorent-
zian distribution of Lloyd's model.

S= 0 ai 0 b Oi

0 a~ 0 b0~ c —e

0 a~ 0 0 bi —c e

LO al 0 0 bf —c e —i

where

0~ 0 0 0~ 0 O'I

0 ai b 0 Oj 0 d

0 ai —b 0 Oi 0

(C2a)

A primary purpose of Lloyd's paper seems to have been
to show, from his exact calculation of the configuration-
averaged one-particle Green's function, that no localized
states exist. This proof is wrong, as was discussed above, in
Sec. IIE4, since the averaging of the one-particle Green's
function averages away the information on localization con-
tained in the phase of the Green's function. On the other
hand, a calculation of the conductivity which involves
(G (E+) G (E—) ), as had recently been at tempted by
Saitoh (1971), can yield this information. Unfortunately
Lloyd's model is not so easily solved for this two-particle
Green's function since G(E+) and G(E )have their—
poles in opposite halves of the complex plane, so that closing
the contour in either half plane encloses a real physical pole
(corresponding to the real vertex function) so that all 10"
integrals are not so easily done. Thus Saitoh was only able
to reach very limited conclusions about the conductivity.

APPENDIX C. SYMMETRY TRANSFORMATION
IN SIMPLE CUBIC CRYSTALS

In this appendix, we show how the 7 & 7 matrices
encountered in the treatment of the simple cubic lattice may
be reduced to block-diagonal form (Wolfram and Callaway,
1963; Pepper, 1972). The matrices we are concerned with

a = 1/(6)"' b = 1/v2

c = 1/2 ($ = 1/W3. (C2b)

A 0() (6) '{2A

(6) 1{2A01 A

I

!

,
' 0
I

,

' 0

I

0
I
I

I

0
I
I

I

0
I

I
I

I

' Ag
I

I
I

0

0

A.J
(C3)

The first two such symmetrized modes are s-like, the next
two are p-like modes, and the last two are d modes. The
effect of transforming A by S is as follows:
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with REFERENCES

All + A 12 + 4A13

A~ —Agg —Agg

Aa = All+ A12 —2A13. (C4)

It is also necessary to be able to construct the Fourier
transform A(k) from the s, P, and d components of A.
If we write the s block as

(App Apl ),

E,A„A„)
(c3)

A (k) = App + 6A11 + 12Aplyk + 6A12+2k + 24A13Fk

pApp + 2(6) ~ Ap] pk + All (1 + ypk + 47k) ]
+ 3A„(1 —y, ) + 2A (1 + y —2I'k)
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then we may invert (C3) and (C4) to obtain the ordinar;.
space components A00, A~~, etc. in terms of A„A„, A~, and
so produce the Fourier transform:

Abou-Chacra, R., P. W, Anderson, and D. J. Thouless, 1973, J. Phys.
C 6, 1934.

Abou-Chacra, R., P. W. Anderson, and D. J. Thouless, 1974, J. Phys.
C7, 65.

Adl. er, D., 1971, CRC Crit. Rev. Solid State Sci. 2, 317.
Adler, D., L. P. Flora, and S. D. Senturia, 1973, Solid State Commun.

12, 9.
Adler, J. G., and B. S. Chandrashekar, 1968, in Localized Excitations

in Solids, edited by R. F. Wallis (Plenum, New York), p. 694.
Agacy, R. L., 1964, Proc. Phys. Soc. Lond. 83, 591.
Aiyer, R. N. , R. J. Elliott, J. A. Krumhansl, and P. L. Leath, 1969,

Phys. Rev. 181, 1006.
Als-Nielson, J., 1968, in Neutron Inelastic Scattering: Proceedings of a

Sy»zposiu»z on Neutron Inelastic Scattering held by the International
Ato»zic Energy Agency in Copenhagen, May ZO—25, 1968 (IAEA,
Vienna), p. 60.

Anderson, P. W. , 1958, Phys. Rev. 109, 1492.
Anderson, P, W. , 1970, Comments Solid State Phys. 2, 193.
Anderson, P. W. , 1972, Proc. Natl. Acad. Sci. (US) 69, 5, 1097.
Anderson, P. W. , and W. L. McMillan, 1967, in "Theory of Magnetism

in Transition Metals, " Proceedings of the International School of
P/zysics 'Enrico Per»zi', edited by H. Suhl (Academic, New York).

Azaroff, L. V., and B. N. Das, 1964, Phys. Rev. 134, A747.
Haym, G. , 1962, Phys. Rev. 127, 1391.
Barker, A. S., and A. Sievers (to be published).
Barker, A. S., and R. Loudon, 1972, Rev. Mod. Phys. 44, 18.

- Barker, A. S., J. A. Ditzenberger, and H. J. Guggenheim, 1968, Phys.
Rev. 175, 1180.

Beaglehold, D., and E. Erlbach, 1970, Solid State Commun. 8, 255.
Heeby, J., 1964a, Proc. R. Soc. Lond. A 279, 82.
Heeby, J., 1964b, Phys. Rev. 135, A130.
Heeby, J., and S. F. Edwards, 1962, Proc. R. Soc. Lond. A 274, 395.
Bell, R., 1972, Rep. Prog. Phys. 35, 1315.
Beran, M. J., 1968, Statistical Continuum Theories (Interscience, New

York) .
Beran, M. J., 1971, Phys. Status Solidi 6, 365.
Beserman, R., and M. Balkanski, 1970, Phys. Rev. B 1, 608.
Bishop, A. R., 1973, Phil. Mag. 27, 651, 1489.
Blackman, J. A. , 1973, J. Phys. F 3, L31.
Blackman, J. A. , D. M. Esterling, and N. F. Berk, 1971a, Phys. Lett. A

35) 205.
Blackman, J. A. , D. M. Esterling, and N. F. Berk, 1971b, Phys. Rev. B

4) 2412.
Blackman, J. A. , and R. J. Elliott, 1970, J. Phys. C 3, 2066.
Borland, R. E., 1963, Proc. R. Soc. A 274, 529.
Borland, R. E., 1964, Proc. Phys. Soc. Lond. 83, 1027.
Born, M. , and K. Huang, 1954, .Dyna»ical Theory of Crystal Lattices

(Oxford U. P., London) .
Brafman, O. , I. I'. Chang, G. Lengyel, S. S. Mitra, and E. Carnall, Jr.,

1968, in Localized Excitations in Solids, edited by R. F. Wallis
(Plenum, New York), p. 602.

Braunstein, R., 1963, Phys. Rev. 130, 869, 879.
Broadbent, S. R., and J. M. Hammersley, 1957, Proc. Camb. Philos.

Soc. 53, 629.
Brockhouse, B. N. , and A. P. Roy, 1.970, Can. J. Phys. 48, 1781,
Hrodsky, M. H. , G. Lucovsky, M. F. Chen, and T. S. Plaskett, 1970,

Phys. Rev. B 2, 3303.
Broude, V. I ., and E. Rashba, 1962, Sov. Phys. —Solid State 3, 1415.
Brouers, F., 1970, J. Non-Cryst. Solids 4, 428.
Hrouers, F., 1971, J. Phys. C 4, 773.
Brouers, F., 1972, Solid State Commun. 10, 757.
Brouers, F., M. Cyrot, and F. Cyrot-Lackmann, 1973a, Phys. Rev. B 7,

4370.
Brouers, F., F. Ducastelle, F. Gautier, and J. Van Der Rest, 1973b

J. Phys. F 3, 2120.
Brouers, F., and J. Van Der Rest, 1972, J. Phys. F 2, 1070.
Brouers, F., and A. V. Vedyayev, 1972, Phys. Rev. B 5, 349.
Hrouers, F., A. V. Vedyayev, and M. Giorgino, 1973c, Phys. Rev. B 7,

380.
Brown, W. F., 1955, J, Chem. Phys. 23, 1514 (reviews much previous

work) ~

Brown, W. F., 1956, Handb. Phys. 17, 104.
Bruggeman, D. A. G., 1935, Ann. Phys. {Leipz.) 24, 636.
Bruno, R., and D. W. Taylor, 1971, Can. J. Phys. 49, 3201.
Brust, D., 1964, Phys. Rev. 134, A1337.



Elliott, Krumhansl, and Leath: Randomly disordered crystals 541

Buchanan, M. , W. J.L. Buyers, R. J.Elliott, R. T. Hayes, A. M. Perry,
and I. D. Saville, 1972, J. Phys. C 5, 2011.

Budiansky, B., 1970, J. Compos. Mater. 4, 286.
Budworth, D. W. , F. E. Hoare, and J. Preston, 1960, Proc. R. Soc.

A 25'7, 250.
Butler, W. H. , 1972, Phys. I ett A 39, 203.
Butler, W. H. , 1973, Phys. Rev. B 8, 4499.
Butler, W. H. , and B. G. Nickel, 1973, Phys. Rev. Lett. 30, 373.
Butler, W. H. , and W. Kohn, 1970, J. Res. Natl. Bur. Stand. (US)

A 74, 443.
Buyers, W. J. L., D. E. Pepper, and R. J. Elliott, 1972, J. Phys. C 5,

2611.
Buyers, W. J. L., D. E. Pepper, and R. J. E lliott, 1973, J. Phys. C 6,

1933.
Buyers, W; J. L., T. M. Holden, E. C. Sversson, R. A. Cowley, M. T.

Hutchings, D. Hukin, and R. W. H. Stevenson, 1971a, Phys. Rev.
Lett. 27, 1442.

Buyers, W. J. L., T. M. Holden, E. C. Svensson, R. A. Cowley, and
M. T. Hutchings, 1971b, J. Phys. C 4, 2139.

Buyers, W. J.L., R. A. Cowley, T. M. Holden, and R. W. H. Stevenson,
1968, J. Appl. Phys. Phys. 39, 1118.

Callaway, J., 1964, J. Math. Phys. 5, 783.
Capek, V., 1971a, Phys. Status Solidi B 43, 61.
Capek, V., 1971b, Czech. J. Phys. B 21, 997.
Capek, V., 1972, Phys. Status Solidi B 52, 399.
Carruthers, P., 1961, Rev. Mod. Phys. 33, 92.
Casher, A. , and J. L. Liebowtiz, 1971,J. Math. Phys. 12, 1701.
Chang, I. F., 1968, Ph. D. dissertation, University of Rhode Island.
Chang, I. F., and S. S. Mitra, 1968, Phys. Rev. 172, 924.
Chang, I. F., and S. S. Mitra, 1971, Adv. Phys. 20, 359.
Chen, Y. S., W. Shockley, and G. L. Pearson, 1966, Phys. Rev. 151,

648.
Clark, J. A. , and P. G. Dawber, 1972, J. Phys. F 2, 930.
Cohen, M. H. and J. Jortner, 1973, Phys. Rev. Lett. 30, 699.
Cohen, M. H. , H. Fritzsche, and S. R. Ovshinsky, 1969, Phys. Rev.

Lett. 22, 1065,
Cohen, S. S., and G. Gilat, 1972, Solid State Commun. 11, 1269.
Coombs, G. J., R. A. Cowley, W. J. L. Buyers, E. C. Svensson, and

T. M. Holden, 1973 (to be published).
Cosand, A. E., and W. G. Spitzer, 1971, J, Appl. Phys. 42, 5241.
Cowley, R. A. , and W. J.L. Buyers, 1968, in neutron Inelastic Scatter-

ing: Proceedings of a Synzposium on Neutron Inelastic Scattering held
by the International Atomic L'nergy Agency in Copenhagen, May ZO—Z5,
1968 (IAEA, Vienna), p. 43.

Cowley, R. A. , and W. J. L. Buyers, 1972, Rev. Mod. Phys. 44, 406.
Cunningham, R. M. , L. D. Muhlestein, W. M. Shaw, and C. W. Tomp-

son, 1970, Phys. Rev. B 2, 4864.
Cyrot, M. , 1972, Phil. Mag. 25, 1031.
Cyrot-Lackmann, F., and F. Ducastelle, 1971, Phys. Rev. Lett. 27,

429.
Cyrot-Lackmann, F., and M. Cyrot, 1972, J. Phys. C 5, L209
Das, M. P., and S. K. Joshi, 1972, Can. J. Phys. 50, 2856.
Davies, R. W. , and J. S. Langer, 1963, Phys. Rev. 131, 163.
Dawber, P. G., and R. J. Elliott, 1963, Proc. R. Soc. Lond, A 273, 222.
Dawber, P. G., and R. E. Turner, 1966, Proc. Phys. Soc. I-ond. 88,

217.
Dean, P., 1959, Proc. Phys. Soc. Lond. 73, 413.
Dean, P., 1960, Proc. R. Soc. Lond. A 254, 507.
Dean, P. 1961, Proc. R. Soc. Lond. A 260,, 263.
Dean. P., 1967, J. Inst. Math. Appl. 3, 98.
Dean. P., 1972, Rev. Mod. Phys. 44, 127.
Dixon, M. , F. E. Hoare, and T. M. Holden, 1968, Proc. R. Soc. Lond.

A 303, 339.
Drain, L. E., 1967, Metall. Rev. 119, 195.
Dubrovskii, O. A. , and Y. V. Konoveev, 1970, Sov. Phys. —Solid

State 12, 321.
Ducastelle, F., 1971, J. :Phys. C 4, L75.
Ducastelle, F., 1972,.J. Phys. F 2, 468.
Ducastelle, F., 1973, in Proceedings of the Conference on Disordered

3faterials, Strasbourg, 1974, to be published in J. Phys. (Paris) .
Dy, K. S., and Shi-Yu Wu, 1971, Phys. Rev. B 3, 1173.
Dyson, F. J., 1953, Phys. Rev. 92, 1331.
Eastman, D. E., and W. F. Krolikowski, 1968, Phys. Rev. Lett. 21,

623.
Economou, E. N. , 1971, Solid State Commun. , 9, 1317.
Fconomou, E. N. , 1972, Phys. Rev. Lett. 28, 1206.
Economou, E. N. , and M. H. Cohen, 1970, Phys. Rev. Lett. 25, 1445.
Economou, E. N. , and M. H. Cohen, 1972, Phys. Rev. B 5, 2931.

Economou, E. N. , and C. Papatrianta6llou, 1972, Solid State Commun.
11, 197.

Economou, E. N. , M. H. Cohen, K. F. Freed, and E. S. Kirkpatrick,
1971, in Amorphous and Liquid Semiconductors, edited by J. Tauc
(Plenum, New York).

Economou, E. N. , S. Kirkpatrick, M. H. Cohen, and T. P. Eggarter,
1970, Phys. Rev. Lett. 25, 520.

Economou, E. N. , D. C. Licciardello, and K. L. Ngai, Bull. Mater. Res.
(to be published).

Edwards, J. T., and D. J. Thouless, 1971, J. Phys. C 4, 453.
Edwards, J. T., and D. J. Thouless, 1972, J. Phys. C 5, 807.
Edwards, S. F., 1958, Phil. Mag. 3, 1020.
Edwards, S. F., 1959, Phil. Mag. 4, 1171.
Edwards, S. F., and R. C. Jones, 1971, J. Phys. C 4, 2109.
Eggelstaff, P. A. , 1967, An Introduction to the Liquid State (Academic,

New York).
Ehrenreich, H. , et al. , 1971, "Fundamentals of Amorphous Semicon-

ductors, " publication NMAB-284 National Academy of Sciences-
National Academy of Engineering, Washington, D.C.

Einstein, A. , 1906, Investzgatiorts on, t1se Theory of Broront'art Motiort
(Dover Reprint, New York, 1956).

Elliott, R. J., and D. W. Taylor 1964, Proc. Phys. Soc. Lond. 83, 189.
Elliott, R. J., and D. W. Taylor, 1967, Proc. R. Soc. Lond. A 296, 161.
Elliott, R. J., and W. Hartmann, 1967, Proc. Phys. Soc. Lond. 91, 187
Elliott, R. J., and D. E. Pepper, 1973, Phys. Rev. B 8, 2374.
Enders, B., P. L. Richards, W. E. Tennant, and E. Catalano, 1973, in

Proceedings of the American Institute of Physics Conference (to be
publiSbed .

Erdos, P., 1965a, Phys. Rev. 138, A1200.
Erdos, P., 1965b, Phys. Rev. 139, A1249.
Essam, J. W. , 1973, in Phase Transitions and Critical Phenomena,

edited by C. Domb and M. S. Green (Academic, New York).
E'alicov, L. M. , and J. C. Kimball, 1969, Phys. Rev. Lett. 22, 997.
Farineau, J., and M. Morland, 1938, J. Phys. Radium 10, 447.
E'eldman, D. W. , M. Ashkin, and J. H. Parker, 1966, Phys. Rev. Lett.

1'7, 1'209.
E'ertel, J. H. , and C. H. Perry, 1969, Phys. Rev. 184, 874.
Fisher, M. E., 1964, in Proceedings of the IBM Scientific Computing

Synzposiu»z on Conzbznatorial Problenzs (IBM, New York).
Flicker, J. K. , and P. L. Leath, 1973, Phys. Rev. B 7, 2296.
Foldy, L. L., 1945, Phys. Rev. 67, 107.
Foo, E-Ni, A. Amar, and M. Austloos, 1971, Phys. Rev. B 4, 3350.
Foo, E-Ni, and D. H. Wu, 1972, Phys. Rev. B 5, 98.
Foo, E-Ni, and H. Amar, 1970, Phys. Rev. Lett. 25, 1748.
Freed, K. F., 1972, Phys. Rev. B 5, 4802.
E'reed, K. F., and M. H. Cohen, 1971, Phys. Rev. B 3, 3400.
Friedman, H. , and W. W. Beeman, 1940, Phys. Rev. 58, 400.
Frisch, H. L, and J. M. Hammersley, 1963, J. Soc. Ind. Appl. Math.

11, 894.
Frisch, H. L., and S. P. Lloyd, 1960, Phys. Rev. 120, 1175.
Frisch, U. , 1968, in Probabilistic Methods zn A pplied Matheinatics,

edited by A. T. Bharuch-Reid (Academic, New York}.
I'ukuyama, H. , and H. Ehrenreich, 1973, Phys. Rev. B 7, 3266.
Gambino, R. J., T. R. McGuire, H. A. Alperin, and S. J. Pickart,

1970, J. Appl. Phys. 41, 933.
Gobsch, G. , and W. Weller, 1973, Phys. Status Solidi B 57, 593.
Goncalves Da Silva, C. E. T., and L. M. Falicov, 1972, J. Phys. C 5,

906.
Goto, T., Y. Kato, and C. I. Yu, 1970, J. Phys. Soc. Jap. 28, 104.
Goto, T., and T. Takahashi, 1968, J. Phys. Soc. Jap. 25, 461.
Gubanov, A. I., 1960, Fiz. Tverd. Tela 2, 502 t Sov. Phys. —Solid State

2, 468 (1961)j.
Gubernatis, J. E., and P. L. Taylor, 1973a, Phys. Lett. A 43, 211.
Gubernatis, J. E., and P. L. Taylor, 1973b, in Anzorphous Magnetism,

edited by H. O. Hooper and A. M. deGraaf (Plenum, New York).
Gubernatis, J. E., and P. L. Taylor, 1973c, J. Phys. C 6, 1889.
GyorA'y, B. L., 1970, Phys. Rev. B 1, 3290.
Halperin, B. I., 1967, Adv. Chem. Phys. 13, 123.
Halpern, V., 1972, J. Phys. C 5, 3322.
Hammersley, J. M. , 1957, Proc. Camb. Philos. Soc. 53, 642.
Handrich, K., 1969, Phys. Status Solidi B 32, K55.
Harada, H. , and S. Narita, 1971, J. Phys. Soc. Jap. 30, 1628.
Harris, A. B., P. L. Leath, B. Nickel, R. J. Elliott, and D. E. Pepper,

1974 J. Phys. C (to be published).
Harris, R., M. Plischke, and M. J. Zuckerrnann, 1973, Phys. Rev. Lett.

31, 160.
Harris, R., and M. J. Zuckermann, 1972, Phys. Rev. B 5, 101.
Hartmann, W. M. , 1968, Phys. Rev. 172, 677.

Rev. Mod. Phys. , Vot. 46, No. 3, July 1974



Elliott, Krumhansi, and Leath: Randomly disordered crystals

Hartmann, W. M. , H. V. Culbert, and R. P. Huebener, 1970, Phys.
Rev. B 1, 1486.

Hasegawa, H. , and K. Kanemori, 1970a, J. Phys. Soc. Jap. 31, 382.
Hasegawa, H. , and K. Kanemori, 1970b, J. Phys. Soc. Jap. 33, 1599,

1607.
Hasegawa, H. , and K. Kanemori, 1972, J. Phys. Soc. Jap. 33, 1.599,

1607.
Hashin, Z. , 1964, Appl. Mech. Rev. 1V, 1.
Haydock, R., and A. Mookerjee (to be published).
Herbert, D., and R.. Jones, 1971, J. Phys. C 4, 1145.
Herman, F., M. Glicksman, and R. H. Parmenter, 1957, Prog.

Semicond. 2, 1.
Hill, R., 1967, J. Mech. Phys. Solids 15, 79.
Hirota, T., 1973, Prog. Theor. Phys. 50, 1240.
Holden, T. M. , W. J. L. Buyers, E. C. Svensson, R. A. Cowley, and

M. T. Hutchings, 1971, J. Phys. C 4, 2127.
Hooper, H. O., and A. M. de Graaf, 1973, editors, A»zor pious

Magnetis»z (Plenum, New York).
Hori, J., 1968, Spectral Properties of Disordered Chains and Lattices

(Pergamon, London) .
Hubbard, J., 1963, Proc. R. Soc. Lond. A 276, 238.
Hubbard, J., 1964a, Proc. R. Soc. Lond. A 277, 237.
Hubbard, J., 1964b, Proc. R. Soc. Lond. A 281, 401.
Hubbard, J., and J. L. Beeby, 1969, J. Phys. C 2, 556.
Izyumov, Y., 1966, Proc. Phys. Soc. Lond. 87, 505.
Joshi, S. K., 1972, Physica (Netherlands) SV, 483.
Kagan, Y. M. , and Y. A. Iosilveski, 1964, Sov. Phys. —JETP 18,

562.
Kagan, Y., and A. P. Zhernov, 1966, Zh. Eksp. Teor. Fiz. 50, 1107.
Kagan, Y., A. P. Zhernov, and H. Pashaev, 1968, in Localized

Excitations in Solids (Plenum, New York).
Kamitakahara, W. A. , and B.N. Brockhouse, 1972, in Proceedings of a

Sy»zposiu»z on Neutron Inelastic Scattering, Grenoble, 197Z (IAEA,
to be published) .

Karlsson, A. V., 1970, Phys. Rev. B 2, 3332.
Keeler, G. J., and D. N. Batchelder, 1972, J. Phys. C 5, 3264.
Keffer, F., 1966, Handbook Phys. 18/2, 1.
Keller, J. B., and F. C. Karal, 1964, J. Math. Phys. 5, 537.
Keller, J. B., and F. C. Karal, 1966, J. Math. Phys. 7, 661.
Kerner, E. H. , 1956, Proc. Phys. Soc. Lond. B 69, 802, 808.
Khor, K. E., and P. V. Smith, 1971, J. Phys. C 4, 2029.
Kikuchi, M. , 1970, J. Phys. Soc. Jap. 29, 296.
Kirkpatrick, S., 1971, Phys. Rev. Lett. 27, 1722.
Kirkpatrick, S., 1973a, Rev. Mod. Phys. 45, 574.
Kirkpatrick, S. 1973b, Solid State Commun. 12, 1279.
Kirkpatrick, S., B. Velicky, and H. Ehrenreich, 1970, Phys. Rev. B 1,

3250.
Klauder, R., 1961, Ann. Phys. (N.Y.) 14, 43.
Knox, R., 1966, Theory of Excitons (Academic, New York).
Kopelman, M. , and H.-K. Hong, 1971, J. Chem. Phys. 55„3491,5380.
Korringa, J., 1958, J. Phys. Chem. Solids 7, 252.
Korringa, J., and R. L. Mills, 1972, Phys. Rev. B 5, 1654.
Koster, G. F., 1954, Phys. Rev. 95, 1436.
Koster, G. F., and J. C. Slater, 1954, Phys. Rev. 95, 1167.
Kramer, B., 1970, Phys. Status Solidi 41, 649.
Kramer, B., 1971, Phys. Status Solidi 47, 501.
Kramer, B., K. Maschke, and P. Thomas, 1971, Phys. Status Solidi

48, 635.
Kroner, E., 1967, J. Mech. Phys. Solids 15, 319.
Krumhansl, J. A. , 1973, in A»zorphous Magnetisnz, edited by H. O.

Hooper and A. M. De Graaf (Plenum, New York), p. 15.
Kubo, R., 1957, J. Phys. Soc. Jap. 12, 570.
Kunz, C., and W. Gudat, 1973, Phys. Status Solidi (to be published).
Lakatos, K., and J. A. Krumhansl, 1969, Phys. Rev. 180, 729.
Landau, L. D., and E. M. Lifshitz, 1960, Electrodyna»zics of Continuous

Medha (Addison-Wesley, Reading), p. 45.
Landauer, R., 1952, J. Appl. Phys. 23, 779.
Landauer, R., 1970, Phil. Mag. 21, 863.
Landauer, R., and J. C. Helland, 1954, J. Chem. Phys. 22, 1655.
Langer, J. S., 1960, Phys. Rev. 120, 714.
Langer, J. S., 1961a, Phys. Rev. 124, 1003.
Langer, J. S., 1961b, J. Math. Phys. 2, 584.
Langer, J. S., and T. Neal, 1966, Phys. Rev. Lett. 16, 984.
Last, B.J., and D. J. Thouless, 1971,Phys. Rev. Lett. 27, 1/19,
Last, B. J., and D. J. Thouless, 1974, J. Phys. C 7, 699.
Lax, M. , 1951, Rev. Mod. Phys. 23, 287.
Lax, M. , 1952, Phys. Rev. 85, 621.
Lax, M. , and J. C. Phillips, 1958, Phys. Rev. 110, 41.

Lax, M. , 1973, American Math. Soc. Colloquium Publication Series,
to be published.

Leath, P. L., 1968, Phys. Rev. 171, 725.
Leath, P. L, 1970, Phys. Rev. B 2, 3078.
Leath, P. L., 1972, Phys. Rev. B 5, 1643.
Leath, P. L., 1973, J. Phys. C 6, 1559.
Leath, P. L., and B. Goodman, 1966, Phys. Rev. 148, 968.
Leath, P. L., and B. Goodman, 1968, Phys. Rev. 175, 963.
Leath, P. L., and B. Goodman, 1969, Phys. Rev. 181, 1062.
Lee, P. M. , and P. E. Lewis, 1969, J. Phys. C 2, 2089.
Lehrnann, G. W. , and R. E. DeWames, 1963, Phys. Rev. 131, 1008.
Levin, K., R. Bass, and K. H. Bennemann, 1972, Phys. Rev. B 5,

1865.
Levin, K., and H. Ehrenreich, 1971, Phys. Rev. B 3, 4172.
Licciardello, D. C., and E. N. Economou, 1973, Solid State Commun.

12, 1275.
Lieb, E. H. , and D. C. Mattis, 1966, Mathe»zatical Physics in One-

Di»zension (Academic, New York).
Lifshitz, I. M. , 1956, Nuovo Cimento Suppl. 3, 716.
Lifshitz, I. M. , 1964a, Usp. Fiz. Nauk 83, 617 [Sov. Phys. —Usp. 7, 549

(F965)&.
Lifshitz, I. M. , 1964b, Adv. Phys. 13, 483.
Lifshitz, I. M. , and G. I. Stepanova, 1956, J. Exp. Theor. Phys. 30,

938, [Sov. Phys. —JETP 3, 653].
Lloyd, P., 1969, J. Phys. C 2, 1717.
Long, D., 1966, Semicond. Semimetals 1, 143.
Lovesey, S. W. , 1968, J. Phys. C 1, 102.
Lovesey, S. W. , and W. Marshall, 1966, Proc. Phys. Soc. Lond. 89,

613.
Lovesey, S. W. , and W. Marshall, 1971, Theory of Theresa/ Neutron

Scattering (Oxford U. P., London).
Lukes, T., 1972, J. Noncryst. Solids 8-10, 470.
Luttinger, J. M. , 1951, Philips Res. Rep. 6, 303.
Lyo, S., 1972, Phys. Rev. Lett. 28, 1192.
Mabuchi, T., A. Yoshikawa, and R. Onaka, 1971, J. Phys. Soc. Jap.

31, 1754.
Mahr, H. , 1961, Phys. Rev. 122, 1464.
Maradudin, A. A. , 1963, in Astrophysics and the Many Body Problem,

edited by K. W. Ford (Benjamin, New York).
Maradudin, A. A. , 1966, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic, New York), Vols. 18—19.
Martin, T. P., 1967, Phys. Rev. 160, 686.
Matsubara, T., 1970, Prog. Theor. Phys. Suppl. 46, 326.
Matasubara, T., and T. Kaneyoshi, 1966, Prog. Theor. Phys. 36, 695,
Matsubara, T., and Y. Toyozawa, 1961, Prog. Theor. Phys. 26, 739.
Matsubara, T., and F. Yonezawa, 1967, Prog. Theor. Phys. 3V, 1346.
Matsuda, H. , 1964, Prog. Theor. Phys. 31, 161.
Matsuda, H. , 1966, Prog. Theor. .Phys. Suppl. 36, 97.
Matsuda, H. , and K. Ishii, 1970, Prog. Theor. Phys. Suppl-. 45, 56.
Messiah, A. , 1962, Quantu»z Mechanics (Wiley, New York).
Miller, A. , and E. Abrahams, 1960, Phys. Rev. 120, 245.
Mills, R., 1974, Analytzcity in Binary Alloys, preprint.
Mitlehner, H. , R. Geick, W. Lehman, R. Weber, G. Dietrich, and H.

Schoenherr, 1971, Solid State Commun. 9, 2059.
Mpller, H. B., and A. R. Mackintosh, 1965, Phys. Rev. Lett. 15, 623.
Moore, E. J., 1967, Phys. Rev. 160, 607.
Mori, H. , I. Oppenheim, and J. Ross, 1962, in StuCies in Statistical

Mechanics, edited by J. De Boer (Interscience, New York).
Mott, N. F., 1967, Adv. Phys. 16, 49.
Mott, N. F., 1968, Phil. Mag. 17, 1259.
Mott, N. F., 1970, Comments Solid State Phys. 2, 183.
Mott, N. F.. 1972, Phil. Mag. 26, 1015.
Mott, N. F., 1973, Phys. Rev. Lett. 31, 466.
Mott, X. F., and E. A. Davis, 1971, Electronic Processes zn Non-

Crystallzne Materials {Clarendon, Oxford) .
Mott, N. F., and H. Jones, 1958, T/zeory of 2VIetals (Oxford U. P.,

London) .
Mozer, B., 1968, in Neutron Inelastic Scattering: Proceedings of a

Sy»zposiu»z on Neutron Inelastzc Scattering held by the International
Atomic Energy Agency in Copenhagen, 3Eay ZO—Z5, 196h' (IAEA,
Vienna), p. 55.

Miiller-Hartmann, E., 1973, Solid State Commun. 12, 1269.
Murata, T., and Y. Nakai, 1967, J. Phys. Soc. Jap. 23, 904.
Muto, T., 1938, Sci. Pap. Inst. Phys. Chem. Res. Tokyo 34, 377.
Nagasawa, N. , N. Nakagawa, and Y. Nakai, 1968, J. Phys. Soc. Jap.

24, 1403.
Nagasawa, N. , T. Kawasawa, N. Miura, and T. Nauba, 1972, J. Phys.

Soc. Jap. 32, 1155.

Rev. Mod. Phys. , Voi. 46, No. 3, July 1974



Elliott, Krumhansl, and Leath: Randomly disordered crystals

Nair, T., and C. T. Walker, 1971, Phys. Rev. B 3, 3446.
Nakai, Y., T. Murata, and K. Nakamura, 1965, J. Phys. Soc. Jap.

18, 1481.
Nakamura, K., 1967, J. Phys. Soc. Jap. 22, 511.
Nakamura, K., and Y. Nakai, 1967, J. Phys. Soc. Jap. 23, 455.
Ng, S. C., and B. N. Brockhouse, 1967, Solid State Commun. 5, 79.
Nickel, B., 1974, J. Phys. C (to be published).
Nickel, B. G., and J. A. Krumhansl, 1971, Phys. Rev. B 4, 4354.
Nicklow, R. M. , P. R. Vijayaraghavan, H. G. Smith, G. Dolling, and

M. K. Wilkinson, 1968, in neutron Inelastic Scattering: Proceedings
of a Symposium on Neutron Inelastic Scattering held by the Inter-
national Atomic Energy Agency in Copenhagen, May ZO—Z5, 1968
(IAEA, Vienna), Vol. 1, p. 47.

Nordheim, L., 1931, Ann. Phys. (Leipz) 9, 607.
Onodera, Y., and Y. Toyozawa, 1968, J. Phys. Soc. Jap. 24, 341.
Papatriantafillou, C. 1973, Phys. Rev. 7, 5386.
Parisot, R., E. Dietz, H. J. Guggenheim, P. Moch, and C. Dugantier,

1971, J. Phys. (Paris) 32, C1-803.
Parkinson, J. D., 1973, J. Phys. C 6, 2337.
Parmenter, R. H. , 1955, Phys. Rev. 97, 587.
Payton III, D. N. , and W. M. Visscher, 1967, Phys. Rev. 154, 802.
Payton III, D. N. , and W. M. Visscher, 1968, Phys, Rev. 175, 1201.
Payton III, D. N. , M. Rich, and W. M. Visscher, 1967, Phys. Rev.

160, 706.
Pepper, D. E., 1972, D. Phil. thesis, Oxford University, England

(unpublished) .
Pepper, D. E., W. J. L. Buyers, and R. J. Elliott, 1972, J. Phys. C 5,

2611.
Pershan, P. S., and W. B.Lacina, 1970, Phys. Rev. B 1, 1765.
Plischke, M. , 1972, Phys. Rev. Lett. 28, 361; in Amorphous 3fagnetism,

edited by H. O. Hooper and A. M. de Graaf (Plenum, New York,
Plischke, M. , and D. Mattis 1971, Phys. Rev. Lett. 27, 42.
Pohl, R., 1968, in I.ocalised Excitations in Solids, edited by R. F.

Wallis (Plenum, New York), p. 434.
Polk, D. E., 1971, J. Non-Cryst. Solids 5, 365.
Lord Rayleigh, 1892, Phil. Mag. Str. 5, 34, 481.
Robinson, G. W;, and H.-K. Hong, 1970, J. Chem. Phys. S2, 825.
Robinson, G. W. , and H.-K. Hong, 1971,J. Chem. Phys. 54, 1369.
Rosenstock, H. B., and R. E. McGill, 1962, J. Math. Phys. 3, 200.
Roth, L. M. , 1973, Phys. Rev. B 7, 4321.
Rowell, J. M. , W. L. McMillan and P. W. Anderson, 1965, Phys. Rev.

Lett. 14, 633.
Rudnick, J. and E. A. Stern, 1973, Phys. Rev. B 7, 5062.
Saitoh, M. , 1971, Prog. Theor. Phys. 45, 746.
Saxon, D. S., and R. A. Hutner, 1949, Philips Res. Rep. 4, 81.
Schmidt, H. , 1957, Phys. Rev. 105, 425.
Schwartz, L. M. , 1973, Phys. Rev. B 7, 4424.
Schwartz, L. and H. Ehrenreich, 1971, Ann. Phys. (N.Y.) 64, 100.
Schwartz, L., and H. Ehrenreich, 1972a, Phys. Rev. B 6, 2923.
Schwartz, L., and H. Ehrenreich, 1972b, Phys. Rev. B 6, 4088.
Schwartz, L., and E. Siggia, 1972, Phys. Rev. B 5, 383.
Schwartz, L., H. Krakauer, and H. Fukuyama, 1973, Phys. Rev. Lett.

30, 746.
Schwartz, L., F. Brouers, A. V. Vedyayev, and H. Ehrenreich, 1971,

P'hys. Rev. B 4, 3338.
Seib, D. H. , and W. E. Spicer, 1970, Phys. Rev. B 2, 1694.
Sen, P. N. , 1973, Phys. Rev. Lett. 30, 553.
Sen, P. N. and M. H. Cohen, 1972, J. Noncryst. Solids 8-10, 147.
Shante, V. K. S., and S. Kirkpatrick, 1971, Adv. Phys. 20, 325.
Sheka, E. F., 1961, Opt. Spektrosk. 10, 684.
Shiba, H. , 1971, Prog. Theor. Phys. 46, 77.
Shiles, E., and D. Hone, 1970, J. Phys. Soc. Jap. 28, 51.
Simpson, A. W. , 1970, Phys. Status Solidi B 40, 207.
Sjolander, A. , 1964, in Phonons and Phonon Interactions, edited by T. A.

Bak (Benjamin, New York) .
Soven, P., 1967, Phys. Rev. 156, 809.
Soven, P., 1969, Phys. Rev. 178, 1136.
Soven, P. 1970, Phys. Rev. B 2, 4715.
Spicer, W. E., 1972, in Optica/ Properties of Solids, edited by F. Abeles

(North-Holland, Amsterdam) .
Stern, E. A. , 1971, Phys. Rev. Lett. 26, 1630.
Stocks, G. M. , R. W. Williams, and J. S. Faulkner, 1971, Phys. Rev.

B 4, 4390.
Stroud, D., and H. Ehrenreich, 1970, Phys. Rev. B 2, 3197.

Svensson, E. C., B. N. Brockhouse, and J. M, Rowe, 1965, Solid State
Commun. 3, 245.

Svensson, E. C., B. N. Brockhouse, and J. M. Rowe, 1967, Phys. Rev.
155, 619.

Svensson, E. C., T. M. Holden, W. J. L. Buyers, and R. A. Cowley,
1969, Solid State Commun. 7, 1693.

Svensson, E. C., and W. A. Kamitakahara, 1971, Can. J. Phys. 49,
2291.

Tahir-Kheli, R. A. , 1972, Phys. Rev. B 6, 2808, 2826.
Takeno, S., 1962a, Prog. Theor. Phys. 28, 33.
Takeno; S., 1962b, Prog. Theor. Phys. Suppl. 23, 94.
Takeno, S., 1962c, Prog. Theor. Phys. 29, 191.
Takeno, S., 1968, Prog. Theor. Phys. 40, 942.
Takeno, S., 1971, J. Phys. C 4, L118, 121, 123.
Takeno, S., and S. Goda, 1971, Prog. Theor. Phys. 45, 331.
Tauc, J., 1972, in Optical Properties of Solids (North-Holland, Aznster-

dam), p. 277.
Taylor, D. W. , 1967, Phys. Rev. 156, 1017.
Taylor, P. L., 1967a, Proc. Phys. Soc. Lond. 88, 753.
Taylor, P. L., 1967b, Proc. Phys. Soc. Lond. 90, 233.
Thomsen, L., 1972, J. Geophys. Res. 77, 315.
Thorpe, M. F., D. Weaire, and R. Alben, 1971, Phys. Rev. B 4, 2508,

3518.
Thorpe, M. F., D. Weaire, and R. Alben, 1973, Phys. Rev. B 7, 3777.
Thouless, D. J., 1970, J. Phys. C 3, 1559.
Thouless, D. J., 1972, J. Phys. C 5, 77.
Thouless, D. J., 1972, J. Noncryst Solids 8-10, 461
Tonegawa, T., 1968, Prog. Theoret. Phys. 40, 1195;41, 1.
Tong, B. Y., 1970, Phys. Rev. A I, 52.
Towers, G. R., 1971,Phonons, edited by M. A. Nusimovia (Flammarion,

Paris).
Towers, G. R., 1973 (unpublished).
Tsukada, M. , 1969, J. Phys. Soc. Jap. 26, 684.
Tsukada, M. , 1972, J. Phys. Soc. Jap. 32, 1475.
Tyablikov, S. V., 1967, 3Iethods zzz the Qzzarztmzzz Theory of Magrzetisrrz

(Plenum, New York) .
Van Hove, L., 1954, Phys. Rev. 9S, 249.
Velicky, B., 1969, Phys. Rev. 184, 614.
Velicky, B., and K. Levin, 1970, Phys. Rev. B 2, 938.
Velicky, B., S. Kirkpatrick, and H. Ehrenreich, 1968, Phys. Rev. 175,

747.
Velicky, B,, S. Kirkpatrick, and H. Ehrenreich. 1970, Phys. Rev. B 1,

3250.
Verboven, E., 1960, Physica 26, 1091.
Verleur, H. W. , and A. S. Barker, 1966, Phys. Rev. 149, 715.
Visscher, W. M. , 1971, Prog. Theor. Phys. 46, 729.
Wakabayashi, N. , R. M. Nicklow, and H. G. Smith, 1971, Phys. Rev.

8 4, 2558.
Walker, L. R., B. C. Chambers, D. Hone, and H. Callen, 1972, Phys.

Rev. B 5, 1144.
Wang, J. C., K. S. Dy, and Shi-Yu Wu, 1973, Phys. Rev. B 7, 750.
Watson, B.P., and P. L. Leath, 1974, Phys. Rev. B 9, (to be published) .
Watson, K. M. , 1956, Phys. Rev. 103, 489.
Watson, K. M. , 1957, Phys. Rev. 10S, 1388.
Weaire, D., 1971, Phys. Rev. Lett. 26, 1541.
Wolfram, T., and J. Callaway, 1963, Phys. Rev. 130, 2207
Woll, G. J., 1965, Phys. Rev. 137, A95.
Woods, A. D. B., and B. M. Powell, 1965, Phys. Rev. Lett. 15, 778.
Yonezawa, F., 1968a, Prog. Theor. Phys. 39, 1076.
Yonezawa, F., 1968b, Prog. Theor. Phys. 40, 734.
Yonezawa, F., and K. Morigaki, 1973, Prog. Theor. Phys. Suppl. 53, 1.
Yonezawa, F., and T. Matsubara, 1966a,b Prog. Theor. Phys. 35, 357

759.
Yonezawa, F., and M. Watabe, 1973, Phys. Rev. B 8, 4540.
Yussouff, M. , and J. Mahanty, 1965, Proc. Phys. Soc. Lond. 85, 1223.
Yussouff, M. , and J. Mahanty, 1966, Proc. Phys. Soc. Lond. 87, 689.
Yussouff, M. , and J. Mahanty, 1967, Proc. Phys. Soc. Lond. (6b) 90,

519.
Zeller, H. R., 1973, Advances in Solid State Physics (Pergamon, New

York), Vol. XIII.
Ziman, J. M. , 1966, Proc. Phys. Soc. Lond. 88, 387.
Ziman, J. M. , 1969, J. Phys. C 2, 1230.
Zubarev, D. N. , 1960, Usp. Fiz. Nauk 71, 71 )Sov. Phys. —Usp. 3, 320

(1960)g.

Rev, Mod. Phys. , Vol. 46, No. 3, July 1974


