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Solutions of the inverse problem of scattering are reviewed. Quantum mechanical, semiclassical,
and classical methods in the high-energy limit are discussed for both the step from the cross section
to the phase shifts or the deflection function and the step from these functions to the potential. The
emphasis is on the practical applicability of such procedures in molecular physics rather than on
the question of existence and uniqueness. The procedures which had been applied to the
determination of spherically symmetric, interatomic potentials by the inversion of actual scattering
data are critically surveyed and illustrated by approprite examples.
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I. INTRODUCTION

The main purpose of elastic scattering experiments is
to determine the forces of interaction between the collid-
ing particles. Molecular. beam experiments have proved
to be the most powerful method for obtaining detailed
information on the interaction potential of molecular
systems, which do not form a stable compound under
ordinary conditions. (See, for example, Pauly and Toen-
nies, 1965; Bernstein and Muckermann, 1967; Toennies,
1973.) However, it is not a simple matter to analyze the
observables, e.g., the differential or the integral cross
section, in order to get quantitative information on the
potentials. The most widely used method is to assume for
the interaction a specific functional form and then to
calculate the scattering phase shifts and the cross section.
In practice potentials are derived by varying the param-
eters inserted in the potential by trial and error so as to
obtain the best At to the measured cross section. Such a

procedure converges very slowly and the number of
iterations increases rapidly with the number of trial
parameters and thus requires a large amount of comput-
ing time. This is especially true for the high resolution
measurements of diAerential and integral cross sections
now available for molecular systems, which require for a
good fit more and more flexible model potentials (Olson
and Mueller, 1967; Buck and Pauly, 1968; Duren et al. ,
1968; Mittmann et al. , 1971; Siska et a/. , 1971; Cantini et
al. , 1972; Gengenbach et al. , 1973).

These difficulties can be avoided if the so-called in-
verse problem of scattering is solved, that is, the con-
struction of the potential directly from the measured
data. A set of phase shifts is obtained from the observed
angular and energy dependence of the cross section, and
then the potential is deduced from these phase shifts.
Any procedure which contains at least the second step,
will be referred to as inversion.

It is quite obvious that the solution of this problem is
of great interest for both intrinsic theoretical studies and
practical purposes. An extensive mathematical theory
dealing with the theoretical aspect of the problem has
been developed. (See, e.g. , Agranovich and Marchenko,
1963; De Alfaro and Regge, 1965; Newton, 1966.) The
questions of the existence and uniqueness of the potential
have been studied in detail. Since in most cases a unique
solution has not been found, the problem of constructing
all equivalent potentials for a given set of phase shifts has
attracted great interest. These theoretical aspects are
surveyed in an excellent and authoritative manner by
Newton (1972) for the inverse problem, where the phase
shifts are known for all energies, and by Sabatier (1972a)
for the problem, where the phase shifts are given for all
angular momenta.

The discussion of the second aspect of the problem, the
practical application of such inverse methods, will be the
main topic of this article. The exact quantum mechanical
procedures have rarely been applied to the practical
problem of finding potentials from actual data sets. Most
of the applications, which can be found in the literature,
are artificially simplified cases or simulated examples
(Bargmann, 1949; Jost and Kohn, 1952; O' Brien and
Bernstein, 1969; Sabatier and Quyen Van Phu, 1971).'
This is even true for the scattering of two nucleons, where
only a few phase shifts have to be determined. For
molecular scattering the situation is more complicated
since generally a large number of phase shifts are neces-
sary to describe the scattering process. Therefore, a

' For an exception see Berm and Scharf (1967).
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FIG. 1. Convergence of
the Hylleraas solution.
Curve a is the "unknown"
potential. Curve b is the
initial trial potential.
Curves e, d, e are repeated
iterations converging to a
potential which is phase
equivalent to the true po-
tential a (O' Brien and
Bernstein, 1969).
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practical solution will largely depend upon the special
features of the particles under study, e.g. , the special form
of the potential or certain approximations for the treat-
ment of the scattering process, which will simplify the,
problem in one or the other way.

Since short wavelength approximations have been
proved to be good approximations in the scattering of
ions, atoms, and molecules, semiclassical or classical
procedures will mainly be considered (Ford and Wheeler,
1959). Therefore the main scope of this article will be a
critical review of inverse procedures with respect to their
possible application in molecular physics and a com-
prehensive survey of the results obtained up until now

, in this field. The question of experimental accessibility
of the input information, the feasibility of the mathe-
matical procedure for numerical applications, and
the stability of the method with respect to random
perturbations, caused by experimental error, will be
considered rather than uniqueness and existence prob-
lems. Procedures which have been applied to practical
cases are treated in more detail than others which have
only been suggested.

It should be pointed out that most of the results
available up until now have been achieved for the elastic
scattering with spherically symmetric potentials. Al-
though some of the procedures can easily be extended to
general cases such as complex potentials (absorption
corresponding to inelastic channels or chemical reactions)
and nonspherical potentials (occurring in molecular scat-
tering), the contents of this article will be restricted to the
spherically symmetric case. All extensions are mentioned,
but not treated extensively. Literature will be covered up
to June 1973 for all cases of molecular physics.

Although quantum mechanical solutions have rarely
been applied to practical problems, they give deep insight
into the mechanism of the inversion. This article starts
therefore with a brief summary of quantum mechanical
results in Section II, where methods for obtaining the
potential from the phase shifts (Sec. II A) and the
phase shifts from the cross section are treated (Sec. II 8).
A description of approximate solutions which are mainly
obtained in the JWK8 approximation (Sec. III A) and
the high-energy approximation of classical mechanics
(Sec. III 8) is then given. These solutions require different
-input information ranging from the phase shifts and the
deflection function to the integral cross section. How this
input information (if it is not the cross section) is

obtained in practical cases is treated in Sec. IV. Finally
Sec. V gives some examples of results which are obtained
by various procedures outlined in Secs. III and IV. The
section concludes with remarks on the requirements of
cross section data for an inversion procedure and with a
comparison of the advantages of such a procedure over a
method of trial and error.

(&) = If(&)l'

where the scattering amplitude f(B) is given by

(2 1)

f(@) = (2ik) '
g& (2l + I)[exp(2ivgl) —1]P&(cos il).

(2.2)

ii is the angle of deflection, l the angular momentum, Pj
the Legendre polynomials, and k the wavenumber corre-
sponding to the collision energy E and the reduced mass
p: k = (2pE)'~'/h. The phase shifts rp may be obtained
from the radial Schrodinger equation

q", + t—(t+ I)r 'q, + W(r)q, -= k'q„(Z.3)
with W(r) = (2p/li') V(r). The wavefunctions satisfy the
boundary conditions

lim r ' 'QI(r)(21+ I)! = 1 and
(2 4)

&,(r) —A&(sin kr —hr/2 + q, ).
Since the phase shifts are a function of the angular
momentum and the energy, the inverse problem provides
solutions for fixed angular momentum (IIA1) and fixed
energy (IIA2). Section II.AB summarizes the results,
where several studies are included, which start with the
scattering amplitude and use an integral equation formal-
ism. The step from the differential cross section to the
phase shifts is discussed in Sec. IIB.

1. The fixed angular momentum problem

Since this subject has been reviewed in an excellent
manner (Newton, 1966, 1972), I shall outline only one
particular way of solving this problem, which shows the
requirements for a unique solution (Cxelfand and Levitan,
1951).The inverse scattering problem is posed by asking
for V(r) in the radial Schrodinger equation under the
assumption that the asymptotic phase shifts, ill(E), of the
regular solution, g&(E, r), are given for all positive E. The
main tool for the solution is the fact that the functions
q(E, r) form a complete set, which can be written symbo-
lically as

dpE yE, rqE, x = 5r —x. (2.5)

II. EXACT SOLUTIONS AND FORMAL METHODS

A. Detelmination of the potential from the phase
shifts

There have been numerous attempts to solve the
inverse problem in the framework of quantum mechan-
ics. The simplest case, the scattering of two spinless
particles, is governed by a spherically symmetric poten-
tial and may be described by the partial wave analysis of
the Schrodinger equation, which gives for the differential
cross section
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p(E) is the spectral function. For E ( 0 the spectrum is
discrete and corresponds to the bound states of the
system. For E ) 0 the spectrum is continuous. Now the
problem is solved if we are able to relate the spectral
function p(E) to the phase shifts oil(E), and to calculate
the potential V(r) from the given spectral function. The
last step is discussed first. For simplicity we shall restrict
ourselves to the case l = 0, starting with a known
solution y, (E, r) of the radial Schrodinger equation for an
arbitrary comparison potential 8& with the spectral func-
tion pl(E). The key to the solution of Gelfand and
Levitan (1951) is the function K(r, x), referred to as the
transformation kernel or generalized translation opera-
tor, which yields the potential

by solving the Fredholm integral equation

II(r; x) = g(rx) +I dy, II(r y)g(y, x). (28)

This equation can be shown to have a unique solution
under very general conditions. By adopting an arbitrary
comparison potential 8j, e.g., 8& = 0, one can calculate
g(r, x) from the known function q( and the spectral
function p(E). The spectral function is obtained by
writing the completeness relation (2.5) explicitly. We
find

2)M1 I" k V (r)q (x)
( )~

V(E )V(E )+
= B(r —x), (2.9)

where the first term is valid for E ) 0 and the second for
E ( 0. The spectral function p(E) is uniquely deter-
mined from a knowledge of the constants X„ofthe bound
state normalization

d y. '. 2.10

and the Jost function f(E) which can be calculated via a
dispersion relation of phase shifts and bound state ener-
gies,

W(r) = 2d/drK(r, r) + W((r). (2.6)

K(r, x) is constructed with the help of an auxiliary
function g(r, x),

g(r, x) = f (dg (g ) —dg(g))g (g, r)g (g «), (& I )

state energies. Hence, for a given set of phase shifts and
bound state energies E., there is a family of associated
potentials with n free parameters called "phase equiva-
lent" potentials, where n is the number of the bound
states. It should be mentioned that for potentials which
satisfy the condition lim„„„e'rV(r)= 0, where l corre-
sponds to the binding energy of the lowest bound state,
the constants N„canbe determined in a unique manner
removing the bound-state arbitrariness (Jost and Kohn,
1952).

In addition to the procedure of Gelfand and Levitan
(1951) there are numerous papers in the literature dealing
with other solutions (see for instance Newton, 1972). But
there are only a few actual examples of potentials which
are obtained by an inversion of real phase shifts. The
procedure of Hylleraas (1948, 1963, 1964) has been used
by O' Brien and Bernstein (1969) to construct potentials
of the Bargmann (1949) class from simulated examples.
The rapid convergence of the procedure is shown in Fig.

1 . Curve b is the initial trial potential, curves c, d, and
e show the results of successive iterations. But the proce-
dure converges to the phase equivalent potential, not to
the potential a, from which the input phase shifts have
been obtained. The procedure of Marchenko (Agrano-
vich and Marchenko, 1963) has been applied by Berm
and Scharf (1967) for the inversion of real scattering
phase shifts of n-o.-particle interactions. Due to the short-
range behavior of the potentials, the ambiguity of the
solution could be avoided. The problem of knowing the
phase shifts from zero to infinity was overcome by an
extrapolation of the experimental phase shifts according
to the behavior of the hard-core phase shifts.

2. , The fixed energy problem

It has taken a long time to solve this problem in a way
which gives definite answers not only to the questions of
existence and uniqueness but also to the explicit con-
struction of the solution. The reason is that an important
tool for the solution of the fixed angular momentum
problem is the completeness of the radial wavefunctions
for one angular momentum and all energies. The wave-
functions for one energy and all angular momenta do not
have such a property. The general solution is based on an
analogy with the Gelfand and Levitan equation intro-
duced by Regge (1959) and applied by Newton (1962) for
the solution of the inverse problem (see the excellent
review of Sabatier, 1972a). In analogy to Eq. (2.7) the
auxiliary function f(r, x) can be written as

~ f(k)~ = exp — ' dk'k (2.1 1) f(r, )= f xdg(l)gt(l, r)g (l, x), (2. iS)

with

and

~(k) = ~(k) + 2 g„arctan(g„/k) (2.12)

2p/h'E„= —g .

The result may be summarized as follows: There exists a
unique solution of the inverse scattering problem with
fixed angular momentum if the completeness relation is
fulfilled; that means that the constants of normalization,
N„,and the Jost function have to be known. The latter
must be calculated from the phase shifts and all bound

where h(l), in contrast to Eq. (2.5), is any piecewise
differentiable function of l including isolated points. The
choice of the potential 8'j [and therefore of g»(l, r)] and
the contour C determine to a large extent the constraints
on the potentials obtained by the inversion procedure
(Sabatier, 1968; Coudray and Coz, 1970). According to
the choice of the expansion of f(r, x), two kinds of
solutions are available in the literature, the Regge —Loeffel
approach (Regge, 1959; Loeffel, 1968) and the Newton-
Sabatier method (Newton, 1962; Sabatier, 1966a; 1966b;
1967a, 1967b; Newton, 1967; Sabatier, 1968).Loeffel was
able to prove that f(r, x) has a unique spectral expansion
and that this expansion can be related to properties of
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dynamical interpolation of the Jost function. Though the
question of uniqueness could be studied extensively by
this method, no constructive method could be given for a
practical application. Furthermore, Viano (1969) showed
that the stability of the interpolation process in the
complex angular momentum plane is highly questionable
if real data with superimposed errors are used. These
perturbations, no matter how small they are, prevent the
use of theorems which guarantee the uniqueness of the
interpolation in the complex plane of angular momen-
tum. Newton (1962) replaced the integration over C by a
summation over integer /. In this case C is reduced to
discrete points on the real axis. This choice has the
advantage that the inverse problem can be solved by an
algebraic equation, but on the other hand the class of
potentials considered is restricted. With Rj ——0 and
therefore q&, (r, 1) = ul(r) (the regular spherical Ricatti-
Bessel functions) one obtains

f(r, x) = g c(u((r)u((x) (2.14)

At = cos 711 %(4l + 2) bI g M&1 bI sin(ri& —oil)

{2.16)

The key to the procedure is the inversion of the matrix
MII . Sabatier (1966a) was able to construct this matrix
explicitly. Unfortunately the solution depends on the
arbitrary parameter n so that the solution of the inverse
problem is not unique and a family of potentials will
correspond to a given set of phase shifts. It is interesting
to note that this method yields a potential approaching
zero like

V(r) —C(n —p)r '~'c so(2r —m/4) + 8(r '+'), (2.17)

where n is an arbitrary parameter and p a phase-
dependent function (Sabatier 1966a). Among these phase
equivalent potentials there is one and only one which
tends to zero faster than r '+'. This is the case f—or the
special choice n = P so that the uniqueness achieved
corresponds to a very special property of the potential.
The other equivalent potentials have an oscillating tail,
damped by a factor r '/'. Furthermore the study of the
analytic properties shows that this class of potentials is
rather restricted (Sabatier, 1966b). The reason for this
behavior is the restriction of the spectral measure h(l) to
integer values of l on the real axis. An extension of the
method allows I to take any real value larger than —1/2,
including the integers. This yields a much larger class of
potentials, which now depend on infinitely many inde-
pendent parameters (Sabatier, 1967a).

This section then shows that the inversion problem at

The coef5cients cl can be obtained from the phase shifts
by solving the equation

tan vp = g M«a&(1 + tan vptan g, ), (2.15)
I

where M~~ ——[(l'+ )' —(l + )'] ' for odd l' —l and
zero for even /' —I, and by substituting a, in the formula

bI = a~/cos vp

to obtain

a fixed energy yields in general infinitely many equivalent
solutions. The diA'erent methods establish different re-
strictions on selecting special classes of potentials for
which detailed information can be obtained. Sabatier
(1971, 1972a, 1972b) tried to give a complete solution to
this problem by characterizing the classes of equivalent
potentials by simple properties of the potential itself and
giving appraisals for the deviations of the phase equiva-
lent potentials from each other. The main tool used here
has been the representation of f(r, x) by a Fourier
integral. The solutions which have been found belong to
a very large class of potentials which include, for instance,
potentials whose second derivative does not diverge more
rapidly than r ' at the origin and goes faster to infinity
than r ' as r becomes infinite. Sabatier was able to
characterize the deviations of the potentials from each
other in terms of the Fourier spectrum. The Newton-
Sabatier method for a specified n [see Eq. (2.17)] is one
such example which shows a truncated Fourier spectrum
from 0 to It:, whereas the equivalent potentials of the class
mentioned above have a spectrum ranging from 0 to ~
(Sabatier and Quyen Van Phu, 1971).The deviations of
these spectra from each other become smaller for smaller
bounds to the derivative of the potential and larger
energies. Thus the ambiguity disappears if all phase shifts
are smaller than ~/2, a condition which is fulfilled for
high energies. Since the method is suited for a numerical
study (it involves no analytic continuation and complex
interpolation techniques), Sabatier and Quyen Van Phu
(19Z1) performed calculations for checking the depend-
ence of the phase equivalent potentials on several input
parameters. Figure 2 shows the results. A set of 28
phase shifts was generated by solving the Schro-
dinger equation for a Gaussian shaped potential V =
—u exp( —br'). This set of phase shifts was now inverted
by the formulas given above with the a specification
mentioned. The solid line is the input potential. The
various dotted lines correspond to different energies. As
expected, the input potential and the resulting "equiva-
lent potentials" approach each other with increasing
energy.

8. Discussion

We have seen that, within a certain large class of
potentials, a single phase shift as a function of E deter-

~ 8

~e,
I )

O—0—0—~
4. 6 8

FK". 2. Phase equivalent potentials of the Newton —Sabatier solution.
The energy is measured in MeV, the internuclear separation in Fermi.
The solid line represents the potential to which the solution should
converge. The results of the inversion procedure at different energies are
indicated by different symbols, V 10 MeV, ~ 50 MeV, 0 150 MeV, and
0 1200 MeV (Sabatier and Quyen Van Phu, 1971).
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mines an n-parameter family of potentials where n is the
number of bound states. The conditions and class of
potentials are very well established, depending at most on
the properties of the bound state wavef unction. Similar
results hold for the problem where the phase shift is given
as a function of the angular momentum. Depending on
the choice of the interpolation, we get either a unique, a
one-parameter, or an infinite parameter solution to the
problem. All these methods are quite formal, since they
provide detailed studies on the existence and uniqueness,
but answers have not been given to the following ques-
tions: how does the lack of completeness in data infiu-
ence the solution and does a solution exist for a set of
phase shifts given as a function of / and E7

The practical applicability of these quantum mechani-
cal procedures is, in general, difFicult for molecular scat-
tering processes, though possible in principle. First there
is the problem of getting the complete input information.
This is especially true for the procedure of Sec. IIIA1,
where the phase shifts at one l have to be known for all
energies. (For an exception see Sec. IVC.) Then a com-
plicated integral equation of the Fredholm type has to be
solved. The ambiguity of the equivalent potentials can
only be removed by detailed information on the bound
states in the fixed angular momentum problem. For the
fixed energy problem all procedures requiring complex
interpolation or analytic continuation from the physical
region are unstable with respect to the perturbations
generated by the noise of the experimental data. Arbi-
trarily small errors in the data can induce arbitrarily large
errors in the solution. Therefore only the Newton —Saba-
tier method appears to be applicable from the numerical
point of view. In order to achieve a unique solution, the
phase shifts have to be restricted to small values.

Extensions of the above methods to noncentral or
optical interaction potentials are available. Generaliza-
tions of the Gelfand and Levitan procedure to the
scattering of spin —,'particles with tensor forces and
spin —orbit coupling were given by Newton (1955), New-
ton and Jost (1955), Fulton and Newton (1956), and
Newton and Fulton (1957). Many-channel scattering for
Bargmann potentials was treated by Cox (1962). Gener-
alizations of the Newton —Sabatier method were done for
Coulomb and complex potentials (Coudray and Coz,
1970) and for spin —orbit potentials (Sabatier, 1968; Cou-
dray and Coz, 1970). These studies are either developed
for the scattering of two nucleons or are still in a
"formal" state so that a direct application to molecular
physics is not obvious. A special attempt in this direction
was made by Gerber (1973). For a particular class of
nonspherical potentials (whose Fourier transform is a
product of two functions depending only on the magni-
tude and the direction of the transform-space vector k)
an iterative inversion procedure was established (Prosser,
1969) which converges in a unique way if the Born series
converges for the k chosen. The input data required are
the backward scattering amplitudes for all directions of
the incident momentum at fixed energy and the value of
the spherically averaged potential.

B. Determination of the phase shifts from the cross
section

It is well known that the problem of determining the
phase shifts from the cross section is equivalent to the

2 sin'gl ——k
p

G 0 sin q P& cos sin Bd . 2.19

Once the complex values of the scattering amplitude are
known, the phase shifts are known too. Therefore the
problem is reduced to the problem of finding the complex-
values f(6) from the cross section. One approach to this
problem is to have a special experimental arrangement
with three interacting beams (Hanbury Brown and Twiss,
1956; Goldberger et al. , 1963). The most general proce-
dure used here is to apply the generalized unitarity
theorem which follows from the conservation of Aux

4m 1m f(p k) = 4 f dQ f'(q, p)f(qk), (2,20)

where k denotes the initial and p the final state of relative
momentum. The integration is over all directions of q,
where k = ~k~ =

~p~
=

~q~ is valid. For central poten-
tials we have f(p, k) = f(k, cos 21) = f(6)„8being the
angle between p and k. Substituting (2.18) in (2.20) we
obtain, suppressing the explicit k dependence of G and y,

4~G(P)m~ W(P) = k f dG. G(()G(x)~»(W(&) —w(x))

k
p

d
p

d sin G G X cos

(2.21)

where f is the angle between k and q and x the angle
between p and q. The azimuthal angles of the vectors p
and q are denoted p and $, respectively. Then X is related
to 6 and f by cos X = cos g cos 21 + sin f sin 21 cos(@—$). If the cross section, and therefore G(6), is known
as a function of the scattering angle )k) for a fixed k value,
Eq. (2.21) constitutes a nonlinear integral equation for
the phase function q)(8). Now it is necessary to show that
this equation has a unique solution besides the two trivial
ambiguities that if g&(21) is a solution then so are 2nmy(6)
and qr —(p(8). The latter can be traced back to Eq. (2.20)
which is satisfied by f(21) and f*(6 ). Three d—ifferent
approaches have been made for solving this problem
(Newton, 1968; Martin, 1969; Gerber and Karplus,
1970). Let us define the quantity

R(P) = 4vrk ' f dG, G(t)G(x)G(P) '. (2.22)

Then a sufficient condition for the existence of a solution
for Eq. (2.21) is that there exists a constant M so that

R(21) &M(1 (2.23)

holds. From this 2M(1 —M') 'f' ( 1 can be derived. If
R(21 ) ( 2 'f' is valid, then the solution is unique and can
be obtained by iteration (Newton, 1968). Martin (1969)
showed that the solution is unique for R(6) ( 0.79. It is
not known whether the gap between 0.79 and 1 is real or

problem of finding the scattering amplitude for all angles
from the measured difterential cross section (which is the
square modulus of the scattering amplitude). The scatter-
ing amplitude can like any complex number, be written
as a product of the modulus and the phase

f(&) = If(&)le'"" = G(&)e'"" (2.18)

Hence, the phase shifts are given in terms of G(21) and
v(&) by
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374 U. Buck: Inversion ot molecular scattering data

only a technical difficulty. Gerber and Karplus (1970) A. Semiclassical methods
proved the existence and uniqueness under the stronger
conditions ~(p) ( ~ and J 2M[1 + ~(I M2) )t2] f. The angular momenum dependence( 1. Then the sequence of iteration Starting with the expression of the JWKB phase shift,

4» sin t«(0) = k f dB, G((')G(»)G(8) '

~- [~- u)-~--(X)], ("4)
with (po(8) = 0

converges to a unique solution of Eq. (2.21). The error
pertaining to the Nth iterant is baunded by

~sin (I)(8) —sin (i))((6)~ ( ltvfJ~(1 —J) '. (2.25)

Gerber and Karplus (1970) formulated a modified itera-
tion scheme where the phase (I)()Il ) is approximated by an
alternating sequence of upper and lower bounds.

To state the result in another way, the condition (2.23)
means that the cross section must be small and smooth.
It is easy to generalize all formulas to many channel
problems since the optical theorem, which is the basis of
this procedure, is not restricted to spherically symmetric
one-channel problems. Gerber and Karplus (1970) intro-
duced several approximations [small phases, cos q(8)= 0], which may be important in malecular physics.

III. APPROXIMATE SOLUTIONS FOR THE
POTENTIAL

In the last section we have seen that the quantum
mechanical inversion procedures, though rigorous in con-
cept, are very dificult to handle from the practical point
of view. Therefore it is much more promising to turn to
approximate solutions. Especially semiclassical and
classical methods in the high-energy limit have proven to
be very successful in describing atamic and molecular
collision processes. These approximations are valid when
the wavelength associated with the relative motion of the
two particles remains small compared to a characteristic
potential distance over which the potential varies ap-
preciably.

In Sec. IIIA all procedures are summarized which make
use of the JWKB approximation for the phase shifts with
no restrictions on the potential. Using the semiclassical
relationship 2dri/dl = O(l) which combines the phase
shifts with the classical deflection function, one obtains
solutions for the classical inversion schemes. The needed
input information are the phase shift or the deflection
function. Sec. IIIB contains all methods valid within the
framework of the eikonal or high-energy approximation
which are mainly deduced for repulsive potentials.
In these cases solutions are often available which
start directly from the measured cross section. The com-
mon tool for all these inversion procedures is the Abelian
integral equation

»(») = f, dvf(v)(» —«) "'

which can be solved uniquely with the result

V(r) p2 y I/2

il(E, A.) = k )( dry 1—
2~2

~

dr] 1—kr)
where )(. = l + —,', k' = 2iJF/P, r, the classical turn-
ing point, and using the transformation (Sabatier, 1965;
Vollmer and Kruger, 1968; Vollmer, 1969)

(3 3)

s' = r'(1 —V(r)/E),
and A/k = b one obtains

ri(E, b) = ds(s —b )
dp l 1

dsf S

(3.4)

(3.5)

as 1ong as this transformation may be uniquely reversed
ta r(s) (the condition for this behaviar will be given later)
Integrating by parts gives

I(s, E) = In[r(s)/s] (3.7)
which occurs instead of the potential and which of course
is energy-dependent. Equation (3.6) has the form of an
Abelian integral equation, which can be solved as fol-
lows. Let us multiply Eq. (3.6) with 2b(b' —t') '~' and
integrate over db from t to infinity. After exchanging the
two integrals we have

~E, bb
k(b' —t')"'

= —m dsI s, E s.

2b
"[(b — )("- b)]

(3 8)

Now we differentiate Eq. (3.8) with respect to s and with
t = s it yields by use of partial integration and g((x)) = 0

I(sE) = —" db "( ' )
mJ, db k(b' —s')'~' (3.9)

Now it is easy to calculate V(r). First I(s, E) is deter-
mined by Eq. (8.9) and then, inverting (8.7) and (8.4),
one gets

r(s) = s exp[I(s, E)] (3.10)

»(E, b) = —k fl»[r(s,)/s))s(»' —b') "'ds, (3.6)

where lim„„rV(r)= 0 is used. Now the phase function
is of the simple form of a Born integral. It is linear in
the expression

(3 2) all(1

V(r) = E'(1 —s'/r') = E(1 —exp[—2I(s, E)]).
With the semiclassical relationship 2(drl/db) = kO(b)

1 I' dg d~"'==& "( — )"'
where g(0) = 0 and f(0) = 0 is assumed and g(x) is a
known differentiable function.
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U. Buck: Inversion of molecular scattering data 375

one obtains at. once

I(s, s) = vr 'f dbe(b, s)(b2 —s') '~', (3.11)

which is just the classical result (Firsov, 1953; Miller,
1969).' Now let us discuss the conditions under which
this inversion procedure works.

(a) The energy has to be larger than or equal to the
potential V(rp) = E, otherwise s(r) would be a complex
function. That means that the potential can only be
determined up to the classical turning point rp. If O™(b)is
not known over the whole range of impact parameters
from 0 to ~ then it is possible to perform the proce-
dure up to a certain value of r, as can be seen from
the type of integration. For the integration to infinity
O(b) has to be extrapolated. This can often be done, due
to the known long-range forces (see Sec. IV).

(b) In order to determine the potential in a unique
manner Eq. (3.6) must have a unique solution; this means
s(r) must be a monotonic function, otherwise the inverse
function would not exist. This condition gives

With 2V(r) + rdV/dr = 2E, we have E ) E, . It can be
shown (Vollmer, 1969; Miller, 1969) that E, is the energy
at which orbiting occurs.

(c) The phase shifts have to be interpolated from
discrete values of l so as to give a continuous function of
b. Sabatier (1972a, b) in particular points out that the
existence of infinitely many interpolations shows that the
apparent uniqueness of such a procedure does not exist.
Since this interpolation is known to be very critical in
determining a unique potential, he has some doubts
concerning these procedures. On the other hand, if the
WKB approximation is valid, a smooth and continuous
fit of the phase shifts should give the right results. For
potentials with real values the WKB procedure should
give an answer very near to the truth. For optical
potentials the problem of interpolation is a severe objec-
tion (Sabatier, 1972a).

The integration of Eq. (3.9) can be performed numeri-
cally, but for a large number of functions the integration
can be done explicitely. Vollmer (1969) gives a list of
these functions. Special solutions are available for Gaus-
sian shaped exponentials and negative power forms,
Since I(s, E) is linear, it can be constructed from a sum
of single terms with great variety. Higher-order correc-
tion terms of the WKB phase shifts (Rosen and Yennie,
1964; Sabatier, 1965) can be treated in the same way as
the usual WKB solution (Vollmer, 1969) so that I(s, E)
can be obtained by. successive approximation steps.

Fro. 3. Potential curve for atomic interactions.

with m = (2t(t/h')'~' and rp and r) the zeros of the inte-
grands. In order fo apply the theory of Abelian integral
equations we split the effective potential U = V(r)
+ V(mr), which usually shows an attractive minimum
in molecular physics [see Fig. 3], into two branches:

r = r)(U) rp & r &

r = r2(U) r & r & (x),
(3.14)

dE ot —E E —y ''= m., (3.16)

one arrives at

2 I dtl dE
v,

———r, (n) + r, (0) + k
—p(0) + I.

')rmJp dE n —E
(3.17)

The integral I can now be calculated with the abbrevia-
tion R(y) = r)(y) —r2(y) as

where r)(U) and r)(U) are the corresponding inverse
function. Here it is assumed that two branches are
sufficient, which is fulfilled if either / = 0 or f ) l.„,with
21.'„=m max[r'V'(r)]. Then differentiating Eq. (3.13)
with respect to E and introducing the quantities y= U(r) and z = Z(p) = V(mp)

' as new variables of
integration we have'

dtl m f' r', (y) /'
'

r)(y) —r,'(y)
(E-y)"' ~ (E-y)"'d, , (3.15)

s (E —z)'~'

Because of the transformation (3.14), the inverse func-
tions r)(y) and r&(y) exist. Now multiplying (3.15) by
(n —E) '~', integrating over dE from 0 to n, changing the
order of integration, and using

2. The energy dependence

The WKB phase shift can be written as follows:

q(E, X) = m(f dr[S —V —V(mr) ']'~'

I=a ' dyR'y dE n —E E —y

= z(—e) —s(o) + v-' f dys'(y)

X, dE ~ —E E —y -I/'.

(3.18)

To solve the remaining integral we change the order of
integration and find the result, keeping in mind that the

& & form of this integral suitable for numerical application has been 3 The () denotes the derivative with respect to the variable in parenthe-
given by Buck I,'1971) and Klingbeil (1972a). ses.
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FM. 4. The area
of integration of
the double integral
of Eqs. (8.18) and
(8.19).

areas of integration must be the same [see Fig. 4]

I = R( e) ——R(0) +—,/, dy
1 (

' dE ' R'(y)
N —E EE——y

(3.19)

dpi m t"" 2hdr.
dg 2 J „2m2(E U) [/2

2)(.dr

r'm'(E —Z )'/' (3.25)

One obtains in this case the same results as before, the
only diA'erence being that now

(c) 21(E) has to be known in the limit E ~ 0. Sujtabie
guesses can be obtained from a knowledge of the attrac-
tive part for E ( 0 which has to be known in any case
for such an inversion. A restriction of the data to large E
leads to a restricted range of the potential.

Some new inversion formulas can be found by differ-
entiating Eq. (3.13) with respect to A and applying the
same procedure

The second integral can be expressed by the number of
bound states which are given by

dr/dP = g'(y) = r-'

(n + ,—')n = m f dr[E„—U(r)]"'
is valid. That means that instead of r(U) we have

(3 2()) g(y) = r ' (U) with the complete result

(See, for example, Mason and Monchick, 1967.) One
obtains for the integral I

I = R(—s) —R(0) + — d, /, . (3.21)

Since we have R(—e) = r](—e) —r2(—e) = 0, R(0)= r[(0) —r2{0), and r2(0) = ](3(0), insertion of Eq. (3.21)
in Eq. (8.17) yields, by setting E( = U,

2 1 |" drl dE 2"(U) =;=J. dE(U E)
+-

f 'dn dE
(3.22)

The value of the potential is obtained by

V(r) = U(r) V(mr—)-' (3.23)

A more convenient form is obtained by changing the
integration variables in both integrals (Miller, 1969;
Feltgen et al. , 1973):

;(U) = -2(nm)- f;;'dn[U '—
E, (n)]

"'

—2/m f" dn[U —E(n)] ' ' + (2/k), (3.24)

where E(q) is the inverse function of the energy depend-
ence of the phase shifts and E(n) is the inverse function
of the WKB bound state eigenvalue function. The poten-
tial for U ) 0 is given by this expression if the phase
shifts are known as a function of E for I = const. In
addition some knowledge of the attractive part of the
potential which can be expressed by the bound states of
the system is necessary [see integral I, Eq. (8.18)], just
as in the quantum mechanical case. The following re-
strictions have to be imposed on Eq. (8.24):

(a) The value of l must be such that the effective
potential U(r) does not possess a local maximum.

(b) rt{E) has to be known as a smooth and differentia-
ble function.

1 l(: 2 m I' d21 dE
X 2)(.J, dh. (U —E)'/'

m I' 'dn dE
d)(. (U —E)'/'

If 2d31/d)(. = 0()(.) is used, {3.26) is simplified to

(3.26)

B. High energy methods

In the previous section we have seen that the input
information for solutions in the semiclassical limit of the
inverse problem are the phase shift curve or the deflec-
tion function, both of which cannot usually be deter-
mined in a straightforward manner from the cross sec-
tion. The high-energy approximation (Cilauber, 1959),
which is equivalent to the eikonal approximation for
straight paths or the first-order momentum approxima-
tion (Lehmann and Leibfried, 1962; Smith et al. , 1966),
provides solutions which often start directly from the
measured cross section, especially for purely repulsive
potentials. This introduces no significant restriction on
the application of these methods since the approximation
is only valid for

~ V(r)~ && E and thus the influence of an

1 l(: m f 8(A.) dE
r X 2)].gr Jo (U E)'/'

m I dn dE
( )

This expression has been derived by Miller (1971). It is
Hoyt's (1939) result if we restrict the potential to a
monotonic behavior so that the second term can be
neglected. In general, the deflection function for a fixed A.

is required as a function of E and the bound state
eigenvalue function n(E, )[.) has to be known. The restric-
tions which must be imposed on this equation are the
same as discussed above. For purely repulsive potentials
with the backward scattering cross section, (r(m, E), Eq.
(3.27) gives (Miller, 1971)

r(U) = 2n/f dE[n(n, E)E(U —E) 'r']. (3.28)
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U. Buck: Inversion of molecular scattering data 377

attractive well is, in any case, very small. The importance
of this approximation for atomic scattering processes lies
in the presentation and analysis of experimental data
which was reported for the first time by F. T. Smith et al.
(1966).

1. Starting from the differential cross section

Following Smith et al (1.966), an expansion in E ' is-
made of the classical defiection function

O(E, b) = rr —2b f dr[1 —V(r)/E —b'r '] r~'r ',

(3.29)

where b is the impact parameter, V(r) the potential, E the
kinetic energy, and ro the zero of the argument in the
square root. The first-order approximation to this func-
tion is

versus ~ = EO for several energies E. All curves should
be asymptotic to po(r) at small v. Figure 5 shows this
behavior. It is quite clear that this procedure combines all
data from a wide range of energies into a single curve, a
fact which is especially important if the data at one
energy is incomplete. A similar expansion at small b for
backward scattering processes is also available (F. T.
Smith et al., 1966).

ss(bk) = —
, 2k

———„,f drrV(r)(r' —b') " (3.36)

This equation may be inverted (Miller, 1969) to give

2. Starting from the integrai cross section

The phase shift is given in the high-energy approxima-
tion by

8(E, b)E = b fdr(r, '——b') r*dV//ch + E ' V(r) = 2h'/(rr2p—) f dbst'(b)(b' —r') (3.37)

This expression led F. T. Smith er al. (1966) to introduce
a new variable

b(a-, E) = bp(r) + E 'b)(r) +

and the reduced cross section

(3.32)

p(r, E) = 0 sin 8(r()I)', E) = 0.5r~ldb'jdrI

=po(r)+E p ())'r'' = po(2)+&'r p(r)+ '''.
Thus the expansion is valid either for high energies at a
fixed angle of scattering or at small angles for any energy
(F. T. Smith, 1969; F. T. Smith et a/. , 1966). Equation
(3.30) is an Abelian integral equation which can be
directly inverted to obtain the potential

v(E, b) = r, (b) + E '7, (b) +, (3.31)

where the first term r, (b) = 8(E, b)E is only dependent
on the impact parameter b. Such an expansion also exists
for the impact parameter b,

Now the reduced phase shifts, o3(b), are related to the
cross section by a Fourier sine transformation,

b'(rc) = s ' fdkk , 'g(k)sio(ss/k) —= g(sc)

which, by changing the integration variables in Eq. (3.37),
leads to

(3.38)

g(E) = J„,dc(E, b)/dbdb = b!rr (3.40)

where 0, is the limiting scattering angle defined by an
aperture and b, is the corresponding impact parameter.
From Eq. (3.30) one obtains, by use of Eq. (3.40),

V(r) = 2h /(s2p) f drs[g('st) —r ]
'r . (3.39)

The upper limit of the above integral is the zero of the
radicand. For another method of this kind see Henry et
al. (1974). A similar procedure for incomplete integral
cross sections has been proposed by Sigmund and Lille-
mark (1973).The incomplete cross section is given by

V(r) = 2c 'f (b' —r') 'r'r, (b)db

ro(b) is easily obtained by integrating Eq. (3.33)

(3.34)
dr i

r' ——
i

. (3.41)J (g/o)s/2 Ck ( "/7 )
This is an Abelian integral equation which gives the
result

bl(r) = 2 f p.(r')/s'ds';

The quantity po(2.) can be obtained from a plot of p(E, r)'dV/dr = —24, (cr) ' f dE(1 —rrr'/g) 'r', (3.42)

where E (r) is a limiting energy defined by Q(E ) = mr'.
Further integration yields

Pro. 5. Schematic
reduced cross sec-
tion p(E, 2)
8 sin 8a(F, 8) as
a function of the
reduced angle ~ =
E 8 (F. T. Smith,
1969). pb(2. ) is the
first member of an
expansion in E-'
which is only a
function of ~.

V(r) = 2b, sr '
J dE cosh '(s/g/rrr'). (3.43)

The main problem in the evaluation of Eq. (3.43) is the
finite energy range covered by any given experimental set
of data. The upper limit determines only the range of the
potential whereas the lower limit inAuences the resulting
potential. This is shown in Fig. 6 for the data of K+ —Ar
(Amdur et al. , 1972) where two different guesses are used
for the lack of data between EI ——150 eV and zero.

(a) Q(E) continues down to E = 0 with that function-
al form which is valid near E&.
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1000—

C:

~ 100

Fia. 6. The influence of difer-
ent extrapolations on the poten-
tial curve dbtained from the in-
version of incomplete integral
cross-section data (Sigmund and
Lillemark, 1974). Dashed line:
V0 based on experimental data.
Dashed-dotted lines: VI is the
contribution of the extrapolated
part of the cross section for two
diferent extrapolations (a) and
(b). Solid lines: The resulting
potential V = Vp + Vy. The
curves correspond to real data
for K+ —Ar.

The structure of these methods shows that they are
applicable whenever some information on phase integrals
can be deduced from experiments. Besides the phase
shifts of scattering processes and the bound states eigen-
values there are other possibilities for the occurance of
such phase integrals. For instance certain processes iri
molecular physics which involve electronic transitions
can be treated as a product of a slowly varying factor and
a Franck —Condon factor. This Franck —Condon factor is
intimately related to phase integrals containing informa-
tion on the initial and final potential curves. Thus Child
(1970) was able to utilize the energy dependence of such
Franck —Condon factors obtained from predissociation
data to get some information on the potential curves
involved.

10
2Q 2.5

r [Aj IV. PRACTICAL METHODS

(b) Q(E) = const .
The dashed line represents the potential Vo derived from
the data without extrapolation. The dashed dotted lines
are the contributions of the extrapolation Vl for the two
guesses. V = Vo+ Vj are the final results (solid lines).
The difference between these curves should be a measure
of the error. It should be pointed out that there is a wide
region where Vl is actually greater then Vo. In order to get
reliable results, therefore, the energy range covered by
experimental data should extend over at least an order of
magnitude.

C. Historical remarks

All the solutions discussed are closely related to the
Rydberg —Klein —Rees method for obtaining V(r) from
diatomic molecular rotation-vibration spectra (see, e.g,
Mason and Monchick, 1967). Klein himself suggested
such a procedure for scattering states to Hoyt, who gave
the first description of Eq. (3.27) in 1939. Equation (3.11)
was first described by Firsov in 1953. Both authors
assumed monotonic potentials and used classical me-
chanics. Independently Keller, Kay, and Shmoys (1956)
got the same results as Firsov. An important step forward
was obtained by the impact expansions of F. T. Smith et
al. (1966) when a set of reduced variables which are easily
obtained from experiment were related to the known
inversion schemes. In 1955 Wheeler suggested that the
problem could also be solved for nonmonotonic poten-
tials in the WKB approximation. The first results of these
problems were published, along with other results, by
Sabatier (1965) and then very extensively by Vollmer
(1969) and Miller (1969). They studied the conditions
under which all these problems could be solved and
made several practical suggestions for applying such a
procedure for molecular physics. Equation (8.24) and a
similar formula were given by Miller (1969, 1971). The
procedure he uses is analogous to a method of inversion
of term formulas of vibrational and rotational spectra
(Miller, 1971; Vollmer and Fliigge, 1971). At the same
time the first nonmonotonic potential obtained by inver-
sion of molecular beam scattering data was published
(Buck and Pauly, 1969).An extension of the semiclassical
method to optical potentials by use of a perturbation
formalism has been done by Roberts and Ross (1970).

Most of the procedures given in the preceding section
need as input information the energy or angular momen-
tum dependence of the phase shifts or deflection func-
tion. Thus w'e are left with the problem of finding these
quantities from experimental data. The rigorous ap-
proach to this problem given in Sec. IIB has not yet been
applied to practical problems. But often much more of
the general form of the potential or the phase shifts is
known than the fact that these quantities exist. When this
knowledge is taken into account, this step of the inver-
sion problem can be solved by simpler methods. For the
scattering of two atoms or one atom and an ion the
essential features of the potential are assumed to be
known. It consists of a short-range repulsive and a long-
range attractive part forming a minimum in between.
This leads to a special form for the phase shifts or the
deflection function regarded as a function of angular
momentum l. This fact can be used for a parameteriza-
tion of the phase shift or the S matrix. In addition, the
form and the linear dimensions of the potential give rise
to special characteristics of the cross sections which are
suitably described by semiclassical methods. According
to Ford and%Reeler (1959), the differential cross section
can be written as (F. T. Smith, 1969)

~(E &) = I& f (E &)I' (4.1)

with

fk(E, @) = o~"(E,B)exp[i(h 'Ap(E, 6) + y, )] (4.2)

ok = (bl/sin 6)Idbk/d@I; Akh ' = 2rrk —ikey, (4.3)

a& is the classical cross section, Ai, the action integral, and
y~ some phase constant. The sum has to be taken over all
points of stationary phase. If there is only one point, one
gets the classical result. If there are two or more points of
stationary phase, the cross section shows a characteristic
oscillatory behavior. The maxima and minima of the
oscillations will be located at the extrerna of (assuming
V' —Va = o)

cos[(A; —A, )h '] = cos(2vrN) = cos n. (4.4)

Therefore the spacings of the oscillations are roughly a
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measure of a sum or difference of impact parameters

2 ~X/~e = I; —l. = k(b, —b,) . (4.5)

The amplitudes are a measure of the derivatives of the
deflectio function. For many problems one needs only
a small number of terms, f&, in order to express the cross
section in a correct manner. Each component f~ may
correspond to a diA'erent classical trajectory arising from
the same (rainbow scattering, symmetry oscillation) or a
different potential (oscillation due to exchange). In
practice three methods have been used to obtain O(b)
or q(b) from experimental data.

(a) Deriving the unknown coeKeients of a parameter-
ized phase shift or 5 matrix through a minimisation
procedure on measured and calculated data; the exact
formulas are used for the calculation of the cross section
(Sec. IVA1).

(b) Comparing the semiclassical features of the cross
section with calculated values obtained via the parame-
terization of the deflection function (Sec. IVA2).

(c) Directly determining certain parts of O(b) or i1(E)
by using semiclassical cross sections (Sec. IVA3, IVC,
and IVE).
Parametric and direct methods are applied for the difl'er-
ential cross section (IVA). The possibilities of an inver-
sion procedure for the integral cross section (IVB) and
exchange cross section (IVD) are then discussed. Finally
identical particle scattering (IVC) and potential crossing
(IVE) are presented. In these cases direct methods have
predominately been applied.

A. Differential cross section
In general, the interaction potential shows an ex-

tremum as does the phase shift curve and the deflectio
function. Therefore there are three contributions to the
scattering cross section with three different impact pa-.

rameters which correspond to the same scattering angle.
This behavior is displayed in Fig. 7. To discuss this
problem quantitatively, the methods outlined at the be-
ginning of this section have to be refined (Berry, 1966;
Miller, 1968) by mathematical methods which take into
account the problem of coincidence of stationary points
(Chester et a/. , 1957) at the rainbow angle 6R. As a result
the cross section exhibits two groups of oscillations. The
interference between the outer two branches b2 and b3
gives rise to the rainbow oscillations with large separation
of angles. The interference of the innermost branch bl
with the other two gives a set of high-frequency oscilla-
tions, the rapid oscillations. For angles grea, ter than the
rainbow angle 6~, the oscillations die out and there will
be only one contribution to the cross section which can
be expressed by Eq. (4.3).

In the vicinity of the first rainbow maximum the cross
section can be evaluated, with the parabola approxima-
tion for the deflection function

with

8(b) = —ilg + q(b —bg)',

e(6) = 2mb, (sin 6) '1'~'q "'Ai'(z),
(4.6)

(4.7)

(4.8)

where b& is the rainbow impact parameter, and Ai the
Airy function.

1.Parametric methods ter phase shifts

The easiest way to determine the phase shifts from the
cross section is to assume a specific functional form for
the phase shifts which represents the behavior of the real
phase function (see Fig. 7): negative phase shifts at small
b, a maximum for positive values at larger b, and an
asymptotic behavior of the phase shift at large b of the
form

Cb-(n-I) (4 9)

FK". 7. The phase shifts q and the angle of deflection 0 is a function
of the impact parameter b for a typical interaction potential valid in
molecular physics. The three impact parameters bl, b2, and b3 corre-
spond to the same angle of deflection 6. 6& is the rainbow angle, b& is
the rainbow impact parameter, and b the glory impact parameter.

if the potential has the asymptotic form V(r) = Cr "—
(Pauly and Toennies, 1965; Bernstein and Muckerman,
1967; Pauly, 1973).Then the unknown coefficients of the
phase function are determined by a nonlinear least-
squares algorithm which minimizes the expression
g; [e(8;) —I(6;)]', where a(@) is the value of the differen-
tial cross section calculated via the partial wave sum (2.2)
with use of the phase shifts generated from the ansatz.
I(8;) are the corresponding measured values.

Several functional forms have been used. Brackett et
al. (1963) employ a sum of exponentials, whereas Vollmer
(1969) describes the phase shifts by a superposition of
functions for which Eq. (3.9) can be solved analytically.
Klingbeil (1972a) proposed a method where all phase
shifts were treated as free parameters, except those for
large b, where the expression (4.9) holds. The procedure
does not seem well suited for atom —atom scattering
processes, where more than hundreds of angular momen-
ta l are involved. However, if a good estimate of the
starting parameters is available (about 10% deviation), a
rapid convergence of the minimalization process is
achieved (e.g., 20 iterations for 126 phase shifts). An
advantage of this procedure is that it is not based on any
assumption concerning the analytic form for the phase

Rev. Mod. Phys. , Vol. 46, No. 2, April 1974
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shifts.
Quite a diff'erent procedure has been proposed by

Remler (1971). First the partial wave series is decom-
posed into a repulsive and an attractive part,

f.( )t) = (2jk) ' g (2l+ l)PI(cos t))[S.—1]
1=0

(4.»)

f, ( )t) = (2ik) ' g (21 + 1)PI(cos t))[S.(S, —1)], (4.12)

where S = exp[2i(q. + rl, )] = S.S, is the S matrix. Then
the S matrix for the attractive part is parameterized by

--- &A.
' —A*'&

I

p=l P
(4.13)

where X is the angular momentum with Re 'A = I + —,'
and X„is the position of the pth pole in the complex
angular momentum plane. The scattering amplitude can
now be computed using the Regge —Watson —Sommerfeld
transformation (De Alfaro and Regge, 1965)'

N

f.(8) = 2.k g P„',&,(—cos t'f) Res [AS, (A, k) —1]
p=l

A S.(A, k) —i+ d — Ey' I/2
—cos2k cos vrA

(4.14)

The integral has to be taken over the imaginary axis and
the half-circle including the complex plane for A ) G.
Since the function S is a quadratic function of A., the
integral over the imaginary axis vanishes and the remain-
ing part is assumed to be zero. Therefore one gets

(A,
' —A.,*')

--- f' A' —A*'l

-. --; qA, —A;)
p+I

(4.i5)

The partial wave sum is now reduced to a sum over a
few pole contributions in the complex plane of &.

The contribution of a single pole to the phase shift
function and the deflection function can be obtained
from the parameterization (4.13). The phase shift is then

f(8) = (2ik) ' g (21 + 1)P&(cos t)) [S,S. —1] = f. +f„
(4.10)

with

O, (i) = 2
(A + Re A, )'+ (Im A, )'

(A —Re A,)' + (Im A, )'
(4.17)

Figure 8 illustrates these results. O, (l) is essentially a
pulse centered at i = Re(A, — ) with the depth 2/Im A,
and the width 2 Im A, . Now one proceeds as follows.
Starting with a number of N poles, which are placed on
a small circle centered at A, in the complex A. plane, the
number of these poles (Ã) and the real and imaginary
part of the central pole (A.,) are derived from semiclassical
quantities. The rainbow angle is given by= 2A/Im A„ the rainbow angular momentum by ls= Re A.„and the width of the deflection function at
t)' = t),/2 by I;q, = 2 Im Ap.

'
Equation (4.15) is then summed, the results compared
with the experimental data, and the input information
varied until a satisfactory agreement is achieved between
the experimental and calculated cross sections. The
number of poles which are sufhcient for attaining good
agreement with the experiment has been found to lie
between 5 and 16 (Rich et rtl, , 1971).The repulsive part of
the scattering amplitude f„cannot be treated in this
way, since here the large number of repulsive poles con-
tributing to the cross section is cumbersome. Although
the results which have been obtained by this method are
striking, a disadvantage should be mentioned. The
chosen parameterization of the S.matrix leads to the
wrong asymptotic behavior of the phase shift, which
should be important for systems where weak but long-
range forces are involved.

The methods described above have one common
scheme. The phase shift function is obtained by varying
several parameters (the phase shifts themselves, the poles
of the S matrix in the complex A plane, or some constants
of assumed functions), the cross section is then calculated
by using the exact formulas given by quantum mechan-
1cs.

2. Parametric methods for the defiection function

Several methods are now described which take advan-
tage of the close relationship between the semiclassical
cross section and the deflection function. There the main
problem arises from most of the expressions for the
semiclassical cross section containing b(t)) rather than
8(b), and from b(8) being in general a multivalued
function. A procedure which uses nearly all measurable
quantities has been proposed and applied by Buck

( Im A., ~ 6 Im A.,rl, (l) = arctanI
A R'A (

—arctan(

(4.i6)
and the deflection function

2 ImAp— 2/Irn A,
p

FK". 8. Phase shift q, and
dellection function 8 of a
single pole X, in the com-
plex A plane (Remler, 1971).

4 This expression is obtained by evaluating the integral which gives both
f.(0), which thus accounts for the poles due to cos re, and the sum,
which accounts for the poles of S.. For a definition of these quantities see Fig. 7 and Fig. 8.
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U. Buck: Inversion of molecular scattering data 381

(1971). In order to unfold the multivalued character of
b(6), the deflection function is separated into monotonic
functions g;(b) such that O(b) = g; g;(b) and b
= g; '(8). The g; are represented by the usual functional
approximations made in the semiclassical scattering theo-
ry; a parabola in the minimum, a straight line in the
vicinity of the zero point, and an inverse power law for
the asymptotic region [see Eq. (4.6)]. The measurable
quantities are then calculated with help of these func-
tions. The correct functional behavior is tested and the
functions g; are then determined by a direct comparison
with the measured cross sections. A measured quantity is,
e.g. , the angular position of the rainbow oscillations z
which is given by

with

z = 0.75 n'/', (4.i8)

3. Direct methods and reduced energy variables

A direct determination of the deflection function is
possible if the cross section is monotonie. This is always
the ease for angles greater than the rainbow angle and
for cross sections based on a monotonic potential. There
exists then only one contribution to the semiclassical
cross section of Eq. (4.1) and the inverse problem is
solved completely. The deflection function is obtained
by direct integration over the measured cross section:

a = 2rlb, (@) —2rlb, (6) + k8[b2(6) —b3(@)].

Often such a determination is easy to perform; for
instance, the parabola approximation in the minimum
[see Eq. (4.6)] gives for z a linear dependence on 0 [see
Eq. (4.8)]. The rapid oscillations, the velocity positions of
the glory oscillations of the integral cross section, the
amplitude of the first rainbow maximum, and the scatter-
ing at large angles are treated in the same way. With
some requirements of continuity, the defIection function
can then be determined over the whole angular range.
The rainbow oscillations determine certain areas bound-
ed by the deflection function (Boyle, 1971), whereas the
rapid oscillations are a direct measure of b [the zero
point of 8(b)] if the rainbow oscillations are known. If
some additional information on the amplitudes, say the
ratio of the first maximum to the monotonic scattering
cross section at large angles, is known, the determination
is unique. It should be pointed out that only data which
are not severely influenced by the averaging processes
ls used.

Two other procedures similar to the one described
have been proposed by Miller (1969) and Hoyle (1971).
To overcome the multivalued character of the inverse of
the deflection function b(6), Miller introduces monotonic
functions p(x) and their inverses p. ' which are parameter-
ized by suitable expansions of simple power series. Boyle
calculates the deflection function first from an assumed
potential. This 8(b) is then adjusted in a way such that
the special features of the cross section measured (say the
rainbow and the rapid oscillations) are well represented.
The potential is calculated by use of the inversion
techniques of Sec. IIIA. The procedure is then repeated
until there is agreement between measured and calculat-
ed quantities.

b'(~) = 2 J «(6')«i«D d'@'. (4.19)

The potential is determined by applying one of the
procedures given in Sec. IIIA. It is possible to combine
Eq. (4.19) and the results of Sec. IIIA with Eq. (3.11), for
instance, into one formula (Keller et al. , 1956). The
resulting integrals are then solvable for Coulomb and
inverse square potentials in an analytic way. The ques-
tion of how to obtain the absolute value of the cross
section then arises. Since this quantity is very dificult to
measure, the problem must be overcome by calibrating
the cross section through values obtained from theoreti-
cal considerations or other inversion procedures which are
based on an interferenee pattern and provide an abso-
lute value of the impact parameter. This leads directly to
the other possibility, namely obtaining direct information
on the deflection function through the interference data
(F. T. Smith et al. , 1965; Pritchard, 1972). By differentiat-
ing the phases of Eq. (4.4) one obtains directly the
diflerence between impact parameters [Eq. (4.5)]. This
method has the advantage of determining the deflection
function without assuming a parameterized model. Prit-
chard proposes a method which starts from this equation
with additional information similar to that mentioned
above, the rainbow cross section, the classical cross
section, and the envelopes of the amplitudes. He suggests
in addition the usefulness of the reduced variables,
introduced by F. T. Smith et al. (1966) for a small angle
or high-energy approximation, for data taken at large
angles and thermal energies. The advantage of such a
procedure is obvious. Instead of Eq. (4.4) the reduced
action difference becomes

a(E, r) = (E/2p, )'i' n(E, r)

with

a(E, v) = a, (v) + E 'ai(r) + (4.2i)
The quantity No describes a quantal contribution to the
relative phase. Thus the data taken at different energies
can be combined into a single curve with greater accura-
cy than would be possible for the single curves. In
addition this method helps to clarify and extend the
range of data. The limits of applicability of these reduced
variables for scattering at thermal energies have not yet
been studied by a rigorous approach. Numerical calcula-
tions show that this relation is fulfilled to within 2%%uo if the
energies do not differ by more than 25%%uo. Such reduced
variables are indispensable for studying and identifying
unknown features of the cross section.

B. Integral cross section

The information obtained from the differential cross
section mainly covers the angular momentum depend-
ence of the phase shift whereas the energy dependence is
preferably provided by the energy dependence of the
integral cross section. Indeed, the glory oscillations of the
integral cross section are a direct measure of the maxi-
mum phase shift q which occurs for potentials with a
minimum. This oscillation is proportional to cos(2ii—m/4). Thus it is easy to deduce ii from the measured
extrema. Unfortunately these values cannot be used for
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382 U. Buck: inversion of molecular scattering data

an inversion procedure since b, the impact parameter
where the maximum occurs, is energy-dependent. There-
fore the integral cross section provides little information
for inversion schemes, even in the semiclassical approxi-
mation. There are a few exceptions, however. One will be
treated below together with the scattering of identical
particles. Another exception has been treated by Voll-
mer (1971).By using parameterized phase shifts he was
able to write down explicitly the integral cross section in
terms of the free parameters. Two additional examples
which are valid in the high-energy approximation are
given in Sec. IIIA. A method where the orbit, ing reso-
nances are used as input information has been proposed
by Stwalley (1973).

n = 2q(b() —2q(b4) + kb( tl —kb4(m —tl). (4.23)

C. Identical particle scattering

Apart from the interferences described, the cross sec-
tion for identical particles shows an additional feature
which is due to the symmetry requirement under the
exchange of the nuclei. Depending on the symmetry of
the rest of the wavefunction, the partial wave summation
runs over only even or odd vain@ of l and the scattering
amplitude is either an even or an odd function of tl —m/2
which can be expressed by

f(&) = l[f(&) f(~ —&—)] (422)
where (+) is valid for l even, and ( —) for i odd. The
resulting oscillations in the difFerential cross section
represent the interference between direct and recoil
scattering. The cross section is now symmetric about
s./2. Figure 9 shows the interfering impact parameters
(Siska et cl , 1971.). For systems with E ) E, [see Eq.
(3.12)] these oscillations are obviously very sensitive
to the repulsive part of the potential. This is especially
true for the same type of oscillations in the integral
cross section, since then the region near the classical
turning point (l = 0) is probed by a measurement. The
analysis of these identical particle oscillations of the
difFerential cross section can be done by one of the
methods described in the previous section. The cross
section oscillates with the phase

with

Q ~ cos[2ri(0) —vr/2+ tp] (4.25)

y = arctan[1 + 2(ma)
' ') '.

The s-wave phase shifts can then be obtained simply
from the cross section via

(4.26)

where N is the index of the extremum measured as a
function of energy.

The spacings of the oscillations are a measure of the sum
of the two impact parameters b~ + b4 (F. T. Smith, 1969).
This result can be used to construct the whole b(6) curve
by an iterative procedure (Kennedy and F. J. Smith,
1969). The smoothness of the b(6) curve and an approx-
imate knowledge of the potentials help in calculating the
b(6) curve which then can be compared with the values
obtained from experiment. The procedure of Buck (1971)
can also be applied to this type of measurement. F. T.
Smith (1969) has shown that it is possible to derive some
information on the energy dependence of the impact
pa.rameter, for tl = vr/2, from this type of oscillation. He
expands the cross section about tl = m/2 and from the
resulting power series one gets information on the impact
parameters and their derivatives.

The integral cross section can be treated by similar
considerations. We have already seen that the interfer-
ence is mainly produced by head-on collision, for which
l = 0 is valid. Expanding the phase shift near this point,
one gets for small l

(4.24)

Because of the statistics —let us assume Bose statistics—
only scattering phase shifts of even angular momentum
contribute to the cross section. This means that the phase
shifts have the separation m for all following l except for
a small correction ~l'. In other words, all phase shifts
make the same contribution to the cross section as the s-
wave phase shift. The integral cross section therefore
oscillates (Helbing, 1969):

FIe. 9. Deflection function for identical particle scattering. Due to the
indistinguishability of the particles, the scattering is symxnetric about
e/2 and an additional interference pattern arises between b4 and b~

(Siska er a/. , 1971).

The examples discussed so far are interferences which
arise when two or more impact parameters corresponding
to a single potential contribute to the scattering ampli-
tude. As mentioned in the beginning, this is not a
necessary condition for interference. Several cases are
now studied where the interference structure arises due to
contributions from diferent potentials. The most promi-
nent examples where this type of interference occurs are
in calculating the charge and spin exchange cross sec-
tions. In the erst case two electronic states of diAerent
symmetry exist (g and u) leading to two difFerent poten-
tials. The actual physical situation where the charge is
definitely located on one particle or the other must be
described by a combination of the g and u states; the
cross section is given by

(4.27)

with (+) referring to the direct and (—) to the exchange
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cross section. An example for this type of analysis is
given by Kennedy and F.J. Smith (1969)who explore the
elastic differential cross section of He' —He. Nearly the
same is valid for the spin exchange cross section where
the two potentials arise from the diferent spins and
produce, for spin 1/2 particles, deep minima for the
singulet potential (because of the large exchange forces)
and shallow van der Waals minima for the triplet case
(Pritchard, 1972). In both cases an analysis of the inter-
ference data will provide some information on the diAer-
ence of actions, from which the deflection function can
be constructed if additional information on one of the
two contributions is known.

E. Potential crossings

In the semiclassical theory of electronic transitions a
new type of interference arises from a crossing of two or
more of the potential curves involved (F. T. Smith, 1969;
Olson and Smith, 1971). The S-matrix elements can be
written as

S«(E, b) = g q. (E, b) exp [2iri. (E, b)], (4.28)

where n symbolizes a summation over all possible ele-
ments. The functions q„are slowly varying functions
responsible for the transition probability. The scattering
amplitude is then given by

fkI(E, B) = g q. rr„'~'exp[ih 'A. (E, t'f) + iy„], (4.29)
n

where tr. , A., and y„aredefined in Eq. (4.2) and (4.3).
6-enerally a transition between the two states occurs

with significant probability only near the crossing point.
Two possible trajectories then lead to the same final state.
The scattering amplitude at a given angle, therefore,
contains two components which will interfere to give
an oscillating pattern. Figure 10 shows an example
where He+ + Ne in the ground state is crossed by the
potential of the excited He' + Ne' state. In the elastic
channel there are two, trajectories, one corresponding to

40—

30—

the basic diabatic potential and the other arising from a
transition to the excited state on the inward passage and
a transition to the ground state on the outward passage.
The interference pattern will be seen to be a perturbation
on elastic scattering. Inelastic scattering can be treated in
a similar manner. This type of interference pattern has
been predicted by Stueckelberg (1982). The oscillations
begin at a threshold angle r, . Three significant types of
information are available from these elastic perturbations
and inelastic oscillations: the reduced angle of the starting
point of the oscillations 7,, the oscillatory spacings, and
the amplitudes of the oscillations. By using the reduced
angle 7 rather than the angle itself to describe the
threshold behavior, it is easy to estimate the crossing
distance from such v, values. Since v is only a function of
the impact parameter b, with some knowledge of the
potential it can be related to the corresponding r values
(for details see F.T. Smith et al. , 1967; Coffey et a/. 1969).
The spacings are analyzed in terms of the reduced action
difference [see Eq. (4.20) and (4.21)]. The quantity ¹
which describes a quantal contribution to the relative
phase may be determined either theoretically or by
adjusting the experimental data so that the results from
different energies fall into a common pattern. A plot of
E'~'(N —¹)versus r is used to determine the coefficients
ln

ao(r) = 8~(~ —rs) + B2(~ —~,)'+ . (4.30)

The slope of this curve is a direct measure of the
difference in impact parameters involved, b,b(r). The
spacings of the oscillations are therefore directly connect-
ed to differences in impact parameter which can then be
used for a determination of the potentials involved if one
of the two potentials is known. One can check that the
series of Eq. (4.21) are truncated after the first member
by plotting d(E'~'N)/dt vs E. The amplitudes of the
oscillations associated with crossings contain information
about the energy associated with the coupling between
the states Hj2(r, ). Assuming that the simple Landau-
Zener model (Landau, 1932; Zener, 1933) is valid, this
energy is related to a characteristic velocity which can be
estimated from the energy dependence of the transition
probability (Coffey et al. , 1969).This type of information
can be obtained, in principle, for all processes in which
curve crossing is involved, as in charge transfer problems
(F. T. Smith et ftL, 1970) or the crossing of ionic and
covalent potentials of alkali ha]ides (Delvigne and Los,
1978). All these interferences give information on the
difference of the action, which can be used to construct
the defiection function and (via the results of Sec. III) the
potential.

20—
He+Ne V. RESULTS

10—

0—
He++ Ne

I

3

FIG. 10. Schematic potential curves for a two-state crossing. The
curves correspond roughly to the scattering of Ne' + Ne (CoFey et al. ,
1969), vvhen V is measured in [ev] and r in [A].

The preceding sections show that inversion schemes
are available which allow the determination of the poten-
tial directly from the measured cross section without
assuming a parameterized potential model. These solu-
tions are valid both in the exact quantum mechanical
theory as well as in the semiclassical approximation. The
quantum mechanical treatments are found to entail more
dificult steps than the semiclassical treatments. There-
fore such a procedure has not yet been applied to an
actual set of data in molecular physics. In the semiclassi-
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cal approximation there are now several practical appli-
cations available. They are a combination of one of the
procedures of Sec. IV with the results of Sec. III. The
classical inversion, though known for a long time, has
rarely been used for the determination of potentials. This
may be due to the fact that the first published work
(Hoyt, 1939 and Firsov, 1958) was restricted to mono-
tonic potentials. Most of the examples given below are
measurements of diA'erential cross sections which show
a pronounced rainbow structure with superimposed
rapid oscillations. This allows a precise determination of
the potential without measuring the absolute value of the
cross section. The renewed interest in the inversion
procedures in the semiclassical limit is mainly due to
molecular beam methods providing precise and accurate
measurements of the cross section.

FK.". 11. Differential cross section data in laboratory coordinates for
Ar+ on Ar (Lane and Everhardt, 1960).

keV in the laboratory. system. The cross section is dis-
played in Fig. 11. Two difhculties arise in applying this
procedure: the lack of data between 40' and 180' for the
first integration and the lack of data between 0—1' for the
inversion. Both problems have been overcome by a
suitable extrapolation which can be shown to cause only
small errors. The results are displayed in Fig. 12, along
with a theoretical calculation and the screened Coulomb
potential which is valid only at very small distances. The
origin of the gap between the potentials obtained from
different energies could not be clarified. The energy
dependence of the potential, inelasticities, and experi-
mental errors are possibly responsible for this effect.

A very recent example has been given by Barwig et al.
(1973) for the scattering of K on Hg in the energy range
of 30 to 300 eV. At these energies the scattering is mainly
determined by the repulsive part of the potential. The
influence of the attractive portion of the potential is
restricted to very small angles, not investigated in the
experiment. Therefore the cross section is monotonic and
can be directly inverted as described. The attractive part
of the deflection function, which is necessary for the
correct integration of Eq. (3.11) although it is very small
compared to the repulsive part, was taken from the
results obtained from scattering experiments at thermal
energies (Buck et al. , 1972, see below). The potential

-derived from measurements at five diff'erent energies is
illustrated in Fig. 13.The different symbols correspond to
different energies. At small distances the potential shows
an exponential increase with decreasing distance.

A. Monotonic cross sections

If the cross section is measured over the whole angular
range, b(t')) can be calculated by direct integration, using
Eq. (4.19), and the potential is obtained via Eq. (3.10)
and (3.11). Lane and Everhart (1960) applied this proce-
dure to the differential cross section data of Ar+ on Ar,
Ne+ on Ne, and Ne+ on Ar for energies of 25, 50, and 100

50

100—

10—

oo

V
o&

251 ev
~ 167 eV

67 eY
x 50

34 eV

20- Oe

10—

1

0 1.0
l I

2,0 3.0
r [&0'cvj

4.0
0.1

0
FK". 12. The potential between Ar+ and Ar obtained by the inversion
of experimental data at three different energies (solid lines). The dotted
line (V) refers to a potential based on the Thomas —Fermi statistical
model, and the dashed line (Vb) is an exponentially screened Coulomb
potential (Lane and Everhardt, 1960).

FK". 13. Potential curve for KHg derived by the inversion of experi-
mental differential cross section at five different energies from 30 to 300
ev (Barwig et al. , 1973).
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Fio. 15. The potential for CsHg obtained by the inversion of cross
section data at five different energies which are denoted by diAerent
symbols (Buck et al. , 1972).

Fic. 14. DiAerential cross section data for LiHg at the relative energy
E = 0.305 eV in the center of mass system (arbitrary units) as a
function of the deflection angle (degrees). The cross section is multi-
plied by 0'~' in order to remove the steep angular dependence at small
angles. Rainbows as well as the superimposed rapid oscillations are well
resolved (Buck er a/. , 1973).

B. Ra|nbovr oscillations

Most of the examples of inverted cross sections show a
well resolved rainbow structure as displayed in Fig. 14
for the scattering of Li on Hg (Buck et al. , 1973). The
supernumer-ry rainbow oscillations, which end up with
the classical rainbow, and the superimposed rapid oscil-
lations are clearly resolved. This structure is'very sensi-
tive to the absolute scale and form of the potential.
Therefore these cross sections provide an important tool
for the determination of the phase shifts (or the defiection
function). For the determination of the potential the
procedures of Sec. IIIAl are used.

(a) The procedure of Buck (1971)has been applied to
the scattering of alkali atoms on mercury (Buck and
Pauly, 1971; Buck et al. , 1972; Buck et al. , 1973) meas-
ured in the thermal energy range (about 0.2 eV). The
following experimental data were used as input informa-
tion for the inversion procedure.

(i) The positions of the rainbow oscillations.

(ii) The separation of the rapid oscillations.

(iii) The backward scattering of the differential cross
section.

(iv) The position of the extrema of the glory oscilla-
tions in the velocity dependence of the integral cross
section.

(v) The van der Waals constant from semiempirical
calculations.

(vi) The ratio of the amplitude of the first rainbow
oscillation to the backward scattering.
The measured positions of the two interference oscilla-

TABLE I. Potential well depth e and minimum
separation r for hydrogen —mercury and alkali—
mercury systems.

e[eV]

H—Hg'
Li Hgb
Na-Hg'
K—Hg'
Cs—Hg'

0.458
0.108
0.055
0.052
0.050

1.74
3.00
4.72
4.91
5.09

' Stwalley (1972). Buck et al. (1973).
' Buck and Pauly (1971). ' Buck er al. (1972).

tions are the heart of the procedure. For high-resolution
experiments they are not influenced by any averaging
process and can easily be deduced from experimental
data. From this information the deflection function for
the attractive part is built up by minimizing the difIerence
between calculated and measured positions. The repul-
sive part is obtained from the monotonic part of the
backward cross section, in the same way as described
above. The glory oscillations and the van der Waals
constant are used as additional information for the small
angle part of the defIection function, since this region is
not probed exactly by differential cross section data.
The disadvantage to taking only the position of the
extrema is that they are only sensitive to certain areas of
the deflection function (Hoyle, 1971, see Sec. IVA; Prit-
chard, 1972) and do not determine H(b) uniquely. This
can be overcome by certain conditions of continuity, say
on the repulsive part of the deflection function, and by a
final comparison to the amplitude of the cross section. In
our opinion it is easier to start from well defined positions
and to adjust the fine details afterwards rather than to
start from the amplitudes which are severely afIected by
averaging processes, even with good experimental energy
resolution. Figure 15 shows an example of the resulting
potential derived from such an inversion procedure for
CSHg (Buck et e/. , 1972).The displayed points have been
obtained from a measurement of the rainbow cross sec-
tions at five difFerent energies with the backward scatter-
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Fto. 16. Differential cross section data (arbitrary units) for H'Kr at
15.8 eV in center-of-mass coordinates as a function of the deflection
angle (degrees). A well resolved rainbow structure is displayed (Weise
et a/ , 1971). .

ing of one energy; each energy is indicated by a different
symbol. One can see at a glance that the potentials,
within the experimental error, are the same. Similar
results have been obtained for LiHg (Buck et al. , 1973),
NaHg (Buck and Pauly, 1971) and KHg (Buck et al. ,
1972). The values of the size parameters for all these
potentials, the well depth e, and the minimum distance r
are given in Table I along with the results for HHg which
have been obtained from spectroscopic data by the RKR
method (Stwalley, 1972). These values indicate that the
heavy systems behave like a van der Waals molecule,
whereas HHg is governed by chemical exchange forces.
The system LiHg can be regarded as a transition between
these two types. The shape is quite different from the
Lennard-Jones (L.-J.) (12-6) potential commonly used in
molecular physics. The repulsive part is much softer. The
minimum is wider and it approaches zero much more
rapidly as r approaches infinity. Another interesting point
should be mentioned. Evidence has been found which
shows that for the distances probed by the measurements
the asymptotic behavior of the potential cannot be ex-
plained by a simple C& r ' term. The difference could be
attributed to a Csr ' term.

(b) Results of similar precision are available for the
scattering of protons on the rare gases in the energy range
from 5 to 30 eV (Mittmann et a/. , 1971; Rich et al. , 1971;
Udseth et al. , 1971; Weise et al. , 1971).An example for
H Kr (Weise et al. , 1971) is shown in Fig. 16. Rich et al. ,
(1971) inverted their measurements by the method of
Remler (1971) for H' on He, Ne, Ar, and Kr in the

FK". 17. Potential energy functions for H+ —Kr. The dashed line is
obtained by the inversion of the data of Rich et al. (1971)by the method
of Remler (1971).The dotted line represents the results of the inversion
procedure of Buck (1971) of the data measured by Weise et al. (1971).
The same data set is used for a fit procedure displayed by the solid -line
(Weise et a!., 1971).

energy range of 4.0 to 6.0 eV. Here the measured cross
section is directly compared with a calculated scattering
amplitude of the Watson —Sommerfeld type. The pole
contributions are varied until there is agreement between
calculated and measured values. The initial choice of
pole parameters is clearly motivated by semiclassical
considerations. The rainbow angle t)R and the width of
the deffection function I',&,

= (2t)Rjq)'~' may be quickly
approximated by fitting the rainbow maximum [see Eq.
(4.7)] to the experimental data. The rainbow oscillations
at small scattering angles give a reasonable approxima-
tion to b, whereas the rainbow impact parameter b& can
be determined from the rapid oscillations near the rain-
bow angle. The optimal parameters for H+Ar and H+Kr
are shown in Table IE. No more than 16 pole contribu-
tions placed in a unit circle around the complex )l., were
necessary to generate the cross section. By applying
this procedure one has to consider that only the attract-
ive part of the potential can be treated in this way.
The repulsive part has to be determined by other
methods. Unaveraged data, though, is necessary for
comparison. This problem has been solved, using a

(D

L 3-

H+ Ar
H'Kr

5.0 eV
6.0 eV

Re Ap

100.2
138.2

Im Ap

25.78
33.6

13
16

67
91.2

TABLE II. Pole parameters used to fit the calculated cross section to
the experimental cross section (Rich et al. , 1971) FK'. 18. The potential of H+Ar obtained by the inversion of the data

measured by Rich er al. (1971) by the Remler method (1971) (dashed
dotted line) and by the method of Klingbeil (1972b) (solid line). The
dashed line is the result of the fit procedure of Mittmann et al. (1971)
using their own data. This potential has been used as initial potential
by Klingbeil for his inversion.
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deconvolution procedure which can only be applied if the
data shows a well resolved structure. Results for H+Kr
are illustrated in Fig. 17 by the dashed line. The points
display the results of an inversion of the data of Weise et
a/. (1971), using the procedure of Buck (1971) for the
same system. The solid line indicates the fit procedure of
Weise et a/. (1971).Most of the discrepancies are due to
the diA'erent sets of data. For instance, Rich et al (19. 71)
were unable to resolve the rapid oscillations and thus this
data set is perhaps not so reliable. If one compares the
potential at r = 4.5 A with that of a r ' behavior (which
should be valid for a charge-induced dipole interaction),
the constant is more than a factor of two higher than the
predicted one.

(c) The data of Rich et a/. (1971) for H'Ar have also
been inverted by Klingbeil (1972b). In this method all
phase shifts are used as free parameters and adjusted by
comparing calculated and measured cross sections. The
phase shifts of the 6tted potential of Mittmann et al.
(1971) were used as starting values. The phase shifts in
the limits 14 & / & 220 were then varied in order to
obtain an optimal set of data. The result is shown in Fig.
18 together with the initial potential and the potential
obtained by the inversion of the same data by the Remler
method (Rich et a/. , 1971). The deviations are not very
significant, but not negligibly sma, ll either. Problems with
this method arise because of the requirements of decon-
voluted data and a well behaved starting potential.
However, since the procedure works without any as-
sumptions, it is well suited for the inversion of differential
cross section curves which display well resolved rapid
oscillations without rainbow structure, and which are
sensitive mainly to the repulsive part of the potential.
Such a case can be solved neither by the method of (a)
and (b) nor by the procedures of Sec. IVA3. An example
of this is the differential cross section of LiAr measured
by Detz (1970) and inverted by Klingbeil (1973).

(d) Another example for the determination of the
potential from rainbow scattering is given by Hoyle
(1971).The deflection function is constructed by varying
a calculated one (say from an I .-S.potential). The final
form is then adjusted by comparing the experimental
value to the calculated cross section. The potential is
determined by the method of Sec. IIIA. This procedure
has been applied to the system NaXe, for which differ-

ential cross sections of high-energy resolution have been
measured (Barwig et a/. , 1966). The results do not differ
very much from carefully performed fit procedures (Buck
and Pa,uly, 1968; Diiren et a/. , 1968).

C. Identical particle oscillations

All methods described above are performed by apply-
ing the procedure of Sec. III.A1 in the second step of the
whole procedure; this means the phase shift curve is
known for one energy and as many I as possible. This
information is mainly obtained from the differential cross
section. We shall conclude this chapter with an example
where a procedure of Sec. III.A.2 is used. Here the phase
shifts have to be known as a function of energy for one
l. Usually such information cannot be obtained from
cross section measurements in molecular physics. There is
one exception, however, the integral cross section for two
He atoms. Figure 19 shows this cross section as measured
by Feltgen et a/. (1978).The identical particle oscillations
are clearly seen over the whole velocity range. Since the
potential well is very small, most of the structure is
sensitive to the repulsive part of the potential. Only the
first shoulder is sensitive to the attractive part due to the
special behavior of the s-wave phase shift (analogous to
the Ramsauer eII'ect in electron scattering). An analysis
of this cross section shows (see Sec. IVC) that all phase
shifts are coupled to the s-wave phase shift and therefore
these phase shifts can be deduced from the measured
extrema of the cross section. Obviously this procedure is
not valid for small energies. Nevertheless the larger part
of the phase shifts can be determined in this way. If the
potential well is also known, the procedure of Sec. IIIA2
can be applied. The difhculties of this method arise from
the necessity that a part of the potential has to be known
u priori; this problem can only be solved by assuming
several forms for the potential, performing the inversion,
and comparing the results with measurements. It should
be noted that this procedure is, in any case, better than
the usual fit procedure, since a part of the cross section
curve is correctly reproduced in any iteration step,
regardless of any assumed potential well. The results of
such an inversion (Feltgen et at. , 1978) are displayed in
Fig. 20 along with other potentials derived from molecu-
lar beam experiments and gaseous properties. The in-
verted points agree well with ab initio calculations, not
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FIa. 19. Measured and calculated integral effective cross section for He'He' as a function of the primary beam velocity. The solid curve
calculated from the potential obtained by inversion. The oscillation are due to the indistinguishability of the particles (Feltgen et al. , 1973).
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Fio. 20. The He4 —He4 potential. The circles denote the potential
obtained by the inversion of the data of Fig. 19 (Feltgen et al. ,
1973). The other potentials are determined by molecular beam
scattering data: solid line (Farrar and I ee, 1972), dashed line
(Bennewitz et Ol. , 1972), crosses (Gengenbach et al. , 1972); and by
gaseous properties: dashed dotted line (Beck, 1968). Several other
potentials derived for this system could not be displayed in this
figure since they lie directly on the curves shown, e.g., Cantini
et al. (1972), Gilbert and Wahl (1967).

shown in the figure (Gilbert and Wahl, 1967; Schaefer
et at. , 1970).

The second step from the phase shifts or the deflection
function to the potential is achieved by solving an
Abelian integral equation. If the input information is
known only as a function of energy, additional informa-

D. Discussion

Inverse procedures are indeed a powerful tool for
deducing potentials from measured cross sections. Sever-
al of these advantages over the usual fitting procedures
should be pointed out. The potential is automatically
determined only for the region which is probed by the
measurements. This point should not be overlooked.
Most of the differences in the literature on molecular
interaction potentials arise from many authors overesti-
mating the range of the potential to which the measure-
ment is sensitive. Computation time is also significantly
reduced, being, in the average, 5 to 10 times smaller
than that for a fit procedure of the same precision.
These values are based on the experience of the author
in comparing an inversion procedure of the type de-
scribed in Sec. IVA and a trial and error. procedure
with X' techniques, where the differential cross section is
used as input information. An additional point is that,
due to the apparent structure of the diA'erent steps
involved in any inverse problem, the queston of errors
and uniqueness can be solved in a straightforward man-
ner. The following scheme summarizes the different steps
in the semiclassical approximation:

tion about the potential well (bound states) is necessary
for a unique solutioo; whereas for the angular momen-
tum dependence of the input information, a unique
solution is achieved if the interpolation from the angular
momentum l to the impact parameter b is unique. The
first step in the above scheme is easily achieved if the
data, the differential and the integral cross section, is of
absolute accuracy over the full range of the variable. In
practice we are obliged to deal with a limited range of
data with limited accuracy. The procedures of Sec. IV and
the results given in Sec. V clearly show the requirements
for experimental data which is to be inverted to poten-
tials in a unique manner. The limited angular (energy)
range can practically be overcome At small angles (or
low energies) an appropriate interpolation must be
found, while a lack of large-angle data (or high-energy
data) limits the range of the deduced potential. Another
possibility is to vary the complementary, fixed parameter,
e.g., the energy (the angular momentum). The difI'erent
sets of phase shifts should then give the same potential.
A more elegant possibility is the reduced variable formal-
ism originally derived by F. T. Smith (1969) as a small-
angle or high-energy approximation. This procedure
leads to an extension of the domain of available data. A
severe restriction for all data is the finite resolution of
energy and angles, which cannot be avoided in any real
experiment. Since most of the procedures which have
been applied need, as main input information, the posi-
tions and the amplitudes of the interference oscillations
of the cross sections, they can always be performed if the
resolution is good enough that these two quantities are
not affected by a large amount of averaging. Uniqueness
is achieved if the whole interference structure is known,
together with some additional information from large-
angle scattering, the amplitudes, or the averaged cross
section. The examples treated in this article display a very
simple structure from which the potential could be de-
rived. More complicated cases such as atom-molecule
scattering or interactions where several potential curves
are involved will hopefully be attacked in the near future.
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